Science.gov

Sample records for high-resolution temporal bone

  1. High-resolution CT of temporal bone trauma

    SciTech Connect

    Holland, B.A.; Brant-Zawadzki, M.

    1984-08-01

    Computed tomographic (CT) finding in 18 patients with temporal bone trauma were reviewed. Eight patients suffered longitudinal fractures of the petrous bone, which were associated with ossicular dislocation in two patients. Transverse fractures were detected in six patients, with a contralateral mastoid fracture in one patient. In four patients, the fractures were restricted to the mastoid region. Of the 14 patients in whom adequate neurologic evaluation was available, seven had a permanent facial nerve or hearing deficit while five suffered at least a transient neurologic deficit related to the temporal bone trauma. Routine head CT (10 mm sections) demonstrated only eight of 19 petrous bone injuries. Evidence of brain trauma or extra-axial hemotoma was seen in 12 patients. In 13 cases, high-resolution CT was also performed, demonstrating temporal bone injuries in all. This latter technique allows rapid and detailed evaluation of temporal bone trauma.

  2. Role of High Resolution Computed Tomography in Evaluation of Pathologies of Temporal Bone

    PubMed Central

    Thukral, Chuni Lal; Singh, Sunmeet; Sood, Arvinder Singh; Singh, Kunwarpal

    2015-01-01

    Background High Resolution Computed Tomography (HRCT), a modification of routine CT, provides a direct visual window in the temporal bone providing minute structural details. Purpose of the present study was to evaluate the normal variations, pathological processes (infections and congenital anomalies) and their extent involving the temporal bone along with their complications on HRCT and to correlate these imaging findings surgically, wherever available. Materials and Methods The prospective study included 50 patients who were referred to the radiology department with clinically suspected temporal bone or ear pathologies. After detailed clinical examination, the patients were subjected to high resolution computed tomography (HRCT) examination. The imaging findings were correlated with the surgical findings wherever available. The surgical findings were considered as final. Results From a total of 50 cases, 83.33% had cholesteatoma. The surgical and radiological findings showed a high level of sensitivity (89.29%) in the identification of cholesteatoma. HRCT provides a good sensitivity of 80.65% in the identification of changes to the ossicular chain despite the presence of surrounding soft tissue. HRCT was highly informative in identification of erosion of lateral semicircular canal. In diagnosis of facial canal dehiscence HRCT had a low sensitivity of 33.33%. In the evaluation of any congenital abnormality of the ear HRCT proved to be beneficial in depicting the anatomical details. Conclusion The clinical and radiological findings showed a high level sensitivity with intraoperative findings as regards to the presence of cholesteatoma, changes of the ossicular chain and erosion of the lateral semicircular canal. HRCT findings, in the treatment of any congenital abnormality of the ear were a good guide to the surgeon for planning and management. PMID:26500978

  3. Evaluation of Temporal Bone Cholesteatoma and the Correlation Between High Resolution Computed Tomography and Surgical Finding

    PubMed Central

    Gomaa, Mohammed A.; Abdel Karim, Abdel Rahim A.; Abdel Ghany, Hosny S.; Elhiny, Ahmed A.; Sadek, Ahmed A.

    2013-01-01

    Background Acquired cholesteatomas are commonly seen in patients less than 30 years. There is a typical history of recurrent middle ear infections with tympanic membrane perforation. The diagnosis of cholesteatoma is usually made on otologic examination. Objective The aim of the work was to study the role of high resolution computed tomography (HRCT) in detecting, evaluating, and diagnosing middle ear cholesteatoma. Patients and methods This was a prospective study that included 56 consecutive patients with chronic suppurative otitis media, unsafe type cholesteatomas. Each patient was subjected to full clinical evaluation, and HRCT examination. Intravenous contrast media was used in some patients with suspected intracranial complication. Preoperative radiological data were correlated with data related to surgical findings. Results The study showed that a high incidence of cholesteatoma in the third decade of life. The scutum and lateral attic wall were the most common bony erosions in the middle ear bony wall (64.3%), and the incus was the most eroded ossicle in the middle ear (88.2%). Sclerosing of mastoid air cells were encountered in 60.7% of patients and the lateral semicircular canal was affected in 9%, while facial canal erosion was found in 21.4%. Temporal bone complications are more common than intracranial complications. HRCT findings were compared with operative features; the comparative study included the accuracy and sensitivity of HRCT in detecting cholesteatoma (92.8%), its location and extension (96.4%), ossicular chain erosion (98%), labyrinthine fistula and intracranial complications (100%). Conclusion The important role of HRCT scannig lies on the early detection of cholesteatoma, and more conservative surgical procedures can be used to eradicate the disease. PMID:24179410

  4. High resolution bone mineral densitometry with a gamma camera

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Jhingran, S.; Johnson, P.

    1983-01-01

    A technique by which the regional distribution of bone mineral can be determined in bone samples from small animals is described. The technique employs an Anger camera interfaced to a medical computer. High resolution imaging is possible by producing magnified images of the bone samples. Regional densitometry of femurs from oophorectomised and bone mineral loss.

  5. Homology Groups of High-Resolution Temporal Rainfall

    NASA Astrophysics Data System (ADS)

    Fernández, Félix; Vásquez Aguilar, Raciel; Carsteanu, Alin-Andrei

    2016-04-01

    This study applies topological data analysis, by generating homology groups to uncover patterns in the data of high-resolution temporal rainfall intensities from Iowa City (IIHR, U of Iowa). The state-space representation of the data is being investigated for an appropiate embedding dimension, in order to subsequently study topological properties of resulting manifold.

  6. Persistence Diagrams of High-Resolution Temporal Rainfall

    NASA Astrophysics Data System (ADS)

    Fernández Méndez, F.; Carsteanu, A. A.

    2015-12-01

    This study applies Topological Data Analysis (TDA), by generating persistence diagrams to uncover patterns in the data of high-resolution temporal rainfall intensities from Iowa City (IIHR, U of Iowa). Persistence diagrams are a way to identify essential cycles in state-space representations of the data.

  7. Homology Groups of High-Resolution Temporal Rainfall

    NASA Astrophysics Data System (ADS)

    Vásquez Aguilar, R.; Carsteanu, A. A.

    2015-12-01

    Using high-resolution temporal rainfall intensities from Iowa City, IA (IIHR, U of Iowa), we perform an analysis of the homology groups generated by data connectivity in state space, and attempt a qualitative interpretation of the first and second homology groups. Let us note that homology groups are generated, in the context of topological data analysis (TDA), by representing the data in n-dimensional state space and building a connectivity diagram according to the respective distances between the data points. Subsequently, the topological invariants of the resulting connected structures are being analyzed.

  8. Pediatric temporal bone rhabdomyosarcoma.

    PubMed

    Goldberg, Monica J

    2016-08-01

    Rhabdomyosarcoma is one of the most common soft-tissue sarcomas in children. Prompt diagnosis and treatment significantly improve survival; however, misdiagnosis is common because of this aggressive temporal bone lesion's similarity to more common benign diseases. Clinicians should maintain a high index of suspicion for rhabdomyosarcoma in patients with a presumed otologic infection not responsive to medical therapy. PMID:27467294

  9. Spatial and Temporal Data Fusion for Generating High-Resolution Land Cover Imagery

    NASA Astrophysics Data System (ADS)

    Xu, Yong

    Currently, remote sensing imagery has been widely used for generating global land cover products, but due to certain physical and budget limitations related to the sensors, their spatial and temporal resolution are too low to attain more accurate and more reliable global change research. In this situation, there is an urgent need to study and develop a more advanced satellite image processing method and land cover producing techniques to generate higher resolution images and land cover products for global change research. Through conducting a comprehensive study of the related theories and methods related to data fusion, various methods are systematically reviewed and summarized, such as HIS transformation image fusion, Wavelet transform image fusion, the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), etc. The advantages and disadvantages of these methods are highlighted according to their specific applications in the field of remote sensing. Based on my research target, the following are the main contents of this thesis: (1) Data fusion theory will be systematically studied and summarized, including various fusion models and specific applications, such as IHS transformation, PCA transformation, Wavelet analysis based data fusion, etc. Furthermore, their advantages and disadvantages are pointed out in relation to specific applications. (2) As traditional data fusion methods rely on spatial information and it is hard to deal with multi-source data fusion with temporal variation, therefore, the traditional data fusion theory and methods will be improved by a consideration of temporal information. Accordingly, some spatial and temporal data fusion methods will be proposed, in which both high-resolution & low-temporary imagery and low-resolution & high-temporary imagery are incorporated. Our experiments also show that they are suitable for dealing with multi-temporal data integration and generating high-resolution, multi-temporal images for global

  10. High Resolution Peripheral Quantitative Computed Tomography for Assessment of Bone Quality

    NASA Astrophysics Data System (ADS)

    Kazakia, Galateia

    2014-03-01

    The study of bone quality is motivated by the high morbidity, mortality, and societal cost of skeletal fractures. Over 10 million people are diagnosed with osteoporosis in the US alone, suffering 1.5 million osteoporotic fractures and costing the health care system over 17 billion annually. Accurate assessment of fracture risk is necessary to ensure that pharmacological and other interventions are appropriately administered. Currently, areal bone mineral density (aBMD) based on 2D dual-energy X-ray absorptiometry (DXA) is used to determine osteoporotic status and predict fracture risk. Though aBMD is a significant predictor of fracture risk, it does not completely explain bone strength or fracture incidence. The major limitation of aBMD is the lack of 3D information, which is necessary to distinguish between cortical and trabecular bone and to quantify bone geometry and microarchitecture. High resolution peripheral quantitative computed tomography (HR-pQCT) enables in vivo assessment of volumetric BMD within specific bone compartments as well as quantification of geometric and microarchitectural measures of bone quality. HR-pQCT studies have documented that trabecular bone microstructure alterations are associated with fracture risk independent of aBMD.... Cortical bone microstructure - specifically porosity - is a major determinant of strength, stiffness, and fracture toughness of cortical tissue and may further explain the aBMD-independent effect of age on bone fragility and fracture risk. The application of finite element analysis (FEA) to HR-pQCT data permits estimation of patient-specific bone strength, shown to be associated with fracture incidence independent of aBMD. This talk will describe the HR-pQCT scanner, established metrics of bone quality derived from HR-pQCT data, and novel analyses of bone quality currently in development. Cross-sectional and longitudinal HR-pQCT studies investigating the impact of aging, disease, injury, gender, race, and

  11. Visualizing the root-PDL-bone interface using high-resolution microtomography

    NASA Astrophysics Data System (ADS)

    Dalstra, Michel; Cattaneo, Paolo M.; Herzen, Julia; Beckmann, Felix

    2008-08-01

    The root/periodontal ligament/bone (RPB) interface is important for a correct understanding of the load transfer mechanism of masticatory forces and orthodontic loads. It is the aim of this study to assess the three-dimensional structure of the RPB interface using high-resolution microtomography. A human posterior jaw segment, obtained at autopsy from a 22-year old male donor was first scanned using a tomograph at the HASYLAB/DESY synchrotron facility (Hamburg, Germany) at 31μm resolution. Afterwards the first molar and its surrounding bone were removed with a 10mm hollow core drill. From this cylindrical sample smaller samples were drilled out in the buccolingual direction with a 1.5mm hollow core drill. These samples were scanned at 4μm resolution. The scans of the entire segment showed alveolar bone with a thin lamina dura, supported by an intricate trabecular network. Although featuring numerous openings between the PDL and the bone marrow on the other side to allow blood vessels to transverse, the lamina dura seems smooth at this resolution. First at high resolution, however, it becomes evident that it is irregular with bony spiculae and pitted surfaces. Therefore the stresses in the bone during physiological or orthodontic loading are much higher than expected from a smooth continuous alveolus.

  12. Comparative analysis of high-resolution chromosome techniques for leukemic bone marrows

    SciTech Connect

    Yunis, J.J.

    1982-09-01

    High-resolution direct and synchronization culture techniques for chromosome analysis of leukemic bone marrow cells can now be utilized. In this article, three different techniques are quantitatively compared for their consistency in successful cytogenetic analysis, reliability in the detection of clones with chromosomal abnormalities, and usefulness for the precise delineation of break points involved in structural chromosomal rearrangements. Bone marrow samples from 15 consecutive patients with acute nonlymphocytic leukemia (ANLL) were studied using an improved direct technique, amethopterin cell synchronization with thymidine release, and amethopterin cell synchronization with bromodeoxyuridine (BrdU) release. The results obtained with the amethopterin cell synchronization technique and thymidine release suggest that it should be the method of choice in the detection of chromosome defects in bone marrow of patients with ANLL.

  13. High Resolution Spatial and Temporal Mapping of Traffic-Related Air Pollutants

    PubMed Central

    Batterman, Stuart; Ganguly, Rajiv; Harbin, Paul

    2015-01-01

    Vehicle traffic is one of the most significant emission sources of air pollutants in urban areas. While the influence of mobile source emissions is felt throughout an urban area, concentrations from mobile emissions can be highest near major roadways. At present, information regarding the spatial and temporal patterns and the share of pollution attributable to traffic-related air pollutants is limited, in part due to concentrations that fall sharply with distance from roadways, as well as the few monitoring sites available in cities. This study uses a newly developed dispersion model (RLINE) and a spatially and temporally resolved emissions inventory to predict hourly PM2.5 and NOx concentrations across Detroit (MI, USA) at very high spatial resolution. Results for annual averages and high pollution days show contrasting patterns, the need for spatially resolved analyses, and the limitations of surrogate metrics like proximity or distance to roads. Data requirements, computational and modeling issues are discussed. High resolution pollutant data enable the identification of pollutant “hotspots”, “project-level” analyses of transportation options, development of exposure measures for epidemiology studies, delineation of vulnerable and susceptible populations, policy analyses examining risks and benefits of mitigation options, and the development of sustainability indicators integrating environmental, social, economic and health information. PMID:25837345

  14. Multi-temporal database of High Resolution Stereo Camera (HRSC) images - Alpha version

    NASA Astrophysics Data System (ADS)

    Erkeling, G.; Luesebrink, D.; Hiesinger, H.; Reiss, D.; Jaumann, R.

    2014-04-01

    Image data transmitted to Earth by Martian spacecraft since the 1970s, for example by Mariner and Viking, Mars Global Surveyor (MGS), Mars Express (MEx) and the Mars Reconnaissance Orbiter (MRO) showed, that the surface of Mars has changed dramatically and actually is continually changing [e.g., 1-8]. The changes are attributed to a large variety of atmospherical, geological and morphological processes, including eolian processes [9,10], mass wasting processes [11], changes of the polar caps [12] and impact cratering processes [13]. In addition, comparisons between Mariner, Viking and Mars Global Surveyor images suggest that more than one third of the Martian surface has brightened or darkened by at least 10% [6]. Albedo changes can have effects on the global heat balance and the circulation of winds, which can result in further surface changes [14-15]. The High Resolution Stereo Camera (HRSC) [16,17] on board Mars Express (MEx) covers large areas at high resolution and is therefore suited to detect the frequency, extent and origin of Martian surface changes. Since 2003 HRSC acquires highresolution images of the Martian surface and contributes to Martian research, with focus on the surface morphology, the geology and mineralogy, the role of liquid water on the surface and in the atmosphere, on volcanism, as well as on the proposed climate change throughout the Martian history and has improved our understanding of the evolution of Mars significantly [18-21]. The HRSC data are available at ESA's Planetary Science Archive (PSA) as well as through the NASA Planetary Data System (PDS). Both data platforms are frequently used by the scientific community and provide additional software and environments to further generate map-projected and geometrically calibrated HRSC data. However, while previews of the images are available, there is no possibility to quickly and conveniently see the spatial and temporal availability of HRSC images in a specific region, which is

  15. High Resolution Satellite Multi-Temporal Interferometry for Landslide and Subsidence Hazard Assessment: An Overview

    NASA Astrophysics Data System (ADS)

    Wasowski, J.; Bovenga, F.; Nitti, D. O.; Nutricato, R.; Chiaradia, M.

    2014-12-01

    The new and planned satellite missions can not only provide global capacity for research-oriented and practical applications such as mapping, characterizing and monitoring of areas affected by slope and subsidence hazards, but also offer a possibility to push the research frontier and prompt innovative detailed-scale studies on ground movement dynamics and processes. Among a number of emerging space-based remote sensing techniques, synthetic aperture radar (SAR), multi-temporal interferometry (MTI) seems the most promising for important innovation in landslide and subsidence hazards assessment and monitoring. MTI is appealing to those concerned with terrain instability hazards because it can provide very precise information on slow displacements of the ground surface over vast areas with limited vegetation cover. Although MTI techniques are considered to have already reached the operational level, it is apparent that in both research and practice we are at present only beginning to benefit from the high-resolution imagery that is currently acquired by the new generation radar satellites (e.g. COSMO-SkyMed, TerraSAR-X). In this overview we illustrate the great potential of high resolution MTI and explain what this technique can deliver in terms of detection and monitoring of slope and subsidence hazards. This is done by considering different areas characterized by a wide range of geomorphic, climatic and vegetation conditions, and presenting selected case study examples of local to regional scale MTI applications from Europe, China and Haiti. We envision that the current approach to assessment of hazard can be transformed by capitalizing more on the presently underexploited advantage of the MTI technique, i.e. the capability to provide regularly spatially-dense quantitative information for large areas currently unaffected by instabilities, but where the terrain geomorphology and geology may indicate potential for future ground failures.

  16. Multi-temporal database of High Resolution Stereo Camera (HRSC) images

    NASA Astrophysics Data System (ADS)

    Erkeling, G.; Luesebrink, D.; Hiesinger, H.; Reiss, D.

    2013-09-01

    Image data transmitted to Earth by Martian spacecraft since the 1970s, for example by Mariner and Viking, Mars Global Surveyor (MGS), Mars Express (MEx) and the Mars Reconnaissance Orbiter (MRO) showed, that the surface of Mars has changed dramatically and actually is continually changing [e.g., 1-8]. The changes are attributed to a large variety of atmospherical, geological and morphological processes, including eolian processes [9,10], mass wasting processes [11], changes of the polar caps [12] and impact cratering processes [13]. In addition, comparisons between Mariner, Viking and Mars Global Surveyor images suggest that more than one third of the Martian surface has brightened or darkened by at least 10% [6]. Albedo changes can have effects on the global heat balance and the circulation of winds, which can result in further surface changes [14-15]. In particular, the High Resolution Stereo Camera (HRSC) [16,17] on board Mars Express (MEx) covers large areas at high resolution and is therefore suited to detect the frequency, extent and origin of Martian surface changes. Since 2003 HRSC acquires high-resolution images of the Martian surface and contributes to Martian research, with focus on the surface morphology, the geology and mineralogy, the role of liquid water on the surface and in the atmosphere, on volcanism, as well as on the proposed climate change throughout the Martian history and has improved our understanding of the evolution of Mars significantly [18-21]. The HRSC data are available at ESA's Planetary Science Archive (PSA) as well as through the NASA Planetary Data System (PDS). Both data platforms are frequently used by the scientific community and provide additional software and environments to further generate map-projected and geometrically calibrated HRSC data. However, while previews of the images are available, there is no possibility to quickly and conveniently see the spatial and temporal availability of HRSC images in a specific region

  17. Decoding multiple sound categories in the human temporal cortex using high resolution fMRI.

    PubMed

    Zhang, Fengqing; Wang, Ji-Ping; Kim, Jieun; Parrish, Todd; Wong, Patrick C M

    2015-01-01

    Perception of sound categories is an important aspect of auditory perception. The extent to which the brain's representation of sound categories is encoded in specialized subregions or distributed across the auditory cortex remains unclear. Recent studies using multivariate pattern analysis (MVPA) of brain activations have provided important insights into how the brain decodes perceptual information. In the large existing literature on brain decoding using MVPA methods, relatively few studies have been conducted on multi-class categorization in the auditory domain. Here, we investigated the representation and processing of auditory categories within the human temporal cortex using high resolution fMRI and MVPA methods. More importantly, we considered decoding multiple sound categories simultaneously through multi-class support vector machine-recursive feature elimination (MSVM-RFE) as our MVPA tool. Results show that for all classifications the model MSVM-RFE was able to learn the functional relation between the multiple sound categories and the corresponding evoked spatial patterns and classify the unlabeled sound-evoked patterns significantly above chance. This indicates the feasibility of decoding multiple sound categories not only within but across subjects. However, the across-subject variation affects classification performance more than the within-subject variation, as the across-subject analysis has significantly lower classification accuracies. Sound category-selective brain maps were identified based on multi-class classification and revealed distributed patterns of brain activity in the superior temporal gyrus and the middle temporal gyrus. This is in accordance with previous studies, indicating that information in the spatially distributed patterns may reflect a more abstract perceptual level of representation of sound categories. Further, we show that the across-subject classification performance can be significantly improved by averaging the f

  18. Agro-hydrology and multi temporal high resolution remote sensing: toward an explicit spatial processes calibration

    NASA Astrophysics Data System (ADS)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-07-01

    The recent and forthcoming availability of high resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the perspective offered by improving the crop growth dynamic simulation using the distributed agro-hydrological model, Topography based Nitrogen transfer and Transformation (TNT2), using LAI map series derived from 105 Formosat-2 (F2) images during the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated with discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2006-2010 dataset (climate, land use, agricultural practices, discharge and nitrate fluxes at the outlet). A priori agricultural practices obtained from an extensive field survey such as seeding date, crop cultivar, and fertilizer amount were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics with a priori input parameters showed an temporal shift with observed LAI profiles irregularly distributed in space (between field crops) and time (between years). By re-setting seeding date at the crop field level, we proposed an optimization method to minimize efficiently this temporal shift and better fit the crop growth against the spatial observations as well as crop production. This optimization of simulated LAI has a negligible impact on water budget at the catchment scale (1 mm yr-1 in average) but a noticeable impact on in-stream nitrogen fluxes (around 12%) which is of interest considering nitrate stream contamination issues and TNT2 model objectives. This study demonstrates the contribution of forthcoming high spatial and temporal resolution products of Sentinel-2 satellite mission in improving agro-hydrological modeling by constraining the spatial representation of crop productivity.

  19. Decoding Multiple Sound Categories in the Human Temporal Cortex Using High Resolution fMRI

    PubMed Central

    Zhang, Fengqing; Wang, Ji-Ping; Kim, Jieun; Parrish, Todd; Wong, Patrick C. M.

    2015-01-01

    Perception of sound categories is an important aspect of auditory perception. The extent to which the brain’s representation of sound categories is encoded in specialized subregions or distributed across the auditory cortex remains unclear. Recent studies using multivariate pattern analysis (MVPA) of brain activations have provided important insights into how the brain decodes perceptual information. In the large existing literature on brain decoding using MVPA methods, relatively few studies have been conducted on multi-class categorization in the auditory domain. Here, we investigated the representation and processing of auditory categories within the human temporal cortex using high resolution fMRI and MVPA methods. More importantly, we considered decoding multiple sound categories simultaneously through multi-class support vector machine-recursive feature elimination (MSVM-RFE) as our MVPA tool. Results show that for all classifications the model MSVM-RFE was able to learn the functional relation between the multiple sound categories and the corresponding evoked spatial patterns and classify the unlabeled sound-evoked patterns significantly above chance. This indicates the feasibility of decoding multiple sound categories not only within but across subjects. However, the across-subject variation affects classification performance more than the within-subject variation, as the across-subject analysis has significantly lower classification accuracies. Sound category-selective brain maps were identified based on multi-class classification and revealed distributed patterns of brain activity in the superior temporal gyrus and the middle temporal gyrus. This is in accordance with previous studies, indicating that information in the spatially distributed patterns may reflect a more abstract perceptual level of representation of sound categories. Further, we show that the across-subject classification performance can be significantly improved by averaging the f

  20. Pan-Tropical Forest Mapping by Exploiting Textures of Multi-Temporal High Resolution SAR Data

    NASA Astrophysics Data System (ADS)

    Knuth, R.; Eckardt, R.; Richter, N.; Schmullius, C.

    2012-12-01

    radar images were processed using an operational processing chain that includes radiometric transformation, noise reduction, and georeferencing of the SAR data. In places with pronounced topography both satellites were used as single pass interferometer to derive a digital surface model in order to perform an orthorectification followed by a topographic normalization of the SAR backscatter values. As prescribed by the FAO, the final segment-based classification algorithm was fed by multi-temporal backscatter information, a set of textural features, and information on the degree of coherence between the multi-temporal acquisitions. Validation with available high resolution optical imagery suggests that the produced forest maps possess an overall accuracy of 75 percent or higher.

  1. Ultra-High Resolution Diffusion Tensor Imaging of the Microscopic Pathways of the Medial Temporal Lobe

    PubMed Central

    Zeineh, Michael M.; Holdsworth, Samantha; Skare, Stefan; Atlas, Scott W.; Bammer, Roland

    2015-01-01

    Diseases involving the medial temporal lobes (MTL) such as Alzheimer’s disease and mesial temporal sclerosis pose an ongoing diagnostic challenge because of the difficulty in identifying conclusive imaging features, particularly in pre-clinical states. Abnormal neuronal connectivity may be present in the circuitry of the MTL, but current techniques cannot reliably detect those abnormalities. Diffusion tensor imaging (DTI) has shown promise in defining putative abnormalities in connectivity, but DTI studies of the MTL performed to date have shown neither dramatic nor consistent differences across patient populations. Conventional DTI methodology provides an inadequate depiction of the complex microanatomy present in the medial temporal lobe because of a typically employed low isotropic resolution of 2.0–2.5mm, a low signal-to-noise ratio (SNR), and echo-planar imaging (EPI) geometric distortions that are exacerbated by the inhomogeneous magnetic environment at the skull base. In this study, we pushed the resolving power of DTI to near-mm isotropic voxel size to achieve a detailed depiction of mesial temporal microstructure at 3T. High image fidelity and SNR at this resolution are achieved through several mechanisms: (1) acquiring multiple repetitions of the minimum field of view required for hippocampal coverage to boost SNR; (2) utilizing a single-refocused diffusion preparation to enhance SNR further; (3) performing a phase correction to reduce Rician noise; (4) minimizing distortion and maintaining left-right distortion symmetry with axial-plane parallel imaging; and (5) retaining anatomical and quantitative accuracy through the use of motion correction coupled with a higher-order eddy-current correction scheme. We combined this high-resolution methodology with a detailed segmentation of the MTL to identify tracks in all subjects that may represent the major pathways of the MTL, including the perforant pathway. Tractography performed on a subset of the data

  2. Determination of Destructed and Infracted Forest Areas with Multi-temporal High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Seker, D. Z.; Unal, A.; Kaya, S.; Alganci, U.

    2015-12-01

    Migration from rural areas to city centers and their surroundings is an important problem of not only our country but also the countries that under development stage. This uncontrolled and huge amount of migration brings out urbanization and socio - economic problems. The demand on settling the industrial areas and commercial activities nearby the city centers results with a negative change in natural land cover on cities. Negative impacts of human induced activities on natural resources and land cover has been continuously increasing for decades. The main human activities that resulted with destruction and infraction of forest areas can be defined as mining activities, agricultural activities, industrial / commercial activities and urbanization. Temporal monitoring of the changes in spatial distribution of forest areas is significantly important for effective management and planning progress. Changes can occur as spatially large destructions or small infractions. Therefore there is a need for reliable, fast and accurate data sources. At this point, satellite images proved to be a good data source for determination of the land use /cover changes with their capability of monitoring large areas with reasonable temporal resolutions. Spectral information derived from images provides discrimination of land use/cover types from each other. Developments in remote sensing technology in the last decade improved the spatial resolution of satellites and high resolution images were started to be used to detect even small changes in the land surface. As being the megacity of Turkey, Istanbul has been facing a huge migration for the last 20 years and effects of urbanization and other human based activities over forest areas are significant. Main focus of this study is to determine the destructions and infractions in forest areas of Istanbul, Turkey with 2.5m resolution SPOT 5 multi-temporal satellite imagery. Analysis was mainly constructed on threshold based classification of

  3. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties.

    PubMed

    Majumdar, S; Kothari, M; Augat, P; Newitt, D C; Link, T M; Lin, J C; Lang, T; Lu, Y; Genant, H K

    1998-05-01

    The purpose of this study was to use high-resolution magnetic resonance (MR) imaging combined with image analysis to investigate the three-dimensional (3D) trabecular structure, anisotropy, and connectivity of human vertebral, femoral, and calcaneal specimens. The goal was to determine whether: (a) MR-derived measures depict known skeletal-site-specific differences in architecture and orientation of trabeculae; (b) 3D architectural parameters combined with bone mineral density (BMD) improve the prediction of the elastic modulus using a fabric tensor formulation; (c) MR-derived 3D architectural parameters combined with BMD improve the prediction of strength using a multiple regression model, and whether these results corresponded to the results obtained using higher resolution depictions of trabecular architecture. A total of 94 specimens (12 x 12 x 12 mm cubes) consisting of trabecular bone only were obtained, of which there were 7 from the calcaneus, 15 from distal femur, 47 from the proximal femur, and 25 from the vertebral bodies. MR images were obtained using a 1.5 Tesla MR scanner at a spatial resolution of 117 x 117 x 300 microm. Additionally, BMD was determined using quantitative computed tomography (QCT), and the specimens were nondestructively tested and the elastic modulus (YM) was measured along three orthogonal axes corresponding to the anatomic superior-inferior (axial), medial-lateral (sagittal), and anterior-posterior (coronal) directions. A subset of the specimens (n=67) was then destructively tested in the superior-inferior (axial) direction to measure the ultimate compressive strength. The MR images were segmented into bone and marrow phases and then analyzed in 3D. Ellipsoids were fitted to the mean intercept lengths, using single value decomposition and the primary orientation of the trabeculae and used to calculate the anisotropy of trabecular architecture. Stereological measures were derived using a previously developed model and measures such

  4. The Impact of Horizontal and Temporal Resolution on Convection and Precipitation with High-Resolution GEOS-5

    NASA Technical Reports Server (NTRS)

    Putman, William P.

    2012-01-01

    Using a high-resolution non-hydrostatic version of GEOS-5 with the cubed-sphere finite-volume dynamical core, the impact of spatial and temporal resolution on cloud properties will be evaluated. There are indications from examining convective cluster development in high resolution GEOS-5 forecasts that the temporal resolution within the model may playas significant a role as horizontal resolution. Comparing modeled convective cloud clusters versus satellite observations of brightness temperature, we have found that improved. temporal resolution in GEOS-S accounts for a significant portion of the improvements in the statistical distribution of convective cloud clusters. Using satellite simulators in GEOS-S we will compare the cloud optical properties of GEOS-S at various spatial and temporal resolutions with those observed from MODIS. The potential impact of these results on tropical cyclone formation and intensity will be examined as well.

  5. High-resolution mycorrhizal hyphae dynamics: temporal variation, biophysical controls, and global environmental change

    NASA Astrophysics Data System (ADS)

    Hernandez, R. R.; Allen, M. F.

    2010-12-01

    Soils are the largest terrestrial carbon (C) repository in the global C cycle, storing 4.5 times more C than aboveground vegetation. Mycorrhizal fungi are critical edaphic organisms that influence soil C dynamics at both microscopic and ecosystem scales. Understanding the production and turnover of these organisms is critical for accurate ecosystem C budgets and predictive models incorporating changes in climate. This study seeks to quantify high-resolution mycorrhizal hyphae dynamics at various temporal scales in a mixed conifer forest (UC James Reserve, CA) using novel technologies including automated minirhizotrons, embedded soil sensor networks, and environmental software (i.e., Rootfly). We found that hyphae elongation and dieback rates in May 2009 varied significantly across 6-h diel time intervals and were greatest between 12:00 pm and 6:00 pm, when soil temperature and modeled CO2 flux is maximum. Seasonal dynamics revealed peak hyphae biomass in mid-April and rapid hyphae length decline from mid-April through June. Seasonal hyphae dynamism is tightly coupled with biophysical controls, namely, soil water content, which is positively related to hyphae production, and soil temperature. Interestingly, 14 °C may be a threshold for hyphae growth in this system as soil temperatures exceeding this value are coupled with rapid hyphae mortality. This study suggests that human-mediated changes to biophysical controls may modulate seasonal hyphae growth regimes, possibly reducing growth season duration or initiating early mortality. In this scenario, mycorrhizal hyphae mortality may act as a positive feedback to increasing CO2 levels, by releasing large amounts of CO2 into the atmosphere.

  6. High resolution bone material property assignment yields robust subject specific finite element models of complex thin bone structures.

    PubMed

    Pakdel, Amirreza; Fialkov, Jeffrey; Whyne, Cari M

    2016-06-14

    Accurate finite element (FE) modeling of complex skeletal anatomy requires high resolution in both meshing and the heterogeneous mapping of material properties onto the generated mesh. This study introduces Node-based elastic Modulus Assignment with Partial-volume correction (NMAP) as a new approach for FE material property assignment to thin bone structures. The NMAP approach incorporates point spread function based deblurring of CT images, partial-volume correction of CT image voxel intensities and anisotropic interpolation and mapping of CT intensity assignment to FE mesh nodes. The NMAP procedure combined with a derived craniomaxillo-facial skeleton (CMFS) specific density-isotropic elastic modulus relationship was applied to produce specimen-specific FE models of 6 cadaveric heads. The NMAP procedure successfully generated models of the complex thin bone structures with surface elastic moduli reflective of cortical bone material properties. The specimen-specific CMFS FE models were able to accurately predict experimental strains measured under in vitro temporalis and masseter muscle loading (r=0.93, slope=1.01, n=5). The strength of this correlation represents a robust validation for CMFS FE modeling that can be used to better understand load transfer in this complex musculoskeletal system. The developed methodology offers a systematic process-flow able to address the complexity of the CMFS that can be further applied to create high-fidelity models of any musculoskeletal anatomy. PMID:27033728

  7. Decoding Overlapping Memories in the Medial Temporal Lobes Using High-Resolution fMRI

    ERIC Educational Resources Information Center

    Chadwick, Martin J.; Hassabis, Demis; Maguire, Eleanor A.

    2011-01-01

    The hippocampus is proposed to process overlapping episodes as discrete memory traces, although direct evidence for this in human episodic memory is scarce. Using green-screen technology we created four highly overlapping movies of everyday events. Participants were scanned using high-resolution fMRI while recalling the movies. Multivariate…

  8. Management of temporal bone trauma.

    PubMed

    Patel, Alpen; Groppo, Eli

    2010-06-01

    The temporal bones are paired structures located on the lateral aspects of the skull and contribute to the skull base. Trauma is usually the result of blunt head injury and can result in damage to the brain and meninges, the middle and internal ear, and the facial nerve. Complications can include intracranial hemorrhage, cerebral contusion, CSF leak and meningitis, hearing loss, vertigo, and facial paralysis. To prevent these complications, diagnosis followed by appropriate medical and surgical management is critical. Diagnosis relies primarily on physical signs and symptoms as well as radiographic imaging. Emergent intervention is required in situations involving herniation of the brain into the middle ear cavity or hemorrhage of the intratemporal carotid artery. Patients with declining facial nerve function are candidates for early surgical intervention. Conductive hearing loss can be corrected surgically as an elective procedure, while sensorineural hearing loss carries a poor prognosis, regardless of management approach. Children generally recover from temporal bone trauma with fewer complications than adults and experience a markedly lower incidence of facial nerve paralysis. PMID:22110824

  9. Are patterns of bone loss in anorexic and postmenopausal women similar? Preliminary results using high resolution peripheral computed tomography.

    PubMed

    Milos, Gabriella; Häuselmann, Hans-Jörg; Krieg, Marc-Antoine; Rüegsegger, Peter; Gallo, Luigi M

    2014-01-01

    This study intended to compare bone density and architecture in three groups of women: young women with anorexia nervosa (AN), an age-matched control group of young women, and healthy late postmenopausal women. Three-dimensional peripheral quantitative high resolution computed-tomography (HR-pQCT) at the ultradistal radius, a technology providing measures of cortical and trabecular bone density and microarchitecture, was performed in the three cohorts. Thirty-six women with AN aged 18-30 years (mean duration of AN: 5.8 years), 83 healthy late postmenopausal women aged 70-81 as well as 30 age-matched healthy young women were assessed. The overall cortical and trabecular bone density (D100), the absolute thickness of the cortical bone (CTh), and the absolute number of trabecules per area (TbN) were significantly lower in AN patients compared with healthy young women. The absolute number of trabecules per area (TbN) in AN and postmenopausal women was similar, but significantly lower than in healthy young women. The comparison between AN patients and post-menopausal women is of interest because the latter reach bone peak mass around the middle of the fertile age span whereas the former usually lose bone before reaching optimal bone density and structure. This study shows that bone mineral density and bone compacta thickness in AN are lower than those in controls but still higher than those in postmenopause. Bone compacta density in AN is similar as in controls. However, bone inner structure in AN is degraded to a similar extent as in postmenopause. This last finding is particularly troubling. PMID:24084384

  10. A temporal frequency-dependent functional architecture in human V1 revealed by high-resolution fMRI.

    PubMed

    Sun, Pei; Ueno, Kenichi; Waggoner, R Allen; Gardner, Justin L; Tanaka, Keiji; Cheng, Kang

    2007-11-01

    Although cortical neurons with similar functional properties often cluster together in a columnar organization, only ocular dominance columns, the columnar structure representing segregated anatomical input (from one of the two eyes), have been found in human primary visual cortex (V1). It has yet to be shown whether other columnar organizations that arise only from differential responses to stimulus properties also exist in human V1. Using high-resolution functional magnetic resonance imaging, we have found such a functional architecture containing domains that respond preferentially to either low or high temporal frequency. PMID:17934459

  11. Stochastic multiscale modelling of cortical bone elasticity based on high-resolution imaging.

    PubMed

    Sansalone, Vittorio; Gagliardi, Davide; Desceliers, Christophe; Bousson, Valérie; Laredo, Jean-Denis; Peyrin, Françoise; Haïat, Guillaume; Naili, Salah

    2016-02-01

    Accurate and reliable assessment of bone quality requires predictive methods which could probe bone microstructure and provide information on bone mechanical properties. Multiscale modelling and simulation represent a fast and powerful way to predict bone mechanical properties based on experimental information on bone microstructure as obtained through X-ray-based methods. However, technical limitations of experimental devices used to inspect bone microstructure may produce blurry data, especially in in vivo conditions. Uncertainties affecting the experimental data (input) may question the reliability of the results predicted by the model (output). Since input data are uncertain, deterministic approaches are limited and new modelling paradigms are required. In this paper, a novel stochastic multiscale model is developed to estimate the elastic properties of bone while taking into account uncertainties on bone composition. Effective elastic properties of cortical bone tissue were computed using a multiscale model based on continuum micromechanics. Volume fractions of bone components (collagen, mineral, and water) were considered as random variables whose probabilistic description was built using the maximum entropy principle. The relevance of this approach was proved by analysing a human bone sample taken from the inferior femoral neck. The sample was imaged using synchrotron radiation micro-computed tomography. 3-D distributions of Haversian porosity and tissue mineral density extracted from these images supplied the experimental information needed to build the stochastic models of the volume fractions. Thus, the stochastic multiscale model provided reliable statistical information (such as mean values and confidence intervals) on bone elastic properties at the tissue scale. Moreover, the existence of a simpler "nominal model", accounting for the main features of the stochastic model, was investigated. It was shown that such a model does exist, and its relevance

  12. En bloc resection of the temporal bone and temporomandibular joint for advanced temporal bone carcinoma.

    PubMed

    Kutz, Joe Walter; Mitchell, Derek; Isaacson, Brandon; Roland, Peter S; Allen, Kyle P; Sumer, Baran D; Barnett, Sam; Truelson, John M; Myers, Larry L

    2015-03-01

    Advanced skin malignancies involving the temporal bone can involve the temporomandibular joint and glenoid fossa. Many of these tumors can be removed with a lateral temporal bone resection; however, extensive involvement of the glenoid fossa should include an en bloc resection of the temporal bone, glenoid fossa, and condyle. We describe a novel surgical approach that is an extension of a temporal bone resection that includes the glenoid fossa and condyle in an en bloc resection with the temporal bone. This procedure has been performed in 7 patients with advanced carcinoma of the temporal bone involving the glenoid fossa. There were no short-term complications as a result of the surgical approach. The addition of a middle fossa craniotomy and inclusion of the glenoid fossa and condyle as part of an en bloc resection of the temporal bone can be performed safely. PMID:25616770

  13. Multi-temporal high resolution monitoring of debris-covered glaciers using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kraaijenbrink, Philip; Immerzeel, Walter; de Jong, Steven; Shea, Joseph; Pellicciotti, Francesca; Meijer, Sander; Shresta, Arun

    2016-04-01

    Debris-covered glaciers in the Himalayas are relatively unstudied due to the difficulties in fieldwork caused by the inaccessible terrain and the presence of debris layers, which complicate in situ measurements. To overcome these difficulties an unmanned aerial vehicle (UAV) has been deployed multiple times over two debris covered glaciers in the Langtang catchment, located in the Nepalese Himalayas. Using differential GPS measurements and the Structure for Motion algorithm the UAV imagery was processed into accurate high-resolution digital elevation models and orthomosaics for both pre- and post-monsoon periods. These data were successfully used to estimate seasonal surface flow and mass wasting by using cross-correlation feature tracking and DEM differencing techniques. The results reveal large heterogeneity in mass loss and surface flow over the glacier surfaces, which are primarily caused by the presence of surface features such as ice cliffs and supra-glacial lakes. Accordingly, we systematically analyze those features using an object-based approach and relate their characteristics to the observed dynamics. We show that ice cliffs and supra-glacial lakes are contributing to a significant portion of the melt water of debris covered glaciers and we conclude that UAVs have great potential in understanding the key surface processes that remain largely undetected by using satellite remote sensing.

  14. High Resolution Temporal and Spectral Monitoring of Eta Carinae's X-Ray Emission the June Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Hamaguchi, K.; Henley, D.; Pittard, J. M.; Gull, T. R.; Davidson, K.; Swank, J. H.; Petre, R.; Ishibashi, K.

    2004-01-01

    The supermassive and luminous star Eta Carinae undergoes strong X-ray variations every 5.5 years when its 2-10 keV X-ray emission brightens rapidly with wild fluctuations before dropping by a factor of 100 to a minimum lasting 3 months. The most recent X-ray "eclipse" began in June 2003 and during this time Eta Carinae was intensely observed throughout the electromagnetic spectrum. Here we report the first results of frequent monitoring of the 2-10 keV band X-ray emission by the Rossi X-ray Timing Explorer along wit high resolution X-ray spectra obtained with the transmission gratings on the Chandra X-ray Observatory. We compare these observations to those results obtained during the previous X-ray eclipse in 1998, and interpret the variations in the X-ray brightness, in the amount of absorption, in the X-ray emission measure and in the K-shell emission lines in terms of a colliding wind binary model.

  15. High-resolution lidar system for measuring the spatial and temporal structure of the mesospheric sodium layer

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.; Sechrist, C. F., Jr.; Shelton, J. D.

    1983-01-01

    The design of a high-resolution tunable-dye laser-based lidar system for the study of the mesospheric sodium layer is presented and results of sodium measurements are indicated. The lidar system comprises a tunable flashlamp-pumped dye laser operating at the sodium D2 resonance line at 589.0 nm with a pulse width of 2 microsec FWHM and pulse frequency of 10 Hz and a telescope with a 1.22=m diameter Fresnel lens. Sodium profiles are obtained from the integration of 100 to 250 laser shots, with spatial and temporal resolution enhanced by two-dimensional filtering techniques. Measurements obtained over a 9-hour nighttime period illustrate the highly dynamic nature of the sodium layer, which was observed with a spatial resolution of 2 km and temporal resolution of 30 min. Observations made with a steerable apparatus have confirmed a presunrise enhancement of over 100 percent in sodium column abundance.

  16. Challenges of High Resolution Diffusion Imaging of the Human Medial Temporal Lobe in Alzheimer's Disease

    PubMed Central

    Zeineh, Michael M.; Holdsworth, Samantha; Skare, Stefan; Atlas, Scott W.; Bammer, Roland

    2011-01-01

    The human medial temporal lobe performs an essential role in memory formation and retrieval. Diseases involving the hippocampus such as Alzheimer's disease present a unique opportunity for advanced imaging techniques to detect abnormalities at an early stage. In particular, it is possible that diffusion imaging may measure abnormal microarchitecture beyond the realm of macroscopic imaging. However, this task is formidable because of the detailed anatomy of the medial temporal lobe, the difficulties in obtaining high quality diffusion images of adequate resolution, and challenges in diffusion data processing. Moreover, it is unclear if any differences will be significant for an individual patient or simply groups of patients. Successful endeavors will need to address each of these challenges in an integrated fashion. The rewards of such analysis may be detection of microscopic disease in vivo, which could represent a landmark accomplishment for the field of neuroradiology. PMID:22158129

  17. Novel techniques for high-resolution functional imaging of trabecular bone

    NASA Astrophysics Data System (ADS)

    Thurner, Philipp J.; Muller, Ralph; Kindt, Johannes H.; Schitter, Georg; Fantner, Georg E.; Wyss, Peter; Sennhauser, Urs; Hansma, Paul K.

    2005-04-01

    In current biological and biomedical research, quantitative endpoints have become an important factor of success. Classically, such endpoints were investigated with 2D imaging, which is usually destructive and the 3D character of tissue gets lost. 3D imaging has gained in importance as a tool for both, qualitative and quantitative assessment of biological systems. In this context synchrotron radiation based tomography has become a very effective tool for opaque 3D tissue systems. Results from a new device are presented enabling the 3D investigation of trabecular bone under mechanical load in a time-lapsed fashion. Using the highly brilliant X-rays from a synchrotron radiation source, bone microcracks and an indication for un-cracked ligament bridging are uncovered. 3D microcrack analysis proves that the classification of microcracks from 2D images is ambiguous. Fatigued bone was found to fail in burst-like fashion, whereas non-fatigued bone exhibited a distinct failure band. Additionally, a higher increase in microcrack volume was detected in fatigued in comparison to non-fatigued bone. Below the spatial resolution accessible with synchrotron radiation tomography we investigated native and fractured bone surfaces on the molecular scale with atomic force microscopy. The mineralized fibrils detected on fracture surfaces give rise to the assumption that the mineral-mineral interface is the weakest link in bone. The presented results show the power of functional micro-imaging, as well as the possibilities for AFM imaging (functional nano-imaging) in this context.

  18. Using high resolution satellite multi-temporal interferometry for landslide hazard detection in tropical environments: the case of Haiti

    NASA Astrophysics Data System (ADS)

    Wasowski, Janusz; Nutricato, Raffaele; Nitti, Davide Oscar; Bovenga, Fabio; Chiaradia, Maria Teresa; Piard, Boby Emmanuel; Mondesir, Philemon

    2015-04-01

    Synthetic aperture radar (SAR) multi-temporal interferometry (MTI) is one of the most promising satellite-based remote sensing techniques for fostering new opportunities in landslide hazard detection and assessment. MTI is attractive because it can provide very precise quantitative information on slow slope displacements of the ground surface over huge areas with limited vegetation cover. Although MTI is a mature technique, we are only beginning to realize the benefits of the high-resolution imagery that is currently acquired by the new generation radar satellites (e.g., COSMO-SkyMed, TerraSAR-X). In this work we demonstrate the potential of high resolution X-band MTI for wide-area detection of slope instability hazards even in tropical environments that are typically very harsh (eg. coherence loss) for differential interferometry applications. This is done by presenting an example from the island of Haiti, a tropical region characterized by dense and rapidly growing vegetation, as well as by significant climatic variability (two rainy seasons) with intense precipitation events. Despite the unfavorable setting, MTI processing of nearly 100 COSMO-SkyMed (CSK) mages (2011-2013) resulted in the identification of numerous radar targets even in some rural (inhabited) areas thanks to the high resolution (3 m) of CSK radar imagery, the adoption of a patch wise processing SPINUA approach and the presence of many man-made structures dispersed in heavily vegetated terrain. In particular, the density of the targets resulted suitable for the detection of some deep-seated and shallower landslides, as well as localized, very slow slope deformations. The interpretation and widespread exploitation of high resolution MTI data was facilitated by Google EarthTM tools with the associated high resolution optical imagery. Furthermore, our reconnaissance in situ checks confirmed that MTI results provided useful information on landslides and marginally stable slopes that can represent a

  19. High-resolution temporal analysis of deep subseafloor microbial communities inhabiting basement fluids

    NASA Astrophysics Data System (ADS)

    Jungbluth, S.; Lin, H. T.; Hsieh, C. C.; Rappe, M. S.

    2014-12-01

    The temporal variation in microbial communities inhabiting the anoxic, sediment-covered basaltic ocean basement is largely uncharacterized due to the inaccessible nature of the environment and difficulties associated with collection of samples from low-biomass microbial habitats. Here, a deep sea instrumented platform was employed on the Juan de Fuca Ridge in the summer of 2013 to collect 46 samples of basement fluids from the most recent generation of borehole observatories (U1362A and B), which feature multiple sampling horizons at a single location and fluid delivery lines manufactured using stainless steel or inert polytetrafluoroethylene (PTFE) parts. Included were three time-series deployments of the GEOmicrobe sled meant to resolve the fine-scale (i.e. hourly) temporal variation within in situ crustal microbial communities. Illumina technology was used to sequence small subunit ribosomal RNA (SSU rRNA) gene fragments from sediment, seawater, and subseafloor fluids. Similar to has been reported previously, basic differences in the three environments was observed. Fluid samples from depth horizons extending 30, 70, and ~200 meters sub-basement revealed differences in the observed microbial communities, indicating potential depth-specific zonation of microorganisms in the basaltic basement fluids. Extensive overlap between microorganisms collected from a single depth horizon but using two fluid delivery lines manufactured with different materials was observed, though some differences were also noted. Several archaeal (e.g. THSCG, MCG, MBGE, Archaeoglobus) and bacterial (e.g. Nitrospiraceae, OP8, KB1) lineages detected in previous years of basement fluid sampling nearby were found here, which further supports the notion that these microorganisms are stable residents of anoxic basaltic subseafloor fluids. Direct cell enumeration of samples collected from U1362A and U1362B revealed an elevated biomass compared to samples at these locations from previous years

  20. High-resolution temporal analysis reveals a functional timeline for the molecular regulation of cytokinesis

    PubMed Central

    Davies, Tim; Jordan, Shawn N.; Chand, Vandana; Sees, Jennifer A.; Laband, Kimberley; Carvalho, Ana; Shirasu-Hiza, Mimi; Kovar, David R.; Dumont, Julien; Canman, Julie C.

    2014-01-01

    Summary To take full advantage of fast-acting temperature-sensitive mutations, thermal control must be extremely rapid. We developed the Therminator, a device capable of shifting sample temperature in ~17s while simultaneously imaging cell division in vivo. Applying this technology to six key regulators of cytokinesis, we found that each has a distinct temporal requirement in the C. elegans zygote. Specifically, myosin-II is required throughout cytokinesis until contractile ring closure. In contrast, formin-mediated actin nucleation is only required during assembly and early contractile ring constriction. Centralspindlin is required to maintain division after ring closure, though its GAP activity is only required until just prior to closure. Finally, the Chromosomal Passenger Complex is required for cytokinesis only early in mitosis, but not during metaphase or cytokinesis. Together, our results provide a precise functional timeline for molecular regulators of cytokinesis using the Therminator, a powerful tool for ultra-rapid protein inactivation. PMID:25073157

  1. High-resolution (spatial and temporal) Hydrodynamic Modeling in the Lower Mississippi River Delta

    NASA Astrophysics Data System (ADS)

    Karadogan, E.; Danchuk, S.; Berger, C.; Brown, G.; Willson, C.

    2007-12-01

    The lower Mississippi River is a highly engineered system existing in one of the world's largest deltas. This system is subject to a variety of spatial and temporal forcings due to its large watershed (drains about 41% of the continental U.S.) and from the Gulf of Mexico. Future perturbations on this system are anticipated due to the impacts of global climate change (e.g., rising eustatic sea level, changes in weather patterns) and from proposed modifications to the system such as diversion structures aimed at providing freshwater nutrients and sediments to the rapidly degrading coastal wetlands. Numerical modeling will play a large role in improving our understanding and management of the system and the ability to properly design future structural features. These models will need to have the necessary spatial and temporal resolution to account for the many important processes in the river, the Gulf of Mexico, and in the wetland areas where small distributary channels will form and wetting/drying must be accounted for. This paper will investigate the ability of a 2D shallow water and sediment model to reproduce the complex distributary development associated with flow diversions into quiescent bays. A reach of the Lower Mississippi River from Point a la Hache to the Gulf of Mexico was used as a test domain to evaluate the performance and capabilities of the U.S. Army Corps of Engineers ADaptive Hydraulics (ADH) model. ADH is an unstructured finite element modeling system that includes unsaturated Richards' equations for groundwater, Navier Stokes for nonhydrostatic flow calculations, and Shallow Water equations. ADH conducts automated refinement and coarsening of the mesh based upon flow characteristics. In this case the 2D shallow water model is being used. It includes coupled flow and sedimentation. An unstructured mesh was developed for the study area which includes detailed bathymetry and topography from available survey data. The mesh is fine enough to capture

  2. Schneiderian papilloma of the temporal bone

    PubMed Central

    van der Putten, Lisa; Bloemena, Elisabeth; Merkus, Paul; Hensen, Erik F

    2013-01-01

    Temporal bone Schneiderian papilloma may present as a primary tumour originating from the middle ear and mastoid process, or an extension from sinonasal disease. Both forms are rare, this being only the 18th case of primary temporal bone Schneiderian papilloma described to date. Although the current patient has remained disease free after excision of the papilloma, the reported recurrence rate is high, comparable to sinonasal Schneiderian papilloma with extrasinus extension. Malignant progression of primary Schneiderian papillomas is significantly reduced as compared to Schneiderian papillomas that extend from the sinonasal tract into the temporal bone. A positive human papilloma virus status, as found in this case, is a common feature and prognostic factor of sinonasal Schneiderian papilloma but an infrequent finding in temporal bone disease. Owing to the high recurrence rate, the risk of malignant progression and the absence of reliable prognostic markers, stringent follow-up consisting of otoscopy, nasendoscopy and imaging is essential. PMID:24311418

  3. Mapping temporal changes in connectivity using high-resolution aerial data and object based image analysis

    NASA Astrophysics Data System (ADS)

    Masselink, Rens; Anders, Niels; Keesstra, Saskia; Seeger, Manuel

    2014-05-01

    Within the field of geomorphology mapping has always been an important tool to interpret spatial and temporal distributions of phenomena and processes at the surface. In the field of connectivity however, although throughout the past decade many articles have been published, there are only very few that go into the mapping of connectivity. This study aimed at developing a new, automated method for mapping connectivity within agricultural catchments. The method, which is a combination of Object-Based Image Analysis (OBIA) and traditional geomorphological field mapping, was applied to two agricultural catchments in Navarre, Spain, both with an area of approximately 2 sq.km. An unmanned aerial vehicle (UAV) was used to take aerial photographs with a resolution of 6 cm, of which a DEM with a 12 cm resolution was created using structure-from-motion photogrammetry. Connectivity was mapped within the study areas using OBIA using a top down method, meaning that connectivity was mapped at different scale levels, starting at the largest scale. Firstly sub-catchments were automatically delineated, after which several characteristics and features that affect connectivity within the sub-catchments were classified, e.g. landuse, landslides, rills, gullies, riparian vegetation, changes in slope, ploughing direction etc. In two consecutive years (2013-2014) photographs were taken and connectivity of both catchments of both years will be compared. Future work will include a quantification of the mapped connectivity (highly connected years vs. low connected years), causes and consequences of these differences in connectivity, comparison to existing connectivity indices and comparison of mapped connectivity in sub-catchments and measured discharge.

  4. Rhabdomyosarcoma and other pediatric temporal bone malignancies.

    PubMed

    Gluth, Michael B

    2015-04-01

    This article outlines the nature of temporal bone malignancy in children, particularly from the viewpoint of a surgeon. This article includes a synopsis of the presentation, workup, and management options for children affected by these uncommon tumors. Particular attention is given to rhabdomyosarcoma, including an update of modern staging, risk classification, and prognosis; however, a concise review of other forms of pediatric temporal bone cancer and an overview of surgical approaches available for treatment is undertaken as well. PMID:25650231

  5. Very high resolution airborne imagery for characterising spatial and temporal thermal patterns of braided rivers

    NASA Astrophysics Data System (ADS)

    Wawrzyniak, V.; Piégay, H.; Allemand, P.; Grandjean, P.

    2011-12-01

    At the catchment scale water temperature is influenced by geographical factors, but at the reach scale superficial and groundwater hydrology and channel geometry strongly affect thermal patterns. During the last 30 years, studies have been pointed out the significance and complexity of water exchanges between the channel and the hyporheic and phreatic zones. These surface-subsurface water exchanges influence water temperature patterns. Braided rivers present particular thermal conditions with very high spatial water temperature variability. This high thermal variability is difficult to comprehend using only in situ measurements and so thermal infrared (TIR) remote sensing is particularly suited to assessing the thermal patterns associated with these rivers. The aims of this study are to evaluate temperature patterns of nine braided reaches at very high spatial resolution (~20 cm) and to link temperature and water-body types. We hypothesized that river type has an influence of the spatial patterns of water temperature and that the patterns change through the day. All reaches are located in France, in the Rhône catchment. The nine reaches were selected based on high aquatic habitat diversities and are located in three regional areas: the massif des Écrins, the Rhône valley, and south Alps. They are about 1 km long. We have three distinct temporal approaches. The first one is a multi-site approach which proposes one survey of each site during summers 2010 or 2011. Three reaches were selected for the second phase (a multi-annual analysis and were therefore imaged both in summers 2010 and 2011. The last phase is an intra-day survey of two reaches with several flights at different times of day. This presentation focuses on the last approach with two reaches of the Drôme and Drac Noir rivers. To observe the evolution of the thermal patterns of these two reaches through the day, four flights within a day were realized during summer 2011 for both sites. The Drôme reach

  6. Using high-resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux

    NASA Astrophysics Data System (ADS)

    Briggs, Martin A.; Lautz, Laura K.; McKenzie, Jeffrey M.; Gordon, Ryan P.; Hare, Danielle K.

    2012-02-01

    Hyporheic flow can be extremely variable in space and time, and our understanding of complicated flow systems, such as exchange around small dams, has generally been limited to reach-averaged parameters or discrete point measurements. Emerging techniques are starting to fill the void between these disparate scales, increasing the utility of hyporheic research. When ambient diurnal temperature patterns are collected at high spatial resolution across vertical profiles in the streambed, the data can be applied to one-dimensional conduction-advection-dispersion models to quantitatively describe the vertical component of hyporheic flux at the same high spatial resolution. We have built on recent work by constructing custom fiber-optic distributed temperature sensors with 0.014 m spatial resolution that are robust enough to be installed by hand into the streambed, maintain high signal strength, and permit several sensors to be run in series off a single distributed temperature sensing unit. Data were collected continuously for 1 month above two beaver dams in a Wyoming stream to determine the spatial and temporal nature of vertical flux induced by the dams. Flux was organized by streambed morphology with strong, variable gradients with depth indicating a transition to horizontal flow across a spectrum of hyporheic flow paths. Several profiles showed contrasting temporal trends as discharge decreased by 45%. The high-resolution thermal sensors, combined with powerful analytical techniques, allowed a distributed quantitative description of the morphology-driven hyporheic system not previously possible.

  7. Basement membrane of mouse bone marrow sinusoids shows distinctive structure and proteoglycan composition: a high resolution ultrastructural study.

    PubMed

    Inoue, S; Osmond, D G

    2001-11-01

    Venous sinusoids in bone marrow are the site of a large-scale traffic of cells between the extravascular hemopoietic compartment and the blood stream. The wall of the sinusoids consists solely of a basement membrane interposed between a layer of endothelial cells and an incomplete covering of adventitial cells. To examine its possible structural specialization, the basement membrane of bone marrow sinusoids has now been examined by high resolution electron microscopy of perfusion-fixed mouse bone marrow. The basement membrane layer was discontinuous, consisting of irregular masses of amorphous material within a uniform 60-nm-wide space between apposing endothelial cells and adventitial cell processes. At maximal magnifications, the material was resolved as a random arrangement of components lacking the "cord network" formation seen in basement membranes elsewhere. Individual components exhibited distinctive ultrastructural features whose molecular identity has previously been established. By these morphological criteria, the basement membrane contained unusually abundant chondroitin sulfate proteoglycan (CSPG) revealed by 3-nm-wide "double tracks," and moderate amounts of both laminin as dense irregular coils and type IV collagen as 1-1.5-nm-wide filaments, together with less conspicuous amounts of amyloid P forming pentagonal frames. In contrast, 4.5-5-nm-wide "double tracks" characteristic of heparan sulfate proteoglycan (HSPG) were absent. The findings demonstrate that, in comparison with "typical" basement membranes in other tissues, the bone marrow sinusoidal basement membrane is uniquely specialized in several respects. Its discontinuous nature, lack of network organization, and absence of HSPG, a molecule that normally helps to maintain membrane integrity, may facilitate disassembly and reassembly of basement membrane material in concert with movements of adventitial cell processes as maturing hemopoietic cells pass through the sinusoidal wall: the

  8. Human temporal bone findings in acquired hypothyroidism.

    PubMed

    Hald, J; Milroy, C M; Jensen, K D; Parving, A

    1991-11-01

    Histological studies of the auditory organ in patients with acquired hypothyroidism are scarce. Thus the aim of the present study was to examine the temporal bones and the brain in subjects with hypothyroidism. Four temporal bones and two brains from clinically and biochemically hypothyroid subjects were removed and evaluated by light microscopy determine to the morphological changes and deposition of neutral and acid glycosaminoglycans. An audiogram from one of the patients showed a sensorineural hearing loss, which could be ascribed to occupational noise exposure. The study revealed histological changes compatible with age and infectious disease. No accumulation of neutral or acid glycosaminoglycans could be demonstrated in the temporal bones, or in the brains. PMID:1761939

  9. Spatial and temporal variation of sublimation on Antarctica: Results of a high-resolution general circulation model

    NASA Astrophysics Data System (ADS)

    van den Broeke, Michiel R.

    1997-12-01

    In this paper we use output of a high-resolution general circulation model (ECHAM-3 T106, resolution 1.1°×1.1°) to study the spatial and temporal variation of sublimation on Antarctica. First, we compare model results with available observations of sublimation rates. The yearly cycle, with small latent heat fluxes during the winter, is well reproduced, and the agreement with sparsely available spot observations is fair. The model results suggest that a significant 10-15% of the annual precipitation over Antarctica is lost through sublimation and that sublimation plays an important role in the formation of blue ice areas. A preliminary analysis of the atmospheric boundary layer moisture budget shows that the spatial variation of sublimation in the coastal zone of East Antarctica can be explained by variations of horizontal advection of dry air. Dry air advection, and thus surface sublimation, is enhanced in areas where katabatic winds are strong and have a large downslope component and where the Antarctic topography drops suddenly from the plateau to the coastal zone. In areas where horizontal advection is small, like the plateau and the large ice shelves, special conditions must be met to make significant sublimation at the surface possible.

  10. Bi-Temporal Analysis of High-Resolution Satellite Imagery in Support of a Forest Conservation Program in Western Uganda

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Lambin, E.; Audy, R.; Biryahwaho, B.; de Laat, J.; Jayachandran, S.

    2014-12-01

    Recent studies in land use sustainability have shown the conservation value of even small forest fragments in tropical smallholder agricultural regions. Forest patches provide important ecosystem services, wildlife habitat, and support human livelihoods. Our study incorporates multiple dates of high-resolution Quickbird imagery to map forest disturbance and regrowth in a smallholder agricultural landscape in western Uganda. This work is in support of a payments for ecosystem services (PES) project which uses a randomized controlled trial to assess the efficacy of PES for enhancing forest conservation. The research presented here details the remote sensing phase of this project. We developed an object-based methodology for detecting forest change from high-resolution imagery that calculates per class image reflectance and change statistics to determine persistent forest, non-forest, forest gain, and forest loss classes. The large study area (~ 2,400 km2) necessitated using a combination of 10 different image pairs of varying seasonality, sun angle, and viewing angle. We discuss the impact of these factors on mapping results. Reflectance data was used in conjunction with texture measures and knowledge-driven modeling to derive forest change maps. First, baseline Quickbird images were mapped into tree cover and non-tree categories based on segmented image objects and field inventory data, applied through a classification and regression tree (CART) classifier. Then a bi-temporal segmentation layer was generated and a series of object metrics from both image dates were extracted. A sample set of persistent forest objects that remained undisturbed was derived from the tree cover map and the red band (B3) change values. We calculated a variety of statistical indices for these persistent tree cover objects from the post- survey imagery to create maps of both forest cover loss and forest cover gain. These results are compared to visually assessed image objects in addition

  11. Agro-hydrology and multi-temporal high-resolution remote sensing: toward an explicit spatial processes calibration

    NASA Astrophysics Data System (ADS)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-12-01

    The growing availability of high-resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the possibilities offered for improving crop-growth dynamic simulation with the distributed agro-hydrological model: topography-based nitrogen transfer and transformation (TNT2). We used a leaf area index (LAI) map series derived from 105 Formosat-2 (F2) images covering the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated against discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2005-2010 data set (climate, land use, agricultural practices, and discharge and nitrate fluxes at the outlet). Data from the first year (2005) were used to initialize the hydrological model. A priori agricultural practices obtained from an extensive field survey, such as seeding date, crop cultivar, and amount of fertilizer, were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop-field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics using the a priori input parameters displayed temporal shifts from those observed LAI profiles that are irregularly distributed in space (between field crops) and time (between years). By resetting the seeding date at the crop-field level, we have developed an optimization method designed to efficiently minimize this temporal shift and better fit the crop growth against both the spatial observations and crop production. This optimization of simulated LAI has a negligible impact on water budgets at the catchment scale (1 mm yr-1 on average) but a noticeable impact on in-stream nitrogen fluxes (around 12%), which is of interest when considering nitrate stream contamination issues and the objectives of TNT2 modeling. This study demonstrates the potential contribution of the forthcoming high spatial and temporal resolution

  12. Temporal variability in dynamic and colloidal metal fractions determined by high resolution in situ measurements in a UK estuary.

