Science.gov

Sample records for high-resolution temporal bone

  1. High-resolution CT of temporal bone trauma

    SciTech Connect

    Holland, B.A.; Brant-Zawadzki, M.

    1984-08-01

    Computed tomographic (CT) finding in 18 patients with temporal bone trauma were reviewed. Eight patients suffered longitudinal fractures of the petrous bone, which were associated with ossicular dislocation in two patients. Transverse fractures were detected in six patients, with a contralateral mastoid fracture in one patient. In four patients, the fractures were restricted to the mastoid region. Of the 14 patients in whom adequate neurologic evaluation was available, seven had a permanent facial nerve or hearing deficit while five suffered at least a transient neurologic deficit related to the temporal bone trauma. Routine head CT (10 mm sections) demonstrated only eight of 19 petrous bone injuries. Evidence of brain trauma or extra-axial hemotoma was seen in 12 patients. In 13 cases, high-resolution CT was also performed, demonstrating temporal bone injuries in all. This latter technique allows rapid and detailed evaluation of temporal bone trauma.

  2. Role of High Resolution Computed Tomography in Evaluation of Pathologies of Temporal Bone

    PubMed Central

    Thukral, Chuni Lal; Singh, Sunmeet; Sood, Arvinder Singh; Singh, Kunwarpal

    2015-01-01

    Background High Resolution Computed Tomography (HRCT), a modification of routine CT, provides a direct visual window in the temporal bone providing minute structural details. Purpose of the present study was to evaluate the normal variations, pathological processes (infections and congenital anomalies) and their extent involving the temporal bone along with their complications on HRCT and to correlate these imaging findings surgically, wherever available. Materials and Methods The prospective study included 50 patients who were referred to the radiology department with clinically suspected temporal bone or ear pathologies. After detailed clinical examination, the patients were subjected to high resolution computed tomography (HRCT) examination. The imaging findings were correlated with the surgical findings wherever available. The surgical findings were considered as final. Results From a total of 50 cases, 83.33% had cholesteatoma. The surgical and radiological findings showed a high level of sensitivity (89.29%) in the identification of cholesteatoma. HRCT provides a good sensitivity of 80.65% in the identification of changes to the ossicular chain despite the presence of surrounding soft tissue. HRCT was highly informative in identification of erosion of lateral semicircular canal. In diagnosis of facial canal dehiscence HRCT had a low sensitivity of 33.33%. In the evaluation of any congenital abnormality of the ear HRCT proved to be beneficial in depicting the anatomical details. Conclusion The clinical and radiological findings showed a high level sensitivity with intraoperative findings as regards to the presence of cholesteatoma, changes of the ossicular chain and erosion of the lateral semicircular canal. HRCT findings, in the treatment of any congenital abnormality of the ear were a good guide to the surgeon for planning and management. PMID:26500978

  3. Evaluation of Temporal Bone Cholesteatoma and the Correlation Between High Resolution Computed Tomography and Surgical Finding

    PubMed Central

    Gomaa, Mohammed A.; Abdel Karim, Abdel Rahim A.; Abdel Ghany, Hosny S.; Elhiny, Ahmed A.; Sadek, Ahmed A.

    2013-01-01

    Background Acquired cholesteatomas are commonly seen in patients less than 30 years. There is a typical history of recurrent middle ear infections with tympanic membrane perforation. The diagnosis of cholesteatoma is usually made on otologic examination. Objective The aim of the work was to study the role of high resolution computed tomography (HRCT) in detecting, evaluating, and diagnosing middle ear cholesteatoma. Patients and methods This was a prospective study that included 56 consecutive patients with chronic suppurative otitis media, unsafe type cholesteatomas. Each patient was subjected to full clinical evaluation, and HRCT examination. Intravenous contrast media was used in some patients with suspected intracranial complication. Preoperative radiological data were correlated with data related to surgical findings. Results The study showed that a high incidence of cholesteatoma in the third decade of life. The scutum and lateral attic wall were the most common bony erosions in the middle ear bony wall (64.3%), and the incus was the most eroded ossicle in the middle ear (88.2%). Sclerosing of mastoid air cells were encountered in 60.7% of patients and the lateral semicircular canal was affected in 9%, while facial canal erosion was found in 21.4%. Temporal bone complications are more common than intracranial complications. HRCT findings were compared with operative features; the comparative study included the accuracy and sensitivity of HRCT in detecting cholesteatoma (92.8%), its location and extension (96.4%), ossicular chain erosion (98%), labyrinthine fistula and intracranial complications (100%). Conclusion The important role of HRCT scannig lies on the early detection of cholesteatoma, and more conservative surgical procedures can be used to eradicate the disease. PMID:24179410

  4. High resolution bone mineral densitometry with a gamma camera

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Jhingran, S.; Johnson, P.

    1983-01-01

    A technique by which the regional distribution of bone mineral can be determined in bone samples from small animals is described. The technique employs an Anger camera interfaced to a medical computer. High resolution imaging is possible by producing magnified images of the bone samples. Regional densitometry of femurs from oophorectomised and bone mineral loss.

  5. Persistence Diagrams of High-Resolution Temporal Rainfall

    NASA Astrophysics Data System (ADS)

    Fernández Méndez, F.; Carsteanu, A. A.

    2015-12-01

    This study applies Topological Data Analysis (TDA), by generating persistence diagrams to uncover patterns in the data of high-resolution temporal rainfall intensities from Iowa City (IIHR, U of Iowa). Persistence diagrams are a way to identify essential cycles in state-space representations of the data.

  6. Homology Groups of High-Resolution Temporal Rainfall

    NASA Astrophysics Data System (ADS)

    Fernández, Félix; Vásquez Aguilar, Raciel; Carsteanu, Alin-Andrei

    2016-04-01

    This study applies topological data analysis, by generating homology groups to uncover patterns in the data of high-resolution temporal rainfall intensities from Iowa City (IIHR, U of Iowa). The state-space representation of the data is being investigated for an appropiate embedding dimension, in order to subsequently study topological properties of resulting manifold.

  7. Homology Groups of High-Resolution Temporal Rainfall

    NASA Astrophysics Data System (ADS)

    Vásquez Aguilar, R.; Carsteanu, A. A.

    2015-12-01

    Using high-resolution temporal rainfall intensities from Iowa City, IA (IIHR, U of Iowa), we perform an analysis of the homology groups generated by data connectivity in state space, and attempt a qualitative interpretation of the first and second homology groups. Let us note that homology groups are generated, in the context of topological data analysis (TDA), by representing the data in n-dimensional state space and building a connectivity diagram according to the respective distances between the data points. Subsequently, the topological invariants of the resulting connected structures are being analyzed.

  8. Pediatric temporal bone rhabdomyosarcoma.

    PubMed

    Goldberg, Monica J

    2016-08-01

    Rhabdomyosarcoma is one of the most common soft-tissue sarcomas in children. Prompt diagnosis and treatment significantly improve survival; however, misdiagnosis is common because of this aggressive temporal bone lesion's similarity to more common benign diseases. Clinicians should maintain a high index of suspicion for rhabdomyosarcoma in patients with a presumed otologic infection not responsive to medical therapy. PMID:27467294

  9. Spatial and Temporal Data Fusion for Generating High-Resolution Land Cover Imagery

    NASA Astrophysics Data System (ADS)

    Xu, Yong

    Currently, remote sensing imagery has been widely used for generating global land cover products, but due to certain physical and budget limitations related to the sensors, their spatial and temporal resolution are too low to attain more accurate and more reliable global change research. In this situation, there is an urgent need to study and develop a more advanced satellite image processing method and land cover producing techniques to generate higher resolution images and land cover products for global change research. Through conducting a comprehensive study of the related theories and methods related to data fusion, various methods are systematically reviewed and summarized, such as HIS transformation image fusion, Wavelet transform image fusion, the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), etc. The advantages and disadvantages of these methods are highlighted according to their specific applications in the field of remote sensing. Based on my research target, the following are the main contents of this thesis: (1) Data fusion theory will be systematically studied and summarized, including various fusion models and specific applications, such as IHS transformation, PCA transformation, Wavelet analysis based data fusion, etc. Furthermore, their advantages and disadvantages are pointed out in relation to specific applications. (2) As traditional data fusion methods rely on spatial information and it is hard to deal with multi-source data fusion with temporal variation, therefore, the traditional data fusion theory and methods will be improved by a consideration of temporal information. Accordingly, some spatial and temporal data fusion methods will be proposed, in which both high-resolution & low-temporary imagery and low-resolution & high-temporary imagery are incorporated. Our experiments also show that they are suitable for dealing with multi-temporal data integration and generating high-resolution, multi-temporal images for global

  10. High Resolution Peripheral Quantitative Computed Tomography for Assessment of Bone Quality

    NASA Astrophysics Data System (ADS)

    Kazakia, Galateia

    2014-03-01

    The study of bone quality is motivated by the high morbidity, mortality, and societal cost of skeletal fractures. Over 10 million people are diagnosed with osteoporosis in the US alone, suffering 1.5 million osteoporotic fractures and costing the health care system over 17 billion annually. Accurate assessment of fracture risk is necessary to ensure that pharmacological and other interventions are appropriately administered. Currently, areal bone mineral density (aBMD) based on 2D dual-energy X-ray absorptiometry (DXA) is used to determine osteoporotic status and predict fracture risk. Though aBMD is a significant predictor of fracture risk, it does not completely explain bone strength or fracture incidence. The major limitation of aBMD is the lack of 3D information, which is necessary to distinguish between cortical and trabecular bone and to quantify bone geometry and microarchitecture. High resolution peripheral quantitative computed tomography (HR-pQCT) enables in vivo assessment of volumetric BMD within specific bone compartments as well as quantification of geometric and microarchitectural measures of bone quality. HR-pQCT studies have documented that trabecular bone microstructure alterations are associated with fracture risk independent of aBMD.... Cortical bone microstructure - specifically porosity - is a major determinant of strength, stiffness, and fracture toughness of cortical tissue and may further explain the aBMD-independent effect of age on bone fragility and fracture risk. The application of finite element analysis (FEA) to HR-pQCT data permits estimation of patient-specific bone strength, shown to be associated with fracture incidence independent of aBMD. This talk will describe the HR-pQCT scanner, established metrics of bone quality derived from HR-pQCT data, and novel analyses of bone quality currently in development. Cross-sectional and longitudinal HR-pQCT studies investigating the impact of aging, disease, injury, gender, race, and

  11. Visualizing the root-PDL-bone interface using high-resolution microtomography

    NASA Astrophysics Data System (ADS)

    Dalstra, Michel; Cattaneo, Paolo M.; Herzen, Julia; Beckmann, Felix

    2008-08-01

    The root/periodontal ligament/bone (RPB) interface is important for a correct understanding of the load transfer mechanism of masticatory forces and orthodontic loads. It is the aim of this study to assess the three-dimensional structure of the RPB interface using high-resolution microtomography. A human posterior jaw segment, obtained at autopsy from a 22-year old male donor was first scanned using a tomograph at the HASYLAB/DESY synchrotron facility (Hamburg, Germany) at 31μm resolution. Afterwards the first molar and its surrounding bone were removed with a 10mm hollow core drill. From this cylindrical sample smaller samples were drilled out in the buccolingual direction with a 1.5mm hollow core drill. These samples were scanned at 4μm resolution. The scans of the entire segment showed alveolar bone with a thin lamina dura, supported by an intricate trabecular network. Although featuring numerous openings between the PDL and the bone marrow on the other side to allow blood vessels to transverse, the lamina dura seems smooth at this resolution. First at high resolution, however, it becomes evident that it is irregular with bony spiculae and pitted surfaces. Therefore the stresses in the bone during physiological or orthodontic loading are much higher than expected from a smooth continuous alveolus.

  12. Comparative analysis of high-resolution chromosome techniques for leukemic bone marrows

    SciTech Connect

    Yunis, J.J.

    1982-09-01

    High-resolution direct and synchronization culture techniques for chromosome analysis of leukemic bone marrow cells can now be utilized. In this article, three different techniques are quantitatively compared for their consistency in successful cytogenetic analysis, reliability in the detection of clones with chromosomal abnormalities, and usefulness for the precise delineation of break points involved in structural chromosomal rearrangements. Bone marrow samples from 15 consecutive patients with acute nonlymphocytic leukemia (ANLL) were studied using an improved direct technique, amethopterin cell synchronization with thymidine release, and amethopterin cell synchronization with bromodeoxyuridine (BrdU) release. The results obtained with the amethopterin cell synchronization technique and thymidine release suggest that it should be the method of choice in the detection of chromosome defects in bone marrow of patients with ANLL.

  13. High Resolution Spatial and Temporal Mapping of Traffic-Related Air Pollutants

    PubMed Central

    Batterman, Stuart; Ganguly, Rajiv; Harbin, Paul

    2015-01-01

    Vehicle traffic is one of the most significant emission sources of air pollutants in urban areas. While the influence of mobile source emissions is felt throughout an urban area, concentrations from mobile emissions can be highest near major roadways. At present, information regarding the spatial and temporal patterns and the share of pollution attributable to traffic-related air pollutants is limited, in part due to concentrations that fall sharply with distance from roadways, as well as the few monitoring sites available in cities. This study uses a newly developed dispersion model (RLINE) and a spatially and temporally resolved emissions inventory to predict hourly PM2.5 and NOx concentrations across Detroit (MI, USA) at very high spatial resolution. Results for annual averages and high pollution days show contrasting patterns, the need for spatially resolved analyses, and the limitations of surrogate metrics like proximity or distance to roads. Data requirements, computational and modeling issues are discussed. High resolution pollutant data enable the identification of pollutant “hotspots”, “project-level” analyses of transportation options, development of exposure measures for epidemiology studies, delineation of vulnerable and susceptible populations, policy analyses examining risks and benefits of mitigation options, and the development of sustainability indicators integrating environmental, social, economic and health information. PMID:25837345

  14. Multi-temporal database of High Resolution Stereo Camera (HRSC) images - Alpha version

    NASA Astrophysics Data System (ADS)

    Erkeling, G.; Luesebrink, D.; Hiesinger, H.; Reiss, D.; Jaumann, R.

    2014-04-01

    Image data transmitted to Earth by Martian spacecraft since the 1970s, for example by Mariner and Viking, Mars Global Surveyor (MGS), Mars Express (MEx) and the Mars Reconnaissance Orbiter (MRO) showed, that the surface of Mars has changed dramatically and actually is continually changing [e.g., 1-8]. The changes are attributed to a large variety of atmospherical, geological and morphological processes, including eolian processes [9,10], mass wasting processes [11], changes of the polar caps [12] and impact cratering processes [13]. In addition, comparisons between Mariner, Viking and Mars Global Surveyor images suggest that more than one third of the Martian surface has brightened or darkened by at least 10% [6]. Albedo changes can have effects on the global heat balance and the circulation of winds, which can result in further surface changes [14-15]. The High Resolution Stereo Camera (HRSC) [16,17] on board Mars Express (MEx) covers large areas at high resolution and is therefore suited to detect the frequency, extent and origin of Martian surface changes. Since 2003 HRSC acquires highresolution images of the Martian surface and contributes to Martian research, with focus on the surface morphology, the geology and mineralogy, the role of liquid water on the surface and in the atmosphere, on volcanism, as well as on the proposed climate change throughout the Martian history and has improved our understanding of the evolution of Mars significantly [18-21]. The HRSC data are available at ESA's Planetary Science Archive (PSA) as well as through the NASA Planetary Data System (PDS). Both data platforms are frequently used by the scientific community and provide additional software and environments to further generate map-projected and geometrically calibrated HRSC data. However, while previews of the images are available, there is no possibility to quickly and conveniently see the spatial and temporal availability of HRSC images in a specific region, which is

  15. High Resolution Satellite Multi-Temporal Interferometry for Landslide and Subsidence Hazard Assessment: An Overview

    NASA Astrophysics Data System (ADS)

    Wasowski, J.; Bovenga, F.; Nitti, D. O.; Nutricato, R.; Chiaradia, M.

    2014-12-01

    The new and planned satellite missions can not only provide global capacity for research-oriented and practical applications such as mapping, characterizing and monitoring of areas affected by slope and subsidence hazards, but also offer a possibility to push the research frontier and prompt innovative detailed-scale studies on ground movement dynamics and processes. Among a number of emerging space-based remote sensing techniques, synthetic aperture radar (SAR), multi-temporal interferometry (MTI) seems the most promising for important innovation in landslide and subsidence hazards assessment and monitoring. MTI is appealing to those concerned with terrain instability hazards because it can provide very precise information on slow displacements of the ground surface over vast areas with limited vegetation cover. Although MTI techniques are considered to have already reached the operational level, it is apparent that in both research and practice we are at present only beginning to benefit from the high-resolution imagery that is currently acquired by the new generation radar satellites (e.g. COSMO-SkyMed, TerraSAR-X). In this overview we illustrate the great potential of high resolution MTI and explain what this technique can deliver in terms of detection and monitoring of slope and subsidence hazards. This is done by considering different areas characterized by a wide range of geomorphic, climatic and vegetation conditions, and presenting selected case study examples of local to regional scale MTI applications from Europe, China and Haiti. We envision that the current approach to assessment of hazard can be transformed by capitalizing more on the presently underexploited advantage of the MTI technique, i.e. the capability to provide regularly spatially-dense quantitative information for large areas currently unaffected by instabilities, but where the terrain geomorphology and geology may indicate potential for future ground failures.

  16. Multi-temporal database of High Resolution Stereo Camera (HRSC) images

    NASA Astrophysics Data System (ADS)

    Erkeling, G.; Luesebrink, D.; Hiesinger, H.; Reiss, D.

    2013-09-01

    Image data transmitted to Earth by Martian spacecraft since the 1970s, for example by Mariner and Viking, Mars Global Surveyor (MGS), Mars Express (MEx) and the Mars Reconnaissance Orbiter (MRO) showed, that the surface of Mars has changed dramatically and actually is continually changing [e.g., 1-8]. The changes are attributed to a large variety of atmospherical, geological and morphological processes, including eolian processes [9,10], mass wasting processes [11], changes of the polar caps [12] and impact cratering processes [13]. In addition, comparisons between Mariner, Viking and Mars Global Surveyor images suggest that more than one third of the Martian surface has brightened or darkened by at least 10% [6]. Albedo changes can have effects on the global heat balance and the circulation of winds, which can result in further surface changes [14-15]. In particular, the High Resolution Stereo Camera (HRSC) [16,17] on board Mars Express (MEx) covers large areas at high resolution and is therefore suited to detect the frequency, extent and origin of Martian surface changes. Since 2003 HRSC acquires high-resolution images of the Martian surface and contributes to Martian research, with focus on the surface morphology, the geology and mineralogy, the role of liquid water on the surface and in the atmosphere, on volcanism, as well as on the proposed climate change throughout the Martian history and has improved our understanding of the evolution of Mars significantly [18-21]. The HRSC data are available at ESA's Planetary Science Archive (PSA) as well as through the NASA Planetary Data System (PDS). Both data platforms are frequently used by the scientific community and provide additional software and environments to further generate map-projected and geometrically calibrated HRSC data. However, while previews of the images are available, there is no possibility to quickly and conveniently see the spatial and temporal availability of HRSC images in a specific region

  17. Decoding multiple sound categories in the human temporal cortex using high resolution fMRI.

    PubMed

    Zhang, Fengqing; Wang, Ji-Ping; Kim, Jieun; Parrish, Todd; Wong, Patrick C M

    2015-01-01

    Perception of sound categories is an important aspect of auditory perception. The extent to which the brain's representation of sound categories is encoded in specialized subregions or distributed across the auditory cortex remains unclear. Recent studies using multivariate pattern analysis (MVPA) of brain activations have provided important insights into how the brain decodes perceptual information. In the large existing literature on brain decoding using MVPA methods, relatively few studies have been conducted on multi-class categorization in the auditory domain. Here, we investigated the representation and processing of auditory categories within the human temporal cortex using high resolution fMRI and MVPA methods. More importantly, we considered decoding multiple sound categories simultaneously through multi-class support vector machine-recursive feature elimination (MSVM-RFE) as our MVPA tool. Results show that for all classifications the model MSVM-RFE was able to learn the functional relation between the multiple sound categories and the corresponding evoked spatial patterns and classify the unlabeled sound-evoked patterns significantly above chance. This indicates the feasibility of decoding multiple sound categories not only within but across subjects. However, the across-subject variation affects classification performance more than the within-subject variation, as the across-subject analysis has significantly lower classification accuracies. Sound category-selective brain maps were identified based on multi-class classification and revealed distributed patterns of brain activity in the superior temporal gyrus and the middle temporal gyrus. This is in accordance with previous studies, indicating that information in the spatially distributed patterns may reflect a more abstract perceptual level of representation of sound categories. Further, we show that the across-subject classification performance can be significantly improved by averaging the f

  18. Decoding Multiple Sound Categories in the Human Temporal Cortex Using High Resolution fMRI

    PubMed Central

    Zhang, Fengqing; Wang, Ji-Ping; Kim, Jieun; Parrish, Todd; Wong, Patrick C. M.

    2015-01-01

    Perception of sound categories is an important aspect of auditory perception. The extent to which the brain’s representation of sound categories is encoded in specialized subregions or distributed across the auditory cortex remains unclear. Recent studies using multivariate pattern analysis (MVPA) of brain activations have provided important insights into how the brain decodes perceptual information. In the large existing literature on brain decoding using MVPA methods, relatively few studies have been conducted on multi-class categorization in the auditory domain. Here, we investigated the representation and processing of auditory categories within the human temporal cortex using high resolution fMRI and MVPA methods. More importantly, we considered decoding multiple sound categories simultaneously through multi-class support vector machine-recursive feature elimination (MSVM-RFE) as our MVPA tool. Results show that for all classifications the model MSVM-RFE was able to learn the functional relation between the multiple sound categories and the corresponding evoked spatial patterns and classify the unlabeled sound-evoked patterns significantly above chance. This indicates the feasibility of decoding multiple sound categories not only within but across subjects. However, the across-subject variation affects classification performance more than the within-subject variation, as the across-subject analysis has significantly lower classification accuracies. Sound category-selective brain maps were identified based on multi-class classification and revealed distributed patterns of brain activity in the superior temporal gyrus and the middle temporal gyrus. This is in accordance with previous studies, indicating that information in the spatially distributed patterns may reflect a more abstract perceptual level of representation of sound categories. Further, we show that the across-subject classification performance can be significantly improved by averaging the f

  19. Agro-hydrology and multi temporal high resolution remote sensing: toward an explicit spatial processes calibration

    NASA Astrophysics Data System (ADS)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-07-01

    The recent and forthcoming availability of high resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the perspective offered by improving the crop growth dynamic simulation using the distributed agro-hydrological model, Topography based Nitrogen transfer and Transformation (TNT2), using LAI map series derived from 105 Formosat-2 (F2) images during the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated with discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2006-2010 dataset (climate, land use, agricultural practices, discharge and nitrate fluxes at the outlet). A priori agricultural practices obtained from an extensive field survey such as seeding date, crop cultivar, and fertilizer amount were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics with a priori input parameters showed an temporal shift with observed LAI profiles irregularly distributed in space (between field crops) and time (between years). By re-setting seeding date at the crop field level, we proposed an optimization method to minimize efficiently this temporal shift and better fit the crop growth against the spatial observations as well as crop production. This optimization of simulated LAI has a negligible impact on water budget at the catchment scale (1 mm yr-1 in average) but a noticeable impact on in-stream nitrogen fluxes (around 12%) which is of interest considering nitrate stream contamination issues and TNT2 model objectives. This study demonstrates the contribution of forthcoming high spatial and temporal resolution products of Sentinel-2 satellite mission in improving agro-hydrological modeling by constraining the spatial representation of crop productivity.