    PubMed

    Braungardt, Charlotte B; Howell, Kate A; Tappin, Alan D; Achterberg, Eric P

    2011-07-01

    In recent environmental legislation, such as the Water Framework Directive in the European Union (WFD, 2000/60/EC), the importance of metal speciation and biological availability is acknowledged, although analytical challenges remain. In this study, the Voltammetric In situ Profiler (VIP) was used for high temporal resolution in situ metal speciation measurements in estuarine waters. This instrument simultaneously determines Cd, Cu and Pb species within a size range (ca. <4 nm) that is highly relevant for uptake by organisms. The colloidal metal fraction can be quantified through a combination of VIP measurements and analyses of total dissolved metal concentrations. VIP systems were deployed over tidal cycles in a seasonal study of metal speciation in the Fal Estuary, southwest England. Total dissolved concentrations were 4.97-315 nM Cu, 0.13-8.53 nM Cd and 0.35-5.75 nM Pb. High proportions of Pb (77±17%) and Cu (60±25%) were present as colloids, which constituted a less important fraction for Cd (37±30%). The study elucidated variations in the potentially toxic metal fraction related to river flow, complexation by organic ligands and exchanges between dissolved and colloidal phases and the sediment. Based on published toxicity data, the bioavailable Cu concentrations (1.7-190 nM) in this estuary are likely to severely compromise the ecosystem structure and functioning with respect to species diversity and recruitment of juveniles. The study illustrates the importance of in situ speciation studies at high resolution in pursuit of a better understanding of metal (bio)geochemistry in dynamic coastal systems. PMID:21529891

  13. Temporal bone radiography using the orthopantomograph

    SciTech Connect

    Tatezawa, T.

    1981-09-01

    Temporal bone radiographs obtained with an Orthopantomograph were compared with conventional radiographs. In acoustic neurinoma, cholesteatoma, otitis media, and middle fossa tumors, both methods demonstrated the abnormalities well. In two cases with lesions extending beyond the range of conventional projections, the broad orthopantomographic coverage was very valuable. Mastoid air cells, the mastoid process, petrous ridge, and internal auditory meatus were well demonstrated by both techniques. Orthopantomography was found to be superior in the demonstration of the petrous apex, while the superior semicircular canal was better demonstrated on the conventional views. Bilateral symmetry was particularly good and because of fewer films, radiation exposure was considerably less with orthopantomography. For many applications, orthopantomography is an adequate convenient substitute for conventional methods of examining the temporal bones.

  14. Nonsyndromic Isolated Temporal Bone Styloid Process Fracture

    PubMed Central

    Kermani, Hamed; Dehghani, Nima; Aghdashi, Farzad; Esmaeelinejad, Mohammad

    2016-01-01

    Introduction: Fracture of the styloid process (SP) of the temporal bone is a rare traumatic injury in normal individuals who are not suffering from Eagle’s syndrome. Diagnosis and management of this problem requires comprehensive knowledge about its signs and symptoms. This study aimed to present an isolated styloid process fracture in a nonsyndromic patient. Case Presentation: A 50-year-old male patient was referred to our department with a complaint of sore throat. However, presentation of the problem resembled the symptoms of temporomandibular joint disorder (TMD). Fracture of the SP of the temporal bone was detected on the radiographs. Conservative treatment was undertaken for the patient. The symptoms diminished after about four months. Conclusions: Physicians should be aware of the signs and symptoms of different pain sources to prevent misdiagnosis and maltreatment. PMID:27218052

  15. A quantitative method for the evaluation of three-dimensional structure of temporal bone pneumatization.

    PubMed

    Hill, Cheryl A; Richtsmeier, Joan T

    2008-10-01

    Temporal bone pneumatization has been included in lists of characters used in phylogenetic analyses of human evolution. While studies suggest that the extent of pneumatization has decreased over the course of human evolution, little is known about the processes underlying these changes or their significance. In short, reasons for the observed reduction and the potential reorganization within pneumatized spaces are unknown. Technological limitations have limited previous analyses of pneumatization in extant and fossil species to qualitative observations of the extent of temporal bone pneumatization. In this paper, we introduce a novel application of quantitative methods developed for the study of trabecular bone to the analysis of pneumatized spaces of the temporal bone. This method utilizes high-resolution X-ray computed tomography (HRXCT) images and quantitative software to estimate three-dimensional parameters (bone volume fractions, anisotropy, and trabecular thickness) of bone structure within defined units of pneumatized spaces. We apply this approach in an analysis of temporal bones of diverse but related primate species, Gorilla gorilla, Pan troglodytes, Homo sapiens, and Papio hamadryas anubis, to illustrate the potential of these methods. In demonstrating the utility of these methods, we show that there are interspecific differences in the bone structure of pneumatized spaces, perhaps reflecting changes in the localized growth dynamics, location of muscle attachments, encephalization, or basicranial flexion. PMID:18715622

  16. Spatial and Temporal Analysis of inundation and Freeze /Thaw states in Alaska Using High Resolution ALOS PALSAR Observations

    NASA Astrophysics Data System (ADS)

    Azarderakhsh, M.; McDonald, K. C.; Schroeder, R.; Steiner, N.; Podest, E.

    2013-12-01

    Monitoring freeze -thaw transitions and mapping the extent and dynamics of wetlands in high latitudes are critical to enhancing our knowledge about the biogeochemical transitions, carbon dynamics and prediction of boreal-arctic ecosystem. The upcoming Soil Moisture Active/Passive (SMAP) mission, scheduled for launch in October 2014, will have an L-band active / passive sensor package which will allow determination of soil moisture and the timing of landscape seasonal freeze/thaw states across the globe. In line with these ongoing efforts, this study aims to monitor inundation and Freeze and Thaw states in Alaska using Advanced Land Observing Satellite Phased Array L-Band SAR (ALOS PALSAR) ScanSAR observations. Four years of PALSAR measurements from 2007 to 2010 were acquired over the state of Alaska. Although wide-swath ScanSAR products, offer increased temporal coverage relative to standard narrow-beam SAR datasets, , they have a high variation of radar backscatter in across track because of the large swath width. We investigate the effect of incidence angle on radiometrically calibrated and terrain corrected ScanSAR data as a function of land surface (vegetation and roughness) and moisture content. These effects and their seasonal variation are used in classifiying inundated areas. The wetlands extent and inundation dynamics are crucial as they are an important component of the carbon cycle in Arctic regions. We apply pixel-based and object oriented-based classification methods to derive inundation maps during the thaw season. The dynamic inundation maps then are developed at 100m resolution. JERS and PALSAR Fine Beam mode based static wetlands map and Landsat Based land cover data (NLCD) are used to train and assess the classification at high resolution along with other ancillary data sets. The inundated areas obtained from wetland classification are then used to separate from other land cover types in F/T algorithm. We use a model based on Lambert's cosine

  17. Temporal Variations in the Roughness of Eroding River Banks Revealed by High-Resolution Digital Photogrammetry and Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Darby, S. E.; Leyland, J.; Rinaldi, M.; Teruggi, L.; Ostuni, D.

    2010-12-01

    of the roughness is approximated as a series of user defined Gaussian functions, with the skin drag component characterised by the deviation of points from the fitted curves. In our study these bank ‘roughness profiles’ are extracted from an annual series (2003-present) of high-resolution DEMs of the river bank, the latter being constructed either through digital photogrammetry or terrestrial laser scanning surveys. The DEMs are used to quantify accurately the spatial trends and amounts of annual bank erosion observed in relation to the hydrological regime of the river, and are compared to the temporal variations in river bank form and skin roughness components as the bank erodes. The data are used to evaluate the extent to which there is a dynamic feedback between the bank erosion process and bank form roughness.

  18. Papillary Tumor of the Temporal Bone

    PubMed Central

    Schick, Bernhard; Kronsbein, Hartmut; Kahle, Gabriele; Prescher, Andreas; Draf, Wolfgang

    2001-01-01

    Papillary tumors of the middle and inner ear have been interpreted histogenetically in many ways. In 1989 Heffner proposed the endolymphatic sac epithelium as a possible origin. These rare tumors are clinically aggressive and can cause extensive temporal bone destruction. Because of this behavior, endolymphatic sac tumors (ELST) were classified as low-grade adenocarcinomas, although metastasis has not yet been documented. Two papillary neoplasms of the temporal bone are presented, which we believe are examples of adenomatous tumors arising from the epithelium of the endolymphatic sac. One was associated with a pituitary adenoma. A third case of a papillary middle ear neoplasm is described that shows histologic features similar to the other two, but it was located in the tympanum and had no connection to the endolymphatic sac. This report focuses on clinical, radiologic, and histologic findings of papillary tumors of the temporal bone with additional emphasis on modern concepts of histogenesis and aspects of differential diagnosis. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5 PMID:17167601

  19. Assessment of Trabecular and Cortical Architecture and Mechanical Competence of Bone by High-Resolution Peripheral Computed Tomography: Comparison with Transiliac Bone Biopsy*

    PubMed Central

    Cohen, A.; Dempster, D.W.; Müller, R.; Guo, X.E.; Nickolas, T.L.; Liu, X.S.; Zhang, X.H.; Wirth, A.J.; van Lenthe, G.H.; Kohler, T.; McMahon, D.J.; Zhou, H.; Rubin, M.R.; Bilezikian, J.P.; Lappe, J. M.; Recker, R.R.; Shane, E.

    2010-01-01

    Purpose High resolution peripheral quantitative CT (HR-pQCT) is a new imaging technique that assesses trabecular and cortical bone microarchitecture of the radius and tibia in vivo. The purpose of this study was to determine the extent to which microarchitectural variables measured by HR-pQCT reflect those measured by the “gold standard”, transiliac bone biopsy. Methods HR-pQCT scans (Xtreme CT, Scanco Medical AG) and iliac crest bone biopsies were performed in 54 subjects (aged 39±10 years). Biopsies were analyzed by 2D quantitative histomorphometry and 3D microcomputed tomography (μCT). Apparent Young’s modulus, an estimate of mechanical competence or strength, was determined by micro-finite element analysis (μFE) of biopsy μCT and HR-pQCT images. Results The strongest correlations observed were between trabecular parameters (bone volume fraction, number, separation) measured by μCT of biopsies and HR-pQCT of the radius (R: 0.365-0.522; p<0.01). Cortical width of biopsies correlated with cortical thickness by HR-pQCT, but only at the tibia (R=0.360, p<0.01). Apparent Young’s modulus calculated by μFE of biopsies correlated with that calculated for both radius (R=0.442; p<0.001) and tibia (R=0.380; p<0.001) HR-pQCT scans. Conclusions The associations between peripheral (HR-pQCT) and axial (transiliac biopsy) measures of microarchitecture and estimated mechanical competence are significant but modest. PMID:19455271

  20. Temporal bone chondroblastoma totally invisible on MRI.

    PubMed

    Hiraumi, Harukazu; Arakawa, Yoshiki; Yamamoto, Norio; Sakamoto, Tatsunori; Ito, Juichi

    2016-08-01

    We report a case of temporal bone chondroblastoma that was totally invisible on MRI. The patient was a 64-year-old man who presented with several months history of vertigo. The CT scan with bone window setting showed destruction of the temporomandibular joint, the floor of the middle cranial fossa, and the superior semicircular canal. Calcific foci were seen within the tumor. On MR imaging, the tumor, situating mainly medial to the temporomandibular joint, showed no signal on both T1- and T2-weighted images. The tumor was not enhanced with gadolinium. In summary, the tumor was totally signal negative or "invisible" on pre- and postcontrast T1- and T2-weighted images. The tumor was resected through transpetrosal - transzygomatic approach. PMID:26743837

  1. Langerhans Cell Histiocytosis of the Temporal Bone.

    PubMed

    Ginat, Daniel Thomas; Johnson, Daniel N; Cipriani, Nicole A

    2016-06-01

    Langerhans cell histiocytosis involving the temporal bone region is uncommon and can resemble malignant neoplasms on imaging due to high cellularity. Although recognizing the presence of sharp margins with beveled-edges can be helpful, tissue sampling is often necessary for confirming the diagnosis. Cytology classically demonstrates kidney-bean shaped nuclei within the Langerhans cells and immunohistochemical staining is positive for S-100, peanut agglutinin (PNA), MHC class II, CD1a, and Langerin (CD 207). These features are exemplified in this sine qua non radiology-pathology correlation article. PMID:25903273

  2. Postnatal temporal bone ontogeny in Pan, Gorilla, and Homo, and the implications for temporal bone ontogeny in Australopithecus afarensis.

    PubMed

    Terhune, Claire E; Kimbel, William H; Lockwood, Charles A

    2013-08-01

    Assessments of temporal bone morphology have played an important role in taxonomic and phylogenetic evaluations of fossil taxa, and recent three-dimensional analyses of this region have supported the utility of the temporal bone for testing taxonomic and phylogenetic hypotheses. But while clinical analyses have examined aspects of temporal bone ontogeny in humans, the ontogeny of the temporal bone in non-human taxa is less well documented. This study examines ontogenetic allometry of the temporal bone in order to address several research questions related to the pattern and trajectory of temporal bone shape change during ontogeny in the African apes and humans. We further apply these data to a preliminary analysis of temporal bone ontogeny in Australopithecus afarensis. Three-dimensional landmarks were digitized on an ontogenetic series of specimens of Homo sapiens, Pan troglodytes, Pan paniscus, and Gorilla gorilla. Data were analyzed using geometric morphometric methods, and shape changes throughout ontogeny in relation to size were compared. Results of these analyses indicate that, despite broadly similar patterns, African apes and humans show marked differences in development of the mandibular fossa and tympanic portions of the temporal bone. These findings indicate divergent, rather than parallel, postnatal ontogenetic allometric trajectories for temporal bone shape in these taxa. The pattern of temporal bone shape change with size exhibited by A. afarensis showed some affinities to that of humans, but was most similar to extant African apes, particularly Gorilla. PMID:23868175

  3. High-resolution 3D imaging of osteocytes and computational modelling in mechanobiology: insights on bone development, ageing, health and disease.

    PubMed

    Goggin, P M; Zygalakis, K C; Oreffo, R O; Schneider, P

    2016-01-01

    Osteocytes are involved in mechanosensation and mechanotransduction in bone and hence, are key to bone adaptation in response to development, ageing and disease. Thus, detailed knowledge of the three-dimensional (3D) structure of the osteocyte network (ON) and the surrounding lacuno-canalicular network (LCN) is essential. Enhanced understanding of the ON&LCN will contribute to a better understanding of bone mechanics on cellular and sub-cellular scales, for instance through improved computational models of bone mechanotransduction. Until now, the location of the ON within the hard bone matrix and the sub-µm dimensions of the ON&LCN have posed significant challenges for 3D imaging. This review identifies relevant microstructural phenotypes of the ON&LCN in health and disease and summarises how light microscopy, electron microscopy and X-ray imaging techniques have been used in studies of osteocyte anatomy, pathology and mechanobiology to date. In this review, we assess the requirements for ON&LCN imaging and examine the state of the art in the fields of imaging and computational modelling as well as recent advances in high-resolution 3D imaging. Suggestions for future investigations using volume electron microscopy are indicated and we present new data on the ON&LCN using serial block-face scanning electron microscopy. A correlative approach using these high-resolution 3D imaging techniques in conjunction with in silico modelling in bone mechanobiology will increase understanding of osteocyte function and, ultimately, lead to improved pathways for diagnosis and treatment of bone diseases such as osteoporosis. PMID:27209400

  4. Micro-finite element analysis applied to high-resolution MRI reveals improved bone mechanical competence in the distal femur of female pre-professional dancers

    PubMed Central

    Rajapakse, C. S.; Diamond, M.; Honig, S.; Recht, M. P.; Weiss, D. S.; Regatte, R. R.

    2013-01-01

    Summary Micro-finite element analysis applied to high-resolution (0.234-mm length scale) MRI reveals greater whole and cancellous bone stiffness, but not greater cortical bone stiffness, in the distal femur of female dancers compared to controls. Greater whole bone stiffness appears to be mediated by cancellous, rather than cortical bone adaptation. Introduction The purpose of this study was to compare bone mechanical competence (stiffness) in the distal femur of female dancers compared to healthy, relatively inactive female controls. Methods This study had institutional review board approval. We recruited nine female modern dancers (25.7± 5.8 years, 1.63±0.06 m, 57.1±4.6 kg) and ten relatively inactive, healthy female controls matched for age, height, and weight (32.1±4.8 years, 1.6±0.04 m, 55.8±5.9 kg). We scanned the distal femur using a 7-T MRI scanner and a three-dimensional fast low-angle shot sequence (TR/TE= 31 ms/5.1 ms, 0.234 mm×0.234 mm×1 mm, 80 slices). We applied micro-finite element analysis to 10-mm-thick volumes of interest at the distal femoral diaphysis, metaphysis, and epiphysis to compute stiffness and cross-sectional area of whole, cortical, and cancellous bone, as well as cortical thickness. We applied two-tailed t-tests and ANCOVA to compare groups. Results Dancers demonstrated greater whole and cancellous bone stiffness and cross-sectional area at all locations (p< 0.05). Cortical bone stiffness, cross-sectional area, and thickness did not differ between groups (>0.08). At all locations, the percent of intact whole bone stiffness for cortical bone alone was lower in dancers (p<0.05). Adjustment for cancellous bone cross-sectional area eliminated significant differences in whole bone stiffness between groups (p>0.07), but adjustment for cortical bone cross-sectional area did not (p<0.03). Conclusions Modern dancers have greater whole and cancellous bone stiffness in the distal femur compared to controls. Elevated whole bone stiffness

  5. Serial Scanning and Registration of High Resolution Quantitative Computed Tomography Volume Scans for the Determination of Local Bone Density Changes

    NASA Technical Reports Server (NTRS)

    Whalen, Robert T.; Napel, Sandy; Yan, Chye H.

    1996-01-01

    Progress in development of the methods required to study bone remodeling as a function of time is reported. The following topics are presented: 'A New Methodology for Registration Accuracy Evaluation', 'Registration of Serial Skeletal Images for Accurately Measuring Changes in Bone Density', and 'Precise and Accurate Gold Standard for Multimodality and Serial Registration Method Evaluations.'

  6. Spatial-Temporal Dynamics of High-Resolution Animal Networks: What Can We Learn from Domestic Animals?

    PubMed Central

    Chen, Shi; Ilany, Amiyaal; White, Brad J.; Sanderson, Michael W.; Lanzas, Cristina

    2015-01-01

    Animal social network is the key to understand many ecological and epidemiological processes. We used real-time location system (RTLS) to accurately track cattle position, analyze their proximity networks, and tested the hypothesis of temporal stationarity and spatial homogeneity in these networks during different daily time periods and in different areas of the pen. The network structure was analyzed using global network characteristics (network density), subgroup clustering (modularity), triadic property (transitivity), and dyadic interactions (correlation coefficient from a quadratic assignment procedure) at hourly level. We demonstrated substantial spatial-temporal heterogeneity in these networks and potential link between indirect animal-environment contact and direct animal-animal contact. But such heterogeneity diminished if data were collected at lower spatial (aggregated at entire pen level) or temporal (aggregated at daily level) resolution. The network structure (described by the characteristics such as density, modularity, transitivity, etc.) also changed substantially at different time and locations. There were certain time (feeding) and location (hay) that the proximity network structures were more consistent based on the dyadic interaction analysis. These results reveal new insights for animal network structure and spatial-temporal dynamics, provide more accurate descriptions of animal social networks, and allow more accurate modeling of multiple (both direct and indirect) disease transmission pathways. PMID:26107251

  7. High-resolution imaging-guided electroencephalography source localization: temporal effect regularization incorporation in LORETA inverse solution

    NASA Astrophysics Data System (ADS)

    Boughariou, Jihene; Zouch, Wassim; Slima, Mohamed Ben; Kammoun, Ines; Hamida, Ahmed Ben

    2015-11-01

    Electroencephalography (EEG) and magnetic resonance imaging (MRI) are noninvasive neuroimaging modalities. They are widely used and could be complementary. The fusion of these modalities may enhance some emerging research fields targeting the exploration better brain activities. Such research attracted various scientific investigators especially to provide a convivial and helpful advanced clinical-aid tool enabling better neurological explorations. Our present research was, in fact, in the context of EEG inverse problem resolution and investigated an advanced estimation methodology for the localization of the cerebral activity. Our focus was, therefore, on the integration of temporal priors to low-resolution brain electromagnetic tomography (LORETA) formalism and to solve the inverse problem in the EEG. The main idea behind our proposed method was in the integration of a temporal projection matrix within the LORETA weighting matrix. A hyperparameter is the principal fact for such a temporal integration, and its importance would be obvious when obtaining a regularized smoothness solution. Our experimental results clearly confirmed the impact of such an optimization procedure adopted for the temporal regularization parameter comparatively to the LORETA method.

  8. Arabidopsis Defense against Botrytis cinerea: Chronology and Regulation Deciphered by High-Resolution Temporal Transcriptomic Analysis[C][W

    PubMed Central

    Windram, Oliver; Madhou, Priyadharshini; McHattie, Stuart; Hill, Claire; Hickman, Richard; Cooke, Emma; Jenkins, Dafyd J.; Penfold, Christopher A.; Baxter, Laura; Breeze, Emily; Kiddle, Steven J.; Rhodes, Johanna; Atwell, Susanna; Kliebenstein, Daniel J.; Kim, Youn-sung; Stegle, Oliver; Borgwardt, Karsten; Zhang, Cunjin; Tabrett, Alex; Legaie, Roxane; Moore, Jonathan; Finkenstadt, Bärbel; Wild, David L.; Mead, Andrew; Rand, David; Beynon, Jim; Ott, Sascha; Buchanan-Wollaston, Vicky; Denby, Katherine J.

    2012-01-01

    Transcriptional reprogramming forms a major part of a plant’s response to pathogen infection. Many individual components and pathways operating during plant defense have been identified, but our knowledge of how these different components interact is still rudimentary. We generated a high-resolution time series of gene expression profiles from a single Arabidopsis thaliana leaf during infection by the necrotrophic fungal pathogen Botrytis cinerea. Approximately one-third of the Arabidopsis genome is differentially expressed during the first 48 h after infection, with the majority of changes in gene expression occurring before significant lesion development. We used computational tools to obtain a detailed chronology of the defense response against B. cinerea, highlighting the times at which signaling and metabolic processes change, and identify transcription factor families operating at different times after infection. Motif enrichment and network inference predicted regulatory interactions, and testing of one such prediction identified a role for TGA3 in defense against necrotrophic pathogens. These data provide an unprecedented level of detail about transcriptional changes during a defense response and are suited to systems biology analyses to generate predictive models of the gene regulatory networks mediating the Arabidopsis response to B. cinerea. PMID:23023172

  9. Chemodectomas arising in temporal bone structures

    SciTech Connect

    Dickens, W.J.; Million, R.R.; Cassisi, N.J.; Singleton, G.T.

    1982-02-01

    Eighteen patients with chemodectomas arising in temporal bone structures were evaluated and treated at the University of Florida. Seventeen patients have each been followed a minimum of 3 years. Patients were retrospectively staged as having ''local'' or ''advanced'' disease, depending on the presence or absence of bone destruction and/or cranial nerve involvement. Fourteen of the patients received radiation therapy as all or part of their therapy; 6 patients were treated with radiation therapy alone, 3 patients were irradiated immediately postoperatively for residual disease, and 5 patients had radiation therapy for recurrence after operation. They were treated with cobalt-60 radiation with doses ranging from 3760 to 5640 rad. All irradiated patients demonstrated evidence of tumor regression, and none have had tumor recurrence with followup of 3-12 years. Of the 8 patients with cranial nerve paralysis prior to therapy, 5 had return of function of 1 or more cranial nerves. One of 6 patients treated initially with radiation therapy had a complication, while 6 of 8 patients irradiated postoperatively had complications. None of the complications were fatal. Three patients treated by operation for early disease limited to the hypotympanum had the disease controlled for 11-12 years. Guidelines for the selection of initial therapy are discussed.

  10. CT Findings in Temporal Bone Osteoradionecrosis

    PubMed Central

    Ahmed, Salmaan; Gupta, Nakul; Hamilton, Jackson D.; Garden, Adam S.; Gidley, Paul W.; Ginsberg, Lawrence E.

    2014-01-01

    Purpose The goal of this study is to describe CT findings in patients with clinically proven temporal bone osteoradionecrosis (TB-ORN). Methods and materials CT scans of twenty patients were retrospectively evaluated for bony and soft tissue abnormalities. Clinical severity was graded based on level of therapy administered: mild (observation), moderate (antibiotics/hyperbaric oxygen), or severe (surgery). Results Radiation dose to the primary tumor ranged from 30 to 75.6 Gy. Time to onset of ORN from completion of radiation therapy was 2 to 22 years (median=7yrs). Clinical findings: Exposed bone=20/20, otorrhea=17/20, hearing loss=11/20, otalgia=10/20, facial nerve paralysis=2/20, gait imbalance=2/20. CT findings: EAC erosions=18/20, mastoid effusion=18/20, mastoid bony coalescence=5/20, enhancing soft tissue=6/20, soft tissue gas=6/20, temporomandibular joint/condylar erosion=3/20. 3 patients developed an abscess. Conclusion Mastoid effusion and EAC erosions are commonly seen with TB-ORN. Clinically moderate or severe cases of TB-ORN are more likely to demonstrate enhancing soft tissue (p=0.002), soft tissue gas (p=0.002), and temporomandibular joint involvement (p=0.07). PMID:24834883

  11. Radiation injury to the temporal bone

    SciTech Connect

    Guida, R.A.; Finn, D.G.; Buchalter, I.H.; Brookler, K.H.; Kimmelman, C.P. )

    1990-01-01

    Osteoradionecrosis of the temporal bone is an unusual sequela of radiation therapy to the head and neck. Symptoms occur many years after the radiation is administered, and progression of the disease is insidious. Hearing loss (sensorineural, conductive, or mixed), otalgia, otorrhea, and even gross tissue extrusion herald this condition. Later, intracranial complications such as meningitis, temporal lobe or cerebellar abscess, and cranial neuropathies may occur. Reported here are five cases of this rare malady representing varying degrees of the disease process. They include a case of radiation-induced necrosis of the tympanic ring with persistent squamous debris in the external auditory canal and middle ear. Another case demonstrates the progression of radiation otitis media to mastoiditis with bony sequestration. Further progression of the disease process is seen in a third case that evolved into multiple cranial neuropathies from skull base destruction. Treatment includes systemic antibiotics, local wound care, and debridement in cases of localized tissue involvement. More extensive debridement with removal of sequestrations, abscess drainage, reconstruction with vascularized tissue from regional flaps, and mastoid obliteration may be warranted for severe cases. Hyperbaric oxygen therapy has provided limited benefit.

  12. Feasibility study for reconstructing the spatial-temporal structure of TIDs from high-resolution backscatter ionograms

    NASA Astrophysics Data System (ADS)

    Nickisch, L. J.; Fridman, Sergey; Hausman, Mark; San Antonio, Geoffrey S.

    2016-05-01

    Over-the-horizon radar (OTHR) utilizes the reflective "sky wave" property of the ionosphere for high-frequency radiowaves to illuminate targets at ranges extending to several thousand kilometers. However, the ionospheric "mirror" is not static but exhibits geographic, diurnal, seasonal, and solar cycle variations. NorthWest Research Associates has developed an ionospheric data assimilation capability called Global Positioning Satellite Ionospheric Inversion (GPSII; pronounced "gypsy") that allows real-time modeling of the ionospheric structure for the purpose of accurate coordinate registration (CR; OTHR geolocation). However, the ionosphere is routinely subjected to traveling ionospheric disturbances (TIDs), and the deflection of HF sky wave signals by unmodeled TIDs remains a troubling source of CR errors (tens of kilometers). Traditional OTHR tools for ionospheric sounding (vertical and backscatter ionograms) do not resolve the fine spatial structure associated with TIDs. The collection of backscatter ionograms using the full aperture of the OTHR was recently demonstrated, thus providing enhanced resolution in radar azimuth in comparison with conventional OTHR backscatter soundings that utilize only a fraction of the OTHR receiver array. Leading edges of such backscatter ionograms demonstrate prominent spatial features associated with TIDs. We investigate the feasibility of recovering TID perturbations of ionospheric electron density from high-resolution backscatter ionograms. We incorporated a model of naturally occurring TIDs into a numerical ray tracing code that allows the generation of synthetic OTHR data. We augmented GPSII to assimilate time series of full-aperture backscatter ionogram leading edge data. Results of the simulation show that GPSII is able to reproduce the TID structure used to generate the backscatter ionograms reasonably well.

  13. Accuracy of High-Resolution In Vivo Micro Magnetic Resonance Imaging for Measurements of Microstructural and Mechanical Properties of Human Distal Tibial Bone

    PubMed Central

    Liu, X. Sherry; Zhang, X. Henry; Rajapakse, Chamith S.; Wald, Michael J.; Magland, Jeremy; Sekhon, Kiranjit K.; Adam, Mark F.; Sajda, Paul; Wehrli, Felix W.; Guo, X. Edward

    2011-01-01

    Micro magnetic resonance imaging (µMRI) is an in vivo imaging method which permits three dimensional (3D) quantification of cortical and trabecular bone microstructure. µMR images can also be used for building microstructural finite element (µFE) models to assess bone stiffness, which highly correlates with bone’s resistance to fractures. In order for µMR image-based microstructural and µFE analyses to become standard clinical tools for assessing bone quality, validation with a current gold standard, namely the high-resolution micro computed tomography (µCT) is required. Microstructural measurements of 25 human cadaveric distal tibiae were performed for the registered µMR and µCT images, respectively. Next, whole bone stiffness, trabecular bone stiffness, and elastic moduli of cubic sub-volumes of trabecular bone in both µMR and µCT images were determined by voxel-based µFE analysis. The bone volume fraction (BV/TV), trabecular number (Tb.N*), trabecular spacing (Tb.Sp*), cortical thickness (Ct.Th), and structure model index (SMI) of µMRI showed strong correlations with µCT measurements (r2=0.67~0.97), and bone surface to volume ratio (BS/BV), connectivity density (Conn.D), and degree of anisotropy (DA) had significant but moderate correlations (r2=0.33~0.51). Each of these measurements also contributed to one or many of the µFE-predicted mechanical properties. However, model-independent trabecular thickness (Tb.Th*) of µMRI had no correlation with the µCT measurement and did not contribute to any mechanical measurement. Furthermore, the whole bone and trabecular bone stiffness of µMR images were highly correlated to those of µCT images (r2=0.86 and 0.96), suggesting that µMRI-based µFE analyses can directly and accurately quantify whole bone mechanical competence. In contrast, the elastic moduli of the µMRI trabecular bone sub-volume had significant but only moderate correlations with their gold standards (r2=0.40~0.58). We conclude that

  14. The Multi-Temporal Database of High Resolution Stereo Camera (HRSC) and Planetary Images of Mars (MUTED): A Tool to Support the Identification of Surface Changes

    NASA Astrophysics Data System (ADS)

    Erkeling, G.; Luesebrink, D.; Hiesinger, H.; Reiss, D.; Jaumann, R.

    2015-10-01

    Image data transmitted to Earth by Martian spacecraft since the 1970s, for example by Mariner and Viking, Mars Global Surveyor (MGS), Mars Express (MEx) and the Mars Reconnaissance Orbiter (MRO) showed, that the surface of Mars has changed dramatically and actually is continually changing [e.g., 1-8]. The changes are attributed to a large variety of atmospherical, geological and morphological processes, including eolian processes [9,10], mass wasting processes [11], changes of the polar caps [12] and impact cratering processes [13]. The detection of surface changes in planetary image data is closely related to the spatial and temporal availability of images in a specific region. While previews of the images are available at ESA's Planetary Science Archive (PSA), through the NASA Planetary Data System (PDS) and via other less frequently used databases, there is no possibility to quickly and conveniently see the spatial and temporal availability of HRSC images and other planetary image data in a specific region, which is important to detect the surface changes that occurred between two or more images. In addition, it is complicated to get an overview of the image quality and label information for images covering the same area. However, the investigation of surface changes represents a key element in martian research and has implications for the geologic, morphologic and climatic evolution of Mars. In order to address these issues, we developed the "Multi- Temporal Database of High Resolution Stereo Camera (HRSC) Images" (MUTED), which represents a tool for the identification of the spatial and multi-temporal coverage of planetary image data from Mars. Scientists will be able to identify the location, number, and time range of acquisition of overlapping HRSC images. MUTED also includes images of other planetary image datasets such as those of the Context Camera (CTX), the Mars Orbiter Camera (MOC), the Thermal Emission Imaging System (THEMIS), and the High Resolution

  15. Selective detection and complete identification of triglycerides in cortical bone by high-resolution (1)H MAS NMR spectroscopy.

    PubMed

    Mroue, Kamal H; Xu, Jiadi; Zhu, Peizhi; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2016-07-28

    Using (1)H-based magic angle spinning solid-state NMR spectroscopy, we report an atomistic-level characterization of triglycerides in compact cortical bone. By suppressing contributions from immobile molecules present in bone, we show that a (1)H-based constant-time uniform-sign cross-peak (CTUC) two-dimensional COSY-type experiment that correlates the chemical shifts of protons can selectively detect a mobile triglyceride layer as the main component of small lipid droplets embedded on the surface of collagen fibrils. High sensitivity and resolution afforded by this NMR approach could be potentially utilized to investigate the origin of triglycerides and their pathological roles associated with bone fractures, diseases, and aging. PMID:27374353

  16. Application of high resolution pQCT analysis for the assessment of a bone lesion: a technical note.

    PubMed

    Rubinacci, A; Tresoldi, D; Villa, I; Rizzo, G; Gaudio, D; De Angelis, D; Gibelli, D; Cattaneo, C

    2015-01-01

    Peripheral quantitative computed tomography (pQCT) has found new fields of application in bone medicine, but none of them concerns the forensic practice. This study exposes the potential of pQCT applied to a penetrating lesion in a vertebral body. A pQCT scanner was used for the measurements (XCT Research SA+; Stratec Medizintechnik GmbH, Pforzheim, Germany). A more precise reconstruction of the path of the lesion within the trabecular bone was reached, with more details concerning the morphological characteristics of the lesion inside the vertebral body, and the elaboration of a 3D model was created, which allowed the operator to define the volume of the lack of tissues related to the lesion. The application of pQCT scan proved to be a potentially useful tool for the assessment of bone lesions, although further studies are needed in order to verify its applicability to forensic context. PMID:25258096

  17. Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing

    NASA Astrophysics Data System (ADS)

    Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei

    2014-03-01

    We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.

  18. Temporal measurement and analysis of high-resolution spectral signatures of plants and relationships to biophysical characteristics

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.; Rebbman, Jan; Hall, Carlton; Provancha, Mark; Vieglais, David

    1995-11-01

    Measurements of temporal reflectance signatures as a function of growing season for sand live oak (Quercus geminata), myrtle oak (Q. myrtifolia, and saw palmetto (Serenoa repens) were collected during a two year study period. Canopy level spectral reflectance signatures, as a function of 252 channels between 368 and 1115 nm, were collected using near nadir viewing geometry and a consistent sun illumination angle. Leaf level reflectance measurements were made in the laboratory using a halogen light source and an environmental optics chamber with a barium sulfate reflectance coating. Spectral measurements were related to several biophysical measurements utilizing optimal passive ambient correlation spectroscopy (OPACS) technique. Biophysical parameters included percent moisture, water potential (MPa), total chlorophyll, and total Kjeldahl nitrogen. Quantitative data processing techniques were used to determine optimal bands based on the utilization of a second order derivative or inflection estimator. An optical cleanup procedure was then employed that computes the double inflection ratio (DIR) spectra for all possible three band combinations normalized to the previously computed optimal bands. These results demonstrate a unique approach to the analysis of high spectral resolution reflectance signatures for estimation of several biophysical measures of plants at the leaf and canopy level from optimally selected bands or bandwidths.

  19. Sensitivity of honeybee hygroreceptors to slow humidity changes and temporal humidity variation detected in high resolution by mobile measurements.

    PubMed

    Tichy, Harald; Kallina, Wolfgang

    2014-01-01

    The moist cell and the dry cell on the antenna of the male honeybee were exposed to humidities slowly rising and falling at rates between -1.5%/s and +1.5%/s and at varying amplitudes in the 10 to 90% humidity range. The two cells respond to these slow humidity oscillations with oscillations in impulse frequency which depend not only on instantaneous humidity but also on the rate with which humidity changes. The impulse frequency of each cell was plotted as a function of these two parameters and regression planes were fitted to the data points of single oscillation periods. The regression slopes, which estimate sensitivity, rose with the amplitude of humidity oscillations. During large-amplitude oscillations, moist and dry cell sensitivity for instantaneous humidity and its rate of change was high. During small-amplitude oscillations, their sensitivity for both parameters was low, less exactly reflecting humidity fluctuations. Nothing is known about the spatial and temporal humidity variations a honeybee may encounter when flying through natural environments. Microclimatic parameters (absolute humidity, temperature, wind speed) were measured from an automobile traveling through different landscapes of Lower Austria. Landscape type affected extremes and mean values of humidity. Differences between peaks and troughs of humidity fluctuations were generally smaller in open grassy fields or deciduous forests than in edge habitats or forest openings. Overall, fluctuation amplitudes were small. In this part of the stimulus range, hygroreceptor sensitivity is not optimal for encoding instantaneous humidity and the rate of humidity change. It seems that honeybee's hygroreceptors are specialized for detecting large-amplitude fluctuations that are relevant for a specific behavior, namely, maintaining a sufficiently stable state of water balance. The results suggest that optimal sensitivity of both hygroreceptors is shaped not only by humidity oscillation amplitudes but also

  20. Sensitivity of Honeybee Hygroreceptors to Slow Humidity Changes and Temporal Humidity Variation Detected in High Resolution by Mobile Measurements

    PubMed Central

    Tichy, Harald; Kallina, Wolfgang

    2014-01-01

    The moist cell and the dry cell on the antenna of the male honeybee were exposed to humidities slowly rising and falling at rates between –1.5%/s and +1.5%/s and at varying amplitudes in the 10 to 90% humidity range. The two cells respond to these slow humidity oscillations with oscillations in impulse frequency which depend not only on instantaneous humidity but also on the rate with which humidity changes. The impulse frequency of each cell was plotted as a function of these two parameters and regression planes were fitted to the data points of single oscillation periods. The regression slopes, which estimate sensitivity, rose with the amplitude of humidity oscillations. During large-amplitude oscillations, moist and dry cell sensitivity for instantaneous humidity and its rate of change was high. During small-amplitude oscillations, their sensitivity for both parameters was low, less exactly reflecting humidity fluctuations. Nothing is known about the spatial and temporal humidity variations a honeybee may encounter when flying through natural environments. Microclimatic parameters (absolute humidity, temperature, wind speed) were measured from an automobile traveling through different landscapes of Lower Austria. Landscape type affected extremes and mean values of humidity. Differences between peaks and troughs of humidity fluctuations were generally smaller in open grassy fields or deciduous forests than in edge habitats or forest openings. Overall, fluctuation amplitudes were small. In this part of the stimulus range, hygroreceptor sensitivity is not optimal for encoding instantaneous humidity and the rate of humidity change. It seems that honeybee's hygroreceptors are specialized for detecting large-amplitude fluctuations that are relevant for a specific behavior, namely, maintaining a sufficiently stable state of water balance. The results suggest that optimal sensitivity of both hygroreceptors is shaped not only by humidity oscillation amplitudes but also

  1. Surgical management of osteoradionecrosis of the temporal bone

    SciTech Connect

    Kveton, J.F.

    1988-03-01

    The surgical management of osteoradionecrosis of the temporal bone has met with limited success because of the difficulty in accurate assessment of the viability of nonnecrotic bone intraoperatively. Failure to resect all nonviable bone results in recurrence of a necrotic focus. With the use of hyperbaric oxygen therapy to stabilize marginal bone and oral tetracycline to label viable bone preoperatively, removal of all nonviable bone can be accomplished. Postoperatively, a second course of hyperbaric therapy enhances wound healing, thus assuring a successful outcome. This article details a successful systematic approach that was developed to resect a necrotic focus in the temporal bone of a 10-year-old boy who had undergone a full course of radiotherapy for treatment of a rhabdomyosarcoma.

  2. Trabecular and cortical bone density and architecture in women after 60 days of bed rest using high-resolution pQCT: WISE 2005.

    PubMed

    Armbrecht, Gabriele; Belavý, Daniel Ludovic; Backström, Magdalena; Beller, Gisela; Alexandre, Christian; Rizzoli, Rene; Felsenberg, Dieter

    2011-10-01

    Prolonged bed rest is used to simulate the effects of spaceflight and causes disuse-related loss of bone. While bone density changes during bed rest have been described, there are no data on changes in bone microstructure. Twenty-four healthy women aged 25 to 40 years participated in 60 days of strict 6-degree head-down tilt bed rest (WISE 2005). Subjects were assigned to either a control group (CON, n = 8), which performed no countermeasures; an exercise group (EXE, n = 8), which undertook a combination of resistive and endurance training; or a nutrition group (NUT, n = 8), which received a high-protein diet. Density and structural parameters of the distal tibia and radius were measured at baseline, during, and up to 1 year after bed rest by high-resolution peripheral quantitative computed tomography (HR-pQCT). Bed rest was associated with reductions in all distal tibial density parameters (p < 0.001), whereas only distal radius trabecular density decreased. Trabecular separation increased at both the distal tibia and distal radius (p < 0.001), but these effects were first significant after bed rest. Reduction in trabecular number was similar in magnitude at the distal radius (p = 0.021) and distal tibia (p < 0.001). Cortical thickness decreased at the distal tibia only (p < 0.001). There were no significant effects on bone structure or density of the countermeasures (p ≥ 0.057). As measured with HR-pQCT, it is concluded that deterioration in bone microstructure and density occur in women during and after prolonged bed rest. The exercise and nutrition countermeasures were ineffective in preventing these changes. PMID:21812030

  3. The temporal response of bone to unloading

    NASA Technical Reports Server (NTRS)

    Globus, R. K.; Bikle, D. D.; Morey-Holton, E.

    1984-01-01

    Rats were suspended by their tails with the forelimbs bearing the weight load to simulate the weightlessness of space flight. Growth in bone mass ceased by 1 week in the hindlimbs and lumbar vertebrae in growing rats, while growth in the forelimbs and cervical vertebrae remained unaffected. The effects of selective skeletal unloading on bone formation during 2 weeks of suspension was investigated using radio iostope incorporation (with Ca-45 and H-3 proline) and histomorphometry (with tetracycline labeling). The results of these studies were confirmed by histomorphometric measurements of bone formation using triple tetracycline labeling. This model of simulated weightlessness results in an initial inhibition of bone formation in the unloaded bones. This temporary cessation of bone formation is followed in the accretion of bone mass, which then resumes at a normal rate by 14 days, despite continued skeletal unloading. This cycle of inhibition and resumption of bone formation has profound implication for understanding bone dynamics durng space flight, immobilization, or bed rest and offers an opportunity to study the hormonal and mechanical factors that regulate bone formation.

  4. Endoscopic Management of Middle Ear and Temporal Bone Lesions.

    PubMed

    Isaacson, Brandon; Nogueira, João Flávio

    2016-10-01

    Tantamount to the management of temporal bone neoplasms is the ability to visualize the pathology and its relationship with the numerous critical structures housed therein. Transcanal endoscopic ear surgery provides the surgeon with an unparalleled view of the entire middle ear. This article presents the latest information on the usefulness of transcanal endoscopic ear surgery in the management of middle ear and temporal bone neoplasms. PMID:27468636

  5. Comparison of pixel and sub-pixel based techniques to separate Pteronia incana invaded areas using multi-temporal high resolution imagery

    NASA Astrophysics Data System (ADS)

    Odindi, John; Kakembo, Vincent

    2009-08-01

    Remote Sensing using high resolution imagery (HRI) is fast becoming an important tool in detailed land-cover mapping and analysis of plant species invasion. In this study, we sought to test the separability of Pteronia incana invader species by pixel content aggregation and pixel content de-convolution using multi-temporal infrared HRI. An invaded area in Eastern Cape, South Africa was flown in 2001, 2004 and 2006 and HRI of 1x1m resolution captured using a DCS 420 colour infrared camera. The images were separated into bands, geo-rectified and radiometrically corrected using Idrisi Kilimanjaro GIS. Value files were extracted from the bands in order to compare spectral values for P. incana, green vegetation and bare surfaces using the pixel based Perpendicular Vegetation Index (PVI), while Constrained Linear Spectral Unmixing (CLSU) surface endmembers were used to generate sub-pixel land surface image fractions. Spectroscopy was used to validate spectral trends identified from HRI. The PVI successfully separated the multi-temporal imagery surfaces and was consistent with the unmixed surface image fractions from CLSU. Separability between the respective surfaces was also achieved using reflectance measurements.

  6. Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI.

    PubMed

    Yuan, Han; Ding, Lei; Zhu, Min; Zotev, Vadim; Phillips, Raquel; Bodurka, Jerzy

    2016-03-01

    Functional magnetic resonance imaging (fMRI) studies utilizing measures of hemodynamic signal, such as the blood oxygenation level-dependent (BOLD) signal, have discovered that resting-state brain activities are organized into multiple large-scale functional networks, coined as resting-state networks (RSNs). However, an important limitation of the available fMRI studies is that hemodynamic signals only provide an indirect measure of the neuronal activity. In contrast, electroencephalography (EEG) directly measures electrophysiological activity of the brain. However, little is known about the brain-wide organization of such spontaneous neuronal population signals at the resting state. It is not entirely clear if or how the network structure built upon slowly fluctuating hemodynamic signals is represented in terms of fast, dynamic, and spontaneous neuronal activity. In this study, we investigated the electrophysiological representation of RSNs from simultaneously acquired EEG and fMRI data in the resting human brain. We developed a data-driven analysis approach that reconstructed multiple large-scale electrophysiological networks from high-resolution EEG data alone. The networks derived from EEG were then compared with RSNs independently derived from simultaneously acquired fMRI in their spatial structures as well as temporal dynamics. Results reveal spatially and temporally specific electrophysiological correlates for the fMRI-RSNs. Findings suggest that the spontaneous activity of various large-scale cortical networks is reflected in macroscopic EEG potentials. PMID:26414793

  7. Virtual Temporal Bone Dissection System: Development and Testing

    PubMed Central

    Wiet, Gregory J.; Stredney, Don; Kerwin, Thomas; Hittle, Bradley; Fernandez, Soledad A.; Welling, D. Bradley

    2012-01-01

    Objectives/Hypothesis The objective of this project was to develop a virtual temporal bone dissection system that would provide an enhanced educational experience for the training of otologic surgeons. Study Design A randomized, controlled, multi-institutional single blinded validation study. Methods The project encompassed 4 areas of emphasis: structural data acquisition, integration of the system, dissemination of the system, and validation. Results Structural acquisition was performed on multiple imaging platforms. Integration achieved a cost effective system. Dissemination was achieved on different levels including casual interest, downloading of software, and full involvement in development and validation studies. A validation study was performed at 8 different training institutions across the country using a two arm, randomized trial where study subjects were randomized to a two-week practice session using either the virtual temporal bone or standard cadaveric temporal bones. Eighty subjects were enrolled and randomized to one of the two treatment arms, 65 completed the study. There was no difference between the two groups using a blinded rating tool to assess performance after training. Conclusions 1. A virtual temporal bone dissection system has been developed and compared to cadaveric temporal bones for practice using a multi-center trial. 2. There is no statistical difference seen between practice on the current simulator when compared to practice on human cadaveric temporal bones. 3. Further refinements in structural acquisition and interface design have been identified which can be implemented prior to full incorporation into training programs and use for objective skills assessment. PMID:22294268

  8. Towards widespread exploitation of high resolution multi-temporal interferometry for monitoring landslide activity: a case-study of Southern Gansu, China

    NASA Astrophysics Data System (ADS)

    Wasowski, Janusz; Bovenga, Fabio; Dijkstra, Tom; Meng, Xingmin; Nutricato, Raffaele; Chiaradia, Maria Teresa

    2014-05-01

    Although Multi-Temporal Interferometry (MTI) techniques are considered to have already reached the operational level, it is apparent that, in both research and practice, we are only just beginning to benefit from the high resolution imagery that is currently acquired by the new generation of radar satellites. MTI techniques are not applicable in any environment, but, nonetheless, we foresee a strong possibility that in the future these techniques will see widespread exploitation in support of slope hazard assessments. MTI applications will become increasingly important in cases where little or no conventional monitoring is feasible (e.g. remote locations and limited funds). The tremendous potential of MTI is illustrated using selected examples of applications ranging from local to catchment scales. A particular focus is on the use of MTI for the investigation of slope instability in the remote high mountain region of Zhouqu, Southern Gansu, known to be affected by large magnitude (M7-8) earthquakes and catastrophic mass movements. The MTI processing of high resolution (~3 m) COSMO/SkyMed (CSK) satellite images produced spatially dense information (more than 1000 radar targets/km2) on ground surface displacements. A substantial portion of the radar targets showed significant displacements (from few to over 100 mm/yr), denoting widespread slope instability. In particular, the MTI results provided valuable information on the activity of some very large, apparently slow moving landslides that represent a persistent hazard to the local population and infrastructure, particularly as these landslides are known to undergo periods of increased activity resulting in river damming and disastrous flooding. Given the general lack of field monitoring data on slope instability in Southern Gansu, the MTI-derived displacements offer a unique form of remote displacement monitoring that provides valuable information to experts tasked with formulating strategies for hazard management

  9. Forest fuel treatment detection using multi-temporal airborne Lidar data and high resolution aerial imagery ---- A case study at Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Su, Y.; Guo, Q.; Collins, B.; Fry, D.; Kelly, M.

    2014-12-01

    Forest fuel treatments (FFT) are often employed in Sierra Nevada forest (located in California, US) to enhance forest health, regulate stand density, and reduce wildfire risk. However, there have been concerns that FFTs may have negative impacts on certain protected wildlife species. Due to the constraints and protection of resources (e.g., perennial streams, cultural resources, wildlife habitat, etc.), the actual FFT extents are usually different from planned extents. Identifying the actual extent of treated areas is of primary importance to understand the environmental influence of FFTs. Light detection and ranging (Lidar) is a powerful remote sensing technique that can provide accurate forest structure measurements, which provides great potential to monitor forest changes. This study used canopy height model (CHM) and canopy cover (CC) products derived from multi-temporal airborne Lidar data to detect FFTs by an approach combining a pixel-wise thresholding method and a object-of-interest segmentation method. We also investigated forest change following the implementation of landscape-scale FFT projects through the use of normalized difference vegetation index (NDVI) and standardized principle component analysis (PCA) from multi-temporal high resolution aerial imagery. The same FFT detection routine was applied on the Lidar data and aerial imagery for the purpose of comparing the capability of Lidar data and aerial imagery on FFT detection. Our results demonstrated that the FFT detection using Lidar derived CC products produced both the highest total accuracy and kappa coefficient, and was more robust at identifying areas with light FFTs. The accuracy using Lidar derived CHM products was significantly lower than that of the result using Lidar derived CC, but was still slightly higher than using aerial imagery. FFT detection results using NDVI and standardized PCA using multi-temporal aerial imagery produced almost identical total accuracy and kappa coefficient

  10. Can single empirical algorithms accurately predict inland shallow water quality status from high resolution, multi-sensor, multi-temporal satellite data?

    NASA Astrophysics Data System (ADS)

    Theologou, I.; Patelaki, M.; Karantzalos, K.

    2015-04-01

    Assessing and monitoring water quality status through timely, cost effective and accurate manner is of fundamental importance for numerous environmental management and policy making purposes. Therefore, there is a current need for validated methodologies which can effectively exploit, in an unsupervised way, the enormous amount of earth observation imaging datasets from various high-resolution satellite multispectral sensors. To this end, many research efforts are based on building concrete relationships and empirical algorithms from concurrent satellite and in-situ data collection campaigns. We have experimented with Landsat 7 and Landsat 8 multi-temporal satellite data, coupled with hyperspectral data from a field spectroradiometer and in-situ ground truth data with several physico-chemical and other key monitoring indicators. All available datasets, covering a 4 years period, in our case study Lake Karla in Greece, were processed and fused under a quantitative evaluation framework. The performed comprehensive analysis posed certain questions regarding the applicability of single empirical models across multi-temporal, multi-sensor datasets towards the accurate prediction of key water quality indicators for shallow inland systems. Single linear regression models didn't establish concrete relations across multi-temporal, multi-sensor observations. Moreover, the shallower parts of the inland system followed, in accordance with the literature, different regression patterns. Landsat 7 and 8 resulted in quite promising results indicating that from the recreation of the lake and onward consistent per-sensor, per-depth prediction models can be successfully established. The highest rates were for chl-a (r2=89.80%), dissolved oxygen (r2=88.53%), conductivity (r2=88.18%), ammonium (r2=87.2%) and pH (r2=86.35%), while the total phosphorus (r2=70.55%) and nitrates (r2=55.50%) resulted in lower correlation rates.

  11. Lean mass and fat mass have differing associations with bone microarchitecture assessed by high resolution peripheral quantitative computed tomography in men and women from the Hertfordshire Cohort Study.

    PubMed

    Edwards, Mark H; Ward, Kate A; Ntani, Georgia; Parsons, Camille; Thompson, Jennifer; Sayer, Avan A; Dennison, Elaine M; Cooper, Cyrus

    2015-12-01

    Understanding the effects of muscle and fat on bone is increasingly important in the optimisation of bone health. We explored relationships between bone microarchitecture and body composition in older men and women from the Hertfordshire Cohort Study. 175 men and 167 women aged 72-81 years were studied. High resolution peripheral quantitative computed tomography (HRpQCT) images (voxel size 82 μm) were acquired from the non-dominant distal radius and tibia with a Scanco XtremeCT scanner. Standard morphological analysis was performed for assessment of macrostructure, densitometry, cortical porosity and trabecular microarchitecture. Body composition was assessed using dual energy X-ray absorptiometry (DXA) (Lunar Prodigy Advanced). Lean mass index (LMI) was calculated as lean mass divided by height squared and fat mass index (FMI) as fat mass divided by height squared. The mean (standard deviation) age in men and women was 76 (3) years. In univariate analyses, tibial cortical area (p<0.01), cortical thickness (p<0.05) and trabecular number (p<0.01) were positively associated with LMI and FMI in both men and women. After mutual adjustment, relationships between cortical area and thickness were only maintained with LMI [tibial cortical area, β (95% confidence interval (CI)): men 6.99 (3.97,10.01), women 3.59 (1.81,5.38)] whereas trabecular number and density were associated with FMI. Interactions by sex were found, including for the relationships of LMI with cortical area and FMI with trabecular area in both the radius and tibia (p<0.05). In conclusion, LMI and FMI appeared to show independent relationships with bone microarchitecture. Further studies are required to confirm the direction of causality and explore the mechanisms underlying these tissue-specific associations. PMID:26187195

  12. Cluster analysis of bone microarchitecture from high resolution peripheral quantitative computed tomography demonstrates two separate phenotypes associated with high fracture risk in men and women.

    PubMed

    Edwards, M H; Robinson, D E; Ward, K A; Javaid, M K; Walker-Bone, K; Cooper, C; Dennison, E M

    2016-07-01

    Osteoporosis is a major healthcare problem which is conventionally assessed by dual energy X-ray absorptiometry (DXA). New technologies such as high resolution peripheral quantitative computed tomography (HRpQCT) also predict fracture risk. HRpQCT measures a number of bone characteristics that may inform specific patterns of bone deficits. We used cluster analysis to define different bone phenotypes and their relationships to fracture prevalence and areal bone mineral density (BMD). 177 men and 159 women, in whom fracture history was determined by self-report and vertebral fracture assessment, underwent HRpQCT of the distal radius and femoral neck DXA. Five clusters were derived with two clusters associated with elevated fracture risk. "Cluster 1" contained 26 women (50.0% fractured) and 30 men (50.0% fractured) with a lower mean cortical thickness and cortical volumetric BMD, and in men only, a mean total and trabecular area more than the sex-specific cohort mean. "Cluster 2" contained 20 women (50.0% fractured) and 14 men (35.7% fractured) with a lower mean trabecular density and trabecular number than the sex-specific cohort mean. Logistic regression showed fracture rates in these clusters to be significantly higher than the lowest fracture risk cluster [5] (p<0.05). Mean femoral neck areal BMD was significantly lower than cluster 5 in women in cluster 1 and 2 (p<0.001 for both), and in men, in cluster 2 (p<0.001) but not 1 (p=0.220). In conclusion, this study demonstrates two distinct high risk clusters in both men and women which may differ in etiology and response to treatment. As cluster 1 in men does not have low areal BMD, these men may not be identified as high risk by conventional DXA alone. PMID:27130873

  13. 3D fast spin echo with out-of-slab cancellation: a technique for high-resolution structural imaging of trabecular bone at 7 Tesla.

    PubMed

    Magland, Jeremy F; Rajapakse, Chamith S; Wright, Alexander C; Acciavatti, Raymond; Wehrli, Felix W

    2010-03-01

    Spin-echo-based pulse sequences are desirable for the application of high-resolution imaging of trabecular bone but tend to involve high-power deposition. Increased availability of ultrahigh field scanners has opened new possibilities for imaging with increased signal-to-noise ratio (SNR) efficiency, but many pulse sequences that are standard at 1.5 and 3 T exceed specific absorption rate limits at 7 T. A modified, reduced specific absorption rate, three-dimensional, fast spin-echo pulse sequence optimized specifically for in vivo trabecular bone imaging at 7 T is introduced. The sequence involves a slab-selective excitation pulse, low-power nonselective refocusing pulses, and phase cycling to cancel undesired out-of-slab signal. In vivo images of the distal tibia were acquired using the technique at 1.5, 3, and 7 T field strengths, and SNR was found to increase at least linearly using receive coils of identical geometry. Signal dependence on the choice of refocusing flip angles in the echo train was analyzed experimentally and theoretically by combining the signal from hundreds of coherence pathways, and it is shown that a significant specific absorption rate reduction can be achieved with negligible SNR loss. PMID:20187181

  14. Osteoradionecrosis of the Temporal Bone: A Case Series

    PubMed Central

    Sharon, Jeffrey D; Khwaja, Shariq S.; Drescher, Andrew; Gay, Hiram; Chole, Richard A

    2014-01-01

    Objective To study osteoradionecrosis (ORN) of the temporal bone Study Design Retrospective case review Setting Academic medical center Patients Patients were included who had previously undergone radiation to the head and neck and then developed exposed necrotic bone within the ear canal that persisted at least three months Intervention(s) Patients were treated with a variety of modalities, including conservative therapy with antibiotic ear drops and in-office debridements, hyperbaric oxygen therapy and surgery. Main Outcome Measure(s) To describe the presentation and management of patients with temporal bone osteoradionecrosis. Results 33 patients with temporal bone osteoradionecrosis were included. The most common site of primary tumor was the parotid gland (n=11), followed by the nasopharynx (n=7). The time to development of ORN varied between 1 and 22 years, with mean 7.9 years. The mean radiation dose was 62.6 Gy to the primary tumor, 53.1 Gy to the affected temporal bone, and 65.2 Gy to the affected tympanic bone. The most common symptoms of ORN were otorrhea (n=15), hearing loss (n=13), and otalgia (n=12). 15 patients had bacterial superinfection, most commonly S. aureus (n=9). Conservative therapy was successful at managing symptoms but not in eradicating exposed bone in most patients. Surgery was used for recalcitrant pain, infection, cholesteatoma, cranial neuropathies, and intracranial complications. Conclusions Osteoradionecrosis is a rare complication of radiation to the temporal bone. Management should be aimed at relief of symptoms, eradication of superinfection, and treatment of other commonly present radiation effects like cholesteatoma and hearing loss. PMID:24914789

  15. Massive Cerebrospinal Fluid Leak of the Temporal Bone

    PubMed Central

    Manno, Alessandra; Pasqualitto, Emanuela; Ciofalo, Andrea; Angeletti, Diletta; Pasquariello, Benedetta

    2016-01-01

    Cerebrospinal fluid (CSF) leakage of the temporal bone region is defined as abnormal communications between the subarachnoidal space and the air-containing spaces of the temporal bone. CSF leak remains one of the most frequent complications after VS surgery. Radiotherapy is considered a predisposing factor for development of temporal bone CSF leak because it may impair dural repair mechanisms, thus causing inadequate dural sealing. The authors describe the case of a 47-year-old man with a massive effusion of CSF which extended from the posterior and lateral skull base to the first cervical vertebrae; this complication appeared after a partial enucleation of a vestibular schwannoma (VS) with subsequent radiation treatment and second operation with total VS resection. PMID:27597915

  16. Massive Cerebrospinal Fluid Leak of the Temporal Bone.

    PubMed

    Iannella, Giannicola; Manno, Alessandra; Pasqualitto, Emanuela; Ciofalo, Andrea; Angeletti, Diletta; Pasquariello, Benedetta; Magliulo, Giuseppe

    2016-01-01

    Cerebrospinal fluid (CSF) leakage of the temporal bone region is defined as abnormal communications between the subarachnoidal space and the air-containing spaces of the temporal bone. CSF leak remains one of the most frequent complications after VS surgery. Radiotherapy is considered a predisposing factor for development of temporal bone CSF leak because it may impair dural repair mechanisms, thus causing inadequate dural sealing. The authors describe the case of a 47-year-old man with a massive effusion of CSF which extended from the posterior and lateral skull base to the first cervical vertebrae; this complication appeared after a partial enucleation of a vestibular schwannoma (VS) with subsequent radiation treatment and second operation with total VS resection. PMID:27597915

  17. Actinomycosis of the temporal bone: a report of a case.

    PubMed

    Sobol, Steven E; Samadi, Daniel S; Wetmore, Ralph F

    2004-05-01

    Actinomycosis is a chronic suppurative infection of the cervicofacial region caused by Actinomyces species, which are anaerobic, gram-positive filamentous bacteria. Although actinomycosis has a propensity for involving the oral cavity, rare cases of actinomycosis involving the temporal bone have been published. We report the case of a 14-year-old girl who presented with clinical, audiometric, and radiologic findings consistent with right chronic suppurative otitis media that persisted despite tympanomastoidectomy. Findings on histologic evaluation of a specimen obtained during revision surgery were consistent with a diagnosis of actinomycosis. Although actinomycosis of the temporal bone is rare, it should be considered in the differential diagnosis of chronic suppurative temporal bone infections that are resistant to standard therapy. PMID:15195879

  18. Bilateral Temporal Bone Langerhans Cell Histiocytosis: Radiologic Pearls

    PubMed Central

    Coleman, Mira A.; Matsumoto, Jane; Carr, Carrie M.; Eckel, Laurence J.; Nageswara Rao, Amulya A.

    2013-01-01

    Langerhans cell histiocytosis (LCH) is a rare histiocytic disorder with an unpredictable clinical course and highly varied clinical presentation ranging from single system to multisystem involvement. Although head and neck involvement is common in LCH, isolated bilateral temporal bone involvement is exceedingly rare. Furthermore, LCH is commonly misinterpreted as mastoiditis, otitis media and otitis externa, delaying diagnosis and appropriate therapeutic management. To improve detection and time to treatment, it is imperative to have LCH in the differential diagnosis for unusual presentations of the aforementioned infectious head and neck etiologies. Any lytic lesion of the temporal bone identified by radiology should raise suspicion for LCH. We hereby describe the radiologic findings of a case of bilateral temporal bone LCH, originally misdiagnosed as mastoiditis. PMID:24478812

  19. Polyarteritis nodosa and deafness. A human temporal bone study.

    PubMed

    Gussen, P

    1977-08-26

    Temporal bone changes were described in a 66 year old woman with polyarteritis nodosa who became deaf 7 months before death. Polyarteritis nodosa of the left internal auditory artery was demonstrated with fibrosis and bone formation involving the cochlea and vestibular system. Endolymphatic hydrops of the basal turn of the cochlea was also present, as well as a chronic perforation of the free wall of the saccule. PMID:21648

  20. Human Temporal Bone Removal: The Skull Base Block Method.

    PubMed

    Dinh, Christine; Szczupak, Mikhaylo; Moon, Seo; Angeli, Simon; Eshraghi, Adrien; Telischi, Fred F

    2015-08-01

    Objectives To describe a technique for harvesting larger temporal bone specimens from human cadavers for the training of otolaryngology residents and fellows on the various approaches to the lateral and posterolateral skull base. Design Human cadaveric anatomical study. The calvarium was excised 6 cm above the superior aspect of the ear canal. The brain and cerebellum were carefully removed, and the cranial nerves were cut sharply. Two bony cuts were performed, one in the midsagittal plane and the other in the coronal plane at the level of the optic foramen. Setting Medical school anatomy laboratory. Participants Human cadavers. Main Outcome Measures Anatomical contents of specimens and technical effort required. Results Larger temporal bone specimens containing portions of the parietal, occipital, and sphenoidal bones were consistently obtained using this technique of two bone cuts. All specimens were inspected and contained pertinent surface and skull base landmarks. Conclusions The skull base block method allows for larger temporal bone specimens using a two bone cut technique that is efficient and reproducible. These specimens have the necessary anatomical bony landmarks for studying the complexity, utility, and limitations of lateral and posterolateral approaches to the skull base, important for the education of otolaryngology residents and fellows. PMID:26225316

  1. Osteomyelitis of the Temporal Bone: Terminology, Diagnosis, and Management

    PubMed Central

    Prasad, Sampath Chandra; Prasad, Kishore Chandra; Kumar, Abhijit; Thada, Nikhil Dinaker; Rao, Pallavi; Chalasani, Satyanarayana

    2014-01-01

    Objectives To review the terminology, clinical features, and management of temporal bone osteomyelitis. Design and Setting Prospective study in a tertiary care center from 2001 to 2008. Participants Twenty patients visiting the outpatient department diagnosed with osteomyelitis of the temporal bone. Main Outcome Measures The age, sex, clinical features, cultured organisms, surgical interventions, and classification were analyzed. Results Of the 20 cases, 2 (10%) were diagnosed as acute otitis media. Eighteen (90%) had chronic otitis media. Nineteen (95%) were classified as medial temporal bone osteomyelitis and one (5%) as lateral temporal osteomyelitis. The most common clinical features were ear discharge (100%), pain (83%), and granulations (100%). Facial nerve palsy was seen in seven cases (35%) and parotid involvement in one case. Ten patients (56%) had diabetes mellitus. The organisms isolated were Pseudomonas aeruginosa (80%) and Staphylococcus aureus (13.33%). Histopathology revealed chronic inflammation in 20 patients (100%) and osteomyelitic bony changes in 14 (70%). Surgical debridement was the most preferred modality of treatment (87%). Conclusion A new classification of temporal bone osteomyelitis has been proposed. Bacterial cultures must be performed in all patients. Antibiotic therapy is the treatment of choice. Surgical intervention is necessary in the presence of severe pain, complications, refractory cases, or the presence of bony sequestra on radiology. PMID:25302143

  2. Polarity and Temporality of High-Resolution Y-Chromosome Distributions in India Identify Both Indigenous and Exogenous Expansions and Reveal Minor Genetic Influence of Central Asian Pastoralists

    PubMed Central

    Sengupta, Sanghamitra; Zhivotovsky, Lev A.; King, Roy; Mehdi, S. Q.; Edmonds, Christopher A.; Chow, Cheryl-Emiliane T.; Lin, Alice A.; Mitra, Mitashree; Sil, Samir K.; Ramesh, A.; Usha Rani, M. V.; Thakur, Chitra M.; Cavalli-Sforza, L. Luca; Majumder, Partha P.; Underhill, Peter A.

    2006-01-01

    Although considerable cultural impact on social hierarchy and language in South Asia is attributable to the arrival of nomadic Central Asian pastoralists, genetic data (mitochondrial and Y chromosomal) have yielded dramatically conflicting inferences on the genetic origins of tribes and castes of South Asia. We sought to resolve this conflict, using high-resolution data on 69 informative Y-chromosome binary markers and 10 microsatellite markers from a large set of geographically, socially, and linguistically representative ethnic groups of South Asia. We found that the influence of Central Asia on the pre-existing gene pool was minor. The ages of accumulated microsatellite variation in the majority of Indian haplogroups exceed 10,000–15,000 years, which attests to the antiquity of regional differentiation. Therefore, our data do not support models that invoke a pronounced recent genetic input from Central Asia to explain the observed genetic variation in South Asia. R1a1 and R2 haplogroups indicate demographic complexity that is inconsistent with a recent single history. Associated microsatellite analyses of the high-frequency R1a1 haplogroup chromosomes indicate independent recent histories of the Indus Valley and the peninsular Indian region. Our data are also more consistent with a peninsular origin of Dravidian speakers than a source with proximity to the Indus and with significant genetic input resulting from demic diffusion associated with agriculture. Our results underscore the importance of marker ascertainment for distinguishing phylogenetic terminal branches from basal nodes when attributing ancestral composition and temporality to either indigenous or exogenous sources. Our reappraisal indicates that pre-Holocene and Holocene-era—not Indo-European—expansions have shaped the distinctive South Asian Y-chromosome landscape. PMID:16400607

  3. A New Hybrid Spatio-temporal Model for Estimating Daily Multi-year PM2.5 Concentrations Across Northeastern USA Using High Resolution Aerosol Optical Depth Data

    NASA Technical Reports Server (NTRS)

    Kloog, Itai; Chudnovsky, Alexandra A.; Just, Allan C.; Nordio, Francesco; Koutrakis, Petros; Coull, Brent A.; Lyapustin, Alexei; Wang, Yujie; Schwartz, Joel

    2014-01-01

    The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter PM(sub 2.5) for epidemiology studies has increased substantially over the past few years. These recent studies often report moderate predictive power, which can generate downward bias in effect estimates. In addition, AOD measurements have only moderate spatial resolution, and have substantial missing data. We make use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) resolution AOD data.We developed and cross validated models to predict daily PM(sub 2.5) at a 1X 1 km resolution across the northeastern USA (New England, New York and New Jersey) for the years 2003-2011, allowing us to better differentiate daily and long term exposure between urban, suburban, and rural areas. Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized predictions representing deviations from the area 1 X 1 km grid predictions. We used mixed models regressing PM(sub 2.5) measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the residuals from the final model for each monitor against the local spatial and temporal variables at each monitoring site. Our model performance was excellent (mean out-of-sample R(sup 2) = 0.88). The spatial and temporal components of the out-of-sample results also presented very good fits to the withheld data (R(sup 2) = 0.87, R(sup)2 = 0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope of predictions versus withheld observations = 0.99). Our daily model results show high predictive accuracy at high spatial resolutions

  4. 3D Assessment of Cortical Bone Porosity and Tissue Mineral Density Using High-Resolution Micro-CT: Effects of Resolution and Threshold Method

    PubMed Central

    Palacio-Mancheno, Paolo E.; Larriera, Adriana I.; Doty, Stephen B.; Cardoso, Luis; Fritton, Susannah P.

    2013-01-01

    Current micro-CT systems allow scanning bone at resolutions capable of three-dimensional characterization of intracortical vascular porosity and osteocyte lacunae. However, the scanning and reconstruction parameters along with the image segmentation method affect the accuracy of the measurements. In this study, the effects of scanning resolution and image threshold method in quantifying small features of cortical bone (vascular porosity, vascular canal diameter and separation, lacunar porosity and density, and tissue mineral density) were analyzed. Cortical bone from the tibia of Sprague-Dawley rats was scanned at 1-µm and 4-µm resolutions, reconstructions were density-calibrated, and volumes of interest were segmented using approaches based on edge-detection or histogram analysis. With 1-µm resolution scans, the osteocyte lacunar spaces could be visualized, and it was possible to separate the lacunar porosity from the vascular porosity. At 4-µm resolution, the vascular porosity and vascular canal diameter were underestimated, and osteocyte lacunae were not effectively detected, whereas the vascular canal separation and tissue mineral density were overestimated compared to 1-µm resolution. Resolution had a much greater effect on the measurements than did threshold method, with partial volume effects at resolutions coarser than 2 µm demonstrated in two separate analyses, one of which assessed the effect of resolution on an object of known size with similar architecture to a vascular pore. Although there was little difference when using the edge-detection versus histogram-based threshold approaches, edge-detection was somewhat more effective in delineating canal architecture at finer resolutions (1 – 2 µm). In addition, use of a high-resolution (1-µm) density-based threshold on lower resolution (4-µm) density-calibrated images was not effective in improving the lower-resolution measurements. In conclusion, if measuring cortical vascular microarchitecture

  5. Efficacy of petrosectomy in malignant invasion of the temporal bone.

    PubMed

    Wierzbicka, M; Kopeć, T; Szyfter, W; Buczkowska, A; Borucki, Ł

    2016-09-01

    We present the outcomes of lateral, subtotal, and total petrosectomies in patients with invasion of the temporal bone by specific primary cancers, with particular emphasis on survival in the advanced stages of disease. We made a retrospective study of 20 consecutive patients (squamous cell carcinoma of the temporal bone, n=11, and primary cancer of the parotid gland with infiltration of the lateral skull base, n=9) treated by total, subtotal, or lateral petrosectomy at the University Department of Otolaryngology, a tertiary referral centre, between June 2006 and December 2010. Fourteen of the 20 patients were alive at the time of analysis, and follow-up ranged from 36-60 months. Six of seven patients whose disease relapsed (4 local and 3 distant metastases) died. The three-year, disease-free survival was 65% and the overall survival 68%. Survival between those with temporal bone and parotid tumours did not differ significantly. The combined group survival was affected by involvement of invaded resection margins (n=6, p=0.03). Involved margins were significant in the development of recurrence (p=0.03). Tumour stage, nodal involvement, type of operation, sex, age, skin involvement, facial palsy, and previous history of disease had no impact on prognosis. There was a significant difference in the survival curves of patients with carcinoma of the temporal bone with and without facial paresis (n=6 compared with n=5; p=0.046). Two of 11 free flaps required revision of the anastomoses, but none was lost. PMID:27241556

  6. Final Technical Report for "High-resolution temporal variations in groundwater chemistry: Tracing the links between climate, hydrology, and element mobility in the vadose zone"

    SciTech Connect

    Jay L. Banner

    2002-04-23

    In spite of a developing emphasis on geochemical methods in studies of modern hydrologic systems, there have been few attempts to examine temporal fluctuations in groundwater chemistry and element mobility in the near-surface environment. Relatively little is known regarding how groundwaters evolve over 10 to 10,000 year scales, yet this knowledge provides a critical framework for understanding the links between climate and hydrology, the evolution of soils, and element migration in the vadose environment. Recent analytical advances allow U-series measurements to be applied to developing high-resolution chronologies of Pleistocene and Holocene carbonates. The potential of these new tools is examined through an analysis of two well-defined, active karst systems in (1) Barbados and (2) Texas. (1) The research effort on Barbados has developed methods of estimating recharge and inferring the spatial and seasonal distribution of recharge to the Pleistocene limestone aquifer on Barbados. A new method has been developed to estimate recharge based on oxygen isotope variations in rainwater and groundwater. Inter-annual recharge variations indicate that recharge is dependent on the distribution of rainfall throughout the year rather than total annual rainfall. Consequently, a year when rainfall occurs primarily during the peak wet season months (August through November) may have more recharge than a year when rainfall is more evenly distributed through the year. These results lay important groundwork for analysis of rainfall/recharge variations over different time scales based on isotopic records presently being constructed using Barbados speleothems from the same aquifer. (2) The chronology of speleothems (cave calcite deposits) from three caves across 130 kilometers in central Texas provides a 71,000-year record of temporal changes in hydrology and climate. Fifty-three ages were determined by mass spectrometric 238U - 230Th and 235U - 231Pa analyses. The accuracy of the

  7. High resolution solar flare X-ray spectra - The temporal behavior of electron density, temperature, and emission measure for two class M flares

    NASA Astrophysics Data System (ADS)

    Doschek, G. A.; Feldman, U.; Landecker, P. B.; McKenzie, D. L.

    1981-10-01

    High resolution soft X-ray flare spectra recorded by Naval Research Laboratory (NRL) and Aerospace Corporation Bragg crystal spectrometers flown on an orbiting spacecraft (P78-1) are combined and analyzed. The instruments were launched on t979 February 24 by the U.S. Air Force, and the data discussed in this paper cover the wavelength ranges, 1.82-1.97 Å, 3.143.24 Å, and 18.423.0 Å. The NRL experiment (SOLFLEX) covers the two short wavelength ranges (highly ionized Fe and Ca lines) and the Aerospace experiment (SOLEX) covers the t8.4-23.O Å range, which includes the Lyα O VIII line and the resonance, intercombination, and forbidden lines of O VII. We analyze the spectra of two flares which occurred on 1980 April 8 and May 9. Temporal coverage is fairly complete for both flares, including the rise and decay phases. Measurements of electron density Ne with rather high time resolution (about 1 minute) have been obtained throughout most of the lifetimes of the two flares. These measurements were obtained from the O VII lines and pertain to flare plasma at temperatures near 2 × 106 K. Peak density seems to occur slightly before the times of peak X-ray flux in the resonance lines of Fe XXV, Ca XIX, and O VII, and for both flares the peak density is about 1012 cm-3. Electron temperature Te as a function of time is determined from the Fe and Ca spectra. Peak temperature for both flares is about 18 × 106 K. Differential emission measures and volume emission measures are determined from the resonance lines of O VII, Ca XIX, and Fe XXV. The number of electrons NeΔV and the volume ΔV over which the O VII lines are formed are determined from the O VII volume emission measure Ne2ΔV and the density Ne. These quantities are determined as a function of time. The relationship of the low and high temperature regions is discussed.

  8. Multimodal imaging of the human temporal bone: A comparison of CT and optical scanning techniques

    NASA Astrophysics Data System (ADS)

    Voie, Arne H.; Whiting, Bruce; Skinner, Margaret; Neely, J. Gail; Lee, Kenneth; Holden, Tim; Brunsden, Barry

    2003-10-01

    A collaborative effort between Washington University in St. Louis and Spencer Technologies in Seattle, WA has been undertaken to create a multimodal 3D reconstruction of the human cochlea and vestibular system. The goal of this project is to improve the accuracy of in vivo CT reconstructions of implanted cochleae, and to expand the knowledge of high-resolution anatomical detail provided by orthogonal-plane optical sectioning (OPFOS). At WUSL, computed tomography (CT) images of the cochlea are used to determine the position of cochlear implant electrodes relative to target auditory neurons. The cochlear implant position is determined using pre- and post-operative CT scans. The CT volumes are cross-registered to align the semicircular canals and internal auditory canal, which have a unique configuration in 3-D space. The head of a human body donor was scanned with a clinical CT device, after which the temporal bones were removed, fixed in formalin and trimmed prior to scanning with a laboratory Micro CT scanner. Following CT, the temporal bones were sent to the OPFOS Imaging Lab at Spencer Technologies for a further analysis. 3-D reconstructions of CT and OPFOS imaging modalities were compared, and results are presented. [Work supported by NIDCD Grants R44-03623-5 and R01-00581-13.

  9. Giant cell tumor of bone involving the temporomandibular joint and temporal bone.

    PubMed

    Akyigit, Abdulvahap; Karlidag, Turgut; Sakallioglu, Öner; Polat, Cahit; Keles, Erol

    2014-07-01

    Giant cell tumor is a primary bone tumor that usually originates from the epiphysis of the long bones and is rarely seen in the cranial region. Most frequently, the tumor develops in the sphenoid and temporal bones in the middle cranial fossa. Giant cell tumor generally shows diversity with respect to benignity, local invasiveness, and histology. Although surgical excision with negative surgical margin may lead to cure, adjuvant radiotherapy is still debated. The patient was admitted with a humming in the left ear and hearing loss. After radiologic examination, a mass with temporomandibular joint involvement as well as temporal and sphenoid bone localization was detected. The patient was diagnosed with giant cell tumor after a biopsy specimen was taken from the mass extending to the middle ear and destroying the temporomandibular joint. The current study reviewed the patient's clinical features, diagnosis, and treatment in light of the literature. PMID:25006918

  10. Comparison of Preoperative Temporal Bone CT with Intraoperative Findings in Patients with Cholesteatoma

    PubMed Central

    Rogha, Mehrdad; Hashemi, Sayyed Mostafa; Mokhtarinejad, Farhad; Eshaghian, Afrooz; Dadgostar, Alireza

    2014-01-01

    Introduction: Cholesteatoma is traditionally diagnosed by otoscopic examination and treated by surgery. The necessity for imaging in an uncomplicated case is controversial. This study was planned to investigate the usefulness of a preoperative high-resolution computed tomography (HRCT) scan in depicting the status of middle ear structures in the presence of cholesteatoma and also to compare the correspondence between pre- and intraoperative CT findings in patients with cholesteatoma. Materials and Methods: This prospective descriptive study was performed from January 2009 to May 2011 in 36 patients with cholesteatoma who were referred to the Kashani and Al-Zahra Clinics of Otolaryngology. Preoperative high-resolution temporal bone CT scans (axial and coronal views) were carried out and compared with intraoperative findings. Results: Evaluation of 36 patients and their CT scans revealed excellent correlation for sigmoid plate erosion, widening of aditus, and erosion of scutum; good correlation for erosion of malleus and tegmen; moderate correlation for lateral canal fistula (LCF) and erosion of mastoid air cells; and poor correlation for facial nerve dehiscence (FND), incus, and stapes erosion. Conclusion: A preoperative CT scan may be helpful in relation to diagnosis and decision making for surgery in cases of cholesteatoma and ossicular erosion. The CT scan can accurately predict the extent of disease and is helpful for detection of lateral canal fistula, erosions of dural plate, and ossicular erosions. However it is not able to distinguish between cholesteatoma and mucosal disease, facial nerve dehiscency, incus, and stapes erosion. PMID:24505568

  11. A metastatic glomus jugulare tumor. A temporal bone report

    SciTech Connect

    El Fiky, F.M.; Paparella, M.M.

    1984-01-01

    The clinicopathologic findings in the temporal bone of a patient with a highly malignant metastasizing glomus jugulare tumor are reported. The patient exhibited all the symptoms of primary malignant tumors of the ear, including facial paralysis, otorrhea, pain, hearing loss, tinnitus, dizziness, and vertigo. He was treated with cobalt irradiation followed by radium implant in the ear canal for a residual tumor; then a left-sided radical mastoidectomy was performed.

  12. Repair of Temporal Bone Encephalocele following Canal Wall Down Mastoidectomy

    PubMed Central

    Magras, Ioannis; Kouskouras, Konstantinos

    2014-01-01

    We report a rare case of a temporal bone encephalocele after a canal wall down mastoidectomy performed to treat chronic otitis media with cholesteatoma. The patient was treated successfully via an intracranial approach. An enhanced layer-by-layer repair of the encephalocele and skull base deficit was achieved from intradurally to extradurally, using temporalis fascia, nasal septum cartilage, and artificial dural graft. After a 22-month follow-up period the patient remains symptom free and no recurrence is noted. PMID:25328738

  13. Epidermoids involving the temporal bone: clinical, radiological and pathological aspects.

    PubMed

    Nager, G T

    1975-12-01

    Epidermoids or congenital cholesteatomas arise from aberrant epithelial remnants and are, therefore, considerd blastomatous malformations. Their predilective sites are the intracranial cavity, the diploe of the skull and the spinal canal. In the base of the skull the temporal bone is the most frequent site. Epidermoids account for about 0.2-1.5 percent of all intracranial tumors. The majority originate in the cerebello-pontine angle where they account for 6-7 percent of all tumors. Their age incidence reveals a great scatter from birth to 80 years. The majority are recognized during the third and fourth decades with the onset of clinical symptoms occurring much earlier. They affect males more frequently than females. Their delicate capsule with a whitish mother-of-pearl sheen lends them a typical appearance. Epidermoids are generally slow growing lesions which may remain asymptomatic for years. The irritative effect of their content, however, can produce symptoms of dysfunction and intense inflammation. Malignant changes occur infrequently. Diploic epidermoids are easily recognized, whereas, intradural epidermoids are more difficult to identify. Epidermoids may arise in the vicinity, on the outer aspect or within the temporal bone. Epidermoids originating in any of these locations have certain characteristic features which may arouse suspicion of their presence. Examples of an epidermoid with origin in the typical locations within the temporal bone and cerebello-pontine angle are discussed to portray their individual characteristics. PMID:1207346

  14. Annual to sub-annual 3D surface evolution of an Antarctic blue-ice moraine using multi-platform, multi-temporal high resolution topography

    NASA Astrophysics Data System (ADS)

    Westoby, Matthew; Dunning, Stuart; Woodward, John; Hein, Andrew; Marrero, Shasta; Winter, Kate; Sugden, David

    2016-04-01

    High-resolution topographic data products are now routinely used for the geomorphological characterisation of Earth surface landforms and landscapes, whilst the acquisition and differencing of such datasets are swiftly becoming the preferred method for quantifying the transfer of mass through landscapes at the spatial scales of observation at which many processes operate. In this research, we employ 3-D differencing of repeat high-resolution topography to quantify the surface evolution of a 0.3 km2 blue-ice moraine complex in front of Patriot Hills, Antarctica. We used terrestrial laser scanning (TLS) to acquire multiple overlapping 3D datasets of the moraine surface at the beginning and end of the austral summer season in 2012/2013 and during a resurvey campaign in 2014. An additional topographic dataset was acquired at the end of season 1 through the application of a Structure-from-Motion with Multi-View Stereo (SfM-MVS) workflow to a set of aerial photographs acquired during a single unmanned aerial vehicle (UAV) sortie. 3D cloud-to-cloud differencing was undertaken using the M3C2 algorithm. The results of 3D differencing revealed net uplift (median ~0.05 m) and lateral (xy) movement (median 0.02 m) of the moraine crests within season 1. Analysis of results from the longest differencing epoch (start of season 1 to season 2) suggests gradual but persistent surface uplift (median ~0.11 m) and sustained lateral movement (median ~0.05 m). Locally, lowering of a similar magnitude to uplift was observed in inter-moraine troughs and close to the current ice margin. This research demonstrates that it is possible to detect dynamic surface topographic change across glacial moraines over short timescales through the acquisition and differencing of high-resolution topographic datasets. Such data and methods of analysis offer new opportunities to understand glaciological and geomorphological process linkages in remote glacial environments.

  15. Cholesteatomas of the temporal bone: role of computed tomography

    SciTech Connect

    Johnson, D.W.; Voorhees, R.L.; Lufkin, R.B.; Canalis, R.

    1983-09-01

    Computed tomography (CT) of the temporal bone was performed in 64 patients thought to have a cholesteatoma of the middle ear. Twenty had not had surgery before, while 44 had been operated on; special consideration was given to 21 patients who were scanned immediately before a second operation and had confirmation of the CT findings. Inflammatory disease without cholesteatoma was characterized by absence of erosion of the otic capsule or ossicular chain. Sharply circumscribed cholesteatomas were easily diagnosed by CT. When they were combined with scarring, granulation tissue, or postsurgical changes, the resulting soft-tissue masses were indistinguishable, although cholesteatoma may be suspected if there is evidence of progressive bone erosion about the middle ear. CT can play a major role in postoperative follow-up by confirming that the ear is normal and demonstrating displacement of ossicular grafts or prostheses.

  16. High-resolution echocardiography

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1979-01-01

    High resolution computer aided ultrasound system provides two-and three-dimensional images of beating heart from many angles. System provides means for determining whether small blood vessels around the heart are blocked or if heart wall is moving normally without interference of dead and noncontracting muscle tissue.

  17. High-resolution headlamp

    NASA Astrophysics Data System (ADS)

    Gut, Carsten; Cristea, Iulia; Neumann, Cornelius

    2016-04-01

    The following article shall describe how human vision by night can be influenced. At first, front lighting systems that are already available on the market will be described, followed by their analysis with respect to the positive effects on traffic safety. Furthermore, how traffic safety by night can be increased since the introduction of high resolution headlamps shall be discussed.

  18. A case of a temporal bone meningioma presenting as a serous otitis media

    PubMed Central

    De Foer, Bert; Bernaerts, Anja; Van Dinther, Joost; Parizel, Paul M

    2014-01-01

    We report the imaging features of a case of a temporal bone meningioma extending into the middle ear cavity and clinically presenting as a serous otitis media. Temporal bone meningioma extending in the mastoid or the middle ear cavity, however, is very rare. In case of unexplained or therapy-resistant serous otitis media and a nasopharyngeal tumor being ruled out, a temporal bone computed tomography (CT) should be performed. If CT findings are suggestive of a temporal bone meningioma, a magnetic resonance imaging (MRI) examination with gadolinium will confirm diagnosis and show the exact extension of the lesion. PMID:25535569

  19. High-resolution measurements of the spatial and temporal evolution of megagauss magnetic fields created in intense short-pulse laser-plasma interactions

    SciTech Connect

    Chatterjee, Gourab Singh, Prashant Kumar; Adak, Amitava; Lad, Amit D.; Kumar, G. Ravindra

    2014-01-15

    A pump-probe polarimetric technique is demonstrated, which provides a complete, temporally and spatially resolved mapping of the megagauss magnetic fields generated in intense short-pulse laser-plasma interactions. A normally incident time-delayed probe pulse reflected from its critical surface undergoes a change in its ellipticity according to the magneto-optic Cotton-Mouton effect due to the azimuthal nature of the ambient self-generated megagauss magnetic fields. The temporal resolution of the magnetic field mapping is typically of the order of the pulsewidth, limited by the laser intensity contrast, whereas a spatial resolution of a few μm is achieved by this optical technique. High-harmonics of the probe can be employed to penetrate deeper into the plasma to even near-solid densities. The spatial and temporal evolution of the megagauss magnetic fields at the target front as well as at the target rear are presented. The μm-scale resolution of the magnetic field mapping provides valuable information on the filamentary instabilities at the target front, whereas probing the target rear mirrors the highly complex fast electron transport in intense laser-plasma interactions.

  20. High resolution data acquisition

    DOEpatents

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  1. High resolution data acquisition

    DOEpatents

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  2. Use of Aerial high resolution visible imagery to produce large river bathymetry: a multi temporal and spatial study over the by-passed Upper Rhine

    NASA Astrophysics Data System (ADS)

    Béal, D.; Piégay, H.; Arnaud, F.; Rollet, A.; Schmitt, L.

    2011-12-01

    Aerial high resolution visible imagery allows producing large river bathymetry assuming that water depth is related to water colour (Beer-Bouguer-Lambert law). In this paper we aim at monitoring Rhine River geometry changes for a diachronic study as well as sediment transport after an artificial injection (25.000 m3 restoration operation). For that a consequent data base of ground measurements of river depth is used, built on 3 different sources: (i) differential GPS acquisitions, (ii) sounder data and (iii) lateral profiles realized by experts. Water depth is estimated using a multi linear regression over neo channels built on a principal component analysis over red, green and blue bands and previously cited depth data. The study site is a 12 km long reach of the by-passed section of the Rhine River that draws French and German border. This section has been heavily impacted by engineering works during the last two centuries: channelization since 1842 for navigation purposes and the construction of a 45 km long lateral canal and 4 consecutive hydroelectric power plants of since 1932. Several bathymetric models are produced based on 3 different spatial resolutions (6, 13 and 20 cm) and 5 acquisitions (January, March, April, August and October) since 2008. Objectives are to find the optimal spatial resolution and to characterize seasonal effects. Best performances according to the 13 cm resolution show a 18 cm accuracy when suspended matters impacted less water transparency. Discussions are oriented to the monitoring of the artificial reload after 2 flood events during winter 2010-2011. Bathymetric models produced are also useful to build 2D hydraulic model's mesh.

  3. Ultra high resolution tomography

    SciTech Connect

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  4. High-Resolution Autoradiography

    NASA Technical Reports Server (NTRS)

    Towe, George C; Gomberg, Henry J; Freemen, J W

    1955-01-01

    This investigation was made to adapt wet-process autoradiography to metallurgical samples to obtain high resolution of segregated radioactive elements in microstructures. Results are confined to development of the technique, which was perfected to a resolution of less than 10 microns. The radioactive samples included carbon-14 carburized iron and steel, nickel-63 electroplated samples, a powder product containing nickel-63, and tungsten-185 in N-155 alloy.

  5. High-Resolution X-Ray Techniques as New Tool to Investigate the 3D Vascularization of Engineered-Bone Tissue

    PubMed Central

    Bukreeva, Inna; Fratini, Michela; Campi, Gaetano; Pelliccia, Daniele; Spanò, Raffaele; Tromba, Giuliana; Brun, Francesco; Burghammer, Manfred; Grilli, Marco; Cancedda, Ranieri; Cedola, Alessia; Mastrogiacomo, Maddalena

    2015-01-01

    The understanding of structure–function relationships in normal and pathologic mammalian tissues is at the basis of a tissue engineering (TE) approach for the development of biological substitutes to restore or improve tissue function. In this framework, it is interesting to investigate engineered bone tissue, formed when porous ceramic constructs are loaded with bone marrow stromal cells (BMSC) and implanted in vivo. To monitor the relation between bone formation and vascularization, it is important to achieve a detailed imaging and a quantitative description of the complete three-dimensional vascular network in such constructs. Here, we used synchrotron X-ray phase-contrast micro-tomography to visualize and analyze the three-dimensional micro-vascular networks in bone-engineered constructs, in an ectopic bone formation mouse-model. We compared samples seeded and not seeded with BMSC, as well as samples differently stained or unstained. Thanks to the high quality of the images, we investigated the 3D distribution of both vessels and collagen matrix and we obtained quantitative information for all different samples. We propose our approach as a tool for quantitative studies of angiogenesis in TE and for any pre-clinical investigation where a quantitative analysis of the vascular network is required. PMID:26442248

  6. [Methods for oscillography on the temporal bone preparation (author's transl)].

    PubMed

    Stark, H

    1976-03-01

    Oscillography of the middle ear structure on the temporal bone preparation are of essential importance for the expansion of our knowledge concerning physiological process and thus also for the further development of operation techniques that improve hearing. With the increased technical possibilities we are now able to make processes in the range of only few A measurable and visible. Accordingly, the methods employed for this purpose are complicated and manifold. The goal of this paper is to summarize these techniques as far as possible, to describe them in an understandable way, and to briefly point out their pros and cons. Optical methods, nearly all of which are in use today, as well as new methods such as laser interferometry and the Moessbauer technique, which can be performed only in few laboratories, are discussed. PMID:135145

  7. Osteoradionecrosis of the temporal bone: a surgical technique of treatment

    SciTech Connect

    Ma, K.H.; Fagan, P.A.

    1988-05-01

    Osteoradionecrosis of the temporal bone is a well-documented complication of radiotherapy to the ear, with potentially lethal complications. Three cases of advanced disease, treated surgically, are presented. In two of these, subtotal petrosectomy with blind-sac closure of the external auditory canal was carried out via an anterior approach. The enclosed space was obliterated with pedicled temporalis muscle. Primary healing took place. One case was similarly obliterated using a prolonged posterior incision. The wound broke down, requiring a microvascular free flap for closure. Radiotherapy jeopardizes the viability of skin flaps. An anterior incision bases the flap behind on the occipital and postauricular arteries. When radiotherapy has been used, this incision has theoretical and practical advantages over a standard posterior incision.

  8. Problems of laser vibrometry of temporal bone specimens

    NASA Astrophysics Data System (ADS)

    Zahnert, Thomas; Vogel, Uwe; Hofmann, Gert; Huettenbrink, Karl-Bernd

    1996-08-01

    Laser vibrometry became a well-established method for vibration detection of solids. By the means of laser Doppler interferometry it is possible to obtain information about displacement and velocity of the system under test. This approach allows the non-contact measurement of small vibrations, and is therefore capable of investigating vibration response of the middle ear ossicles or tympanic membrane due to sound simulation. There have been investigated 20 fresh human temporal bone specimens. Various components related to the sound transmission due to acoustic or mechanic stimulation have been measured by a commercial laser vibrometer (OFV3000 + OFV302/Polytec). Data acquisition, signal processing and test signal generation have been provided by a signal analyzer B&K3550/Bruel&Kjaer or integrated into a Notebook PC. The samples became prepared to allow laser beam access to the regions of interest. Generally our experiments show the capability of laser vibration measurements of the temporal bone specimen for middle ear sound transmission investigations. But the complexity is limiting that method unfortunately. 1D detection could represent insufficient information about the acoustic transmission characteristics only. The request of possibly 3D scanning is limited by anatomic conditions, e.g., according to the narrowness of the tympanic cavity. Nevertheless, for specific problems, e.g., investigation of spatially resolved tympanic membrane vibration characteristics, laser vibrometry performs a unique and high-sensitive approach. After removing the external ear canal different, well-defined points of the tympanic membrane surface have been manually scanned by the open laser beam. Particular care has been taken of the problem of perpendicular beam incidence, in order to detect identical vector components of the vibration amplitude. Laser vibrometry becomes suitable for functional investigation of the vibrating system `ear' influenced by boundary condition changes too

  9. Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies.

    PubMed

    Pinto, Francisco; Damm, Alexander; Schickling, Anke; Panigada, Cinzia; Cogliati, Sergio; Müller-Linow, Mark; Balvora, Agim; Rascher, Uwe

    2016-07-01

    Passive detection of sun-induced chlorophyll fluorescence (SIF) using spectroscopy has been proposed as a proxy to quantify changes in photochemical efficiency at canopy level under natural light conditions. In this study, we explored the use of imaging spectroscopy to quantify spatio-temporal dynamics of SIF within crop canopies and its sensitivity to track patterns of photosynthetic activity originating from the interaction between vegetation structure and incoming radiation as well as variations in plant function. SIF was retrieved using the Fraunhofer Line Depth (FLD) principle from imaging spectroscopy data acquired at different time scales a few metres above several crop canopies growing under natural illumination. We report the first maps of canopy SIF in high spatial resolution. Changes of SIF were monitored at different time scales ranging from quick variations under induced stress conditions to seasonal dynamics. Natural changes were primarily determined by varying levels and distribution of photosynthetic active radiation (PAR). However, this relationship changed throughout the day demonstrating an additional physiological component modulating spatio-temporal patterns of SIF emission. We successfully used detailed SIF maps to track changes in the canopy's photochemical activity under field conditions, providing a new tool to evaluate complex patterns of photosynthesis within the canopy. PMID:26763162

  10. Linking innovative measurement technologies (ConMon and Dataflow© systems) for high-resolution temporal and spatial dissolved oxygen criteria assessment.

    PubMed

    O'Leary, C A; Perry, E; Bayard, A; Wainger, L; Boynton, W R

    2015-10-01

    One consequence of nutrient-induced eutrophication in shallow estuarine waters is the occurrence of hypoxia and anoxia that has serious impacts on biota, habitats, and biogeochemical cycles of important elements. Because of the important role of dissolved oxygen (DO) on these ecosystem features, a variety of DO criteria have been established as indicators of system condition. However, DO dynamics are complex and vary on time scales ranging from diel to decadal and spatial scales from meters to multiple kilometers. Because of these complexities, determining DO criteria attainment or failure remains difficult. We propose a method for linking two common measurement technologies for shallow water DO criteria assessment using a Chesapeake Bay tributary as a test case. Dataflow© is a spatially intensive (30-60-m collection intervals) system used to map surface water conditions at the whole estuary scale, and ConMon is a high-frequency (15-min collection intervals) fixed station approach. The former technology is effective with spatial descriptions but poor regarding temporal resolution, while the latter provides excellent temporal but very limited spatial resolution. Our methodology for combining the strengths of these measurement technologies involved a sequence of steps. First, a statistical model of surface water DO dynamics, based on temporally intense ConMon data, was developed. The results of this model were used to calculate daily DO minimum concentrations. Second, this model was then inserted into Dataflow©-generated spatial maps of DO conditions and used to adjust measured DO concentrations to daily minimum concentrations. This information was used to assess DO criteria compliance at the full tributary scale. Model results indicated that it is vital to consider the short-term time scale DO criteria across both space and time concurrently. Large fluctuations in DO occurred within a 24-h time period, and DO dynamics varied across the length and width of the

  11. Using high-resolution soil moisture modelling to assess the uncertainty of microwave remotely sensed soil moisture products at the correct spatial and temporal support

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Karssenberg, D.; Bierkens, M. F. P.; Van Dam, J. C.; De Jong, S. M.

    2012-04-01

    Soil moisture is a key variable in the hydrological cycle and important in hydrological modelling. When assimilating soil moisture into flood forecasting models, the improvement of forecasting skills depends on the ability to accurately estimate the spatial and temporal patterns of soil moisture content throughout the river basin. Space-borne remote sensing may provide this information with a high temporal and spatial resolution and with a global coverage. Currently three microwave soil moisture products are available: AMSR-E, ASCAT and SMOS. The quality of these satellite-based products is often assessed by comparing them with in-situ observations of soil moisture. This comparison is however hampered by the difference in spatial and temporal support (i.e., resolution, scale), because the spatial resolution of microwave satellites is rather low compared to in-situ field measurements. Thus, the aim of this study is to derive a method to assess the uncertainty of microwave satellite soil moisture products at the correct spatial support. To overcome the difference in support size between in-situ soil moisture observations and remote sensed soil moisture, we used a stochastic, distributed unsaturated zone model (SWAP, van Dam (2000)) that is upscaled to the support of different satellite products. A detailed assessment of the SWAP model uncertainty is included to ensure that the uncertainty in satellite soil moisture is not overestimated due to an underestimation of the model uncertainty. We simulated unsaturated water flow up to a depth of 1.5m with a vertical resolution of 1 to 10 cm and on a horizontal grid of 1 km2 for the period Jan 2010 - Jun 2011. The SWAP model was first calibrated and validated on in-situ data of the REMEDHUS soil moisture network (Spain). Next, to evaluate the satellite products, the model was run for areas in the proximity of 79 meteorological stations in Spain, where model results were aggregated to the correct support of the satellite

  12. Primary pericranial Ewing's sarcoma on the temporal bone: A case report

    PubMed Central

    Kawano, Hiroto; Nitta, Naoki; Ishida, Mitsuaki; Fukami, Tadateru; Nozaki, Kazuhiko

    2016-01-01

    Background: Primary Ewing's sarcoma originating in the pericranium is an extremely rare disease entity. Case Description: A 9-year-old female patient was admitted to our department due to a left temporal subcutaneous mass. The mass was localized under the left temporal muscle and attached to the surface of the temporal bone. Head computed tomography revealed a mass with bony spicule formation on the temporal bone, however, it did not show bone destruction or intracranial invasion. F-18 fluorodeoxyglucose positron emission tomography showed no lesions other than the mass on the temporal bone. Magnetic resonance imaging showed that the mass was located between the temporal bone and the pericranium. The mass was completely resected with the underlying temporal bone and the overlying deep layer of temporal muscle, and was diagnosed as primary Ewing's sarcoma. Because the tumor was located in the subpericranium, we created a new classification, “pericranial Ewing's sarcoma,” and diagnosed the present tumor as pericranial Ewing's sarcoma. Conclusion: We herein present an extremely rare case of primary pericranial Ewing's sarcoma that developed on the temporal bone. PMID:27308095

  13. High resolution infrared measurements

    NASA Technical Reports Server (NTRS)

    Kessler, B.; Cawley, Robert

    1990-01-01

    Sample ground based cloud radiance data from a high resolution infrared sensor are shown and the sensor characteristics are presented in detail. The purpose of the Infrared Analysis Measurement and Modeling Program (IRAMMP) is to establish a deterministic radiometric data base of cloud, sea, and littoral terrain clutter to be used to advance the design and development of Infrared Search and Track (IRST) systems as well as other infrared devices. The sensor is a dual band radiometric sensor and its description, together with that of the Data Acquisition System (DAS), are given. A schematic diagram of the sensor optics is shown.

  14. Inferring runoff generation processes through high resolution spatial and temporal UV-Vis absorbance measurements in a mountainous headwater catchment in Southern Ecuador

    NASA Astrophysics Data System (ADS)

    Windhorst, David; Schob, Sarah; Zang, Carina; Crespo, Patricio; Breuer, Lutz

    2015-04-01

    The alpine grassland páramo - typically occurring in the headwater catchments of the Andes - plays an important role in flow regulation, hydropower generation and local water supply. However, hydrological and hydro-biogeochemical processes in the páramo and their potential reactions to climate and land use change are largely unknown. Therefore, we used a UV-Vis absorbance spectrometer to investigate fluxes of biochemical oxygen demand (BOD), chemical oxygen demand (COD), turbidity and nitrate (NO3-N) in a small headwater catchment (91.31 km²) in the páramo in south Ecuador on a 5 min temporal and 100 m spatial resolution to gain first insights in its hydrological functioning. Spatial sampling was realized during three snapshot sampling campaigns along the 14.2 km long stream between October 2013 and January 2014, while temporal sampling took place at a permanent sampling site within the catchment between February and June 2014. To identify the runoff generation processes the spatial patterns have been associated with local site specific (e.g. fish ponds) and sub-catchment wide (e.g. land use) characteristics. Storm flow events within the time series allowed to further study temporal changes and rotational patterns of concentration-discharge relations (hysteresis). In total, 35 events were identified to be suitable for analyzing hysteresis effects of BOD, COD, and turbidity. Nitrate concentrations could be studied for 20 events. Regardless of the flow conditions nitrate leaching increased with a growing share of non-native pine forests or pastures in the study area. During low flow conditions, the high water holding capacity of the upstream páramo areas ensured a continuous supply of BOD to the stream. Pasture and pine forest sites, mostly occurring in the downstream section of the stream, contributed to BOD only during discharge events. Contradicting the expectations the trout farms along the lower part of the streams had a relatively closed nutrient cycle and

  15. The Spatial and Temporal Variability of a High-Energy Beach: Insight Gained From Over 50 High-Resolution Sub-aerial Surveys

    NASA Astrophysics Data System (ADS)

    Hansen, J. E.; Barnard, P. L.

    2008-12-01

    Since April 2004 a monitoring program of 7 km-long Ocean Beach, San Francisco, CA, has led to the completion of 55 Global Positioning System topographic surveys of the sub-aerial beach. The four-year timeseries contains over 1 million beach elevation measurements and documents detailed changes of the beach over a variety of spatial, temporal, and physical forcing scales. The goal of this ongoing data collection is to understand the variability in beach response as a function of wave forcing and offshore morphology which will ultimately aid in sediment management and erosion mitigation efforts. Several statistical methods are used to describe and account for the observed beach change, including empirical orthogonal functions (EOFs) and linear regression. Results from the EOF analysis show that the first mode, and approximately 50% of the observed variance of either the mean high water (MHW) or mean sea level (MSL) position, is explained by the seasonal movement of sediment on and offshore. The second mode, and approximately 15% of the variance, is dominated by alongshore variability, possibly corresponding to the position of cusps and embayments. Higher level modes become increasingly variable in the alongshore direction and each explain little of the observed variance. In both cases the first temporal mode is well correlated (R2~=0.7) with offshore significant wave height averaged over the previous 80 to 110 days, suggesting that seasonal wave height variations are the primary driver of intra-annual shoreline position. No other modes exhibit good correlation with offshore wave parameters regardless of the averaging time. The observed seasonal change is superimposed on a longer term trend of net annual accretion at the north end of Ocean Beach and erosion at the south end. Areas at the northern end have seen as much as 60 m of cumulative shoreline progradation since 2004, while some areas of the southern portion have retrograded nearly as much. This pattern shows an

  16. 10 Yr Spatial and Temporal Trends of PM2.5 Concentrations in the Southeastern US Estimated Using High-resolution Satellite Data

    NASA Technical Reports Server (NTRS)

    Hu, X.; Waller, L. A.; Lyapustin, A.; Wang, Y.; Liu, Y.

    2013-01-01

    Long-term PM2.5 exposure has been reported to be associated with various adverse health outcomes. However, most ground monitors are located in urban areas, leading to a potentially biased representation of the true regional PM2.5 levels. To facilitate epidemiological studies, accurate estimates of spatiotemporally continuous distribution of PM2.5 concentrations are essential. Satellite-retrieved aerosol optical depth (AOD) has been widely used for PM2.5 concentration estimation due to its comprehensive spatial coverage. Nevertheless, an inherent disadvantage of current AOD products is their coarse spatial resolutions. For instance, the spatial resolutions of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging SpectroRadiometer (MISR) are 10 km and 17.6 km, respectively. In this paper, a new AOD product with 1 km spatial resolution retrieved by the multi-angle implementation of atmospheric correction (MAIAC) algorithm was used. A two-stage model was developed to account for both spatial and temporal variability in the PM2.5-AOD relationship by incorporating the MAIAC AOD, meteorological fields, and land use variables as predictors. Our study area is in the southeastern US, centered at the Atlanta Metro area, and data from 2001 to 2010 were collected from various sources. The model was fitted for each year individually, and we obtained model fitting R2 ranging from 0.71 to 0.85, MPE from 1.73 to 2.50 g m3, and RMSPE from 2.75 to 4.10 g m3. In addition, we found cross validation R2 ranging from 0.62 to 0.78, MPE from 2.00 to 3.01 g m3, and RMSPE from 3.12 to 5.00 g m3, indicating a good agreement between the estimated and observed values. Spatial trends show that high PM2.5 levels occurred in urban areas and along major highways, while low concentrations appeared in rural or mountainous areas. A time series analysis was conducted to examine temporal trends of PM2.5 concentrations in the study area from 2001 to 2010. The results showed

  17. 10 yr spatial and temporal trends of PM2.5 concentrations in the southeastern US estimated using high-resolution satellite data

    NASA Astrophysics Data System (ADS)

    Hu, X.; Waller, L. A.; Lyapustin, A.; Wang, Y.; Liu, Y.

    2013-10-01

    Long-term PM2.5 exposure has been reported to be associated with various adverse health outcomes. However, most ground monitors are located in urban areas, leading to a potentially biased representation of the true regional PM2.5 levels. To facilitate epidemiological studies, accurate estimates of spatiotemporally continuous distribution of PM2.5 concentrations are essential. Satellite-retrieved aerosol optical depth (AOD) has been widely used for PM2.5 concentration estimation due to its comprehensive spatial coverage. Nevertheless, an inherent disadvantage of current AOD products is their coarse spatial resolutions. For instance, the spatial resolutions of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging SpectroRadiometer (MISR) are 10 km and 17.6 km, respectively. In this paper, a new AOD product with 1 km spatial resolution retrieved by the multi-angle implementation of atmospheric correction (MAIAC) algorithm was used. A two-stage model was developed to account for both spatial and temporal variability in the PM2.5-AOD relationship by incorporating the MAIAC AOD, meteorological fields, and land use variables as predictors. Our study area is in the southeastern US, centered at the Atlanta Metro area, and data from 2001 to 2010 were collected from various sources. The model was fitted for each year individually, and we obtained model fitting R2 ranging from 0.71 to 0.85, MPE from 1.73 to 2.50 μg m-3, and RMSPE from 2.75 to 4.10 μg m-3. In addition, we found cross validation R2 ranging from 0.62 to 0.78, MPE from 2.00 to 3.01 μg m-3, and RMSPE from 3.12 to 5.00 μg m-3, indicating a good agreement between the estimated and observed values. Spatial trends show that high PM2.5 levels occurred in urban areas and along major highways, while low concentrations appeared in rural or mountainous areas. A time series analysis was conducted to examine temporal trends of PM2.5 concentrations in the study area from 2001 to 2010. The

  18. Monitoring of the Spatial Distribution and Temporal Dynamics of the Green Vegetation Fraction of Croplands in Southwest Germany Using High-Resolution RapidEye Satellite Images

    NASA Astrophysics Data System (ADS)

    Imukova, Kristina; Ingwersen, Joachim; Streck, Thilo

    2014-05-01

    The green vegetation fraction (GVF) is a key input variable to the evapotranspiration scheme applied in the widely used NOAH land surface model (LSM). In standard applications of the NOAH LSM, the GVF is taken from a global map with a 15 km×15 km resolution. The central objective of the present study was (a) to derive gridded GVF data in a high spatial and temporal resolution from RapidEye images for a region in Southwest Germany, and (b) to improve the representation of the GVF dynamics of croplands in the NOAH LSM for a better simulation of water and energy exchange between land surface and atmosphere. For the region under study we obtained monthly RapidEye satellite images with a resolution 5 m×5 m by the German Aerospace Center (DLR). The images hold five spectral bands: blue, green, red, red-edge and near infrared (NIR). The GVF dynamics were determined based on the Normalized Difference Vegetation Index (NDVI) calculated from the red and near-infrared bands of the satellite images. The satellite GVF data were calibrated and validated against ground truth measurements. Digital colour photographs above the canopy were taken with a boom-mounted digital camera at fifteen permanently marked plots (1 m×1 m). Crops under study were winter wheat, winter rape and silage maize. The GVF was computed based on the red and the green band of the photographs according to Rundquist's method (2002). Based on the obtained calibration scheme GVF maps were derived in a monthly resolution for the region. Our results confirm a linear relationship between GVF and NDVI and demonstrate that it is possible to determine the GVF of croplands from RapidEye images based on a simple two end-member mixing model. Our data highlight the high variability of the GVF in time and space. At the field scale, the GVF was normally distributed with a coefficient of variation of about 32%. Variability was mainly caused by soil heterogeneities and management differences. At the regional scale the GVF

  19. High-Resolution Analyses of Human Leukocyte Antigens Allele and Haplotype Frequencies Based on 169,995 Volunteers from the China Bone Marrow Donor Registry Program

    PubMed Central

    Zhou, Xiao-Yang; Zhu, Fa-Ming; Li, Jian-Ping; Mao, Wei; Zhang, De-Mei; Liu, Meng-Li; Hei, Ai-Lian; Dai, Da-Peng; Jiang, Ping; Shan, Xiao-Yan; Zhang, Bo-Wei; Zhu, Chuan-Fu; Shen, Jie; Deng, Zhi-Hui; Wang, Zheng-Lei; Yu, Wei-Jian; Chen, Qiang; Qiao, Yan-Hui; Zhu, Xiang-Ming; Lv, Rong; Li, Guo-Ying; Li, Guo-Liang; Li, Heng-Cong; Zhang, Xu; Pei, Bin; Jiao, Li-Xin; Shen, Gang; Liu, Ying; Feng, Zhi-Hui; Su, Yu-Ping; Xu, Zhao-Xia; Di, Wen-Ying; Jiang, Yao-Qin; Fu, Hong-Lei; Liu, Xiang-Jun; Liu, Xiang; Zhou, Mei-Zhen; Du, Dan; Liu, Qi; Han, Ying; Zhang, Zhi-Xin; Cai, Jian-Ping

    2015-01-01

    Allogeneic hematopoietic stem cell transplantation is a widely used and effective therapy for hematopoietic malignant diseases and numerous other disorders. High-resolution human leukocyte antigen (HLA) haplotype frequency distributions not only facilitate individual donor searches but also determine the probability with which a particular patient can find HLA-matched donors in a registry. The frequencies of the HLA-A, -B, -C, -DRB1, and -DQB1 alleles and haplotypes were estimated among 169,995 Chinese volunteers using the sequencing-based typing (SBT) method. Totals of 191 HLA-A, 244 HLA-B, 146 HLA-C, 143 HLA-DRB1 and 47 HLA-DQB1 alleles were observed, which accounted for 6.98%, 7.06%, 6.46%, 9.11% and 7.91%, respectively, of the alleles in each locus in the world (IMGT 3.16 Release, Apr. 2014). Among the 100 most common haplotypes from the 169,995 individuals, nine distinct haplotypes displayed significant regionally specific distributions. Among these, three were predominant in the South China region (i.e., the 20th, 31st, and 81sthaplotypes), another three were predominant in the Southwest China region (i.e., the 68th, 79th, and 95th haplotypes), one was predominant in the South and Southwest China regions (the 18th haplotype), one was relatively common in the Northeast and North China regions (the 94th haplotype), and one was common in the Northeast, North and Northwest China (the 40th haplotype). In conclusion, this is the first to analyze high-resolution HLA diversities across the entire country of China, based on a detailed and complete data set that covered 31 provinces, autonomous regions, and municipalities. Specifically, we also evaluated the HLA matching probabilities within and between geographic regions and analyzed the regional differences in the HLA diversities in China. We believe that the data presented in this study might be useful for unrelated HLA-matched donor searches, donor registry planning, population genetic studies, and anthropogenesis

  20. High-resolution mapping of a novel rat blood pressure locus on chromosome 9 to a region containing the Spp2 gene and colocalization of a QTL for bone mass.

    PubMed

    Nie, Ying; Kumarasamy, Sivarajan; Waghulde, Harshal; Cheng, Xi; Mell, Blair; Czernik, Piotr J; Lecka-Czernik, Beata; Joe, Bina

    2016-06-01

    Through linkage analysis of the Dahl salt-sensitive (S) rat and the spontaneously hypertensive rat (SHR), a blood pressure (BP) quantitative trait locus (QTL) was previously located on rat chromosome 9. Subsequent substitution mapping studies of this QTL revealed multiple BP QTLs within the originally identified logarithm of odds plot by linkage analysis. The focus of this study was on a 14.39 Mb region, the distal portion of which remained unmapped in our previous studies. High-resolution substitution mapping for a BP QTL in the setting of a high-salt diet indicated that an SHR-derived congenic segment of 787.9 kb containing the gene secreted phosphoprotein-2 (Spp2) lowered BP and urinary protein excretion. A nonsynonymous G/T polymorphism in the Spp2 gene was detected between the S and S.SHR congenic rats. A survey of 45 strains showed that the T allele was rare, being detected only in some substrains of SHR and WKY. Protein modeling prediction through SWISSPROT indicated that the predicted protein product of this variant was significantly altered. Importantly, in addition to improved cardiovascular and renal function, high salt-fed congenic animals carrying the SHR T variant of Spp2 had significantly lower bone mass and altered bone microarchitecture. Total bone volume and volume of trabecular bone, cortical thickness, and degree of mineralization of cortical bone were all significantly reduced in congenic rats. Our study points to opposing effects of a congenic segment containing the prioritized candidate gene Spp2 on BP and bone mass. PMID:27113531

  1. 10-year spatial and temporal trends of PM2.5 concentrations in the southeastern US estimated using high-resolution satellite data

    NASA Astrophysics Data System (ADS)

    Hu, X.; Waller, L. A.; Lyapustin, A.; Wang, Y.; Liu, Y.

    2014-06-01

    Long-term PM2.5 exposure has been associated with various adverse health outcomes. However, most ground monitors are located in urban areas, leading to a potentially biased representation of true regional PM2.5 levels. To facilitate epidemiological studies, accurate estimates of the spatiotemporally continuous distribution of PM2.5 concentrations are important. Satellite-retrieved aerosol optical depth (AOD) has been increasingly used for PM2.5 concentration estimation due to its comprehensive spatial coverage. Nevertheless, previous studies indicated that an inherent disadvantage of many AOD products is their coarse spatial resolution. For instance, the available spatial resolutions of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging SpectroRadiometer (MISR) AOD products are 10 and 17.6 km, respectively. In this paper, a new AOD product with 1 km spatial resolution retrieved by the multi-angle implementation of atmospheric correction (MAIAC) algorithm based on MODIS measurements was used. A two-stage model was developed to account for both spatial and temporal variability in the PM2.5-AOD relationship by incorporating the MAIAC AOD, meteorological fields, and land use variables as predictors. Our study area is in the southeastern US centered at the Atlanta metro area, and data from 2001 to 2010 were collected from various sources. The model was fitted annually, and we obtained model fitting R2 ranging from 0.71 to 0.85, mean prediction error (MPE) from 1.73 to 2.50 μg m-3, and root mean squared prediction error (RMSPE) from 2.75 to 4.10 μg m-3. In addition, we found cross-validation R2 ranging from 0.62 to 0.78, MPE from 2.00 to 3.01 μg m-3, and RMSPE from 3.12 to 5.00 μg m-3, indicating a good agreement between the estimated and observed values. Spatial trends showed that high PM2.5 levels occurred in urban areas and along major highways, while low concentrations appeared in rural or mountainous areas. Our time

  2. High resolution Doppler lidar

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Hays, Paul B.; Barnes, John E.

    1989-01-01

    A high resolution lidar system was implemented to measure winds in the lower atmosphere. The wind speed along the line of sight was determined by measuring the Doppler shift of the aerosol backscattered laser signal. The system in its present configuration is stable, and behaves as indicated by theoretical simulations. This system was built to demonstrate the capabilities of the detector system as a prototype for a spaceborne lidar. The detector system investigated consisted of a plane Fabry-Perot etalon, and a 12-ring anode detector. This system is generically similar to the Fabry-Perot interferometer developed for passive wind measurements on board the Dynamics Explorer satellite. That this detector system performs well in a lidar configuration was demonstrated.

  3. Very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Aronson, A. I.

    1974-01-01

    A primary sensor used in environmental and earth-resource observation, the Very High Resolution Radiometer (VHRR) was designed for use on the ITOS D series spacecraft. The VHRR provides a 0.47 mile resolution made possible with a mercury-cadmium-telluride detector cooled to approximately 105 K by a passive radiator cooler. The components of this system are described. The optical subsystem of the VHRR consists of a scanning mirror, a Dall-Kirkham telescope, a dichroic beam splitter, relay lenses, spectral filters, and an IR detector. Signal electronics amplify and condition the signals from the infrared and visible light detector. Sync generator electronics provides the necessary time signals. Scan-drive electronics is used for commutation of the motor winding, velocity, and phase control. A table lists the performance parameters of the VHRR.

  4. High resolution ultrasonic densitometer

    SciTech Connect

    Dress, W.B.

    1983-01-01

    The velocity of torsional stress pulses in an ultrasonic waveguide of non-circular cross section is affected by the temperature and density of the surrounding medium. Measurement of the transit times of acoustic echoes from the ends of a sensor section are interpreted as level, density, and temperature of the fluid environment surrounding that section. This paper examines methods of making these measurements to obtain high resolution, temperature-corrected absolute and relative density and level determinations of the fluid. Possible applications include on-line process monitoring, a hand-held density probe for battery charge state indication, and precise inventory control for such diverse fluids as uranium salt solutions in accountability storage and gasoline in service station storage tanks.

  5. Improving In Vivo High-Resolution CT Imaging of the Tumour Vasculature in Xenograft Mouse Models through Reduction of Motion and Bone-Streak Artefacts

    PubMed Central

    Kersemans, Veerle; Kannan, Pavitra; Beech, John S.; Bates, Russell; Irving, Benjamin; Gilchrist, Stuart; Allen, Philip D.; Thompson, James; Kinchesh, Paul; Casteleyn, Christophe; Schnabel, Julia; Partridge, Mike; Muschel, Ruth J.; Smart, Sean C.

    2015-01-01

    Introduction Preclinical in vivo CT is commonly used to visualise vessels at a macroscopic scale. However, it is prone to many artefacts which can degrade the quality of CT images significantly. Although some artefacts can be partially corrected for during image processing, they are best avoided during acquisition. Here, a novel imaging cradle and tumour holder was designed to maximise CT resolution. This approach was used to improve preclinical in vivo imaging of the tumour vasculature. Procedures A custom built cradle containing a tumour holder was developed and fix-mounted to the CT system gantry to avoid artefacts arising from scanner vibrations and out-of-field sample positioning. The tumour holder separated the tumour from bones along the axis of rotation of the CT scanner to avoid bone-streaking. It also kept the tumour stationary and insensitive to respiratory motion. System performance was evaluated in terms of tumour immobilisation and reduction of motion and bone artefacts. Pre- and post-contrast CT followed by sequential DCE-MRI of the tumour vasculature in xenograft transplanted mice was performed to confirm vessel patency and demonstrate the multimodal capacity of the new cradle. Vessel characteristics such as diameter, and branching were quantified. Results Image artefacts originating from bones and out-of-field sample positioning were avoided whilst those resulting from motions were reduced significantly, thereby maximising the resolution that can be achieved with CT imaging in vivo. Tumour vessels ≥ 77 μm could be resolved and blood flow to the tumour remained functional. The diameter of each tumour vessel was determined and plotted as histograms and vessel branching maps were created. Multimodal imaging using this cradle assembly was preserved and demonstrated. Conclusions The presented imaging workflow minimised image artefacts arising from scanner induced vibrations, respiratory motion and radiopaque structures and enabled in vivo CT imaging

  6. Helmholtz-pair transmit coil with integrated receive array for high-resolution MRI of trabecular bone in the distal tibia at 7 T

    PubMed Central

    Wright, Alexander C.; Lemdiasov, Rostislav; Connick, Thomas J.; Bhagat, Yusuf A.; Magland, Jeremy F.; Song, Hee Kwon; Toddes, Steven P.; Ludwig, Reinhold; Wehrli, Felix W.

    2011-01-01

    A Helmholtz-pair local transmit RF coil with an integrated four-element receive array RF coil and foot immobilization platform was designed and constructed for imaging the distal tibia in a whole-body 7 T MRI scanner. Simulations and measurements of the B1 field distribution of the transmit coil are described, along with SAR considerations for operation at 7 T. Results of imaging the trabecular bone of three volunteers at 1.5 T, 3 T and 7 T are presented, using identical 1.5 T and 3 T versions of the 7 T four-element receive array. The spatially registered images reveal improved visibility for individual trabeculae and show average gains in SNR of 2.8x and 4.9x for imaging at 7 T compared to 3 T and 1.5 T, respectively. The results thus display an approximately linear dependence of SNR with field strength and enable the practical utility of 7 T scanners for micro-MRI of trabecular bone. PMID:21402488

  7. Differential Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones

    NASA Astrophysics Data System (ADS)

    Nakajima, Hideko Heidi; Dong, Wei; Olson, Elizabeth S.; Merchant, Saumil N.; Ravicz, Michael E.; Rosowski, John J.

    2009-02-01

    We present the first simultaneous sound pressure measurements in scala vestibuli and scala tympani of the cochlea in human cadaveric temporal bones. Micro-scale fiberoptic pressure sensors enabled the study of differential sound pressure at the cochlear base. This differential pressure is the input to the cochlear partition, driving cochlear waves and auditory transduction. Results showed that: pressure of scala vestibuli was much greater than scala tympani except at low and high frequencies where scala tympani pressure affects the input to the cochlea; the differential pressure proved to be an excellent measure of normal ossicular transduction of sound (shown to decrease 30-50 dB with ossicular disarticulation, whereas the individual scala pressures were significantly affected by non-ossicular conduction of sound at high frequencies); the middle-ear gain and differential pressure were generally bandpass in frequency dependence; and the middle-ear delay in the human was over twice that of the gerbil. Concurrent stapes velocity measurements allowed determination of the differential impedance across the partition and round-window impedance. The differential impedance was generally resistive, while the round-window impedance was consistent with a compliance in conjunction with distributed inertia and damping. Our techniques can be used to study inner-ear conductive pathologies (e.g., semicircular dehiscence), as well as non-ossicular cochlear stimulation (e.g., round-window stimulation) - situations that cannot be completely quantified by measurements of stapes velocity or scala-vestibuli pressure by themselves.

  8. Histopathologic ear findings of syphilis: a temporal bone study.

    PubMed

    Hızlı, Ömer; Hızlı, Pelin; Kaya, Serdar; Monsanto, Rafael da Costa; Paparella, Michael M; Cureoglu, Sebahattin

    2016-09-01

    To the best of our knowledge, histopathologic studies of syphilitic ears have generally focused on hydropic changes; so far, no such studies have investigated peripheral vestibular otopathology using differential interference contrast microscopy, in patients with syphilis. For this study, we examined 13 human temporal bone samples from 8 patients with a history of syphilis. Using conventional light microscopy, we performed qualitative histopathologic assessment. In addition, using differential interference contrast microscopy, we performed type I and type II vestibular hair cell counts on each vestibular sense organ with minimal autolysis; in which the neuroepithelium was oriented perpendicular to the plane of section. We then compared vestibular hair cell densities (cells per 0.01 mm² surface area) in the syphilis group vs. the control group. In the syphilis group, we observed precipitate in the endolymphatic or perilymphatic spaces in 1 (7.7 %) of the samples and endolymphatic hydrops in eight (61.5 %) of the samples. Hydrops involved the cochlea (four samples) and/or saccule (four samples). In addition, the syphilis group experienced a significant loss of type II vestibular hair cells in the maculae of the utricle and saccule, and in the cristae of the lateral and posterior semicircular canals, as compared with the control group (P < 0.05). PMID:26573155

  9. Geometric modeling of the temporal bone for cochlea implant simulation

    NASA Astrophysics Data System (ADS)

    Todd, Catherine A.; Naghdy, Fazel; O'Leary, Stephen

    2004-05-01

    The first stage in the development of a clinically valid surgical simulator for training otologic surgeons in performing cochlea implantation is presented. For this purpose, a geometric model of the temporal bone has been derived from a cadaver specimen using the biomedical image processing software package Analyze (AnalyzeDirect, Inc) and its three-dimensional reconstruction is examined. Simulator construction begins with registration and processing of a Computer Tomography (CT) medical image sequence. Important anatomical structures of the middle and inner ear are identified and segmented from each scan in a semi-automated threshold-based approach. Linear interpolation between image slices produces a three-dimensional volume dataset: the geometrical model. Artefacts are effectively eliminated using a semi-automatic seeded region-growing algorithm and unnecessary bony structures are removed. Once validated by an Ear, Nose and Throat (ENT) specialist, the model may be imported into the Reachin Application Programming Interface (API) (Reachin Technologies AB) for visual and haptic rendering associated with a virtual mastoidectomy. Interaction with the model is realized with haptics interfacing, providing the user with accurate torque and force feedback. Electrode array insertion into the cochlea will be introduced in the final stage of design.

  10. High Resolution Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brünken, S.; Schlemmer, S.

    2016-05-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limitations of conventional absorption spectroscopy. Throughout this review examples demonstrating the strong interplay between laboratory and observational studies will be given.

  11. High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.

    1999-01-01

    This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.

  12. Audiologic Patterns of Otic Capsule Preserving Temporal Bone Fracture: Effects of the Affected Subsites

    PubMed Central

    Kim, So Young; Kim, Yoon Joong; Kim, Young Ho; Park, Min-Hyun

    2016-01-01

    Objectives. This study was aimed to assess the relationship between the type of temporal bone area involved and conductive hearing loss. Methods. We enrolled 97 patients who visited the otolaryngology clinics of Seoul National University Hospital or Boramae Medical Center, Seoul Metropolitan Government-Seoul National University with temporal bone fracture between January 2004 and January 2014. Audiometric parameters, including initial and improved air-bone (AB) conduction gap values, were reviewed in accordance with the temporal bone computed tomography (external auditory canal [EAC], middle ear [ME], mastoid [M], and ossicle [O]). Results. Patients with ossicular chain involvement exhibited a larger AB gap compared to those with no ossicular chain involvement at 250, 1,000, 2,000, and 4,000 Hz. Among the groups without ossicular chain involvement, the initial AB gap was largest in patients with EAC+ME+M involvement, followed by the ME+M and M-only involvement groups. The greatest improvement in the AB gap was observed in the EAC+ME+M group followed by the ME+M and M-only groups, irrespective of ossicular chain involvement. Improvements in AB gap values were smallest at 2,000 Hz. Conclusion. Conductive hearing loss pattern differed according to the temporal bone area involved. Therefore, areas such as the hematoma and hemotympanum, as well as the fracture line of the temporal bone area, must be evaluated to predict audiologic patterns with otic capsule preserving temporal bone fracture. PMID:27337953

  13. High-resolution peripheral quantitative computed tomography and finite element analysis of bone strength at the distal radius in ovariectomized adult rhesus monkey demonstrate efficacy of odanacatib and differentiation from alendronate.

    PubMed

    Cabal, Antonio; Jayakar, Richa Y; Sardesai, Swanand; Phillips, Eual A; Szumiloski, John; Posavec, Diane J; Mathers, Parker D; Savitz, Alan T; Scott, Boyd B; Winkelmann, Christopher T; Motzel, Sherri; Cook, Lynn; Hargreaves, Richard; Evelhoch, Jeffrey L; Dardzinski, Bernard J; Hangartner, Thomas N; McCracken, Paul J; Duong, Le T; Williams, Donald S

    2013-10-01

    Translational evaluation of disease progression and treatment response is critical to the development of therapies for osteoporosis. In this study, longitudinal in-vivo monitoring of odanacatib (ODN) treatment efficacy was compared to alendronate (ALN) in ovariectomized (OVX) non-human primates (NHPs) using high-resolution peripheral computed tomography (HR-pQCT). Treatment effects were evaluated using several determinants of bone strength, density and quality, including volumetric bone mineral density (vBMD), three-dimensional structure, finite element analysis (FEA) estimated peak force and biomechanical properties at the ultradistal (UD) radius at baseline, 3, 6, 9, 12, and 18 months of dosing in three treatment groups: vehicle (VEH), low ODN (2 mg/kg/day, L-ODN), and ALN (30 μg/kg/week). Biomechanical axial compression tests were performed at the end of the study. Bone strength estimates using FEA were validated by ex-vivo mechanical compression testing experiments. After 18months of dosing, L-ODN demonstrated significant increases from baseline in integral vBMD (13.5%), cortical thickness (24.4%), total bone volume fraction BV/TV (13.5%), FEA-estimated peak force (26.6%) and peak stress (17.1%), respectively. Increases from baseline for L-ODN at 18 months were significantly higher than that for ALN in DXA-based aBMD (7.6%), cortical thickness (22.9%), integral vBMD (12.2%), total BV/TV (10.1%), FEA peak force (17.7%) and FEA peak stress (11.5%), respectively. These results demonstrate a superior efficacy of ODN treatment compared to ALN at the UD radii in ovariectomized NHPs. PMID:23791777

  14. Osteoradionecrosis of sphenoid and temporal bones in a patient with maxillary sinus carcinoma: A case report

    SciTech Connect

    Inokuchi, T.; Sano, K.; Kaminogo, M. )

    1990-09-01

    A case of radionecrosis of sphenoid and temporal bones is reported. The patient received a combination of surgery, radiotherapy, and chemotherapy for his left maxillary sinus carcinoma. After the combined therapy, necrosis accompanying inflammation developed in the maxillary and temporal regions. Excision of the necrotic tissues was done, and the left ascending ramus of the mandible was resected because of persistent tumor mass at the left infratemporal fossa. Although the excision wound of the maxilla healed by epithelialization, an area of nonvital bone remained exposed in the temporal region, where progressive osteonecrosis with infection led to breakdown of the skin. The necrotic bones of the zygomatic arch and the sphenotemporal sutural region became visible through the skin defect, and computerized tomography scan revealed bone necrosis involving the inferolateral area and the base of the skull. Excision of the necrotic bone and reconstruction with sternocleidomastoid myocutaneous flap were performed.