  20. Pan-Tropical Forest Mapping by Exploiting Textures of Multi-Temporal High Resolution SAR Data

    NASA Astrophysics Data System (ADS)

    Knuth, R.; Eckardt, R.; Richter, N.; Schmullius, C.

    2012-12-01

    radar images were processed using an operational processing chain that includes radiometric transformation, noise reduction, and georeferencing of the SAR data. In places with pronounced topography both satellites were used as single pass interferometer to derive a digital surface model in order to perform an orthorectification followed by a topographic normalization of the SAR backscatter values. As prescribed by the FAO, the final segment-based classification algorithm was fed by multi-temporal backscatter information, a set of textural features, and information on the degree of coherence between the multi-temporal acquisitions. Validation with available high resolution optical imagery suggests that the produced forest maps possess an overall accuracy of 75 percent or higher.

  1. Ultra-High Resolution Diffusion Tensor Imaging of the Microscopic Pathways of the Medial Temporal Lobe

    PubMed Central

    Zeineh, Michael M.; Holdsworth, Samantha; Skare, Stefan; Atlas, Scott W.; Bammer, Roland

    2015-01-01

    Diseases involving the medial temporal lobes (MTL) such as Alzheimer’s disease and mesial temporal sclerosis pose an ongoing diagnostic challenge because of the difficulty in identifying conclusive imaging features, particularly in pre-clinical states. Abnormal neuronal connectivity may be present in the circuitry of the MTL, but current techniques cannot reliably detect those abnormalities. Diffusion tensor imaging (DTI) has shown promise in defining putative abnormalities in connectivity, but DTI studies of the MTL performed to date have shown neither dramatic nor consistent differences across patient populations. Conventional DTI methodology provides an inadequate depiction of the complex microanatomy present in the medial temporal lobe because of a typically employed low isotropic resolution of 2.0–2.5mm, a low signal-to-noise ratio (SNR), and echo-planar imaging (EPI) geometric distortions that are exacerbated by the inhomogeneous magnetic environment at the skull base. In this study, we pushed the resolving power of DTI to near-mm isotropic voxel size to achieve a detailed depiction of mesial temporal microstructure at 3T. High image fidelity and SNR at this resolution are achieved through several mechanisms: (1) acquiring multiple repetitions of the minimum field of view required for hippocampal coverage to boost SNR; (2) utilizing a single-refocused diffusion preparation to enhance SNR further; (3) performing a phase correction to reduce Rician noise; (4) minimizing distortion and maintaining left-right distortion symmetry with axial-plane parallel imaging; and (5) retaining anatomical and quantitative accuracy through the use of motion correction coupled with a higher-order eddy-current correction scheme. We combined this high-resolution methodology with a detailed segmentation of the MTL to identify tracks in all subjects that may represent the major pathways of the MTL, including the perforant pathway. Tractography performed on a subset of the data

  2. Determination of Destructed and Infracted Forest Areas with Multi-temporal High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Seker, D. Z.; Unal, A.; Kaya, S.; Alganci, U.

    2015-12-01

    Migration from rural areas to city centers and their surroundings is an important problem of not only our country but also the countries that under development stage. This uncontrolled and huge amount of migration brings out urbanization and socio - economic problems. The demand on settling the industrial areas and commercial activities nearby the city centers results with a negative change in natural land cover on cities. Negative impacts of human induced activities on natural resources and land cover has been continuously increasing for decades. The main human activities that resulted with destruction and infraction of forest areas can be defined as mining activities, agricultural activities, industrial / commercial activities and urbanization. Temporal monitoring of the changes in spatial distribution of forest areas is significantly important for effective management and planning progress. Changes can occur as spatially large destructions or small infractions. Therefore there is a need for reliable, fast and accurate data sources. At this point, satellite images proved to be a good data source for determination of the land use /cover changes with their capability of monitoring large areas with reasonable temporal resolutions. Spectral information derived from images provides discrimination of land use/cover types from each other. Developments in remote sensing technology in the last decade improved the spatial resolution of satellites and high resolution images were started to be used to detect even small changes in the land surface. As being the megacity of Turkey, Istanbul has been facing a huge migration for the last 20 years and effects of urbanization and other human based activities over forest areas are significant. Main focus of this study is to determine the destructions and infractions in forest areas of Istanbul, Turkey with 2.5m resolution SPOT 5 multi-temporal satellite imagery. Analysis was mainly constructed on threshold based classification of

  3. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties.

    PubMed

    Majumdar, S; Kothari, M; Augat, P; Newitt, D C; Link, T M; Lin, J C; Lang, T; Lu, Y; Genant, H K

    1998-05-01

    The purpose of this study was to use high-resolution magnetic resonance (MR) imaging combined with image analysis to investigate the three-dimensional (3D) trabecular structure, anisotropy, and connectivity of human vertebral, femoral, and calcaneal specimens. The goal was to determine whether: (a) MR-derived measures depict known skeletal-site-specific differences in architecture and orientation of trabeculae; (b) 3D architectural parameters combined with bone mineral density (BMD) improve the prediction of the elastic modulus using a fabric tensor formulation; (c) MR-derived 3D architectural parameters combined with BMD improve the prediction of strength using a multiple regression model, and whether these results corresponded to the results obtained using higher resolution depictions of trabecular architecture. A total of 94 specimens (12 x 12 x 12 mm cubes) consisting of trabecular bone only were obtained, of which there were 7 from the calcaneus, 15 from distal femur, 47 from the proximal femur, and 25 from the vertebral bodies. MR images were obtained using a 1.5 Tesla MR scanner at a spatial resolution of 117 x 117 x 300 microm. Additionally, BMD was determined using quantitative computed tomography (QCT), and the specimens were nondestructively tested and the elastic modulus (YM) was measured along three orthogonal axes corresponding to the anatomic superior-inferior (axial), medial-lateral (sagittal), and anterior-posterior (coronal) directions. A subset of the specimens (n=67) was then destructively tested in the superior-inferior (axial) direction to measure the ultimate compressive strength. The MR images were segmented into bone and marrow phases and then analyzed in 3D. Ellipsoids were fitted to the mean intercept lengths, using single value decomposition and the primary orientation of the trabeculae and used to calculate the anisotropy of trabecular architecture. Stereological measures were derived using a previously developed model and measures such

  4. The Impact of Horizontal and Temporal Resolution on Convection and Precipitation with High-Resolution GEOS-5

    NASA Technical Reports Server (NTRS)

    Putman, William P.

    2012-01-01

    Using a high-resolution non-hydrostatic version of GEOS-5 with the cubed-sphere finite-volume dynamical core, the impact of spatial and temporal resolution on cloud properties will be evaluated. There are indications from examining convective cluster development in high resolution GEOS-5 forecasts that the temporal resolution within the model may playas significant a role as horizontal resolution. Comparing modeled convective cloud clusters versus satellite observations of brightness temperature, we have found that improved. temporal resolution in GEOS-S accounts for a significant portion of the improvements in the statistical distribution of convective cloud clusters. Using satellite simulators in GEOS-S we will compare the cloud optical properties of GEOS-S at various spatial and temporal resolutions with those observed from MODIS. The potential impact of these results on tropical cyclone formation and intensity will be examined as well.

  5. High-resolution mycorrhizal hyphae dynamics: temporal variation, biophysical controls, and global environmental change

    NASA Astrophysics Data System (ADS)

    Hernandez, R. R.; Allen, M. F.

    2010-12-01

    Soils are the largest terrestrial carbon (C) repository in the global C cycle, storing 4.5 times more C than aboveground vegetation. Mycorrhizal fungi are critical edaphic organisms that influence soil C dynamics at both microscopic and ecosystem scales. Understanding the production and turnover of these organisms is critical for accurate ecosystem C budgets and predictive models incorporating changes in climate. This study seeks to quantify high-resolution mycorrhizal hyphae dynamics at various temporal scales in a mixed conifer forest (UC James Reserve, CA) using novel technologies including automated minirhizotrons, embedded soil sensor networks, and environmental software (i.e., Rootfly). We found that hyphae elongation and dieback rates in May 2009 varied significantly across 6-h diel time intervals and were greatest between 12:00 pm and 6:00 pm, when soil temperature and modeled CO2 flux is maximum. Seasonal dynamics revealed peak hyphae biomass in mid-April and rapid hyphae length decline from mid-April through June. Seasonal hyphae dynamism is tightly coupled with biophysical controls, namely, soil water content, which is positively related to hyphae production, and soil temperature. Interestingly, 14 °C may be a threshold for hyphae growth in this system as soil temperatures exceeding this value are coupled with rapid hyphae mortality. This study suggests that human-mediated changes to biophysical controls may modulate seasonal hyphae growth regimes, possibly reducing growth season duration or initiating early mortality. In this scenario, mycorrhizal hyphae mortality may act as a positive feedback to increasing CO2 levels, by releasing large amounts of CO2 into the atmosphere.

  6. High resolution bone material property assignment yields robust subject specific finite element models of complex thin bone structures.

    PubMed

    Pakdel, Amirreza; Fialkov, Jeffrey; Whyne, Cari M

    2016-06-14

    Accurate finite element (FE) modeling of complex skeletal anatomy requires high resolution in both meshing and the heterogeneous mapping of material properties onto the generated mesh. This study introduces Node-based elastic Modulus Assignment with Partial-volume correction (NMAP) as a new approach for FE material property assignment to thin bone structures. The NMAP approach incorporates point spread function based deblurring of CT images, partial-volume correction of CT image voxel intensities and anisotropic interpolation and mapping of CT intensity assignment to FE mesh nodes. The NMAP procedure combined with a derived craniomaxillo-facial skeleton (CMFS) specific density-isotropic elastic modulus relationship was applied to produce specimen-specific FE models of 6 cadaveric heads. The NMAP procedure successfully generated models of the complex thin bone structures with surface elastic moduli reflective of cortical bone material properties. The specimen-specific CMFS FE models were able to accurately predict experimental strains measured under in vitro temporalis and masseter muscle loading (r=0.93, slope=1.01, n=5). The strength of this correlation represents a robust validation for CMFS FE modeling that can be used to better understand load transfer in this complex musculoskeletal system. The developed methodology offers a systematic process-flow able to address the complexity of the CMFS that can be further applied to create high-fidelity models of any musculoskeletal anatomy. PMID:27033728

  7. Decoding Overlapping Memories in the Medial Temporal Lobes Using High-Resolution fMRI

    ERIC Educational Resources Information Center

    Chadwick, Martin J.; Hassabis, Demis; Maguire, Eleanor A.

    2011-01-01

    The hippocampus is proposed to process overlapping episodes as discrete memory traces, although direct evidence for this in human episodic memory is scarce. Using green-screen technology we created four highly overlapping movies of everyday events. Participants were scanned using high-resolution fMRI while recalling the movies. Multivariate…

  8. Management of temporal bone trauma.

    PubMed

    Patel, Alpen; Groppo, Eli

    2010-06-01

    The temporal bones are paired structures located on the lateral aspects of the skull and contribute to the skull base. Trauma is usually the result of blunt head injury and can result in damage to the brain and meninges, the middle and internal ear, and the facial nerve. Complications can include intracranial hemorrhage, cerebral contusion, CSF leak and meningitis, hearing loss, vertigo, and facial paralysis. To prevent these complications, diagnosis followed by appropriate medical and surgical management is critical. Diagnosis relies primarily on physical signs and symptoms as well as radiographic imaging. Emergent intervention is required in situations involving herniation of the brain into the middle ear cavity or hemorrhage of the intratemporal carotid artery. Patients with declining facial nerve function are candidates for early surgical intervention. Conductive hearing loss can be corrected surgically as an elective procedure, while sensorineural hearing loss carries a poor prognosis, regardless of management approach. Children generally recover from temporal bone trauma with fewer complications than adults and experience a markedly lower incidence of facial nerve paralysis. PMID:22110824

  9. Are patterns of bone loss in anorexic and postmenopausal women similar? Preliminary results using high resolution peripheral computed tomography.

    PubMed

    Milos, Gabriella; Häuselmann, Hans-Jörg; Krieg, Marc-Antoine; Rüegsegger, Peter; Gallo, Luigi M

    2014-01-01

    This study intended to compare bone density and architecture in three groups of women: young women with anorexia nervosa (AN), an age-matched control group of young women, and healthy late postmenopausal women. Three-dimensional peripheral quantitative high resolution computed-tomography (HR-pQCT) at the ultradistal radius, a technology providing measures of cortical and trabecular bone density and microarchitecture, was performed in the three cohorts. Thirty-six women with AN aged 18-30 years (mean duration of AN: 5.8 years), 83 healthy late postmenopausal women aged 70-81 as well as 30 age-matched healthy young women were assessed. The overall cortical and trabecular bone density (D100), the absolute thickness of the cortical bone (CTh), and the absolute number of trabecules per area (TbN) were significantly lower in AN patients compared with healthy young women. The absolute number of trabecules per area (TbN) in AN and postmenopausal women was similar, but significantly lower than in healthy young women. The comparison between AN patients and post-menopausal women is of interest because the latter reach bone peak mass around the middle of the fertile age span whereas the former usually lose bone before reaching optimal bone density and structure. This study shows that bone mineral density and bone compacta thickness in AN are lower than those in controls but still higher than those in postmenopause. Bone compacta density in AN is similar as in controls. However, bone inner structure in AN is degraded to a similar extent as in postmenopause. This last finding is particularly troubling. PMID:24084384

  10. A temporal frequency-dependent functional architecture in human V1 revealed by high-resolution fMRI.

    PubMed

    Sun, Pei; Ueno, Kenichi; Waggoner, R Allen; Gardner, Justin L; Tanaka, Keiji; Cheng, Kang

    2007-11-01

    Although cortical neurons with similar functional properties often cluster together in a columnar organization, only ocular dominance columns, the columnar structure representing segregated anatomical input (from one of the two eyes), have been found in human primary visual cortex (V1). It has yet to be shown whether other columnar organizations that arise only from differential responses to stimulus properties also exist in human V1. Using high-resolution functional magnetic resonance imaging, we have found such a functional architecture containing domains that respond preferentially to either low or high temporal frequency. PMID:17934459

  11. Stochastic multiscale modelling of cortical bone elasticity based on high-resolution imaging.

    PubMed

    Sansalone, Vittorio; Gagliardi, Davide; Desceliers, Christophe; Bousson, Valérie; Laredo, Jean-Denis; Peyrin, Françoise; Haïat, Guillaume; Naili, Salah

    2016-02-01

    Accurate and reliable assessment of bone quality requires predictive methods which could probe bone microstructure and provide information on bone mechanical properties. Multiscale modelling and simulation represent a fast and powerful way to predict bone mechanical properties based on experimental information on bone microstructure as obtained through X-ray-based methods. However, technical limitations of experimental devices used to inspect bone microstructure may produce blurry data, especially in in vivo conditions. Uncertainties affecting the experimental data (input) may question the reliability of the results predicted by the model (output). Since input data are uncertain, deterministic approaches are limited and new modelling paradigms are required. In this paper, a novel stochastic multiscale model is developed to estimate the elastic properties of bone while taking into account uncertainties on bone composition. Effective elastic properties of cortical bone tissue were computed using a multiscale model based on continuum micromechanics. Volume fractions of bone components (collagen, mineral, and water) were considered as random variables whose probabilistic description was built using the maximum entropy principle. The relevance of this approach was proved by analysing a human bone sample taken from the inferior femoral neck. The sample was imaged using synchrotron radiation micro-computed tomography. 3-D distributions of Haversian porosity and tissue mineral density extracted from these images supplied the experimental information needed to build the stochastic models of the volume fractions. Thus, the stochastic multiscale model provided reliable statistical information (such as mean values and confidence intervals) on bone elastic properties at the tissue scale. Moreover, the existence of a simpler "nominal model", accounting for the main features of the stochastic model, was investigated. It was shown that such a model does exist, and its relevance

  12. En bloc resection of the temporal bone and temporomandibular joint for advanced temporal bone carcinoma.

    PubMed

    Kutz, Joe Walter; Mitchell, Derek; Isaacson, Brandon; Roland, Peter S; Allen, Kyle P; Sumer, Baran D; Barnett, Sam; Truelson, John M; Myers, Larry L

    2015-03-01

    Advanced skin malignancies involving the temporal bone can involve the temporomandibular joint and glenoid fossa. Many of these tumors can be removed with a lateral temporal bone resection; however, extensive involvement of the glenoid fossa should include an en bloc resection of the temporal bone, glenoid fossa, and condyle. We describe a novel surgical approach that is an extension of a temporal bone resection that includes the glenoid fossa and condyle in an en bloc resection with the temporal bone. This procedure has been performed in 7 patients with advanced carcinoma of the temporal bone involving the glenoid fossa. There were no short-term complications as a result of the surgical approach. The addition of a middle fossa craniotomy and inclusion of the glenoid fossa and condyle as part of an en bloc resection of the temporal bone can be performed safely. PMID:25616770

  13. Multi-temporal high resolution monitoring of debris-covered glaciers using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kraaijenbrink, Philip; Immerzeel, Walter; de Jong, Steven; Shea, Joseph; Pellicciotti, Francesca; Meijer, Sander; Shresta, Arun

    2016-04-01

    Debris-covered glaciers in the Himalayas are relatively unstudied due to the difficulties in fieldwork caused by the inaccessible terrain and the presence of debris layers, which complicate in situ measurements. To overcome these difficulties an unmanned aerial vehicle (UAV) has been deployed multiple times over two debris covered glaciers in the Langtang catchment, located in the Nepalese Himalayas. Using differential GPS measurements and the Structure for Motion algorithm the UAV imagery was processed into accurate high-resolution digital elevation models and orthomosaics for both pre- and post-monsoon periods. These data were successfully used to estimate seasonal surface flow and mass wasting by using cross-correlation feature tracking and DEM differencing techniques. The results reveal large heterogeneity in mass loss and surface flow over the glacier surfaces, which are primarily caused by the presence of surface features such as ice cliffs and supra-glacial lakes. Accordingly, we systematically analyze those features using an object-based approach and relate their characteristics to the observed dynamics. We show that ice cliffs and supra-glacial lakes are contributing to a significant portion of the melt water of debris covered glaciers and we conclude that UAVs have great potential in understanding the key surface processes that remain largely undetected by using satellite remote sensing.

  14. High Resolution Temporal and Spectral Monitoring of Eta Carinae's X-Ray Emission the June Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Hamaguchi, K.; Henley, D.; Pittard, J. M.; Gull, T. R.; Davidson, K.; Swank, J. H.; Petre, R.; Ishibashi, K.

    2004-01-01

    The supermassive and luminous star Eta Carinae undergoes strong X-ray variations every 5.5 years when its 2-10 keV X-ray emission brightens rapidly with wild fluctuations before dropping by a factor of 100 to a minimum lasting 3 months. The most recent X-ray "eclipse" began in June 2003 and during this time Eta Carinae was intensely observed throughout the electromagnetic spectrum. Here we report the first results of frequent monitoring of the 2-10 keV band X-ray emission by the Rossi X-ray Timing Explorer along wit high resolution X-ray spectra obtained with the transmission gratings on the Chandra X-ray Observatory. We compare these observations to those results obtained during the previous X-ray eclipse in 1998, and interpret the variations in the X-ray brightness, in the amount of absorption, in the X-ray emission measure and in the K-shell emission lines in terms of a colliding wind binary model.

  15. High-resolution lidar system for measuring the spatial and temporal structure of the mesospheric sodium layer

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.; Sechrist, C. F., Jr.; Shelton, J. D.

    1983-01-01

    The design of a high-resolution tunable-dye laser-based lidar system for the study of the mesospheric sodium layer is presented and results of sodium measurements are indicated. The lidar system comprises a tunable flashlamp-pumped dye laser operating at the sodium D2 resonance line at 589.0 nm with a pulse width of 2 microsec FWHM and pulse frequency of 10 Hz and a telescope with a 1.22=m diameter Fresnel lens. Sodium profiles are obtained from the integration of 100 to 250 laser shots, with spatial and temporal resolution enhanced by two-dimensional filtering techniques. Measurements obtained over a 9-hour nighttime period illustrate the highly dynamic nature of the sodium layer, which was observed with a spatial resolution of 2 km and temporal resolution of 30 min. Observations made with a steerable apparatus have confirmed a presunrise enhancement of over 100 percent in sodium column abundance.

  16. Challenges of High Resolution Diffusion Imaging of the Human Medial Temporal Lobe in Alzheimer's Disease

    PubMed Central

    Zeineh, Michael M.; Holdsworth, Samantha; Skare, Stefan; Atlas, Scott W.; Bammer, Roland

    2011-01-01

    The human medial temporal lobe performs an essential role in memory formation and retrieval. Diseases involving the hippocampus such as Alzheimer's disease present a unique opportunity for advanced imaging techniques to detect abnormalities at an early stage. In particular, it is possible that diffusion imaging may measure abnormal microarchitecture beyond the realm of macroscopic imaging. However, this task is formidable because of the detailed anatomy of the medial temporal lobe, the difficulties in obtaining high quality diffusion images of adequate resolution, and challenges in diffusion data processing. Moreover, it is unclear if any differences will be significant for an individual patient or simply groups of patients. Successful endeavors will need to address each of these challenges in an integrated fashion. The rewards of such analysis may be detection of microscopic disease in vivo, which could represent a landmark accomplishment for the field of neuroradiology. PMID:22158129

  17. Novel techniques for high-resolution functional imaging of trabecular bone

    NASA Astrophysics Data System (ADS)

    Thurner, Philipp J.; Muller, Ralph; Kindt, Johannes H.; Schitter, Georg; Fantner, Georg E.; Wyss, Peter; Sennhauser, Urs; Hansma, Paul K.

    2005-04-01

    In current biological and biomedical research, quantitative endpoints have become an important factor of success. Classically, such endpoints were investigated with 2D imaging, which is usually destructive and the 3D character of tissue gets lost. 3D imaging has gained in importance as a tool for both, qualitative and quantitative assessment of biological systems. In this context synchrotron radiation based tomography has become a very effective tool for opaque 3D tissue systems. Results from a new device are presented enabling the 3D investigation of trabecular bone under mechanical load in a time-lapsed fashion. Using the highly brilliant X-rays from a synchrotron radiation source, bone microcracks and an indication for un-cracked ligament bridging are uncovered. 3D microcrack analysis proves that the classification of microcracks from 2D images is ambiguous. Fatigued bone was found to fail in burst-like fashion, whereas non-fatigued bone exhibited a distinct failure band. Additionally, a higher increase in microcrack volume was detected in fatigued in comparison to non-fatigued bone. Below the spatial resolution accessible with synchrotron radiation tomography we investigated native and fractured bone surfaces on the molecular scale with atomic force microscopy. The mineralized fibrils detected on fracture surfaces give rise to the assumption that the mineral-mineral interface is the weakest link in bone. The presented results show the power of functional micro-imaging, as well as the possibilities for AFM imaging (functional nano-imaging) in this context.