  15. Clinical evaluation of a high-resolution new peripheral quantitative computerized tomography (pQCT) scanner for the bone densitometry at the lower limbs

    NASA Astrophysics Data System (ADS)

    Braun, M. J.; Meta, M. D.; Schneider, P.; Reiners, Chr

    1998-08-01

    Precision, long-term stability, linearity and accuracy of the x-ray peripheral quantitative computerized tomographic (pQCT) bone scanner XCT 3000 (Norland-Stratec Medical Sys.) were evaluated using the European Forearm Phantom (EFP). In vivo measurements were assessed using a standardized procedure at the distal femur and the distal tibia. In the patient-scan mode, the spatial resolution of the system was lp/mm as measured at the 10% level of the modulation transfer function (MTF). The contrast-detail diagram (CDD) yielded a minimal difference in attenuation coefficient (AC) of 0.07 at an object size of 0.5 mm. The effective dose for humans was calculated to be less than 1.5 Sv per scan. Short-term precision in vivo was expressed as root mean square standard deviation of paired measurements of 20 healthy volunteers (%). At the distal femur total volumetric density (ToD) and total cross-sectional area (ToA) were found to be less sensitive to positioning errors than at the distal tibia. Structural parameters like the polar cross-sectional moment of inertia or the polar cross-sectional moment of resistance showed a good short-term precision at the distal femur ( and 1.4%). The relation between the two skeletal sites with respect to or showed a high

  16. High Resolution Formaldehyde Photochemistry

    NASA Astrophysics Data System (ADS)

    Ernest, C. T.; Bauer, D.; Hynes, A. J.

    2010-12-01

    Formaldehyde (HCHO) is the most abundant and most important organic carbonyl compound in the atmosphere. The sources of formaldehyde are the oxidation of methane, isoprene, acetone, and other volatile organic compounds (VOCs); fossil fuel combustion; and biomass burning. The dominant loss mechanism for formaldehyde is photolysis which occurs via two pathways: (R1) HCHO + hv → HCO + H (R2) HCHO + hv → H2 + CO The first pathway (R1) is referred to as the radical channel, while the second pathway (R2) is referred to as the molecular channel. The products of both pathways play a significant role in atmospheric chemistry. The CO that is produced in the molecular channel undergoes further oxidation to produce CO2. Under atmospheric conditions, the H atom and formyl radical that are produced in the radical channel undergo rapid reactions with O2 to produce the hydroperoxyl radical (HO2) via (R3) and (R4). (R3) HCO + O2 → HO2 + CO (R4) H + O2 → HO2 Thus, for every photon absorbed, the photolysis of formaldehyde can contribute one CO2 molecule to the global greenhouse budget or two HO2 radicals to the tropospheric HOx (OH + HO2) cycle. The HO2 radicals produced during formaldehyde photolysis have also been implicated in the formation of photochemical smog. The HO2 radicals act as radical chain carriers and convert NO to NO2, which ultimately results in the catalytic production of O3. Constraining the yield of HO2 produced via HCHO photolysis is essential for improving tropospheric chemistry models. In this study, both the absorption cross section and the quantum yield of the radical channel (R1) were measured at high resolution over the tropospherically relevant wavelength range 304-330 nm. For the cross section measurements a narrow linewidth Nd:YAG pumped dye laser was used with a multi-pass cell. Partial pressures of HCHO were kept below 0.3 torr. Simultaneous measurement of OH LIF in a flame allowed absolute calibration of the wavelength scale. Pressure

  17. High resolution time interval meter

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  18. A computerized tomography study of the morphological interrelationship between the temporal bones and the craniofacial complex

    PubMed Central

    Costa, Helder Nunes; Slavicek, Rudolf; Sato, Sadao

    2012-01-01

    The hypothesis that the temporal bones are at the center of the dynamics of the craniofacial complex, directly influencing facial morphology, has been put forward long ago. This study examines the role of the spatial positioning of temporal bones (frontal and sagittal inclination) in terms of influencing overall facial morphology. Several 3D linear, angular and orthogonal measurements obtained through computerized analysis of virtual models of 163 modern human skulls reconstructed from cone-beam computed tomography images were analyzed and correlated. Additionally, the sample was divided into two subgroups based on the median value of temporal bone sagittal inclination [anterior rotation group (n = 82); posterior rotation group (n = 81)], and differences between groups evaluated. Correlation coefficients showed that sagittal inclination of the temporal bone was significantly (P < 0.01) related to midline flexion, transversal width and anterior–posterior length of the basicranium, to the anterior–posterior positioning of the mandible and maxilla, and posterior midfacial height. Frontal inclination of the temporal bone was significantly related (P < 0.01) to basicranium anterior–posterior and transversal dimensions, and to posterior midfacial height. In comparison with the posterior rotation group, the anterior rotation group presented a less flexed and anterior–posteriorly longer cranial base, a narrower skull, porion and the articular eminence located more superiorly and posteriorly, a shorter posterior midfacial height, the palatal plane rotated clockwise, a more retrognathic maxilla and mandible, and the upper posterior occlusal plane more inclined and posteriorly located. The results suggest that differences in craniofacial morphology are highly integrated with differences in the positional relationship of the temporal bones. The sagittal inclination of the temporal bone seems to have a greater impact on the 3D morphology of the craniofacial complex than

  19. Enhancing Realism of Wet Surfaces in Temporal Bone Surgical Simulation

    PubMed Central

    Kerwin, Thomas; Shen, Han-Wei; Stredney, Don

    2009-01-01

    We present techniques to improve visual realism in an interactive surgical simulation application: a mastoidectomy simulator that offers a training environment for medical residents as a complement to using a cadaver. As well as displaying the mastoid bone through volume rendering, the simulation allows users to experience haptic feedback and appropriate sound cues while controlling a virtual bone drill and suction/irrigation device. The techniques employed to improve realism consist of a fluid simulator and a shading model. The former allows for deformable boundaries based on volumetric bone data, while the latter gives a wet look to the rendered bone to emulate more closely the appearance of the bone in a surgical environment. The fluid rendering includes bleeding effects, meniscus rendering, and refraction. We incorporate a planar computational fluid dynamics simulation into our three-dimensional rendering to effect realistic blood diffusion. Maintaining real-time performance while drilling away bone in the simulation is critical for engagement with the system. PMID:19590102

  20. Temporal Bone Osteomyelitis: The Relationship with Malignant Otitis Externa, the Diagnostic Dilemma, and Changing Trends

    PubMed Central

    Chen, Jia-Cheng; Yeh, Chien-Fu; Shiao, An-Suey; Tu, Tzong-Yang

    2014-01-01

    Fifty-five patients hospitalized for osteomyelitis of the temporal bone between 1990 and 2011 were divided into two study groups: group 1 was patients collected from 1990 to 2001 and group 2 was composed of patients between 2002 and 2011. Clinical diagnostic criteria and epidemiologic data were analyzed to illustrate the altering features of osteomyelitis of the temporal bone. Group 1 patients were characterized by high prevalence of diabetes and more commonly suffered from otalgia, otitis externa and granulation tissue in the external auditory canal and higher positive culture for Pseudomonas aeruginosa. Noticeable changing trends were found between both groups, including declining prevalence of diabetes, fewer patients complaining of pain or presenting with otitis externa, and canal granulation, and increased variety of pathogens in group 2. We should highlight the index of clinical suspicion for osteomyelitis of the temporal bone, even in nondiabetic or immunocompetent patients. Painless otorrhea patients were also at risk of osteomyelitis of the temporal bone, especially patients with previous otologic operation. Increased multiplicity of pathogens amplified the difficulty of diagnosis for osteomyelitis of the temporal bone. PMID:24963511

  1. A high-resolution imaging technique using a whole-body, research photon counting detector CT system

    NASA Astrophysics Data System (ADS)

    Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D. L.; Jorgensen, S.; Ritman, E.; McCollough, C.

    2016-03-01

    A high-resolution (HR) data collection mode has been introduced to a whole-body, research photon-counting-detector CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm x 0.45 mm detector pixels were used, which corresponded to a pixel size of 0.25 mm x 0.25 mm at the iso-center. Spatial resolution of this HR mode was quantified by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed by two experienced radiologists. High spatial resolution of the HR mode was evidenced by the MTF measurement, with 15 lp/cm and 20 lp/cm at 10% and 2% modulation. Images from anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also benefit from this high resolution mode.

  2. A High-Resolution Imaging Technique using a Whole-body, Research Photon Counting Detector CT System

    PubMed Central

    Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D. L.; Jorgensen, S.; Ritman, E.; McCollough, C.

    2016-01-01

    A high-resolution (HR) data collection mode has been introduced to the whole-body, research photon-counting-detector CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm × 0.45 mm detectors pixels were used, which corresponded to a pixel size of 0.225 mm × 0.225 mm at the iso-center. Spatial resolution of this HR mode was quantified by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed by two experienced radiologists. Comparison of the HR mode images against their energy integrating system (EID) equivalents using comb filters was also performed. High spatial resolution of the HR mode was evidenced by the MTF measurement, with 15 lp/cm and 20 lp/cm at 10% and 2% MTF. Images from anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD system but hardly visible with the EID system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also benefit from this high resolution mode. PMID:27330238

  3. High resolution extremity CT for biomechanics modeling

    SciTech Connect

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  4. Mature Teratoma of the Temporal Bone in 3.5-Month-Old Baby Girl

    PubMed Central

    Alqurashi, Alshema; Bakry, Essa; Straube, Marta; Rickert, Christian H.; Mir-Salim, Parwis

    2015-01-01

    Mature teratoma is a benign germ cell tumor rarely located in the temporal bone. We are reporting a case of a mature teratoma of the temporal bone in a healthy borne 3.5-month-old baby girl with a 2-day suggestive history of otitis media and polypoidal mass expulsing from the external auditory canal of the left ear. A definitive diagnosis is made after complete excision and histological examination of the tissue. Total surgical excision of the tumor is the treatment of choice. PMID:25945275

  5. Temporal Changes of Microarchitectural and Mechanical Parameters of Cancellous Bone in the Osteoporotic Rabbit

    PubMed Central

    Wen, Xin-Xin; Xu, Chao; Wang, Fa-Qi; Feng, Ya-Fei; Zhao, Xiong; Yan, Ya-Bo; Lei, Wei

    2015-01-01

    This study was aimed at elucidating the temporal changes of microarchitectural and mechanical parameters of cancellous bone in the osteoporotic rabbit model induced by ovariectomy (OVX) combined with glucocorticoid (GC) administration. Osteoporotic (OP) group received bilateral OVX combined with injections of GC, while sham group only received sham operation. Cancellous bone quality in vertebrae and femoral condyles in each group was assessed by DXA, μCT, nanoindentation, and biomechanical tests at pre-OVX and 4, 6, and 8 weeks after injection. With regard to femoral condyles, nanoindentation test could detect significant decline in tissue modulus and hardness at 4 weeks. However, BMD and microarchitecture of femoral condylar cancellous bone changed significantly at 6 weeks. In vertebrae, BMD, microarchitecture, nanoindentation, and biomechanical tests changed significantly at 4 weeks. Our data demonstrated that temporal changes of microarchitectural and mechanical parameters of cancellous bone in the osteoporotic rabbit were significant. The temporal changes of cancellous bone in different anatomical sites might be different. The nanoindentation method could detect the changes of bone quality at an earlier stage at both femoral condyle and vertebra in the osteoporotic rabbit model than other methods (μCT, BMD). PMID:25918705

  6. Temporal bone fracture following blunt trauma caused by a flying fish.

    PubMed

    Goldenberg, D; Karam, M; Danino, J; Flax-Goldenberg, R; Joachims, H Z

    1998-10-01

    Blunt trauma to the temporal region can cause fracture of the skull base, loss of hearing, vestibular symptoms and otorrhoea. The most common causes of blunt trauma to the ear and surrounding area are motor vehicle accidents, violent encounters, and sports-related accidents. We present an obscure case of a man who was struck in the ear by a flying fish while wading in the sea with resulting temporal bone fracture, sudden deafness, vertigo, cerebrospinal fluid otorrhoea, and pneumocephalus. PMID:10211221

  7. Determination of osteocalcin in meat and bone meal of bovine and porcine origin using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry and high-resolution hybrid mass spectrometry.

    PubMed

    Balizs, Gabor; Weise, Christoph; Rozycki, Christel; Opialla, Tobias; Sawada, Stefanie; Zagon, Jutta; Lampen, Alfonso

    2011-05-01

    A method has been developed for determining the origin of meat and bone meal (MBM) by detecting species-specific osteocalcin (OC) using matrix-assisted laser desorption ionization/time-of-flight (MALDI/TOF) and high-resolution hybrid mass spectrometry (HR-Q/TOF MS). The analysis is based on the detection of typical species-specific OC and its tryptic peptide fragments which differ in mass due to differences in the amino-acid sequences between species. After dissolving the MBM samples in EDTA buffer, purification after ultrafiltration was performed using two methods: solid-phase extraction using Zip-Tip C(18) or size exclusion coupled with reverse-phase chromatography. Fractions containing partially purified intact OC were analyzed using LC-Q/TOF and MALDI/TOF mass spectrometry. Species-specific OC was detected at the typical protonated and doubly protonated molecular ions. Furthermore, typical porcine- and bovine-derived tryptic fragments from MBM were detected after enzymatic digestion. In order to determine the underlying amino-acid sequences and to confirm the assignment to OC-derived peptides, MS/MS analysis was carried out. In conclusion, we were able to detect OC in bovine and porcine MBM with high sensitivity and the MS-based method described here by which total OC mass and marker peptides of digested OC are recorded can be used as an alternative approach to detect genus-specific differences in MBM and can be applied as a confirmatory method to mainly immunological osteocalcin screening methods. PMID:21504815

  8. High-Resolution US of Rheumatologic Diseases.

    PubMed

    Taljanovic, Mihra S; Melville, David M; Gimber, Lana H; Scalcione, Luke R; Miller, Margaret D; Kwoh, C Kent; Klauser, Andrea S

    2015-01-01

    For the past 15 years, high-resolution ultrasonography (US) is being routinely and increasingly used for initial evaluation and treatment follow-up of rheumatologic diseases. This imaging technique is performed by using high-frequency linear transducers and has proved to be a powerful diagnostic tool in evaluation of articular erosions, simple and complex joint and bursal effusions, tendon sheath effusions, and synovitis, with results comparable to those of magnetic resonance imaging, excluding detection of bone marrow edema. Crystal deposition diseases including gouty arthropathy and calcium pyrophosphate deposition disease (CPPD) have characteristic appearances at US, enabling differentiation between these two diseases and from inflammatory arthropathies. Enthesopathy, which frequently accompanies psoriatic and reactive arthritis, also has a characteristic appearance at high-resolution US, distinguishing these two entities from other inflammatory and metabolic arthropathies. The presence of Doppler signal in examined joints, bursae, and tendon sheaths indicates active synovitis. Microbubble echo contrast agents augment detection of tissue vascularity and may act in the future as a drug delivery vehicle. Frequently, joint, tendon sheath, and bursal fluid aspirations and therapeutic injections are performed under US guidance. The authors describe the high-resolution US technique including gray-scale, color or power Doppler, and contrast agent-enhanced US that is used in evaluation of rheumatologic diseases of the wrist and hand and the ankle and foot in their routine clinical practice. This article demonstrates imaging findings of normal joints, rheumatoid arthritis, gouty arthritis, CPPD, psoriatic and reactive arthritis, and osteoarthritis. PMID:26562235

  9. Metastatic Prostate Cancer to the Left Temporal Bone: A Case Report and Review of the Literature

    PubMed Central

    Faucett, Erynne A.; Richins, Hal; Khan, Rihan; Jacob, Abraham

    2015-01-01

    Breast, lung, and prostate cancers are the three most common malignancies to metastasize to the temporal bone. Still, metastatic prostate cancer of the temporal bone is a rare finding, with approximately 21 cases reported in the literature and only 2 cases discovered more than 10 years after initial treatment of the primary. This disease may be asymptomatic and discovered incidentally; however, hearing loss, otalgia, cranial nerve palsies, and visual changes can all be presenting symptoms. We present the case of a 95-year-old man with history of primary prostate cancer treated 12 years earlier that was seen for new-onset asymmetric hearing loss and otalgia. The tympanic membranes and middle ears were normal; however, based on radiologic findings and eventual biopsy, the patient was diagnosed with extensive metastatic prostate cancer to the left temporal bone. This case (1) demonstrates that a high index of suspicion for unusual etiologies of seemingly benign symptoms must be maintained in elderly patients having prior history of cancer and (2) substantiates the value of temporal bone imaging when diagnosis may be unclear from history and physical exam. PMID:26294996

  10. Pneumatization of Mastoid Air Cells, Temporal Bone, Ethmoid and Sphenoid Sinuses. Any Correlation?

    PubMed

    Hindi, Khalid; Alazzawi, Sarmad; Raman, Rajagopalan; Prepageran, Narayanan; Rahmat, Kartini

    2014-12-01

    The aim of this study is to assess the pneumatization of the paranasal sinuses (PNS) and other parts of temporal bone such as mastoid air cells and to investigate if there was any association between the aeration of these structures among the three major ethnic groups in Malaysia (Malay, Chinese, Indian) as this would be representative of Asia. A retrospective review of 150 computed tomography (CT) scans of PNS and temporal bones was done and analysed. The pneumatization of each area was obtained and compared using statistical analysis. Patients with a history of previous medical or surgical problems in the intended areas were excluded from the study. The pneumatization of the mastoid air cells and other temporal bone parts were noted to be symmetrical in more than 75 %. There was a positive correlation between the pneumatization of mastoid air cells and that of the sphenoid sinus. The prevalence of Agger nasi, Haller's and Onodi cells was observed to be significantly higher in the Chinese group. Preoperative assessment of the temporal bone and PNS with CT scan may be helpful in the evaluation of their anatomical landmark and decrease the possibility of surgical complications related to 3D structures. PMID:26396957

  11. A method for generating high resolution satellite image time series

    NASA Astrophysics Data System (ADS)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  12. Combined Mastoid/Middle Cranial Fossa Repair of Temporal Bone Encephalocele

    PubMed Central

    Souliere Jr., Charles R.; Langman, Alan W.

    1998-01-01

    Temporal bone encephalocele (TBE) has become less common as the incidence of chronic mastoid infection and surgery for this condition has decreased. Due to its declining incidence, the diagnosis of TBE may be delayed and result in the development of serious complications such as cerebrospinal fluid leak, meningitis, epidural or subdural abscess. Six cases of large (>1 cm) TBE of diverse etiology are described. Two patients had suffered previous temporal bone fractures, two had had prior mastoidectomy, and two patients had long-standing chronic mastoiditis. Two patients had undergone prior unsuccessful transmastoid repair. All patients underwent successful tegmen-dural repair with autogenous fascia, bone, and/or cartilage, primarily via a combined mastoid-middle fossa approach. Accurate dural closure and support of intacranial contents are imperative to prevent recurrence. We find that permanent repair can best be performed with a combined mastoid middle cranial fassa approach. ImagesFigure 1 PMID:17171064

  13. Temporal bone fracture under lateral impact: biomechanical and macroscopic evaluation.

    PubMed

    Montava, Marion; Masson, Catherine; Lavieille, Jean-Pierre; Mancini, Julien; Soussan, Jerome; Chaumoitre, Kathia; Arnoux, Pierre-Jean

    2016-03-01

    This work was conducted to study biomechanical properties and macroscopic analysis of petrous fracture by lateral impact. Seven embalmed intact human cadaver heads were tested to failure using an electrohydraulic testing device. Dynamic loading was done at 2 m/s on temporal region with maximal deflection to 12 mm. Anthropometric and pathological data were determined by pretest and posttest computed tomography images, macroscopic evaluation, and anatomical dissection. Biomechanical data were obtained. Results indicated the head to have nonlinear structural response. The overall mean values of failure forces, deflections, stiffness, occipital, and frontal peak acceleration were 7.1 kN (±1.1), 9.1 mm (±1.8), 1.3 kN/mm (±0.4), 90.5 g (±22.5), and 65.4 g (±16), respectively. The seven lateral impacts caused fractures, temporal fractures in six cases. We observed very strong homogeneity for the biomechanical and pathological results between different trials in our study and between data from various experiments and our study. No statistical correlation was found between anthropometric, biomechanical, and pathological data. These data will assist in the development and validation of finite element models of head injury. PMID:26036776

  14. Advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The advanced very high resolution radiometer development program is considered. The program covered the design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical structural model, and a life test model. Special bench test and calibration equipment was also developed for use on the program.

  15. High resolution digital delay timer

    DOEpatents

    Martin, Albert D.

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  16. Giant Cell Tumor of the Temporal Bone with Direct Invasion into the Middle Ear and Skull Base: A Case Report

    PubMed Central

    Iizuka, Takashi; Furukawa, Masayuki; Ishii, Hisato; Kasai, Misato; Hayashi, Chieri; Arai, Hajime; Ikeda, Katsuhisa

    2012-01-01

    Giant cell tumor (GCT) is classified as a benign bone tumor, and it is frequently identified at the epiphysis of long bones and relatively rare in the temporal bone. For orthopedists expert at recognizing bone and soft tissue tumors, the diagnosis of GCT is relatively easy; however, since head and neck surgeons experience few cases of GCT, it may be difficult to diagnose when it occurs in the temporal bone. A 32-year-old man complained of left hearing loss, aural fullness, and tinnitus. Examination of the ear revealed a bulging tumor. Audiologic examination demonstrated conductive hearing loss of the left ear. Computer tomograph of the temporal bone showed a soft-tissue-density specification indicating bone destruction at the left temporal bone. The tumor invaded the skull base. Imaging examinations using magnetic resonance imaging revealed a nonhomogenous isosignal intensity area on T1 at the left temporal bone. After intravenous gadolinium, the mass showed unequal enhancement. This patient subsequently underwent surgery to remove the lesion using transmastoid and middle fossa approach. Pathological examinations from specimens of the tumor revealed characteristic of GCT. No clinical or radiological evidence of tumor recurrence was detected for 4 years. PMID:22953120

  17. Advanced BMP Gene Therapies for Temporal and Spatial Control of Bone Regeneration

    PubMed Central

    Wilson, C.G.; Martín-Saavedra, F.M.; Vilaboa, N.; Franceschi, R.T.

    2013-01-01

    Spatial and temporal patterns of bone morphogenetic protein (BMP) signaling are crucial to the assembly of appropriately positioned and shaped bones of the face and head. This review advances the hypothesis that reconstitution of such patterns with cutting-edge gene therapies will transform the clinical management of craniofacial bone defects attributed to trauma, disease, or surgical resection. Gradients in BMP signaling within developing limbs and orofacial primordia regulate proliferation and differentiation of mesenchymal progenitors. Similarly, vascular and mesenchymal cells express BMPs in various places and at various times during normal fracture healing. In non-healing fractures of long bones, BMP signaling is severely attenuated. Devices that release recombinant BMPs promote healing of bone in spinal fusions and, in some cases, of open fractures, but cannot control the timing and localization of BMP release. Gene therapies with regulated expression systems may provide substantial improvements in efficacy and safety compared with protein-based therapies. Synthetic gene switches, activated by pharmacologics or light or hyperthermic stimuli, provide several avenues for the non-invasive regulation of the expression of BMP transgenes in both time and space. Through new gene therapy platforms such as these, active control over BMP signaling can be achieved to accelerate bone regeneration. PMID:23539558

  18. Temporal bone metastasis as a sign of relapsing chronic lymphocytic leukemia

    PubMed Central

    Aljafar, Hadeel M.; Alsuhibani, Sari S.; Alahmari, Mohammad S.; Alzahrani, Musaed A.

    2015-01-01

    Otologic manifestations in chronic lymphocytic leukemia (CLL) are common presentations. However, temporal bone metastasis is rarely described as a sign of relapsing CLL. A 65-year-old male diabetic patient known to have CLL on remission presented to the outpatient otolaryngology clinic with a one month history of progressive bilateral otalgia and right otorrhea, despite multiple courses of antibiotics. He was admitted with suspicion of malignant otitis externa. Left ear showed large hemorrhagic bullae on the posterior segment of tympanic membrane. Left sided facial paralysis developed on the third day of admission. Full recovery of facial paralysis is achieved by 10 days course of corticotherapy. Histological examination of middle ear tissue biopsy showed infiltration by monotonous small lymphoid cells, showing round nuclei, condensed chromatin suggestive of CLL. Although rare, unusual otologic manifestations should raise the suspicion of a temporal bone metastasis as a sign of relapsing CLL. PMID:26446337

  19. Virtual temporal bone: creation and application of a new computer-based teaching tool.

    PubMed

    Mason, T P; Applebaum, E L; Rasmussen, M; Millman, A; Evenhouse, R; Panko, W

    2000-02-01

    The human temporal bone is a 3-dimensionally complex anatomic region with many unique qualities that make anatomic teaching and learning difficult. Current teaching tools have proved only partially adequate for the needs of the aspiring otologic surgeon in learning this anatomy. We used a variety of computerized image processing and reconstruction techniques to reconstruct an anatomically accurate 3-dimensional computer model of the human temporal bone from serial histologic sections. The model is viewed with a specialized visualization system that allows it to be manipulated easily in a stereoscopic virtual environment. The model may then be interactively studied from any viewpoint, greatly simplifying the task of conceptualizing and learning this anatomy. The system also provides for simultaneous computer networking that can bring distant participants into a single shared virtual teaching environment. Future directions of the project are discussed. PMID:10652385

  20. Effects of radiation on the temporal bone in patients with head and neck cancer.

    PubMed

    Lambert, Elton M; Gunn, G Brandon; Gidley, Paul W

    2016-09-01

    Radiotherapy is a key component in the treatment of many head and neck cancers, and its potential to cause long-term adverse effects has become increasingly recognized. In this review, we describe the short-term and long-term sequelae of radiation-associated changes in and injury to the temporal bone and its related structures. The pathophysiology of radiation-induced injury and its clinical entities, including sensorineural hearing loss, chronic otitis media, osteoradionecrosis, and radiation-associated malignancies, are described. We also discuss radiation dose to the head and neck as it relates to these conditions. An improved understanding of radiation's effects on the temporal bone will enable physicians and researchers to continue efforts to reduce radiotherapy-related sequelae and guide clinicians in diagnosing and treating the various otologic conditions that can arise in patients with head and neck cancer who have received radiotherapy. © 2016 Wiley Periodicals, Inc. Head Neck 38: 1428-1435, 2016. PMID:27453348

  1. Variability of the temporal bone surface's topography: implications for otologic surgery

    NASA Astrophysics Data System (ADS)

    Lecoeur, Jérémy; Noble, Jack H.; Balachandran, Ramya; Labadie, Robert F.; Dawant, Benoit M.

    2012-02-01

    Otologic surgery is performed for a variety of reasons including treatment of recurrent ear infections, alleviation of dizziness, and restoration of hearing loss. A typical ear surgery consists of a tympanomastoidectomy in which both the middle ear is explored via a tympanic membrane flap and the bone behind the ear is removed via mastoidectomy to treat disease and/or provide additional access. The mastoid dissection is performed using a high-speed drill to excavate bone based on a pre-operative CT scan. Intraoperatively, the surface of the mastoid component of the temporal bone provides visual feedback allowing the surgeon to guide their dissection. Dissection begins in "safe areas" which, based on surface topography, are believed to be correlated with greatest distance from surface to vital anatomy thus decreasing the chance of injury to the brain, large blood vessels (e.g. the internal jugular vein and internal carotid artery), the inner ear, and the facial nerve. "Safe areas" have been identified based on surgical experience with no identifiable studies showing correlation of the surface with subsurface anatomy. The purpose of our study was to investigate whether such a correlation exists. Through a three-step registration process, we defined a correspondence between each of twenty five clinically-applicable temporal bone CT scans of patients and an atlas and explored displacement and angular differences of surface topography and depth of critical structures from the surface of the skull. The results of this study reflect current knowledge of osteogenesis and anatomy. Based on two features (distance and angular difference), two regions (suprahelical and posterior) of the temporal bone show the least variability between surface and subsurface anatomy.

  2. Stapes model using high-resolution μCT

    NASA Astrophysics Data System (ADS)

    Baek, Jong Dae; Puria, Sunil

    2008-02-01

    Understanding the biomechanics of the middle ear is important for surgical reconstructions. As the output of the middle ear, the stapes plays a key role in transferring acoustic vibrations to the cochlea. In order to develop anatomically-based mathematical models, which are needed to improve our understanding of stapes dynamics, detailed morphometry of the stapes is required. High-resolution micro-CT imaging techniques were used to generate three-dimensional reconstructions of cadaveric temporal bones from 5 species commonly used in experimental middle ear research: the chinchilla, human (relatively mid-frequency hearing limit), cat, guinea pig, and gerbil (relatively high-frequency hearing limit). From the standard discretizations of micro-CT images and corresponding 3-D volume reconstructions, the centers of mass, principle axes, stapes head areas and stapes footplate areas were calculated. Mechanical relationships were estimated between the capitulum area and the footplate area and inter-species comparisons were performed between the cross-sectional shapes of the anterior and posterior crura. Quantitative dynamic properties were estimated from the rigid body motion calculations. The parameters estimated in this study will be useful for building biocomputational models of the stapes for a variety of species.

  3. Temporal aneurysmal bone cyst: cost-effective method to achieve gross total resection.

    PubMed

    Sodhi, Harsimrat Bir Singh; Salunke, Pravin; Agrawal, Parimal; Gupta, Kirti

    2016-08-01

    Aneurysmal bone cyst (ABC) is a vascular benign bony expansile lesion. The treatment is gross total resection. Surgery for a skull base aneurysmal bone cyst poses a significant challenge because of its vascularity and the adjacent neurovascular structures. We present the case of a young male with a temporal aneurysmal bone cyst who underwent gross total resection of the lesion. The external carotid artery (ECA) was temporarily clamped to cut off the vascular supply. There was no intraoperative event, and the patient made a good postoperative clinical recovery. This technique was used as an alternative to subselective endovascular embolization of the ECA branches. This case represents a simple yet cost-effective surgical technique to control bleeding for a highly vascular lesion such as ABCs, especially in resource-deficient countries. PMID:27334736

  4. Inflammatory myofibroblastic tumor of the temporal bone presenting with pulsatile tinnitus: a case report

    PubMed Central

    2013-01-01

    Introduction Inflammatory myofibroblastic tumor of the temporal bone is an unusual but distinct disease entity. The most common presenting symptoms are otalgia, otorrhea, hearing loss, facial palsy, and vertigo. We describe here what we believe to be the first reported case of a patient presenting with persistent pulsatile tinnitus. The clinical features, radiological and histopathologic findings, and treatment outcomes of the patient are presented. Case presentation A 59-year-old woman of Chinese Han origin presented with complaints of left-sided pulsatile tinnitus and progressive hearing loss for several years. Clinical evaluations revealed a reddish mass behind the intact tympanic membrane, and a moderately severe conductive hearing loss in the left ear. The computed tomographic imaging of the temporal bone demonstrated a slightly ill-defined left middle ear soft tissue mass involving the posterior portion of the mesotympanum and epitympanum, and the mastoid antrum. The patient underwent surgical excision of the lesion which subsequently resolved her symptoms. Postoperative pathology was consistent with an inflammatory myofibroblastic tumor. Conclusions An inflammatory myofibroblastic tumor of the temporal bone can present clinically with pulsatile tinnitus and masquerade as venous hum or vascular tumors of the middle ear; therefore, it should be included in the differential diagnosis of pulsatile tinnitus. PMID:23787119

  5. High Resolution Scanning Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Miranda, Felix A. (Inventor)

    2000-01-01

    The present invention provides a High Resolution Scanning Reflectarray Antenna (HRSRA) for the purpose of tracking ground terminals and space craft communication applications. The present invention provides an alternative to using gimbaled parabolic dish antennas and direct radiating phased arrays. When compared to a gimbaled parabolic dish, the HRSRA offers the advantages of vibration free steering without incurring appreciable cost or prime power penalties. In addition, it offers full beam steering at a fraction of the cost of direct radiating arrays and is more efficient.

  6. High-Resolution Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff; Goetz, Alexander F. H.

    1990-01-01

    Earth resources observed in greater detail. High-Resolution Imaging Spectrometer, undergoing development for use in NASA's Earth Observing System, measures reflectance of Earth's surface in visible and near-infrared wavelengths. From an orbit around Earth, instrument scans surface of Earth in 200 wavelength bands simultaneously. Produces images enabling identification of minerals in rocks and soils, important algal pigments in oceans and inland waters, changes in spectra associated with biochemistry of plant canopies, compositions of atmospheric aerosols, sizes of grains in snow, and contamination of snow by impurities that absorb visible light.

  7. New strategies for high precision surgery of the temporal bone using a robotic approach for cochlear implantation.

    PubMed

    Klenzner, Thomas; Ngan, Chiu Chun; Knapp, Felix Bernhard; Knoop, Hayo; Kromeier, Jan; Aschendorff, Antje; Papastathopoulos, Evangelos; Raczkowsky, Joerg; Wörn, Heinz; Schipper, Joerg

    2009-07-01

    The aim of the study was to demonstrate a collision-free trajectory of an instrument through the facial recess to the site of planned cochleostomy guided by a surgery robot. The indication for cochlear implantation is still expanding toward more substantial residual hearing. A cochleostomy as atraumatic as possible will influence the preservation of inner ear function. The employment of a highly precise instrument guidance using a robot could represent a feasible solution for a constant reproducible surgical procedure. Screw markers for a point-based registration were fixed on a human temporal bone specimen prepared with a mastoidectomy and posterior tympanotomy. A DICOM dataset has been generated thereof in a 64-multislice computer tomography (CT). A virtual trajectory in a 3D model has been planned representing the path of instrumentation toward the desired spot of cochleostomy. A 1.9-mm endoscope has been mounted onto the robot system RobaCKa (Staeubli RX90CR) to visualize this trajectory. The target registration error added up to 0.25 mm, which met the desirable tolerance of <0.5 mm. A collision-free propagation of the endoscope into the tympanic cavity via the facial recess has been performed by the robot and the spot of cochleostomy could be visualized through the endoscope. Using a DICOM dataset of a high-resolution CT and a robot as a positioning platform for surgical instruments could be a feasible approach to perform a highly precise and constant reproducible cochleostomy. Furthermore, it could be a crucial step to preserve substantial residual hearing in terms of expanding the indications for cochlear implantation. PMID:19015866

  8. The High Resolution Hurricane Test

    NASA Astrophysics Data System (ADS)

    Tripoli, G. J.

    2009-09-01

    It has been suggested that an answer to the hurricane intensity forecast problem is to use very high cloud-resolving resolution in operational forecast models. In consideration of this hypothesis, the United States National Atmospheric and Oceanic Administration commissioned a major study to take place over the past 1.5 years whereby the hypothesis would be tested with 6 different hurricane models featuring different dynamics cores and different physics. These models included the GFDL hurricane, Navy COAMPS, the WRF-ARW, WRF-AHW, WRF-NMM, and the UW-NMS. The experiment design was to choose and optimal mix of historic hurricanes where good observations of intensity at land fall existed and run 5 day model forecasts with 3 different resolutions of about 9-12 km (low resolution), 3-4 km (medium resolution) and 1-1.5 km (high resolution) and document how much the forecast improved in each case. The project focused on 10 storms over 2-12, 1-5 day forecast periods, for a total of 67 simulations. Not all groups completed all 67 simulations, but there were sufficient results to reach a stunning conclusion. The results of these tests suggested that little or no improvement in intensity prediction was achieved with high resolution.

  9. High-resolution adaptive spiking sonar.

    PubMed

    Alvarez, Fernando J; Kuc, Roman

    2009-05-01

    A new sonar system based on the conventional 6500 ranging module is presented that generates a sequence of spikes whose temporal density is related to the strength of the received echo. This system notably improves the resolution of a previous system by shortening the discharge cycle of the integrator included in the module. The operation is controlled by a PIC18F452 device, which can adapt the duration of the discharge to changing features of the echo, providing the system with a novel adaptive behavior. The performance of the new sensor is characterized and compared with that of the previous system by performing rotational scans of simple objects with different reflecting strengths. Some applications are suggested that exploit the high resolution and adaptability of this sensor. PMID:19473919

  10. Characterization of Ultrasound Propagation Through Ex-vivo Human Temporal Bone

    PubMed Central

    Ammi, Azzdine Y.; Mast, T. Douglas; Huang, I-Hua; Abruzzo, Todd A.; Coussios, Constantin-C.; Shaw, George J.; Holland, Christy K.

    2016-01-01

    Adjuvant therapies that lower the thrombolytic dose or increase its efficacy would represent a significant breakthrough in the treatment of patients with ischemic stroke (Eggers 2006; Tsivgoulis and Alexandrov 2007). The objective of this study was to perform intracranial measurements of the acoustic pressure field generated by 0.12, 1.03 and 2.00 MHz ultrasound transducers to identify optimal ultrasound parameters that would maximize penetration and minimize aberration of the beam. To achieve this goal, in vitro experiments were conducted on five human skull specimens. In a water-filled tank, two unfocused transducers (0.12 and 1.03 MHz) and one focused transducer (2.00 MHz) were consecutively placed near the right temporal bone of each skull. A hydrophone, mounted on a micropositioning system, was moved to an estimated location of the middle cerebral artery (MCA) origin and measurements of the surrounding acoustic pressure field were performed. For each measurement, the distance from the position of maximum acoustic pressure to the estimated origin of the MCA inside the skulls was quantified. The –3 dB depth of field and beam width in the skull were also investigated as a function of the three frequencies. Results show that the transducer alignment relative to the skull is a significant determinant of the detailed behavior of the acoustic field inside the skull. For optimal penetration, insonation normal to the temporal bone was needed. The shape of the 0.12-MHz intracranial beam was more distorted than those at 1.03 and 2.00 MHz due to the large aperture and beam width. However, lower ultrasound pressure reduction was observed at 0.12 MHz (22.5%). At 1.03 and 2.00 MHz two skulls had an insufficient temporal bone window and attenuated the beam severely (up to 96.6% pressure reduction). For all frequencies, constructive and destructive interference patterns were seen near the contralateral skull wall at various elevations. The 0.12-MHz ultrasound beam depth of

  11. Enhanced High Resolution RBS System

    SciTech Connect

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 A ring TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron registered accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  12. Enhanced High Resolution RBS System

    NASA Astrophysics Data System (ADS)

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 Å TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron® accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  13. High Resolution Thermometry for EXACT

    NASA Technical Reports Server (NTRS)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  14. High Resolution Neutral Atom Microscope

    NASA Astrophysics Data System (ADS)

    Bucay, Igal; Castillo-Garza, Rodrigo; Stratis, Georgios; Raizen, Mark

    2015-03-01

    We are developing a high resolution neutral atom microscope based on metastable atom electron spectroscopy (MAES). When a metastable atom of a noble gas is near a solid, a surface electron will tunnel to an empty energy level of the metastable atom, thereby ejecting the excited electron from the atom. The emitted electrons carry information regarding the local topography and electronic, magnetic, and chemical structures of most hard materials. Furthermore, using a chromatic aberration corrected magnetic hexapole lens we expect to attain a spatial resolution below 10 nm. We will use this microscope to investigate how local phenomena can give rise to macroscopic effects in materials that cannot be probed using a scanning tunneling microscope, namely insulating transition metal oxides.

  15. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  16. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  17. HRSC: High resolution stereo camera

    USGS Publications Warehouse

    Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W., III; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.

    2009-01-01

    The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.

  18. High resolution tomographic instrument development

    NASA Astrophysics Data System (ADS)

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefitted greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  19. High-resolution computed tomographic study of the retrotympanum. Anatomic correlations.

    PubMed

    Parlier-Cuau, C; Champsaur, P; Perrin, E; Rabischong, P; Lassau, J P

    1998-01-01

    The aim of this study was to define the imaging of the retrotympanum precisely by means of high-resolution CT. Based on 66 scans of petrous bones performed in 49 patients observed in an otologic department, several retrotympanic structures were studied: the pyramidal eminence, ponticulus, subiculum, chordal ridge, tympanic sinus of Proctor, sinus tympani and recess of the facial n. The variations in morphology and depth were noted as well as the relationship between the pyramid and the facial canal. In a second phase the same anatomic structures were studied in 24 temporal bones removed from embalmed cadavers and investigated with the same radiologic technique. Anatomic correlations were made for six temporal bones to confirm the general applicability of our radiologic hypotheses. In CT the pyramidal eminence was visualised in 100% of cases, the chordal ridge in 52%, the ponticulus in 63% and the subiculum in 57%. As regards the different recesses, the sinus tympani was visualised in 95% of cases, the posterior tympanic sinus of Proctor in 38%, the fossula of Grivot in 47% and the facial recess in 80%. The mean depth of the sinus tympani was 2.7 mm and that of the tympanic sinus of Proctor was 1.65 mm; the fossula of Grivot was assessed as 2.1 mm and the facial recess as 2.2 mm. A better knowledge of these sinuses and their variations will aid the surgeon, particularly in a posterior tympanotomy or a retro-facial approach. PMID:9706682

  20. [Massive Gorham-Stout osteolysis of the temporal bone and the craniocervical transition].

    PubMed

    Plontke, S; Koitschev, A; Ernemann, U; Pressler, H; Zimmermann, R; Plasswilm, L

    2002-04-01

    Massive osteolysis Gorham-Stout is a rare, benign but locally aggressive angiomatosis which results in destruction and resorption of bone. The etiology and pathogenesis are undefined. The occurrence of the disease in the skull base is uncommon. A 54-year-old female presented with isolated, one-sided surditas. Eight years before the patient underwent surgery and radiation therapy for treatment of hypopharyngeal cancer. A transtemporal biopsy was taken and a highly vascularized, cystic lesion with destruction of the right occipital and temporal bone and the atlas was found. Histopathology showed thin-walled capillaries with flattened endothelial lining cells. After exclusion of malignant and infectious components the diagnosis of Gorham's disease was established. Review of the literature suggests radiation therapy as the method of choice for stopping the disease's progress. The aim of this case report is to emphasize the Gorham-Stout-Syndrome as a rare differential diagnosis for skull base lesions. PMID:12063694

  1. The temporal bones from Sima de los Huesos Middle Pleistocene site (Sierra de Atapuerca, Spain). A phylogenetic approach.

    PubMed

    Martínez, I; Arsuaga, J L

    1997-01-01

    Three well-preserved crania and 22 temporal bones were recovered from the Sima de los Huesos Middle Pleistocene site up to and including the 1994 field season. This is the largest sample of hominid temporal bones known from a single Middle Pleistocene site and it offers the chance to characterize the temporal bone morphology of an European Middle Pleistocene population and to study the phylogenetic relationships of the SH sample with other Upper and Middle Pleistocene hominids. We have carried out a cladistic analysis based on nine traits commonly used in phylogenetic analysis of Middle and Late Pleistocene hominids: shape of the temporal squama superior border, articular eminence morphology, contribution of the sphenoid bone to the median glenoid wall, postglenoid process projection, tympanic plate orientation, presence of the styloid process, mastoid process projection, digastric groove morphology and anterior mastoid tubercle. We have found two autapomorphies on the Home erectus temporal bone: strong reduction of the postglenoid process and absence of the styloid process. Modern humans, Neandertals and the Middle Pleistocene fossils from Europe and Africa constitute a clade characterized by a convex superior border of the temporal squama. The European Middle Pleistocene fossils from Sima de los Huesos, Petralona, Steinheim, Bilzingsleben and Castel di Guido share a Neandertal apomorphy: a relatively flat articular eminence. The fossils from Ehringsdorf, La Chaise Suardi and Biache-Saint-Vaast also display another Neandertal derived trait: an anteriorly obliterated digastric groove. Modern humans and the African Middle Pleistocene fossils share a synapomorphy: a sagittally orientated tympanic plate. PMID:9300344

  2. High resolution time interval counter

    DOEpatents

    Condreva, Kenneth J.

    1994-01-01

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured.

  3. High resolution time interval counter

    DOEpatents

    Condreva, K.J.

    1994-07-26

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured. 3 figs.

  4. High resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Loudin, Jim; Dinyari, Rostam; Huie, Phil; Butterwick, Alex; Peumans, Peter; Palanker, Daniel

    2009-02-01

    Electronic retinal prostheses seek to restore sight in patients with retinal degeneration by delivering pulsed electric currents to retinal neurons via an array of microelectrodes. Most implants use inductive or optical transmission of information and power to an intraocular receiver, with decoded signals subsequently distributed to retinal electrodes through an intraocular cable. Surgical complexity could be minimized by an "integrated" prosthesis, in which both power and data are delivered directly to the stimulating array without any discrete components or cables. We present here an integrated retinal prosthesis system based on a photodiode array implant. Video frames are processed and imaged onto the retinal implant by a video goggle projection system operating at near-infrared wavelengths (~ 900 nm). Photodiodes convert light into pulsed electric current, with charge injection maximized by specially optimized series photodiode circuits. Prostheses of three different pixel densities (16 pix/mm2, 64 pix/mm2, and 256 pix/mm2) have been designed, simulated, and prototyped. Retinal tissue response to subretinal implants made of various materials has been investigated in RCS rats. The resulting prosthesis can provide sufficient charge injection for high resolution retinal stimulation without the need for implantation of any bulky discrete elements such as coils or tethers. In addition, since every pixel functions independently, pixel arrays may be placed separately in the subretinal space, providing visual stimulation to a larger field of view.

  5. High resolution auditory perception system

    NASA Astrophysics Data System (ADS)

    Alam, Iftekhar; Ghatol, Ashok

    2005-04-01

    Blindness is a sensory disability which is difficult to treat but can to some extent be helped by artificial aids. The paper describes the design aspects of a high resolution auditory perception system, which is designed on the principle of air sonar with binaural perception. This system is a vision substitution aid for enabling blind persons. The blind person wears ultrasonic eyeglasses which has ultrasonic sensor array embedded on it. The system has been designed to operate in multiresolution modes. The ultrasonic sound from the transmitter array is reflected back by the objects, falling in the beam of the array and is received. The received signal is converted to a sound signal, which is presented stereophonically for auditory perception. A detailed study has been done as the background work required for the system implementation; the appropriate range analysis procedure, analysis of space-time signals, the acoustic sensors study, amplification methods and study of the removal of noise using filters. Finally the system implementation including both the hardware and the software part of it has been described. Experimental results on actual blind subjects and inferences obtained during the study have also been included.

  6. High-Resolution Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  7. High-resolution slug testing.

    PubMed

    Zemansky, G M; McElwee, C D

    2005-01-01

    The hydraulic conductivity (K) variation has important ramifications for ground water flow and the transport of contaminants in ground water. The delineation of the nature of that variation can be critical to complete characterization of a site and the planning of effective and efficient remedial measures. Site-specific features (such as high-conductivity zones) need to be quantified. Our alluvial field site in the Kansas River valley exhibits spatial variability, very high conductivities, and nonlinear behavior for slug tests in the sand and gravel aquifer. High-resolution, multilevel slug tests have been performed in a number of wells that are fully screened. A general nonlinear model based on the Navier-Stokes equation, nonlinear frictional loss, non-Darcian flow, acceleration effects, radius changes in the wellbore, and a Hvorslev model for the aquifer has been used to analyze the data, employing an automated processing system that runs within the Excel spreadsheet program. It is concluded that slug tests can provide the necessary data to identify the nature of both horizontal and vertical K variation in an aquifer and that improved delineation or higher resolution of K structure is possible with shorter test intervals. The gradation into zones of higher conductivity is sharper than seen previously, and the maximum conductivity observed is greater than previously measured. However, data from this project indicate that well development, the presence of fines, and the antecedent history of the well are important interrelated factors in regard to slug-test response and can prevent obtaining consistent results in some cases. PMID:15819943

  8. Global high resolution climate reconstructions

    NASA Astrophysics Data System (ADS)

    Schubert-Frisius, Martina; Feser, Frauke; Zahn, Matthias; von Storch, Hans; Rast, Sebastian

    2014-05-01

    Long-term reanalysis products represent an important data source for numerous climate studies. However, their coarse spatial resolution for data sets spanning the last more than 50 years and well known inhomogeneities in space and time make it difficult to derive changes in meteorological variables over time. We therefore use spectral nudging technique to down-scale the global reanalysis data to a finer resolution with a general global circulation model. With this technique the new calculated higher resolved global model fields are attracted to the large-scale state of the coarse resolution reanalysis. Besides the conservation of large-scale atmospheric information and the resulting finer topography, a surplus in contents of information in meteorological phenomena of small spatial extensions is expected. Following this strategy a simulation with the global high-resolution atmospheric model ECHAM6 (T255L95), developed by MPI-M Hamburg, will be started by spectrally nudging NCEP1 reanalysis for the time period from 1948 until 2013. Selected wavelengths of more than 1000 km of vorticity, divergence, temperature and the logarithm of the surface pressure will be imposed onto the simulated GCM counterparts at levels above 750 hPa. SST and sea ice distribution are taken from the NCEP1 data set. These simulations enable the investigation of long-term changes in meteorological phenomena; the focus is put here on intense storms. Various horizontal wavelength selections and associated vertical profiles in the strength of nudging were tested. The temporarily best configuration resulted in large time correlations for 2m-temperature and 10m wind speed at several selected locations in Germany in comparison to observations. Correlations were highest for extra-tropical regions, while over the western part of the Pacific and Indian Ocean relative low time correlations were found. In a continuing study meteorological quantities at different levels and the influences of the nudging

  9. Practising high-resolution anoscopy.

    PubMed

    Palefsky, Joel M

    2012-12-01

    The incidence of anal cancer is increasing in the general population among both men and women. The incidence is particularly high among men who have sex with men and HIV-infected men and women. Anal cancer is similar to cervical cancer and is associated with human papillomavirus (HPV). Anal cancer is potentially preventable through primary prevention with HPV vaccination or secondary prevention. Secondary prevention is modelled after cervical cancer, where cytology is used as a screening tool to identify women who need colposcopy. Colposcopy includes magnification of the cervix, which, along with acetic acid and Lugol's solution, is used to visualise and biopsy potentially precancerous lesions, enabling treatment before progression to cervical cancer. Anal cancer is likely preceded by high-grade anal intraepithelial neoplasia (HGAIN), and a colposcope with acetic acid and Lugol's solution may similarly be used to visualise HGAIN to permit biopsy and treatment in an effort to prevent anal cancer. To distinguish it from cervical colposcopy, this technique is called high-resolution anoscopy (HRA). Many of the features that distinguish low-grade AIN from HGAIN are similar to those of the cervix, but HRA poses several additional challenges compared with cervical colposcopy. These include uneven topography; obscuring of lesions due to haemorrhoids, folds, stool or mucus; or lesions being located at the base of folds and anal glands. Consequently, a long learning curve is typically required before becoming fully competent in this technique. The technique of HRA, its uses and challenges in prevention of anal cancer are described in this article. PMID:23380236

  10. Acoustic effects of a superior semicircular canal dehiscence: a temporal bone study.

    PubMed

    Luers, J C; Pazen, D; Meister, H; Lauxmann, M; Eiber, A; Beutner, D; Hüttenbrink, K B

    2015-03-01

    A dehiscence of the superior semicircular canal is said to be responsible for a number of specific and unspecific ear symptoms and possible a conductive hearing loss of up to 40 dB. As in vivo a dehiscence would not be opened against air, but is naturally patched with dura and the brain, it was our aim to investigate the effects of an superior semicircular canal dehiscence on the air conduction hearing in fresh human temporal bones with different boundary conditions. At ten fresh human temporal bones, we investigated the transmission of sound energy through the middle and inner ear using a round window microphone and laser Doppler vibrometer for perilymph motions inside the dehiscence. After baseline measurements, the superior semicircular canal was opened. We investigated the change of the transfer function when the canal is opened against air (pressure equivalent water column), against a water column and when it is patched with a layer of dura. Opening the superior semicircular canal resulted in a loss of sound transmission of maximal 10-15 dB only in frequencies below 1 kHz. When covering the dehiscence with a water column, the conductive hearing component was reduced to 6-8 dB. Placing a dura patch on top of the dehiscence resulted in a normalization of the transfer function. If our experiments are consistent with the conditions in vivo, then superior semicircular canal dehiscence does not lead to an extensive and clinically considerable conductive air conduction component. PMID:24381023

  11. Prognostic Factors Including Proliferation Markers Ki-67, bax, and bcl-2 in Temporal Bone Paraganglioma

    PubMed Central

    Gjuric, Mislav; Völker, Uwe; Katalinic, Alexander; Wolf, Stephan Rüdiger

    1997-01-01

    Valuable criteria with which to predict the clinical behavior of the temporal bone paraganglioma or the response to treatment are lacking. The analysis of markers of cell proliferation is a possibility to estimate the prognosis. Extensive patient data on 40 temporal bone paragangliomas were gathered over the years and correlated with the data obtained by staining histologic sections with bcl-2, bax, and MIB I markers of cellular proliferation. The immunohistochemistry was in all cases negative for bcl-2, positive for bax, and for Ki-67 positive in 20% of tumors. The scores for Ki-67 did not correlate with the majority of clinical parameters, except for treatment modality, preoperative hearing loss, and cranial nerve involvement. The tendency toward poorer hearing and a higher incidence of preoperative lower cranial nerve palsies was demonstrated in patients with higher Ki-67 scores. Furthermore, the higher rate of subtotal tumor removals in these patients reveals technical difficulties in accomplishing a radical removal, although the incidence of residual tumors was thus not affected. In view of the present information obtained with proliferation markers, the site of tumor origin still remains the most predictive variable for the course of the disease. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:17171028

  12. Studying the effect of noise on the performance of 2D and 3D texture measures for quantifying the trabecular bone structure as obtained with high resolution MR imaging at 3 tesla

    NASA Astrophysics Data System (ADS)

    Monetti, Roberto; Bauer, Jan; Mueller, Dirk; Rummeny, Ernst J.; Link, Thomas M.; Majumdar, Sharmila; Matsuura, Maiko; Eckstein, Felix; Sidorenko, Irina; Raeth, Christoph W.

    2008-03-01

    3.0 Tesla MRI devices are becoming popular in clinical applications since they render images with a higher signal-tonoise ratio than the former 1.5 Tesla MRI devices. Here, we investigate if higher signal-to-noise ratio can be beneficial for a quantitative image analysis in the context of bone research. We performed a detailed analysis of the effect of noise on the performance of 2D morphometric linear measures and a 3D nonlinear measure with respect to their correlation with biomechanical properties of the bone expressed by the maximum compressive strength. The performance of both 2D and 3D texture measures was relatively insensitive to superimposed artificial noise. This finding suggests that MR sequences for visualizing bone structures at 3T should rather be optimized to spatial resolution (or scanning time) than to signal-to-noise ratio.

  13. High-Resolution Intravital Microscopy

    PubMed Central

    Andresen, Volker; Pollok, Karolin; Rinnenthal, Jan-Leo; Oehme, Laura; Günther, Robert; Spiecker, Heinrich; Radbruch, Helena; Gerhard, Jenny; Sporbert, Anje; Cseresnyes, Zoltan; Hauser, Anja E.; Niesner, Raluca

    2012-01-01

    Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy - the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning) while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs) of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and developmental biology

  14. Fibrous Dysplasia of the Temporal Bone with External Auditory Canal Stenosis and Secondary Cholesteatoma.

    PubMed

    Liu, Yu Hsi; Chang, Kuo Ping

    2016-04-01

    Fibrous dysplasia is a slowly progressive benign fibro-osseous disease, rarely occurring in temporal bones. In these cases, most bony lesions developed from the bony part of the external auditory canals, causing otalgia, hearing impairment, otorrhea, and ear hygiene blockade and probably leading to secondary cholesteatoma. We presented the medical history of a 24-year-old woman with temporal monostotic fibrous dysplasia with secondary cholesteatoma. The initial presentation was unilateral conductive hearing loss. A hard external canal tumor contributing to canal stenosis and a near-absent tympanic membrane were found. Canaloplasty and type I tympanoplasty were performed, but the symptoms recurred after 5 years. She received canal wall down tympanomastoidectomy with ossciculoplasty at the second time, and secondary cholesteatoma in the middle ear was diagnosed. Fifteen years later, left otorrhea recurred again and transcanal endoscopic surgery was performed for middle ear clearance. Currently, revision surgeries provide a stable auditory condition, but her monostotic temporal fibrous dysplasia is still in place. PMID:27340999

  15. Pneumatization of the zygomatic process of temporal bone on computed tomograms

    PubMed Central

    Friedrich, Reinhard E.; Viezens, Liska; Grzyska, Ulrich

    2016-01-01

    Purpose: Zygomatic air cells (ZAC) are a variant of temporal bone pneumatization that needs no treatment. However, ZAC can have an impact on surgical procedures in the temporo-mandibular joint region. Recent reports suggest that computed tomography will disclose more ZAC than can be diagnosed on panoramic radiography. The aim of this study was to analyze ZAC prevalence on CT in a population that was not pre-selected by admission to a dental clinic. Furthermore, an extensive literature review was performed to assess the prevalence of ZAC and to address the impact of imaging technique on the definition of the item. Material and methods: Digitalized cranial CTs of 2007 patients were retrospectively analyzed. The Frankfort horizontal was used to define a ZAC on sagittal CTs. Results: In this study group, 806 were female (40.16%) and 1,201 were male (59.84%). Mean age was 49.96 years in the whole group (female: 55.83 years, male: 46.01 years). A ZAC was diagnosed in 152 patients (female: 66, male: 86). Unilateral ZAC surpasses bilateral findings (115 vs. 37 patients). ZAC were diagnosed in children 5 years of age and older. Sectional imaging techniques show a better visualization of the region of interest. However, presently an increase of ZAC prevalence attributable to imaging technique cannot conclusively be derived from the current literature. The normal finding of a ZAC on radiograms is a sharply defined homogenous transparent lesion restricted to the zygomatic process of the temporal bone that has no volume effect on the shape of the process. Conclusion: ZAC is an anatomical variant of the temporal bone that has come into focus of maxillofacial radiology due to its noticeable aspect on panoramic radiograms. The harmless variant can be expected in about one in thirteen individuals undergoing facial radiology. Panoramic radiograms appear to be sufficient to present ZAC of relevant size. However, in preparation for surgical procedures affecting the articular eminence

  16. Primary Ewing's sarcoma of the squamous part of temporal bone in a young girl treated with adjuvant volumetric arc therapy.

    PubMed

    Nandi, Moujhuri; Bhattacharya, Jibak; Goswami, Suchanda; Goswami, Chanchal

    2015-01-01

    Ewing's sarcoma (ES)/peripheral primitive neuroectodermal tumors usually arise in the long bones of children and young adults. Primary ES of the cranium is unusual. Treatment involves multi-modality therapy incorporating surgery, radiotherapy and chemotherapy; outcomes are similar to those arising from long bones. We report a case of Primary ES of the squamous part of temporal bone with intracranial extension in a 9-year-old girl who was treated with surgery, chemotherapy followed by adjuvant radiotherapy by volumetric arc therapy. Post 1-year of treatment the girl is performing well in her classes. PMID:26881573

  17. Chondrosarcoma of the temporal bone. Diagnosis and treatment of 13 cases and review of the literature

    SciTech Connect

    Coltrera, M.D.; Googe, P.B.; Harrist, T.J.; Hyams, V.J.; Schiller, A.L.; Goodman, M.L.

    1986-12-15

    Chondrosarcoma of the temporal bone is a rare lesion. Clinically it has been confused with multiple sclerosis, glomus jugulare tumors, meningioma, and chordomas. The cranial nerve palsies frequently observed with the tumors are related to the anatomic locations of the tumors. Thirteen patients with this entity are presented and the eleven other cases in the literature are reviewed. Histologically the tumors are low grade and exhibit myxoid features. The myxoid features must be differentiated from chordoma and chondroid chordoma. The tumor locations preclude surgical excision and conventional radiation therapy can cause unacceptable neurologic sequelae. Proton beam therapy has been effective in short-term results and appears capable of avoiding serious neurologic side effects.

  18. High Resolution PDF Measurements on Ag Nanoparticles

    SciTech Connect

    Rocha, Tulio C. R.; Martin, Chris; Kycia, Stefan; Zanchet, Daniela

    2009-01-29

    The quantitative analysis of structural defects in Ag nanoparticles was addressed in this work. We performed atomic scale structural characterization by a combination of x-ray diffraction (XRD) using the Pair Distribution Function analysis (PDF) and High Resolution Transmission Electron Microscopy (HRTEM). The XRD measurements were performed using an innovative instrumentation setup to provide high resolution PDF patterns.

  19. High resolution scintillation detector with semiconductor readout

    DOEpatents

    Levin, Craig S.; Hoffman, Edward J.

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  20. Radiologic and Audiologic Findings in the Temporal Bone of Patients with CHARGE Syndrome

    PubMed Central

    Ha, Jennifer; Ong, Frederick; Wood, Bradley; Vijayasekaran, Shyan

    2016-01-01

    Background: CHARGE syndrome is a common congenital anomaly. Hearing loss affects 60%-90% of these children. As temporal bone computed tomography (CT) has become more sophisticated, more abnormalities of the middle and inner ear have been found. We present the detailed CT findings for children with CHARGE syndrome and the correlation of the CT findings with audiograms. Methods: We performed a retrospective medical records review of 12 patients with CHARGE syndrome, identified between 1990-2011 at Princess Margaret Hospital for Children in Western Australia, who underwent temporal bone CT for evaluation of hearing loss. Results: We present our findings for the 24 ears in terms of the cochlear, semicircular canal, middle ear, facial nerve, external auditory canal, venous, and jugular anomalies. The internal auditory canal was normal in 83.3% (n=20) of ears. Three (12.5%) ears had enlarged basal turns, and 4 (16.7%) each had hypoplastic and incompletely partitioned apical turns. The majority (n=13, 56.5%) of the vestibules were dysplastic. Up to 70.8% had abnormalities of the semicircular canal. The middle ear cavity was normal in 55% (n=11) of ears; however, up to 80% of the ears had some abnormality of the ossicles, and up to 70% had an abnormality of the facial nerve (7th cranial nerve) segments, especially in the labyrinthine segment. CT findings did not correlate with the audiograms. Conclusion: The management of children with CHARGE syndrome is complex, requiring early evaluation and close attention of the multidisciplinary team. Early identification of hearing deficits is vital for patients' linguistic development. PMID:27303220

  1. Morphological study of styloid process of the temporal bone and its clinical implications

    PubMed Central

    Vadgaonkar, Rajanigandha; Prabhu, Latha V.; Rai, Rajalakshmi; Pai, Mangala M.; Tonse, Mamatha; Jiji, P. J.

    2015-01-01

    The objective of this study was to study the morphometry of the styloid process of temporal bone and prevalence of elongated styloid process. The morphology of elongated styloid process along with its embryological and clinical importance are discussed. The present study included 110 human dry skulls which were procured from the bone collections of the department of anatomy. The styloid process was observed macroscopically on both sides of all the skulls, the elongations if any were noted. All the styloids were measured for their length, thickness at different levels and interstyloid distance at various levels. Out of 110 specimens, only 5 skulls (4.5%) exhibited the elongated styloid process. Among them, 3 skulls (2.7%) had unilateral elongation and 2 skulls (1.8%) had bilateral elongation of the styloid process. The mean length of the styloid process was 17.8±9.3 mm and 18.2±5.6 mm for the right and left sides, respectively. The prevalence of elongated styloid process in the present study was 4.5%. The clinical anatomy of this congenital variant is important to the neurosurgeon and radiologist, while interpreting the computed tomogram and magnetic resonance image scans. The morphological knowledge of elongated styloid process is clinically important since the course of the vertebral artery may be distorted in such situations. PMID:26417479

  2. Ultrasound-induced hyperthermia for the spatio-temporal control of gene expression in bone repair

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher; Padilla, Frédéric; Zhang, Man; Vilaboa, Nuria; Kripfgans, Oliver; Fowlkes, Brian; Franceschi, Renny

    2012-10-01

    Spatial and temporal control over the expression of growth/differentiation factors is of great interest for regeneration of bone, but technologies capable of providing tight and active control over gene expression remain elusive. We propose the use of focused ultrasound for the targeted activation of heat shock-sensitive expression systems in engineered bone. We report in vitro results with cells that express firefly luciferase (fLuc) under the control of a heat shock protein promoter. Cells were embedded in fibrin scaffolds and exposed to focused ultrasound, using a custom 3.3MHz transducer (focal length 4", f-number 1.33", focal dimension 1.2mm lateral FWHM) in CW mode for 2-20 minutes at intensities ISPTA=120-440 W/cm2. The kinetics of ultrasound-mediated activation of the cells was compared with that of strictly thermal activation. Bioluminescence imaging revealed fLuc expression in an area ≥2.5mm in diameter at the position of the ultrasound focus, and the diameter and intensity of the signal increased with the amplitude of the acoustic energy. We also found that ultrasound activated fLuc expression with substantially shorter exposures than thermal activation. Our results demonstrate the potential for focused ultrasound to selectively activate the expression of a gene of interest in an engineered tissue and suggest that focused ultrasound activates the heat shock pathway by a combination of thermal and non-thermal mechanisms.

  3. Giant cell granuloma of the temporal bone in a mixed martial arts fighter.

    PubMed

    Maerki, Jennifer; Riddle, Nicole D; Newman, Jason; Husson, Michael A; Lee, John Y K

    2012-10-01

    Background and Importance Giant cell granuloma (GCG) is a rare, benign, non-neoplastic lesion of the head and neck. More common in the jaw bones, there have been few reports of the lesion arising in the temporal bone. Initially referred to as a "giant cell reparative granuloma," due to the previously accepted notion of its nature in attempting to repair areas of injury, the term "giant cell granuloma" is now more frequently used as this lesion has been found in patients without a history of trauma. In addition, several cases with a destructive nature, in contrast to a reparative one, have been observed. Clinical Presentation We report a case of GCG presenting as a head and neck tumor with dural attachments and extension into the middle cranial fossa in a mixed martial arts fighter. Conclusion Giant cell granulomas are typically treated surgically and have a good prognosis; however, care must be taken when they present in unusual locations. This case supports the theory of trauma and inflammation as risk factors for GCG. PMID:23946929

  4. Multi-temporal MRI carpal bone volumes analysis by principal axes registration

    NASA Astrophysics Data System (ADS)

    Ferretti, Roberta; Dellepiane, Silvana

    2016-03-01

    In this paper, a principal axes registration technique is presented, with the relevant application to segmented volumes. The purpose of the proposed registration is to compare multi-temporal volumes of carpal bones from Magnetic Resonance Imaging (MRI) acquisitions. Starting from the study of the second-order moment matrix, the eigenvectors are calculated to allow the rotation of volumes with respect to reference axes. Then the volumes are spatially translated to become perfectly overlapped. A quantitative evaluation of the results obtained is carried out by computing classical indices from the confusion matrix, which depict similarity measures between the volumes of the same organ as extracted from MRI acquisitions executed at different moments. Within the medical field, the way a registration can be used to compare multi-temporal images is of great interest, since it provides the physician with a tool which allows a visual monitoring of a disease evolution. The segmentation method used herein is based on the graph theory and is a robust, unsupervised and parameters independent method. Patients affected by rheumatic diseases have been considered.

  5. Dual-time-point FDG-PET/CT Imaging of Temporal Bone Chondroblastoma: A Report of Two Cases

    PubMed Central

    Toriihara, Akira; Tsunoda, Atsunobu; Takemoto, Akira; Kubota, Kazunori; Machida, Youichi; Tateishi, Ukihide

    2015-01-01

    Temporal bone chondroblastoma is an extremely rare benign bone tumor. We encountered two cases showing similar imaging findings on computed tomography (CT), magnetic resonance imaging (MRI), and dual-time-point 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/CT. In both cases, CT images revealed temporal bone defects and sclerotic changes around the tumor. Most parts of the tumor showed low signal intensity on T2-weighted MRI images and non-uniform enhancement on gadolinium contrast-enhanced T1-weighted images. No increase in signal intensity was noted in diffusion-weighted images. Dual-time-point PET/CT showed markedly elevated 18F-FDG uptake, which increased from the early to delayed phase. Nevertheless, immunohistochemical analysis of the resected tumor tissue revealed weak expression of glucose transporter-1 and hexokinase II in both tumors. Temporal bone tumors, showing markedly elevated 18F-FDG uptake, which increases from the early to delayed phase on PET/CT images, may be diagnosed as malignant bone tumors. Therefore, the differential diagnosis should include chondroblastoma in combination with its characteristic findings on CT and MRI. PMID:27408892

  6. Dual-time-point FDG-PET/CT Imaging of Temporal Bone Chondroblastoma: A Report of Two Cases.

    PubMed

    Toriihara, Akira; Tsunoda, Atsunobu; Takemoto, Akira; Kubota, Kazunori; Machida, Youichi; Tateishi, Ukihide

    2015-01-01

    Temporal bone chondroblastoma is an extremely rare benign bone tumor. We encountered two cases showing similar imaging findings on computed tomography (CT), magnetic resonance imaging (MRI), and dual-time-point (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET)/CT. In both cases, CT images revealed temporal bone defects and sclerotic changes around the tumor. Most parts of the tumor showed low signal intensity on T2-weighted MRI images and non-uniform enhancement on gadolinium contrast-enhanced T1-weighted images. No increase in signal intensity was noted in diffusion-weighted images. Dual-time-point PET/CT showed markedly elevated (18)F-FDG uptake, which increased from the early to delayed phase. Nevertheless, immunohistochemical analysis of the resected tumor tissue revealed weak expression of glucose transporter-1 and hexokinase II in both tumors. Temporal bone tumors, showing markedly elevated (18)F-FDG uptake, which increases from the early to delayed phase on PET/CT images, may be diagnosed as malignant bone tumors. Therefore, the differential diagnosis should include chondroblastoma in combination with its characteristic findings on CT and MRI. PMID:27408892

  7. Variation and diversity in Homo erectus: a 3D geometric morphometric analysis of the temporal bone.

    PubMed

    Terhune, Claire E; Kimbel, William H; Lockwood, Charles A

    2007-07-01

    Although the level of taxonomic diversity within the fossil hominin species Homo erectus (sensu lato) is continually debated, there have been relatively few studies aiming to quantify the morphology of this species. Instead, most researchers have relied on qualitative descriptions or the evaluation of nonmetric characters, which in many cases display continuous variation. Also, only a few studies have used quantitative data to formally test hypotheses regarding the taxonomic composition of the "erectus" hypodigm. Despite these previous analyses, however, and perhaps in part due to these varied approaches for assessing variation within specimens typically referred to H. erectus (sensu lato) and the general lack of rigorous statistical testing of how variation within this taxon is partitioned, there is currently little consensus regarding whether this group is a single species, or whether it should instead be split into separate temporal or geographically delimited taxa. In order to evaluate possible explanations for variation within H. erectus, we tested the general hypothesis that variation within the temporal bone morphology of H. erectus is consistent with that of a single species, using great apes and humans as comparative taxa. Eighteen three-dimensional (3D) landmarks of the temporal bone were digitized on a total of 520 extant and fossil hominid crania. Landmarks were registered by Generalized Procrustes Analysis, and Procrustes distances were calculated for comparisons of individuals within and between the extant taxa. Distances between fossil specimens and between a priori groupings of fossils were then compared to the distances calculated within the extant taxa to assess the variation within the H. erectus sample relative to that of known species, subspecies, and populations. Results of these analyses indicate that shape variation within the entire H. erectus sample is generally higher than extant hominid intraspecific variation, and putative H. ergaster

  8. Dual camera system for acquisition of high resolution images

    NASA Astrophysics Data System (ADS)

    Papon, Jeremie A.; Broussard, Randy P.; Ives, Robert W.

    2007-02-01

    Video surveillance is ubiquitous in modern society, but surveillance cameras are severely limited in utility by their low resolution. With this in mind, we have developed a system that can autonomously take high resolution still frame images of moving objects. In order to do this, we combine a low resolution video camera and a high resolution still frame camera mounted on a pan/tilt mount. In order to determine what should be photographed (objects of interest), we employ a hierarchical method which first separates foreground from background using a temporal-based median filtering technique. We then use a feed-forward neural network classifier on the foreground regions to determine whether the regions contain the objects of interest. This is done over several frames, and a motion vector is deduced for the object. The pan/tilt mount then focuses the high resolution camera on the next predicted location of the object, and an image is acquired. All components are controlled through a single MATLAB graphical user interface (GUI). The final system we present will be able to detect multiple moving objects simultaneously, track them, and acquire high resolution images of them. Results will demonstrate performance tracking and imaging varying numbers of objects moving at different speeds.

  9. Diffuse Osteoradionecrosis of Temporal Bone as a Late Complication of Adjuvant Radiotherapy to Parotid Bed: A Case Report

    PubMed Central

    Abraham, Sisha Liz; Iype, Elizabeth Mathew; Jagan, Vijay

    2014-01-01

    Localized osteoradionecrosis of bony external auditory canal has been described as a late complication of external beam radiotherapy which is delivered to parotid bed after surgical resection of parotid malignancies. Diffuse osteoradionecrosis of temporal bone is rarely seen in such a setting and it is usually caused by resection of part of the bone for surgical clearance, followed by post-operative radiotherapy.This condition warrants aggressive treatment, in order to avoid potentially life threatening intracranial complications. In this report, we are presenting an uncommon case of extensive osteoradionecrosis which involved the entire temporal bone, in a patient who was treated for mucoepidermoid carcinoma of parotid twelve years ago, with total conservative parotidectomy and adjuvant radiotherapy. PMID:24995229

  10. Three-dimensional (3D) microarchitecture correlations with 2D projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions: effects of resolution and noise.

    PubMed

    Winzenrieth, Renaud; Michelet, Franck; Hans, Didier

    2013-01-01

    The aim of the present study is to determine the level of correlation between the 3-dimensional (3D) characteristics of trabecular bone microarchitecture, as evaluated using microcomputed tomography (μCT) reconstruction, and trabecular bone score (TBS), as evaluated using 2D projection images directly derived from 3D μCT reconstruction (TBSμCT). Moreover, we have evaluated the effects of image degradation (resolution and noise) and X-ray energy of projection on these correlations. Thirty human cadaveric vertebrae were acquired on a microscanner at an isotropic resolution of 93 μm. The 3D microarchitecture parameters were obtained using MicroView (GE Healthcare, Wauwatosa, MI). The 2D projections of these 3D models were generated using the Beer-Lambert law at different X-ray energies. Degradation of image resolution was simulated (from 93 to 1488 μm). Relationships between 3D microarchitecture parameters and TBSμCT at different resolutions were evaluated using linear regression analysis. Significant correlations were observed between TBSμCT and 3D microarchitecture parameters, regardless of the resolution. Correlations were detected that were strongly to intermediately positive for connectivity density (0.711 ≤ r² ≤ 0.752) and trabecular number (0.584 ≤ r² ≤ 0.648) and negative for trabecular space (-0.407 ≤ r² ≤ -0.491), up to a pixel size of 1023 μm. In addition, TBSμCT values were strongly correlated between each other (0.77 ≤ r² ≤ 0.96). Study results show that the correlations between TBSμCT at 93 μm and 3D microarchitecture parameters are weakly impacted by the degradation of image resolution and the presence of noise. PMID:22749406

  11. Delayed loss of hearing after hearing preservation cochlear implantation: Human temporal bone pathology and implications for etiology.

    PubMed

    Quesnel, Alicia M; Nakajima, Hideko Heidi; Rosowski, John J; Hansen, Marlan R; Gantz, Bruce J; Nadol, Joseph B

    2016-03-01

    After initially successful preservation of residual hearing with cochlear implantation, some patients experience subsequent delayed hearing loss. The etiology of such delayed hearing loss is unknown. Human temporal bone pathology is critically important in investigating the etiology, and directing future efforts to maximize long term hearing preservation in cochlear implant patients. Here we present the temporal bone pathology from a patient implanted during life with an Iowa/Nucleus Hybrid S8 implant, with initially preserved residual hearing and subsequent hearing loss. Both temporal bones were removed for histologic processing and evaluated. Complete clinical and audiologic records were available. He had bilateral symmetric high frequency severe to profound hearing loss prior to implantation. Since he was implanted unilaterally, the unimplanted ear was presumed to be representative of the pre-implantation pathology related to his hearing loss. The implanted and contralateral unimplanted temporal bones both showed complete degeneration of inner hair cells and outer hair cells in the basal half of the cochleae, and only mild patchy loss of inner hair cells and outer hair cells in the apical half. The total spiral ganglion neuron counts were similar in both ears: 15,138 (56% of normal for age) in the unimplanted right ear and 13,722 (51% of normal for age) in the implanted left ear. In the basal turn of the implanted left cochlea, loose fibrous tissue and new bone formation filled the scala tympani, and part of the scala vestibuli. Delayed loss of initially preserved hearing after cochlear implantation was not explained by additional post-implantation degeneration of hair cells or spiral ganglion neurons in this patient. Decreased compliance at the round window and increased damping in the scala tympani due to intracochlear fibrosis and new bone formation might explain part of the post-implantation hearing loss. Reduction of the inflammatory and immune response to

  12. High Resolution Aerosol Modeling: Decadal Changes in Radiative Forcing

    SciTech Connect

    Bergmann, D J; Chuang, C C; Govindasamy, B; Cameron-Smith, P J; Rotman, D A

    2005-02-01

    The Atmospheric Science Division of LLNL has performed high-resolution calculations of direct sulfate forcing using a DOE-provided computer resource at NERSC. We integrated our global chemistry-aerosol model (IMPACT) with the LLNL high-resolution global climate model (horizontal resolution as high as 100 km) to examine the temporal evolution of sulfate forcing since 1950. We note that all previous assessments of sulfate forcing reported in IPCC (2001) were based on global models with coarse spatial resolutions ({approx} 300 km or even coarser). However, the short lifetime of aerosols ({approx} days) results in large spatial and temporal variations of radiative forcing by sulfate. As a result, global climate models with coarse resolutions do not accurately simulate sulfate forcing on regional scales. It requires much finer spatial resolutions in order to address the effects of regional anthropogenic SO{sub 2} emissions on the global atmosphere as well as the effects of long-range transport of sulfate aerosols on the regional climate forcing. By taking advantage of the tera-scale computer resources at NERSC, we simulated the historic direct sulfate forcing at much finer spatial resolutions than ever attempted before. Furthermore, we performed high-resolution chemistry simulations and saved monthly averaged oxidant fields, which will be used in subsequent simulations of sulfate aerosol formation and their radiative impact.

  13. NOAA's Use of High-Resolution Imagery

    NASA Technical Reports Server (NTRS)

    Hund, Erik

    2007-01-01

    NOAA's use of high-resolution imagery consists of: a) Shoreline mapping and nautical chart revision; b) Coastal land cover mapping; c) Benthic habitat mapping; d) Disaster response; and e) Imagery collection and support for coastal programs.

  14. High-Resolution Plots of Trigonometric Functions.

    ERIC Educational Resources Information Center

    Stick, Marvin E.; Stick, Michael J.

    1985-01-01

    Provides computer programs (for Apple microcomputers) for drawing (in high resolution graphics) a three-leaved rose, concentric circles, circumscribed and inscribed astroids. Sample output and discussions of the mathematics involved in the programs are included. (JN)

  15. High resolution nitrogen dioxide observations: retrieval, evaluation, and interpretation

    NASA Astrophysics Data System (ADS)

    Lamsal, L. N.; Janz, S. J.; Krotkov, N. A.; Pickering, K. E.; Kowalewski, M. G.; Loughner, C.; Spurr, R. J. D.; Crawford, J. H.

    2015-12-01

    The Airborne Compact Atmospheric Mapper (ACAM) deployed during the DISCOVER-AQ Maryland field campaign made hyperspectral remote sensing measurements in the 304-910 nm range allowing observations of several tropospheric pollutants including nitrogen dioxide (NO2) at an unprecedented spatial resolution of 1.5x0.75 km2. We apply the DOAS method, include high resolution information for surface reflectivity and vertical distributions of NO2 and aerosols, and account for temporal variation in atmospheric NO2 to retrieve lower tropospheric NO2 column. We compare NO2 from ACAM with observations from in-situ aircraft, ground-based PANDORA, and space-based OMI, and NO2 simulation from air quality models. The high resolution ACAM measurements offer not only new insights into our understanding of atmospheric composition and chemistry through observation of sub-sampling variability in typical satellite and model resolutions, but also opportunities for algorithm improvements for upcoming geostationary air quality missions.

  16. High Resolution Rapid Revisits Insar Monitoring of Surface Deformation

    NASA Astrophysics Data System (ADS)

    Singhroy, V.; Li, J.; Charbonneau, F.

    2014-12-01

    Monitoring surface deformation on strategic energy and transportation corridors requires high resolution spatial and temporal InSAR images for mitigation and safety purposes. High resolution air photos, lidar and other satellite images are very useful in areas where the landslides can be fatal. Recently, radar interferometry (InSAR) techniques using more rapid revisit images from several radar satellites are increasingly being used in active deformation monitoring. The Canadian RADARSAT Constellation (RCM) is a three-satellite mission that will provide rapid revisits of four days interferometric (InSAR) capabilities that will be very useful for complex deformation monitoring. For instance, the monitoring of surface deformation due to permafrost activity, complex rock slide motion and steam assisted oil extraction will benefit from this new rapid revisit capability. This paper provide examples of how the high resolution (1-3 m) rapid revisit InSAR capabilities will improve our monitoring of surface deformation and provide insights in understanding triggering mechanisms. We analysed over a hundred high resolution InSAR images over a two year period on three geologically different sites with various configurations of topography, geomorphology, and geology conditions. We show from our analysis that the more frequent InSAR acquisitions are providing more information in understanding the rates of movement and failure process of permafrost triggered retrogressive thaw flows; the complex motion of an asymmetrical wedge failure of an active rock slide and the identification of over pressure zones related to oil extraction using steam injection. Keywords: High resolution, InSAR, rapid revisits, triggering mechanisms, oil extraction.

  17. Temporal variation and lack of host specificity among bacterial endosymbionts of Osedax bone worms (Polychaeta: Siboglinidae)

    PubMed Central

    2012-01-01

    Background Osedax worms use a proliferative root system to extract nutrients from the bones of sunken vertebrate carcasses. The roots contain bacterial endosymbionts that contribute to the nutrition of these mouthless and gutless worms. The worms acquire these essential endosymbionts locally from the environment in which their larvae settle. Here we report on the temporal dynamics of endosymbiont diversity hosted by nine Osedax species sampled during a three-year investigation of an experimental whale fall at 1820-m depth in the Monterey Bay, California. The host species were identified by their unique mitochondrial COI haplotypes. The endosymbionts were identified by ribotyping with PCR primers specifically designed to target Oceanospirillales. Results Thirty-two endosymbiont ribotypes associated with these worms clustered into two distinct bacterial ribospecies that together comprise a monophyletic group, mostly restricted to deep waters (>1000 m). Statistical analyses confirmed significant changes in the relative abundances of host species and the two dominant endosymbiont ribospecies during the three-year sampling period. Bone type (whale vs. cow) also had a significant effect on host species, but not on the two dominant symbiont ribospecies. No statistically significant association existed between the host species and endosymbiont ribospecies. Conclusions Standard PCR and direct sequencing proved to be an efficient method for ribotyping the numerically dominant endosymbiont strains infecting a large sample of host individuals; however, this method did not adequately represent the frequency of mixed infections, which appears to be the rule rather than an exception for Osedax individuals. Through cloning and the use of experimental dilution series, we determined that minority ribotypes constituting less than 30% of a mixture would not likely be detected, leading to underestimates of the frequency of multiple infections in host individuals. PMID:23006795

  18. Three-Dimensional Virtual Model of the Human Temporal Bone: A Stand-Alone, Downloadable Teaching Tool

    PubMed Central

    Wang, Haobing; Northrop, Clarinda; Burgess, Barbara; Liberman, M. Charles; Merchant, Saumil N.

    2007-01-01

    Objective To develop a three-dimensional virtual model of a human temporal bone based on serial histologic sections. Background The three-dimensional anatomy of the human temporal bone is complex, and learning it is a challenge for students in basic science and in clinical medicine. Methods Every fifth histologic section from a 14-year-old male was digitized and imported into a general purpose three-dimensional rendering and analysis software package called Amira (version 3.1). The sections were aligned, and anatomic structures of interest were segmented. Results The three-dimensional model is a surface rendering of these structures of interest, which currently includes the bone and air spaces of the temporal bone; the perilymph and endolymph spaces; the sensory epithelia of the cochlear and vestibular labyrinths; the ossicles and tympanic membrane; the middle ear muscles; the carotid artery; and the cochlear, vestibular, and facial nerves. For each structure, the surface transparency can be individually controlled, thereby revealing the three-dimensional relations between surface landmarks and underlying structures. The three-dimensional surface model can also be “sliced open” at any section and the appropriate raw histologic image superimposed on the cleavage plane. The image stack can also be resectioned in any arbitrary plane. Conclusion This model is a powerful teaching tool for learning the complex anatomy of the human temporal bone and for relating the two-dimensional morphology seen in a histologic section to the three-dimensional anatomy. The model can be downloaded from the Eaton-Peabody Laboratory web site, packaged within a cross-platform freeware three-dimensional viewer, which allows full rotation and transparency control. PMID:16791035

  19. High-resolution secondary reconstructions with the use of flat panel CT in the clinical assessment of patients with cochlear implants.

    PubMed

    Pearl, M S; Roy, A; Limb, C J

    2014-06-01

    Radiologic assessment of cochlear implants can be limited because of metallic streak artifacts and the high attenuation of the temporal bones. We report on 14 patients with 18 cochlear implants (17 Med-El standard 31.5-mm arrays, 1 Med-El medium 24-mm array) who underwent flat panel CT with the use of high-resolution secondary reconstruction techniques. Flat panel CT depicted the insertion site, cochlear implant course, and all 216 individual electrode contacts. The calculated mean angular insertion depth for standard arrays was 591.9° (SD = 70.9; range, 280°). High-resolution secondary reconstructions of the initial flat panel CT dataset, by use of a manually generated field of view, Hounsfield unit kernel type, and sharp image characteristics, provided high-quality images with improved spatial resolution. Flat panel CT is a promising imaging tool for the postoperative evaluation of cochlear implant placement. PMID:24371026

  20. Differential Intracochlear Sound Pressure Measurements in Human Temporal Bones with an Off-the-Shelf Sensor

    PubMed Central

    Salcher, Rolf; Püschel, Klaus; Lenarz, Thomas; Maier, Hannes

    2016-01-01

    The standard method to determine the output level of acoustic and mechanical stimulation to the inner ear is measurement of vibration response of the stapes in human cadaveric temporal bones (TBs) by laser Doppler vibrometry. However, this method is reliable only if the intact ossicular chain is stimulated. For other stimulation modes an alternative method is needed. The differential intracochlear sound pressure between scala vestibuli (SV) and scala tympani (ST) is assumed to correlate with excitation. Using a custom-made pressure sensor it has been successfully measured and used to determine the output level of acoustic and mechanical stimulation. To make this method generally accessible, an off-the-shelf pressure sensor (Samba Preclin 420 LP, Samba Sensors) was tested here for intracochlear sound pressure measurements. During acoustic stimulation, intracochlear sound pressures were simultaneously measurable in SV and ST between 0.1 and 8 kHz with sufficient signal-to-noise ratios with this sensor. The pressure differences were comparable to results obtained with custom-made sensors. Our results demonstrated that the pressure sensor Samba Preclin 420 LP is usable for measurements of intracochlear sound pressures in SV and ST and for the determination of differential intracochlear sound pressures. PMID:27610377

  1. A critical look at persistent problems in the diagnosis, staging and treatment of temporal bone carcinoma.

    PubMed

    Zanoletti, Elisabetta; Lovato, Andrea; Stritoni, Paola; Martini, Alessandro; Mazzoni, Antonio; Marioni, Gino

    2015-12-01

    Temporal bone squamous cell carcinoma (TBSCC) is an uncommon malignancy with a distinctly poor prognosis in advanced cases. There is still much controversy surrounding the rational diagnostic/therapeutic approach to TBSCC. Diagnostic differences are due mainly to: the small number of cases reported (even in the largest available series); the inappropriate histological heterogeneity of several case series; the lack of an internationally-accepted staging system for TBSCC; the frequent absence of adequate radiological imaging to enable a malignancy's local, regional and distant extension to be studied in detail; and a non-standardized approach to final histological assessment of the surgical margins. As for the therapeutic approaches, several issues are still debated, including the choice between en bloc and piecemeal primary surgery for the tumor's removal, and the role of elective neck dissection. Although radiotherapy seems to be an effective adjuvant therapy in advanced cases, its role in low-stage tumors or as a primary treatment has yet to be established. The value of chemotherapy is also still unclear. The treatment strategy for TBSCC is often based on the combined experience of a given surgeon and institution, bearing the results reportedly achieved by other oncology centers in mind. To date, the optimal management of TBSCC is still elusive. We aimed to critically review the ongoing crucial issues concerning the management of TBSCC, analyzing how it is diagnosed, staged and treated, the management of recurrences, rational follow-up schedules, and prognostic factors for this disease. PMID:26549119

  2. Differential Intracochlear Sound Pressure Measurements in Human Temporal Bones with an Off-the-Shelf Sensor.

    PubMed

    Grossöhmichen, Martin; Salcher, Rolf; Püschel, Klaus; Lenarz, Thomas; Maier, Hannes

    2016-01-01

    The standard method to determine the output level of acoustic and mechanical stimulation to the inner ear is measurement of vibration response of the stapes in human cadaveric temporal bones (TBs) by laser Doppler vibrometry. However, this method is reliable only if the intact ossicular chain is stimulated. For other stimulation modes an alternative method is needed. The differential intracochlear sound pressure between scala vestibuli (SV) and scala tympani (ST) is assumed to correlate with excitation. Using a custom-made pressure sensor it has been successfully measured and used to determine the output level of acoustic and mechanical stimulation. To make this method generally accessible, an off-the-shelf pressure sensor (Samba Preclin 420 LP, Samba Sensors) was tested here for intracochlear sound pressure measurements. During acoustic stimulation, intracochlear sound pressures were simultaneously measurable in SV and ST between 0.1 and 8 kHz with sufficient signal-to-noise ratios with this sensor. The pressure differences were comparable to results obtained with custom-made sensors. Our results demonstrated that the pressure sensor Samba Preclin 420 LP is usable for measurements of intracochlear sound pressures in SV and ST and for the determination of differential intracochlear sound pressures. PMID:27610377

  3. Completely-in-the-canal magnet-drive hearing device: a temporal bone study.

    PubMed

    Mahboubi, Hossein; Malley, Melinda J D; Paulick, Peyton; Merlo, Mark W; Bachman, Mark; Djalilian, Hamid R

    2013-03-01

    The magnet-drive hearing device (MHD) is a small completely-in-the-canal hearing aid prototype that drives the tympanic membrane (TM) through a magnetic interface. A cadaveric temporal bone was prepared. The MHD was coupled to a nickel-epoxy pellet glued to the umbo. Frequency sweeps between 0.3 and 10 kHz were performed, and the MHD was driven with various levels of current. Displacements of the posterior crus of the stapes were measured using a laser Doppler vibrometer and compared with sound-induced displacements. The MHD had a linear frequency response and low total harmonic distortion. The pellet placement altered the stapes movements; however, the changes were statistically insignificant. Inputs of 100 and 300 mV produced displacements equivalent to those of the natural sound at 70- and 80-dB sound pressure level, respectively. The coupling of this novel device using a magnetic interface to the umbo had a frequency output wider than air conduction devices, and its actuator was effective in driving the TM. PMID:23264118

  4. Operative findings of conductive hearing loss with intact tympanic membrane and normal temporal bone computed tomography.

    PubMed

    Kim, Se-Hyung; Cho, Yang-Sun; Kim, Hye Jeong; Kim, Hyung-Jin

    2014-06-01

    Despite recent technological advances in diagnostic methods including imaging technology, it is often difficult to establish a preoperative diagnosis of conductive hearing loss (CHL) in patients with an intact tympanic membrane (TM). Especially, in patients with a normal temporal bone computed tomography (TBCT), preoperative diagnosis is more difficult. We investigated middle ear disorders encountered in patients with CHL involving an intact TM and normal TBCT. We also analyzed the surgical results with special reference to the pathology. We reviewed the medical records of 365 patients with intact TM, who underwent exploratory tympanotomy for CHL. Fifty nine patients (67 ears, eight bilateral surgeries) had a normal preoperative TBCT findings reported by neuro-radiologists. Demographic data, otologic history, TM findings, preoperative imaging findings, intraoperative findings, and pre- and postoperative audiologic data were obtained and analyzed. Exploration was performed most frequently in the second and fifth decades. The most common postoperative diagnosis was stapedial fixation with non-progressive hearing loss. The most commonly performed hearing-restoring procedure was stapedotomy with piston wire prosthesis insertion. Various types of hearing-restoring procedures during exploration resulted in effective hearing improvement, especially with better outcome in the ossicular chain fixation group. In patients with CHL who have intact TM and normal TBCT, we should consider an exploratory tympanotomy for exact diagnosis and hearing improvement. Information of the common operative findings from this study may help in preoperative counseling. PMID:23744181

  5. High-Resolution Projection Microstereolithography for Patterning of Neovasculature.

    PubMed

    Raman, Ritu; Bhaduri, Basanta; Mir, Mustafa; Shkumatov, Artem; Lee, Min Kyung; Popescu, Gabriel; Kong, Hyunjoon; Bashir, Rashid

    2016-03-01

    To gain a quantitative understanding of the way cells sense, process, and respond to dynamic environmental signals in real-time requires developing in vitro model systems that accurately replicate the 3D structure and function of native tissue. A high-resolution projection stereolithography apparatus (μSLA) capable of multimaterial and grayscale 3D patterning of cells and biomaterials at <5 μm resolution is presented. Murine cells (fibroblasts, myoblasts, endothelial, and bone marrow stromal cells) encapsulated within photosensitive hydrogels using the μSLA remain viable up to two weeks after fabrication. Harnessing the high-resolution fabrication capabilities of this machine, sub-millimeter scale angiogenic cell-encapsulating patches designed to promote targeted growth of neovasculature are printed, as assessed in vitro via enzyme-linked immunosorbent assay (ELISA) and in ovo via a chick chorioallantoic membrane assay (CAM). This application establishes the μSLA as an enabling technology that is widely adaptable to any application that requires high-resolution patterning of cells and cells signals. By providing an efficient and robust method of engineering microscale tissues with encapsulated cells, this apparatus has a range of applications including fundamental studies of extracellular matrix interactions, high throughput drug testing of physiologically relevant substitutes for native tissue, and programmable tissue engineering for applications in regenerative medicine. PMID:26696464

  6. Progress on LAMOST High Resolution Spectrograph Project

    NASA Astrophysics Data System (ADS)

    Zhang, KaI

    2015-08-01

    To explore more science case, LAMOST doesn't only has strong power on celestial spectral survey but also reserves an access to high resolution spectrograph with a few optional fibers. This commissioned spectrograph gets high resolution of R=30,000 - 60,000 at a broad visible band from 370nm to 760nm. With the consideration about site seeing variation in future, single science fiber covers wider field on sky of 4.5arcsec instead of the present 3.3arcsec. An oversize Echelle R4 grating and a pre-slit image slicer are adopted to relieve the spectrograph resolution pressure. High resolution observation will parallel to the low resolution spectral survey at a small cost of losing a few fibers (10 - 20) on telescope focal plane. These science fibers will locate at the different sky areas for more approciate choice. The presentation will give the detailed design introduction and the current project status.

  7. Improving Depiction of Temporal Bone Anatomy With Low-Radiation Dose CT by an Integrated Circuit Detector in Pediatric Patients

    PubMed Central

    He, Jingzhen; Zu, Yuliang; Wang, Qing; Ma, Xiangxing

    2014-01-01

    Abstract The purpose of this study was to determine the performance of low-dose computed tomography (CT) scanning with integrated circuit (IC) detector in defining fine structures of temporal bone in children by comparing with the conventional detector. The study was performed with the approval of our institutional review board and the patients’ anonymity was maintained. A total of 86 children <3 years of age underwent imaging of temporal bone with low-dose CT (80 kV/150 mAs) equipped with either IC detector or conventional discrete circuit (DC) detector. The image noise was measured for quantitative analysis. Thirty-five structures of temporal bone were further assessed and rated by 2 radiologists for qualitative analysis. κ Statistics were performed to determine the agreement reached between the 2 radiologists on each image. Mann–Whitney U test was used to determine the difference in image quality between the 2 detector systems. Objective analysis showed that the image noise was significantly lower (P < 0.001) with the IC detector than with the DC detector. The κ values for qualitative assessment of the 35 fine anatomical structures revealed high interobserver agreement. The delineation for 30 of the 35 landmarks (86%) with the IC detector was superior to that with the conventional DC detector (P < 0.05) although there were no differences in the delineation of the remaining 5 structures (P > 0.05). The low-dose CT images acquired with the IC detector provide better depiction of fine osseous structures of temporal bone than that with the conventional DC detector. PMID:25526489

  8. Pou3f4-Mediated Regulation of Ephrin-B2 Controls Temporal Bone Development in the Mouse

    PubMed Central

    Raft, Steven; Coate, Thomas M.; Kelley, Matthew W.; Crenshaw, E. Bryan; Wu, Doris K.

    2014-01-01

    The temporal bone encases conductive and sensorineural elements of the ear. Mutations of POU3F4 are associated with unique temporal bone abnormalities and X-linked mixed deafness (DFNX2/DFN3). However, the target genes and developmental processes controlled by POU3F4 transcription factor activity have remained largely uncharacterized. Ephrin-B2 (Efnb2) is a signaling molecule with well-documented effects on cell adhesion, proliferation, and migration. Our analyses of targeted mouse mutants revealed that Efnb2 loss-of-function phenocopies temporal bone abnormalities of Pou3f4 hemizygous null neonates: qualitatively identical malformations of the stapes, styloid process, internal auditory canal, and cochlear capsule were present in both mutants. Using failed/insufficient separation of the stapes and styloid process as a quantitative trait, we found that single gene Efnb2 loss-of-function and compound Pou3f4/Efnb2 loss-of-function caused a more severe phenotype than single gene Pou3f4 loss-of-function. Pou3f4 and Efnb2 gene expression domains overlapped at the site of impending stapes-styloid process separation and at subcapsular mesenchyme surrounding the cochlea; at both these sites, Efnb2 expression was attenuated in Pou3f4 hemizygous null mutants relative to control. Results of immunoprecipitation experiments using chromatin isolated from nascent middle ear mesenchyme supported the hypothesis of a physical association between Pou3f4 and specific non-coding sequence of Efnb2. We propose that Efnb2 is a target of Pou3f4 transcription factor activity and an effector of mesenchymal patterning during temporal bone development. PMID:25299585

  9. High-resolution Imaging Techniques for the Assessment of Osteoporosis

    PubMed Central

    Krug, Roland; Burghardt, Andrew J.; Majumdar, Sharmila; Link, Thomas M.

    2010-01-01

    Synopsis The importance of assessing the bone’s microarchitectural make-up in addition to its mineral density in the context of osteoporosis has been emphasized in a number of publications. The high spatial resolution required to resolve the bone’s microstructure in a clinically feasible scan time is challenging. Currently, the best suited modalities meeting these requirements in vivo are high-resolution peripheral quantitative imaging (HR-pQCT) and magnetic resonance imaging (MRI). Whereas HR-pQCT is limited to peripheral skeleton regions like the wrist and ankle, MRI can also image other sites like the proximal femur but usually with lower spatial resolution. In addition Multidetector-CT has been used for high-resolution imaging of trabecular bone structure, however, the radiation dose is a limiting factor. This article provides an overview of the different modalities, technical requirements and recent developments in this emerging field. Details regarding imaging protocols as well as image post-processing methods for bone structure quantification are discussed. PMID:20609895

  10. A prospective evaluation of the combined helical tomotherapy and chemotherapy in pediatric patients with unresectable rhabdomyosarcoma of the temporal bone.

    PubMed

    Zhang, Xinxin; Ma, Kun; Wang, Jaling; Wu, Wenming; Ma, Lin; Huang, Deliang

    2014-09-01

    We determined the efficacy of combined helical tomotherapy (HT) and chemotherapy in primary/recurrent unresectable rhabdomyosarcoma (RMS) of temporal bone. For this purpose, 9 patients (7 males/2 females), aged 4-9 (average: 6.89) years, with unresectable embryonal RMS of the temporal bone were treated at our hospital. The tumors had either invaded the carotid artery in the cavernous sinus (7/9) or both the cavernous sinus and the skull base foramen (2/9); 7 patients had primary and 2 had recurrent RMS. All patients underwent 2 cycles of induction chemotherapy with VIE (vincristine, ifosfamide, and etoposide), followed by concurrent HT (50-70 Gy) and chemotherapy with VE (vincristine and etoposide for 2 cycles), and 11 cycles of adjuvant chemotherapy with VIE. As a result, all patients achieved complete response, and the 2-year tumor-free survival rate was 100 %. During a follow-up of 3-51 months, all 9 patients were alive. We, therefore, conclude that the induction chemotherapy, adjuvant chemotherapy with VIE and concurrent HT and chemotherapy with VE regimen is effective in treating unresectable embryonal RMS of the temporal bone. The combined modality treatment may achieve the best chance of cure for these patients, thereby changing the therapeutic strategy from palliative to possibly curative. PMID:24619819

  11. ELECTRONICS UPGRADE OF HIGH RESOLUTION MASS SPECTROMETERS

    SciTech Connect

    Mcintosh, J; Joe Cordaro, J

    2008-03-10

    High resolution mass spectrometers are specialized systems that allow researchers to determine the exact mass of samples to four significant digits by using magnetic and electronic sector mass analyzers. Many of the systems in use today at research laboratories and universities were designed and built more than two decades ago. The manufacturers of these systems have abandoned the support for some of the mass spectrometers and parts to power and control them have become scarce or obsolete. The Savannah River National Laboratory has been involved in the upgrade of the electronics and software for these legacy machines. The Electronics Upgrade of High Resolution Mass Spectrometers consists of assembling high-end commercial instrumentation from reputable manufacturers with a minimal amount of customization to replace the electronics for the older systems. By taking advantage of advances in instrumentation, precise magnet control can be achieved using high resolution current sources and continuous feedback from a high resolution hall-effect probe. The custom equipment include a precision voltage divider/summing amplifier chassis, high voltage power supply chassis and a chassis for controlling the voltage emission for the mass spectrometer source tube. The upgrade package is versatile enough to interface with valve control, vacuum and other instrumentation. Instrument communication is via a combination of Ethernet and traditional IEEE-488 GPIB protocols. The system software upgrades include precision control, feedback and spectral waveform analysis tools.

  12. A High-Resolution Stopwatch for Cents

    ERIC Educational Resources Information Center

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  13. Analysis of intraindividual and intraspecific variation in semicircular canal dimensions using high-resolution x-ray computed tomography.

    PubMed

    Welker, Kelli L; Orkin, Joseph D; Ryan, Timothy M

    2009-10-01

    The semicircular canal system tracks head rotation and provides sensory input for the reflexive stabilization of gaze and posture. The purpose of this study was to investigate the intraspecific and intraindividual variation in the size of the three semicircular canals. The right and left temporal bones were extracted from 31 individuals of the short-tailed shrew (Blarina brevicauda) and scanned on a high-resolution x-ray computed tomography system. The radius of curvature was calculated for each of the three semicircular canals for each side. Paired t-tests and independent sample t-tests indicated no significant differences in canal size between the right and left canals of the same individuals or between those of males and females of the same species. Pearson product moment correlation analyses demonstrated that there was no significant correlation between canal size and body mass in this sample. PMID:19619167

  14. High Resolution Simulation in the Eastern Amazonia

    NASA Astrophysics Data System (ADS)

    Cohen, J.; Sa, L.; Nogueira, D.; Gandu, A.

    2006-05-01

    produced by the BRAMS model shows that the numerical simulation reproduced both LLJs of November 13 and 14 at, 06 UTC. However, their magnitude was about 2 and 3 m/s lower and their height was higher than what was observed. In order to verify the origin of the LLJ, the variability of the wind at the jet level, during the numerical simulation in grid 1, was analyzed. In the afternoon, it was observed the increase in wind speed at the Atlantic Coast associated to sea breeze circulation. Nonetheless, at 00 UTC, this maximum speed center penetrated the continent and reached the region of Caxiuanã. Indeed, this circulation was under a canalization effect due to the rivers distribution. On November 13, the sea breeze formed again. However, the circulation on this day was relatively weak. The numerical simulations with this high resolution model indicated the occurrence of low level jets. Nevertheless, it did not reproduce in detail some of the observed characteristics of the flow. An important aspect revealed by the simulations with BRAMS was the origin of the jets, which is associated to a phenomenon of canalization of the flow above zones where there are some of the great rivers in the Northeast of Para.

  15. High-resolution display system for mammograms

    NASA Astrophysics Data System (ADS)

    Moskowitz, Michael J.; Huang, H. K.; Wang, Jun; Allen, Jeffrey; Sickles, Edward A.; Giles, Anthony

    1995-04-01

    A high resolution mammographic display station is implemented for clinical diagnosis and for a digital teaching file. The display consists of a specially designed, high resolution mammographic station which contains a connection to a 50 micron (variable spot size) laser film digitizer, two 2 K X 2.5 K display monitors, an image processor, a host computer, and a disk array for high speed image transfer to the display monitors. After digitization on a separate host computer, the files are immediately transferred to the display station and post- processed for viewing. The algorithm for post-processing of the digitized image applies a non- linear LUT to mimic the original film characteristics while taking into account the luminosity of the display monitors in an attempt to produce the highest digital image quality possible. Image processing functions for enhancing calcification and soft tissue are also available to assist the human observer in classification of objects within the image. Windowing and level controls are seamlessly integrated for each monitor, as well as magnification capabilities. For an image display at its full resolution (e.g., digitized at 100 microns), the magnification is accomplished with a roaming window utilizing simple 2X pixel replication. This has been found to be acceptable in preliminary tests with clinicians. Measurements of features on the 2 k displays are possible, as well. The display format accurately simulates mammographic viewing arrangements with automatic side-by-side historical, current, left and right craniocaudal, mediolateral, etc., view comparisons. This high resolution mammographic display is found to be essential for fast and accurate display of high resolution digitized mammograms. A digital mammographic teaching file has been designed and tested using this display architecture. The teaching file presents the case questions on the host display monitor, and the related images for each question are presented on the high

  16. European Society of Biomechanics S.M. Perren Award 2008: using temporal trends of 3D bone micro-architecture to predict bone quality.

    PubMed

    Pauchard, Yves; Mattmann, Corinne; Kuhn, Andreas; Gasser, Jürg A; Boyd, Steven K

    2008-10-20

    In longitudinal studies, three-dimensional (3D) bone images are acquired at sequential time points essentially resulting in four-dimensional (4D) data for an individual. Based on the 4D data, we propose to calculate temporal trends and project these trends to estimate future bone architecture. Multiple consecutive deformation fields, calculated with Demons deformable image registration algorithm, were extrapolated on a voxel-by-voxel basis. Test data were from in vivo micro-computed tomography (microCT) scans of the proximal tibia of Wistar rats that were either ovariectomized (OVX; N=5) or sham operated (SHAM; N=6). Measurements performed at baseline, 4 and 8 weeks were the basis to predict the 12 week data. Predicted and actual 12 week data were compared using qualitative (3D rendering) and quantitative (geometry, morphology and micro-finite element, microFE) methods. The results indicated a voxel-based linear extrapolation scheme yielded mean geometric errors that were smaller than the voxel size of 15 microm. Key morphological parameters that were estimated included bone volume ratio (BV/TV; mean error 0.4%, maximum error 9%), trabecular thickness (Tb.Th; -1.1%, 11%), connectivity density (Conn.D; 9.0%, 18.5%) and the apparent Young's modulus (E(1); 6.0%, 32%). These data demonstrated a promising and novel approach for quantitatively capturing in vivo bone dynamics at the local trabecular level. The method does not require an a priori understanding of the diseases state, and can provide information about the trends of the bone remodeling process that may be used for better monitoring and treatment of diseases such as osteoporosis. PMID:18805535

  17. High resolution 3D nonlinear integrated inversion

    NASA Astrophysics Data System (ADS)

    Li, Yong; Wang, Xuben; Li, Zhirong; Li, Qiong; Li, Zhengwen

    2009-06-01

    The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the wells are input to a network with multiple inputs and outputs and are integratedly trained to obtain an adaptive weight function of the entire study area. Integrated nonlinear mapping relationships are built and updated by the lateral and vertical geologic variations of the reservoirs. Therefore, the inversion process and its inversion results can be constrained and controlled and a stable seismic inversion section with high resolution with velocity inversion, impedance inversion, and density inversion sections, can be gained. Good geologic effects have been obtained in model computation tests and real data processing, which verified that this method has high precision, good practicality, and can be used for quantitative reservoir analysis.

  18. High-resolution Visible Spectra of Titan

    NASA Astrophysics Data System (ADS)

    Sim, Chae Kyung; Kim, S.

    2006-09-01

    We have obtained high-resolution (R 30,000) spectra of Titan between 4,000 and 10,000 A on Feb. 23, 2005 (UT) using an optical echelle spectrograph (BOES) on the 1.8-m telescope at Bohyunsan Observatory, Korea. The raw Titan spectra contain telluric and solar absorption/emission lines. We used Kitt Peak solar atlases to remove the solar lines effectively. We also constructed synthetic spectra for the atmosphere of Titan including haze layers and utilizing laboratory spectra of CH4 available in literature. Preliminary results on the identifications of weak CH4 lines and on the derived opacities of the haze layers will be presented. Since the observations were carried out near the activities of Cassini observations of Titan, these high-resolution visible spectra are complementary to Cassini/VIMS imagery.

  19. Petrous apex mucocele: high resolution CT.

    PubMed

    Memis, A; Memis, A; Alper, H; Calli, C; Ozer, H; Ozdamar, N

    1994-11-01

    Mucocele of the petrous apex is very rare, only three cases having been reported. Since this area is inaccessible to direct examination, imaging, preferably high resolution computed tomography (HR CT) is essential. We report a case showing an eroding, non enhancing mass with sharp, lobulated contours, within the petrous apex. The presence of a large air cell on the opposite side suggested a mucocele. PMID:7862284

  20. High resolution schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Harten, A.

    1983-01-01

    A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurate scheme to an appropriately modified flux function. The so-derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme. Numerical experiments are presented to demonstrate the performance of these new schemes.

  1. Star formation seen with high resolution spectroscopy.

    NASA Astrophysics Data System (ADS)

    Winnewisser, G.

    1990-03-01

    More than 90 anorganic and organic molecules have been detected by high resolution spectroscopy in interstellar molecular clouds or in the envelopes of stars. The detected wavelengths of the lines - predominantly located in the millimeter- and submillimeter wavelength region - unequivocally identify the molecules and give precise knowledge of the physical and chemical conditions of molecular clouds from which the radiation emanates. The line intensities and line profiles contain information about the densities, temperatures and dynamics prevailing in molecular clouds.

  2. High resolution imaging of boron carbide microstructures

    SciTech Connect

    Mackinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1985-08-01

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B/sub 13/C/sub 2/ sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B/sub 4/C powder showed little evidence of stacking disorder in crystalline regions.

  3. High resolution imaging of boron carbide microstructures

    SciTech Connect

    MacKinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1986-04-15

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B/sub 13/C/sub 2/ sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B/sub 4/C powder showed little evidence of stacking disorder in crystalline regions.

  4. High-Resolution X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Brissenden, Roger J.; Davis, William; Elsner, Ronald F.; Elvis, Martin; Freeman, Mark; Gaetz, Terry; Gorenstein, Paul; Gubarev, Mikhail V.

    2010-01-01

    Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness. Programmatic issues are comparably challenging.

  5. Conversational high resolution mass spectrographic data reduction

    NASA Technical Reports Server (NTRS)

    Romiez, M. P.

    1973-01-01

    A FORTRAN 4 program is described which reduces the data obtained from a high resolution mass spectrograph. The program (1) calculates an accurate mass for each line on the photoplate, and (2) assigns elemental compositions to each accurate mass. The program is intended for use in a time-shared computing environment and makes use of the conversational aspects of time-sharing operating systems.

  6. High-Resolution Traction Force Microscopy

    PubMed Central

    Plotnikov, Sergey V.; Sabass, Benedikt; Schwarz, Ulrich S.; Waterman, Clare M.

    2015-01-01

    Cellular forces generated by the actomyosin cytoskeleton and transmitted to the extracellular matrix (ECM) through discrete, integrin-based protein assemblies, that is, focal adhesions, are critical to developmental morphogenesis and tissue homeostasis, as well as disease progression in cancer. However, quantitative mapping of these forces has been difficult since there has been no experimental technique to visualize nanonewton forces at submicrometer spatial resolution. Here, we provide detailed protocols for measuring cellular forces exerted on two-dimensional elastic substrates with a high-resolution traction force microscopy (TFM) method. We describe fabrication of polyacrylamide substrates labeled with multiple colors of fiducial markers, functionalization of the substrates with ECM proteins, setting up the experiment, and imaging procedures. In addition, we provide the theoretical background of traction reconstruction and experimental considerations important to design a high-resolution TFM experiment. We describe the implementation of a new algorithm for processing of images of fiducial markers that are taken below the surface of the substrate, which significantly improves data quality. We demonstrate the application of the algorithm and explain how to choose a regularization parameter for suppression of the measurement error. A brief discussion of different ways to visualize and analyze the results serves to illustrate possible uses of high-resolution TFM in biomedical research. PMID:24974038

  7. Proceedings of the workshop on high resolution computed microtomography (CMT)

    SciTech Connect

    1997-02-01

    The purpose of the workshop was to determine the status of the field, to define instrumental and computational requirements, and to establish minimum specifications required by possible users. The most important message sent by implementers was the remainder that CMT is a tool. It solves a wide spectrum of scientific problems and is complementary to other microscopy techniques, with certain important advantages that the other methods do not have. High-resolution CMT can be used non-invasively and non-destructively to study a variety of hierarchical three-dimensional microstructures, which in turn control body function. X-ray computed microtomography can also be used at the frontiers of physics, in the study of granular systems, for example. With high-resolution CMT, for example, three-dimensional pore geometries and topologies of soils and rocks can be obtained readily and implemented directly in transport models. In turn, these geometries can be used to calculate fundamental physical properties, such as permeability and electrical conductivity, from first principles. Clearly, use of the high-resolution CMT technique will contribute tremendously to the advancement of current R and D technologies in the production, transport, storage, and utilization of oil and natural gas. It can also be applied to problems related to environmental pollution, particularly to spilling and seepage of hazardous chemicals into the Earth's subsurface. Applications to energy and environmental problems will be far-ranging and may soon extend to disciplines such as materials science--where the method can be used in the manufacture of porous ceramics, filament-resin composites, and microelectronics components--and to biomedicine, where it could be used to design biocompatible materials such as artificial bones, contact lenses, or medication-releasing implants. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  8. The temporal expression of estrogen receptor alpha-36 and runx2 in human bone marrow derived stromal cells during osteogenesis

    SciTech Connect

    Francis, W.R.; Owens, S.E.; Wilde, C.; Pallister, I.; Kanamarlapudi, V.; Zou, W.; Xia, Z.

    2014-10-24

    Highlights: • ERα36 is the predominant ERα isoform involved in bone regulation in human BMSC. • ERα36 mRNA is significantly upregulated during the process of osteogenesis. • The pattern of ERα36 and runx2 mRNA expression is similar during osteogenesis. • ERα36 appears to be co-localised with runx2 during osteogenesis. - Abstract: During bone maintenance in vivo, estrogen signals through estrogen receptor (ER)-α. The objectives of this study were to investigate the temporal expression of ERα36 and ascertain its functional relevance during osteogenesis in human bone marrow derived stromal cells (BMSC). This was assessed in relation to runt-related transcription factor-2 (runx2), a main modulatory protein involved in bone formation. ERα36 and runx2 subcellular localisation was assessed using immunocytochemistry, and their mRNA expression levels by real time PCR throughout the process of osteogenesis. The osteogenically induced BMSCs demonstrated a rise in ERα36 mRNA during proliferation followed by a decline in expression at day 10, which represents a change in dynamics within the culture between the proliferative stage and the differentiative stage. The mRNA expression profile of runx2 mirrored that of ERα36 and showed a degree subcellular co-localisation with ERα36. This study suggests that ERα36 is involved in the process of osteogenesis in BMSCs, which has implications in estrogen deficient environments.

  9. Does colon cancer ever metastasize to bone first? a temporal analysis of colorectal cancer progression

    PubMed Central

    2009-01-01

    Background It is well recognized that colorectal cancer does not frequently metastasize to bone. The aim of this retrospective study was to establish whether colorectal cancer ever bypasses other organs and metastasizes directly to bone and whether the presence of lung lesions is superior to liver as a better predictor of the likelihood and timing of bone metastasis. Methods We performed a retrospective analysis on patients with a clinical diagnosis of colon cancer referred for staging using whole-body 18F-FDG PET and CT or PET/CT. We combined PET and CT reports from 252 individuals with information concerning patient history, other imaging modalities, and treatments to analyze disease progression. Results No patient had isolated osseous metastasis at the time of diagnosis, and none developed isolated bone metastasis without other organ involvement during our survey period. It took significantly longer for colorectal cancer patients to develop metastasis to the lungs (23.3 months) or to bone (21.2 months) than to the liver (9.8 months). Conclusion: Metastasis only to bone without other organ involvement in colorectal cancer patients is extremely rare, perhaps more rare than we previously thought. Our findings suggest that resistant metastasis to the lungs predicts potential disease progression to bone in the colorectal cancer population better than liver metastasis does. PMID:19664211

  10. The 'temporal effect' in hominids: Reinvestigating the nature of support for a chimp-human clade in bone morphology.

    PubMed

    Pearson, Alannah; Groves, Colin; Cardini, Andrea

    2015-11-01

    In 2004, an analysis by Lockwood and colleagues of hard-tissue morphology, using geometric morphometrics on the temporal bone, succeeded in recovering the correct phylogeny of living hominids without resorting to potentially problematic methods for transforming continuous shape variables into meristic characters. That work has increased hope that by using modern analytical methods and phylogenetically informative anatomical data we might one day be able to accurately infer the relationships of hominins, including the closest extinct relatives of modern humans. In the present study, using 3D virtually generated models of the hominid temporal bone and a larger suite of geometric morphometric and comparative techniques, we have re-examined the evidence for a Pan-Homo clade. Despite differences in samples, as well as the type of raw data, the effect of measurement error (and especially landmark digitization by a different operator), but also a broader perspective brought in by our diverse set of approaches, our reanalysis largely supports Lockwood and colleagues' original results. However, by focusing not only mainly on shape (as in the original 2004 analysis) but also on size and 'size-corrected' (non-allometric) shape, we demonstrate that the strong phylogenetic signal in the temporal bone is largely related to similarities in size. Thus, with this study, we are not suggesting the use of a single 'character', such as size, for phylogenetic inference, but we do challenge the common view that shape, with its highly complex and multivariate nature, is necessarily more phylogenetically informative than size and that actually size and size-related shape variation (i.e., allometry) confound phylogenetic inference based on morphology. This perspective may in fact be less generalizable than often believed. Thus, while we confirm the original findings by Lockwood et al., we provide a deep reinterpretation of their nature and potential implications for hominid phylogenetics

  11. Temporomandibular joints: high-resolution computed tomographic evaluation

    SciTech Connect

    Thompson, J.R.; Christiansen, E.; Hasso, A.N.; Hinshaw, D.B. Jr.

    1984-01-01

    High-resolution computed tomography of the temporomandibular joint (TMJ) was performed in 43 patients. Exquisite detail of the face, skull base, and TMJs was obtained with CT using soft tissue and bone algorithms, narrow collimation, and multiplanar images. In 10 patients clinically suspected of joint derangement, CT results were in close agreement with surgical findings and arthrography in 13/15 joints. CT showed indirect signs of disc dislocation, and the dislocated disc itself in 81% of affected joints. In two patients, arthrography with CT proved to be more helpful than conventional arthrography alone. CT without intra-articular contrast material provided information not appreciated on conventional radiogaphs in 28 patients (65%) and was particularly helpful in evaluating patients with disc pathosis and trauma. Early experience with CT of the TMJ shows that it is an excellent method of evaluation at acceptable radiation exposure levels that adds essential information not seen on standard radiographs.

  12. Confirmation of TFAP2A gene involvement in branchio-oculo-facial syndrome (BOFS) and report of temporal bone anomalies.

    PubMed

    Stoetzel, C; Riehm, S; Bennouna Greene, V; Pelletier, V; Vigneron, J; Leheup, B; Marion, V; Hellé, S; Danse, J M; Thibault, C; Moulinier, L; Veillon, F; Dollfus, H

    2009-10-01

    Branchio-oculo-facial syndrome (BOFS) is an autosomal-dominant condition characterized by three main features, respectively: branchial defects, ocular anomalies, and craniofacial defects including cleft lip and/or palate (CL/P). We report on one family with three affected, and two sporadic cases that have been found to carry missense mutations in the newly reported BOFS gene: TFAP2A. This report confirms the involvement of this transcription factor in this developmental syndrome with clinical variability. Moreover, we present CT scan temporal bone anomalies in the familial cases, related to branchial arch defects, highlighting the importance of radiological investigations for differential diagnosis. PMID:19764023

  13. Universal multifractal analysis of high-resolution snowfall data

    NASA Astrophysics Data System (ADS)

    Raupach, Timothy; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Berne, Alexis

    2016-04-01

    Universal multifractal analysis offers useful insights into the scaling properties of precipitation data. While much work has been done on the scaling properties of rainfall fields, less is known about the scaling properties of solid precipitation such as snowfall, especially at high resolution. We present results of a universal multifractal (UM) analysis of high-resolution solid precipitation data. The data were recorded using a 2D-video-disdrometer (2DVD) situated in the Swiss Alps. Analysis was performed on a one-hour period of snowfall, during which time the mean wind speed was zero, temperatures were low, and no hail was detected. The 2DVD recorded information on individual particles, from which we calculated snow mass. Three "cuts" of the spatio-temporal snowfall process were analysed using the UM framework. First, high-resolution timeseries of precipitation intensity at 100 ms temporal resolution were analysed. These results show two scaling regimes with a transition area between them. Second, we analysed reconstructed vertical columns of particle concentration and snow mass, assuming no horizontal wind and constant vertical velocity (equal to the one recorded on the ground). Strong scaling was observed in the particle concentration fields, with the influence of large (and therefore rare) snowflakes degrading the quality of the scaling observed for higher moments of the particle distribution. There was a clear difference between the measured fields and fields in which the vertical distribution of particles was made homogeneous, indicating that the measured snowfall fields contained non-homogeneous fields. Scaling behaviour was observed down to vertical scales of about 0.5 m, which is similar to published results using rain data. Finally, we used the UM framework to investigate the scaling properties of 2D maps of snow accumulation over a subset of the instrument collection area of 5.12 x 5.12 cm^2. As expected from the vertical column analysis, given that

  14. High resolution SAR applications and instrument design

    NASA Technical Reports Server (NTRS)

    Dionisio, C.; Torre, A.

    1993-01-01

    The Synthetic Aperture Radar (SAR) has viewed, in the last two years, a huge increment of interest from many preset and potential users. The good spatial resolution associated to the all weather capability lead to considering SAR not only a scientific instrument but a tool for verifying and controlling the daily human relationships with the Earth Environment. New missions were identified for SAR as spatial resolution became lower than three meters: disasters, pollution, ships traffic, volcanic eruptions, earthquake effect are only a few of the possible objects which can be effectively detected, controlled and monitored by SAR mounted on satellites. High resolution radar design constraints and dimensioning are discussed.

  15. High Resolution Sapphire Bragg Backscattering Monochromator

    SciTech Connect

    Linden, P. van der; Wille, H.-C.; Shvyd'ko, Yu. V.

    2007-01-19

    We present a temperature stabilised high resolution sapphire backscattering monochromator. The device consists of a sapphire crystal inside a cold nitrogen gas cooled, temperature stabilised chamber with a passively temperature stabilised screen. The achieved temperature stability of {+-}2mK allows for an energy resolution of {delta}E/E {<=} 10-7 at energies in the range of 30-70 keV. The device was developed for nuclear resonant scattering above 30 keV, where appropriate solutions did not exist until now.

  16. A High Resolution Scale-of-four

    DOE R&D Accomplishments Database

    Fitch, V.

    1949-08-25

    A high resolution scale-of-four has been developed to be used in conjunction with the nuclear particle detection devices in applications where the counting rate is unusually high. Specifically, it is intended to precede the commercially available medium resolution scaling circuits and so decrease the resolving time of the counting system. The circuit will function reliably on continuously recurring pulses separated by less than 0.1 microseconds. It will resolve two pulses (occurring at a moderate repetition rate) which are spaced at 0.04 microseconds. A five-volt input signal is sufficient to actuate the device.

  17. High-Resolution Manometry in Clinical Practice

    PubMed Central

    Pandolfino, John E.

    2015-01-01

    High-resolution manometry (HRM) is the primary method used to evaluate esophageal motor function. Displayed and interpreted by esophageal pressure topography (EPT), HRM/ EPT provides a detailed assessment of esophageal function that is useful in the evaluation of patients with nonobstructive dysphagia and before foregut surgery. Esophageal motility diagnoses are determined systematically by applying objective metrics of esophageal sphincter and peristaltic function to the Chicago Classification of esophageal motility disorders. This article discusses HRM study, EPT interpretation, and the translation of EPT findings into clinical practice. Examples are provided to illustrate several clinical challenges. PMID:27118931

  18. High resolution interferometry of cool stars

    NASA Technical Reports Server (NTRS)

    Lambert, D. L.

    1974-01-01

    A description is given of results obtained in a program of infrared high resolution spectroscopy of cool stars. The nature of infrared stellar spectra is considered along with questions regarding astrophysics and stellar infrared spectroscopy. An abundance analysis for alpha Ori (Betelgeuse) is conducted. The C-12/C-13 abundance ratio is examined and attention is given to the O-16/O-18 and O-16/O-17 abundance ratios. M stars and SiO vibration-rotation bands are discussed and questions regarding the characteristics of the molecular hydrogen quadrupole vibration-rotation lines are explored.

  19. A Portable, High Resolution, Surface Measurement Device

    NASA Technical Reports Server (NTRS)

    Ihlefeld, Curtis M.; Burns, Bradley M.; Youngquist, Robert C.

    2012-01-01

    A high resolution, portable, surface measurement device has been demonstrated to provide micron-resolution topographical plots. This device was specifically developed to allow in-situ measurements of defects on the Space Shuttle Orbiter windows, but is versatile enough to be used on a wide variety of surfaces. This paper discusses the choice of an optical sensor and then the decisions required to convert a lab bench optical measurement device into an ergonomic portable system. The necessary trade-offs between performance and portability are presented along with a description of the device developed to measure Orbiter window defects.

  20. High-resolution color photographic reproductions

    NASA Astrophysics Data System (ADS)

    McCann, John J.

    1997-04-01

    This paper will describe a fine-art reproduction process that: captures painting information with high-resolution color photographs; scans the information into a 300 megabyte digital file; performs a 3D color calibration in a dedicated hardware color-transform circuit; makes a master positive color transparency and makes a reproduction on polaroid color print film. The master transparency can be used to expose a large number of images. This combines the efficiency of instant photography with the color fidelity of digital color transforms.

  1. High-resolution scanning hall probe microscopy

    NASA Astrophysics Data System (ADS)

    Hicks, Clifford; Luan, Lan; Hendrik Bluhm, J.; Moler, Kathryn; Guikema, Janice; Zeldov, Eli; Shtrikman, Hadas

    2006-03-01

    Scanning hall sensors can be used to directly image magnetic fields at surfaces. They offer high resolution, high sensitivity, operability over a broad temperature range, and linearity. We have fabricated hall sensors on GaAs / Al0.35Ga0.65As and GaAs / Al0.3Ga0.7As heterostructures containing 2D electron gases 40, 39 and 140nm beneath the surface. The sensitive areas of our probes range from microns to 85nm on a side. We report on the field sensitivities of probes of various sizes and their spatial resolution in a scanning configuration.

  2. Live CLEM imaging to analyze nuclear structures at high resolution.

    PubMed

    Haraguchi, Tokuko; Osakada, Hiroko; Koujin, Takako

    2015-01-01

    Fluorescence microscopy (FM) and electron microscopy (EM) are powerful tools for observing molecular components in cells. FM can provide temporal information about cellular proteins and structures in living cells. EM provides nanometer resolution images of cellular structures in fixed cells. We have combined FM and EM to develop a new method of correlative light and electron microscopy (CLEM), called "Live CLEM." In this method, the dynamic behavior of specific molecules of interest is first observed in living cells using fluorescence microscopy (FM) and then cellular structures in the same cell are observed using electron microscopy (EM). Following image acquisition, FM and EM images are compared to enable the fluorescent images to be correlated with the high-resolution images of cellular structures obtained using EM. As this method enables analysis of dynamic events involving specific molecules of interest in the context of specific cellular structures at high resolution, it is useful for the study of nuclear structures including nuclear bodies. Here we describe Live CLEM that can be applied to the study of nuclear structures in mammalian cells. PMID:25555577

  3. Common high-resolution MMW scene generator

    NASA Astrophysics Data System (ADS)

    Saylor, Annie V.; McPherson, Dwight A.; Satterfield, H. DeWayne; Sholes, William J.; Mobley, Scott B.

    2001-08-01

    The development of a modularized millimeter wave (MMW) target and background high resolution scene generator is reported. The scene generator's underlying algorithms are applicable to both digital and real-time hardware-in-the-loop (HWIL) simulations. The scene generator will be configurable for a variety of MMW and multi-mode sensors employing state of the art signal processing techniques. At present, digital simulations for MMW and multi-mode sensor development and testing are custom-designed by the seeker vendor and are verified, validated, and operated by both the vendor and government in simulation-based acquisition. A typical competition may involve several vendors, each requiring high resolution target and background models for proper exercise of seeker algorithms. There is a need and desire by both the government and sensor vendors to eliminate costly re-design and re-development of digital simulations. Additional efficiencies are realized by assuring commonality between digital and HWIL simulation MMW scene generators, eliminating duplication of verification and validation efforts.

  4. High Resolution Acoustoelastic Measurements of Materials

    NASA Astrophysics Data System (ADS)

    McKenna, Mark; Guy, Samuel; Heyman, Joseph

    2006-11-01

    As materials become more complex, there is an increasing need for high resolution measurements to characterize strength and damage in the materials. Typically, the criterion for rejecting a part is based on the detection of a flaw of a specific size in a critical location. Interestingly, if a low stress field exists at the flaw site, the flaw may not grow over time. Similarly, in a part that shows no unacceptable indications, a high stress state may cause the flaw to quickly grow through the part leading to failure. In other cases, a controlled amount of stress (in a specific direction or type) is purposely added to the material to prevent flaw growth. Inspection time intervals are based knowing and controlling the stress environment to predict the flaw growth. Luna Innovations Incorporated has developed a high resolution ultrasonic instrument that can enhance the integrity of critical hardware by measuring changes in the stress state in a material. Knowledge of the stress state plus knowledge of crack sizes greatly improves structural engineers' capability of life prediction. System data will be shown for tests to stresses near holes in laboratory fabricated aircraft metal samples. Scans of the spatial distribution of stresses will be compared with finite element models of the structure.