  18. Using high resolution satellite multi-temporal interferometry for landslide hazard detection in tropical environments: the case of Haiti

    NASA Astrophysics Data System (ADS)

    Wasowski, Janusz; Nutricato, Raffaele; Nitti, Davide Oscar; Bovenga, Fabio; Chiaradia, Maria Teresa; Piard, Boby Emmanuel; Mondesir, Philemon

    2015-04-01

    Synthetic aperture radar (SAR) multi-temporal interferometry (MTI) is one of the most promising satellite-based remote sensing techniques for fostering new opportunities in landslide hazard detection and assessment. MTI is attractive because it can provide very precise quantitative information on slow slope displacements of the ground surface over huge areas with limited vegetation cover. Although MTI is a mature technique, we are only beginning to realize the benefits of the high-resolution imagery that is currently acquired by the new generation radar satellites (e.g., COSMO-SkyMed, TerraSAR-X). In this work we demonstrate the potential of high resolution X-band MTI for wide-area detection of slope instability hazards even in tropical environments that are typically very harsh (eg. coherence loss) for differential interferometry applications. This is done by presenting an example from the island of Haiti, a tropical region characterized by dense and rapidly growing vegetation, as well as by significant climatic variability (two rainy seasons) with intense precipitation events. Despite the unfavorable setting, MTI processing of nearly 100 COSMO-SkyMed (CSK) mages (2011-2013) resulted in the identification of numerous radar targets even in some rural (inhabited) areas thanks to the high resolution (3 m) of CSK radar imagery, the adoption of a patch wise processing SPINUA approach and the presence of many man-made structures dispersed in heavily vegetated terrain. In particular, the density of the targets resulted suitable for the detection of some deep-seated and shallower landslides, as well as localized, very slow slope deformations. The interpretation and widespread exploitation of high resolution MTI data was facilitated by Google EarthTM tools with the associated high resolution optical imagery. Furthermore, our reconnaissance in situ checks confirmed that MTI results provided useful information on landslides and marginally stable slopes that can represent a

  19. High-resolution temporal analysis of deep subseafloor microbial communities inhabiting basement fluids

    NASA Astrophysics Data System (ADS)

    Jungbluth, S.; Lin, H. T.; Hsieh, C. C.; Rappe, M. S.

    2014-12-01

    The temporal variation in microbial communities inhabiting the anoxic, sediment-covered basaltic ocean basement is largely uncharacterized due to the inaccessible nature of the environment and difficulties associated with collection of samples from low-biomass microbial habitats. Here, a deep sea instrumented platform was employed on the Juan de Fuca Ridge in the summer of 2013 to collect 46 samples of basement fluids from the most recent generation of borehole observatories (U1362A and B), which feature multiple sampling horizons at a single location and fluid delivery lines manufactured using stainless steel or inert polytetrafluoroethylene (PTFE) parts. Included were three time-series deployments of the GEOmicrobe sled meant to resolve the fine-scale (i.e. hourly) temporal variation within in situ crustal microbial communities. Illumina technology was used to sequence small subunit ribosomal RNA (SSU rRNA) gene fragments from sediment, seawater, and subseafloor fluids. Similar to has been reported previously, basic differences in the three environments was observed. Fluid samples from depth horizons extending 30, 70, and ~200 meters sub-basement revealed differences in the observed microbial communities, indicating potential depth-specific zonation of microorganisms in the basaltic basement fluids. Extensive overlap between microorganisms collected from a single depth horizon but using two fluid delivery lines manufactured with different materials was observed, though some differences were also noted. Several archaeal (e.g. THSCG, MCG, MBGE, Archaeoglobus) and bacterial (e.g. Nitrospiraceae, OP8, KB1) lineages detected in previous years of basement fluid sampling nearby were found here, which further supports the notion that these microorganisms are stable residents of anoxic basaltic subseafloor fluids. Direct cell enumeration of samples collected from U1362A and U1362B revealed an elevated biomass compared to samples at these locations from previous years

  20. High-resolution temporal analysis reveals a functional timeline for the molecular regulation of cytokinesis

    PubMed Central

    Davies, Tim; Jordan, Shawn N.; Chand, Vandana; Sees, Jennifer A.; Laband, Kimberley; Carvalho, Ana; Shirasu-Hiza, Mimi; Kovar, David R.; Dumont, Julien; Canman, Julie C.

    2014-01-01

    Summary To take full advantage of fast-acting temperature-sensitive mutations, thermal control must be extremely rapid. We developed the Therminator, a device capable of shifting sample temperature in ~17s while simultaneously imaging cell division in vivo. Applying this technology to six key regulators of cytokinesis, we found that each has a distinct temporal requirement in the C. elegans zygote. Specifically, myosin-II is required throughout cytokinesis until contractile ring closure. In contrast, formin-mediated actin nucleation is only required during assembly and early contractile ring constriction. Centralspindlin is required to maintain division after ring closure, though its GAP activity is only required until just prior to closure. Finally, the Chromosomal Passenger Complex is required for cytokinesis only early in mitosis, but not during metaphase or cytokinesis. Together, our results provide a precise functional timeline for molecular regulators of cytokinesis using the Therminator, a powerful tool for ultra-rapid protein inactivation. PMID:25073157

  1. High-resolution (spatial and temporal) Hydrodynamic Modeling in the Lower Mississippi River Delta

    NASA Astrophysics Data System (ADS)

    Karadogan, E.; Danchuk, S.; Berger, C.; Brown, G.; Willson, C.

    2007-12-01

    The lower Mississippi River is a highly engineered system existing in one of the world's largest deltas. This system is subject to a variety of spatial and temporal forcings due to its large watershed (drains about 41% of the continental U.S.) and from the Gulf of Mexico. Future perturbations on this system are anticipated due to the impacts of global climate change (e.g., rising eustatic sea level, changes in weather patterns) and from proposed modifications to the system such as diversion structures aimed at providing freshwater nutrients and sediments to the rapidly degrading coastal wetlands. Numerical modeling will play a large role in improving our understanding and management of the system and the ability to properly design future structural features. These models will need to have the necessary spatial and temporal resolution to account for the many important processes in the river, the Gulf of Mexico, and in the wetland areas where small distributary channels will form and wetting/drying must be accounted for. This paper will investigate the ability of a 2D shallow water and sediment model to reproduce the complex distributary development associated with flow diversions into quiescent bays. A reach of the Lower Mississippi River from Point a la Hache to the Gulf of Mexico was used as a test domain to evaluate the performance and capabilities of the U.S. Army Corps of Engineers ADaptive Hydraulics (ADH) model. ADH is an unstructured finite element modeling system that includes unsaturated Richards' equations for groundwater, Navier Stokes for nonhydrostatic flow calculations, and Shallow Water equations. ADH conducts automated refinement and coarsening of the mesh based upon flow characteristics. In this case the 2D shallow water model is being used. It includes coupled flow and sedimentation. An unstructured mesh was developed for the study area which includes detailed bathymetry and topography from available survey data. The mesh is fine enough to capture

  2. Schneiderian papilloma of the temporal bone

    PubMed Central

    van der Putten, Lisa; Bloemena, Elisabeth; Merkus, Paul; Hensen, Erik F

    2013-01-01

    Temporal bone Schneiderian papilloma may present as a primary tumour originating from the middle ear and mastoid process, or an extension from sinonasal disease. Both forms are rare, this being only the 18th case of primary temporal bone Schneiderian papilloma described to date. Although the current patient has remained disease free after excision of the papilloma, the reported recurrence rate is high, comparable to sinonasal Schneiderian papilloma with extrasinus extension. Malignant progression of primary Schneiderian papillomas is significantly reduced as compared to Schneiderian papillomas that extend from the sinonasal tract into the temporal bone. A positive human papilloma virus status, as found in this case, is a common feature and prognostic factor of sinonasal Schneiderian papilloma but an infrequent finding in temporal bone disease. Owing to the high recurrence rate, the risk of malignant progression and the absence of reliable prognostic markers, stringent follow-up consisting of otoscopy, nasendoscopy and imaging is essential. PMID:24311418

  3. Mapping temporal changes in connectivity using high-resolution aerial data and object based image analysis

    NASA Astrophysics Data System (ADS)

    Masselink, Rens; Anders, Niels; Keesstra, Saskia; Seeger, Manuel

    2014-05-01

    Within the field of geomorphology mapping has always been an important tool to interpret spatial and temporal distributions of phenomena and processes at the surface. In the field of connectivity however, although throughout the past decade many articles have been published, there are only very few that go into the mapping of connectivity. This study aimed at developing a new, automated method for mapping connectivity within agricultural catchments. The method, which is a combination of Object-Based Image Analysis (OBIA) and traditional geomorphological field mapping, was applied to two agricultural catchments in Navarre, Spain, both with an area of approximately 2 sq.km. An unmanned aerial vehicle (UAV) was used to take aerial photographs with a resolution of 6 cm, of which a DEM with a 12 cm resolution was created using structure-from-motion photogrammetry. Connectivity was mapped within the study areas using OBIA using a top down method, meaning that connectivity was mapped at different scale levels, starting at the largest scale. Firstly sub-catchments were automatically delineated, after which several characteristics and features that affect connectivity within the sub-catchments were classified, e.g. landuse, landslides, rills, gullies, riparian vegetation, changes in slope, ploughing direction etc. In two consecutive years (2013-2014) photographs were taken and connectivity of both catchments of both years will be compared. Future work will include a quantification of the mapped connectivity (highly connected years vs. low connected years), causes and consequences of these differences in connectivity, comparison to existing connectivity indices and comparison of mapped connectivity in sub-catchments and measured discharge.

  4. Rhabdomyosarcoma and other pediatric temporal bone malignancies.

    PubMed

    Gluth, Michael B

    2015-04-01

    This article outlines the nature of temporal bone malignancy in children, particularly from the viewpoint of a surgeon. This article includes a synopsis of the presentation, workup, and management options for children affected by these uncommon tumors. Particular attention is given to rhabdomyosarcoma, including an update of modern staging, risk classification, and prognosis; however, a concise review of other forms of pediatric temporal bone cancer and an overview of surgical approaches available for treatment is undertaken as well. PMID:25650231

  5. Very high resolution airborne imagery for characterising spatial and temporal thermal patterns of braided rivers

    NASA Astrophysics Data System (ADS)

    Wawrzyniak, V.; Piégay, H.; Allemand, P.; Grandjean, P.

    2011-12-01

    At the catchment scale water temperature is influenced by geographical factors, but at the reach scale superficial and groundwater hydrology and channel geometry strongly affect thermal patterns. During the last 30 years, studies have been pointed out the significance and complexity of water exchanges between the channel and the hyporheic and phreatic zones. These surface-subsurface water exchanges influence water temperature patterns. Braided rivers present particular thermal conditions with very high spatial water temperature variability. This high thermal variability is difficult to comprehend using only in situ measurements and so thermal infrared (TIR) remote sensing is particularly suited to assessing the thermal patterns associated with these rivers. The aims of this study are to evaluate temperature patterns of nine braided reaches at very high spatial resolution (~20 cm) and to link temperature and water-body types. We hypothesized that river type has an influence of the spatial patterns of water temperature and that the patterns change through the day. All reaches are located in France, in the Rhône catchment. The nine reaches were selected based on high aquatic habitat diversities and are located in three regional areas: the massif des Écrins, the Rhône valley, and south Alps. They are about 1 km long. We have three distinct temporal approaches. The first one is a multi-site approach which proposes one survey of each site during summers 2010 or 2011. Three reaches were selected for the second phase (a multi-annual analysis and were therefore imaged both in summers 2010 and 2011. The last phase is an intra-day survey of two reaches with several flights at different times of day. This presentation focuses on the last approach with two reaches of the Drôme and Drac Noir rivers. To observe the evolution of the thermal patterns of these two reaches through the day, four flights within a day were realized during summer 2011 for both sites. The Drôme reach

  6. Using high-resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux

    NASA Astrophysics Data System (ADS)

    Briggs, Martin A.; Lautz, Laura K.; McKenzie, Jeffrey M.; Gordon, Ryan P.; Hare, Danielle K.

    2012-02-01

    Hyporheic flow can be extremely variable in space and time, and our understanding of complicated flow systems, such as exchange around small dams, has generally been limited to reach-averaged parameters or discrete point measurements. Emerging techniques are starting to fill the void between these disparate scales, increasing the utility of hyporheic research. When ambient diurnal temperature patterns are collected at high spatial resolution across vertical profiles in the streambed, the data can be applied to one-dimensional conduction-advection-dispersion models to quantitatively describe the vertical component of hyporheic flux at the same high spatial resolution. We have built on recent work by constructing custom fiber-optic distributed temperature sensors with 0.014 m spatial resolution that are robust enough to be installed by hand into the streambed, maintain high signal strength, and permit several sensors to be run in series off a single distributed temperature sensing unit. Data were collected continuously for 1 month above two beaver dams in a Wyoming stream to determine the spatial and temporal nature of vertical flux induced by the dams. Flux was organized by streambed morphology with strong, variable gradients with depth indicating a transition to horizontal flow across a spectrum of hyporheic flow paths. Several profiles showed contrasting temporal trends as discharge decreased by 45%. The high-resolution thermal sensors, combined with powerful analytical techniques, allowed a distributed quantitative description of the morphology-driven hyporheic system not previously possible.

  7. Basement membrane of mouse bone marrow sinusoids shows distinctive structure and proteoglycan composition: a high resolution ultrastructural study.

    PubMed

    Inoue, S; Osmond, D G

    2001-11-01

    Venous sinusoids in bone marrow are the site of a large-scale traffic of cells between the extravascular hemopoietic compartment and the blood stream. The wall of the sinusoids consists solely of a basement membrane interposed between a layer of endothelial cells and an incomplete covering of adventitial cells. To examine its possible structural specialization, the basement membrane of bone marrow sinusoids has now been examined by high resolution electron microscopy of perfusion-fixed mouse bone marrow. The basement membrane layer was discontinuous, consisting of irregular masses of amorphous material within a uniform 60-nm-wide space between apposing endothelial cells and adventitial cell processes. At maximal magnifications, the material was resolved as a random arrangement of components lacking the "cord network" formation seen in basement membranes elsewhere. Individual components exhibited distinctive ultrastructural features whose molecular identity has previously been established. By these morphological criteria, the basement membrane contained unusually abundant chondroitin sulfate proteoglycan (CSPG) revealed by 3-nm-wide "double tracks," and moderate amounts of both laminin as dense irregular coils and type IV collagen as 1-1.5-nm-wide filaments, together with less conspicuous amounts of amyloid P forming pentagonal frames. In contrast, 4.5-5-nm-wide "double tracks" characteristic of heparan sulfate proteoglycan (HSPG) were absent. The findings demonstrate that, in comparison with "typical" basement membranes in other tissues, the bone marrow sinusoidal basement membrane is uniquely specialized in several respects. Its discontinuous nature, lack of network organization, and absence of HSPG, a molecule that normally helps to maintain membrane integrity, may facilitate disassembly and reassembly of basement membrane material in concert with movements of adventitial cell processes as maturing hemopoietic cells pass through the sinusoidal wall: the

  8. Human temporal bone findings in acquired hypothyroidism.

    PubMed

    Hald, J; Milroy, C M; Jensen, K D; Parving, A

    1991-11-01

    Histological studies of the auditory organ in patients with acquired hypothyroidism are scarce. Thus the aim of the present study was to examine the temporal bones and the brain in subjects with hypothyroidism. Four temporal bones and two brains from clinically and biochemically hypothyroid subjects were removed and evaluated by light microscopy determine to the morphological changes and deposition of neutral and acid glycosaminoglycans. An audiogram from one of the patients showed a sensorineural hearing loss, which could be ascribed to occupational noise exposure. The study revealed histological changes compatible with age and infectious disease. No accumulation of neutral or acid glycosaminoglycans could be demonstrated in the temporal bones, or in the brains. PMID:1761939

  9. Spatial and temporal variation of sublimation on Antarctica: Results of a high-resolution general circulation model

    NASA Astrophysics Data System (ADS)

    van den Broeke, Michiel R.

    1997-12-01

    In this paper we use output of a high-resolution general circulation model (ECHAM-3 T106, resolution 1.1°×1.1°) to study the spatial and temporal variation of sublimation on Antarctica. First, we compare model results with available observations of sublimation rates. The yearly cycle, with small latent heat fluxes during the winter, is well reproduced, and the agreement with sparsely available spot observations is fair. The model results suggest that a significant 10-15% of the annual precipitation over Antarctica is lost through sublimation and that sublimation plays an important role in the formation of blue ice areas. A preliminary analysis of the atmospheric boundary layer moisture budget shows that the spatial variation of sublimation in the coastal zone of East Antarctica can be explained by variations of horizontal advection of dry air. Dry air advection, and thus surface sublimation, is enhanced in areas where katabatic winds are strong and have a large downslope component and where the Antarctic topography drops suddenly from the plateau to the coastal zone. In areas where horizontal advection is small, like the plateau and the large ice shelves, special conditions must be met to make significant sublimation at the surface possible.

  10. Bi-Temporal Analysis of High-Resolution Satellite Imagery in Support of a Forest Conservation Program in Western Uganda

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Lambin, E.; Audy, R.; Biryahwaho, B.; de Laat, J.; Jayachandran, S.

    2014-12-01

    Recent studies in land use sustainability have shown the conservation value of even small forest fragments in tropical smallholder agricultural regions. Forest patches provide important ecosystem services, wildlife habitat, and support human livelihoods. Our study incorporates multiple dates of high-resolution Quickbird imagery to map forest disturbance and regrowth in a smallholder agricultural landscape in western Uganda. This work is in support of a payments for ecosystem services (PES) project which uses a randomized controlled trial to assess the efficacy of PES for enhancing forest conservation. The research presented here details the remote sensing phase of this project. We developed an object-based methodology for detecting forest change from high-resolution imagery that calculates per class image reflectance and change statistics to determine persistent forest, non-forest, forest gain, and forest loss classes. The large study area (~ 2,400 km2) necessitated using a combination of 10 different image pairs of varying seasonality, sun angle, and viewing angle. We discuss the impact of these factors on mapping results. Reflectance data was used in conjunction with texture measures and knowledge-driven modeling to derive forest change maps. First, baseline Quickbird images were mapped into tree cover and non-tree categories based on segmented image objects and field inventory data, applied through a classification and regression tree (CART) classifier. Then a bi-temporal segmentation layer was generated and a series of object metrics from both image dates were extracted. A sample set of persistent forest objects that remained undisturbed was derived from the tree cover map and the red band (B3) change values. We calculated a variety of statistical indices for these persistent tree cover objects from the post- survey imagery to create maps of both forest cover loss and forest cover gain. These results are compared to visually assessed image objects in addition

  11. Agro-hydrology and multi-temporal high-resolution remote sensing: toward an explicit spatial processes calibration

    NASA Astrophysics Data System (ADS)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-12-01

    The growing availability of high-resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the possibilities offered for improving crop-growth dynamic simulation with the distributed agro-hydrological model: topography-based nitrogen transfer and transformation (TNT2). We used a leaf area index (LAI) map series derived from 105 Formosat-2 (F2) images covering the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated against discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2005-2010 data set (climate, land use, agricultural practices, and discharge and nitrate fluxes at the outlet). Data from the first year (2005) were used to initialize the hydrological model. A priori agricultural practices obtained from an extensive field survey, such as seeding date, crop cultivar, and amount of fertilizer, were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop-field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics using the a priori input parameters displayed temporal shifts from those observed LAI profiles that are irregularly distributed in space (between field crops) and time (between years). By resetting the seeding date at the crop-field level, we have developed an optimization method designed to efficiently minimize this temporal shift and better fit the crop growth against both the spatial observations and crop production. This optimization of simulated LAI has a negligible impact on water budgets at the catchment scale (1 mm yr-1 on average) but a noticeable impact on in-stream nitrogen fluxes (around 12%), which is of interest when considering nitrate stream contamination issues and the objectives of TNT2 modeling. This study demonstrates the potential contribution of the forthcoming high spatial and temporal resolution

  12. Temporal variability in dynamic and colloidal metal fractions determined by high resolution in situ measurements in a UK estuary.

    PubMed

    Braungardt, Charlotte B; Howell, Kate A; Tappin, Alan D; Achterberg, Eric P

    2011-07-01

    In recent environmental legislation, such as the Water Framework Directive in the European Union (WFD, 2000/60/EC), the importance of metal speciation and biological availability is acknowledged, although analytical challenges remain. In this study, the Voltammetric In situ Profiler (VIP) was used for high temporal resolution in situ metal speciation measurements in estuarine waters. This instrument simultaneously determines Cd, Cu and Pb species within a size range (ca. <4 nm) that is highly relevant for uptake by organisms. The colloidal metal fraction can be quantified through a combination of VIP measurements and analyses of total dissolved metal concentrations. VIP systems were deployed over tidal cycles in a seasonal study of metal speciation in the Fal Estuary, southwest England. Total dissolved concentrations were 4.97-315 nM Cu, 0.13-8.53 nM Cd and 0.35-5.75 nM Pb. High proportions of Pb (77±17%) and Cu (60±25%) were present as colloids, which constituted a less important fraction for Cd (37±30%). The study elucidated variations in the potentially toxic metal fraction related to river flow, complexation by organic ligands and exchanges between dissolved and colloidal phases and the sediment. Based on published toxicity data, the bioavailable Cu concentrations (1.7-190 nM) in this estuary are likely to severely compromise the ecosystem structure and functioning with respect to species diversity and recruitment of juveniles. The study illustrates the importance of in situ speciation studies at high resolution in pursuit of a better understanding of metal (bio)geochemistry in dynamic coastal systems. PMID:21529891

  13. A quantitative method for the evaluation of three-dimensional structure of temporal bone pneumatization.

    PubMed

    Hill, Cheryl A; Richtsmeier, Joan T

    2008-10-01

    Temporal bone pneumatization has been included in lists of characters used in phylogenetic analyses of human evolution. While studies suggest that the extent of pneumatization has decreased over the course of human evolution, little is known about the processes underlying these changes or their significance. In short, reasons for the observed reduction and the potential reorganization within pneumatized spaces are unknown. Technological limitations have limited previous analyses of pneumatization in extant and fossil species to qualitative observations of the extent of temporal bone pneumatization. In this paper, we introduce a novel application of quantitative methods developed for the study of trabecular bone to the analysis of pneumatized spaces of the temporal bone. This method utilizes high-resolution X-ray computed tomography (HRXCT) images and quantitative software to estimate three-dimensional parameters (bone volume fractions, anisotropy, and trabecular thickness) of bone structure within defined units of pneumatized spaces. We apply this approach in an analysis of temporal bones of diverse but related primate species, Gorilla gorilla, Pan troglodytes, Homo sapiens, and Papio hamadryas anubis, to illustrate the potential of these methods. In demonstrating the utility of these methods, we show that there are interspecific differences in the bone structure of pneumatized spaces, perhaps reflecting changes in the localized growth dynamics, location of muscle attachments, encephalization, or basicranial flexion. PMID:18715622

  14. Temporal bone radiography using the orthopantomograph

    SciTech Connect

    Tatezawa, T.