  5. High-Resolution Shadowing of Transfer RNA

    PubMed Central

    Abermann, Reinhard J.; Yoshikami, Doju

    1972-01-01

    High-resolution shadowing with metals that melt at high temperatures was used to study macromolecules. Molecules of transfer RNA shadowed with tantalum-tungsten are readily visualized in an electron microscope. Mounting procedures for tRNA were perfected that reproducibly gave uniform distributions of both monomeric and dimeric tRNA particles, and allowed a statistical assessment of their gross shapes and sizes. Monomeric tRNA yielded a fairly homogeneous population of rod-shaped particles, with axial dimensions of about 40 × 85 Å. Dimers of yeast alanine tRNA held together by hydrogen bonds and dimers constructed by covalent linkage of the amino-acid acceptor (3′-) termini of monomers both gave slightly more heterogeneous populations of particles. Yet, their structures were also basically rod shaped, with their lengths ranging to about twice that of the monomer; this result indicates an end-to-end arrangement of the monomeric units within both dimers. These results suggest that the amino-acid acceptor terminus and the anticodon region are at the ends of the rod-shaped, dehydrated tRNA monomer visible by electron microscopy, consistent with the generally accepted view of tRNA structure in solution suggested by other workers using other methods. This study demonstrates that high-resolution shadowing with tantalum-tungsten provides a means to examine the three-dimensional structures of relatively small biological macromolecules. Images PMID:4504373

  6. Limiting liability via high resolution image processing

    SciTech Connect

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  7. High resolution guided wave pipe inspection

    NASA Astrophysics Data System (ADS)

    Velichko, Alexander; Wilcox, Paul D.

    2009-03-01

    Commercial guided wave inspection systems provide rapid screening of pipes, but limited sizing capability for small defects. However, accurate detection and sizing of small defects is essential for assessing the integrity of inaccessible pipe regions where guided waves provide the only possible inspection mechanism. In this paper an array-based approach is presented that allows guided waves to be focused on both transmission and reception to produce a high resolution image of a length of pipe. In the image, it is shown that a signal to coherent noise ratio of over 40 dB with respect to the reflected signal from a free end of pipe can be obtained, even taking into account typical levels of experimental uncertainty in terms of transducer positioning, wave velocity etc. The combination of an image with high resolution and a 40 dB dynamic range enables the detection of very small defects. It also allows the in-plane shape of defects over a certain size to be observed directly. Simulations are used to estimate the detection and sizing capability of the system for crack-like defects. Results are presented from a prototype system that uses EMATs to fully focus pipe guided wave modes on both transmission and reception in a 12 inch diameter stainless steel pipe. The 40 dB signal to coherent noise ratio is obtained experimentally and a 2 mm diameter (0.08 wavelengths) half-thickness hole is shown to be detectable.

  8. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2003-01-01

    Spectroscopic parameters (such as line position, intensity, broadening and shifting coefficients and their temperature dependences, line mixing coefficients etc.) for various molecular species of atmospheric interest are determined. In order to achieve these results, infrared spectra of several molecular bands are obtained using high-resolution recording instruments such as tunable diode laser spectrometer and Fourier transform spectrometers. Using sophisticated analysis routines (Multispectrum nonlinear least squares technique) these high-resolution infrared spectra are processed to determine the various spectral line parameters that are cited above. Spectra were taken using the McMath-Pierce Fourier transform spectrometer (FTS) at the National Solar Observatory on Kitt Peak, Arizona as well as the Bruker FTS at the Pacific Northwest National Laboratory (PNNL) at Richland, Washington. Most of the spectra are acquired not only at room temperature, but also at several different cold temperatures. This procedure is necessary to study the variation of the spectral line parameters as a function of temperature in order to simulate the Earth's and other planetary atmospheric environments. Depending upon the strength or weakness of the various bands recorded and analyzed, the length(s) of the absorption cells in which the gas samples under study are kept varied from a few centimeters up to several meters and the sample temperatures varied from approximately +30 C to -63 C. Research on several infrared bands of various molecular species and their isotopomers are undertaken. Those studies are briefly described.

  9. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  10. High-Resolution PET Detector. Final report

    SciTech Connect

    Karp, Joel

    2014-03-26

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface.

  11. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon-and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  12. High Resolution Camera for Mapping Titan Surface

    NASA Technical Reports Server (NTRS)

    Reinhardt, Bianca

    2011-01-01

    Titan, Saturn's largest moon, has a dense atmosphere and is the only object besides Earth to have stable liquids at its surface. The Cassini/Huygens mission has revealed the extraordinary breadth of geological processes shaping its surface. Further study requires high resolution imaging of the surface, which is restrained by light absorption by methane and scattering from aerosols. The Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft has demonstrated that Titan's surface can be observed within several windows in the near infrared, allowing us to process several regions in order to create a geological map and to determine the morphology. Specular reflections monitored on the lakes of the North Pole show little scattering at 5 microns, which, combined with the present study of Titan's northern pole area, refutes the paradigm that only radar can achieve high resolution mapping of the surface. The present data allowed us to monitor the evolution of lakes, to identify additional lakes at the Northern Pole, to examine Titan's hypothesis of non-synchronous rotation and to analyze the albedo of the North Pole surface. Future missions to Titan could carry a camera with 5 micron detectors and a carbon fiber radiator for weight reduction.

  13. High-Resolution Scintimammography: A Pilot Study

    SciTech Connect

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper; Stan Majewski; Steven Goodman; Cahid Civelek

    2002-07-01

    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.

  14. Measuring Large-Scale Social Networks with High Resolution

    PubMed Central

    Stopczynski, Arkadiusz; Sekara, Vedran; Sapiezynski, Piotr; Cuttone, Andrea; Madsen, Mette My; Larsen, Jakob Eg; Lehmann, Sune

    2014-01-01

    This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of communication channels, with high temporal resolution and spanning multiple years—the Copenhagen Networks Study. Specifically, we collect data on face-to-face interactions, telecommunication, social networks, location, and background information (personality, demographics, health, politics) for a densely connected population of 1 000 individuals, using state-of-the-art smartphones as social sensors. Here we provide an overview of the related work and describe the motivation and research agenda driving the study. Additionally, the paper details the data-types measured, and the technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures. We document the participant privacy procedures and their underlying principles. The paper is concluded with early results from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection. PMID:24770359

  15. Surgical management of spontaneous cerebrospinal fluid leakage through temporal bone defects--case series and review of the literature.

    PubMed

    Gonen, Lior; Handzel, Ophir; Shimony, Nir; Fliss, Dan M; Margalit, Nevo

    2016-01-01

    Increasing numbers of cases of idiopathic cerebrospinal fluid (CSF) leakage through temporal bone defects (TBD) have been recently reported, mainly in otolaryngologic journals. Those cases are referred to as spontaneous temporal bone encephaloceles (TBE). Three surgical approaches have been advocated for this condition: the transmastoid approach (TMA), the middle cranial fossa approach (MCFA), or a combination of both. We conducted a retrospective study of all 11 consecutive patients who underwent 12 middle cranial fossa craniotomies for the treatment of CSF leakage through TBD in our institution between 2011 and 2014. Neurosurgical and otologic data were collected from the patients' records. Nine of our cases had an idiopathic etiology. No CSF leaks recurred during an average follow-up of 19.5 months. There was one case of a postoperative expressive aphasia with complete recovery in a few weeks. A systematic literature search was conducted for all studies addressing the treatment of spontaneous TBE between 1986 and 2013. It revealed a trend favoring the use of the MCFA approach over the TMA approach, with an acceptable risk of less than 5% for craniotomy-related complications. We concluded that MCFA is an effective and safe technique for the repair of CSF leakage through TBD. A high percentage of complete resolution with a low complication rate can be achieved with this surgical technique. PMID:26342604

  16. A high-resolution record of Greenland mass balance

    NASA Astrophysics Data System (ADS)

    McMillan, Malcolm; Leeson, Amber; Shepherd, Andrew; Briggs, Kate; Armitage, Thomas W. K.; Hogg, Anna; Kuipers Munneke, Peter; Broeke, Michiel; Noël, Brice; Berg, Willem Jan; Ligtenberg, Stefan; Horwath, Martin; Groh, Andreas; Muir, Alan; Gilbert, Lin

    2016-07-01

    We map recent Greenland Ice Sheet elevation change at high spatial (5 km) and temporal (monthly) resolution using CryoSat-2 altimetry. After correcting for the impact of changing snowpack properties associated with unprecedented surface melting in 2012, we find good agreement (3 cm/yr bias) with airborne measurements. With the aid of regional climate and firn modeling, we compute high spatial and temporal resolution records of Greenland mass evolution, which correlate (R = 0.96) with monthly satellite gravimetry and reveal glacier dynamic imbalance. During 2011-2014, Greenland mass loss averaged 269 ± 51 Gt/yr. Atmospherically driven losses were widespread, with surface melt variability driving large fluctuations in the annual mass deficit. Terminus regions of five dynamically thinning glaciers, which constitute less than 1% of Greenland's area, contributed more than 12% of the net ice loss. This high-resolution record demonstrates that mass deficits extending over small spatial and temporal scales have made a relatively large contribution to recent ice sheet imbalance.

  17. A high-resolution regional reanalysis for Europe

    NASA Astrophysics Data System (ADS)

    Ohlwein, C.

    2015-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  18. Evaluation of a High-Resolution Regional Reanalysis for Europe

    NASA Astrophysics Data System (ADS)

    Ohlwein, C.; Wahl, S.; Keller, J. D.; Bollmeyer, C.

    2014-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers 6 years (2007-2012) and is currently extended to 16 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  19. Evaluation of Round Window Stimulation Using the Floating Mass Transducer by Intracochlear Sound Pressure Measurements in Human Temporal Bones

    PubMed Central

    Nakajima, Hideko Heidi; Dong, Wei; Olson, Elizabeth S.; Rosowski, John J.; Ravicz, Michael E.; Merchant, Saumil N.

    2009-01-01

    Hypothesis Round window (RW) stimulation with a floating mass transducer (FMT) can be studied experimentally and optimized to enhance auditory transduction. Background The FMT (MED-EL Vibrant Soundbridge) has been recently implanted in patients with refractory conductive or mixed hearing loss to stimulate the RW with varying degrees of success. The mechanics of RW stimulation with the FMT have not been studied in a systematic manner. Methods In cadaveric human temporal bones, measurements of stapes velocity with laser vibrometry in response to FMT-RW stimulation were used to optimize FMT insertion. The effect of RW stimulation on hearing was estimated using simultaneous measurements of intracochlear pressures in both perilymphatic scalae with micro-optical pressure transducers. This enabled calculation of the differential pressure across the cochlear partition, which is directly tied to auditory transduction. Results The best coupling between the FMT and RW was achieved with a piece of fascia placed between the RW and the FMT, and by "bracing" the free end of the FMT against the hypotympanic wall with dental impression material. FMT-RW stimulation provided differential pressures comparable to sound-induced oval window stimulation above 1 kHz. However, below 1 kHz the FMT was less capable. Conclusions Measurements of stapes velocity and intracochlear sound pressures in scala vestibuli and scala tympani enabled experimental evaluation of FMT stimulation of the RW. The efficacy of FMT-RW coupling was influenced significantly by technical and surgical factors, which can be optimized. This temporal bone preparation also lays the foundation for future studies to investigate multiple issues of relevance to both basic and clinical science such as RW stimulation in stapes fixation, non-aerated middle-ears and third-window lesions, and to answer basic questions regarding bone conduction. PMID:19841600

  20. Clementine High Resolution Camera Mosaicking Project

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report constitutes the final report for NASA Contract NASW-5054. This project processed Clementine I high resolution images of the Moon, mosaicked these images together, and created a 22-disk set of compact disk read-only memory (CD-ROM) volumes. The mosaics were produced through semi-automated registration and calibration of the high resolution (HiRes) camera's data against the geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic produced by the US Geological Survey (USGS). The HiRes mosaics were compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution nadir-looking observations. The images were spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel for sub-polar mosaics (below 80 deg. latitude) and using the stereographic projection at a scale of 30 m/pixel for polar mosaics. Only images with emission angles less than approximately 50 were used. Images from non-mapping cross-track slews, which tended to have large SPICE errors, were generally omitted. The locations of the resulting image population were found to be offset from the UV/Vis basemap by up to 13 km (0.4 deg.). Geometric control was taken from the 100 m/pixel global and 150 m/pixel polar USGS Clementine Basemap Mosaics compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Radiometric calibration was achieved by removing the image nonuniformity dominated by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap, that approximately transform the 8-bit HiRes data to photometric units. The sub-polar mosaics are divided into tiles that cover approximately 1.75 deg. of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. Polar mosaics are tiled into squares 2250 pixels on a

  1. High Resolution Powder Diffraction and Structure Determination

    SciTech Connect

    Cox, D. E.

    1999-04-23

    It is clear that high-resolution synchrotrons X-ray powder diffraction is a very powerful and convenient tool for material characterization and structure determination. Most investigations to date have been carried out under ambient conditions and have focused on structure solution and refinement. The application of high-resolution techniques to increasingly complex structures will certainly represent an important part of future studies, and it has been seen how ab initio solution of structures with perhaps 100 atoms in the asymmetric unit is within the realms of possibility. However, the ease with which temperature-dependence measurements can be made combined with improvements in the technology of position-sensitive detectors will undoubtedly stimulate precise in situ structural studies of phase transitions and related phenomena. One challenge in this area will be to develop high-resolution techniques for ultra-high pressure investigations in diamond anvil cells. This will require highly focused beams and very precise collimation in front of the cell down to dimensions of 50 {micro}m or less. Anomalous scattering offers many interesting possibilities as well. As a means of enhancing scattering contrast it has applications not only to the determination of cation distribution in mixed systems such as the superconducting oxides discussed in Section 9.5.3, but also to the location of specific cations in partially occupied sites, such as the extra-framework positions in zeolites, for example. Another possible application is to provide phasing information for ab initio structure solution. Finally, the precise determination of f as a function of energy through an absorption edge can provide useful information about cation oxidation states, particularly in conjunction with XANES data. In contrast to many experiments at a synchrotron facility, powder diffraction is a relatively simple and user-friendly technique, and most of the procedures and software for data analysis

  2. Asynoptic high resolution upper-air data for high impact weather events

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Witsaman et al. (6th AMS Fire and Forest Meteorology Symposium 2005) discuss the use of acrcraft sensors for high resolution (vertical 4 hPa, temporal 15 minute) profiles of temperature, dew point temperature, wind, and pressure in support of weather forecasts for wildland fire or hazardous material...

  3. High resolution electron crystallography of protein molecules

    SciTech Connect

    Glaeser, R.M. |; Downing, K.H.

    1993-06-01

    Electron diffraction data and high resolution images can now be used to obtain accurate, three-dimensional density maps of biological macromolecules. These density maps can be interpreted by building an atomic-resolution model of the structure into the experimental density. The Cowley-Moodie formalism of dynamical diffraction theory has been used to validate the use of kinematic diffraction theory, strictly the weak phase object approximation, in producing such 3-D density maps. Further improvements in the preparation of very flat specimens and in the retention of diffraction to a resolution of 0.2 nm or better could result in electron crystallography becoming as important a technique as x-ray crystallography currently is for the field of structural molecular biology.

  4. Computer synthesis of high resolution electron micrographs

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1976-01-01

    Specimen damage, spherical aberration, low contrast and noisy sensors combine to prevent direct atomic viewing in a conventional electron microscope. The paper describes two methods for obtaining ultra-high resolution in biological specimens under the electron microscope. The first method assumes the physical limits of the electron objective lens and uses a series of dark field images of biological crystals to obtain direct information on the phases of the Fourier diffraction maxima; this information is used in an appropriate computer to synthesize a large aperture lens for a 1-A resolution. The second method assumes there is sufficient amplitude scatter from images recorded in focus which can be utilized with a sensitive densitometer and computer contrast stretching to yield fine structure image details. Cancer virus characterization is discussed as an illustrative example. Numerous photographs supplement the text.

  5. High Resolution, High Frame Rate Video Technology

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers and working group summaries presented at the High Resolution, High Frame Rate Video (HHV) Workshop are compiled. HHV system is intended for future use on the Space Shuttle and Space Station Freedom. The Workshop was held for the dual purpose of: (1) allowing potential scientific users to assess the utility of the proposed system for monitoring microgravity science experiments; and (2) letting technical experts from industry recommend improvements to the proposed near-term HHV system. The following topics are covered: (1) State of the art in the video system performance; (2) Development plan for the HHV system; (3) Advanced technology for image gathering, coding, and processing; (4) Data compression applied to HHV; (5) Data transmission networks; and (6) Results of the users' requirements survey conducted by NASA.

  6. A simple, high efficiency, high resolution spectropolarimeter

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.

    2012-09-01

    A simple concept is described that uses volume phase holographic gratings as polarizing dispersers for a high efficiency, high resolution spectropolarimeter. Although the idea has previously been mentioned in the literature as possible, such a concept has not been explored in detail. Performance analysis is presented for a VPHG spectropolarimeter concept that could be utilized for both solar and night-time astronomy. Instrumental peak efficiency can approach 100% with spectral dispersions permitting R~200,000 spectral resolution with diffraction limited telescopes. The instrument has 3-channels: two dispersed image planes with orthogonal polarization and an undispersed image plane. The concept has a range of versatility where it could be configured (with appropriate half-wave plates) for slit-fed spectroscopy or without slits for snapshot/hyperspectral/tomographic spectroscopic imaging. Multiplex gratings could also be used for the simultaneous recording of two separate spectral bands or multiple instruments could be daisy chained with beam splitters for further spectral coverage.

  7. High-resolution spectrometer for atmospheric studies

    NASA Astrophysics Data System (ADS)

    Di Carlo, Piero; Barone, Massimiliano; D'Altorio, Alfonso; Dari-Salisburgo, Cesare; Pietropaolo, Ermanno

    2009-08-01

    A high-resolution spectrometer (0.0014 nm at 313 nm) has been developed at the University of L'Aquila (Italy) for atmospheric spectroscopic studies. The layout, optics and software for the instrument control are described. Measurements of the mercury low-pressure lamp lines from 200 to 600 nm show the high performances of the spectrometer. Laboratory measurements of OH and NO2 spectrums demonstrate that the system could be used for cross-section measurements and to detect these species in the atmosphere. The first atmospheric application of the system was the observation of direct solar and sky spectrums that shows a filling-in of the sky lines due to rotational Raman scattering. The measurements have been done with clear and cloudy sky and in both there was a strong dependence of the filling-in from the solar zenith angle whereas no dependence from the wavelengths was evident at low solar zenith angles (less than 85°).

  8. Characterization of a high resolution transmission grating

    NASA Astrophysics Data System (ADS)

    Desauté, P.; Merdji, H.; Greiner, V.; Missalla, T.; Chenais-Popovics, C.; Troussel, P.

    2000-01-01

    Three 5000 lines/mm gold transmission gratings have been tested with the radiation from the Super-ACO synchrotron in the range 250 eV< E<850 eV. Typical results for the spectral dependence of the grating efficiency at different diffraction orders are presented. This grating theoretically built to have no second order exhibits second order as high as 15-20% of first order. The very thin 5000 L/mm gratings are supported by a larger grid which perturbs the recorded data by separating each order in three peaks. Fraunhofer diffraction of the support grid has been modelled and can explain this effect. The high resolution gratings were used to measure the harmonics of the beamline monochromator grating (550 L/mm) and to measure the emission and absorption of laser-produced plasmas in the XUV range.

  9. Improved methods for high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C44H90 paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol.

  10. High resolution solar X-ray studies

    NASA Technical Reports Server (NTRS)

    Blake, R. L.

    1974-01-01

    Two high resolution solar X-ray payloads and their launches on Aerobee rockets with pointing system are described. The payloads included 5 to 25A X-ray spectrometers, multiaperture X-ray cameras, and command box attitude control inflight by means of a television image radioed to ground. Spatial resolution ranged from five arc minutes to ten arc seconds and spectral resolution ranged from 500 to 3000. Several laboratory tasks were completed in order to achieve the desired resolution. These included (1) development of techniques to align grid collimators, (2) studies of the spectrometric properties of crystals, (3) measurements of the absorption coefficients of various materials used in X-ray spectrometers, (4) evaluation of the performance of multiaperture cameras, and (5) development of facilities.

  11. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  12. High resolution analysis of satellite gradiometry

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1989-01-01

    Satellite gravity gradiometry is a technique now under development which, by the middle of the next decade, may be used for the high resolution charting from space of the gravity field of the earth and, afterwards, of other planets. Some data analysis schemes are reviewed for getting detailed gravity maps from gradiometry on both a global and a local basis. It also presents estimates of the likely accuracies of such maps, in terms of normalized spherical harmonics expansions, both using gradiometry alone and in combination with data from a Global Positioning System (GPS) receiver carried on the same spacecraft. It compares these accuracies with those of current and future maps obtained from other data (conventional tracking, satellite-satellite tracking, etc.), and also with the spectra of various signals of geophysical interest.

  13. High-Resolution Broadband Spectral Interferometry

    SciTech Connect

    Erskine, D J; Edelstein, J

    2002-08-09

    We demonstrate solar spectra from a novel interferometric method for compact broadband high-resolution spectroscopy. The spectral interferometer (SI) is a hybrid instrument that uses a spectrometer to externally disperse the output of a fixed-delay interferometer. It also has been called an externally dispersed interferometer (EDI). The interferometer can be used with linear spectrometers for imaging spectroscopy or with echelle spectrometers for very broad-band coverage. EDI's heterodyning technique enhances the spectrometer's response to high spectral-density features, increasing the effective resolution by factors of several while retaining its bandwidth. The method is extremely robust to instrumental insults such as focal spot size or displacement. The EDI uses no moving parts, such as purely interferometric FTS spectrometers, and can cover a much wider simultaneous bandpass than other internally dispersed interferometers (e.g. HHS or SHS).

  14. Limits of simulation based high resolution EBSD.

    PubMed

    Alkorta, Jon

    2013-08-01

    High resolution electron backscattered diffraction (HREBSD) is a novel technique for a relative determination of both orientation and stress state in crystals through digital image correlation techniques. Recent works have tried to use simulated EBSD patterns as reference patterns to achieve the absolute orientation and stress state of crystals. However, a precise calibration of the pattern centre location is needed to avoid the occurrence of phantom stresses. A careful analysis of the projective transformation involved in the formation of EBSD patterns has permitted to understand these phantom stresses. This geometrical analysis has been confirmed by numerical simulations. The results indicate that certain combinations of crystal strain states and sample locations (pattern centre locations) lead to virtually identical EBSD patterns. This ambiguity makes the problem of solving the absolute stress state of a crystal unfeasible in a single-detector configuration. PMID:23676453

  15. Constructing a WISE High Resolution Galaxy Atlas

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; Eisenhardt, P.; Fowler, J.; Koribalski, B.; Lake, S.; Neill, James D.; Seibert, M.; Stanford, S.; Wright, E.

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  16. High-resolution scanning hall probe microscopy

    NASA Astrophysics Data System (ADS)

    Hicks, C. W.; Guikema, J. W.; Zeldov, E.

    2005-03-01

    Scanning hall sensors can be used to directly image magnetic fields at surfaces. They offer high resolution, high sensitivity, operability from cryogenic to room temperature, and linearity. We have fabricated hall sensors on GaAs / Al0.35Ga0.65As and GaAs / Al0.3Ga0.7As heterostructures, one containing a 2D electron gas 40 nanometers below the surface and another 140nm below the surface, as well as an In0.5Al0.5As / GaSb / AlSb / InAs heterostructure containing a 2DEG 21nm below the surface. The sensitive areas of our probes range from microns to 60nm on a side. We report on the field sensitivities of the probes and their spatial resolution in a scanning configuration.

  17. Improved methods for high resolution electron microscopy

    SciTech Connect

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  18. Information extraction from high resolution satellite images

    NASA Astrophysics Data System (ADS)

    Yang, Haiping; Luo, Jiancheng; Shen, Zhanfeng; Xia, Liegang

    2014-11-01

    Information extracted from high resolution satellite images, such as roads, buildings, water and vegetation, has a wide range of applications in disaster assessment and environmental monitoring. At present, object oriented supervised learning is usually used in the objects identification from the high spatial resolution satellite images. In classical ways, we have to label some regions of interests from every image to be classified at first, which is labor intensive. In this paper, we build a feature base for information extraction in order to reduce the labeling efforts. The features stored are regulated and labeled. The labeled samples for a new coming image can be selected from the feature base. And the experiments are taken on GF-1 and ZY-3 images. The results show the feasibility of the feature base for image interpretation.

  19. Pyramidal fractal dimension for high resolution images

    NASA Astrophysics Data System (ADS)

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024 ×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.

  20. High resolution multimodal clinical ophthalmic imaging system

    PubMed Central

    Mujat, Mircea; Ferguson, R. Daniel; Patel, Ankit H.; Iftimia, Nicusor; Lue, Niyom; Hammer, Daniel X.

    2010-01-01

    We developed a multimodal adaptive optics (AO) retinal imager which is the first to combine high performance AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. Such systems are becoming ever more essential to vision research and are expected to prove their clinical value for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa. The SSOCT channel operates at a wavelength of 1 µm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. This AO system is designed for use in clinical populations; a dual deformable mirror (DM) configuration allows simultaneous low- and high-order aberration correction over a large range of refractions and ocular media quality. The system also includes a wide field (33 deg.) line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation, an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of lateral eye motion, and a high-resolution LCD-based fixation target for presentation of visual cues. The system was tested in human subjects without retinal disease for performance optimization and validation. We were able to resolve and quantify cone photoreceptors across the macula to within ~0.5 deg (~100-150 µm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve features deep into the choroid. The prototype presented here is the first of a new class of powerful flexible imaging platforms that will provide clinicians and researchers with high-resolution, high performance adaptive optics imaging to help guide therapies, develop new drugs, and improve patient outcomes. PMID:20589021

  1. High-resolution simulation of field emission

    SciTech Connect

    Herrmannsfeldt, W.B. ); Becker, R. ); Brodie, I.; Rosengreen, A.; Spindt, C.A. )

    1990-03-01

    High-resolution simulations of field emission electron sources have been made using the electron optics program EGN2. Electron emission distributions are made using the Fowler-Nordheim equation. Mesh resolution in the range of 1-5 {angstrom} is required to adequately model surface details that can result in emission currents in the range found experimentally. A typical problem starts with mechanical details with dimensions of about 1{mu}. To achieve high resolution a new boundary is defined by the tip, a nearby equipotential line, and a pair of field lines. The field lines (one of which is normally the axis of symmetry) define Neumann boundaries. This new boundary is then used by the boundary preprocessor POLYGON to create an enlarged version of the problem, typically by a factor of ten. This process can be repeated until adequate resolution is obtained to simulate surface details, such as microprotusion, that could sufficiently enhance the surface electric fields and cause field emission. When simulating experimental conditions under which emission of several microamperes per tip were observed, it was found that both a locally reduced work function and a surface protrusion were needed to duplicate the experimental results. If only a local region of reduced work function is used, the area involved and the extent of the reduction both need to be very large to reproduce the emission. If only a surface protrusion is used, it is possible to get the observed emission current with a reasonable protrusion of length a few times radius, but then the resulting beam spreads over a very large solid angle due to the strong local radial electric fields. 8 refs., 14 figs., 1 tab.

  2. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2006-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as H2O (water vapor), O3 (ozone), HCN (hydrogen cyanide), CH4 (methane), NO2 (nitrogen dioxide) and CO (carbon monoxide). The data required for the analyses were obtained from two different Fourier Transform Spectrometers (FTS); one of which is located at the National Solar Observatory (NSO) on Kitt Peak, Arizona and the other instrument is located at the Pacific Northwest National Laboratories (PNNL) at Richland, Washington. The data were analyzed using a modified multispectrum nonlinear least squares fitting algorithm developed by Dr. D. Chris Benner of the College of William and Mary. The results from these studies made significant improvements in the line positons and intensities for these molecules. The measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced shift coefficients for hundreds of infrared transitions of HCN, CO3 CH4 and H2O were also performed during this period. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research Satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields. The research conducted during the period 2003-2006 has resulted in publications given in this paper. In addition to Journal publications, several oral and poster presentations were given at various Scientific conferences within the United States

  3. Pyramidal fractal dimension for high resolution images.

    PubMed

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images. PMID:27475069

  4. Ecological applications of high resolution spectrometry

    NASA Technical Reports Server (NTRS)

    Lawrence, William T.

    1989-01-01

    Future directions of NASA's space program plans include a significant effort at studying the Earth as a system of interrelated ecosystems. As part of NASA's Earth Observing System (Eos) Program a series of space platforms will be launched and operated to study the Earth with a variety of active and passive instruments. Several of the Eos instruments will be capable of imaging the planet's surface reflectance on a large number of very narrow portions of the solar spectrum. After the development of appropriate algorithms, this reflectance information will be used to determine key parameters about the structure and function of terrestrial and aquatic ecosystems and the pattern and processes of those systems across large areas of the globe. Algorithm development applicable to terrestrial systems will permit the inference of ecological processes from high resolution spectrometry data, similar to that to be forthcoming from the Eos mission. The first summer was spent working with tropical soils and relating their reflectance characteristics to particle size, iron content, and color. This summer the emphasis is on vegetation and work was begun with the Forest Ecosystems Dynamics Project in the Earth Resources Branch where both optical and radar characteristics of a mixed conifer/hardwood forest in Maine are being studied for use in a ecological modeling effort. A major series of aircraft overflights will take place throughout the summer. Laboratory and field spectrometers are used to measure the spectral reflectance of a hierarchy of vegetation from individual leaves to whole canopies for eventual modeling of their nutrient content using reflectance data. Key leaf/canopy parameters are being approximated including chlorophyll, nitrogen, phosphorus, water content, and leaf specific weight using high resolution spectrometry alone. Measurements are made of carbon exchange across the landscape for input to a spatial modeling effort to gauge production within the forest. A

  5. Crevasse-splay sedimentation processes revealed through high resolution modelling

    NASA Astrophysics Data System (ADS)

    Hackney, Christopher; Darby, Stephen; Parsons, Daniel; Leyland, Julian; Aalto, Rolf; Nicholas, Andrew; Best, Jim

    2015-04-01

    During rapid rise flood events, crevasse-splay complexes are a dominant conduit through which sediment and water are passed from the main channel onto the floodplain, particularly for large rivers. These crevasse-splay systems are, therefore, key in controlling rates of floodplain sedimentation, as well as conditioning the location of avulsions. Despite recent advances in our capabilities to model the development and evolution of these systems, our understanding of the passage, storage and reworking of water and sediment across them remains relatively poor. A key limitation concerns the point that, since floodplain topography is a first-order control on the hydrodynamics of crevasse-splays, publicly available topographic data sets (e.g. SRTM) are currently unable to resolve key processes at the necessary spatial resolution. Here we employ Structure-from-Motion (SfM) on low-level aerial photography to obtain high-resolution (3m grid cell) georectified topographic data (horizontal error = 0.02 m; vertical error = 0.5 m) for a series of three representative crevasse-splay complexes located along the Mekong River, Cambodia. We use the coupled hydrodynamic and morphodynamic model, Delft-3D to simulate sedimentation patterns for a series of flood events. We model floodplain deposition and erosion and validate simulated spatial and temporal variations against observed patterns. We show how the spatial and temporal patterns of floodplain development via crevasse-splays are conditioned by key hydrological characteristics.

  6. High-resolution EEG (HR-EEG) and magnetoencephalography (MEG).

    PubMed

    Gavaret, M; Maillard, L; Jung, J

    2015-03-01

    High-resolution EEG (HR-EEG) and magnetoencephalography (MEG) allow the recording of spontaneous or evoked electromagnetic brain activity with excellent temporal resolution. Data must be recorded with high temporal resolution (sampling rate) and high spatial resolution (number of channels). Data analyses are based on several steps with selection of electromagnetic signals, elaboration of a head model and use of algorithms in order to solve the inverse problem. Due to considerable technical advances in spatial resolution, these tools now represent real methods of ElectroMagnetic Source Imaging. HR-EEG and MEG constitute non-invasive and complementary examinations, characterized by distinct sensitivities according to the location and orientation of intracerebral generators. In the presurgical assessment of drug-resistant partial epilepsies, HR-EEG and MEG can characterize and localize interictal activities and thus the irritative zone. HR-EEG and MEG often yield significant additional data that are complementary to other presurgical investigations and particularly relevant in MRI-negative cases. Currently, the determination of the epileptogenic zone and functional brain mapping remain rather less well-validated indications. In France, in 2014, HR-EEG is now part of standard clinical investigation of epilepsy, while MEG remains a research technique. PMID:25648821

  7. Crusta: Visualizing High-resolution Global Data

    NASA Astrophysics Data System (ADS)

    Bernardin, T. S.; Kreylos, O.; Bowles, C. J.; Cowgill, E.; Hamann, B.; Kellogg, L. H.

    2009-12-01

    Virtual globes have become indispensable tools for visualizing, understanding and presenting data from Earth and other planetary bodies. The scientific community has invested much effort into exploiting existing globes to their fullest potential by refining and adapting their capabilities to better satisfy specific needs. For example, Google Earth provides users with the ability to view hillshade images derived from airborne LiDAR data such as the 2007 Northern California GeoEarthScope data. However, because most available globes were not designed with the specific needs of geoscientists in mind, shortcomings are becoming increasingly evident in geoscience applications such as terrain visualization. In particular, earth scientists struggle to visualize digital elevation models with both high spatial resolution (0.5 - 1 square meters per sample) and large extent (>2000 square kilometers), such as those obtained with airborne LiDAR. To address the specific earth science need of real-time terrain visualization of LiDAR data, we are developing Crusta as part of a close collaboration involving earth and computer scientists. Crusta is a new virtual globe that differs from widely used globes by both providing accurate global data representation and the ability to easily visualize custom topographic and image data. As a result, Crusta enables real-time, interactive visualization of high resolution digital elevation data spanning thousands of square kilometers, such as the complete 2007 Northern California GeoEarthScope airborne LiDAR data set. To implement an accurate data representation and avoid distortion of the display at the poles, where other projections have singularities, Crusta represents the globe as a thirty-sided polyhedron. Each side of this polyhedron can be subdivided to an arbitrarily fine grid on the surface of the globe, which allows Crusta to accommodate input data of arbitrary resolution ranging from global (e.g., Blue Marble) to local (e.g., a tripod

  8. Efficient Compression of High Resolution Climate Data

    NASA Astrophysics Data System (ADS)

    Yin, J.; Schuchardt, K. L.

    2011-12-01

    resolution climate data can be massive. Those data can consume a huge amount of disk space for storage, incur significant overhead for outputting data during simulation, introduce high latency for visualization and analysis, and may even make interactive visualization and analysis impossible given the limit of the data that a conventional cluster can handle. These problems can be alleviated by with effective and efficient data compression techniques. Even though HDF5 format supports compression, previous work has mainly focused on employ traditional general purpose compression schemes such as dictionary coder and block sorting based compression scheme. Those compression schemes mainly focus on encoding repeated byte sequences efficiently and are not well suitable for compressing climate data consist mainly of distinguished float point numbers. We plan to select and customize our compression schemes according to the characteristics of high-resolution climate data. One observation on high resolution climate data is that as the resolution become higher, values of various climate variables such as temperature and pressure, become closer in nearby cells. This provides excellent opportunities for predication-based compression schemes. We have performed a preliminary estimation of compression ratios of a very simple minded predication-based compression ratio in which we compute the difference between current float point number with previous float point number and then encoding the exponent and significance part of the float point number with entropy-based compression scheme. Our results show that we can achieve higher compression ratios between 2 and 3 in lossless compression, which is significantly higher than traditional compression algorithms. We have also developed lossy compression with our techniques. We can achive orders of magnitude data reduction while ensure error bounds. Moreover, our compression scheme is much more efficient and introduces much less overhead

  9. Superconducting High Resolution Fast-Neutron Spectrometers

    SciTech Connect

    Hau, I D

    2006-05-25

    Superconducting high resolution fast-neutron calorimetric spectrometers based on {sup 6}LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, {alpha}) reactions with fast neutrons in {sup 6}Li and {sup 10}B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies k{sub B}T on the order of {mu}eV that serve as signal carriers, resulting in an energy resolution {Delta}E {approx} (k{sub B}T{sup 2}C){sup 1/2}, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB{sub 2} absorber using thermal neutrons from a {sup 252}Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in {sup 7}Li. Fast-neutron spectra obtained with a {sup 6}Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the {sup 6}Li(n, {alpha}){sup 3}H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  10. High resolution spectrograph for the Space Telescope

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Boggess, A.; Heap, S. R.; Maran, S. P.; Smith, A. M.; Beaver, E. A.; Bottema, M.; Hutchings, J. B.; Jura, M. A.; Linsky, J. L.

    1979-01-01

    The high resolution spectrograph (HRS) for ultraviolet astronomy with the Space Telescope will provide a spectral resolution of approximately 120,000 over a nominal wavelength range of 110-320 nm, together with a spatial resolution of about 0.25 arc seconds. The two detectors will consist of 512-element Digicons with cesium telluride and cesium iodide photocathodes, respectively. Photoelectrons in transit between the photocathodes and the diodes within the Digicons can be deflected in two axes with 12-bit resolution. This feature facilitates a design that emphasizes reliability since (once a hermetic seal is opened in orbit), only two moving parts, a grating carrousel and a shutter, are required for regular operation of the HRS. The instrument will be controlled by a computer in the spacecraft. The scientific objectives of the HRS investigation relate to interstellar matter in our own and nearby galaxies, physical processes of stellar mass loss and mass transfer, chemical abundances, bright quasars and Seyfert galaxy nuclei, and solar system phenomena.

  11. High Resolution BPM for Linear Colliders

    NASA Astrophysics Data System (ADS)

    Simon, C.; Chel, S.; Luong, M.; Napoly, O.; Novo, J.; Roudier, D.; Baboi, N.; Noelle, D.; Mildner, N.; Zapfe, K.; Rouvière, N.

    2006-11-01

    A high resolution Beam Position Monitor (BPM) is necessary for the beam-based alignment systems of high energy and low emittance electron linacs. Such a monitor is developed in the framework of the European CARE/SRF programme, in a close collaboration between DESY and CEA/DSM/DAPNIA. This monitor is a radiofrequency re-entrant cavity, which can be used either at room or cryogenic temperature, in an environment where dust particle contamination has to be avoided, such as superconducting cavities in a cryomodule. A first prototype of a re-entrant BPM has already delivered measurements at 2K. inside the first cryomodule (ACC1) on the TESLA Test Facility 2 (TTF2). The performances of this BPM are analyzed both experimentally and theoretically, and the limitations of this existing system clearly identified. A new cavity and new electronics have been designed in order to improve the position resolution down to 1 μm and the damping time down to 10 ns.

  12. High-resolution microwave images of saturn.

    PubMed

    Grossman, A W; Muhleman, D O; Berge, G L

    1989-09-15

    An analysis of high-resolution microwave images of Saturn and Saturn's individual rings is presented. Radio interferometric observations of Saturn taken at the Very Large Array in New Mexico at wavelengths of 2 and 6 centimeters reveal interesting new features in both the atmosphere and rings. The resulting maps show an increase in brightness temperature of about 3 K from equator to pole at both wavelengths, while the 6-centimeter map shows a bright band at northern mid-latitudes. The data are consistent with a radiative transfer model of the atmosphere that constrains the well-mixed, fully saturated, NH(3) mixing ratio to be 1.2 x 10(-4) in a region just below the NH(3) clouds, while the observed bright band indicates a 25 percent relative decrease of NH(3) in northern mid-latitudes. Brightness temperatures for the classical rings are presented. Ring brightness shows a variation with azimuth and is linearly polarized at an average value of about 5 percent. The variations in ring polarization suggest that at least 20 percent of the ring brightness is the result of a single scattering process. PMID:17747882

  13. High-resolution x-ray telescopes

    NASA Astrophysics Data System (ADS)

    O'Dell, Stephen L.; Brissenden, Roger J.; Davis, William N.; Elsner, Ronald F.; Elvis, Martin S.; Freeman, Mark D.; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhail V.; Jerius, Diab; Juda, Michael; Kolodziejczak, Jeffery J.; Murray, Stephen S.; Petre, Robert; Podgorski, William; Ramsey, Brian D.; Reid, Paul B.; Saha, Timo; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Weisskopf, Martin C.; Wilke, Rudeger H. T.; Wolk, Scott; Zhang, William W.

    2010-08-01

    High-energy astrophysics is a relatively young scientific field, made possible by space-borne telescopes. During the half-century history of x-ray astronomy, the sensitivity of focusing x-ray telescopes-through finer angular resolution and increased effective area-has improved by a factor of a 100 million. This technological advance has enabled numerous exciting discoveries and increasingly detailed study of the high-energy universe-including accreting (stellarmass and super-massive) black holes, accreting and isolated neutron stars, pulsar-wind nebulae, shocked plasma in supernova remnants, and hot thermal plasma in clusters of galaxies. As the largest structures in the universe, galaxy clusters constitute a unique laboratory for measuring the gravitational effects of dark matter and of dark energy. Here, we review the history of high-resolution x-ray telescopes and highlight some of the scientific results enabled by these telescopes. Next, we describe the planned next-generation x-ray-astronomy facility-the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility-Generation X. The scientific objectives of such a mission will require very large areas (about 10000 m2) of highly-nested lightweight grazing-incidence mirrors with exceptional (about 0.1-arcsecond) angular resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  14. Future trends in high-resolution lithography

    NASA Astrophysics Data System (ADS)

    Lawes, R. A.

    2000-02-01

    A perennial question is "what is the future of high-resolution lithography, a key technology that drives the semiconductor industry"? The dominant technology over the last 30 years has been optical lithography, which by lowering wavelengths to 193 nm (ArF) and 157 nm (F 2) and by using optical "tricks" such as phase shift masks, off-axis illumination and phase filters, should be capable of 100 nm CMOS technology. So where does this leave the competition? The 100-nm lithography used to be the domain of electron beam lithography but only in research laboratories. Significant efforts are being made to increase throughput by electron projection (scattering with angular limitation projection electron beam lithography or SCALPEL). X-ray lithography remains a demonstrated R&D tool waiting to be commercially exploited but the initial expenditure to do so is very high. Ion beam lithography and extreme ultraviolet (EUV) ( λ<12 nm) have also received attention in recent years. This paper will concentrate on some of the key issues and speculate on how and when an alternative to optical lithography will be embraced by industry.

  15. High resolution quantum metrology via quantum interpolation

    NASA Astrophysics Data System (ADS)

    Ajoy, Ashok; Liu, Yixiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Cappellaro, Paola

    2016-05-01

    Nitrogen Vacancy (NV) centers in diamond are a promising platform for quantum metrology - in particular for nanoscale magnetic resonance imaging to determine high resolution structures of single molecules placed outside the diamond. The conventional technique for sensing of external nuclear spins involves monitoring the effects of the target nuclear spins on the NV center coherence under dynamical decoupling (the CPMG/XY8 pulse sequence). However, the nuclear spin affects the NV coherence only at precise free evolution times - and finite timing resolution set by hardware often severely limits the sensitivity and resolution of the method. In this work, we overcome this timing resolution barrier by developing a technique to supersample the metrology signal by effectively implementing a quantum interpolation of the spin system dynamics. This method will enable spin sensing at high magnetic fields and high repetition rate, allowing significant improvements in sensitivity and spectral resolution. We experimentally demonstrate a resolution boost by over a factor of 100 for spin sensing and AC magnetometry. The method is shown to be robust, versatile to sensing normal and spurious signal harmonics, and ultimately limited in resolution only by the number of pulses that can be applied.

  16. Holographic high-resolution endoscopic image recording

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.

    1991-03-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help

  17. High-resolution imaging using endoscopic holography

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.

    1990-08-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help to their control. 1.

  18. High resolution Fourier interferometer-spectrophotopolarimeter

    NASA Technical Reports Server (NTRS)

    Fymat, A. L. (Inventor)

    1976-01-01

    A high-resolution Fourier interferometer-spectrophotopolarimeter is provided using a single linear polarizer-analyzer the transmission axis azimuth of which is positioned successively in the three orientations of 0 deg, 45 deg, and 90 deg, in front of a detector; four flat mirrors, three of which are switchable to either of two positions to direct an incoming beam from an interferometer to the polarizer-analyzer around a sample cell transmitted through a medium in a cell and reflected by medium in the cell; and four fixed focussing lenses, all located in a sample chamber attached at the exit side of the interferometer. This arrangement can provide the distribution of energy and complete polarization state across the spectrum of the reference light entering from the interferometer; the same light after a fixed-angle reflection from the sample cell containing a medium to be analyzed; and the same light after direct transmission through the same sample cell, with the spectral resolution provided by the interferometer.

  19. High resolution remote sensing of water surface patterns

    NASA Astrophysics Data System (ADS)

    Woodget, A.; Visser, F.; Maddock, I.; Carbonneau, P.

    2012-12-01

    The assessment of in-stream habitat availability within fluvial environments in the UK traditionally includes the mapping of patterns which appear on the surface of the water, known as 'surface flow types' (SFTs). The UK's River Habitat Survey identifies ten key SFTs, including categories such as rippled flow, upwelling, broken standing waves and smooth flow. SFTs result from the interaction between the underlying channel morphology, water depth and velocity and reflect the local flow hydraulics. It has been shown that SFTs can be both biologically and hydraulically distinct. SFT mapping is usually conducted from the river banks where estimates of spatial coverage are made by eye. This approach is affected by user subjectivity and inaccuracies in the spatial extent of mapped units. Remote sensing and specifically the recent developments in unmanned aerial systems (UAS) may now offer an alternative approach for SFT mapping, with the capability for rapid and repeatable collection of very high resolution imagery from low altitudes, under bespoke flight conditions. This PhD research is aimed at investigating the mapping of SFTs using high resolution optical imagery (less than 10cm) collected from a helicopter-based UAS flown at low altitudes (less than 100m). This paper presents the initial findings from a series of structured experiments on the River Arrow, a small lowland river in Warwickshire, UK. These experiments investigate the potential for mapping SFTs from still and video imagery of different spatial resolutions collected at different flying altitudes and from different viewing angles (i.e. vertical and oblique). Imagery is processed using 3D mosaicking software to create orthophotos and digital elevation models (DEM). The types of image analysis which are tested include a simple, manual visual assessment undertaken in a GIS environment, based on the high resolution optical imagery. In addition, an object-based image analysis approach which makes use of the

  20. Skull base, orbits, temporal bone, and cranial nerves: anatomy on MR imaging.

    PubMed

    Morani, Ajaykumar C; Ramani, Nisha S; Wesolowski, Jeffrey R

    2011-08-01

    Accurate delineation, diagnosis, and treatment planning of skull base lesions require knowledge of the complex anatomy of the skull base. Because the skull base cannot be directly evaluated, imaging is critical for the diagnosis and management of skull base diseases. Although computed tomography (CT) is excellent for outlining the bony detail, magnetic resonance (MR) imaging provides better soft tissue detail and is helpful for evaluating the adjacent meninges, brain parenchyma, and bone marrow of the skull base. Thus, CT and MR imaging are often used together for evaluating skull base lesions. This article focuses on the radiologic anatomy of the skull base pertinent to MR imaging evaluation. PMID:21816324

  1. A novel framework for the temporal analysis of bone mineral density in metastatic lesions using CT images of the femur

    NASA Astrophysics Data System (ADS)

    Knoop, Tom H.; Derikx, Loes C.; Verdonschot, Nico; Slump, Cornelis H.

    2015-03-01

    In the progressive stages of cancer, metastatic lesions in often develop in the femur. The accompanying pain and risk of fracture dramatically affect the quality of life of the patient. Radiotherapy is often administered as palliative treatment to relieve pain and restore the bone around the lesion. It is thought to affect the bone mineralization of the treated region, but the quantitative relation between radiation dose and femur remineralization remains unclear. A new framework for the longitudinal analysis of CT-scans of patients receiving radiotherapy is presented to investigate this relationship. The implemented framework is capable of automatic calibration of Hounsfield Units to calcium equivalent values and the estimation of a prediction interval per scan. Other features of the framework are temporal registration of femurs using elastix, transformation of arbitrary Regions Of Interests (ROI), and extraction of metrics for analysis. Build in Matlab, the modular approach aids easy adaptation to the pertinent questions in the explorative phase of the research. For validation purposes, an in-vitro model consisting of a human cadaver femur with a milled hole in the intertrochanteric region was used, representing a femur with a metastatic lesion. The hole was incrementally stacked with plates of PMMA bone cement with variable radiopaqueness. Using a Kolmogorov-Smirnov (KS) test, changes in density distribution due to an increase of the calcium concentration could be discriminated. In a 21 cm3 ROI, changes in 8% of the volume from 888 ± 57mg • ml-1 to 1000 ± 80mg • ml-1 could be statistically proven using the proposed framework. In conclusion, the newly developed framework proved to be a useful and flexible tool for the analysis of longitudinal CT data.

  2. Potential High Resolution Dosimeters For MRT

    NASA Astrophysics Data System (ADS)

    Bräuer-Krisch, E.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Brochard, T.; Kamlowski, A.; Cellere, G.; Paccagnella, A.; Siegbahn, E. A.; Prezado, Y.; Martinez-Rovira, I.; Bravin, A.; Dusseau, L.; Berkvens, P.

    2010-07-01

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow (˜25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 μm microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy/s, micron

  3. Large Scale, High Resolution, Mantle Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Geenen, T.; Berg, A. V.; Spakman, W.

    2007-12-01

    To model the geodynamic evolution of plate convergence, subduction and collision and to allow for a connection to various types of observational data, geophysical, geodetical and geological, we developed a 4D (space-time) numerical mantle convection code. The model is based on a spherical 3D Eulerian fem model, with quadratic elements, on top of which we constructed a 3D Lagrangian particle in cell(PIC) method. We use the PIC method to transport material properties and to incorporate a viscoelastic rheology. Since capturing small scale processes associated with localization phenomena require a high resolution, we spend a considerable effort on implementing solvers suitable to solve for models with over 100 million degrees of freedom. We implemented Additive Schwartz type ILU based methods in combination with a Krylov solver, GMRES. However we found that for problems with over 500 thousend degrees of freedom the convergence of the solver degraded severely. This observation is known from the literature [Saad, 2003] and results from the local character of the ILU preconditioner resulting in a poor approximation of the inverse of A for large A. The size of A for which ILU is no longer usable depends on the condition of A and on the amount of fill in allowed for the ILU preconditioner. We found that for our problems with over 5×105 degrees of freedom convergence became to slow to solve the system within an acceptable amount of walltime, one minute, even when allowing for considerable amount of fill in. We also implemented MUMPS and found good scaling results for problems up to 107 degrees of freedom for up to 32 CPU¡¯s. For problems with over 100 million degrees of freedom we implemented Algebraic Multigrid type methods (AMG) from the ML library [Sala, 2006]. Since multigrid methods are most effective for single parameter problems, we rebuild our model to use the SIMPLE method in the Stokes solver [Patankar, 1980]. We present scaling results from these solvers for 3D

  4. Wavefront metrology for high resolution optical systems

    NASA Astrophysics Data System (ADS)

    Miyakawa, Ryan H.

    Next generation extreme ultraviolet (EUV) optical systems are moving to higher resolution optics to accommodate smaller length scales targeted by the semiconductor industry. As the numerical apertures (NA) of the optics become larger, it becomes increasingly difficult to characterize aberrations due to experimental challenges associated with high-resolution spatial filters and geometrical effects caused by large incident angles of the test wavefront. This dissertation focuses on two methods of wavefront metrology for high resolution optical systems. The first method, lateral shearing interferometry (LSI), is a self-referencing interferometry where the test wavefront is incident on a low spatial frequency grating, and the resulting interference between the diffracted orders is used to reconstruct the wavefront aberrations. LSI has many advantages over other interferometric tests such as phase-shifting point diffraction interferometry (PS/PDI) due to its experimental simplicity, stability, relaxed coherence requirements, and its ability to scale to high numerical apertures. While LSI has historically been a qualitative test, this dissertation presents a novel quantitative investigation of the LSI interferogram. The analysis reveals the existence of systematic aberrations due to the nonlinear angular response from the diffraction grating that compromises the accuracy of LSI at medium to high NAs. In the medium NA regime (0.15 < NA < 0.35), a holographic model is presented that derives the systematic aberrations in closed form, which demonstrates an astigmatism term that scales as the square of the grating defocus. In the high NA regime (0.35 < NA), a geometrical model is introduced that describes the aberrations as a system of transcendental equations that can be solved numerically. The characterization and removal of these systematic errors is a necessary step that unlocks LSI as a viable candidate for high NA EUV optical testing. The second method is a novel image

  5. Potential High Resolution Dosimeters For MRT

    SciTech Connect

    Braeuer-Krisch, E.; Brochard, T.; Prezado, Y.; Bravin, A.; Berkvens, P.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Kamlowski, A.; Cellere, G.

    2010-07-23

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow ({approx}25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 {mu}m microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy

  6. High-Resolution Radar Imagery of Mars

    NASA Astrophysics Data System (ADS)

    Harmon, John K.; Nolan, M. C.

    2009-09-01

    We present high-resolution radar images of Mars obtained during the 2005 and 2007 oppositions. The images were constructed from long-code delay-Doppler observations made with the Arecibo S-band (13-cm) radar. The average image resolution of 3 km represented a better than order-of-magnitude improvement over pre-upgrade Arecibo imagery of the planet. Images of depolarized reflectivity (an indicator primarily of wavelength-scale surface roughness) show the same bright volcanic flow features seen in earlier imagery, but with much finer detail. A new image of the Elysium region shows fine detail in the radar-bright channels of Athabasca Vallis, Marte Vallis, and Grjota Vallis. The new images of Tharsis and Olympus Mons also show a complex array of radar-bright and radar-dark features. Southern Amazonis exhibits some of the most complex and puzzling radar-bright structure on the planet. Another curiosity is the Chryse/Xanthe/Channels region, where we find some radar-bright features in or adjacent to fluvial chaos structures. Chryse/Xanthe is also the only region of Mars showing radar-bright craters (which are rare on Mars but common on the Moon and Mercury). We also obtained the first delay-Doppler image showing the enhanced backscatter from the residual south polar ice cap. In addition to the depolarized imagery, we were able to make the first delay-Doppler images of the circular polarization ratio (an important diagnostic for surface roughness texture). We find that vast areas of the radar-bright volcanic regions have polarization ratios close to unity. Such high ratios are rare for terrestrial lava flows and only seen for extremely blocky surfaces giving high levels of multiple scattering.

  7. Decadal prediction with a high resolution model

    NASA Astrophysics Data System (ADS)

    Monerie, Paul-Arthur; Valcke, Sophie; Terray, Laurent; Moine, Marie-Pierre

    2016-04-01

    The ability of a high resolution coupled atmosphere-ocean general circulation model (with a horizontal resolution of the quarter degree in the ocean and of about 50 km in the atmosphere) to predict the annual means of temperature, precipitation, sea-ice volume and extent is assessed. Reasonable skill in predicting sea surface temperatures and surface air temperature is obtained, especially over the North Atlantic, the tropical Atlantic and the Indian Ocean. The skill in predicting precipitations is weaker and not significant. The Sea Ice Extent and volume are also reasonably predicted in winter (March) and summer (September). It is however argued that the skill is mainly due to the atmosphere feeding in well-mixed GHGs. The mid-90's subpolar gyre warming is assessed. The model simulates a warming of the North Atlantic Ocean, associated with an increase of the meridional heat transport, a strengthening of the North Atlantic current and a deepening of the mixed layer over the Labrador Sea. The atmosphere plays a role in the warming through a modulation of the North Atlantic Oscillation and a shrinking of the subpolar gyre. At the 3-8 years lead-time, a negative anomaly of pressure, located south of the subpolar gyre is associated with the wind speed decrease over the subpolar gyre. It prevents oceanic heat-loss and favors the northward move, from the subtropical to the subpolar gyre, of anomalously warm and salty water, leading to its warming. We finally argued that the subpolar gyre warming is triggered by the ocean dynamic but the atmosphere can contributes to its sustaining. This work is realised in the framework of the EU FP7 SPECS Project.

  8. Toward high-resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel; Huie, Philip; Vankov, Alexander; Asher, Alon; Baccus, Steven

    2005-04-01

    It has been already demonstrated that electrical stimulation of retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. Current retinal implants provide very low resolution (just a few electrodes), while several thousand pixels are required for functional restoration of sight. We present a design of the optoelectronic retinal prosthetic system that can activate a retinal stimulating array with pixel density up to 2,500 pix/mm2 (geometrically corresponding to a visual acuity of 20/80), and allows for natural eye scanning rather than scanning with a head-mounted camera. The system operates similarly to "virtual reality" imaging devices used in military and medical applications. An image from a video camera is projected by a goggle-mounted infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. Such a system provides a broad field of vision by allowing for natural eye scanning. The goggles are transparent to visible light, thus allowing for simultaneous utilization of remaining natural vision along with prosthetic stimulation. Optical control of the implant allows for simple adjustment of image processing algorithms and for learning. A major prerequisite for high resolution stimulation is the proximity of neural cells to the stimulation sites. This can be achieved with sub-retinal implants constructed in a manner that directs migration of retinal cells to target areas. Two basic implant geometries are described: perforated membranes and protruding electrode arrays. Possibility of the tactile neural stimulation is also examined.

  9. High Resolution Global View of Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Io, the most volcanic body in the solar system is seen in the highest resolution obtained to date by NASA's Galileo spacecraft. The smallest features that can be discerned are 2.5 kilometers in size. There are rugged mountains several kilometers high, layered materials forming plateaus, and many irregular depressions called volcanic calderas. Several of the dark, flow-like features correspond to hot spots, and may be active lava flows. There are no landforms resembling impact craters, as the volcanism covers the surface with new deposits much more rapidly than the flux of comets and asteroids can create large impact craters. The picture is centered on the side of Io that always faces away from Jupiter; north is to the top.

    Color images acquired on September 7, 1996 have been merged with higher resolution images acquired on November 6, 1996 by the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. The color is composed of data taken, at a range of 487,000 kilometers, in the near-infrared, green, and violet filters and has been enhanced to emphasize the extraordinary variations in color and brightness that characterize Io's face. The high resolution images were obtained at ranges which varied from 245,719 kilometers to 403,100 kilometers.

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  10. The NASA High Resolution Microwave Survey

    NASA Astrophysics Data System (ADS)

    Tarter, J. C.; Gulkis, S.

    1993-05-01

    The NASA High Resolution Microwave Survey (HRMS) began a decade of planned observations to search for signals of extraterrestrial intelligent origin with inaugural ceremonies at two sites on October 12, 1992. At Goldstone, California the Sky Survey began executing precisely controlled scanning patterns on the celestial sphere using a new beam waveguide 34m antenna operating at a frequency near 8500 MHz (X-band). At Arecibo, Puerto Rico the Targeted Search began tracking GL615.1A, one of 24 solar-type stars selected for these inaugural observations, using the NAIC 300m radio telescope operating in a band of frequencies centered at 1406 MHz. Since the initiation of the search, the Sky Survey has completed X-band observations of several dozen sky-frames measuring 30(deg) times 1.5(deg) . In addition, observations of selected areas of the galactic plane have been observed in several frequency bands (1400 MHz and 1600 MHz) using a 26m antenna located near the 34m antenna. The Targeted Search has completed the first 200 hours of observations at Arecibo covering some 300 MHz of bandwidth. This paper summarizes the results of the observations to date, including a synopsis of the interference observed at the Goldstone and Arecibo sites, and a discussion of techniques that will be used to improve future observations. The HRMS program is managed by the Ames Research Center in collaboration with the Jet Propulsion Laboratory. The results presented in this paper represent the efforts of a team of scientists and engineers at these two institutions as well as the SETI Institute, Silicon Engines Inc., John C. Reykjalin Inc., Sverdrup Technology, Sterling Federal Systems, Cornell University, the Harvard-Smithsonian Center for Astrophysics, the American Astronomical Society, Arecibo Observatory, UC Santa Cruz, the University of Washington, UC Berkeley, California Institute of Technology, Georgia Institute of Technology, Innovative Systems, and the Space Telescope Science Institute.

  11. High-resolution phylogenetic microbial community profiling

    SciTech Connect

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  12. High resolution modeling of a small urban catchment

    NASA Astrophysics Data System (ADS)

    Skouri-Plakali, Ilektra; Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2016-04-01

    Flooding is one of the most complex issues that urban environments have to deal with. In France, flooding remains the first natural risk with 72% of decrees state of natural disaster issued between October 1982 and mid-November 2014. Flooding is a result of meteorological extremes that are usually aggravated by the hydrological behavior of urban catchments and human factors. The continuing urbanization process is indeed changing the whole urban water cycle by limiting the infiltration and promoting runoff. Urban environments are very complex systems due to their extreme variability, the interference between human activities and natural processes but also the effect of the ongoing urbanization process that changes the landscape and hardly influences their hydrologic behavior. Moreover, many recent works highlight the need to simulate all urban water processes at their specific temporal and spatial scales. However, considering urban catchments heterogeneity still challenging for urban hydrology, even after advances noticed in term of high-resolution data collection and computational resources. This issue is more to be related to the architecture of urban models being used and how far these models are ready to take into account the extreme variability of urban catchments. In this work, high spatio-temporal resolution modeling is performed for a small and well-equipped urban catchment. The aim of this work is to identify urban modeling needs in terms of spatial and temporal resolution especially for a very small urban area (3.7 ha urban catchment located in the Perreux-sur-Marne city at the southeast of Paris) MultiHydro model was selected to carry out this work, it is a physical based and fully distributed model that interacts four existing modules each of them representing a portion of the water cycle in urban environments. MultiHydro was implemented at 10m, 5m and 2m resolution. Simulations were performed at different spatio-temporal resolutions and analyzed with

  13. High-resolution global irradiance monitoring from photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Buchmann, Tina; Pfeilsticker, Klaus; Siegmund, Alexander; Meilinger, Stefanie; Mayer, Bernhard; Pinitz, Sven; Steinbrecht, Wolfgang

    2016-04-01

    Reliable and regional differentiated power forecasts are required to guarantee an efficient and economic energy transition towards renewable energies. Amongst other renewable energy technologies, e.g. wind mills, photovoltaic systems are an essential component of this transition being cost-efficient and simply to install. Reliable power forecasts are however required for a grid integration of photovoltaic systems, which among other data requires high-resolution spatio-temporal global irradiance data. Hence the generation of robust reviewed global irradiance data is an essential contribution for the energy transition. To achieve this goal our studies introduce a novel method which makes use of photovoltaic power generation in order to infer global irradiance. The method allows to determine high-resolution temporal global irradiance data (one data point every 15 minutes at each location) from power data of operated photovoltaic systems. Due to the multitude of installed photovoltaic systems (in Germany) the detailed spatial coverage is much better than for example only using global irradiance data from conventional pyranometer networks (e.g. from the German Weather Service). Our designated method is composed of two components: a forward component, i.e. to conclude from predicted global irradiance to photovoltaic (PV) power, and a backward component, i.e. from PV power with suitable calibration to global irradiance. The forward process is modelled by using the radiation transport model libRadtran (B. Mayer and A. Kylling (1)) for clear skies to obtain the characteristics (orientation, size, temperature dependence, …) of individual PV systems. For PV systems in the vicinity of a meteorological station, these data are validated against calibrated pyranometer readings. The forward-modelled global irradiance is used to determine the power efficiency for each photovoltaic system using non-linear optimisation techniques. The backward component uses the power efficiency

  14. Error and Uncertainty in High-resolution Quantitative Sediment Budgets

    NASA Astrophysics Data System (ADS)

    Grams, P. E.; Schmidt, J. C.; Topping, D. J.; Yackulic, C. B.

    2012-12-01

    Sediment budgets are a fundamental tool in fluvial geomorphology. The power of the sediment budget is in the explicit coupling of sediment flux and sediment storage through the Exner equation for bed sediment conservation. Thus, sediment budgets may be calculated either from the divergence of the sediment flux or from measurements of morphologic change. Until recently, sediment budgets were typically calculated using just one of these methods, and often with sparse data. Recent advances in measurement methods for sediment transport have made it possible to measure sediment flux at much higher temporal resolution, while advanced methods for high-resolution topographic and bathymetric mapping have made it possible to measure morphologic change with much greater spatial resolution. Thus, it is now possible to measure all terms of a sediment budget and more thoroughly evaluate uncertainties in measurement methods and sampling strategies. However, measurements of sediment flux and morphologic change involve different types of uncertainty that are encountered over different time and space scales. Three major factors contribute uncertainty to sediment budgets computed from measurements of sediment flux. These are measurement error, the accumulation of error over time, and physical processes that cause systematic bias. In the absence of bias, uncertainty is proportional to measurement error and the ratio of fluxes at the two measurement stations. For example, if the ratio between measured sediment fluxes is more than 0.8, measurement uncertainty must be less than 10 percent in order to calculate a meaningful sediment budget. Systematic bias in measurements of flux can introduce much larger uncertainty. The uncertainties in sediment budgets computed from morphologic measurements fall into three similar categories. These are measurement error, the spatial and temporal propagation of error, and physical processes that cause bias when measurements are interpolated or

  15. High Resolution Velocity Structure in Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Pasyanos, M. E.; Gok, R.; Zor, E.; Walter, W. R.