    1981-09-01

    Temporal bone radiographs obtained with an Orthopantomograph were compared with conventional radiographs. In acoustic neurinoma, cholesteatoma, otitis media, and middle fossa tumors, both methods demonstrated the abnormalities well. In two cases with lesions extending beyond the range of conventional projections, the broad orthopantomographic coverage was very valuable. Mastoid air cells, the mastoid process, petrous ridge, and internal auditory meatus were well demonstrated by both techniques. Orthopantomography was found to be superior in the demonstration of the petrous apex, while the superior semicircular canal was better demonstrated on the conventional views. Bilateral symmetry was particularly good and because of fewer films, radiation exposure was considerably less with orthopantomography. For many applications, orthopantomography is an adequate convenient substitute for conventional methods of examining the temporal bones.

  15. Nonsyndromic Isolated Temporal Bone Styloid Process Fracture

    PubMed Central

    Kermani, Hamed; Dehghani, Nima; Aghdashi, Farzad; Esmaeelinejad, Mohammad

    2016-01-01

    Introduction: Fracture of the styloid process (SP) of the temporal bone is a rare traumatic injury in normal individuals who are not suffering from Eagle’s syndrome. Diagnosis and management of this problem requires comprehensive knowledge about its signs and symptoms. This study aimed to present an isolated styloid process fracture in a nonsyndromic patient. Case Presentation: A 50-year-old male patient was referred to our department with a complaint of sore throat. However, presentation of the problem resembled the symptoms of temporomandibular joint disorder (TMD). Fracture of the SP of the temporal bone was detected on the radiographs. Conservative treatment was undertaken for the patient. The symptoms diminished after about four months. Conclusions: Physicians should be aware of the signs and symptoms of different pain sources to prevent misdiagnosis and maltreatment. PMID:27218052

  16. Spatial and Temporal Analysis of inundation and Freeze /Thaw states in Alaska Using High Resolution ALOS PALSAR Observations

    NASA Astrophysics Data System (ADS)

    Azarderakhsh, M.; McDonald, K. C.; Schroeder, R.; Steiner, N.; Podest, E.

    2013-12-01

    Monitoring freeze -thaw transitions and mapping the extent and dynamics of wetlands in high latitudes are critical to enhancing our knowledge about the biogeochemical transitions, carbon dynamics and prediction of boreal-arctic ecosystem. The upcoming Soil Moisture Active/Passive (SMAP) mission, scheduled for launch in October 2014, will have an L-band active / passive sensor package which will allow determination of soil moisture and the timing of landscape seasonal freeze/thaw states across the globe. In line with these ongoing efforts, this study aims to monitor inundation and Freeze and Thaw states in Alaska using Advanced Land Observing Satellite Phased Array L-Band SAR (ALOS PALSAR) ScanSAR observations. Four years of PALSAR measurements from 2007 to 2010 were acquired over the state of Alaska. Although wide-swath ScanSAR products, offer increased temporal coverage relative to standard narrow-beam SAR datasets, , they have a high variation of radar backscatter in across track because of the large swath width. We investigate the effect of incidence angle on radiometrically calibrated and terrain corrected ScanSAR data as a function of land surface (vegetation and roughness) and moisture content. These effects and their seasonal variation are used in classifiying inundated areas. The wetlands extent and inundation dynamics are crucial as they are an important component of the carbon cycle in Arctic regions. We apply pixel-based and object oriented-based classification methods to derive inundation maps during the thaw season. The dynamic inundation maps then are developed at 100m resolution. JERS and PALSAR Fine Beam mode based static wetlands map and Landsat Based land cover data (NLCD) are used to train and assess the classification at high resolution along with other ancillary data sets. The inundated areas obtained from wetland classification are then used to separate from other land cover types in F/T algorithm. We use a model based on Lambert's cosine

  17. Temporal Variations in the Roughness of Eroding River Banks Revealed by High-Resolution Digital Photogrammetry and Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Darby, S. E.; Leyland, J.; Rinaldi, M.; Teruggi, L.; Ostuni, D.

    2010-12-01

    of the roughness is approximated as a series of user defined Gaussian functions, with the skin drag component characterised by the deviation of points from the fitted curves. In our study these bank ‘roughness profiles’ are extracted from an annual series (2003-present) of high-resolution DEMs of the river bank, the latter being constructed either through digital photogrammetry or terrestrial laser scanning surveys. The DEMs are used to quantify accurately the spatial trends and amounts of annual bank erosion observed in relation to the hydrological regime of the river, and are compared to the temporal variations in river bank form and skin roughness components as the bank erodes. The data are used to evaluate the extent to which there is a dynamic feedback between the bank erosion process and bank form roughness.

  18. Papillary Tumor of the Temporal Bone

    PubMed Central

    Schick, Bernhard; Kronsbein, Hartmut; Kahle, Gabriele; Prescher, Andreas; Draf, Wolfgang

    2001-01-01

    Papillary tumors of the middle and inner ear have been interpreted histogenetically in many ways. In 1989 Heffner proposed the endolymphatic sac epithelium as a possible origin. These rare tumors are clinically aggressive and can cause extensive temporal bone destruction. Because of this behavior, endolymphatic sac tumors (ELST) were classified as low-grade adenocarcinomas, although metastasis has not yet been documented. Two papillary neoplasms of the temporal bone are presented, which we believe are examples of adenomatous tumors arising from the epithelium of the endolymphatic sac. One was associated with a pituitary adenoma. A third case of a papillary middle ear neoplasm is described that shows histologic features similar to the other two, but it was located in the tympanum and had no connection to the endolymphatic sac. This report focuses on clinical, radiologic, and histologic findings of papillary tumors of the temporal bone with additional emphasis on modern concepts of histogenesis and aspects of differential diagnosis. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5 PMID:17167601

  19. Assessment of Trabecular and Cortical Architecture and Mechanical Competence of Bone by High-Resolution Peripheral Computed Tomography: Comparison with Transiliac Bone Biopsy*

    PubMed Central

    Cohen, A.; Dempster, D.W.; Müller, R.; Guo, X.E.; Nickolas, T.L.; Liu, X.S.; Zhang, X.H.; Wirth, A.J.; van Lenthe, G.H.; Kohler, T.; McMahon, D.J.; Zhou, H.; Rubin, M.R.; Bilezikian, J.P.; Lappe, J. M.; Recker, R.R.; Shane, E.

    2010-01-01

    Purpose High resolution peripheral quantitative CT (HR-pQCT) is a new imaging technique that assesses trabecular and cortical bone microarchitecture of the radius and tibia in vivo. The purpose of this study was to determine the extent to which microarchitectural variables measured by HR-pQCT reflect those measured by the “gold standard”, transiliac bone biopsy. Methods HR-pQCT scans (Xtreme CT, Scanco Medical AG) and iliac crest bone biopsies were performed in 54 subjects (aged 39±10 years). Biopsies were analyzed by 2D quantitative histomorphometry and 3D microcomputed tomography (μCT). Apparent Young’s modulus, an estimate of mechanical competence or strength, was determined by micro-finite element analysis (μFE) of biopsy μCT and HR-pQCT images. Results The strongest correlations observed were between trabecular parameters (bone volume fraction, number, separation) measured by μCT of biopsies and HR-pQCT of the radius (R: 0.365-0.522; p<0.01). Cortical width of biopsies correlated with cortical thickness by HR-pQCT, but only at the tibia (R=0.360, p<0.01). Apparent Young’s modulus calculated by μFE of biopsies correlated with that calculated for both radius (R=0.442; p<0.001) and tibia (R=0.380; p<0.001) HR-pQCT scans. Conclusions The associations between peripheral (HR-pQCT) and axial (transiliac biopsy) measures of microarchitecture and estimated mechanical competence are significant but modest. PMID:19455271

  20. Temporal bone chondroblastoma totally invisible on MRI.

    PubMed

    Hiraumi, Harukazu; Arakawa, Yoshiki; Yamamoto, Norio; Sakamoto, Tatsunori; Ito, Juichi

    2016-08-01

    We report a case of temporal bone chondroblastoma that was totally invisible on MRI. The patient was a 64-year-old man who presented with several months history of vertigo. The CT scan with bone window setting showed destruction of the temporomandibular joint, the floor of the middle cranial fossa, and the superior semicircular canal. Calcific foci were seen within the tumor. On MR imaging, the tumor, situating mainly medial to the temporomandibular joint, showed no signal on both T1- and T2-weighted images. The tumor was not enhanced with gadolinium. In summary, the tumor was totally signal negative or "invisible" on pre- and postcontrast T1- and T2-weighted images. The tumor was resected through transpetrosal - transzygomatic approach. PMID:26743837

  1. Langerhans Cell Histiocytosis of the Temporal Bone.

    PubMed

    Ginat, Daniel Thomas; Johnson, Daniel N; Cipriani, Nicole A

    2016-06-01

    Langerhans cell histiocytosis involving the temporal bone region is uncommon and can resemble malignant neoplasms on imaging due to high cellularity. Although recognizing the presence of sharp margins with beveled-edges can be helpful, tissue sampling is often necessary for confirming the diagnosis. Cytology classically demonstrates kidney-bean shaped nuclei within the Langerhans cells and immunohistochemical staining is positive for S-100, peanut agglutinin (PNA), MHC class II, CD1a, and Langerin (CD 207). These features are exemplified in this sine qua non radiology-pathology correlation article. PMID:25903273

  2. Postnatal temporal bone ontogeny in Pan, Gorilla, and Homo, and the implications for temporal bone ontogeny in Australopithecus afarensis.

    PubMed

    Terhune, Claire E; Kimbel, William H; Lockwood, Charles A

    2013-08-01

    Assessments of temporal bone morphology have played an important role in taxonomic and phylogenetic evaluations of fossil taxa, and recent three-dimensional analyses of this region have supported the utility of the temporal bone for testing taxonomic and phylogenetic hypotheses. But while clinical analyses have examined aspects of temporal bone ontogeny in humans, the ontogeny of the temporal bone in non-human taxa is less well documented. This study examines ontogenetic allometry of the temporal bone in order to address several research questions related to the pattern and trajectory of temporal bone shape change during ontogeny in the African apes and humans. We further apply these data to a preliminary analysis of temporal bone ontogeny in Australopithecus afarensis. Three-dimensional landmarks were digitized on an ontogenetic series of specimens of Homo sapiens, Pan troglodytes, Pan paniscus, and Gorilla gorilla. Data were analyzed using geometric morphometric methods, and shape changes throughout ontogeny in relation to size were compared. Results of these analyses indicate that, despite broadly similar patterns, African apes and humans show marked differences in development of the mandibular fossa and tympanic portions of the temporal bone. These findings indicate divergent, rather than parallel, postnatal ontogenetic allometric trajectories for temporal bone shape in these taxa. The pattern of temporal bone shape change with size exhibited by A. afarensis showed some affinities to that of humans, but was most similar to extant African apes, particularly Gorilla. PMID:23868175

  3. High-resolution 3D imaging of osteocytes and computational modelling in mechanobiology: insights on bone development, ageing, health and disease.

    PubMed

    Goggin, P M; Zygalakis, K C; Oreffo, R O; Schneider, P

    2016-01-01

    Osteocytes are involved in mechanosensation and mechanotransduction in bone and hence, are key to bone adaptation in response to development, ageing and disease. Thus, detailed knowledge of the three-dimensional (3D) structure of the osteocyte network (ON) and the surrounding lacuno-canalicular network (LCN) is essential. Enhanced understanding of the ON&LCN will contribute to a better understanding of bone mechanics on cellular and sub-cellular scales, for instance through improved computational models of bone mechanotransduction. Until now, the location of the ON within the hard bone matrix and the sub-µm dimensions of the ON&LCN have posed significant challenges for 3D imaging. This review identifies relevant microstructural phenotypes of the ON&LCN in health and disease and summarises how light microscopy, electron microscopy and X-ray imaging techniques have been used in studies of osteocyte anatomy, pathology and mechanobiology to date. In this review, we assess the requirements for ON&LCN imaging and examine the state of the art in the fields of imaging and computational modelling as well as recent advances in high-resolution 3D imaging. Suggestions for future investigations using volume electron microscopy are indicated and we present new data on the ON&LCN using serial block-face scanning electron microscopy. A correlative approach using these high-resolution 3D imaging techniques in conjunction with in silico modelling in bone mechanobiology will increase understanding of osteocyte function and, ultimately, lead to improved pathways for diagnosis and treatment of bone diseases such as osteoporosis. PMID:27209400

  4. Micro-finite element analysis applied to high-resolution MRI reveals improved bone mechanical competence in the distal femur of female pre-professional dancers

    PubMed Central

    Rajapakse, C. S.; Diamond, M.; Honig, S.; Recht, M. P.; Weiss, D. S.; Regatte, R. R.

    2013-01-01

    Summary Micro-finite element analysis applied to high-resolution (0.234-mm length scale) MRI reveals greater whole and cancellous bone stiffness, but not greater cortical bone stiffness, in the distal femur of female dancers compared to controls. Greater whole bone stiffness appears to be mediated by cancellous, rather than cortical bone adaptation. Introduction The purpose of this study was to compare bone mechanical competence (stiffness) in the distal femur of female dancers compared to healthy, relatively inactive female controls. Methods This study had institutional review board approval. We recruited nine female modern dancers (25.7± 5.8 years, 1.63±0.06 m, 57.1±4.6 kg) and ten relatively inactive, healthy female controls matched for age, height, and weight (32.1±4.8 years, 1.6±0.04 m, 55.8±5.9 kg). We scanned the distal femur using a 7-T MRI scanner and a three-dimensional fast low-angle shot sequence (TR/TE= 31 ms/5.1 ms, 0.234 mm×0.234 mm×1 mm, 80 slices). We applied micro-finite element analysis to 10-mm-thick volumes of interest at the distal femoral diaphysis, metaphysis, and epiphysis to compute stiffness and cross-sectional area of whole, cortical, and cancellous bone, as well as cortical thickness. We applied two-tailed t-tests and ANCOVA to compare groups. Results Dancers demonstrated greater whole and cancellous bone stiffness and cross-sectional area at all locations (p< 0.05). Cortical bone stiffness, cross-sectional area, and thickness did not differ between groups (>0.08). At all locations, the percent of intact whole bone stiffness for cortical bone alone was lower in dancers (p<0.05). Adjustment for cancellous bone cross-sectional area eliminated significant differences in whole bone stiffness between groups (p>0.07), but adjustment for cortical bone cross-sectional area did not (p<0.03). Conclusions Modern dancers have greater whole and cancellous bone stiffness in the distal femur compared to controls. Elevated whole bone stiffness

  5. Serial Scanning and Registration of High Resolution Quantitative Computed Tomography Volume Scans for the Determination of Local Bone Density Changes

    NASA Technical Reports Server (NTRS)

    Whalen, Robert T.; Napel, Sandy; Yan, Chye H.

    1996-01-01

    Progress in development of the methods required to study bone remodeling as a function of time is reported. The following topics are presented: 'A New Methodology for Registration Accuracy Evaluation', 'Registration of Serial Skeletal Images for Accurately Measuring Changes in Bone Density', and 'Precise and Accurate Gold Standard for Multimodality and Serial Registration Method Evaluations.'

  6. High-resolution imaging-guided electroencephalography source localization: temporal effect regularization incorporation in LORETA inverse solution

    NASA Astrophysics Data System (ADS)

    Boughariou, Jihene; Zouch, Wassim; Slima, Mohamed Ben; Kammoun, Ines; Hamida, Ahmed Ben

    2015-11-01

    Electroencephalography (EEG) and magnetic resonance imaging (MRI) are noninvasive neuroimaging modalities. They are widely used and could be complementary. The fusion of these modalities may enhance some emerging research fields targeting the exploration better brain activities. Such research attracted various scientific investigators especially to provide a convivial and helpful advanced clinical-aid tool enabling better neurological explorations. Our present research was, in fact, in the context of EEG inverse problem resolution and investigated an advanced estimation methodology for the localization of the cerebral activity. Our focus was, therefore, on the integration of temporal priors to low-resolution brain electromagnetic tomography (LORETA) formalism and to solve the inverse problem in the EEG. The main idea behind our proposed method was in the integration of a temporal projection matrix within the LORETA weighting matrix. A hyperparameter is the principal fact for such a temporal integration, and its importance would be obvious when obtaining a regularized smoothness solution. Our experimental results clearly confirmed the impact of such an optimization procedure adopted for the temporal regularization parameter comparatively to the LORETA method.

  7. Spatial-Temporal Dynamics of High-Resolution Animal Networks: What Can We Learn from Domestic Animals?

    PubMed Central

    Chen, Shi; Ilany, Amiyaal; White, Brad J.; Sanderson, Michael W.; Lanzas, Cristina

    2015-01-01

    Animal social network is the key to understand many ecological and epidemiological processes. We used real-time location system (RTLS) to accurately track cattle position, analyze their proximity networks, and tested the hypothesis of temporal stationarity and spatial homogeneity in these networks during different daily time periods and in different areas of the pen. The network structure was analyzed using global network characteristics (network density), subgroup clustering (modularity), triadic property (transitivity), and dyadic interactions (correlation coefficient from a quadratic assignment procedure) at hourly level. We demonstrated substantial spatial-temporal heterogeneity in these networks and potential link between indirect animal-environment contact and direct animal-animal contact. But such heterogeneity diminished if data were collected at lower spatial (aggregated at entire pen level) or temporal (aggregated at daily level) resolution. The network structure (described by the characteristics such as density, modularity, transitivity, etc.) also changed substantially at different time and locations. There were certain time (feeding) and location (hay) that the proximity network structures were more consistent based on the dyadic interaction analysis. These results reveal new insights for animal network structure and spatial-temporal dynamics, provide more accurate descriptions of animal social networks, and allow more accurate modeling of multiple (both direct and indirect) disease transmission pathways. PMID:26107251

  8. Arabidopsis Defense against Botrytis cinerea: Chronology and Regulation Deciphered by High-Resolution Temporal Transcriptomic Analysis[C][W

    PubMed Central

    Windram, Oliver; Madhou, Priyadharshini; McHattie, Stuart; Hill, Claire; Hickman, Richard; Cooke, Emma; Jenkins, Dafyd J.; Penfold, Christopher A.; Baxter, Laura; Breeze, Emily; Kiddle, Steven J.; Rhodes, Johanna; Atwell, Susanna; Kliebenstein, Daniel J.; Kim, Youn-sung; Stegle, Oliver; Borgwardt, Karsten; Zhang, Cunjin; Tabrett, Alex; Legaie, Roxane; Moore, Jonathan; Finkenstadt, Bärbel; Wild, David L.; Mead, Andrew; Rand, David; Beynon, Jim; Ott, Sascha; Buchanan-Wollaston, Vicky; Denby, Katherine J.

    2012-01-01

    Transcriptional reprogramming forms a major part of a plant’s response to pathogen infection. Many individual components and pathways operating during plant defense have been identified, but our knowledge of how these different components interact is still rudimentary. We generated a high-resolution time series of gene expression profiles from a single Arabidopsis thaliana leaf during infection by the necrotrophic fungal pathogen Botrytis cinerea. Approximately one-third of the Arabidopsis genome is differentially expressed during the first 48 h after infection, with the majority of changes in gene expression occurring before significant lesion development. We used computational tools to obtain a detailed chronology of the defense response against B. cinerea, highlighting the times at which signaling and metabolic processes change, and identify transcription factor families operating at different times after infection. Motif enrichment and network inference predicted regulatory interactions, and testing of one such prediction identified a role for TGA3 in defense against necrotrophic pathogens. These data provide an unprecedented level of detail about transcriptional changes during a defense response and are suited to systems biology analyses to generate predictive models of the gene regulatory networks mediating the Arabidopsis response to B. cinerea. PMID:23023172

  9. Chemodectomas arising in temporal bone structures

    SciTech Connect

    Dickens, W.J.; Million, R.R.; Cassisi, N.J.; Singleton, G.T.

    1982-02-01

    Eighteen patients with chemodectomas arising in temporal bone structures were evaluated and treated at the University of Florida. Seventeen patients have each been followed a minimum of 3 years. Patients were retrospectively staged as having ''local'' or ''advanced'' disease, depending on the presence or absence of bone destruction and/or cranial nerve involvement. Fourteen of the patients received radiation therapy as all or part of their therapy; 6 patients were treated with radiation therapy alone, 3 patients were irradiated immediately postoperatively for residual disease, and 5 patients had radiation therapy for recurrence after operation. They were treated with cobalt-60 radiation with doses ranging from 3760 to 5640 rad. All irradiated patients demonstrated evidence of tumor regression, and none have had tumor recurrence with followup of 3-12 years. Of the 8 patients with cranial nerve paralysis prior to therapy, 5 had return of function of 1 or more cranial nerves. One of 6 patients treated initially with radiation therapy had a complication, while 6 of 8 patients irradiated postoperatively had complications. None of the complications were fatal. Three patients treated by operation for early disease limited to the hypotympanum had the disease controlled for 11-12 years. Guidelines for the selection of initial therapy are discussed.

  10. CT Findings in Temporal Bone Osteoradionecrosis

    PubMed Central

    Ahmed, Salmaan; Gupta, Nakul; Hamilton, Jackson D.; Garden, Adam S.; Gidley, Paul W.; Ginsberg, Lawrence E.

    2014-01-01

    Purpose The goal of this study is to describe CT findings in patients with clinically proven temporal bone osteoradionecrosis (TB-ORN). Methods and materials CT scans of twenty patients were retrospectively evaluated for bony and soft tissue abnormalities. Clinical severity was graded based on level of therapy administered: mild (observation), moderate (antibiotics/hyperbaric oxygen), or severe (surgery). Results Radiation dose to the primary tumor ranged from 30 to 75.6 Gy. Time to onset of ORN from completion of radiation therapy was 2 to 22 years (median=7yrs). Clinical findings: Exposed bone=20/20, otorrhea=17/20, hearing loss=11/20, otalgia=10/20, facial nerve paralysis=2/20, gait imbalance=2/20. CT findings: EAC erosions=18/20, mastoid effusion=18/20, mastoid bony coalescence=5/20, enhancing soft tissue=6/20, soft tissue gas=6/20, temporomandibular joint/condylar erosion=3/20. 3 patients developed an abscess. Conclusion Mastoid effusion and EAC erosions are commonly seen with TB-ORN. Clinically moderate or severe cases of TB-ORN are more likely to demonstrate enhancing soft tissue (p=0.002), soft tissue gas (p=0.002), and temporomandibular joint involvement (p=0.07). PMID:24834883

  11. Radiation injury to the temporal bone

    SciTech Connect

    Guida, R.A.; Finn, D.G.; Buchalter, I.H.; Brookler, K.H.; Kimmelman, C.P. )

    1990-01-01

    Osteoradionecrosis of the temporal bone is an unusual sequela of radiation therapy to the head and neck. Symptoms occur many years after the radiation is administered, and progression of the disease is insidious. Hearing loss (sensorineural, conductive, or mixed), otalgia, otorrhea, and even gross tissue extrusion herald this condition. Later, intracranial complications such as meningitis, temporal lobe or cerebellar abscess, and cranial neuropathies may occur. Reported here are five cases of this rare malady representing varying degrees of the disease process. They include a case of radiation-induced necrosis of the tympanic ring with persistent squamous debris in the external auditory canal and middle ear. Another case demonstrates the progression of radiation otitis media to mastoiditis with bony sequestration. Further progression of the disease process is seen in a third case that evolved into multiple cranial neuropathies from skull base destruction. Treatment includes systemic antibiotics, local wound care, and debridement in cases of localized tissue involvement. More extensive debridement with removal of sequestrations, abscess drainage, reconstruction with vascularized tissue from regional flaps, and mastoid obliteration may be warranted for severe cases. Hyperbaric oxygen therapy has provided limited benefit.

  12. Feasibility study for reconstructing the spatial-temporal structure of TIDs from high-resolution backscatter ionograms

    NASA Astrophysics Data System (ADS)

    Nickisch, L. J.; Fridman, Sergey; Hausman, Mark; San Antonio, Geoffrey S.

    2016-05-01

    Over-the-horizon radar (OTHR) utilizes the reflective "sky wave" property of the ionosphere for high-frequency radiowaves to illuminate targets at ranges extending to several thousand kilometers. However, the ionospheric "mirror" is not static but exhibits geographic, diurnal, seasonal, and solar cycle variations. NorthWest Research Associates has developed an ionospheric data assimilation capability called Global Positioning Satellite Ionospheric Inversion (GPSII; pronounced "gypsy") that allows real-time modeling of the ionospheric structure for the purpose of accurate coordinate registration (CR; OTHR geolocation). However, the ionosphere is routinely subjected to traveling ionospheric disturbances (TIDs), and the deflection of HF sky wave signals by unmodeled TIDs remains a troubling source of CR errors (tens of kilometers). Traditional OTHR tools for ionospheric sounding (vertical and backscatter ionograms) do not resolve the fine spatial structure associated with TIDs. The collection of backscatter ionograms using the full aperture of the OTHR was recently demonstrated, thus providing enhanced resolution in radar azimuth in comparison with conventional OTHR backscatter soundings that utilize only a fraction of the OTHR receiver array. Leading edges of such backscatter ionograms demonstrate prominent spatial features associated with TIDs. We investigate the feasibility of recovering TID perturbations of ionospheric electron density from high-resolution backscatter ionograms. We incorporated a model of naturally occurring TIDs into a numerical ray tracing code that allows the generation of synthetic OTHR data. We augmented GPSII to assimilate time series of full-aperture backscatter ionogram leading edge data. Results of the simulation show that GPSII is able to reproduce the TID structure used to generate the backscatter ionograms reasonably well.

  13. Accuracy of High-Resolution In Vivo Micro Magnetic Resonance Imaging for Measurements of Microstructural and Mechanical Properties of Human Distal Tibial Bone

    PubMed Central

    Liu, X. Sherry; Zhang, X. Henry; Rajapakse, Chamith S.; Wald, Michael J.; Magland, Jeremy; Sekhon, Kiranjit K.; Adam, Mark F.; Sajda, Paul; Wehrli, Felix W.; Guo, X. Edward

    2011-01-01

    Micro magnetic resonance imaging (µMRI) is an in vivo imaging method which permits three dimensional (3D) quantification of cortical and trabecular bone microstructure. µMR images can also be used for building microstructural finite element (µFE) models to assess bone stiffness, which highly correlates with bone’s resistance to fractures. In order for µMR image-based microstructural and µFE analyses to become standard clinical tools for assessing bone quality, validation with a current gold standard, namely the high-resolution micro computed tomography (µCT) is required. Microstructural measurements of 25 human cadaveric distal tibiae were performed for the registered µMR and µCT images, respectively. Next, whole bone stiffness, trabecular bone stiffness, and elastic moduli of cubic sub-volumes of trabecular bone in both µMR and µCT images were determined by voxel-based µFE analysis. The bone volume fraction (BV/TV), trabecular number (Tb.N*), trabecular spacing (Tb.Sp*), cortical thickness (Ct.Th), and structure model index (SMI) of µMRI showed strong correlations with µCT measurements (r2=0.67~0.97), and bone surface to volume ratio (BS/BV), connectivity density (Conn.D), and degree of anisotropy (DA) had significant but moderate correlations (r2=0.33~0.51). Each of these measurements also contributed to one or many of the µFE-predicted mechanical properties. However, model-independent trabecular thickness (Tb.Th*) of µMRI had no correlation with the µCT measurement and did not contribute to any mechanical measurement. Furthermore, the whole bone and trabecular bone stiffness of µMR images were highly correlated to those of µCT images (r2=0.86 and 0.96), suggesting that µMRI-based µFE analyses can directly and accurately quantify whole bone mechanical competence. In contrast, the elastic moduli of the µMRI trabecular bone sub-volume had significant but only moderate correlations with their gold standards (r2=0.40~0.58). We conclude that

  14. The Multi-Temporal Database of High Resolution Stereo Camera (HRSC) and Planetary Images of Mars (MUTED): A Tool to Support the Identification of Surface Changes

    NASA Astrophysics Data System (ADS)

    Erkeling, G.; Luesebrink, D.; Hiesinger, H.; Reiss, D.; Jaumann, R.

    2015-10-01

    Image data transmitted to Earth by Martian spacecraft since the 1970s, for example by Mariner and Viking, Mars Global Surveyor (MGS), Mars Express (MEx) and the Mars Reconnaissance Orbiter (MRO) showed, that the surface of Mars has changed dramatically and actually is continually changing [e.g., 1-8]. The changes are attributed to a large variety of atmospherical, geological and morphological processes, including eolian processes [9,10], mass wasting processes [11], changes of the polar caps [12] and impact cratering processes [13]. The detection of surface changes in planetary image data is closely related to the spatial and temporal availability of images in a specific region. While previews of the images are available at ESA's Planetary Science Archive (PSA), through the NASA Planetary Data System (PDS) and via other less frequently used databases, there is no possibility to quickly and conveniently see the spatial and temporal availability of HRSC images and other planetary image data in a specific region, which is important to detect the surface changes that occurred between two or more images. In addition, it is complicated to get an overview of the image quality and label information for images covering the same area. However, the investigation of surface changes represents a key element in martian research and has implications for the geologic, morphologic and climatic evolution of Mars. In order to address these issues, we developed the "Multi- Temporal Database of High Resolution Stereo Camera (HRSC) Images" (MUTED), which represents a tool for the identification of the spatial and multi-temporal coverage of planetary image data from Mars. Scientists will be able to identify the location, number, and time range of acquisition of overlapping HRSC images. MUTED also includes images of other planetary image datasets such as those of the Context Camera (CTX), the Mars Orbiter Camera (MOC), the Thermal Emission Imaging System (THEMIS), and the High Resolution

  15. Selective detection and complete identification of triglycerides in cortical bone by high-resolution (1)H MAS NMR spectroscopy.

    PubMed

    Mroue, Kamal H; Xu, Jiadi; Zhu, Peizhi; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2016-07-28

    Using (1)H-based magic angle spinning solid-state NMR spectroscopy, we report an atomistic-level characterization of triglycerides in compact cortical bone. By suppressing contributions from immobile molecules present in bone, we show that a (1)H-based constant-time uniform-sign cross-peak (CTUC) two-dimensional COSY-type experiment that correlates the chemical shifts of protons can selectively detect a mobile triglyceride layer as the main component of small lipid droplets embedded on the surface of collagen fibrils. High sensitivity and resolution afforded by this NMR approach could be potentially utilized to investigate the origin of triglycerides and their pathological roles associated with bone fractures, diseases, and aging. PMID:27374353

  16. Application of high resolution pQCT analysis for the assessment of a bone lesion: a technical note.

    PubMed

    Rubinacci, A; Tresoldi, D; Villa, I; Rizzo, G; Gaudio, D; De Angelis, D; Gibelli, D; Cattaneo, C

    2015-01-01

    Peripheral quantitative computed tomography (pQCT) has found new fields of application in bone medicine, but none of them concerns the forensic practice. This study exposes the potential of pQCT applied to a penetrating lesion in a vertebral body. A pQCT scanner was used for the measurements (XCT Research SA+; Stratec Medizintechnik GmbH, Pforzheim, Germany). A more precise reconstruction of the path of the lesion within the trabecular bone was reached, with more details concerning the morphological characteristics of the lesion inside the vertebral body, and the elaboration of a 3D model was created, which allowed the operator to define the volume of the lack of tissues related to the lesion. The application of pQCT scan proved to be a potentially useful tool for the assessment of bone lesions, although further studies are needed in order to verify its applicability to forensic context. PMID:25258096

  17. Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing

    NASA Astrophysics Data System (ADS)

    Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei

    2014-03-01

    We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.

  18. Temporal measurement and analysis of high-resolution spectral signatures of plants and relationships to biophysical characteristics

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.; Rebbman, Jan; Hall, Carlton; Provancha, Mark; Vieglais, David

    1995-11-01

    Measurements of temporal reflectance signatures as a function of growing season for sand live oak (Quercus geminata), myrtle oak (Q. myrtifolia, and saw palmetto (Serenoa repens) were collected during a two year study period. Canopy level spectral reflectance signatures, as a function of 252 channels between 368 and 1115 nm, were collected using near nadir viewing geometry and a consistent sun illumination angle. Leaf level reflectance measurements were made in the laboratory using a halogen light source and an environmental optics chamber with a barium sulfate reflectance coating. Spectral measurements were related to several biophysical measurements utilizing optimal passive ambient correlation spectroscopy (OPACS) technique. Biophysical parameters included percent moisture, water potential (MPa), total chlorophyll, and total Kjeldahl nitrogen. Quantitative data processing techniques were used to determine optimal bands based on the utilization of a second order derivative or inflection estimator. An optical cleanup procedure was then employed that computes the double inflection ratio (DIR) spectra for all possible three band combinations normalized to the previously computed optimal bands. These results demonstrate a unique approach to the analysis of high spectral resolution reflectance signatures for estimation of several biophysical measures of plants at the leaf and canopy level from optimally selected bands or bandwidths.

  19. Sensitivity of Honeybee Hygroreceptors to Slow Humidity Changes and Temporal Humidity Variation Detected in High Resolution by Mobile Measurements

    PubMed Central

    Tichy, Harald; Kallina, Wolfgang

    2014-01-01

    The moist cell and the dry cell on the antenna of the male honeybee were exposed to humidities slowly rising and falling at rates between –1.5%/s and +1.5%/s and at varying amplitudes in the 10 to 90% humidity range. The two cells respond to these slow humidity oscillations with oscillations in impulse frequency which depend not only on instantaneous humidity but also on the rate with which humidity changes. The impulse frequency of each cell was plotted as a function of these two parameters and regression planes were fitted to the data points of single oscillation periods. The regression slopes, which estimate sensitivity, rose with the amplitude of humidity oscillations. During large-amplitude oscillations, moist and dry cell sensitivity for instantaneous humidity and its rate of change was high. During small-amplitude oscillations, their sensitivity for both parameters was low, less exactly reflecting humidity fluctuations. Nothing is known about the spatial and temporal humidity variations a honeybee may encounter when flying through natural environments. Microclimatic parameters (absolute humidity, temperature, wind speed) were measured from an automobile traveling through different landscapes of Lower Austria. Landscape type affected extremes and mean values of humidity. Differences between peaks and troughs of humidity fluctuations were generally smaller in open grassy fields or deciduous forests than in edge habitats or forest openings. Overall, fluctuation amplitudes were small. In this part of the stimulus range, hygroreceptor sensitivity is not optimal for encoding instantaneous humidity and the rate of humidity change. It seems that honeybee's hygroreceptors are specialized for detecting large-amplitude fluctuations that are relevant for a specific behavior, namely, maintaining a sufficiently stable state of water balance. The results suggest that optimal sensitivity of both hygroreceptors is shaped not only by humidity oscillation amplitudes but also

  20. Sensitivity of honeybee hygroreceptors to slow humidity changes and temporal humidity variation detected in high resolution by mobile measurements.

    PubMed

    Tichy, Harald; Kallina, Wolfgang

    2014-01-01

    The moist cell and the dry cell on the antenna of the male honeybee were exposed to humidities slowly rising and falling at rates between -1.5%/s and +1.5%/s and at varying amplitudes in the 10 to 90% humidity range. The two cells respond to these slow humidity oscillations with oscillations in impulse frequency which depend not only on instantaneous humidity but also on the rate with which humidity changes. The impulse frequency of each cell was plotted as a function of these two parameters and regression planes were fitted to the data points of single oscillation periods. The regression slopes, which estimate sensitivity, rose with the amplitude of humidity oscillations. During large-amplitude oscillations, moist and dry cell sensitivity for instantaneous humidity and its rate of change was high. During small-amplitude oscillations, their sensitivity for both parameters was low, less exactly reflecting humidity fluctuations. Nothing is known about the spatial and temporal humidity variations a honeybee may encounter when flying through natural environments. Microclimatic parameters (absolute humidity, temperature, wind speed) were measured from an automobile traveling through different landscapes of Lower Austria. Landscape type affected extremes and mean values of humidity. Differences between peaks and troughs of humidity fluctuations were generally smaller in open grassy fields or deciduous forests than in edge habitats or forest openings. Overall, fluctuation amplitudes were small. In this part of the stimulus range, hygroreceptor sensitivity is not optimal for encoding instantaneous humidity and the rate of humidity change. It seems that honeybee's hygroreceptors are specialized for detecting large-amplitude fluctuations that are relevant for a specific behavior, namely, maintaining a sufficiently stable state of water balance. The results suggest that optimal sensitivity of both hygroreceptors is shaped not only by humidity oscillation amplitudes but also

  1. Surgical management of osteoradionecrosis of the temporal bone

    SciTech Connect

    Kveton, J.F.

    1988-03-01

    The surgical management of osteoradionecrosis of the temporal bone has met with limited success because of the difficulty in accurate assessment of the viability of nonnecrotic bone intraoperatively. Failure to resect all nonviable bone results in recurrence of a necrotic focus. With the use of hyperbaric oxygen therapy to stabilize marginal bone and oral tetracycline to label viable bone preoperatively, removal of all nonviable bone can be accomplished. Postoperatively, a second course of hyperbaric therapy enhances wound healing, thus assuring a successful outcome. This article details a successful systematic approach that was developed to resect a necrotic focus in the temporal bone of a 10-year-old boy who had undergone a full course of radiotherapy for treatment of a rhabdomyosarcoma.

  2. Trabecular and cortical bone density and architecture in women after 60 days of bed rest using high-resolution pQCT: WISE 2005.

    PubMed

    Armbrecht, Gabriele; Belavý, Daniel Ludovic; Backström, Magdalena; Beller, Gisela; Alexandre, Christian; Rizzoli, Rene; Felsenberg, Dieter

    2011-10-01

    Prolonged bed rest is used to simulate the effects of spaceflight and causes disuse-related loss of bone. While bone density changes during bed rest have been described, there are no data on changes in bone microstructure. Twenty-four healthy women aged 25 to 40 years participated in 60 days of strict 6-degree head-down tilt bed rest (WISE 2005). Subjects were assigned to either a control group (CON, n = 8), which performed no countermeasures; an exercise group (EXE, n = 8), which undertook a combination of resistive and endurance training; or a nutrition group (NUT, n = 8), which received a high-protein diet. Density and structural parameters of the distal tibia and radius were measured at baseline, during, and up to 1 year after bed rest by high-resolution peripheral quantitative computed tomography (HR-pQCT). Bed rest was associated with reductions in all distal tibial density parameters (p < 0.001), whereas only distal radius trabecular density decreased. Trabecular separation increased at both the distal tibia and distal radius (p < 0.001), but these effects were first significant after bed rest. Reduction in trabecular number was similar in magnitude at the distal radius (p = 0.021) and distal tibia (p < 0.001). Cortical thickness decreased at the distal tibia only (p < 0.001). There were no significant effects on bone structure or density of the countermeasures (p ≥ 0.057). As measured with HR-pQCT, it is concluded that deterioration in bone microstructure and density occur in women during and after prolonged bed rest. The exercise and nutrition countermeasures were ineffective in preventing these changes. PMID:21812030

  3. The temporal response of bone to unloading

    NASA Technical Reports Server (NTRS)

    Globus, R. K.; Bikle, D. D.; Morey-Holton, E.

    1984-01-01

    Rats were suspended by their tails with the forelimbs bearing the weight load to simulate the weightlessness of space flight. Growth in bone mass ceased by 1 week in the hindlimbs and lumbar vertebrae in growing rats, while growth in the forelimbs and cervical vertebrae remained unaffected. The effects of selective skeletal unloading on bone formation during 2 weeks of suspension was investigated using radio iostope incorporation (with Ca-45 and H-3 proline) and histomorphometry (with tetracycline labeling). The results of these studies were confirmed by histomorphometric measurements of bone formation using triple tetracycline labeling. This model of simulated weightlessness results in an initial inhibition of bone formation in the unloaded bones. This temporary cessation of bone formation is followed in the accretion of bone mass, which then resumes at a normal rate by 14 days, despite continued skeletal unloading. This cycle of inhibition and resumption of bone formation has profound implication for understanding bone dynamics durng space flight, immobilization, or bed rest and offers an opportunity to study the hormonal and mechanical factors that regulate bone formation.

  4. Endoscopic Management of Middle Ear and Temporal Bone Lesions.

    PubMed

    Isaacson, Brandon; Nogueira, João Flávio

    2016-10-01

    Tantamount to the management of temporal bone neoplasms is the ability to visualize the pathology and its relationship with the numerous critical structures housed therein. Transcanal endoscopic ear surgery provides the surgeon with an unparalleled view of the entire middle ear. This article presents the latest information on the usefulness of transcanal endoscopic ear surgery in the management of middle ear and temporal bone neoplasms. PMID:27468636

  5. Comparison of pixel and sub-pixel based techniques to separate Pteronia incana invaded areas using multi-temporal high resolution imagery

    NASA Astrophysics Data System (ADS)

    Odindi, John; Kakembo, Vincent

    2009-08-01

    Remote Sensing using high resolution imagery (HRI) is fast becoming an important tool in detailed land-cover mapping and analysis of plant species invasion. In this study, we sought to test the separability of Pteronia incana invader species by pixel content aggregation and pixel content de-convolution using multi-temporal infrared HRI. An invaded area in Eastern Cape, South Africa was flown in 2001, 2004 and 2006 and HRI of 1x1m resolution captured using a DCS 420 colour infrared camera. The images were separated into bands, geo-rectified and radiometrically corrected using Idrisi Kilimanjaro GIS. Value files were extracted from the bands in order to compare spectral values for P. incana, green vegetation and bare surfaces using the pixel based Perpendicular Vegetation Index (PVI), while Constrained Linear Spectral Unmixing (CLSU) surface endmembers were used to generate sub-pixel land surface image fractions. Spectroscopy was used to validate spectral trends identified from HRI. The PVI successfully separated the multi-temporal imagery surfaces and was consistent with the unmixed surface image fractions from CLSU. Separability between the respective surfaces was also achieved using reflectance measurements.

  6. Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI.

    PubMed

    Yuan, Han; Ding, Lei; Zhu, Min; Zotev, Vadim; Phillips, Raquel; Bodurka, Jerzy

    2016-03-01

    Functional magnetic resonance imaging (fMRI) studies utilizing measures of hemodynamic signal, such as the blood oxygenation level-dependent (BOLD) signal, have discovered that resting-state brain activities are organized into multiple large-scale functional networks, coined as resting-state networks (RSNs). However, an important limitation of the available fMRI studies is that hemodynamic signals only provide an indirect measure of the neuronal activity. In contrast, electroencephalography (EEG) directly measures electrophysiological activity of the brain. However, little is known about the brain-wide organization of such spontaneous neuronal population signals at the resting state. It is not entirely clear if or how the network structure built upon slowly fluctuating hemodynamic signals is represented in terms of fast, dynamic, and spontaneous neuronal activity. In this study, we investigated the electrophysiological representation of RSNs from simultaneously acquired EEG and fMRI data in the resting human brain. We developed a data-driven analysis approach that reconstructed multiple large-scale electrophysiological networks from high-resolution EEG data alone. The networks derived from EEG were then compared with RSNs independently derived from simultaneously acquired fMRI in their spatial structures as well as temporal dynamics. Results reveal spatially and temporally specific electrophysiological correlates for the fMRI-RSNs. Findings suggest that the spontaneous activity of various large-scale cortical networks is reflected in macroscopic EEG potentials. PMID:26414793

  7. Virtual Temporal Bone Dissection System: Development and Testing

    PubMed Central

    Wiet, Gregory J.; Stredney, Don; Kerwin, Thomas; Hittle, Bradley; Fernandez, Soledad A.; Welling, D. Bradley

    2012-01-01

    Objectives/Hypothesis The objective of this project was to develop a virtual temporal bone dissection system that would provide an enhanced educational experience for the training of otologic surgeons. Study Design A randomized, controlled, multi-institutional single blinded validation study. Methods The project encompassed 4 areas of emphasis: structural data acquisition, integration of the system, dissemination of the system, and validation. Results Structural acquisition was performed on multiple imaging platforms. Integration achieved a cost effective system. Dissemination was achieved on different levels including casual interest, downloading of software, and full involvement in development and validation studies. A validation study was performed at 8 different training institutions across the country using a two arm, randomized trial where study subjects were randomized to a two-week practice session using either the virtual temporal bone or standard cadaveric temporal bones. Eighty subjects were enrolled and randomized to one of the two treatment arms, 65 completed the study. There was no difference between the two groups using a blinded rating tool to assess performance after training. Conclusions 1. A virtual temporal bone dissection system has been developed and compared to cadaveric temporal bones for practice using a multi-center trial. 2. There is no statistical difference seen between practice on the current simulator when compared to practice on human cadaveric temporal bones. 3. Further refinements in structural acquisition and interface design have been identified which can be implemented prior to full incorporation into training programs and use for objective skills assessment. PMID:22294268

  8. Towards widespread exploitation of high resolution multi-temporal interferometry for monitoring landslide activity: a case-study of Southern Gansu, China

    NASA Astrophysics Data System (ADS)

    Wasowski, Janusz; Bovenga, Fabio; Dijkstra, Tom; Meng, Xingmin; Nutricato, Raffaele; Chiaradia, Maria Teresa

    2014-05-01

    Although Multi-Temporal Interferometry (MTI) techniques are considered to have already reached the operational level, it is apparent that, in both research and practice, we are only just beginning to benefit from the high resolution imagery that is currently acquired by the new generation of radar satellites. MTI techniques are not applicable in any environment, but, nonetheless, we foresee a strong possibility that in the future these techniques will see widespread exploitation in support of slope hazard assessments. MTI applications will become increasingly important in cases where little or no conventional monitoring is feasible (e.g. remote locations and limited funds). The tremendous potential of MTI is illustrated using selected examples of applications ranging from local to catchment scales. A particular focus is on the use of MTI for the investigation of slope instability in the remote high mountain region of Zhouqu, Southern Gansu, known to be affected by large magnitude (M7-8) earthquakes and catastrophic mass movements. The MTI processing of high resolution (~3 m) COSMO/SkyMed (CSK) satellite images produced spatially dense information (more than 1000 radar targets/km2) on ground surface displacements. A substantial portion of the radar targets showed significant displacements (from few to over 100 mm/yr), denoting widespread slope instability. In particular, the MTI results provided valuable information on the activity of some very large, apparently slow moving landslides that represent a persistent hazard to the local population and infrastructure, particularly as these landslides are known to undergo periods of increased activity resulting in river damming and disastrous flooding. Given the general lack of field monitoring data on slope instability in Southern Gansu, the MTI-derived displacements offer a unique form of remote displacement monitoring that provides valuable information to experts tasked with formulating strategies for hazard management

  9. Can single empirical algorithms accurately predict inland shallow water quality status from high resolution, multi-sensor, multi-temporal satellite data?