    2004-12-01

    We investigate the crust and upper mantle structure of eastern Turkey where the Anatolian, Arabian and Eurasian Plates meet, forming a complex tectonic regime. The Bitlis suture is a continental collision zone between the Anatolian plateau and the Arabian plate. Broadband data available through the Eastern Turkey Seismic Experiment (ETSE) provide a unique opportunity for studying the high resolution velocity structure of the region. Zor et al. (2003) found an average 46 km thick crust in the Anatolian plateau using a six-layered grid search inversion of the ETSE receiver functions. Receiver functions are sensitive to the velocity contrast of interfaces and the relative travel time of converted and reverberated waves between those interfaces. The interpretation of receiver functions alone, however, may result in an apparent depth-velocity trade-off [Ammon et al., 1990]. In order to improve upon this velocity model, we have combined the receiver functions with surface wave data using the joint inversion method of Julia et al. (2000). In this technique, the two sets of observations are combined into a single algebraic equation and each data set is weighted by an estimate of the uncertainty in the observations. The receiver functions are calculated using an iterative time-domain deconvolution technique. We also consider azimuthal changes in the receiver functions and have stacked them into different groups accordingly. We are improving our surface wave model by making Love and Rayleigh dispersion measurements at the ETSE stations and incorporating them into a regional group velocity model for periods between 10 and 100 seconds. Preliminary results indicate a strong trend in the long period group velocities toward the northeast, indicating slow upper mantle velocities in the area consistent with Pn, Sn and receiver function results. Starting models used for the joint inversions include both a 1-D model from a 12-ton dam shot recorded by ETSE [Gurbuz et al., 2004] and

  16. High Resolution Velocity Structure in Eastern Turkey

    SciTech Connect

    Pasyanos, M; Gok, R; Zor, E; Walter, W

    2004-09-03

    We investigate the crustal and upper mantle structure of eastern Turkey where the Anatolian, Arabian and Eurasian Plates meet and form a complex tectonic structure. The Bitlis suture is a continental collision zone between the Anatolian plateau and the Arabian plate. Broadband data available through the Eastern Turkey Seismic Experiment (ETSE) provided a unique opportunity for studying the high resolution velocity structure. Zor et al. found an average 46 km thick crust in Anatolian plateau using six-layered grid search inversion of the ETSE receiver functions. Receiver functions are sensitive to the velocity contrast of interfaces and the relative travel time of converted and reverberated waves between those interfaces. The interpretation of receiver function alone with many-layered parameterization may result in an apparent depth-velocity tradeoff. In order to improve previous velocity model, we employed the joint inversion method with many layered parameterization of Julia et al. (2000) to the ETSE receiver functions. In this technique, the receiver function and surface-wave observations are combined into a single algebraic equation and each data set is weighted by an estimate of the uncertainty in the observations. We consider azimuthal changes of receiver functions and have stacked them into different groups. We calculated the receiver functions using iterative time-domain deconvolution technique and surface wave group velocity dispersion curves between 10-100 sec. We are making surface wave dispersion measurements at the ETSE stations and have incorporated them into a regional group velocity model. Preliminary results indicate a strong trend in the long period group velocity in the northeast. This indicates slow upper mantle velocities in the region consistent with Pn, Sn and receiver function results. We started with both the 1-D model that is obtained with the 12 tones dam explosion shot data recorded by ETSE network and the existing receiver function

  17. High Resolution Airborne Shallow Water Mapping

    NASA Astrophysics Data System (ADS)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  18. The HFIP High Resolution Hurricane Forecast Test

    NASA Astrophysics Data System (ADS)

    Nance, L. B.; Bernardet, L.; Bao, S.; Brown, B.; Carson, L.; Fowler, T.; Halley Gotway, J.; Harrop, C.; Szoke, E.; Tollerud, E. I.; Wolff, J.; Yuan, H.

    2010-12-01

    Tropical cyclones are a serious concern for the nation, causing significant risk to life, property and economic vitality. The National Oceanic and Atmospheric Administration (NOAA) National Weather Service has a mission of issuing tropical cyclone forecasts and warnings, aimed at protecting life and property and enhancing the national economy. In the last 10 years, the errors in hurricane track forecasts have been reduced by about 50% through improved model guidance, enhanced observations, and forecaster expertise. However, little progress has been made during this period toward reducing forecasted intensity errors. To address this shortcoming, NOAA established the Hurricane Forecast Improvement Project (HFIP) in 2007. HFIP is a 10-year plan to improve one to five day tropical cyclone forecasts, with a focus on rapid intensity change. Recent research suggests that prediction models with grid spacing less than 1 km in the inner core of the hurricane may provide a substantial improvement in intensity forecasts. The 2008-09 staging of the High Resolution Hurricane (HRH) Test focused on quantifying the impact of increased horizontal resolution in numerical models on hurricane intensity forecasts. The primary goal of this test was an evaluation of the effect of increasing horizontal resolution within a given model across a variety of storms with different intensity, location and structure. The test focused on 69 retrospectives cases from the 2005 and 2007 hurricane seasons. Six modeling groups participated in the HRH test utilizing a variety of models, including three configurations of the Weather Research and Forecasting (WRF) model, the operational GFDL model, the Navy’s tropical cyclone model, and a model developed at the University of Wisconsin-Madison (UWM). The Development Testbed Center (DTC) was tasked with providing objective verification statistics for a variety of metrics. This presentation provides an overview of the HRH Test and a summary of the standard

  19. Application of high resolution synchrotron micro-CT radiation in dental implant osseointegration.

    PubMed

    Neldam, Camilla Albeck; Lauridsen, Torsten; Rack, Alexander; Lefolii, Tore Tranberg; Jørgensen, Niklas Rye; Feidenhans'l, Robert; Pinholt, Else Marie

    2015-06-01

    The purpose of this study was to describe a refined method using high-resolution synchrotron radiation microtomography (SRmicro-CT) to evaluate osseointegration and peri-implant bone volume fraction after titanium dental implant insertion. SRmicro-CT is considered gold standard evaluating bone microarchitecture. Its high resolution, high contrast, and excellent high signal-to-noise-ratio all contribute to the highest spatial resolutions achievable today. Using SRmicro-CT at a voxel size of 5 μm in an experimental goat mandible model, the peri-implant bone volume fraction was found to quickly increase to 50% as the radial distance from the implant surface increased, and levelled out to approximately 80% at a distance of 400 μm. This method has been successful in depicting the bone and cavities in three dimensions thereby enabling us to give a more precise answer to the fraction of the bone-to-implant contact compared to previous methods. PMID:25957106

  20. Computational analysis of high resolution unsteady airloads for rotor aeroacoustics

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Lam, C.-M. Gordon; Wachspress, Daniel A.; Bliss, Donald B.

    1994-01-01

    The study of helicopter aerodynamic loading for acoustics applications requires the application of efficient yet accurate simulations of the velocity field induced by the rotor's vortex wake. This report summarizes work to date on the development of such an analysis, which builds on the Constant Vorticity Contour (CVC) free wake model, previously implemented for the study of vibratory loading in the RotorCRAFT computer code. The present effort has focused on implementation of an airload reconstruction approach that computes high resolution airload solutions of rotor/rotor-wake interactions required for acoustics computations. Supplementary efforts on the development of improved vortex core modeling, unsteady aerodynamic effects, higher spatial resolution of rotor loading, and fast vortex wake implementations have substantially enhanced the capabilities of the resulting software, denoted RotorCRAFT/AA (AeroAcoustics). Results of validation calculations using recently acquired model rotor data show that by employing airload reconstruction it is possible to apply the CVC wake analysis with temporal and spatial resolution suitable for acoustics applications while reducing the computation time required by one to two orders of magnitude relative to that required by direct calculations. Promising correlation with this body of airload and noise data has been obtained for a variety of rotor configurations and operating conditions.

  1. The dynamic solar chromosphere: recent advances from high resolution telescopes

    NASA Astrophysics Data System (ADS)

    Tziotziou, Konstantinos; Tsiropoula, Georgia

    This review focuses on the solar chromosphere, a very inhomogeneous and dynamic layer that exhibits phenomena on a large range of spatial and temporal scales. High-resolution observa-tions from existing telescopes (DST, SST, DOT), as well as long-duration observations with Hinode's SOT employing lines such as the Ca II infrared lines, the Ca II HK and above all the Hα line reveal an incredibly rich, dynamic and highly structured environment, both in quiet and active regions. The fine-structure chromosphere, is mainly constituted by fibrilar features that connect various parts of active regions or span across network cell interiors. We discuss this highly dynamical solar chromosphere, especially below the magnetic canopy, which is gov-erned by flows reflecting both the complex geometry and dynamics of the magnetic field and the propagation and dissipation of waves in the different atmospheric layers. A comprehensive view of the fine-structure chromosphere requires deep understanding of the physical processes involved, investigation of the intricate link with structures/processes at lower photospheric lev-els and analysis of its impact on the mass and energy transport to higher atmospheric layers through flows resulting from different physical processes such as magnetic reconnection and waves. Furthermore, we assess the challenges facing theory and numerical modelling which require the inclusion of several physical ingredients, such as non-LTE and three-dimensional numerical simulations.

  2. Verification and enhancement high resolution layers 2012 for Bulgaria

    NASA Astrophysics Data System (ADS)

    Dimitrov, Ventzeslav; Lubenov, Todor

    Production of high-resolution layers (HRL) is a substantial part of the pan-European component of GMES/Copernicus initial operations (GIO) land monitoring service. The focus of this paper is on the results of the implementation of HRL verification and enhancement tasks for Bulgarian territory. For the reference year 2012 five HRL on land cover characteristics were produced by service providers through sophisticated classification of multi-sensor and multi-temporal satellite images: imperviousness, forests, grasslands, wetlands and permanent water bodies. As a result of the verification systematic classification errors were identified relevant to the subsequent enhancement procedure. The verification was carried out through visual inspection of stratified samples in the HRL using reliable reference spatial data sets, checking for commission and omission errors. The applied procedure included three major parts, the first two - obligatory: general overview of data quality, look-and-feel control of critical strata and statistically based quantitative verification. The enhancement task consisted in correcting errors revealed by the verification giving as a result final enhanced HRL products. Stratification schemes, evaluation grades by strata and HRL from look-and-feel verification and accuracy values from statistical verification are presented. Types and quantities of removed mistakes during the enhancement are structured and summarised. Results show that all HRL except the grasslands layer meet the 85% accuracy requirements.

  3. Quantification of upland thermokarst features with high resolution remote sensing

    NASA Astrophysics Data System (ADS)

    Belshe, E. F.; Schuur, E. A. G.; Grosse, G.

    2013-09-01

    Climate-induced changes to permafrost are altering high latitude landscapes in ways that could increase the vulnerability of the vast soil carbon pools of the region. Permafrost thaw is temporally dynamic and spatially heterogeneous because, in addition to the thickening of the active layer, localized thermokarst features form when ice-rich permafrost thaws and the ground subsides. Thermokarst produces a diversity of landforms and alters the physical environment in dynamic ways. To estimate potential changes to the carbon cycle it is imperative to quantify the size and distribution of thermokarst landforms. By performing a supervised classification on a high resolution IKONOS image, we detected and mapped small, irregular thermokarst features occurring within an upland watershed in discontinuous permafrost of Interior Alaska. We found that 12% of the Eight Mile Lake (EML) watershed has undergone thermokarst, predominantly in valleys where tussock tundra resides. About 35% of the 3.7 km2 tussock tundra class has likely transitioned to thermokarst. These landscape level changes created by permafrost thaw at EML have important implications for ecosystem carbon cycling because thermokarst features are forming in carbon-rich areas and are altering the hydrology in ways that increase seasonal thawing of the soil.

  4. DKIST: Observing the Sun at High Resolution

    NASA Astrophysics Data System (ADS)

    Tritschler, A.; Rimmele, T. R.; Berukoff, S.; Casini, R.; Craig, S. C.; Elmore, D. F.; Hubbard, R. P.; Kuhn, J. R.; Lin, H.; McMullin, J. P.; Reardon, K. P.; Schmidt, W.; Warner, M.; Woger, F.

    2015-01-01

    The 4-m aperture Daniel K. Inouye Solar Telescope (DKIST) formerly known as the Advanced Technology Solar Telescope (ATST) and currently under construction on Haleakalā (Maui, Hawai'i) will be the largest solar ground-based telescope and leading resource for studying the dynamic Sun and its phenomena at high spatial, spectral and temporal resolution. Accurate and sensitive polarimetric observations at high-spatial resolution throughout the solar atmosphere including the corona is a high priority and a major science driver. As such the DKIST will offer a combination of state-of-the-art instruments with imaging and/or spectropolarimetric capabilities covering a broad wavelength range. This first-light instrumentation suite will include: a Visible Broadband Imager (VBI) for high-spatial and -temporal resolution imaging of the solar atmosphere; a Visible Spectro-Polarimeter (ViSP) for sensitive and accurate multi-line spectropolarimetry; a double Fabry-Pérot based Visible Tunable Filter (VTF) for high-spatial resolution spectropolarimetry; a fiber-fed 2D Diffraction-Limited Near Infra-Red Spectro-Polarimeter (DL-NIRSP); and a Cryogenic Near Infra-Red Spectro-Polarimeter (Cryo-NIRSP) for coronal magnetic field measurements and on-disk observations of e.g. the CO lines at 4.7 microns. We will provide a brief overview of the DKIST's unique capabilities to perform spectroscopic and spectropolarimetric measurements of the solar atmosphere using its first-light instrumentation suite, the status of the construction project, and how facility and data access is provided to the US and international community.

  5. A high resolution solar atlas for fluorescence calculations

    NASA Technical Reports Server (NTRS)

    Hearn, M. F.; Ohlmacher, J. T.; Schleicher, D. G.

    1983-01-01

    The characteristics required of a solar atlas to be used for studying the fluorescence process in comets are examined. Several sources of low resolution data were combined to provide an absolutely calibrated spectrum from 2250 A to 7000A. Three different sources of high resolution data were also used to cover this same spectral range. The low resolution data were then used to put each high resolution spectrum on an absolute scale. The three high resolution spectra were then combined in their overlap regions to produce a single, absolutely calibrated high resolution spectrum over the entire spectral range.

  6. ALMA Debuts High-Resolution Results

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    through space as it orbits the Sun. The resolution of these images — enough to study the shape and even some surface features of the asteroid! — are unprecedented for this wavelength. HL Tau is a young star surrounded by a protoplanetary disk. ALMA's detailed observations of this region revealed remarkable structure within the disk: a series of light and dark concentric rings indicative of planets caught in the act of forming. Studying this system will help us understand how multi-planet solar systems like our own form and evolve. The star-forming galaxy SDP.81 — located so far away that the light we see was emitted when the Universe was only 15% of its current age — is gravitationally-lensed into a cosmic arc, due to the convenient placement of a nearby foreground galaxy. The combination of the lucky alignment and ALMA's high resolution grant us a spectacularly detailed view of this distant galaxy, allowing us to study its actual shape and the motion within it. The observations from ALMA's first test of its long baseline demonstrate that ALMA is capable of doing the transformational science it promised. As we gear up for the next cycle of observations, it's clear that exciting times are ahead! Citation: ALMA ship et al. 2015 ApJ 808 L1, L2, L3 and L4. Focus on the ALMA Long Baseline Campaign

  7. Epidermal growth factor receptor as a novel molecular target for aggressive papillary tumors in the middle ear and temporal bone

    PubMed Central

    Kawabata, Shigeru; Christine Hollander, M; Munasinghe, Jeeva P.; Brinster, Lauren R.; Mercado-Matos, José R.; Li, Jie; Regales, Lucia; Pao, William; Jänne, Pasi A.; Wong, Kwok-Kin; Butman, John A.; Lonser, Russell R.; Hansen, Marlan R.; Gurgel, Richard K.; Vortmeyer, Alexander O.; Dennis, Phillip A.

    2015-01-01

    Adenomatous tumors in the middle ear and temporal bone are rare but highly morbid because they are difficult to detect prior to the development of audiovestibular dysfunction. Complete resection is often disfiguring and difficult because of location and the late stage at diagnosis, so identification of molecular targets and effective therapies is needed. Here, we describe a new mouse model of aggressive papillary ear tumor that was serendipitously discovered during the generation of a mouse model for mutant EGFR-driven lung cancer. Although these mice did not develop lung tumors, 43% developed head tilt and circling behavior. Magnetic resonance imaging (MRI) scans showed bilateral ear tumors located in the tympanic cavity. These tumors expressed mutant EGFR as well as active downstream targets such as Akt, mTOR and ERK1/2. EGFR-directed therapies were highly effective in eradicating the tumors and correcting the vestibular defects, suggesting these tumors are addicted to EGFR. EGFR activation was also observed in human ear neoplasms, which provides clinical relevance for this mouse model and rationale to test EGFR-targeted therapies in these rare neoplasms. PMID:26027747

  8. High resolution bragg focusing optics for synchrotron monochromators and analyzers

    SciTech Connect

    Knapp, G.S.; Beno, M.A.; Gofron, K.J.

    1997-07-01

    A number of different applications for high resolution Bragg Focusing Optics are reviewed. Applications include Sagittal Focusing, Energy Dispersive optics for x-ray absorption and diffraction, a curved analyzer-multichannel detector method for efficient acquisition of powder and small angle scattering data, the use of Backscattering Analyzers for very high resolution inelastic scattering, and curved crystals for high energy applications.

  9. High resolution multi-scalar drought indices for Iberia

    NASA Astrophysics Data System (ADS)

    Russo, Ana; Gouveia, Célia; Trigo, Ricardo; Jerez, Sonia

    2014-05-01

    The Iberian Peninsula has been recurrently affected by drought episodes and by adverse associated effects (Gouveia et al., 2009), ranging from severe water shortages to losses of hydroelectricity production, increasing risk of forest fires, forest decline and triggering processes of land degradation and desertification. Moreover, Iberia corresponds to one of the most sensitive areas to current and future climate change and is nowadays considered a hot spot of climate change with high probability for the increase of extreme events (Giorgi and Lionello, 2008). The spatial and temporal behavior of climatic droughts at different time scales was analyzed using spatially distributed time series of multi-scalar drought indicators, such as the Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010). This new climatic drought index is based on the simultaneous use of precipitation and temperature fields with the advantage of combining a multi-scalar character with the capacity to include the effects of temperature variability on drought assessment. Moreover, reanalysis data and the higher resolution hindcasted databases obtained from them are valuable surrogates of the sparse observations and widely used for in-depth characterizations of the present-day climate. Accordingly, this work aims to enhance the knowledge on high resolution drought patterns in Iberian Peninsula, taking advantage of high-resolution (10km) regional MM5 simulations of the recent past (1959-2007) over Iberia. It should be stressed that these high resolution meteorological fields (e.g. temperature, precipitation) have been validated for various purposes (Jerez et al., 2013). A detailed characterization of droughts since the 1960s using the 10 km resolution hidncasted simulation was performed with the aim to explore the conditions favoring drought onset, duration and ending, as well as the subsequent short, medium and long-term impacts affecting the environment and the

  10. Spatial and temporal patterns of bone formation in ectopically pre-fabricated, autologous cell-based engineered bone flaps in rabbits

    PubMed Central

    Scheufler, Oliver; Schaefer, Dirk J; Jaquiery, Claude; Braccini, Alessandra; Wendt, David J; Gasser, Jürg A; Galli, Raffaele; Pierer, Gerhard; Heberer, Michael; Martin, Ivan

    2008-01-01

    Biological substitutes for autologous bone flaps could be generated by combining flap pre-fabrication and bone tissue engineering concepts. Here, we investigated the pattern of neotissue formation within large pre-fabricated engineered bone flaps in rabbits. Bone marrow stromal cells from 12 New Zealand White rabbits were expanded and uniformly seeded in porous hydroxyapatite scaffolds (tapered cylinders, 10–20 mm diameter, 30 mm height) using a perfusion bioreactor. Autologous cell-scaffold constructs were wrapped in a panniculus carnosus flap, covered by a semipermeable membrane and ectopically implanted. Histological analysis, substantiated by magnetic resonance imaging (MRI) and micro-computerized tomography scans, indicated three distinct zones: an outer one, including bone tissue; a middle zone, formed by fibrous connective tissue; and a central zone, essentially necrotic. The depths of connective tissue and of bone ingrowth were consistent at different construct diameters and significantly increased from respectively 3.1 ± 0.7 mm and 1.0 ± 0.4 mm at 8 weeks to 3.7± 0.6 mm and 1.4 ± 0.6 mm at 12 weeks. Bone formation was found at a maximum depth of 1.8 mm after 12 weeks. Our findings indicate the feasibility of ectopic pre-fabrication of large cell-based engineered bone flaps and prompt for the implementation of strategies to improve construct vascularization, in order to possibly accelerate bone formation towards the core of the grafts. PMID:18782188

  11. "Uncertainty in downscaling using high-resolution observational datasets"

    NASA Astrophysics Data System (ADS)

    Oswald, E.; Rood, R. B.

    2013-12-01

    In order to bridge the gap between the resolution of global climate modeling efforts and the scale that decision-makers work at statistical downscaling is often employed. The performance of any statistical downscaling is dependant on the quality of the observational data at the location(s) of downscaling (whether gridded or point-source). However, discussions of the assumptions made during statistical downscaling, such as the stationariness of the relationships between predictor(s) and predictand, normally do not acknowledge the uncertainty introduced by the observational dataset. Many observational datasets do not have the erroneous temporal discontinuities caused by non-climatic biases, such as instrument changes or station relocations, diminished by a homogenization process. Moreover stations included within the underlying networks of high-resolution gridded datasets are typically not required to meet high standards of quality. Hence we evaluated three popular observational climate datasets, of the high-resolution gridded type, for their depiction of temperature values over the span of the datasets and the continental U.S. This was done using the homogenized United States Historical Climatology Network (USHCN) dataset version 2.0. The summer average temperatures at selected stations within the USHCN were compared to those created by interpolating gridpoints to the locations of those stations. The relationships these datasets have with more traditional climate datasets (e.g. the GISS, CRU, USHCN) have not formally been evaluated. The comparisons were not to judge which dataset was closest aligned with the USHCN dataset, but rather to discuss the common features (across datasets) of the residuals (i.e. differences with the USHCN dataset). We found that the lack of homogenization was a primary cause of the residuals, but that proxies for the non-climatic biases were not as well related to the residuals as expected. This was due in part to the gridding process that

  12. High-resolution three-dimensional probes of biomaterials and their interfaces.

    PubMed

    Grandfield, Kathryn; Palmquist, Anders; Engqvist, Håkan

    2012-03-28

    Interfacial relationships between biomaterials and tissues strongly influence the success of implant materials and their long-term functionality. Owing to the inhomogeneity of biological tissues at an interface, in particular bone tissue, two-dimensional images often lack detail on the interfacial morphological complexity. Furthermore, the increasing use of nanotechnology in the design and production of biomaterials demands characterization techniques on a similar length scale. Electron tomography (ET) can meet these challenges by enabling high-resolution three-dimensional imaging of biomaterial interfaces. In this article, we review the fundamentals of ET and highlight its recent applications in probing the three-dimensional structure of bioceramics and their interfaces, with particular focus on the hydroxyapatite-bone interface, titanium dioxide-bone interface and a mesoporous titania coating for controlled drug release. PMID:22349245

  13. High resolution airborne geophysics at hazardous waste disposal sites

    SciTech Connect

    Beard, L.P.; Nyquist, J.E.; Doll, W.E.; Chong Foo, M.; Gamey, T.J.

    1995-06-01

    In 1994, a high resolution helicopter geophysical survey was conducted over portions of the Oak Ridge Reservation, Tennessee. The 1800 line kilometer survey included multi-frequency electromagnetic and magnetic sensors. The areas covered by the high resolution portion of the survey were selected on the basis of their importance to the environmental restoration effort and on data obtained from the reconnaissance phase of the airborne survey in which electromagnetic, magnetic, and radiometric data were collected over the entire Oak Ridge Reservation in 1992--1993. The high resolution phase had lower sensor heights, more and higher EM frequencies, and tighter line spacings than did the reconnaissance survey. When flying over exceptionally clear areas, the high resolution bird came within a few meters of the ground surface. Unfortunately, even sparse trees and power or phone lines could prevent the bird from being towed safely at low altitude, and over such areas it was more usual for it to be flown at about the same altitude as the bird in the reconnaissance survey, about 30m. Even so, the magnetometers used in the high resolution phase were 20m closer to the ground than in the reconnaissance phase because they were mounted on the tail of the bird rather than on the tow cable above the bird. The EM frequencies used in the high resolution survey ranged from 7400Hz to 67000Hz. Only the horizontal coplanar loop configuration was used in the high resolution flyovers.

  14. High-resolution mapping of motor vehicle carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    McDonald, Brian C.; McBride, Zoe C.; Martin, Elliot W.; Harley, Robert A.

    2014-05-01

    A fuel-based inventory for vehicle emissions is presented for carbon dioxide (CO2) and mapped at various spatial resolutions (10 km, 4 km, 1 km, and 500 m) using fuel sales and traffic count data. The mapping is done separately for gasoline-powered vehicles and heavy-duty diesel trucks. Emission estimates from this study are compared with the Emissions Database for Global Atmospheric Research (EDGAR) and VULCAN. All three inventories agree at the national level within 5%. EDGAR uses road density as a surrogate to apportion vehicle emissions, which leads to 20-80% overestimates of on-road CO2 emissions in the largest U.S. cities. High-resolution emission maps are presented for Los Angeles, New York City, San Francisco-San Jose, Houston, and Dallas-Fort Worth. Sharp emission gradients that exist near major highways are not apparent when emissions are mapped at 10 km resolution. High CO2 emission fluxes over highways become apparent at grid resolutions of 1 km and finer. Temporal variations in vehicle emissions are characterized using extensive day- and time-specific traffic count data and are described over diurnal, day of week, and seasonal time scales. Clear differences are observed when comparing light- and heavy-duty vehicle traffic patterns and comparing urban and rural areas. Decadal emission trends were analyzed from 2000 to 2007 when traffic volumes were increasing and a more recent period (2007-2010) when traffic volumes declined due to recession. We found large nonuniform changes in on-road CO2 emissions over a period of ~5 years, highlighting the importance of timely updates to motor vehicle emission inventories.

  15. High resolution rainfall measurements around a high rise building

    NASA Astrophysics Data System (ADS)

    de Jong, Stijn; van de Giesen, Nick; Hut, Rolf

    2010-05-01

    A number of disdrometers (acoustic rain gauge) has been placed around a high rise building on a place where variation in spatial distribution of precipitation is expected, to show the advantage of high resolution rainfall measurements in a urban area. The standard recommendation for the placement of a rain gauge is that the gauge is positioned at a distance corresponding to two to four times the height of any nearby obstruction to obtain a measurement that is representative for the surrounding area. In an urban area it is almost impossible to find a location that suits this recommendation. Rain measurements in urban area with a high spatial resolution are desired, to obtain a better understanding of urban hydrology, but costs may be prohibitive. A low cost disdrometer has been developed to make it affordable to perform rain measurements with a very high spatial and temporal resolution. The disdrometer is tested around a high rise building on the Delft University of Technology campus. The faculty of Electrical Engineering, Mathematics and Computer Science (EWI) on the campus of Delft University of Technology consists of a high rise building of 90 meters and a low rise building of 15 meters. Sensors are placed on the low rise building to measure the impact of the high rise building on the spatial distribution of precipitation. In addition to the disdrometer, two other methods are used to measure precipitation differences around the high rise building. Tipping bucket rain gauges have been placed on two elevator shaft housings on the low rise building, of which one is situated in the shadow of the high rise building. Simultaneously, runoff from the elevator shafts is measured. A comparison of the different methods will be presented.

  16. High Resolution Projection of Future Air Quality in South Asia

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Barth, M. C.; Pfister, G.; Lamarque, J. F.; Walters, S.; Naja, M. K.; Ghude, S. D.

    2015-12-01

    About one seventh of the world's population living in South Asia faces the risk of severe air pollution due to high anthropogenic emissions of air pollutants. Recent studies have shown that exposure to present day air pollution in South Asia is sufficient enough to reduce the lifespan of about 660 million people by about 3 years, destroy food that can feed about 94 million poor people and cause economic loss of several billion dollars. This problem may worsen in the future as anthropogenic emissions are expected to increase due to rapid economic growth in South Asia, and climate change is expected to lead to atmospheric conditions conducive for the production and accumulation of air pollutants. In order to predict how air quality will change in South Asia in future (2050), we are conducting high resolution air quality simulations for the present day (2005-2014) and future (2046-2055) time periods using the Nested Regional Climate Model coupled with Chemistry (NRCM-Chem). The model domain covers entire South Asia at a horizontal grid spacing of 60 km with a nested domain over the densely populated and polluted Indo-Gangetic Plain region at a horizontal grid spacing of 12 km. The model results are being evaluated with available in situ and satellite based observations and the evaluation results show that NRCM-Chem model is able to capture several important features of the observed spatial and temporal distribution of key meteorological parameters and air pollutants. Initial model results show that annual average surface ozone and PM2.5 concentrations may increase by up to 15 ppbv and 25 μg m-3, respectively with highest increase in the Indo-Gangetic Plain.

  17. Relative Projective Location of Three Bottom Apexes of Petrous Bone on Skull.

    PubMed

    Zhang, Qi; Wei, Simeng; Zhang, Jiayi; Cheng, Kailiang; Duan, Haobo; Song, Junxue; Li, Youqiong; Wang, Yiran; Zhou, Shiyu

    2016-09-01

    The complex anatomy of petrous part of temporal bone makes the craniotomy around this area challenging. To avoid damaging the interior structures of petrous part of temporal bone, the authors used computed tomography to get the projection of the petrous part of temporal bone on skulls, making the external contours of petrous part clear, thus protecting its interior structure as a reference in craniotomy. The objective of this study was to find out the three-dimensional location of 4 points of petrous part of temporal bone. Parameters of 120 patients (240 observations) between 25 and 65 years who were free of abnormalities and pathological changes in temporal bone were measured on high-resolution spiral multiple slice computed tomographic multiple planar reconstruction images that were parallel to the base plane. The data were analyzed by SPSS, statistical software with the comparison between sides and sexes. The authors found the accurate locations that 4 points of petrous part of temporal bone with mastoidale as the origin. Then the authors connect the 3 vertexes of underside and the petrous apex and lengthen it until intersect with skulls to get the external landmarks. In the end, the authors get the safe range that can be applied to the clinical surgery. PMID:27557460

  18. A new partial temporal bone of a juvenile hominin from the site of Kromdraai B (South Africa).

    PubMed

    Braga, José; Thackeray, John Francis; Dumoncel, Jean; Descouens, Didier; Bruxelles, Laurent; Loubes, Jean-Michel; Kahn, Jean-Luc; Stampanoni, Marco; Bam, Lunga; Hoffman, Jakobus; de Beer, Frikkie; Spoor, Fred

    2013-10-01

    The site of Kromdraai B (KB) (Gauteng, South Africa) has yielded a minimum number of nine hominins including the type specimen of Paranthropus robustus (TM 1517), the only partial skeleton of this species known to date. Four of these individuals are juveniles, one is a subadult and four are young adults. They all occur with a macrofaunal assemblage spread across the succession of at least two time periods that occurred in South Africa approximately two million years ago. Here we report on an additional, newly discovered petrous temporal bone of a juvenile hominin, KB 6067. Following the description of KB 6067, we assess its affinities with Australopithecus africanus, P. robustus and early Homo. We discuss its developmental age and consider its association with other juvenile hominin specimens found at Kromdraai B. KB 6067 probably did not reach five years of age and in bony labyrinth morphology it is close to P. robustus, but also to StW 53, a specimen with uncertain affinities. However, its cochlear and oval window size are closer to some hominin specimens from Sterkfontein Member 4 and if KB 6067 is indeed P. robustus this may represent a condition that is evolutionarily less derived than that shown by TM 1517 and other conspecifics sampled so far. The ongoing fieldwork at KB, as well as the petrography and geochemistry of its deposits, will help to determine when the various KB breccias accumulated, and how time may be an important factor underlying the variation seen among KB 6067 and the rest of the fossil hominin sample from this site. PMID:24012253

  19. Methodology of high-resolution photography for mural condition database

    NASA Astrophysics Data System (ADS)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  20. A compact, light weight, high resolution electron monochromator

    NASA Astrophysics Data System (ADS)

    Goembel, L.; Doering, J. P.

    1995-06-01

    A high resolution electron monochromator that incorporates Vespel polyimide plastic in its construction is described. A great saving in bulk can be realized by mounting the electron optical elements in Vespel tubes rather than mounting them by traditional means.

  1. High Resolution CryoFESEM of Microbial Surfaces

    NASA Astrophysics Data System (ADS)

    Erlandsen, Stanley; Lei, Ming; Martin-Lacave, Ines; Dunny, Gary; Wells, Carol

    2003-08-01

    The outer surfaces of three microorganisms, Giardia lamblia, Enterococcus faecalis, and Proteus mirabilis, were investigated by cryo-immobilization followed by sublimation of extracellular ice and cryocoating with either Pt alone or Pt plus carbon. Cryocoated samples were examined at [minus sign]125°C in either an in-lens field emission SEM or a below-the-lens field emission SEM. Cryocoating with Pt alone was sufficient for low magnification observation, but attempts to do high-resolution imaging resulted in radiolysis and cracking of the specimen surface. Double coating with Pt and carbon, in combination with high resolution backscatter electron detectors, enabled high-resolution imaging of the glycocalyx of bacteria, revealing a sponge-like network over the surface. High resolution examination of bacterial flagella also revealed a periodic substructure. Common artifacts included radiolysis leading to “cracking” of the surface, and insufficient deposition of Pt resulting in the absence of detectable surface topography.

  2. Update on High-Resolution Geodetically Controlled LROC Polar Mosaics

    NASA Astrophysics Data System (ADS)

    Archinal, B.; Lee, E.; Weller, L.; Richie, J.; Edmundson, K.; Laura, J.; Robinson, M.; Speyerer, E.; Boyd, A.; Bowman-Cisneros, E.; Wagner, R.; Nefian, A.

    2015-10-01

    We describe progress on high-resolution (1 m/pixel) geodetically controlled LROC mosaics of the lunar poles, which can be used for locating illumination resources (for solar power or cold traps) or landing site and surface operations planning.

  3. High resolution difference schemes for compressible gas dynamics

    SciTech Connect

    Woodward, P.; Colella, P.

    1980-07-30

    The advantages and disadvantages of four new high-resolution difference schemes, namely the von Neumann-Richtmyer, Godunovs, MUSCL and Glimms, for mathematically representing physical conditions in compressible gas flows are compared. (LCL)

  4. AVHRR/1-FM Advanced Very High Resolution Radiometer

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The advanced very high resolution radiometer is discussed. The program covers design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical/structural model, and a life test model. Special bench test and calibration equipment was developed for use on the program. The flight model program objectives were to fabricate, assemble and test four of the advanced very high resolution radiometers along with a bench cooler and collimator.

  5. Data Driven Approach for High Resolution Population Distribution and Dynamics Models

    SciTech Connect

    Bhaduri, Budhendra L; Bright, Eddie A; Rose, Amy N; Liu, Cheng; Urban, Marie L; Stewart, Robert N

    2014-01-01

    High resolution population distribution data are vital for successfully addressing critical issues ranging from energy and socio-environmental research to public health to human security. Commonly available population data from Census is constrained both in space and time and does not capture population dynamics as functions of space and time. This imposes a significant limitation on the fidelity of event-based simulation models with sensitive space-time resolution. This paper describes ongoing development of high-resolution population distribution and dynamics models, at Oak Ridge National Laboratory, through spatial data integration and modeling with behavioral or activity-based mobility datasets for representing temporal dynamics of population. The model is resolved at 1 km resolution globally and describes the U.S. population for nighttime and daytime at 90m. Integration of such population data provides the opportunity to develop simulations and applications in critical infrastructure management from local to global scales.

  6. High-resolution MEA platform for in-vitro electrogenic cell networks imaging.

    PubMed

    Imfeld, K; Garenne, A; Neukom, S; Maccione, A; Martinoia, S; Koudelka-Hep, M; Berdondini, L

    2007-01-01

    A platform based on an active-pixel-sensor electrode array (APS-MEA) for high-resolution imaging of in-vitro electrogenic cell cultures is presented, characterized and validated under culture conditions. The system enables full frame acquisition at 8 kHz from 4096 microelectrodes integrated with separations of 21 microm and zoomed area acquisition with temporal resolutions down to 8 micros. This bi-modal acquisition feature opens new perspectives in particular for neuronal activity analysis and for the correlation of micro-scale and macro-scale behaviors. The low-noise performances of the integrated amplifier (11 microVRMS) combined with a hardware implementation reflecting image-/video-concepts enable high-resolution acquisitions with real-time processing capabilities adapted to the handling of the large amount of acquired data. PMID:18003403

  7. HPC-EPIC for High Resolution Simulations of Environmental and Sustainability Assessment

    SciTech Connect

    Nichols, Jeffrey A.; Kang, Shujiang; Post, W. M.; Wang, Dali; Bandaru, Varaprasad; Manowitz, David H.; Zhang, Xuesong; Izaurralde, Roberto C.

    2011-11-01

    Multiple concerns over the impact of wide scale changes in land management have motivated comprehensive analyses of environmental sustainability of food and biofuel production. These call for high-resolution, spatial-temporal information of lands using tools that enable comprehensive analyses of natural resources for decision-making. Most agroecosystem simulation models are point models with a user interface that allows users to provide inputs and examine results for agricultural field scale analyses, and they aren’t able to meet the needs of the regional and national simulation with high spatial resolutions. We describe an efficient computational approach over deployment of the Environmental Policy Integrated Climate (EPIC) model at high-resolution scales using a high performance computing (HPC) technique in this study. We concentrate on an integrated procedure for executing millions of simulations required, but also address building databases for model initialization and forcing the simulations, and post-processing model outputs.

  8. Construction of a High Resolution Microscope with Conventional and Holographic Optical Trapping Capabilities

    PubMed Central

    Butterfield, Jacqualine; Hong, Weili; Mershon, Leslie; Vershinin, Michael

    2013-01-01

    High resolution microscope systems with optical traps allow for precise manipulation of various refractive objects, such as dielectric beads 1 or cellular organelles 2,3, as well as for high spatial and temporal resolution readout of their position relative to the center of the trap. The system described herein has one such "traditional" trap operating at 980 nm. It additionally provides a second optical trapping system that uses a commercially available holographic package to simultaneously create and manipulate complex trapping patterns in the field of view of the microscope 4,5 at a wavelength of 1,064 nm. The combination of the two systems allows for the manipulation of multiple refractive objects at the same time while simultaneously conducting high speed and high resolution measurements of motion and force production at nanometer and piconewton scale. PMID:23629580

  9. High Resolution Ionospheric Mapping Using Spaceborne Synthetic Aperture Radars

    NASA Astrophysics Data System (ADS)

    Meyer, F. J.; Chotoo, K.; Roth, A. P.

    2012-12-01

    properties, and (if applicable) geographic location. Three case studies will be presented to highlight the type and quality of ionospheric information that can be retrieved: (1) The high spatial resolution of SAR-derived TEC maps is emphasized in a case study that focuses on high resolution mapping of aurora arcs in central Alaska. Here, TEC enhancements associated with aurora activity are mapped and compared to reference observations from sky cameras and GPS; (2) observations of mid-latitudal traveling ionospheric disturbances are shown to showcase the accuracy of SAR-derived TEC maps. Several SAR-based TEC mapping methods are compared to highlight their respective advantages and disadvantages regarding processing complexity and estimation accuracy; (3) a third example focuses on analyzing post-sunset scintillation phenomena in equatorial regions. SAR is used to assess the frequency of occurrence of scintillation and analyze their associated power spectra. To conclude the paper, the temporal and spatial sampling of the ionosphere provided by the fleet of current and future spaceborne SAR sensors is analyzed to provide an assessment of the global ionospheric mapping capabilities of SAR.

  10. High resolution mesospheric sodium properties for adaptive optics applications

    NASA Astrophysics Data System (ADS)

    Pfrommer, T.; Hickson, P.

    2014-05-01

    Context. The performance of laser guide star adaptive optics (AO) systems for large optical and infrared telescopes is affected by variability of the sodium layer, located at altitudes between 80 and 120 km in the upper mesosphere and lower thermosphere. The abundance and density structure of the atomic sodium found in this region is subject to local and global weather effects, planetary and gravity waves and magnetic storms, and is variable on time scales down to tens of milliseconds, a range relevant to AO. Aims: It is therefore important to characterize the structure and dynamical evolution of the sodium region on small, as well as large spatial and temporal scales. Parameters of particular importance for AO are the mean sodium altitude, sodium layer width and the temporal power spectrum of the centroid altitude. Methods: We have conducted a three-year campaign employing a high-resolution lidar system installed on the 6-m Large Zenith Telescope (LZT) located near Vancouver, Canada. During this period, 112 nights of useful data were obtained. Results: The vertical density profile of atomic sodium shows remarkable structure and variability. Smooth Gaussian-shaped profiles rarely occur. Multiple internal layers are frequently found. These layers often have sharp lower edges, with scale heights of just a few hundred meters, and tend to drift downwards at a typical rate of one kilometer every two to three hours. Individual layers can persist for many hours, but their density and internal structure can be highly variable. Sporadic layers are seen reaching peak densities several times the average, often in just a few minutes. Coherent vertical oscillations are often found, typically extending over tens of kilometers in altitude. Regions of turbulence are evident and Kelvin-Helmholtz instability are sometimes seen. The mean value of the centroid altitude is found to be 90.8 ± 0.1 km. The sodium layer width was determined by computing the altitude range that contains a

  11. Time-series analysis of high-resolution ebullition fluxes from a stratified, freshwater lake

    NASA Astrophysics Data System (ADS)

    Varadharajan, Charuleka; Hemond, Harold F.

    2012-06-01

    Freshwater lakes can emit significant quantities of methane to the atmosphere by bubbling. The high spatial and temporal heterogeneity of ebullition, combined with a lack of high-resolution field measurements, has made it difficult to accurately estimate methane fluxes or determine the underlying mechanisms for bubble release. We use a high-temporal resolution data set of ebullitive fluxes from the eutrophic Upper Mystic Lake, Massachusetts to understand the triggers that lead to bubbling from submerged sediments. A wavelet approach is introduced to detect ebullition events for multiple time-scales, and is complemented with traditional statistical methods for data analyses. We show that bubble release from lake sediments occurred synchronously at several sites, and was closely associated with small, aperiodic drops in total hydrostatic pressure. Such results are essential to constrain mechanistic models and to design future measurement schemes, particularly with respect to the temporal scales that are needed to accurately observe and quantify ebullition in aquatic ecosystems.

  12. Sea Surface Global Climate Datasets With Compatible High Resolutions

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Bates, J. J.; Reynolds, R. W.

    2007-05-01

    Present day global ocean observing system consists of multiple satellites and in-situ platforms. Blending of these observations has made it possible to produce gridded global climate datasets with increasingly higher resolutions that are demanded by the research and operational forecast communities. However, caution must be exercised when producing and utilizing global high resolution products: under-sampling could result in significant alias errors for variables with higher frequency variability. The resolutions of the blended products have to be compatible with the available observational data density or frequency. In this paper we present a case study, taking sea surface wind speed as an example. Sea surface wind speed has been observed from multiple satellites and in-situ instruments. These long-term satellites ranged from one DMSP (the Defense Meteorological Satellite Program) satellite (F08) in mid 1987 to the present six or more satellites since June 2002. We shall show that on a global 0.25° grid, blended products with temporal resolutions of 6-hours, 12-hours and daily have become feasible since mid 2002, mid 1995 and January 1991, respectively (with greater than 75 percent time coverage and greater than 90 percent spatial coverage between 65°S-65°N). Thus, for a uniform long-term climate product on a global 0.25° grid and over the whole time period (July 1987 to present), a near Gaussian 3-D (x, y, t) interpolation was used with the spatial and time windows of 125 km and 12-hours. To take advantage of the high data density of the later years (since mid 2002), 4 times per day snapshots have been generated. Documentation of the feasibility study, data production, data visualization, sub-setting and downloading can be obtained at: http:www.ncdc.noaa.gov/oa/satellite.html; http:nomads.ncdc.noaa.gov:8085/las/servlets/dataset; ftp:eclipse.ncdc.noaa.gov/pub. Our analysis shows that the unique sampling times of the AMSR-E are largely responsible for the

  13. Characterization of high resolution MR images reconstructed by a GRAPPA based parallel technique

    NASA Astrophysics Data System (ADS)

    Banerjee, Suchandrima; Majumdar, Sharmila

    2006-03-01

    This work implemented an auto-calibrating parallel imaging technique and applied it to in vivo magnetic resonance imaging (MRI) of trabecular bone micro-architecture. A Generalized auto-calibrating partially parallel acquisition (GRAPPA) based reconstruction technique using modified robust data fitting was developed. The MR data was acquired with an eight channel phased array receiver on three normal volunteers on a General Electric 3 Tesla scanner. Microstructures comprising the trabecular bone architecture are of the order of 100 microns and hence their depiction requires very high imaging resolution. This work examined the effects of GRAPPA based parallel imaging on signal and noise characteristics and effective spatial resolution in high resolution (HR) images, for the range of undersampling or reduction factors 2-4. Additionally quantitative analysis was performed to obtain structural measures of trabecular bone from the images. Image quality in terms of contrast and depiction of structures was maintained in parallel images for reduction factors up to 3. Comparison between regular and parallel images suggested similar spatial resolution for both. However differences in noise characteristics in parallel images compared to regular images affected the threshholding based quantification. This suggested that GRAPPA based parallel images might require different analysis techniques. In conclusion, the study showed the feasibility of using parallel imaging techniques in HR-MRI of trabecular bone, although quantification strategies will have to be further investigated. Reduction of acquisition time using parallel techniques can improve the clinical feasibility of MRI of trabecular bone for prognosis and staging of the skeletal disorder osteoporosis.

  14. High Resolution Local Structure-Constrained Image Upsampling.

    PubMed

    Zhao, Yang; Wang, Ronggang; Wang, Wenmin; Gao, Wen

    2015-11-01

    With the development of ultra-high-resolution display devices, the visual perception of fine texture details is becoming more and more important. A method of high-quality image upsampling with a low cost is greatly needed. In this paper, we propose a fast and efficient image upsampling method that makes use of high-resolution local structure constraints. The average local difference is used to divide a bicubic-interpolated image into a sharp edge area and a texture area, and these two areas are reconstructed separately with specific constraints. For reconstruction of the sharp edge area, a high-resolution gradient map is estimated as an extra constraint for the recovery of sharp and natural edges; for the reconstruction of the texture area, a high-resolution local texture structure map is estimated as an extra constraint to recover fine texture details. These two reconstructed areas are then combined to obtain the final high-resolution image. The experimental results demonstrated that the proposed method recovered finer pixel-level texture details and obtained top-level objective performance with a low time cost compared with state-of-the-art methods. PMID:26186777

  15. Design and implementation of spaceborne high resolution infrared touch screen

    NASA Astrophysics Data System (ADS)

    Li, Tai-guo; Li, Wen-xin; Dong, Yi-peng; Ma, Wen; Xia, Jia-gao

    2015-10-01

    For the consideration of the special application environment of the electronic products used in aerospace and to further more improve the human-computer interaction of the manned aerospace area. The research is based on the design and implementation way of the high resolution spaceborne infrared touch screen on the basis of FPGA and DSP frame structure. Beside the introduction of the whole structure for the high resolution spaceborne infrared touch screen system, this essay also gives the detail information about design of hardware for the high resolution spaceborne infrared touch screen system, FPGA design, GUI design and DSP algorithm design based on Lagrange interpolation. What is more, the easy makes a comprehensive research of the reliability design for the high resolution spaceborne infrared touch screen for the special purpose of it. Besides, the system test is done after installation of spaceborne infrared touch screen. The test result shows that the system is simple and reliable enough, which has a stable running environment and high resolution, which certainly can meet the special requirement of the manned aerospace instrument products.

  16. Development of High Resolution Data for Irrigated Area and Cropping Patterns in India

    NASA Astrophysics Data System (ADS)

    K a, A.; Mishra, V.

    2015-12-01

    Information of crop phenology and its individual effect on irrigation is essential to improve the simulation of land surface states and fluxes. We use moderate resolution imaging spectroradiometer (MODIS) - Normalized difference vegetation index (NDVI) at 250 m resolution for monitoring temporal changes in irrigation and cropping patterns in India. We used the obtained dataset of cropping pattern for quantifying the effect of irrigation on land surface states and fluxes by using an uncoupled land surface model. The cropping patterns are derived by using the planting, heading, harvesting, and growing dates for each agro-ecological zone separately. Moreover, we developed a high resolution irrigated area maps for the period of 1999-2014 for India. The high resolution irrigated area was compared with relatively coarse resolution (~ 10km) irrigated area from the Food and Agricultural Organization. To identify the seasonal effects we analyzed the spatial and temporal change of irrigation and cropping pattern for different temporal seasons. The new irrigation area information along with cropping pattern was used to study the water budget in India using the Noah Land surface Model (Noah LSM) for the period of 1999-2014.

  17. High-resolution stochastic generation of extreme rainfall intensity for urban drainage modelling applications

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo

    2016-04-01

    Urban drainage response is highly dependent on the spatial and temporal structure of rainfall. Therefore, measuring and simulating rainfall at a high spatial and temporal resolution is a fundamental step to fully assess urban drainage system reliability and related uncertainties. This is even more relevant when considering extreme rainfall events. However, the current space-time rainfall models have limitations in capturing extreme rainfall intensity statistics for short durations. Here, we use the STREAP (Space-Time Realizations of Areal Precipitation) model, which is a novel stochastic rainfall generator for simulating high-resolution rainfall fields that preserve the spatio-temporal structure of rainfall and its statistical characteristics. The model enables a generation of rain fields at 102 m and minute scales in a fast and computer-efficient way matching the requirements for hydrological analysis of urban drainage systems. The STREAP model was applied successfully in the past to generate high-resolution extreme rainfall intensities over a small domain. A sub-catchment in the city of Luzern (Switzerland) was chosen as a case study to: (i) evaluate the ability of STREAP to disaggregate extreme rainfall intensities for urban drainage applications; (ii) assessing the role of stochastic climate variability of rainfall in flow response and (iii) evaluate the degree of non-linearity between extreme rainfall intensity and system response (i.e. flow) for a small urban catchment. The channel flow at the catchment outlet is simulated by means of a calibrated hydrodynamic sewer model.

  18. High-Resolution Variable-Density 3D Cones Coronary MRA

    PubMed Central

    Addy, Nii Okai; Ingle, R. Reeve; Wu, Holden H.; Hu, Bob S.; Nishimura, Dwight G.

    2015-01-01

    Purpose To improve the spatial/temporal resolution of whole-heart coronary MR angiography (CMRA) by developing a variable-density (VD) 3D cones acquisition suitable for image reconstruction with parallel imaging and compressed sensing techniques. Methods A VD 3D cones trajectory design incorporates both radial and spiral trajectory undersampling techniques to achieve higher resolution. This design is used to generate a VD cones trajectory with 0.8 mm/66 ms isotropic spatial/temporal resolution, using a similar number of readouts as our previous fully sampled cones trajectory (1.2 mm/100 ms). Scans of volunteers and patients are performed to evaluate the performance of the VD trajectory, using non-Cartesian L1-ESPIRiT for high-resolution image reconstruction. Results With gridding reconstruction, the high-resolution scans experience an expected drop in signal-to-noise and contrast-to-noise ratios, but with L1-ESPIRiT, the apparent noise is substantially reduced. Compared to 1.2 mm images, in each volunteer, the L1-ESPIRiT 0.8 mm images exhibit higher vessel sharpness values in the right and left anterior descending arteries. Conclusion CMRA with isotropic sub-millimeter spatial resolution and high temporal resolution can be performed with VD 3D cones to improve the depiction of coronary arteries. PMID:26172829

  19. High resolution single particle refinement in EMAN2.1.

    PubMed

    Bell, James M; Chen, Muyuan; Baldwin, Philip R; Ludtke, Steven J

    2016-05-01

    EMAN2.1 is a complete image processing suite for quantitative analysis of grayscale images, with a primary focus on transmission electron microscopy, with complete workflows for performing high resolution single particle reconstruction, 2-D and 3-D heterogeneity analysis, random conical tilt reconstruction and subtomogram averaging, among other tasks. In this manuscript we provide the first detailed description of the high resolution single particle analysis pipeline and the philosophy behind its approach to the reconstruction problem. High resolution refinement is a fully automated process, and involves an advanced set of heuristics to select optimal algorithms for each specific refinement task. A gold standard FSC is produced automatically as part of refinement, providing a robust resolution estimate for the final map, and this is used to optimally filter the final CTF phase and amplitude corrected structure. Additional methods are in-place to reduce model bias during refinement, and to permit cross-validation using other computational methods. PMID:26931650

  20. Single sensor processing to obtain high resolution color component signals

    NASA Technical Reports Server (NTRS)

    Glenn, William E. (Inventor)

    2010-01-01

    A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.

  1. A high-resolution vehicle emission inventory for China

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Zhang, Q.; He, K.; Huo, H.; Yao, Z.; Wang, X.

    2012-12-01

    Developing high resolution emission inventory is an essential task for air quality modeling and management. However, current vehicle emission inventories in China are usually developed at provincial level and then allocated to grids based on various spatial surrogates, which is difficult to get high spatial resolution. In this work, we developed a new approach to construct a high-resolution vehicle emission inventory for China. First, vehicle population at county level were estimated by using the relationship between per-capita GDP and vehicle ownership. Then the Weather Research and Forecasting (WRF) model were used to drive the International Vehicle Emission (IVE) model to get monthly emission factors for each county. Finally, vehicle emissions by county were allocated to grids with 5-km horizon resolution by using high-resolution road network data. This work provides a better understanding of spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.

  2. High-resolution signal synthesis for time-frequency distributions

    SciTech Connect

    Cunningham, G.S.; Williams, W.J.

    1993-03-01

    Bilinear time-frequency distributions (TFDs) offer improved resolution over linear nine-frequency representations (TFRs), but many TFDs are costly to evaluate and are not associated with signal synthesis algorithms. Recently, the spectrogram (SP) decomposition and weighted reversal correlator decomposition have been used to define low-cost, high-resolution TFDs. In this paper, we show that the vector-valued ``square-root`` of a TFD (VVTFR) provides a representational underpinning for the TFD. By synthesizing signals from modified VVTFRs, we define high-resolution signal synthesis algorithms associated with TFDs. The signal analysis and synthesis packages can be implemented as weighted sums of SP/short-time Fourier Transform signal analysis and synthesis packages, which are widely available, allowing the interested non-specialist easy access to high-resolution methods.

  3. High-resolution signal synthesis for time-frequency distributions

    SciTech Connect

    Cunningham, G.S. ); Williams, W.J. . Dept. of Electrical Engineering and Computer Science)

    1993-01-01

    Bilinear time-frequency distributions (TFDs) offer improved resolution over linear nine-frequency representations (TFRs), but many TFDs are costly to evaluate and are not associated with signal synthesis algorithms. Recently, the spectrogram (SP) decomposition and weighted reversal correlator decomposition have been used to define low-cost, high-resolution TFDs. In this paper, we show that the vector-valued square-root'' of a TFD (VVTFR) provides a representational underpinning for the TFD. By synthesizing signals from modified VVTFRs, we define high-resolution signal synthesis algorithms associated with TFDs. The signal analysis and synthesis packages can be implemented as weighted sums of SP/short-time Fourier Transform signal analysis and synthesis packages, which are widely available, allowing the interested non-specialist easy access to high-resolution methods.

  4. New vacuum solar telescope and observations with high resolution

    NASA Astrophysics Data System (ADS)

    Liu, Zhong; Xu, Jun; Gu, Bo-Zhong; Wang, Sen; You, Jian-Qi; Shen, Long-Xiang; Lu, Ru-Wei; Jin, Zhen-Yu; Chen, Lin-Fei; Lou, Ke; Li, Zhi; Liu, Guang-Qian; Xu, Zhi; Rao, Chang-Hui; Hu, Qi-Qian; Li, Ru-Feng; Fu, Hao-Wen; Wang, Feng; Bao, Men-Xian; Wu, Ming-Chan; Zhang, Bo-Rong

    2014-06-01

    The New Vacuum Solar Telescope (NVST) is a one meter vacuum solar telescope that aims to observe fine structures on the Sun. The main goals of NVST are high resolution imaging and spectral observations, including measurements of the solar magnetic field. NVST is the primary ground-based facility used by the Chinese solar research community in this solar cycle. It is located by Fuxian Lake in southwest China, where the seeing is good enough to perform high resolution observations. We first introduce the general conditions at the Fuxian Solar Observatory and the primary science cases of NVST. Then, the basic structures of this telescope and instruments are described in detail. Finally, some typical high resolution data of the solar photosphere and chromosphere are also shown.

  5. High-resolution Urban Image Classification Using Extended Features

    SciTech Connect

    Vatsavai, Raju

    2011-01-01

    High-resolution image classification poses several challenges because the typical object size is much larger than the pixel resolution. Any given pixel (spectral features at that location) by itself is not a good indicator of the object it belongs to without looking at the broader spatial footprint. Therefore most modern machine learning approaches that are based on per-pixel spectral features are not very effective in high- resolution urban image classification. One way to overcome this problem is to extract features that exploit spatial contextual information. In this study, we evaluated several features in- cluding edge density, texture, and morphology. Several machine learning schemes were tested on the features extracted from a very high-resolution remote sensing image and results were presented.

  6. Microradarnet: AN Innovative High-Resolution Low-Cost X-Band Weather Radar Network

    NASA Astrophysics Data System (ADS)

    Turso, S.; Zambotto, M.; Gabella, M.; Orione, F.; Notarpietro, R.; Perona, G.

    2009-09-01

    In this paper, an innovative micro radar network for meteorological purposes has been presented. The key aspects of this network, named MicroRadarNet (MRN), are a short range strategy (about thirty kilometers) and the implementation of effective enhancing techniques. High resolution spatial and temporal data is processed in real-time, yielding a synthetic and consistent evaluation of the information coming from the sensor network. This approach implies in turn a sensible reduction of the overall operational costs, including management and maintenance aspects, if compared to the traditional long range C-band approach.

  7. HIRES: the high resolution spectrograph for the E-ELT

    NASA Astrophysics Data System (ADS)

    Zerbi, F. M.; Bouchy, F.; Fynbo, J.; Maiolino, R.; Piskunov, N.; Rebolo Lopez, R.; Santos, N.; Strassmeier, K.; Udry, S.; Vanzi, L.; Riva, M.; Basden, A.; Boisse, I.; Bonfils, X.; Buscher, D.; Cabral, A.; Dimarcantonio, P.; Di Varano, I.; Henry, D.; Monteiro, M.; Morris, T.; Murray, G.; Oliva, Ernesto; Parry, I.; Pepe, F.; Quirrenbach, A.; Rasilla, J. L.; Rees, P.; Stempels, E.; Valenziano, L.; Wells, M.; Wildi, F.; Origlia, L.; Allende Prieto, C.; Chiavassa, A.; Cristiani, S.; Figueira, P.; Gustafsson, B.; Hatzes, A.; Haehnelt, M.; Heng, K.; Israelian, G.; Kochukhov, O.; Lovis, C.; Marconi, A.; Martins, C. J. A. P.; Noterdaeme, P.; Petitjean, P.; Puzia, T.; Queloz, D.; Reiners, A.; Zoccali, M.

    2014-08-01

    The current instrumentation plan for the E-ELT foresees a High Resolution Spectrograph conventionally indicated as HIRES. Shaped on the study of extra-solar planet atmospheres, Pop-III stars and fundamental physical constants, HIRES is intended to embed observing modes at high-resolution (up to R=150000) and large spectral range (from the blue limit to the K band) useful for a large suite of science cases that can exclusively be tackled by the E-ELT. We present in this paper the solution for HIRES envisaged by the "HIRES initiative", the international collaboration established in 2013 to pursue a HIRES on E-ELT.

  8. Microbeam X-Ray Standing Wave and High Resolution Diffraction

    SciTech Connect

    Kazimirov, A.; Bilderback, D.H.; Huang, R.; Sirenko, A.

    2004-05-12

    Post-focusing collimating optics are introduced as a tool to condition X-ray microbeams for the use in high-resolution X-ray diffraction and scattering techniques. As an example, a one-bounce imaging capillary and miniature Si(004) channel-cut crystal were used to produce a microbeam with 10 {mu}m size and an ultimate angular resolution of 2.5 arc sec. This beam was used to measure the strain in semiconductor microstructures by using X-ray high resolution diffraction and standing wave techniques to {delta}d/d < 5x10-4.

  9. High resolution BPMS with integrated gain correction system

    SciTech Connect

    Wendt, M.; Briegel, C.; Eddy, N.; Fellenz, B.; Gianfelice, E.; Prieto, P.; Rechenmacher, R.; Voy, D.; Terunuma, N.; Urakawa, J.; /KEK, Tsukuba

    2009-08-01

    High resolution beam position monitors (BPM) are an essential tool to achieve and reproduce a low vertical beam emittance at the KEK Accelerator Test Facility (ATF) damping ring. The ATF damping ring (DR) BPMs are currently upgraded with new high resolution read-out electronics. Based on analog and digital down-conversion techniques, the upgrade includes an automatic gain calibration system to correct for slow drift effects and ensure high reproducible beam position readings. The concept and its technical realization, as well as preliminary results of beam studies are presented.

  10. Modified Noise Power Ratio testing of high resolution digitizers

    SciTech Connect

    McDonald, T.S.

    1994-05-01

    A broadband, full signal range, side-by-side (tandem) test method for estimating the internal noise performance of high resolution digitizers is described and illustrated. The technique involves a re-definition of the traditional Noise Power Ratio (NPR) test, a change that not only makes this test applicable to higher resolution systems than was previously practical, but also enhances its value and flexibility. Since coherence analysis is the basis of this new definition, and since the application of coherence procedures to high resolution data poses several problems, this report discusses these problems and their resolution.

  11. Theoretical Problems in High Resolution Solar Physics, 2

    NASA Technical Reports Server (NTRS)

    Athay, G. (Editor); Spicer, D. S. (Editor)

    1987-01-01

    The Science Working Group for the High Resolution Solar Observatory (HRSO) laid plans beginning in 1984 for a series of workshops designed to stimulate a broadbased input from the scientific community to the HRSO mission. These workshops have the dual objectives of encouraging an early start on the difficult theoretical problems in radiative transfer, magnetohydrodynamics, and plasma physics that will be posed by the HRSO data, and maintaining current discussions of results in high resolution solar studies. This workshop was the second in the series. The workshop format presented invited review papers during the formal sessions and contributed poster papers for discussions during open periods. Both are presented.

  12. High-resolution synchrotron X-ray analysis of bioglass-enriched hydrogels.

    PubMed

    Gorodzha, Svetlana; Douglas, Timothy E L; Samal, Sangram K; Detsch, Rainer; Cholewa-Kowalska, Katarzyna; Braeckmans, Kevin; Boccaccini, Aldo R; Skirtach, Andre G; Weinhardt, Venera; Baumbach, Tilo; Surmeneva, Maria A; Surmenev, Roman A

    2016-05-01

    Enrichment of hydrogels with inorganic particles improves their suitability for bone regeneration by enhancing their mechanical properties, mineralizability, and bioactivity as well as adhesion, proliferation, and differentiation of bone-forming cells, while maintaining injectability. Low aggregation and homogeneous distribution maximize particle surface area, promoting mineralization, cell-particle interactions, and homogenous tissue regeneration. Hence, determination of the size and distribution of particles/particle agglomerates in the hydrogel is desirable. Commonly used techniques have drawbacks. High-resolution techniques (e.g., SEM) require drying. Distribution in the dry state is not representative of the wet state. Techniques in the wet state (histology, µCT) are of lower resolution. Here, self-gelling, injectable composites of Gellan Gum (GG) hydrogel and two different types of sol-gel-derived bioactive glass (bioglass) particles were analyzed in the wet state using Synchrotron X-ray radiation, enabling high-resolution determination of particle size and spatial distribution. The lower detection limit volume was 9 × 10(-5) mm(3) . Bioglass particle suspensions were also studied using zeta potential measurements and Coulter analysis. Aggregation of bioglass particles in the GG hydrogels occurred and aggregate distribution was inhomogeneous. Bioglass promoted attachment of rat mesenchymal stem cells (rMSC) and mineralization. PMID:26749323

  13. Live correlative light-electron microscopy to observe molecular dynamics in high resolution.

    PubMed

    Kobayashi, Shouhei; Iwamoto, Masaaki; Haraguchi, Tokuko

    2016-08-01

    Fluorescence microscopy (FM) is a powerful tool for observing specific molecular components in living cells, but its spatial resolution is relatively low. In contrast, electron microscopy (EM) provides high-resolution information about cellular structures, but it cannot provide temporal information in living cells. To achieve molecular selectivity in imaging at high resolution, a method combining EM imaging with live-cell fluorescence imaging, known as live correlative light-EM (CLEM), has been developed. In this method, living cells are first observed by FM, fixed in situ during the live observation and then subjected to EM observation. Various fluorescence techniques and tools can be applied for FM, resulting in the generation of various modified methods that are useful for understanding cellular structure in high resolution. Here, we review the methods of CLEM and live-cell imaging associated with CLEM (live CLEM). Such methods can greatly advance the understanding of the function of cellular structures on a molecular level, and thus are useful for medical fields as well as for basic biology. PMID:27385786

  14. Interactive Change Detection Using High Resolution Remote Sensing Images Based on Active Learning with Gaussian Processes

    NASA Astrophysics Data System (ADS)

    Ru, Hui; Yu, Huai; Huang, Pingping; Yang, Wen

    2016-06-01

    Although there have been many studies for change detection, the effective and efficient use of high resolution remote sensing images is still a problem. Conventional supervised methods need lots of annotations to classify the land cover categories and detect their changes. Besides, the training set in supervised methods often has lots of redundant samples without any essential information. In this study, we present a method for interactive change detection using high resolution remote sensing images with active learning to overcome the shortages of existing remote sensing image change detection techniques. In our method, there is no annotation of actual land cover category at the beginning. First, we find a certain number of the most representative objects in unsupervised way. Then, we can detect the change areas from multi-temporal high resolution remote sensing images by active learning with Gaussian processes in an interactive way gradually until the detection results do not change notably. The artificial labelling can be reduced substantially, and a desirable detection result can be obtained in a few iterations. The experiments on Geo-Eye1 and WorldView2 remote sensing images demonstrate the effectiveness and efficiency of our proposed method.

  15. High resolution MRI imaging at 1. 5T using surface coils

    SciTech Connect

    Blinder, R.A.; Herfkens, R.J.; Coleman, R.E.; Johnson, G.A.; Schenck, J.F.; Hart, H.R. Jr.; Foster, T.H.; Edelstein, W.A.