    NASA Astrophysics Data System (ADS)

    Theologou, I.; Patelaki, M.; Karantzalos, K.

    2015-04-01

    Assessing and monitoring water quality status through timely, cost effective and accurate manner is of fundamental importance for numerous environmental management and policy making purposes. Therefore, there is a current need for validated methodologies which can effectively exploit, in an unsupervised way, the enormous amount of earth observation imaging datasets from various high-resolution satellite multispectral sensors. To this end, many research efforts are based on building concrete relationships and empirical algorithms from concurrent satellite and in-situ data collection campaigns. We have experimented with Landsat 7 and Landsat 8 multi-temporal satellite data, coupled with hyperspectral data from a field spectroradiometer and in-situ ground truth data with several physico-chemical and other key monitoring indicators. All available datasets, covering a 4 years period, in our case study Lake Karla in Greece, were processed and fused under a quantitative evaluation framework. The performed comprehensive analysis posed certain questions regarding the applicability of single empirical models across multi-temporal, multi-sensor datasets towards the accurate prediction of key water quality indicators for shallow inland systems. Single linear regression models didn't establish concrete relations across multi-temporal, multi-sensor observations. Moreover, the shallower parts of the inland system followed, in accordance with the literature, different regression patterns. Landsat 7 and 8 resulted in quite promising results indicating that from the recreation of the lake and onward consistent per-sensor, per-depth prediction models can be successfully established. The highest rates were for chl-a (r2=89.80%), dissolved oxygen (r2=88.53%), conductivity (r2=88.18%), ammonium (r2=87.2%) and pH (r2=86.35%), while the total phosphorus (r2=70.55%) and nitrates (r2=55.50%) resulted in lower correlation rates.

  10. Forest fuel treatment detection using multi-temporal airborne Lidar data and high resolution aerial imagery ---- A case study at Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Su, Y.; Guo, Q.; Collins, B.; Fry, D.; Kelly, M.

    2014-12-01

    Forest fuel treatments (FFT) are often employed in Sierra Nevada forest (located in California, US) to enhance forest health, regulate stand density, and reduce wildfire risk. However, there have been concerns that FFTs may have negative impacts on certain protected wildlife species. Due to the constraints and protection of resources (e.g., perennial streams, cultural resources, wildlife habitat, etc.), the actual FFT extents are usually different from planned extents. Identifying the actual extent of treated areas is of primary importance to understand the environmental influence of FFTs. Light detection and ranging (Lidar) is a powerful remote sensing technique that can provide accurate forest structure measurements, which provides great potential to monitor forest changes. This study used canopy height model (CHM) and canopy cover (CC) products derived from multi-temporal airborne Lidar data to detect FFTs by an approach combining a pixel-wise thresholding method and a object-of-interest segmentation method. We also investigated forest change following the implementation of landscape-scale FFT projects through the use of normalized difference vegetation index (NDVI) and standardized principle component analysis (PCA) from multi-temporal high resolution aerial imagery. The same FFT detection routine was applied on the Lidar data and aerial imagery for the purpose of comparing the capability of Lidar data and aerial imagery on FFT detection. Our results demonstrated that the FFT detection using Lidar derived CC products produced both the highest total accuracy and kappa coefficient, and was more robust at identifying areas with light FFTs. The accuracy using Lidar derived CHM products was significantly lower than that of the result using Lidar derived CC, but was still slightly higher than using aerial imagery. FFT detection results using NDVI and standardized PCA using multi-temporal aerial imagery produced almost identical total accuracy and kappa coefficient

  11. Cluster analysis of bone microarchitecture from high resolution peripheral quantitative computed tomography demonstrates two separate phenotypes associated with high fracture risk in men and women.

    PubMed

    Edwards, M H; Robinson, D E; Ward, K A; Javaid, M K; Walker-Bone, K; Cooper, C; Dennison, E M

    2016-07-01

    Osteoporosis is a major healthcare problem which is conventionally assessed by dual energy X-ray absorptiometry (DXA). New technologies such as high resolution peripheral quantitative computed tomography (HRpQCT) also predict fracture risk. HRpQCT measures a number of bone characteristics that may inform specific patterns of bone deficits. We used cluster analysis to define different bone phenotypes and their relationships to fracture prevalence and areal bone mineral density (BMD). 177 men and 159 women, in whom fracture history was determined by self-report and vertebral fracture assessment, underwent HRpQCT of the distal radius and femoral neck DXA. Five clusters were derived with two clusters associated with elevated fracture risk. "Cluster 1" contained 26 women (50.0% fractured) and 30 men (50.0% fractured) with a lower mean cortical thickness and cortical volumetric BMD, and in men only, a mean total and trabecular area more than the sex-specific cohort mean. "Cluster 2" contained 20 women (50.0% fractured) and 14 men (35.7% fractured) with a lower mean trabecular density and trabecular number than the sex-specific cohort mean. Logistic regression showed fracture rates in these clusters to be significantly higher than the lowest fracture risk cluster [5] (p<0.05). Mean femoral neck areal BMD was significantly lower than cluster 5 in women in cluster 1 and 2 (p<0.001 for both), and in men, in cluster 2 (p<0.001) but not 1 (p=0.220). In conclusion, this study demonstrates two distinct high risk clusters in both men and women which may differ in etiology and response to treatment. As cluster 1 in men does not have low areal BMD, these men may not be identified as high risk by conventional DXA alone. PMID:27130873

  12. Lean mass and fat mass have differing associations with bone microarchitecture assessed by high resolution peripheral quantitative computed tomography in men and women from the Hertfordshire Cohort Study.

    PubMed

    Edwards, Mark H; Ward, Kate A; Ntani, Georgia; Parsons, Camille; Thompson, Jennifer; Sayer, Avan A; Dennison, Elaine M; Cooper, Cyrus

    2015-12-01

    Understanding the effects of muscle and fat on bone is increasingly important in the optimisation of bone health. We explored relationships between bone microarchitecture and body composition in older men and women from the Hertfordshire Cohort Study. 175 men and 167 women aged 72-81 years were studied. High resolution peripheral quantitative computed tomography (HRpQCT) images (voxel size 82 μm) were acquired from the non-dominant distal radius and tibia with a Scanco XtremeCT scanner. Standard morphological analysis was performed for assessment of macrostructure, densitometry, cortical porosity and trabecular microarchitecture. Body composition was assessed using dual energy X-ray absorptiometry (DXA) (Lunar Prodigy Advanced). Lean mass index (LMI) was calculated as lean mass divided by height squared and fat mass index (FMI) as fat mass divided by height squared. The mean (standard deviation) age in men and women was 76 (3) years. In univariate analyses, tibial cortical area (p<0.01), cortical thickness (p<0.05) and trabecular number (p<0.01) were positively associated with LMI and FMI in both men and women. After mutual adjustment, relationships between cortical area and thickness were only maintained with LMI [tibial cortical area, β (95% confidence interval (CI)): men 6.99 (3.97,10.01), women 3.59 (1.81,5.38)] whereas trabecular number and density were associated with FMI. Interactions by sex were found, including for the relationships of LMI with cortical area and FMI with trabecular area in both the radius and tibia (p<0.05). In conclusion, LMI and FMI appeared to show independent relationships with bone microarchitecture. Further studies are required to confirm the direction of causality and explore the mechanisms underlying these tissue-specific associations. PMID:26187195

  13. 3D fast spin echo with out-of-slab cancellation: a technique for high-resolution structural imaging of trabecular bone at 7 Tesla.

    PubMed

    Magland, Jeremy F; Rajapakse, Chamith S; Wright, Alexander C; Acciavatti, Raymond; Wehrli, Felix W

    2010-03-01

    Spin-echo-based pulse sequences are desirable for the application of high-resolution imaging of trabecular bone but tend to involve high-power deposition. Increased availability of ultrahigh field scanners has opened new possibilities for imaging with increased signal-to-noise ratio (SNR) efficiency, but many pulse sequences that are standard at 1.5 and 3 T exceed specific absorption rate limits at 7 T. A modified, reduced specific absorption rate, three-dimensional, fast spin-echo pulse sequence optimized specifically for in vivo trabecular bone imaging at 7 T is introduced. The sequence involves a slab-selective excitation pulse, low-power nonselective refocusing pulses, and phase cycling to cancel undesired out-of-slab signal. In vivo images of the distal tibia were acquired using the technique at 1.5, 3, and 7 T field strengths, and SNR was found to increase at least linearly using receive coils of identical geometry. Signal dependence on the choice of refocusing flip angles in the echo train was analyzed experimentally and theoretically by combining the signal from hundreds of coherence pathways, and it is shown that a significant specific absorption rate reduction can be achieved with negligible SNR loss. PMID:20187181

  14. Osteoradionecrosis of the Temporal Bone: A Case Series

    PubMed Central

    Sharon, Jeffrey D; Khwaja, Shariq S.; Drescher, Andrew; Gay, Hiram; Chole, Richard A

    2014-01-01

    Objective To study osteoradionecrosis (ORN) of the temporal bone Study Design Retrospective case review Setting Academic medical center Patients Patients were included who had previously undergone radiation to the head and neck and then developed exposed necrotic bone within the ear canal that persisted at least three months Intervention(s) Patients were treated with a variety of modalities, including conservative therapy with antibiotic ear drops and in-office debridements, hyperbaric oxygen therapy and surgery. Main Outcome Measure(s) To describe the presentation and management of patients with temporal bone osteoradionecrosis. Results 33 patients with temporal bone osteoradionecrosis were included. The most common site of primary tumor was the parotid gland (n=11), followed by the nasopharynx (n=7). The time to development of ORN varied between 1 and 22 years, with mean 7.9 years. The mean radiation dose was 62.6 Gy to the primary tumor, 53.1 Gy to the affected temporal bone, and 65.2 Gy to the affected tympanic bone. The most common symptoms of ORN were otorrhea (n=15), hearing loss (n=13), and otalgia (n=12). 15 patients had bacterial superinfection, most commonly S. aureus (n=9). Conservative therapy was successful at managing symptoms but not in eradicating exposed bone in most patients. Surgery was used for recalcitrant pain, infection, cholesteatoma, cranial neuropathies, and intracranial complications. Conclusions Osteoradionecrosis is a rare complication of radiation to the temporal bone. Management should be aimed at relief of symptoms, eradication of superinfection, and treatment of other commonly present radiation effects like cholesteatoma and hearing loss. PMID:24914789

  15. Massive Cerebrospinal Fluid Leak of the Temporal Bone

    PubMed Central

    Manno, Alessandra; Pasqualitto, Emanuela; Ciofalo, Andrea; Angeletti, Diletta; Pasquariello, Benedetta

    2016-01-01

    Cerebrospinal fluid (CSF) leakage of the temporal bone region is defined as abnormal communications between the subarachnoidal space and the air-containing spaces of the temporal bone. CSF leak remains one of the most frequent complications after VS surgery. Radiotherapy is considered a predisposing factor for development of temporal bone CSF leak because it may impair dural repair mechanisms, thus causing inadequate dural sealing. The authors describe the case of a 47-year-old man with a massive effusion of CSF which extended from the posterior and lateral skull base to the first cervical vertebrae; this complication appeared after a partial enucleation of a vestibular schwannoma (VS) with subsequent radiation treatment and second operation with total VS resection. PMID:27597915

  16. Massive Cerebrospinal Fluid Leak of the Temporal Bone.

    PubMed

    Iannella, Giannicola; Manno, Alessandra; Pasqualitto, Emanuela; Ciofalo, Andrea; Angeletti, Diletta; Pasquariello, Benedetta; Magliulo, Giuseppe

    2016-01-01

    Cerebrospinal fluid (CSF) leakage of the temporal bone region is defined as abnormal communications between the subarachnoidal space and the air-containing spaces of the temporal bone. CSF leak remains one of the most frequent complications after VS surgery. Radiotherapy is considered a predisposing factor for development of temporal bone CSF leak because it may impair dural repair mechanisms, thus causing inadequate dural sealing. The authors describe the case of a 47-year-old man with a massive effusion of CSF which extended from the posterior and lateral skull base to the first cervical vertebrae; this complication appeared after a partial enucleation of a vestibular schwannoma (VS) with subsequent radiation treatment and second operation with total VS resection. PMID:27597915

  17. Actinomycosis of the temporal bone: a report of a case.

    PubMed

    Sobol, Steven E; Samadi, Daniel S; Wetmore, Ralph F

    2004-05-01

    Actinomycosis is a chronic suppurative infection of the cervicofacial region caused by Actinomyces species, which are anaerobic, gram-positive filamentous bacteria. Although actinomycosis has a propensity for involving the oral cavity, rare cases of actinomycosis involving the temporal bone have been published. We report the case of a 14-year-old girl who presented with clinical, audiometric, and radiologic findings consistent with right chronic suppurative otitis media that persisted despite tympanomastoidectomy. Findings on histologic evaluation of a specimen obtained during revision surgery were consistent with a diagnosis of actinomycosis. Although actinomycosis of the temporal bone is rare, it should be considered in the differential diagnosis of chronic suppurative temporal bone infections that are resistant to standard therapy. PMID:15195879

  18. Bilateral Temporal Bone Langerhans Cell Histiocytosis: Radiologic Pearls

    PubMed Central

    Coleman, Mira A.; Matsumoto, Jane; Carr, Carrie M.; Eckel, Laurence J.; Nageswara Rao, Amulya A.

    2013-01-01

    Langerhans cell histiocytosis (LCH) is a rare histiocytic disorder with an unpredictable clinical course and highly varied clinical presentation ranging from single system to multisystem involvement. Although head and neck involvement is common in LCH, isolated bilateral temporal bone involvement is exceedingly rare. Furthermore, LCH is commonly misinterpreted as mastoiditis, otitis media and otitis externa, delaying diagnosis and appropriate therapeutic management. To improve detection and time to treatment, it is imperative to have LCH in the differential diagnosis for unusual presentations of the aforementioned infectious head and neck etiologies. Any lytic lesion of the temporal bone identified by radiology should raise suspicion for LCH. We hereby describe the radiologic findings of a case of bilateral temporal bone LCH, originally misdiagnosed as mastoiditis. PMID:24478812

  19. Polyarteritis nodosa and deafness. A human temporal bone study.

    PubMed

    Gussen, P

    1977-08-26

    Temporal bone changes were described in a 66 year old woman with polyarteritis nodosa who became deaf 7 months before death. Polyarteritis nodosa of the left internal auditory artery was demonstrated with fibrosis and bone formation involving the cochlea and vestibular system. Endolymphatic hydrops of the basal turn of the cochlea was also present, as well as a chronic perforation of the free wall of the saccule. PMID:21648

  20. Human Temporal Bone Removal: The Skull Base Block Method.

    PubMed

    Dinh, Christine; Szczupak, Mikhaylo; Moon, Seo; Angeli, Simon; Eshraghi, Adrien; Telischi, Fred F

    2015-08-01

    Objectives To describe a technique for harvesting larger temporal bone specimens from human cadavers for the training of otolaryngology residents and fellows on the various approaches to the lateral and posterolateral skull base. Design Human cadaveric anatomical study. The calvarium was excised 6 cm above the superior aspect of the ear canal. The brain and cerebellum were carefully removed, and the cranial nerves were cut sharply. Two bony cuts were performed, one in the midsagittal plane and the other in the coronal plane at the level of the optic foramen. Setting Medical school anatomy laboratory. Participants Human cadavers. Main Outcome Measures Anatomical contents of specimens and technical effort required. Results Larger temporal bone specimens containing portions of the parietal, occipital, and sphenoidal bones were consistently obtained using this technique of two bone cuts. All specimens were inspected and contained pertinent surface and skull base landmarks. Conclusions The skull base block method allows for larger temporal bone specimens using a two bone cut technique that is efficient and reproducible. These specimens have the necessary anatomical bony landmarks for studying the complexity, utility, and limitations of lateral and posterolateral approaches to the skull base, important for the education of otolaryngology residents and fellows. PMID:26225316

  1. Osteomyelitis of the Temporal Bone: Terminology, Diagnosis, and Management

    PubMed Central

    Prasad, Sampath Chandra; Prasad, Kishore Chandra; Kumar, Abhijit; Thada, Nikhil Dinaker; Rao, Pallavi; Chalasani, Satyanarayana

    2014-01-01

    Objectives To review the terminology, clinical features, and management of temporal bone osteomyelitis. Design and Setting Prospective study in a tertiary care center from 2001 to 2008. Participants Twenty patients visiting the outpatient department diagnosed with osteomyelitis of the temporal bone. Main Outcome Measures The age, sex, clinical features, cultured organisms, surgical interventions, and classification were analyzed. Results Of the 20 cases, 2 (10%) were diagnosed as acute otitis media. Eighteen (90%) had chronic otitis media. Nineteen (95%) were classified as medial temporal bone osteomyelitis and one (5%) as lateral temporal osteomyelitis. The most common clinical features were ear discharge (100%), pain (83%), and granulations (100%). Facial nerve palsy was seen in seven cases (35%) and parotid involvement in one case. Ten patients (56%) had diabetes mellitus. The organisms isolated were Pseudomonas aeruginosa (80%) and Staphylococcus aureus (13.33%). Histopathology revealed chronic inflammation in 20 patients (100%) and osteomyelitic bony changes in 14 (70%). Surgical debridement was the most preferred modality of treatment (87%). Conclusion A new classification of temporal bone osteomyelitis has been proposed. Bacterial cultures must be performed in all patients. Antibiotic therapy is the treatment of choice. Surgical intervention is necessary in the presence of severe pain, complications, refractory cases, or the presence of bony sequestra on radiology. PMID:25302143

  2. Polarity and Temporality of High-Resolution Y-Chromosome Distributions in India Identify Both Indigenous and Exogenous Expansions and Reveal Minor Genetic Influence of Central Asian Pastoralists

    PubMed Central

    Sengupta, Sanghamitra; Zhivotovsky, Lev A.; King, Roy; Mehdi, S. Q.; Edmonds, Christopher A.; Chow, Cheryl-Emiliane T.; Lin, Alice A.; Mitra, Mitashree; Sil, Samir K.; Ramesh, A.; Usha Rani, M. V.; Thakur, Chitra M.; Cavalli-Sforza, L. Luca; Majumder, Partha P.; Underhill, Peter A.

    2006-01-01

    Although considerable cultural impact on social hierarchy and language in South Asia is attributable to the arrival of nomadic Central Asian pastoralists, genetic data (mitochondrial and Y chromosomal) have yielded dramatically conflicting inferences on the genetic origins of tribes and castes of South Asia. We sought to resolve this conflict, using high-resolution data on 69 informative Y-chromosome binary markers and 10 microsatellite markers from a large set of geographically, socially, and linguistically representative ethnic groups of South Asia. We found that the influence of Central Asia on the pre-existing gene pool was minor. The ages of accumulated microsatellite variation in the majority of Indian haplogroups exceed 10,000–15,000 years, which attests to the antiquity of regional differentiation. Therefore, our data do not support models that invoke a pronounced recent genetic input from Central Asia to explain the observed genetic variation in South Asia. R1a1 and R2 haplogroups indicate demographic complexity that is inconsistent with a recent single history. Associated microsatellite analyses of the high-frequency R1a1 haplogroup chromosomes indicate independent recent histories of the Indus Valley and the peninsular Indian region. Our data are also more consistent with a peninsular origin of Dravidian speakers than a source with proximity to the Indus and with significant genetic input resulting from demic diffusion associated with agriculture. Our results underscore the importance of marker ascertainment for distinguishing phylogenetic terminal branches from basal nodes when attributing ancestral composition and temporality to either indigenous or exogenous sources. Our reappraisal indicates that pre-Holocene and Holocene-era—not Indo-European—expansions have shaped the distinctive South Asian Y-chromosome landscape. PMID:16400607

  3. A New Hybrid Spatio-temporal Model for Estimating Daily Multi-year PM2.5 Concentrations Across Northeastern USA Using High Resolution Aerosol Optical Depth Data

    NASA Technical Reports Server (NTRS)

    Kloog, Itai; Chudnovsky, Alexandra A.; Just, Allan C.; Nordio, Francesco; Koutrakis, Petros; Coull, Brent A.; Lyapustin, Alexei; Wang, Yujie; Schwartz, Joel

    2014-01-01

    The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter PM(sub 2.5) for epidemiology studies has increased substantially over the past few years. These recent studies often report moderate predictive power, which can generate downward bias in effect estimates. In addition, AOD measurements have only moderate spatial resolution, and have substantial missing data. We make use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) resolution AOD data.We developed and cross validated models to predict daily PM(sub 2.5) at a 1X 1 km resolution across the northeastern USA (New England, New York and New Jersey) for the years 2003-2011, allowing us to better differentiate daily and long term exposure between urban, suburban, and rural areas. Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized predictions representing deviations from the area 1 X 1 km grid predictions. We used mixed models regressing PM(sub 2.5) measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the residuals from the final model for each monitor against the local spatial and temporal variables at each monitoring site. Our model performance was excellent (mean out-of-sample R(sup 2) = 0.88). The spatial and temporal components of the out-of-sample results also presented very good fits to the withheld data (R(sup 2) = 0.87, R(sup)2 = 0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope of predictions versus withheld observations = 0.99). Our daily model results show high predictive accuracy at high spatial resolutions

  4. 3D Assessment of Cortical Bone Porosity and Tissue Mineral Density Using High-Resolution Micro-CT: Effects of Resolution and Threshold Method

    PubMed Central

    Palacio-Mancheno, Paolo E.; Larriera, Adriana I.; Doty, Stephen B.; Cardoso, Luis; Fritton, Susannah P.