    1985-05-01

    The potential utility of high resolution MRI imaging in various pathologic conditions was explored. As the voxel size of MRI images is decreased the signal per pixel diminishes due to the geometric decrease in volume. In very high resolution images the signal can be small enough to be obscured by Johnson noise. High magnetic field strength (1.5T) coupled with surface coil imaging increases the signal to noise ratio. The surface coils used were single turn coils with diameters of 6 or 11 cm depending on the body part being imaged. A ''clam shell'' crossed coil was used for imaging the knees. Using a 1.5T prototype MRI imaging system we have obtained images with 14.5 cm field of view that are 256 by 256 pixels with a slice thickness of 3 mm. Good signal to noise is obtained using 2DTF imaging with only 2 excitations per phase encoding step (1 average). Images obtained of peripheral joints demonstrate articular cartilage, ligamentous structures, and trabeculae in medullary bone. These exams have demonstrated the changes of rheumatoid arthritis, and the extent of neoplastic involvement in bone. Images of the temporomandibular joint and the neck have been obtained. Parathyroid adenomas have been identified. Surface coil imaging and high magnetic fields allow for high resolution MRI imaging of various anatomic structures. Good signal to noise can be accomplished without extensive signal averaging so that reasonable imaging times and throughput can be realized with voxel dimensions of 0.6 x 0.6 x 3mm.

  16. High-Resolution Interleaved Water-Fat MR Imaging of Finger Joints with Chemical-Shift Elimination

    PubMed Central

    You, Zhigang; Seo, Gwysuk; Lerner, Amy; Totterman, Saara; Ritchlin, Christopher; Monu, Johnny

    2015-01-01

    Purpose To study the use of an interleaved water-fat (IWF) sequence with a custom-made RF coil for high-resolution imaging of arthritic finger joints. Materials and Methods High-resolution finger MRI was performed using a custom-made dedicated RF receiver coil and an IWF sequence. A phantom, a cadaver finger specimen and the fingers of two normal controls and six arthritic subjects were imaged with a resolution of 156×156×600 microns. The appearance of anatomic structures on the IWF images were compared with images acquired with a regular sequence. The images were reviewed by two musculoskeletal radiologists for the depiction of anatomical structures and for the presence of abnormalities. Results The high-resolution images revealed detailed structures of the finger joints not detectable using typical clinical resolution. The IWF sequence gave more realistic depiction of subchondral bone thickness, and avoided false bone erosions displayed in the regular sequence. It also allowed better visualization of ligaments and tendons. Conclusion This pilot study shows the feasibility and the potential usefulness of high-resolution IWF imaging for finger joint evaluation. This technique may be useful for the diagnosis and treatment assessment of arthritis, and for the study of joint disease pathogenesis. PMID:21182147

  17. Forecast of muddy floods using high-resolution radar precipitation forcasting data and erosion modelling

    NASA Astrophysics Data System (ADS)

    Hänsel, Phoebe; Schindewolf, Marcus; Schmidt, Jürgen

    2016-04-01

    In the federal province of Saxony, Eastern Germany, almost 60 % of the agricultural land is endangered by erosion processes, mainly caused by heavy rainfall events. Beside the primary impact of soil loss and decreasing soil fertility, erosion can cause significant effects if transported sediments are entering downslope settlements, infrastructure or traffic routes. Available radar precipitation data are closing the gap between the conventional rainfall point measurements and enable the nationwide rainfall distribution with high spatial and temporal resolution. By means of the radar precipitation data of the German Weather Service (DWD), high-resolution radar-based rainfall data totals up to 5 minute time steps are possible. The radar data are visualised in a grid-based hourly precipitation map. In particular, the daily and hourly precipitation maps help to identify regions with heavy rainfall and possible erosion events. In case of an erosion event on agricultural land, these areas are mapped with an unmanned airborne vehicle (UAV). The camera-equipped UAV delivers high-resolution images of the erosion event, that allow the generation of high-resolution orthophotos. By the application of the high-resolution radar precipitation data as an input for the process-based soil loss and deposition model EROSION 3D, these images are for validation purposes. Future research is focused on large scale soil erosion modelling with the help of the radar forecasting product and an automatic identification of sediment pass over points. The study will end up with an user friendly muddy flood warning tool, which allows the local authorities to initiate immediate measures in order to prevent severe damages in settlements, infrastructure or traffic routes.

  18. ATS-6 - The Geosynchronous Very High Resolution Radiometer

    NASA Technical Reports Server (NTRS)

    Shenk, W. E.; Stephanides, C. C.; Sonnek, G. E.; Howell, L. D.

    1975-01-01

    The Geosynchronous Very High Resolution Radiometer (GVHRR), flown on the three-axis stabilized geosynchronous satellite, Applications Technology Satellite-6 (ATS-6), collected meteorological data for two months during the summer of 1974. Several hundred images were successfully taken. Data collection terminated when the instrument chopper motor failed. The instrument, its supporting ground equipment, and the data collected in orbit are described.

  19. Reproducible high-resolution multispectral image acquisition in dermatology

    NASA Astrophysics Data System (ADS)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  20. Evacuee Compliance Behavior Analysis using High Resolution Demographic Information

    SciTech Connect

    Lu, Wei; Han, Lee; Liu, Cheng; Tuttle, Mark A; Bhaduri, Budhendra L

    2014-01-01

    The purpose of this study is to examine whether evacuee compliance behavior with route assignments from different resolutions of demographic data would impact the evacuation performance. Most existing evacuation strategies assume that travelers will follow evacuation instructions, while in reality a certain percent of evacuees do not comply with prescribed instructions. In this paper, a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) were conducted for the detailed road network representing Alexandria, Virginia. A revised platform for evacuation modeling built on high resolution demographic data and activity-based microscopic traffic simulation is proposed. The results indicate that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it does not significantly compromise the efficiency with high resolution LPC assignment. The TAZ assignment also underestimates the real travel time during evacuation, especially for high compliance simulations. This suggests that conventional evacuation studies based on TAZ assignment might not be effective at providing efficient guidance to evacuees. From the high resolution data perspective, traveler compliance behavior is an important factor but it does not impact the system performance significantly. The highlight of evacuee compliance behavior analysis should be emphasized on individual evacuee level route/shelter assignments, rather than the whole system performance.

  1. High resolution data base for use with MAP

    SciTech Connect

    Tapley, W.C.; Harris, D.B.

    1987-05-05

    A high resolution cartographic data base of thw World is available from the CIA. We obtained this data, extracted portions of the data, and produced cartographic files of varying resolutions. The resulting data files are of the proper format for use with MAP (2), our in-house cartographic plotting program.

  2. Ultrastable reference pulser for high-resolution spectrometers

    NASA Technical Reports Server (NTRS)

    Brenner, R.; Lenkszus, F. R.; Sifter, L. L.; Strauss, M. G.

    1970-01-01

    Solid-state double-pulse generator for a high resolution semiconductor detector meets specific requirements for resolution /0.05 percent/, amplitude range /0.1-13 MeV/, and repetition rate /0.1-1000 pulses per second/. A tag pulse is generated in coincidence with each reference pulse.

  3. High-resolution TFT-LCD for spatial light modulator

    NASA Astrophysics Data System (ADS)

    Lee, JaeWon; Kim, Yong-Hae; Byun, Chun-Won; Pi, Jae-Eun; Oh, Himchan; Kim, GiHeon; Lee, Myung-Lae; Chu, Hye-Yong; Hwang, Chi-Sun

    2014-06-01

    SLM with very fine pixel pitch is needed for the holographic display system. Among various kinds of SLMs, commercially available high resolution LCoS has been widely used as a spatial light modulator. But the size of commercially available LCoS SLM is limited because the manufacturing technology of LCoS is based on the semiconductor process developed on small size Si wafer. Recently very high resolution flat panel display panel (~500ppi) was developed as a "retina display". Until now, the pixel pitch of flat panel display is several times larger than the pixel pitch of LCoS. But considering the possibility of shrink down the pixel pitch with advanced lithographic tools, the application of flat panel display will make it possible to build a SLM with high spatial bandwidth product. We simulated High resolution TFT-LCD panel on glass substrate using oxide semiconductor TFT with pixel pitch of 20um. And we considered phase modulation behavior of LC(ECB) mode. The TFT-LCD panel is reflective type with 4-metal structure with organic planarization layers. The technical challenge for high resolution large area SLM will be discussed with very fine pixel.

  4. High-Resolution Nuclear Magnetic Resonance of Solids.

    ERIC Educational Resources Information Center

    Maciel, Gary E.

    1984-01-01

    Examines recent developments in techniques for obtaining high-resolution nuclear magnetic resonance (NMR) spectra on solid samples, discussing the kinds of applications for which these techniques are well suited. Also discusses the characteristics of NMR of solids and generating magnetization for NMR in solids. (JN)

  5. Application of Classification Models to Pharyngeal High-Resolution Manometry

    ERIC Educational Resources Information Center

    Mielens, Jason D.; Hoffman, Matthew R.; Ciucci, Michelle R.; McCulloch, Timothy M.; Jiang, Jack J.

    2012-01-01

    Purpose: The authors present 3 methods of performing pattern recognition on spatiotemporal plots produced by pharyngeal high-resolution manometry (HRM). Method: Classification models, including the artificial neural networks (ANNs) multilayer perceptron (MLP) and learning vector quantization (LVQ), as well as support vector machines (SVM), were…

  6. Vehicle Detection and Classification from High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Abraham, L.; Sasikumar, M.

    2014-11-01

    In the past decades satellite imagery has been used successfully for weather forecasting, geographical and geological applications. Low resolution satellite images are sufficient for these sorts of applications. But the technological developments in the field of satellite imaging provide high resolution sensors which expands its field of application. Thus the High Resolution Satellite Imagery (HRSI) proved to be a suitable alternative to aerial photogrammetric data to provide a new data source for object detection. Since the traffic rates in developing countries are enormously increasing, vehicle detection from satellite data will be a better choice for automating such systems. In this work, a novel technique for vehicle detection from the images obtained from high resolution sensors is proposed. Though we are using high resolution images, vehicles are seen only as tiny spots, difficult to distinguish from the background. But we are able to obtain a detection rate not less than 0.9. Thereafter we classify the detected vehicles into cars and trucks and find the count of them.

  7. Using High Resolution SPOT 5 Multispectral Imagery for Crop Identification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High resolution satellite imagery offers new opportunities for crop monitoring and assessment. A SPOT 5 image with four spectral bands (green, red, near-infrared, and mid-infrared) and 10-m pixel size covering intensively cropped areas in south Texas was evaluated for crop identification. Two images...

  8. Mapping riparian and wetland weeds with high resolution satellite imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquatic and wetland weeds are a serious management problem in many freshwater ecosystems of the world. This paper presents an overview on the application of using high resolution QuickBird multi-spectral satellite imagery for detecting weeds in waterways and wetlands in Texas. Unsupervised image a...

  9. High Resolution Wavenumber Standards for the Infrared. (IUPAC Recommendations 1995)

    NASA Technical Reports Server (NTRS)

    Guelachvili, G.; Birk, M.; Borde, C. J.; Brault, J. W.; Brown, L. R.; Carli, B.; Cole, A. R. H.; Evenson, K. M.; Fayt, A.; Hausamann, D.; Johns, J. W. C.; Kauppinen, J.; Kou, Q.; Maki, A. G.; Rao, K. N.; Toth, R. A.; Urban, W.; Valentin, A.; Verges, J.; Wagner, G.; Wappelhorst, M. H.; Wells, J. S.; Winnewisser, B. P.; Winnewisser, M.

    1995-01-01

    The calibration of high resolution infrared spectra is generally more precise than accurate. This is the case even when they are recorded with Fourier transform interferometers. This presentation aims at improving the accuracy of wavenumber measurements in the infrared by recommending a selection of spectral lines as wavenumber standards for absolute calibration.

  10. High-Resolution Fluorometer for Mapping Microscale Phytoplankton Distributions

    PubMed Central

    Doubell, Mark J.; Seuront, Laurent; Seymour, Justin R.; Patten, Nicole L.; Mitchell, James G.

    2006-01-01

    A new high-resolution, in situ profiling fluorometer maps fluorescence distributions with a spatial resolution of 0.5 to 1.5 mm to a depth of 70 m in the open ocean. We report centimeter-scale patterns for phytoplankton distributions associated with gradients exhibiting 10- to 30-fold changes in fluorescence in contrasting marine ecosystems. PMID:16751572

  11. High-resolution fluorometer for mapping microscale phytoplankton distributions.

    PubMed

    Doubell, Mark J; Seuront, Laurent; Seymour, Justin R; Patten, Nicole L; Mitchell, James G

    2006-06-01

    A new high-resolution, in situ profiling fluorometer maps fluorescence distributions with a spatial resolution of 0.5 to 1.5 mm to a depth of 70 m in the open ocean. We report centimeter-scale patterns for phytoplankton distributions associated with gradients exhibiting 10- to 30-fold changes in fluorescence in contrasting marine ecosystems. PMID:16751572

  12. Workshop on high-resolution, large-acceptance spectrometers

    SciTech Connect

    Zeidman, B.

    1981-01-01

    The purpose of the Workshop on High-Resolution, Large-Acceptance Spectrometers was to provide a means for exchange of information among those actively engaged in the design and construction of these new spectrometers. Thirty-seven papers were prepared for the data base.

  13. Evaluating high resolution SPOT 5 satellite imagery for crop identification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High resolution satellite imagery offers new opportunities for crop monitoring and assessment. A SPOT 5 image with four spectral bands (green, red, near-infrared, and mid-infrared) and 10-m pixel size covering intensively cropped areas in south Texas was evaluated for crop identification. Two images...

  14. A DVD Spectroscope: A Simple, High-Resolution Classroom Spectroscope

    ERIC Educational Resources Information Center

    Wakabayashi, Fumitaka; Hamada, Kiyohito

    2006-01-01

    Digital versatile disks (DVDs) have successfully made up an inexpensive but high-resolution spectroscope suitable for classroom experiments that can easily be made with common material and gives clear and fine spectra of various light sources and colored material. The observed spectra can be photographed with a digital camera, and such images can…

  15. HIGH RESOLUTION RESISTIVITY LEAK DETECTION DATA PROCESSING & EVALUATION MEHTODS & REQUIREMENTS

    SciTech Connect

    SCHOFIELD JS

    2007-10-04

    This document has two purposes: {sm_bullet} Describe how data generated by High Resolution REsistivity (HRR) leak detection (LD) systems deployed during single-shell tank (SST) waste retrieval operations are processed and evaluated. {sm_bullet} Provide the basic review requirements for HRR data when Hrr is deployed as a leak detection method during SST waste retrievals.

  16. High resolution X-ray spectroscopy using microcalorimeters

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Holt, S. S.; Madejski, G. M.; Moseley, S. H.; Schoelkopf, R. J.; Szymkowiak, A. E.

    1988-01-01

    The use of microcalorimeters for high-resolution, high quantum efficiency, nondispersive X-ray spectroscopy has been demonstrated over the past few years. In this paper, the principles of X-ray calorimetry are reviewed, and the results of ongoing X-ray tests using microcalorimetry are summarized. An approach to building an X-ray calorimeter spectrometer is discussed.

  17. Plant respirometer enables high resolution of oxygen consumption rates

    NASA Technical Reports Server (NTRS)

    Foster, D. L.

    1966-01-01

    Plant respirometer permits high resolution of relatively small changes in the rate of oxygen consumed by plant organisms undergoing oxidative metabolism in a nonphotosynthetic state. The two stage supply and monitoring system operates by a differential pressure transducer and provides a calibrated output by digital or analog signals.

  18. High Resolution Mass Spectra Analysis with a Programmable Calculator.

    ERIC Educational Resources Information Center

    Holdsworth, David K.

    1980-01-01

    Highlighted are characteristics of programs written for a pocket-sized programmable calculator to analyze mass spectra data (such as displaying high resolution masses for formulas, predicting whether formulas are stable molecules or molecular ions, determining formulas by isotopic abundance measurement) in a laboratory or classroom. (CS)

  19. Improving the Altimeter Derived Geostrophic Currents Using High Resolution Sea Surface Temperature Images: A Feasibility Study

    NASA Astrophysics Data System (ADS)

    Rio, M.-H.; Santoleri, R.; Giffa, A.; Piterbarg, L.

    2015-12-01

    Accurate knowledge of spatial and temporal ocean surface currents at high resolution is essential for a variety of applications. The altimeter observing system, by providing global and repetitive measurements of the Sea Surface Height, has been by far the most exploited system to estimate ocean surface currents in the past 20 years. However it does not allow observing currents departing from the geostrophic equilibrium, nor is capable to resolve the shortest spatial scales of the currents. In order to go beyond these limits, we investigate how the high spatial and temporal resolution information from Sea Surface Temperature (SST) images can improve the altimeter currents by adapting a method first proposed by [1]. It consists in inverting the SST evolution equation for the velocity by prescribing the source and sink terms and by using the altimeter currents as background. The method feasibility is tested using simulated data based on the Mercator-Ocean system.

  20. PROBING NEAR-SURFACE ATMOSPHERIC TURBULENCE WITH LIDAR MEASUREMENTS AND HIGH-RESOLUTION HYDRODYNAMIC MODELS

    SciTech Connect

    J. KAO; D. COOPER; ET AL

    2000-11-01

    As lidar technology is able to provide fast data collection at a resolution of meters in an atmospheric volume, it is imperative to promote a modeling counterpart of the lidar capability. This paper describes an integrated capability based on data from a scanning water vapor lidar and a high-resolution hydrodynamic model (HIGRAD) equipped with a visualization routine (VIEWER) that simulates the lidar scanning. The purpose is to better understand the spatial and temporal representativeness of the lidar measurements and, in turn, to extend their utility in studying turbulence fields in the atmospheric boundary layer. Raman lidar water vapor data collected over the Pacific warm pool and the simulations with the HIGRAD code are used for identifying the underlying physics and potential aliasing effects of spatially resolved lidar measurements. This capability also helps improve the trade-off between spatial-temporal resolution and coverage of the lidar measurements.

  1. Extended-Range High-Resolution Dynamical Downscaling over a Continental-Scale Domain

    NASA Astrophysics Data System (ADS)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    High-resolution mesoscale simulations, when applied for downscaling meteorological fields over large spatial domains and for extended time periods, can provide valuable information for many practical application scenarios including the weather-dependent renewable energy industry. In the present study, a strategy has been proposed to dynamically downscale coarse-resolution meteorological fields from Environment Canada's regional analyses for a period of multiple years over the entire Canadian territory. The study demonstrates that a continuous mesoscale simulation over the entire domain is the most suitable approach in this regard. Large-scale deviations in the different meteorological fields pose the biggest challenge for extended-range simulations over continental scale domains, and the enforcement of the lateral boundary conditions is not sufficient to restrict such deviations. A scheme has therefore been developed to spectrally nudge the simulated high-resolution meteorological fields at the different model vertical levels towards those embedded in the coarse-resolution driving fields derived from the regional analyses. A series of experiments were carried out to determine the optimal nudging strategy including the appropriate nudging length scales, nudging vertical profile and temporal relaxation. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil-moisture, and snow conditions, towards their expected values obtained from a high-resolution offline surface scheme was also devised to limit any considerable deviation in the evolving surface fields due to extended-range temporal integrations. The study shows that ensuring large-scale atmospheric similarities helps to deliver near-surface statistical scores for temperature, dew point temperature and horizontal wind speed that are better or comparable to the operational regional forecasts issued by Environment Canada. Furthermore, the meteorological fields

  2. Building Change Detection in Very High Resolution Satellite Stereo Image Time Series

    NASA Astrophysics Data System (ADS)

    Tian, J.; Qin, R.; Cerra, D.; Reinartz, P.

    2016-06-01

    There is an increasing demand for robust methods on urban sprawl monitoring. The steadily increasing number of high resolution and multi-view sensors allows producing datasets with high temporal and spatial resolution; however, less effort has been dedicated to employ very high resolution (VHR) satellite image time series (SITS) to monitor the changes in buildings with higher accuracy. In addition, these VHR data are often acquired from different sensors. The objective of this research is to propose a robust time-series data analysis method for VHR stereo imagery. Firstly, the spatial-temporal information of the stereo imagery and the Digital Surface Models (DSMs) generated from them are combined, and building probability maps (BPM) are calculated for all acquisition dates. In the second step, an object-based change analysis is performed based on the derivative features of the BPM sets. The change consistence between object-level and pixel-level are checked to remove any outlier pixels. Results are assessed on six pairs of VHR satellite images acquired within a time span of 7 years. The evaluation results have proved the efficiency of the proposed method.

  3. A high-resolution European dataset for hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Ntegeka, Victor; Salamon, Peter; Gomes, Goncalo; Sint, Hadewij; Lorini, Valerio; Thielen, Jutta

    2013-04-01

    There is an increasing demand for large scale hydrological models not only in the field of modeling the impact of climate change on water resources but also for disaster risk assessments and flood or drought early warning systems. These large scale models need to be calibrated and verified against large amounts of observations in order to judge their capabilities to predict the future. However, the creation of large scale datasets is challenging for it requires collection, harmonization, and quality checking of large amounts of observations. For this reason, only a limited number of such datasets exist. In this work, we present a pan European, high-resolution gridded dataset of meteorological observations (EFAS-Meteo) which was designed with the aim to drive a large scale hydrological model. Similar European and global gridded datasets already exist, such as the HadGHCND (Caesar et al., 2006), the JRC MARS-STAT database (van der Goot and Orlandi, 2003) and the E-OBS gridded dataset (Haylock et al., 2008). However, none of those provide similarly high spatial resolution and/or a complete set of variables to force a hydrologic model. EFAS-Meteo contains daily maps of precipitation, surface temperature (mean, minimum and maximum), wind speed and vapour pressure at a spatial grid resolution of 5 x 5 km for the time period 1 January 1990 - 31 December 2011. It furthermore contains calculated radiation, which is calculated by using a staggered approach depending on the availability of sunshine duration, cloud cover and minimum and maximum temperature, and evapotranspiration (potential evapotranspiration, bare soil and open water evapotranspiration). The potential evapotranspiration was calculated using the Penman-Monteith equation with the above-mentioned meteorological variables. The dataset was created as part of the development of the European Flood Awareness System (EFAS) and has been continuously updated throughout the last years. The dataset variables are used as

  4. High-resolution DEM Effects on Geophysical Flow Models

    NASA Astrophysics Data System (ADS)

    Williams, M. R.; Bursik, M. I.; Stefanescu, R. E. R.; Patra, A. K.

    2014-12-01

    Geophysical mass flow models are numerical models that approximate pyroclastic flow events and can be used to assess the volcanic hazards certain areas may face. One such model, TITAN2D, approximates granular-flow physics based on a depth-averaged analytical model using inputs of basal and internal friction, material volume at a coordinate point, and a GIS in the form of a digital elevation model (DEM). The volume of modeled material propagates over the DEM in a way that is governed by the slope and curvature of the DEM surface and the basal and internal friction angles. Results from TITAN2D are highly dependent upon the inputs to the model. Here we focus on a single input: the DEM, which can vary in resolution. High resolution DEMs are advantageous in that they contain more surface details than lower-resolution models, presumably allowing modeled flows to propagate in a way more true to the real surface. However, very high resolution DEMs can create undesirable artifacts in the slope and curvature that corrupt flow calculations. With high-resolution DEMs becoming more widely available and preferable for use, determining the point at which high resolution data is less advantageous compared to lower resolution data becomes important. We find that in cases of high resolution, integer-valued DEMs, very high-resolution is detrimental to good model outputs when moderate-to-low (<10-15°) slope angles are involved. At these slope angles, multiple adjacent DEM cell elevation values are equal due to the need for the DEM to approximate the low slope with a limited set of integer values for elevation. The first derivative of the elevation surface thus becomes zero. In these cases, flow propagation is inhibited by these spurious zero-slope conditions. Here we present evidence for this "terracing effect" from 1) a mathematically defined simulated elevation model, to demonstrate the terracing effects of integer valued data, and 2) a real-world DEM where terracing must be

  5. High-resolution climate simulation of the last glacial maximum

    SciTech Connect

    Erickson III, David J

    2008-01-01

    The climate of the last glacial maximum (LGM) is simulated with a high-resolution atmospheric general circulation model, the NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. The purpose of the study is to assess whether there are significant benefits from the higher resolution simulation compared to the lower resolution simulation associated with the role of topography. The LGM simulations were forced with modified CLIMAP sea ice distribution and sea surface temperatures (SST) reduced by 1 C, ice sheet topography, reduced CO{sub 2}, and 21,000 BP orbital parameters. The high-resolution model captures modern climate reasonably well, in particular the distribution of heavy precipitation in the tropical Pacific. For the ice age case, surface temperature simulated by the high-resolution model agrees better with those of proxy estimates than does the low-resolution model. Despite the fact that tropical SSTs were only 2.1 C less than the control run, there are many lowland tropical land areas 4-6 C colder than present. Comparison of T170 model results with the best constrained proxy temperature estimates (noble gas concentrations in groundwater) now yield no significant differences between model and observations. There are also significant upland temperature changes in the best resolved tropical mountain belt (the Andes). We provisionally attribute this result in part as resulting from decreased lateral mixing between ocean and land in a model with more model grid cells. A longstanding model-data discrepancy therefore appears to be resolved without invoking any unusual model physics. The response of the Asian summer monsoon can also be more clearly linked to local geography in the high-resolution model than in the low-resolution model; this distinction should enable more confident validation of climate proxy data with the high-resolution model. Elsewhere, an inferred salinity increase in the subtropical North Atlantic may have

  6. A versatile high-resolution x-ray imager (HRXI) for laser-plasma experiments on OMEGA

    SciTech Connect

    Bourgade, J. L.; Troussel, P.; Casner, A.; Huser, G.; Fariaud, J.; Remond, C.; Gontier, D.; Chollet, C.; Zuber, C.; Reverdin, C.; Richard, A.; Maroni, R.; Aubard, F.; Angelier, B.

    2008-10-15

    A high-resolution x-ray imager (HRXI) devoted to laser-plasma experiments combines two state-of-the-art technologies developed in France: a high-resolution x-ray microscope and a high-speed x-ray streak camera. The resulting streaked imager achieves spatial and temporal resolutions of {approx}5 {mu}m and {approx}10 ps, respectively. The HXRI has recorded enhanced spatial and temporal resolution radiographs of indirectly driven targets on OMEGA. This paper describes the main features of the instrument and details the activation process on OMEGA (particularly the alignment). Recent results obtained on joint CEA/LLE radiographic OMEGA experiments will also be presented.

  7. Ring artifact correction for high-resolution micro CT.

    PubMed

    Kyriakou, Yiannis; Prell, Daniel; Kalender, Willi A

    2009-09-01

    In high-resolution micro CT using flat detectors (FD), imperfect or defect detector elements may cause concentric-ring artifacts due to their continuous over- or underestimation of attenuation values, which often disturb image quality. We here present a dedicated image-based ring artifact correction method for high-resolution micro CT, based on median filtering of the reconstructed image and working on a transformed version of the reconstructed images in polar coordinates. This post-processing method reduced ring artifacts in the reconstructed images and improved image quality for phantom and in in vivo scans. Noise and artifacts were reduced both in transversal and in multi-planar reformations along the longitudinal axis. PMID:19661571

  8. High Resolution Coherent 3d Spectroscopy of Bromine

    NASA Astrophysics Data System (ADS)

    Strangfeld, Benjamin R.; Wells, Thresa A.; House, Zuri R.; Chen, Peter C.

    2013-06-01

    The high resolution gas phase electronic spectrum of bromine is rather congested due to many overlapping vibrational and rotational transitions with similar transition frequencies, and also due to isotopomeric effects. Expansion into the second dimension will remove some of this congestion; however through the implementation of High Resolution Coherent 3D Spectroscopy, the density of peaks is further reduced by at least two orders of magnitude. This allows for the selective examination of a small number of spatially resolved multidimensional bands, separated by vibrational quantum number and by isotopomer, which facilitates the fitting of many rovibrational peaks in bromine. The ability to derive information about the molecular constants for the electronic states involved will be discussed.

  9. High Resolution Coherent Three-Dimensional Spectroscopy of Iodine

    NASA Astrophysics Data System (ADS)

    House, Zuri R.; Wells, Thresa A.; Chen, Peter C.; Strangfeld, Benjamin R.

    2013-06-01

    The heavy congestion found in many one-dimensional spectra can make it difficult to study many transitions. A new coherent three-dimensional spectroscopic technique has been developed to eliminate the kind of congestion commonly seen in high resolution electronic spectra. The molecule used for this test was Iodine. A well-characterized transition (X to B) was used to determine which four wave mixing process or processes were responsible for the peaks in the resulting multidimensional spectrum. The resolution of several peaks that overlap in a coherent 2D spectrum can be accomplished by using a higher dimensional (3D) spectroscopic method. This talk will discuss strategies for finding spectroscopic constants using this high resolution coherent 3D spectroscopic method.

  10. Strategies for Interpreting High Resolution Coherent Multidimensional Spectra

    NASA Astrophysics Data System (ADS)

    Wells, Thresa A.; House, Zuri R.; Chen, Peter C.; Strangfeld, Benjamin R.

    2013-06-01

    The electronic spectra of certain molecules can be very complex and consist of a high density of peaks. The high density of peaks results in severe spectral congestion, making conventional data analysis techniques extremely difficult to use. One solution to this problem is to use high resolution coherent 2D spectroscopy (HRC2DS), which can improve resolution and sort peaks into recognizable clusters. This technique requires new data analysis techniques to accurately assign peaks. Even though HRC2DS can improve spectral resolution, some regions of the spectra may still remain congested. The ability to solve this problem using even higher dimensional techniques (e.g., high resolution coherent 3D spectroscopy) with 3D pattern recognition and data analysis techniques will be discussed.

  11. An Introduction to High Resolution Coherent Multidimensional Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Wells, Thresa A.; House, Zuri R.; Strangfeld, Benjamin R.

    2013-06-01

    High resolution coherent multidimensional spectroscopy is a technique that can be used to analyze and assign peaks for molecules that have resisted spectral analysis. Molecules that yield heavily congested and seemingly patternless spectra using conventional methods can yield 2D spectra that have recognizable patterns. The off-diagonal region of the coherent 2D plot shows only cross-peaks that are related by rotational selection rules. The resulting patterns facilitate peak assignment if they are sufficiently resolved. For systems that are not well-resolved, coherent 3D spectra may be generated to further improve resolution and provide selectivity. This presentation will provide an introduction to high resolution coherent 2D and 3D spectroscopies.

  12. Fabricating High-Resolution X-Ray Collimators

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  13. Analysis of Complex Steel Microstructures by High-Resolution EBSD

    NASA Astrophysics Data System (ADS)

    Isasti, Nerea; Jorge-Badiola, Denis; Alkorta, Jon; Uranga, Pello

    2016-01-01

    High-resolution electron backscattered diffraction (HR-EBSD) is a powerful tool to describe microstructures at the sub-micrometric scale that achieves a higher degree of angular accuracy compared with conventional EBSD. However, such an EBSD technique is time-consuming and requires data-intensive computing to save and postprocess the results obtained after each scan. In the current work, a simple strategy to transform conventional results into high-resolution results is put forward in an averaging statistical layout. This makes it possible to measure the misorientations more precisely and, subsequently, the geometrically necessary dislocations by lowering the typical noise generated from Hough transformation-based conventional EBSD. Different steel microstructures are analyzed in light of this strategy. The calculated dislocation densities for those microstructures are used as input values for evaluating the initial dislocation density contribution to the yield strength in a newly developed mechanical model.

  14. High-resolution imaging of cellular processes in Caenorhabditis elegans.

    PubMed

    Maddox, Amy S; Maddox, Paul S

    2012-01-01

    Differential interference contrast (DIC) imaging of Caenorhabditis elegans embryogenesis led to a Nobel Prize in Physiology or Medicine (Sulston et al., 1983) as did the first use of green fluorescent protein (GFP) in a transgenic C. elegans (Chalfie et al., 1994). Given that C. elegans is free living, does not require exceptional environmental control, and is optically clear, live imaging is a powerful tool in for this model system. Combining genetics with high-resolution imaging has continued to make important contributions to many fields. In this chapter, we discuss how certain aspects of high-resolution microscopy are implemented. This is not an exhaustive review of microscopy; it is meant to be a helpful guide and point of reference for some basic concepts in imaging. While these concepts are largely true for all biological imaging, they are chosen as particularly important for C. elegans. PMID:22226519

  15. Temperature-dependent high resolution absorption cross sections of propane

    NASA Astrophysics Data System (ADS)

    Beale, Christopher A.; Hargreaves, Robert J.; Bernath, Peter F.

    2016-10-01

    High resolution (0.005 cm-1) absorption cross sections have been measured for pure propane (C3H8). These cross sections cover the 2550-3500 cm-1 region at five temperatures (from 296 to 700 K) and were measured using a Fourier transform spectrometer and a quartz cell heated by a tube furnace. Calibrations were made by comparison to the integrated cross sections of propane from the Pacific Northwest National Laboratory. These are the first high resolution absorption cross sections of propane for the 3 μm region at elevated temperatures. The cross sections provided may be used to monitor propane in combustion environments and in astronomical sources such as the auroral regions of Jupiter, brown dwarfs and exoplanets.

  16. High resolution reservoir geological modelling using outcrop information

    SciTech Connect

    Zhang Changmin; Lin Kexiang; Liu Huaibo

    1997-08-01

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  17. Airborne laser scanning for high-resolution mapping of Antarctica

    NASA Astrophysics Data System (ADS)

    Csatho, Bea; Schenk, Toni; Krabill, William; Wilson, Terry; Lyons, William; McKenzie, Garry; Hallam, Cheryl; Manizade, Serdar; Paulsen, Timothy

    In order to evaluate the potential of airborne laser scanning for topographic mapping in Antarctica and to establish calibration/validation sites for NASA's Ice, Cloud and land Elevation Satellite (ICESat) altimeter mission, NASA, the U.S. National Science Foundation (NSF), and the U.S. Geological Survey (USGS) joined forces to collect high-resolution airborne laser scanning data.In a two-week campaign during the 2001-2002 austral summer, NASA's Airborne Topographic Mapper (ATM) system was used to collect data over several sites in the McMurdo Sound area of Antarctica (Figure 1a). From the recorded signals, NASA computed laser points and The Ohio State University (OSU) completed the elaborate computation/verification of high-resolution Digital Elevation Models (DEMs) in 2003. This article reports about the DEM generation and some exemplary results from scientists using the geomorphologic information from the DEMs during the 2003-2004 field season.

  18. High-resolution ultrasound imaging of cutaneous lesions

    PubMed Central

    Mandava, Anitha; Ravuri, Prabhakar Rao; Konathan, Rajyalaxmi

    2013-01-01

    High-resolution variable frequency ultrasound imaging is increasingly being used in the noninvasive evaluation of various cutaneous diseases. It plays a complimentary role to physical examination in the assessment of cutaneous lesions. It is the only imaging modality useful in the evaluation of superficial cutaneous lesions that are too small to be evaluated on computed tomography (CT) or magnetic resonance imaging (MRI) and is helpful in reducing invasive procedures like biopsies and fine needle aspirations. In this article, we seek to describe the relevance and basic principles of cutaneous ultrasound, imaging findings of normal skin, current applications of high-resolution ultrasound in the diagnosis and management of various dermatological conditions, along with the features of some commonly encountered lesions. PMID:24347861

  19. Spaceborne laser instruments for high-resolution mapping

    NASA Astrophysics Data System (ADS)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Valett, Susan; Cavanaugh, John; Ramos-Izquierdo, Luis

    2010-02-01

    We discuss past, present and future spaceborne laser instruments for high-resolution mapping of Earth and planetary surfaces. Previous spaceborne-laser-altimeters projected and imaged a single laser spot for surface-height measurements. In contrast, the recent Lunar Orbiter Laser Altimeter (LOLA) instrument on the Lunar Reconnaissance Orbiter (LRO) uses a non-scanning multi-beam system for surface topography mapping. The multi-beam instrument facilitates surface slope measurement and reduces the time-to-completion for global high-resolution topographic mapping. We discuss our first-year progress on a three-year swath-mapping laser-altimetry Instrument Incubator Program (IIP) funded by the NASA Earth Science Technology Office (ESTO). Our IIP is a technology development program supporting the LIdar Surface Topography (LIST) space-flight mission that is a third-tier mission as recommended by the National Research Council (NRC) for NASA's Earth Science programs.

  20. Development of a high resolution and high dispersion Thomson parabola

    NASA Astrophysics Data System (ADS)

    Jung, D.; Hörlein, R.; Kiefer, D.; Letzring, S.; Gautier, D. C.; Schramm, U.; Hübsch, C.; Öhm, R.; Albright, B. J.; Fernandez, J. C.; Habs, D.; Hegelich, B. M.

    2011-01-01

    Here, we report on the development of a novel high resolution and high dispersion Thomson parabola for simultaneously resolving protons and low-Z ions of more than 100 MeV/nucleon necessary to explore novel laser ion acceleration schemes. High electric and magnetic fields enable energy resolutions of ΔE/E < 5% at 100 MeV/nucleon and impede premature merging of different ion species at low energies on the detector plane. First results from laser driven ion acceleration experiments performed at the Trident Laser Facility demonstrate high resolution and superior species and charge state separation of this novel Thomson parabola for ion energies of more than 30 MeV/nucleon.

  1. Development of a high resolution and high dispersion Thomson parabola.

    PubMed

    Jung, D; Hörlein, R; Kiefer, D; Letzring, S; Gautier, D C; Schramm, U; Hübsch, C; Öhm, R; Albright, B J; Fernandez, J C; Habs, D; Hegelich, B M

    2011-01-01

    Here, we report on the development of a novel high resolution and high dispersion Thomson parabola for simultaneously resolving protons and low-Z ions of more than 100 MeV/nucleon necessary to explore novel laser ion acceleration schemes. High electric and magnetic fields enable energy resolutions of ΔE∕E < 5% at 100 MeV/nucleon and impede premature merging of different ion species at low energies on the detector plane. First results from laser driven ion acceleration experiments performed at the Trident Laser Facility demonstrate high resolution and superior species and charge state separation of this novel Thomson parabola for ion energies of more than 30 MeV/nucleon. PMID:21280824

  2. High resolution computed tomography of advanced composite and ceramic materials

    NASA Technical Reports Server (NTRS)

    Yancey, R. N.; Klima, S. J.

    1991-01-01

    Advanced composite and ceramic materials are being developed for use in many new defense and commercial applications. In order to achieve the desired mechanical properties of these materials, the structural elements must be carefully analyzed and engineered. A study was conducted to evaluate the use of high resolution computed tomography (CT) as a macrostructural analysis tool for advanced composite and ceramic materials. Several samples were scanned using a laboratory high resolution CT scanner. Samples were also destructively analyzed at the locations of the scans and the nondestructive and destructive results were compared. The study provides useful information outlining the strengths and limitations of this technique and the prospects for further research in this area.

  3. Advances in DNA sequencing technologies for high resolution HLA typing.

    PubMed

    Cereb, Nezih; Kim, Hwa Ran; Ryu, Jaejun; Yang, Soo Young

    2015-12-01

    This communication describes our experience in large-scale G group-level high resolution HLA typing using three different DNA sequencing platforms - ABI 3730 xl, Illumina MiSeq and PacBio RS II. Recent advances in DNA sequencing technologies, so-called next generation sequencing (NGS), have brought breakthroughs in deciphering the genetic information in all living species at a large scale and at an affordable level. The NGS DNA indexing system allows sequencing multiple genes for large number of individuals in a single run. Our laboratory has adopted and used these technologies for HLA molecular testing services. We found that each sequencing technology has its own strengths and weaknesses, and their sequencing performances complement each other. HLA genes are highly complex and genotyping them is quite challenging. Using these three sequencing platforms, we were able to meet all requirements for G group-level high resolution and high volume HLA typing. PMID:26423536

  4. Protein-DNA binding in high-resolution

    PubMed Central

    Mahony, Shaun; Pugh, B. Franklin

    2015-01-01

    Recent advances in experimental and computational methodologies are enabling ultra-high resolution genome-wide profiles of protein-DNA binding events. For example, the ChIP-exo protocol precisely characterizes protein-DNA crosslinking patterns by combining chromatin immunoprecipitation (ChIP) with 5′ → 3′ exonuclease digestion. Similarly, deeply sequenced chromatin accessibility assays (e.g. DNase-seq and ATACseq) enable the detection of protected footprints at protein-DNA binding sites. With these techniques and others, we have the potential to characterize the individual nucleotides that interact with transcription factors, nucleosomes, RNA polymerases, and other regulatory proteins in a particular cellular context. In this review, we explain the experimental assays and computational analysis methods that enable high-resolution profiling of protein-DNA binding events. We discuss the challenges and opportunities associated with such approaches. PMID:26038153

  5. Scalable, flexible and high resolution patterning of CVD graphene.

    PubMed

    Hofmann, Mario; Hsieh, Ya-Ping; Hsu, Allen L; Kong, Jing

    2014-01-01

    The unique properties of graphene make it a promising material for interconnects in flexible and transparent electronics. To increase the commercial impact of graphene in those applications, a scalable and economical method for producing graphene patterns is required. The direct synthesis of graphene from an area-selectively passivated catalyst substrate can generate patterned graphene of high quality. We here present a solution-based method for producing patterned passivation layers. Various deposition methods such as ink-jet deposition and microcontact printing were explored, that can satisfy application demands for low cost, high resolution and scalable production of patterned graphene. The demonstrated high quality and nanometer precision of grown graphene establishes the potential of this synthesis approach for future commercial applications of graphene. Finally, the ability to transfer high resolution graphene patterns onto complex three-dimensional surfaces affords the vision of graphene-based interconnects in novel electronics. PMID:24189709

  6. High-resolution dot-matrix hologram generation

    NASA Astrophysics Data System (ADS)

    Zarkov, Boban; Grujić, Dušan; Pantelić, Dejan

    2012-05-01

    Holography is a technique that enables us to permanently record three-dimensional (3D) colour pictures. Owing to their sub-micron structure, holograms are remarkable safety devices that are very difficult to counterfeit. Dot-matrix technology, which is one of the commonly used methods, is a substantial obstacle to all types of fraudulent activities. This kind of hologram is mainly used for the purpose of protection against forgery of cheques, cards, passports, etc. Such a high-resolution technique also enables the engineering of 2D and 3D structures, potentially leading to the construction of metamaterials. In this paper, we describe high-resolution holographic structures obtained by dot-matrix devices of novel construction.

  7. Turbine component casting core with high resolution region

    DOEpatents

    Kamel, Ahmed; Merrill, Gary B.

    2014-08-26

    A hollow turbine engine component with complex internal features can include a first region and a second, high resolution region. The first region can be defined by a first ceramic core piece formed by any conventional process, such as by injection molding or transfer molding. The second region can be defined by a second ceramic core piece formed separately by a method effective to produce high resolution features, such as tomo lithographic molding. The first core piece and the second core piece can be joined by interlocking engagement that once subjected to an intermediate thermal heat treatment process thermally deform to form a three dimensional interlocking joint between the first and second core pieces by allowing thermal creep to irreversibly interlock the first and second core pieces together such that the joint becomes physically locked together providing joint stability through thermal processing.

  8. Effective Area of the AXAF High Resolution Camera (HRC)

    NASA Technical Reports Server (NTRS)

    Patnaude, Daniel; Pease, Deron; Donnelly, Hank; Juda, Mike; Jones, Christine; Murray, Steve; Zombeck, Martin; Kraft, Ralph; Kenter, Almus; Meehan, Gary; Meehan, Gary; Swartz, Doug; Elsner, Ron

    1998-01-01

    The AXAF High-Resolution Camera (HRC) was calibrated at NASA MSFC's X-Ray Calibration Facility (XRCF) during 1997 March and April. We have undertaken an analysis of the HRC effective area using all data presently available from the XRCF. We discuss our spectral fitting of the beam-normalization detectors (BNDs), our method of removing higher order contamination lines present in the spectra, and corrections for beam non-uniformities. We apply a model of photon absorption depth in order to fit a smooth curve to the quantum efficiency of the detector. This is then combined with the most recent model of the AXAF High-Resolution Mirror Assembly (HRMA) to determine the ensemble effective area versus energy for the HRC. We also address future goals and concerns.

  9. High-resolution adaptive optics test bed for vision science

    NASA Astrophysics Data System (ADS)

    Wilks, Scott C.; Thompson, Charles A.; Olivier, Scot S.; Bauman, Brian J.; Flath, Laurence M.; Silva, Dennis A.; Sawvel, Robert M.; Barnes, Thomas B.; Werner, John S.

    2002-02-01

    We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefront correction are done at different wavelengths. Issues associated with these techniques will be discussed.

  10. High resolution map of light pollution over Poland

    NASA Astrophysics Data System (ADS)

    Netzel, Henryka; Netzel, Paweł

    2016-09-01

    In 1976 Berry introduced a simple mathematical equation to calculate artificial night sky brightness at zenith. In the original model cities, considered as points with given population, are only sources of light emission. In contrary to Berry's model, we assumed that all terrain surface can be a source of light. Emission of light depends on percent of built up area in a given cell. We based on Berry's model. Using field measurements and high-resolution data we obtained the map of night sky brightness over Poland in 100-m resolution. High resolution input data, combined with a very simple model, makes it possible to obtain detailed structures of the night sky brightness without complicating the calculations.

  11. High-resolution dynamical modelling of the Antarctic stratospheric vortex

    NASA Technical Reports Server (NTRS)

    Haynes, P. H.

    1988-01-01

    Progress is reported on the high-resolution three-dimensional numerical simulation of flows characteristic of the Antarctic wintertime stratosphere. The numerical model is a modified version of the Reading University sigma-coordinate used previously for tropospheric studies. Physical parameterizations are kept to a minimum in order to concentrate as much computing power as possible on simulating details of the dynamical processes. The major question addressed is whether the features observed in recent high-resolution two-dimensional simulations - namely: (1) the formation of a sharp edge to the vortex (seen in the potential vorticity field), (2) the survival of the polar vortex in a material entity, and (3) the formation of small-scale eddies rough the break-up of tongues of high potential vorticity drawn out from the polar vortex - are realized in three-dimensional simulations.

  12. High-resolution studies of atmospheric IR emission spectra

    NASA Technical Reports Server (NTRS)

    Murcray, F. J.; Murcray, F. H.; Goldman, A.; Blatherwick, R. D.; Murcray, D. G.

    1991-01-01

    Atmospheric emission spectra obtained with two different spectrometer systems are presented. The first system (the BOMEM Michelson interferometer) is designed for emission work. Spectra were obtained under adverse conditions in the Antarctic, and are still of good absolute accuracy. The second system (a modified Bruker Instruments IFS120 very high spectral resolution interferometer) demonstrates the sensitivity that can be achieved even at higher spectral resolution. This system shows that mid-IR atmospheric emission spectra can be obtained with a good SNR in a reasonable length of time at a relatively high resolution. A properly designed high resolution system should achieve high accuracy, sensitivity, and resolution, thereby permitting measurements of many atmospheric constituents when solar spectra cannot be obtained.

  13. Dynamical downscaling inter-comparison for high resolution climate reconstruction

    NASA Astrophysics Data System (ADS)

    Ferreira, J.; Rocha, A.; Castanheira, J. M.; Carvalho, A. C.

    2012-04-01

    In the scope of the project: "High-resolution Rainfall EroSivity analysis and fORecasTing - RESORT", an evaluation of various methods of dynamic downscaling is presented. The methods evaluated range from the classic method of nesting a regional model results in a global model, in this case the ECMWF reanalysis, to more recently proposed methods, which consist in using Newtonian relaxation methods in order to nudge the results of the regional model to the reanalysis. The method with better results involves using a system of variational data assimilation to incorporate observational data with results from the regional model. The climatology of a simulation of 5 years using this method is tested against observations on mainland Portugal and the ocean in the area of the Portuguese Continental Shelf, which shows that the method developed is suitable for the reconstruction of high resolution climate over continental Portugal.

  14. Sparse Recovery Analysis of High-Resolution Climate Data

    NASA Astrophysics Data System (ADS)

    Archibald, R.

    2013-12-01

    The field of compressed sensing is vast and currently very active, with new results, methods, and algorithms appearing almost daily. The first notions of compressed sensing began with Prony's method, which was designed by the French mathematician Gaspard Riche de Prony to extract signal information from a limited number of measurements. Since then, sparsity has been used empirically in a variety of applications, including geology and geophysics, spectroscopy, signal processing, radio astronomy, and medical ultrasound. High-resolution climate studies performed on large scale high performance computing have been producing large amounts of data that can benefit from unique mathematical methods for analysis. This work demonstrates how sparse recovery and L1 regularization can be used effectively on large datasets from high-resolution climate studies.

  15. High Resolution Scanning Electron Microscopy of Cells Using Dielectrophoresis

    PubMed Central

    Tang, Shi-Yang; Zhang, Wei; Soffe, Rebecca; Nahavandi, Sofia; Shukla, Ravi; Khoshmanesh, Khashayar

    2014-01-01

    Ultrastructural analysis of cells can reveal valuable information about their morphological, physiological, and biochemical characteristics. Scanning electron microscopy (SEM) has been widely used to provide high-resolution images from the surface of biological samples. However, samples need to be dehydrated and coated with conductive materials for SEM imaging. Besides, immobilizing non-adherent cells during processing and analysis is challenging and requires complex fixation protocols. In this work, we developed a novel dielectrophoresis based microfluidic platform for interfacing non-adherent cells with high-resolution SEM at low vacuum mode. The system enables rapid immobilization and dehydration of samples without deposition of chemical residues over the cell surface. Moreover, it enables the on-chip chemical stimulation and fixation of immobilized cells with minimum dislodgement. These advantages were demonstrated for comparing the morphological changes of non-budding and budding yeast cells following Lyticase treatment. PMID:25089528

  16. High-resolution streaming video integrated with UGS systems

    NASA Astrophysics Data System (ADS)

    Rohrer, Matthew

    2010-04-01

    Imagery has proven to be a valuable complement to Unattended Ground Sensor (UGS) systems. It provides ultimate verification of the nature of detected targets. However, due to the power, bandwidth, and technological limitations inherent to UGS, sacrifices have been made to the imagery portion of such systems. The result is that these systems produce lower resolution images in small quantities. Currently, a high resolution, wireless imaging system is being developed to bring megapixel, streaming video to remote locations to operate in concert with UGS. This paper will provide an overview of how using Wifi radios, new image based Digital Signal Processors (DSP) running advanced target detection algorithms, and high resolution cameras gives the user an opportunity to take high-powered video imagers to areas where power conservation is a necessity.

  17. Single-sided sensor for high-resolution NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Perlo, J.; Casanova, F.; Blümich, B.

    2006-06-01

    The unavoidable spatial inhomogeneity of the static magnetic field generated by open sensors has precluded their use for high-resolution NMR spectroscopy. In fact, this application was deemed impossible because these field variations are usually orders of magnitude larger than those created by the microscopic structure of the molecules to be detected. Recently, chemical shift resolved NMR spectra were observed for the first time outside a portable single-sided magnet by implementing a method that exploits inhomogeneities in the rf field designed to reproduce variations of the static magnetic field [J. Perlo, V. Demas, F. Casanova, C.A. Meriles, J. Reimer, A. Pines, B. Blümich, High-resolution spectroscopy with a portable single-sided sensor, Science 308 (2005) 1279]. In this communication, we describe in detail the magnet system built from permanent magnets as well as the rf coil geometry used to compensate the static field variations.

  18. The theory and practice of high resolution scanning electron microscopy

    SciTech Connect

    Joy, D.C. Oak Ridge National Lab., TN )

    1990-01-01

    Recent advances in instrumentation have produced the first commercial examples of what can justifiably be called High Resolution Scanning Electron Microscopes. The key components of such instruments are a cold field emission gun, a small-gap immersion probe-forming lens, and a clean dry-pumped vacuum. The performance of these microscopes is characterized by several major features including a spatial resolution, in secondary electron mode on solid specimens, which can exceed 1nm on a routine basis; an incident probe current density of the order of 10{sup 6} amps/cm{sup 2}; and the ability to maintain these levels of performance over an accelerating voltage range of from 1 to 30keV. This combination of high resolution, high probe current, low contamination and flexible electron-optical conditions provides many new opportunitites for the application of the SEM to materials science, physics, and the life sciences. 27 refs., 14 figs.

  19. Influence of high resolution rainfall data on the hydrological response of urban flat catchments

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick

    2016-04-01

    In the last decades, cities have become more and more urbanized and population density in urban areas is increased. At the same time, due to the climate changes, rainfall events present higher intensity and shorter duration than in the past. The increase of imperviousness degree, due to urbanization, combined with short and intense rainfall events, determinates a fast hydrological response of the urban catchment and in some cases it can lead to flooding. Urban runoff processes are sensitive to rainfall spatial and temporal variability and, for this reason, high resolution rainfall data are required as input for the hydrological model. A better knowledge of the hydrological response of system can help to prevent damages caused by flooding. This study aims to evaluate the sensitivity of urban hydrological response to spatial and temporal rainfall variability in urban areas, focusing especially on understanding the hydrological behaviour in lowland areas. In flat systems, during intense rainfall events, the flow in the sewer network can be pressurized and it can change direction, depending on the setting of pumping stations and CSOs (combined sewer overflow). In many cases these systems are also looped and it means that the water can follow different paths, depending on the pipe filling process. For these reasons, hydrological response of flat and looped catchments is particularly complex and it can be difficult characterize and predict it. A new dual polarimetric X-band weather radar, able to measure rainfall with temporal resolution of 1 min and spatial resolution of 100mX100m, was recently installed in the city of Rotterdam (NL). With this instrument, high resolution rainfall data were measured and used, in this work, as input for the hydrodynamic model. High detailed, semi-distributed hydrodynamic models of some districts of Rotterdam were used to investigate the hydrological response of flat catchments to high resolution rainfall data. In particular, the

  20. A high resolution cavity BPM for the CLIC Test Facility

    SciTech Connect

    Chritin, N.; Schmickler, H.; Soby, L.; Lunin, A.; Solyak, N.; Wendt, M.; Yakovlev, V.; /Fermilab

    2010-08-01

    In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

  1. The Goddard High Resolution Spectrograph: Instrument, goals, and science results

    NASA Astrophysics Data System (ADS)

    Brandt, J. C.; Heap, S. R.; Beaver, E. A.; Boggess, A.; Carpenter, K. G.; Ebbets, D. C.; Hutchings, J. B.; Jura, M.; Leckrone, D. S.; Linsky, J. L.; Maran, S. P.; Savage, B. D.; Smith, A. M.; Trafton, L. M.; Walter, F. M.; Weymann, R. J.; Ake, T. B.; Bruhweiler, F.; Cardelli, J. A.; Lindler, D. J.; Malumuth, E.; Randall, C. E.; Robinson, R.; Shore, S. N.; Wahlgren, G.

    1994-08-01

    The Goddard High Resolution Spectrograph (GHRS), currently in Earth orbit on the Hubble Space Telescope (HST), operates in the wavelength range 1150-3200 A with spectral resolutions (lambda/delta lambda) of approximately 2 x 103, 2 x 104, and 1 x 103. The instrument and its development from inception, its current status, the approach to operations, representative results in the major areas of the scientific goals, and prospects for the future are described.

  2. High-resolution, cryogenic, side-entry type specimen stage

    DOEpatents

    King, Wayne E.; Merkle, Karl L.

    1979-01-01

    A high-resolution, cryogenic side-entry type specimen stage includes a copper block within which a specimen can be positioned in the electron beam of an electron microscope, one end of the copper block constituting a specimen heat exchanger, means for directing a flow of helium at cryogenic temperature into the heat exchanger, and electrical leads running from the specimen to the exterior of the microscope for four point D.C. electrical resistivity measurements.

  3. Initial tests of a high resolution Scintillating Fibre (SCIFI) tracker

    NASA Astrophysics Data System (ADS)

    Atkinson, M.; Fent, J.; Fisher, C.; Freund, P.; Hughes, P.; Kirkby, J.; Osthoff, A.; Pretzl, K.

    1987-03-01

    We present our initial measurements of high resolution particle tracking in scintillating fibre (SCIFI) detectors. The scintillator under study is a glass, designated GS1, which is doped with the cerium (Ce 3+) emitter. We conclude from our measurements that present SCIFI detectors can be successfully used as small-volume "active" targets, but that further developments are necessary before this technique can be applied to high precision tracking in collider detectors.

  4. The Goddard High Resolution Spectrograph: Instrument, goals, and science results

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Heap, S. R.; Beaver, E. A.; Boggess, A.; Carpenter, K. G.; Ebbets, D. C.; Hutchings, J. B.; Jura, M.; Leckrone, D. S.; Linsky, J. L.

    1994-01-01

    The Goddard High Resolution Spectrograph (GHRS), currently in Earth orbit on the Hubble Space Telescope (HST), operates in the wavelength range 1150-3200 A with spectral resolutions (lambda/delta lambda) of approximately 2 x 10(exp 3), 2 x 10(exp 4), and 1 x 10(exp 3). The instrument and its development from inception, its current status, the approach to operations, representative results in the major areas of the scientific goals, and prospects for the future are described.

  5. Optical alignment of high resolution Fourier transform spectrometers

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Ocallaghan, F. G.; Cassie, A. G.

    1980-01-01

    Remote sensing, high resolution FTS instruments often contain three primary optical subsystems: Fore-Optics, Interferometer Optics, and Post, or Detector Optics. We discuss the alignment of a double-pass FTS containing a cat's-eye retro-reflector. Also, the alignment of fore-optics containing confocal paraboloids with a reflecting field stop which relays a field image onto a camera is discussed.

  6. High-speed segmentation-driven high-resolution matching

    NASA Astrophysics Data System (ADS)

    Ekstrand, Fredrik; Ahlberg, Carl; Ekström, Mikael; Spampinato, Giacomo

    2015-02-01

    This paper proposes a segmentation-based approach for matching of high-resolution stereo images in real time. The approach employs direct region matching in a raster scan fashion influenced by scanline approaches, but with pixel decoupling. To enable real-time performance it is implemented as a heterogeneous system of an FPGA and a sequential processor. Additionally, the approach is designed for low resource usage in order to qualify as part of unified image processing in an embedded system.

  7. HIS analyses of mesoscale phenomena. [High resolution Interferometer Sounder

    NASA Technical Reports Server (NTRS)

    Bradshaw, John T.; Fuelberg, Henry E.

    1990-01-01

    Results are presented from two sets of measurements made by the High-resolution Interferometer Sounder (HIS) during two aircraft flights over the Cooperative-Huntsville-Meteorological-Experiment region on June 15 and 19, 1986. It is shown that the temperature and the dew-point field retrieved from HIS spectra contain distinct mesoscale structures. The features in the HIS dew-point fields agreed well with the cloud and moisture structures observed in visible and 6.7 micron GOES imagery.

  8. High resolution microwave spectrometer sounder (HIMSS), volume 1, book 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) an instrument overview; (2) an instrument description; (3) the instrument's conceptual design; (4) technical risks and offsets; (5) instrument reliability; (6) commands and telemetry; (7) mass and power budgets; (8) integration and test program; (9) program implementation; and (10) phase CD schedule.

  9. LandScan 2013 High Resolution Global Population Data Set

    Energy Science and Technology Software Center (ESTSC)

    2014-07-01

    The LandScan data set is a worldwide population database compiled on a 30"x30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on land cover, slope, road proximity, high-resolution imagery, and other data sets. The LandScan data set was developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient populations at risk.

  10. New Challenges in High-Resolution Modeling of Hurricanes

    NASA Astrophysics Data System (ADS)

    Chen, S. S.

    2006-12-01

    The extreme active Atlantic hurricane seasons in recent years have highlighted the urgent need for a better understanding of the factors that contribute to hurricane intensity and for development of the corresponding advanced hurricane prediction models to improve intensity forecasts. The lack of skill in present forecasts of hurricane structure and intensity may be attributed in part to deficiencies in the current prediction models: insufficient grid resolution, inadequate surface and boundary layer formulations, and the lack of full coupling to a dynamic ocean. The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in hurricanes push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. The recent modeling effort is to develop and test a fully coupled atmosphere-wave-ocean modeling system that is capable of resolving the eye and eyewall in a hurricane at ~1 km grid resolution. The new challenges for these very high resolution models are the corresponding physical representations at 1-km scale, including microphysics, sub-grid turbulence parameterization, atmospheric boundary layer, physical processes at the air-sea interface with surface waves among others. The lack of accurate initial conditions for high-resolution hurricane modeling presents another major challenge. Improvements in initial conditions rest on the use of more airborne and remotely sensed observations in high-resolution assimilation systems and on the application of advanced assimilation schemes to hurricanes. This study aimed to provide an overview of these new challenges using high-resolution model simulations of Hurricanes Isabel (2003), Frances (2004), Katrina and Rita (2005) that were observed extensively by two recent field programs, namely, the Coupled Boundary Layer Air-Sea Transfer (CBLAST)-Hurricane in 2003-2004 and the Hurricane Rainbands and Intensity Change Experiment (RAINEX) in 2005.

  11. Scalable, flexible and high resolution patterning of CVD graphene

    NASA Astrophysics Data System (ADS)

    Hofmann, Mario; Hsieh, Ya-Ping; Hsu, Allen L.; Kong, Jing

    2013-12-01

    The unique properties of graphene make it a promising material for interconnects in flexible and transparent electronics. To increase the commercial impact of graphene in those applications, a scalable and economical method for producing graphene patterns is required. The direct synthesis of graphene from an area-selectively passivated catalyst substrate can generate patterned graphene of high quality. We here present a solution-based method for producing patterned passivation layers. Various deposition methods such as ink-jet deposition and microcontact printing were explored, that can satisfy application demands for low cost, high resolution and scalable production of patterned graphene. The demonstrated high quality and nanometer precision of grown graphene establishes the potential of this synthesis approach for future commercial applications of graphene. Finally, the ability to transfer high resolution graphene patterns onto complex three-dimensional surfaces affords the vision of graphene-based interconnects in novel electronics.The unique properties of graphene make it a promising material for interconnects in flexible and transparent electronics. To increase the commercial impact of graphene in those applications, a scalable and economical method for producing graphene patterns is required. The direct synthesis of graphene from an area-selectively passivated catalyst substrate can generate patterned graphene of high quality. We here present a solution-based method for producing patterned passivation layers. Various deposition methods such as ink-jet deposition and microcontact printing were explored, that can satisfy application demands for low cost, high resolution and scalable production of patterned graphene. The demonstrated high quality and nanometer precision of grown graphene establishes the potential of this synthesis approach for future commercial applications of graphene. Finally, the ability to transfer high resolution graphene patterns onto

  12. High resolution studies of atoms and small molecules

    SciTech Connect

    Bushaw, B.A.; Tonkyn, R.G.; Miller, R.J.

    1992-10-01

    High resolution, continuous wave lasers have been utilized successfully in studies of small molecules. Examples of two-photon excitation schemes and of multiple resonance excitation sequences will be discussed within the framework of the spectroscopy and dynamics of selected Rydberg states of nitric oxide. Initial results on the circular dichroism of angular distributions in photoelectron spectra of individual hyperfine states of cesium will also be discussed, but no data given.

  13. On high-resolution finite volume shock capturing schemes

    NASA Astrophysics Data System (ADS)

    Causon, D. M.; Clarke, N.

    1990-07-01

    Conservative, shock capturing methods for the unsteady Euler equations are reviewed and it is shown that the concepts of entropy satisfaction and total variation diminution can be applied to well-known classical schemes. For an associated scheme to be efficient in applications, it is necessary that it be constructed with economy of implementation in mind, and that it be able to capture strong shock waves with high resolution. We describe a scheme which is efficient in both respects.

  14. On high resolution finite volume shock capturing schemes

    NASA Astrophysics Data System (ADS)

    Causon, D. M.; Clarke, N.

    Conservative shock-capturing methods for the unsteady Euler equations are reviewed, and it is shown that the concepts of entropy satisfaction and total variation diminution can be applied to well known classical schemes. For an associated scheme to be efficient in applications, it is necessary that it be constructed with economy of implementation in mind, and that it be able to capture strong shock waves with high resolution. A scheme which is efficient in both respects is described.

  15. High-Resolution Wind Measurements for Offshore Wind Energy Development

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Neumann, Gregory

    2011-01-01

    A mathematical transform, called the Rosette Transform, together with a new method, called the Dense Sampling Method, have been developed. The Rosette Transform is invented to apply to both the mean part and the fluctuating part of a targeted radar signature using the Dense Sampling Method to construct the data in a high-resolution grid at 1-km posting for wind measurements over water surfaces such as oceans or lakes.

  16. High-resolution schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Harten, A.

    1982-01-01

    A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurae scheme to an appropriately modified flux function. The so derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme.

  17. High Resolution Wavenumber Standards for the Infrared. (IUPAC Recommendations 1995)

    NASA Technical Reports Server (NTRS)

    Guelachvili, G.; Birk, M.; Bord, C.; Brault, J.; Brown, L.; Carli, B.; Cole, A.; Evenson, D.; Fayt, A.; Hausamann, D.; Johns, J.; Kauppinen, J.; Kou, Q.; Maki, A.; Narahari Rao, K.; Toth, R.; Urban, W.; Valentin, A.; Vergs, J.; Wagner, G.; Winnewisser, B.; Winnewisser, M.

    1995-01-01

    The calibration of high resolution infrared spectra is generally more precise than accurate even when they are recorded with Fourier interferometers. In order to improve the consistency of the spectral measurements, an IUPAC project has been undertaken. Its aim was to recommend a selection of spectral lines as wavenumber standards for absolute calibration in the infrared. This paper will report the final recommendations in the spectral range extending from about 4 to about 7000 cm(be).

  18. High-Resolution Imaging of Colliding and Merging Galaxies

    NASA Astrophysics Data System (ADS)

    Whitmore, Brad

    1991-07-01

    We propose to obtain high-resolution images, using the WF/PC, of two colliding and merging galaxies (i.e., NGC 4038/4039 = "The Antennae" and NGC 7252 ="Atoms-for-Peace Galaxy". Our goal is to use HST to make critical observations of each object in order to gain a better understanding of the various phases of the merger process. Our primary objective is to determine whether globular clusters are formed during mergers\\?

  19. A high resolution, adjustable, lockable laser mirror mount

    NASA Technical Reports Server (NTRS)

    Chadwick, C. H.

    1976-01-01

    A prototype high resolution, adjustable, lockable mirror mount is described, suitable for use as a resonator end mirror mount in fieldable lasers. The prototype was vibrated to 15g levels, 10-2000 Hz, and was shown to be stable to within 1 arc second and settable to an accuracy of 10 arc seconds. Improvements to be made to the prototype are outlined which will significantly improve the accuracy without sacrificing the other attributes of the prototype.

  20. High resolution microwave spectrometer sounder (HIMSS), volume 1, book 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) preliminary program plans; (2) contract end item (CEI) specification; and (3) the instrument interface description document. Under the preliminary program plans section, plans dealing with the following subject areas are discussed: spares, performance assurance, configuration management, software implementation, contamination, calibration management, and verification.