    2013-01-01

    Current micro-CT systems allow scanning bone at resolutions capable of three-dimensional characterization of intracortical vascular porosity and osteocyte lacunae. However, the scanning and reconstruction parameters along with the image segmentation method affect the accuracy of the measurements. In this study, the effects of scanning resolution and image threshold method in quantifying small features of cortical bone (vascular porosity, vascular canal diameter and separation, lacunar porosity and density, and tissue mineral density) were analyzed. Cortical bone from the tibia of Sprague-Dawley rats was scanned at 1-µm and 4-µm resolutions, reconstructions were density-calibrated, and volumes of interest were segmented using approaches based on edge-detection or histogram analysis. With 1-µm resolution scans, the osteocyte lacunar spaces could be visualized, and it was possible to separate the lacunar porosity from the vascular porosity. At 4-µm resolution, the vascular porosity and vascular canal diameter were underestimated, and osteocyte lacunae were not effectively detected, whereas the vascular canal separation and tissue mineral density were overestimated compared to 1-µm resolution. Resolution had a much greater effect on the measurements than did threshold method, with partial volume effects at resolutions coarser than 2 µm demonstrated in two separate analyses, one of which assessed the effect of resolution on an object of known size with similar architecture to a vascular pore. Although there was little difference when using the edge-detection versus histogram-based threshold approaches, edge-detection was somewhat more effective in delineating canal architecture at finer resolutions (1 – 2 µm). In addition, use of a high-resolution (1-µm) density-based threshold on lower resolution (4-µm) density-calibrated images was not effective in improving the lower-resolution measurements. In conclusion, if measuring cortical vascular microarchitecture

  5. Efficacy of petrosectomy in malignant invasion of the temporal bone.

    PubMed

    Wierzbicka, M; Kopeć, T; Szyfter, W; Buczkowska, A; Borucki, Ł

    2016-09-01

    We present the outcomes of lateral, subtotal, and total petrosectomies in patients with invasion of the temporal bone by specific primary cancers, with particular emphasis on survival in the advanced stages of disease. We made a retrospective study of 20 consecutive patients (squamous cell carcinoma of the temporal bone, n=11, and primary cancer of the parotid gland with infiltration of the lateral skull base, n=9) treated by total, subtotal, or lateral petrosectomy at the University Department of Otolaryngology, a tertiary referral centre, between June 2006 and December 2010. Fourteen of the 20 patients were alive at the time of analysis, and follow-up ranged from 36-60 months. Six of seven patients whose disease relapsed (4 local and 3 distant metastases) died. The three-year, disease-free survival was 65% and the overall survival 68%. Survival between those with temporal bone and parotid tumours did not differ significantly. The combined group survival was affected by involvement of invaded resection margins (n=6, p=0.03). Involved margins were significant in the development of recurrence (p=0.03). Tumour stage, nodal involvement, type of operation, sex, age, skin involvement, facial palsy, and previous history of disease had no impact on prognosis. There was a significant difference in the survival curves of patients with carcinoma of the temporal bone with and without facial paresis (n=6 compared with n=5; p=0.046). Two of 11 free flaps required revision of the anastomoses, but none was lost. PMID:27241556

  6. Final Technical Report for "High-resolution temporal variations in groundwater chemistry: Tracing the links between climate, hydrology, and element mobility in the vadose zone"

    SciTech Connect

    Jay L. Banner

    2002-04-23

    In spite of a developing emphasis on geochemical methods in studies of modern hydrologic systems, there have been few attempts to examine temporal fluctuations in groundwater chemistry and element mobility in the near-surface environment. Relatively little is known regarding how groundwaters evolve over 10 to 10,000 year scales, yet this knowledge provides a critical framework for understanding the links between climate and hydrology, the evolution of soils, and element migration in the vadose environment. Recent analytical advances allow U-series measurements to be applied to developing high-resolution chronologies of Pleistocene and Holocene carbonates. The potential of these new tools is examined through an analysis of two well-defined, active karst systems in (1) Barbados and (2) Texas. (1) The research effort on Barbados has developed methods of estimating recharge and inferring the spatial and seasonal distribution of recharge to the Pleistocene limestone aquifer on Barbados. A new method has been developed to estimate recharge based on oxygen isotope variations in rainwater and groundwater. Inter-annual recharge variations indicate that recharge is dependent on the distribution of rainfall throughout the year rather than total annual rainfall. Consequently, a year when rainfall occurs primarily during the peak wet season months (August through November) may have more recharge than a year when rainfall is more evenly distributed through the year. These results lay important groundwork for analysis of rainfall/recharge variations over different time scales based on isotopic records presently being constructed using Barbados speleothems from the same aquifer. (2) The chronology of speleothems (cave calcite deposits) from three caves across 130 kilometers in central Texas provides a 71,000-year record of temporal changes in hydrology and climate. Fifty-three ages were determined by mass spectrometric 238U - 230Th and 235U - 231Pa analyses. The accuracy of the

  7. High resolution solar flare X-ray spectra - The temporal behavior of electron density, temperature, and emission measure for two class M flares

    NASA Astrophysics Data System (ADS)

    Doschek, G. A.; Feldman, U.; Landecker, P. B.; McKenzie, D. L.

    1981-10-01

    High resolution soft X-ray flare spectra recorded by Naval Research Laboratory (NRL) and Aerospace Corporation Bragg crystal spectrometers flown on an orbiting spacecraft (P78-1) are combined and analyzed. The instruments were launched on t979 February 24 by the U.S. Air Force, and the data discussed in this paper cover the wavelength ranges, 1.82-1.97 Å, 3.143.24 Å, and 18.423.0 Å. The NRL experiment (SOLFLEX) covers the two short wavelength ranges (highly ionized Fe and Ca lines) and the Aerospace experiment (SOLEX) covers the t8.4-23.O Å range, which includes the Lyα O VIII line and the resonance, intercombination, and forbidden lines of O VII. We analyze the spectra of two flares which occurred on 1980 April 8 and May 9. Temporal coverage is fairly complete for both flares, including the rise and decay phases. Measurements of electron density Ne with rather high time resolution (about 1 minute) have been obtained throughout most of the lifetimes of the two flares. These measurements were obtained from the O VII lines and pertain to flare plasma at temperatures near 2 × 106 K. Peak density seems to occur slightly before the times of peak X-ray flux in the resonance lines of Fe XXV, Ca XIX, and O VII, and for both flares the peak density is about 1012 cm-3. Electron temperature Te as a function of time is determined from the Fe and Ca spectra. Peak temperature for both flares is about 18 × 106 K. Differential emission measures and volume emission measures are determined from the resonance lines of O VII, Ca XIX, and Fe XXV. The number of electrons NeΔV and the volume ΔV over which the O VII lines are formed are determined from the O VII volume emission measure Ne2ΔV and the density Ne. These quantities are determined as a function of time. The relationship of the low and high temperature regions is discussed.

  8. Multimodal imaging of the human temporal bone: A comparison of CT and optical scanning techniques

    NASA Astrophysics Data System (ADS)

    Voie, Arne H.; Whiting, Bruce; Skinner, Margaret; Neely, J. Gail; Lee, Kenneth; Holden, Tim; Brunsden, Barry

    2003-10-01

    A collaborative effort between Washington University in St. Louis and Spencer Technologies in Seattle, WA has been undertaken to create a multimodal 3D reconstruction of the human cochlea and vestibular system. The goal of this project is to improve the accuracy of in vivo CT reconstructions of implanted cochleae, and to expand the knowledge of high-resolution anatomical detail provided by orthogonal-plane optical sectioning (OPFOS). At WUSL, computed tomography (CT) images of the cochlea are used to determine the position of cochlear implant electrodes relative to target auditory neurons. The cochlear implant position is determined using pre- and post-operative CT scans. The CT volumes are cross-registered to align the semicircular canals and internal auditory canal, which have a unique configuration in 3-D space. The head of a human body donor was scanned with a clinical CT device, after which the temporal bones were removed, fixed in formalin and trimmed prior to scanning with a laboratory Micro CT scanner. Following CT, the temporal bones were sent to the OPFOS Imaging Lab at Spencer Technologies for a further analysis. 3-D reconstructions of CT and OPFOS imaging modalities were compared, and results are presented. [Work supported by NIDCD Grants R44-03623-5 and R01-00581-13.

  9. Giant cell tumor of bone involving the temporomandibular joint and temporal bone.

    PubMed

    Akyigit, Abdulvahap; Karlidag, Turgut; Sakallioglu, Öner; Polat, Cahit; Keles, Erol

    2014-07-01

    Giant cell tumor is a primary bone tumor that usually originates from the epiphysis of the long bones and is rarely seen in the cranial region. Most frequently, the tumor develops in the sphenoid and temporal bones in the middle cranial fossa. Giant cell tumor generally shows diversity with respect to benignity, local invasiveness, and histology. Although surgical excision with negative surgical margin may lead to cure, adjuvant radiotherapy is still debated. The patient was admitted with a humming in the left ear and hearing loss. After radiologic examination, a mass with temporomandibular joint involvement as well as temporal and sphenoid bone localization was detected. The patient was diagnosed with giant cell tumor after a biopsy specimen was taken from the mass extending to the middle ear and destroying the temporomandibular joint. The current study reviewed the patient's clinical features, diagnosis, and treatment in light of the literature. PMID:25006918

  10. Comparison of Preoperative Temporal Bone CT with Intraoperative Findings in Patients with Cholesteatoma

    PubMed Central

    Rogha, Mehrdad; Hashemi, Sayyed Mostafa; Mokhtarinejad, Farhad; Eshaghian, Afrooz; Dadgostar, Alireza

    2014-01-01

    Introduction: Cholesteatoma is traditionally diagnosed by otoscopic examination and treated by surgery. The necessity for imaging in an uncomplicated case is controversial. This study was planned to investigate the usefulness of a preoperative high-resolution computed tomography (HRCT) scan in depicting the status of middle ear structures in the presence of cholesteatoma and also to compare the correspondence between pre- and intraoperative CT findings in patients with cholesteatoma. Materials and Methods: This prospective descriptive study was performed from January 2009 to May 2011 in 36 patients with cholesteatoma who were referred to the Kashani and Al-Zahra Clinics of Otolaryngology. Preoperative high-resolution temporal bone CT scans (axial and coronal views) were carried out and compared with intraoperative findings. Results: Evaluation of 36 patients and their CT scans revealed excellent correlation for sigmoid plate erosion, widening of aditus, and erosion of scutum; good correlation for erosion of malleus and tegmen; moderate correlation for lateral canal fistula (LCF) and erosion of mastoid air cells; and poor correlation for facial nerve dehiscence (FND), incus, and stapes erosion. Conclusion: A preoperative CT scan may be helpful in relation to diagnosis and decision making for surgery in cases of cholesteatoma and ossicular erosion. The CT scan can accurately predict the extent of disease and is helpful for detection of lateral canal fistula, erosions of dural plate, and ossicular erosions. However it is not able to distinguish between cholesteatoma and mucosal disease, facial nerve dehiscency, incus, and stapes erosion. PMID:24505568

  11. A metastatic glomus jugulare tumor. A temporal bone report

    SciTech Connect

    El Fiky, F.M.; Paparella, M.M.

    1984-01-01

    The clinicopathologic findings in the temporal bone of a patient with a highly malignant metastasizing glomus jugulare tumor are reported. The patient exhibited all the symptoms of primary malignant tumors of the ear, including facial paralysis, otorrhea, pain, hearing loss, tinnitus, dizziness, and vertigo. He was treated with cobalt irradiation followed by radium implant in the ear canal for a residual tumor; then a left-sided radical mastoidectomy was performed.

  12. Repair of Temporal Bone Encephalocele following Canal Wall Down Mastoidectomy

    PubMed Central

    Magras, Ioannis; Kouskouras, Konstantinos

    2014-01-01

    We report a rare case of a temporal bone encephalocele after a canal wall down mastoidectomy performed to treat chronic otitis media with cholesteatoma. The patient was treated successfully via an intracranial approach. An enhanced layer-by-layer repair of the encephalocele and skull base deficit was achieved from intradurally to extradurally, using temporalis fascia, nasal septum cartilage, and artificial dural graft. After a 22-month follow-up period the patient remains symptom free and no recurrence is noted. PMID:25328738

  13. Epidermoids involving the temporal bone: clinical, radiological and pathological aspects.

    PubMed

    Nager, G T

    1975-12-01

    Epidermoids or congenital cholesteatomas arise from aberrant epithelial remnants and are, therefore, considerd blastomatous malformations. Their predilective sites are the intracranial cavity, the diploe of the skull and the spinal canal. In the base of the skull the temporal bone is the most frequent site. Epidermoids account for about 0.2-1.5 percent of all intracranial tumors. The majority originate in the cerebello-pontine angle where they account for 6-7 percent of all tumors. Their age incidence reveals a great scatter from birth to 80 years. The majority are recognized during the third and fourth decades with the onset of clinical symptoms occurring much earlier. They affect males more frequently than females. Their delicate capsule with a whitish mother-of-pearl sheen lends them a typical appearance. Epidermoids are generally slow growing lesions which may remain asymptomatic for years. The irritative effect of their content, however, can produce symptoms of dysfunction and intense inflammation. Malignant changes occur infrequently. Diploic epidermoids are easily recognized, whereas, intradural epidermoids are more difficult to identify. Epidermoids may arise in the vicinity, on the outer aspect or within the temporal bone. Epidermoids originating in any of these locations have certain characteristic features which may arouse suspicion of their presence. Examples of an epidermoid with origin in the typical locations within the temporal bone and cerebello-pontine angle are discussed to portray their individual characteristics. PMID:1207346

  14. Annual to sub-annual 3D surface evolution of an Antarctic blue-ice moraine using multi-platform, multi-temporal high resolution topography

    NASA Astrophysics Data System (ADS)

    Westoby, Matthew; Dunning, Stuart; Woodward, John; Hein, Andrew; Marrero, Shasta; Winter, Kate; Sugden, David

    2016-04-01

    High-resolution topographic data products are now routinely used for the geomorphological characterisation of Earth surface landforms and landscapes, whilst the acquisition and differencing of such datasets are swiftly becoming the preferred method for quantifying the transfer of mass through landscapes at the spatial scales of observation at which many processes operate. In this research, we employ 3-D differencing of repeat high-resolution topography to quantify the surface evolution of a 0.3 km2 blue-ice moraine complex in front of Patriot Hills, Antarctica. We used terrestrial laser scanning (TLS) to acquire multiple overlapping 3D datasets of the moraine surface at the beginning and end of the austral summer season in 2012/2013 and during a resurvey campaign in 2014. An additional topographic dataset was acquired at the end of season 1 through the application of a Structure-from-Motion with Multi-View Stereo (SfM-MVS) workflow to a set of aerial photographs acquired during a single unmanned aerial vehicle (UAV) sortie. 3D cloud-to-cloud differencing was undertaken using the M3C2 algorithm. The results of 3D differencing revealed net uplift (median ~0.05 m) and lateral (xy) movement (median 0.02 m) of the moraine crests within season 1. Analysis of results from the longest differencing epoch (start of season 1 to season 2) suggests gradual but persistent surface uplift (median ~0.11 m) and sustained lateral movement (median ~0.05 m). Locally, lowering of a similar magnitude to uplift was observed in inter-moraine troughs and close to the current ice margin. This research demonstrates that it is possible to detect dynamic surface topographic change across glacial moraines over short timescales through the acquisition and differencing of high-resolution topographic datasets. Such data and methods of analysis offer new opportunities to understand glaciological and geomorphological process linkages in remote glacial environments.

  15. Cholesteatomas of the temporal bone: role of computed tomography

    SciTech Connect

    Johnson, D.W.; Voorhees, R.L.; Lufkin, R.B.; Canalis, R.

    1983-09-01

    Computed tomography (CT) of the temporal bone was performed in 64 patients thought to have a cholesteatoma of the middle ear. Twenty had not had surgery before, while 44 had been operated on; special consideration was given to 21 patients who were scanned immediately before a second operation and had confirmation of the CT findings. Inflammatory disease without cholesteatoma was characterized by absence of erosion of the otic capsule or ossicular chain. Sharply circumscribed cholesteatomas were easily diagnosed by CT. When they were combined with scarring, granulation tissue, or postsurgical changes, the resulting soft-tissue masses were indistinguishable, although cholesteatoma may be suspected if there is evidence of progressive bone erosion about the middle ear. CT can play a major role in postoperative follow-up by confirming that the ear is normal and demonstrating displacement of ossicular grafts or prostheses.

  16. High-resolution echocardiography

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1979-01-01

    High resolution computer aided ultrasound system provides two-and three-dimensional images of beating heart from many angles. System provides means for determining whether small blood vessels around the heart are blocked or if heart wall is moving normally without interference of dead and noncontracting muscle tissue.

  17. High-resolution headlamp

    NASA Astrophysics Data System (ADS)

    Gut, Carsten; Cristea, Iulia; Neumann, Cornelius

    2016-04-01

    The following article shall describe how human vision by night can be influenced. At first, front lighting systems that are already available on the market will be described, followed by their analysis with respect to the positive effects on traffic safety. Furthermore, how traffic safety by night can be increased since the introduction of high resolution headlamps shall be discussed.

  18. A case of a temporal bone meningioma presenting as a serous otitis media

    PubMed Central

    De Foer, Bert; Bernaerts, Anja; Van Dinther, Joost; Parizel, Paul M

    2014-01-01

    We report the imaging features of a case of a temporal bone meningioma extending into the middle ear cavity and clinically presenting as a serous otitis media. Temporal bone meningioma extending in the mastoid or the middle ear cavity, however, is very rare. In case of unexplained or therapy-resistant serous otitis media and a nasopharyngeal tumor being ruled out, a temporal bone computed tomography (CT) should be performed. If CT findings are suggestive of a temporal bone meningioma, a magnetic resonance imaging (MRI) examination with gadolinium will confirm diagnosis and show the exact extension of the lesion. PMID:25535569

  19. High-resolution measurements of the spatial and temporal evolution of megagauss magnetic fields created in intense short-pulse laser-plasma interactions

    SciTech Connect

    Chatterjee, Gourab Singh, Prashant Kumar; Adak, Amitava; Lad, Amit D.; Kumar, G. Ravindra

    2014-01-15

    A pump-probe polarimetric technique is demonstrated, which provides a complete, temporally and spatially resolved mapping of the megagauss magnetic fields generated in intense short-pulse laser-plasma interactions. A normally incident time-delayed probe pulse reflected from its critical surface undergoes a change in its ellipticity according to the magneto-optic Cotton-Mouton effect due to the azimuthal nature of the ambient self-generated megagauss magnetic fields. The temporal resolution of the magnetic field mapping is typically of the order of the pulsewidth, limited by the laser intensity contrast, whereas a spatial resolution of a few μm is achieved by this optical technique. High-harmonics of the probe can be employed to penetrate deeper into the plasma to even near-solid densities. The spatial and temporal evolution of the megagauss magnetic fields at the target front as well as at the target rear are presented. The μm-scale resolution of the magnetic field mapping provides valuable information on the filamentary instabilities at the target front, whereas probing the target rear mirrors the highly complex fast electron transport in intense laser-plasma interactions.

  20. High resolution data acquisition

    DOEpatents

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  1. High resolution data acquisition

    DOEpatents

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  2. Use of Aerial high resolution visible imagery to produce large river bathymetry: a multi temporal and spatial study over the by-passed Upper Rhine

    NASA Astrophysics Data System (ADS)

    Béal, D.; Piégay, H.; Arnaud, F.; Rollet, A.; Schmitt, L.

    2011-12-01

    Aerial high resolution visible imagery allows producing large river bathymetry assuming that water depth is related to water colour (Beer-Bouguer-Lambert law). In this paper we aim at monitoring Rhine River geometry changes for a diachronic study as well as sediment transport after an artificial injection (25.000 m3 restoration operation). For that a consequent data base of ground measurements of river depth is used, built on 3 different sources: (i) differential GPS acquisitions, (ii) sounder data and (iii) lateral profiles realized by experts. Water depth is estimated using a multi linear regression over neo channels built on a principal component analysis over red, green and blue bands and previously cited depth data. The study site is a 12 km long reach of the by-passed section of the Rhine River that draws French and German border. This section has been heavily impacted by engineering works during the last two centuries: channelization since 1842 for navigation purposes and the construction of a 45 km long lateral canal and 4 consecutive hydroelectric power plants of since 1932. Several bathymetric models are produced based on 3 different spatial resolutions (6, 13 and 20 cm) and 5 acquisitions (January, March, April, August and October) since 2008. Objectives are to find the optimal spatial resolution and to characterize seasonal effects. Best performances according to the 13 cm resolution show a 18 cm accuracy when suspended matters impacted less water transparency. Discussions are oriented to the monitoring of the artificial reload after 2 flood events during winter 2010-2011. Bathymetric models produced are also useful to build 2D hydraulic model's mesh.

  3. Ultra high resolution tomography

    SciTech Connect

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  4. High-Resolution Autoradiography

    NASA Technical Reports Server (NTRS)

    Towe, George C; Gomberg, Henry J; Freemen, J W

    1955-01-01

    This investigation was made to adapt wet-process autoradiography to metallurgical samples to obtain high resolution of segregated radioactive elements in microstructures. Results are confined to development of the technique, which was perfected to a resolution of less than 10 microns. The radioactive samples included carbon-14 carburized iron and steel, nickel-63 electroplated samples, a powder product containing nickel-63, and tungsten-185 in N-155 alloy.

  5. High-Resolution X-Ray Techniques as New Tool to Investigate the 3D Vascularization of Engineered-Bone Tissue

    PubMed Central

    Bukreeva, Inna; Fratini, Michela; Campi, Gaetano; Pelliccia, Daniele; Spanò, Raffaele; Tromba, Giuliana; Brun, Francesco; Burghammer, Manfred; Grilli, Marco; Cancedda, Ranieri; Cedola, Alessia; Mastrogiacomo, Maddalena

    2015-01-01

    The understanding of structure–function relationships in normal and pathologic mammalian tissues is at the basis of a tissue engineering (TE) approach for the development of biological substitutes to restore or improve tissue function. In this framework, it is interesting to investigate engineered bone tissue, formed when porous ceramic constructs are loaded with bone marrow stromal cells (BMSC) and implanted in vivo. To monitor the relation between bone formation and vascularization, it is important to achieve a detailed imaging and a quantitative description of the complete three-dimensional vascular network in such constructs. Here, we used synchrotron X-ray phase-contrast micro-tomography to visualize and analyze the three-dimensional micro-vascular networks in bone-engineered constructs, in an ectopic bone formation mouse-model. We compared samples seeded and not seeded with BMSC, as well as samples differently stained or unstained. Thanks to the high quality of the images, we investigated the 3D distribution of both vessels and collagen matrix and we obtained quantitative information for all different samples. We propose our approach as a tool for quantitative studies of angiogenesis in TE and for any pre-clinical investigation where a quantitative analysis of the vascular network is required. PMID:26442248

  6. [Methods for oscillography on the temporal bone preparation (author's transl)].

    PubMed

    Stark, H

    1976-03-01

    Oscillography of the middle ear structure on the temporal bone preparation are of essential importance for the expansion of our knowledge concerning physiological process and thus also for the further development of operation techniques that improve hearing. With the increased technical possibilities we are now able to make processes in the range of only few A measurable and visible. Accordingly, the methods employed for this purpose are complicated and manifold. The goal of this paper is to summarize these techniques as far as possible, to describe them in an understandable way, and to briefly point out their pros and cons. Optical methods, nearly all of which are in use today, as well as new methods such as laser interferometry and the Moessbauer technique, which can be performed only in few laboratories, are discussed. PMID:135145

  7. Osteoradionecrosis of the temporal bone: a surgical technique of treatment

    SciTech Connect

    Ma, K.H.; Fagan, P.A.

    1988-05-01

    Osteoradionecrosis of the temporal bone is a well-documented complication of radiotherapy to the ear, with potentially lethal complications. Three cases of advanced disease, treated surgically, are presented. In two of these, subtotal petrosectomy with blind-sac closure of the external auditory canal was carried out via an anterior approach. The enclosed space was obliterated with pedicled temporalis muscle. Primary healing took place. One case was similarly obliterated using a prolonged posterior incision. The wound broke down, requiring a microvascular free flap for closure. Radiotherapy jeopardizes the viability of skin flaps. An anterior incision bases the flap behind on the occipital and postauricular arteries. When radiotherapy has been used, this incision has theoretical and practical advantages over a standard posterior incision.

  8. Problems of laser vibrometry of temporal bone specimens

    NASA Astrophysics Data System (ADS)

    Zahnert, Thomas; Vogel, Uwe; Hofmann, Gert; Huettenbrink, Karl-Bernd

    1996-08-01

    Laser vibrometry became a well-established method for vibration detection of solids. By the means of laser Doppler interferometry it is possible to obtain information about displacement and velocity of the system under test. This approach allows the non-contact measurement of small vibrations, and is therefore capable of investigating vibration response of the middle ear ossicles or tympanic membrane due to sound simulation. There have been investigated 20 fresh human temporal bone specimens. Various components related to the sound transmission due to acoustic or mechanic stimulation have been measured by a commercial laser vibrometer (OFV3000 + OFV302/Polytec). Data acquisition, signal processing and test signal generation have been provided by a signal analyzer B&K3550/Bruel&Kjaer or integrated into a Notebook PC. The samples became prepared to allow laser beam access to the regions of interest. Generally our experiments show the capability of laser vibration measurements of the temporal bone specimen for middle ear sound transmission investigations. But the complexity is limiting that method unfortunately. 1D detection could represent insufficient information about the acoustic transmission characteristics only. The request of possibly 3D scanning is limited by anatomic conditions, e.g., according to the narrowness of the tympanic cavity. Nevertheless, for specific problems, e.g., investigation of spatially resolved tympanic membrane vibration characteristics, laser vibrometry performs a unique and high-sensitive approach. After removing the external ear canal different, well-defined points of the tympanic membrane surface have been manually scanned by the open laser beam. Particular care has been taken of the problem of perpendicular beam incidence, in order to detect identical vector components of the vibration amplitude. Laser vibrometry becomes suitable for functional investigation of the vibrating system `ear' influenced by boundary condition changes too

  9. Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies.

    PubMed

    Pinto, Francisco; Damm, Alexander; Schickling, Anke; Panigada, Cinzia; Cogliati, Sergio; Müller-Linow, Mark; Balvora, Agim; Rascher, Uwe

    2016-07-01

    Passive detection of sun-induced chlorophyll fluorescence (SIF) using spectroscopy has been proposed as a proxy to quantify changes in photochemical efficiency at canopy level under natural light conditions. In this study, we explored the use of imaging spectroscopy to quantify spatio-temporal dynamics of SIF within crop canopies and its sensitivity to track patterns of photosynthetic activity originating from the interaction between vegetation structure and incoming radiation as well as variations in plant function. SIF was retrieved using the Fraunhofer Line Depth (FLD) principle from imaging spectroscopy data acquired at different time scales a few metres above several crop canopies growing under natural illumination. We report the first maps of canopy SIF in high spatial resolution. Changes of SIF were monitored at different time scales ranging from quick variations under induced stress conditions to seasonal dynamics. Natural changes were primarily determined by varying levels and distribution of photosynthetic active radiation (PAR). However, this relationship changed throughout the day demonstrating an additional physiological component modulating spatio-temporal patterns of SIF emission. We successfully used detailed SIF maps to track changes in the canopy's photochemical activity under field conditions, providing a new tool to evaluate complex patterns of photosynthesis within the canopy. PMID:26763162

  10. Linking innovative measurement technologies (ConMon and Dataflow© systems) for high-resolution temporal and spatial dissolved oxygen criteria assessment.

    PubMed

    O'Leary, C A; Perry, E; Bayard, A; Wainger, L; Boynton, W R

    2015-10-01

    One consequence of nutrient-induced eutrophication in shallow estuarine waters is the occurrence of hypoxia and anoxia that has serious impacts on biota, habitats, and biogeochemical cycles of important elements. Because of the important role of dissolved oxygen (DO) on these ecosystem features, a variety of DO criteria have been established as indicators of system condition. However, DO dynamics are complex and vary on time scales ranging from diel to decadal and spatial scales from meters to multiple kilometers. Because of these complexities, determining DO criteria attainment or failure remains difficult. We propose a method for linking two common measurement technologies for shallow water DO criteria assessment using a Chesapeake Bay tributary as a test case. Dataflow© is a spatially intensive (30-60-m collection intervals) system used to map surface water conditions at the whole estuary scale, and ConMon is a high-frequency (15-min collection intervals) fixed station approach. The former technology is effective with spatial descriptions but poor regarding temporal resolution, while the latter provides excellent temporal but very limited spatial resolution. Our methodology for combining the strengths of these measurement technologies involved a sequence of steps. First, a statistical model of surface water DO dynamics, based on temporally intense ConMon data, was developed. The results of this model were used to calculate daily DO minimum concentrations. Second, this model was then inserted into Dataflow©-generated spatial maps of DO conditions and used to adjust measured DO concentrations to daily minimum concentrations. This information was used to assess DO criteria compliance at the full tributary scale. Model results indicated that it is vital to consider the short-term time scale DO criteria across both space and time concurrently. Large fluctuations in DO occurred within a 24-h time period, and DO dynamics varied across the length and width of the

  11. Using high-resolution soil moisture modelling to assess the uncertainty of microwave remotely sensed soil moisture products at the correct spatial and temporal support

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Karssenberg, D.; Bierkens, M. F. P.; Van Dam, J. C.; De Jong, S. M.

    2012-04-01

    Soil moisture is a key variable in the hydrological cycle and important in hydrological modelling. When assimilating soil moisture into flood forecasting models, the improvement of forecasting skills depends on the ability to accurately estimate the spatial and temporal patterns of soil moisture content throughout the river basin. Space-borne remote sensing may provide this information with a high temporal and spatial resolution and with a global coverage. Currently three microwave soil moisture products are available: AMSR-E, ASCAT and SMOS. The quality of these satellite-based products is often assessed by comparing them with in-situ observations of soil moisture. This comparison is however hampered by the difference in spatial and temporal support (i.e., resolution, scale), because the spatial resolution of microwave satellites is rather low compared to in-situ field measurements. Thus, the aim of this study is to derive a method to assess the uncertainty of microwave satellite soil moisture products at the correct spatial support. To overcome the difference in support size between in-situ soil moisture observations and remote sensed soil moisture, we used a stochastic, distributed unsaturated zone model (SWAP, van Dam (2000)) that is upscaled to the support of different satellite products. A detailed assessment of the SWAP model uncertainty is included to ensure that the uncertainty in satellite soil moisture is not overestimated due to an underestimation of the model uncertainty. We simulated unsaturated water flow up to a depth of 1.5m with a vertical resolution of 1 to 10 cm and on a horizontal grid of 1 km2 for the period Jan 2010 - Jun 2011. The SWAP model was first calibrated and validated on in-situ data of the REMEDHUS soil moisture network (Spain). Next, to evaluate the satellite products, the model was run for areas in the proximity of 79 meteorological stations in Spain, where model results were aggregated to the correct support of the satellite

  12. Primary pericranial Ewing's sarcoma on the temporal bone: A case report

    PubMed Central

    Kawano, Hiroto; Nitta, Naoki; Ishida, Mitsuaki; Fukami, Tadateru; Nozaki, Kazuhiko

    2016-01-01

    Background: Primary Ewing's sarcoma originating in the pericranium is an extremely rare disease entity. Case Description: A 9-year-old female patient was admitted to our department due to a left temporal subcutaneous mass. The mass was localized under the left temporal muscle and attached to the surface of the temporal bone. Head computed tomography revealed a mass with bony spicule formation on the temporal bone, however, it did not show bone destruction or intracranial invasion. F-18 fluorodeoxyglucose positron emission tomography showed no lesions other than the mass on the temporal bone. Magnetic resonance imaging showed that the mass was located between the temporal bone and the pericranium. The mass was completely resected with the underlying temporal bone and the overlying deep layer of temporal muscle, and was diagnosed as primary Ewing's sarcoma. Because the tumor was located in the subpericranium, we created a new classification, “pericranial Ewing's sarcoma,” and diagnosed the present tumor as pericranial Ewing's sarcoma. Conclusion: We herein present an extremely rare case of primary pericranial Ewing's sarcoma that developed on the temporal bone. PMID:27308095

  13. High resolution infrared measurements

    NASA Technical Reports Server (NTRS)

    Kessler, B.; Cawley, Robert

    1990-01-01

    Sample ground based cloud radiance data from a high resolution infrared sensor are shown and the sensor characteristics are presented in detail. The purpose of the Infrared Analysis Measurement and Modeling Program (IRAMMP) is to establish a deterministic radiometric data base of cloud, sea, and littoral terrain clutter to be used to advance the design and development of Infrared Search and Track (IRST) systems as well as other infrared devices. The sensor is a dual band radiometric sensor and its description, together with that of the Data Acquisition System (DAS), are given. A schematic diagram of the sensor optics is shown.

  14. Inferring runoff generation processes through high resolution spatial and temporal UV-Vis absorbance measurements in a mountainous headwater catchment in Southern Ecuador

    NASA Astrophysics Data System (ADS)

    Windhorst, David; Schob, Sarah; Zang, Carina; Crespo, Patricio; Breuer, Lutz

    2015-04-01

    The alpine grassland páramo - typically occurring in the headwater catchments of the Andes - plays an important role in flow regulation, hydropower generation and local water supply. However, hydrological and hydro-biogeochemical processes in the páramo and their potential reactions to climate and land use change are largely unknown. Therefore, we used a UV-Vis absorbance spectrometer to investigate fluxes of biochemical oxygen demand (BOD), chemical oxygen demand (COD), turbidity and nitrate (NO3-N) in a small headwater catchment (91.31 km²) in the páramo in south Ecuador on a 5 min temporal and 100 m spatial resolution to gain first insights in its hydrological functioning. Spatial sampling was realized during three snapshot sampling campaigns along the 14.2 km long stream between October 2013 and January 2014, while temporal sampling took place at a permanent sampling site within the catchment between February and June 2014. To identify the runoff generation processes the spatial patterns have been associated with local site specific (e.g. fish ponds) and sub-catchment wide (e.g. land use) characteristics. Storm flow events within the time series allowed to further study temporal changes and rotational patterns of concentration-discharge relations (hysteresis). In total, 35 events were identified to be suitable for analyzing hysteresis effects of BOD, COD, and turbidity. Nitrate concentrations could be studied for 20 events. Regardless of the flow conditions nitrate leaching increased with a growing share of non-native pine forests or pastures in the study area. During low flow conditions, the high water holding capacity of the upstream páramo areas ensured a continuous supply of BOD to the stream. Pasture and pine forest sites, mostly occurring in the downstream section of the stream, contributed to BOD only during discharge events. Contradicting the expectations the trout farms along the lower part of the streams had a relatively closed nutrient cycle and

  15. 10 Yr Spatial and Temporal Trends of PM2.5 Concentrations in the Southeastern US Estimated Using High-resolution Satellite Data

    NASA Technical Reports Server (NTRS)

    Hu, X.; Waller, L. A.; Lyapustin, A.; Wang, Y.; Liu, Y.

    2013-01-01

    Long-term PM2.5 exposure has been reported to be associated with various adverse health outcomes. However, most ground monitors are located in urban areas, leading to a potentially biased representation of the true regional PM2.5 levels. To facilitate epidemiological studies, accurate estimates of spatiotemporally continuous distribution of PM2.5 concentrations are essential. Satellite-retrieved aerosol optical depth (AOD) has been widely used for PM2.5 concentration estimation due to its comprehensive spatial coverage. Nevertheless, an inherent disadvantage of current AOD products is their coarse spatial resolutions. For instance, the spatial resolutions of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging SpectroRadiometer (MISR) are 10 km and 17.6 km, respectively. In this paper, a new AOD product with 1 km spatial resolution retrieved by the multi-angle implementation of atmospheric correction (MAIAC) algorithm was used. A two-stage model was developed to account for both spatial and temporal variability in the PM2.5-AOD relationship by incorporating the MAIAC AOD, meteorological fields, and land use variables as predictors. Our study area is in the southeastern US, centered at the Atlanta Metro area, and data from 2001 to 2010 were collected from various sources. The model was fitted for each year individually, and we obtained model fitting R2 ranging from 0.71 to 0.85, MPE from 1.73 to 2.50 g m3, and RMSPE from 2.75 to 4.10 g m3. In addition, we found cross validation R2 ranging from 0.62 to 0.78, MPE from 2.00 to 3.01 g m3, and RMSPE from 3.12 to 5.00 g m3, indicating a good agreement between the estimated and observed values. Spatial trends show that high PM2.5 levels occurred in urban areas and along major highways, while low concentrations appeared in rural or mountainous areas. A time series analysis was conducted to examine temporal trends of PM2.5 concentrations in the study area from 2001 to 2010. The results showed

  16. Monitoring of the Spatial Distribution and Temporal Dynamics of the Green Vegetation Fraction of Croplands in Southwest Germany Using High-Resolution RapidEye Satellite Images

    NASA Astrophysics Data System (ADS)

    Imukova, Kristina; Ingwersen, Joachim; Streck, Thilo

    2014-05-01

    The green vegetation fraction (GVF) is a key input variable to the evapotranspiration scheme applied in the widely used NOAH land surface model (LSM). In standard applications of the NOAH LSM, the GVF is taken from a global map with a 15 km×15 km resolution. The central objective of the present study was (a) to derive gridded GVF data in a high spatial and temporal resolution from RapidEye images for a region in Southwest Germany, and (b) to improve the representation of the GVF dynamics of croplands in the NOAH LSM for a better simulation of water and energy exchange between land surface and atmosphere. For the region under study we obtained monthly RapidEye satellite images with a resolution 5 m×5 m by the German Aerospace Center (DLR). The images hold five spectral bands: blue, green, red, red-edge and near infrared (NIR). The GVF dynamics were determined based on the Normalized Difference Vegetation Index (NDVI) calculated from the red and near-infrared bands of the satellite images. The satellite GVF data were calibrated and validated against ground truth measurements. Digital colour photographs above the canopy were taken with a boom-mounted digital camera at fifteen permanently marked plots (1 m×1 m). Crops under study were winter wheat, winter rape and silage maize. The GVF was computed based on the red and the green band of the photographs according to Rundquist's method (2002). Based on the obtained calibration scheme GVF maps were derived in a monthly resolution for the region. Our results confirm a linear relationship between GVF and NDVI and demonstrate that it is possible to determine the GVF of croplands from RapidEye images based on a simple two end-member mixing model. Our data highlight the high variability of the GVF in time and space. At the field scale, the GVF was normally distributed with a coefficient of variation of about 32%. Variability was mainly caused by soil heterogeneities and management differences. At the regional scale the GVF

  17. The Spatial and Temporal Variability of a High-Energy Beach: Insight Gained From Over 50 High-Resolution Sub-aerial Surveys

    NASA Astrophysics Data System (ADS)

    Hansen, J. E.; Barnard, P. L.

    2008-12-01

    Since April 2004 a monitoring program of 7 km-long Ocean Beach, San Francisco, CA, has led to the completion of 55 Global Positioning System topographic surveys of the sub-aerial beach. The four-year timeseries contains over 1 million beach elevation measurements and documents detailed changes of the beach over a variety of spatial, temporal, and physical forcing scales. The goal of this ongoing data collection is to understand the variability in beach response as a function of wave forcing and offshore morphology which will ultimately aid in sediment management and erosion mitigation efforts. Several statistical methods are used to describe and account for the observed beach change, including empirical orthogonal functions (EOFs) and linear regression. Results from the EOF analysis show that the first mode, and approximately 50% of the observed variance of either the mean high water (MHW) or mean sea level (MSL) position, is explained by the seasonal movement of sediment on and offshore. The second mode, and approximately 15% of the variance, is dominated by alongshore variability, possibly corresponding to the position of cusps and embayments. Higher level modes become increasingly variable in the alongshore direction and each explain little of the observed variance. In both cases the first temporal mode is well correlated (R2~=0.7) with offshore significant wave height averaged over the previous 80 to 110 days, suggesting that seasonal wave height variations are the primary driver of intra-annual shoreline position. No other modes exhibit good correlation with offshore wave parameters regardless of the averaging time. The observed seasonal change is superimposed on a longer term trend of net annual accretion at the north end of Ocean Beach and erosion at the south end. Areas at the northern end have seen as much as 60 m of cumulative shoreline progradation since 2004, while some areas of the southern portion have retrograded nearly as much. This pattern shows an

  18. 10 yr spatial and temporal trends of PM2.5 concentrations in the southeastern US estimated using high-resolution satellite data

    NASA Astrophysics Data System (ADS)

    Hu, X.; Waller, L. A.; Lyapustin, A.; Wang, Y.; Liu, Y.

    2013-10-01

    Long-term PM2.5 exposure has been reported to be associated with various adverse health outcomes. However, most ground monitors are located in urban areas, leading to a potentially biased representation of the true regional PM2.5 levels. To facilitate epidemiological studies, accurate estimates of spatiotemporally continuous distribution of PM2.5 concentrations are essential. Satellite-retrieved aerosol optical depth (AOD) has been widely used for PM2.5 concentration estimation due to its comprehensive spatial coverage. Nevertheless, an inherent disadvantage of current AOD products is their coarse spatial resolutions. For instance, the spatial resolutions of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging SpectroRadiometer (MISR) are 10 km and 17.6 km, respectively. In this paper, a new AOD product with 1 km spatial resolution retrieved by the multi-angle implementation of atmospheric correction (MAIAC) algorithm was used. A two-stage model was developed to account for both spatial and temporal variability in the PM2.5-AOD relationship by incorporating the MAIAC AOD, meteorological fields, and land use variables as predictors. Our study area is in the southeastern US, centered at the Atlanta Metro area, and data from 2001 to 2010 were collected from various sources. The model was fitted for each year individually, and we obtained model fitting R2 ranging from 0.71 to 0.85, MPE from 1.73 to 2.50 μg m-3, and RMSPE from 2.75 to 4.10 μg m-3. In addition, we found cross validation R2 ranging from 0.62 to 0.78, MPE from 2.00 to 3.01 μg m-3, and RMSPE from 3.12 to 5.00 μg m-3, indicating a good agreement between the estimated and observed values. Spatial trends show that high PM2.5 levels occurred in urban areas and along major highways, while low concentrations appeared in rural or mountainous areas. A time series analysis was conducted to examine temporal trends of PM2.5 concentrations in the study area from 2001 to 2010. The

  19. High-Resolution Analyses of Human Leukocyte Antigens Allele and Haplotype Frequencies Based on 169,995 Volunteers from the China Bone Marrow Donor Registry Program

    PubMed Central

    Zhou, Xiao-Yang; Zhu, Fa-Ming; Li, Jian-Ping; Mao, Wei; Zhang, De-Mei; Liu, Meng-Li; Hei, Ai-Lian; Dai, Da-Peng; Jiang, Ping; Shan, Xiao-Yan; Zhang, Bo-Wei; Zhu, Chuan-Fu; Shen, Jie; Deng, Zhi-Hui; Wang, Zheng-Lei; Yu, Wei-Jian; Chen, Qiang; Qiao, Yan-Hui; Zhu, Xiang-Ming; Lv, Rong; Li, Guo-Ying; Li, Guo-Liang; Li, Heng-Cong; Zhang, Xu; Pei, Bin; Jiao, Li-Xin; Shen, Gang; Liu, Ying; Feng, Zhi-Hui; Su, Yu-Ping; Xu, Zhao-Xia; Di, Wen-Ying; Jiang, Yao-Qin; Fu, Hong-Lei; Liu, Xiang-Jun; Liu, Xiang; Zhou, Mei-Zhen; Du, Dan; Liu, Qi; Han, Ying; Zhang, Zhi-Xin; Cai, Jian-Ping

    2015-01-01

    Allogeneic hematopoietic stem cell transplantation is a widely used and effective therapy for hematopoietic malignant diseases and numerous other disorders. High-resolution human leukocyte antigen (HLA) haplotype frequency distributions not only facilitate individual donor searches but also determine the probability with which a particular patient can find HLA-matched donors in a registry. The frequencies of the HLA-A, -B, -C, -DRB1, and -DQB1 alleles and haplotypes were estimated among 169,995 Chinese volunteers using the sequencing-based typing (SBT) method. Totals of 191 HLA-A, 244 HLA-B, 146 HLA-C, 143 HLA-DRB1 and 47 HLA-DQB1 alleles were observed, which accounted for 6.98%, 7.06%, 6.46%, 9.11% and 7.91%, respectively, of the alleles in each locus in the world (IMGT 3.16 Release, Apr. 2014). Among the 100 most common haplotypes from the 169,995 individuals, nine distinct haplotypes displayed significant regionally specific distributions. Among these, three were predominant in the South China region (i.e., the 20th, 31st, and 81sthaplotypes), another three were predominant in the Southwest China region (i.e., the 68th, 79th, and 95th haplotypes), one was predominant in the South and Southwest China regions (the 18th haplotype), one was relatively common in the Northeast and North China regions (the 94th haplotype), and one was common in the Northeast, North and Northwest China (the 40th haplotype). In conclusion, this is the first to analyze high-resolution HLA diversities across the entire country of China, based on a detailed and complete data set that covered 31 provinces, autonomous regions, and municipalities. Specifically, we also evaluated the HLA matching probabilities within and between geographic regions and analyzed the regional differences in the HLA diversities in China. We believe that the data presented in this study might be useful for unrelated HLA-matched donor searches, donor registry planning, population genetic studies, and anthropogenesis

  20. High-resolution mapping of a novel rat blood pressure locus on chromosome 9 to a region containing the Spp2 gene and colocalization of a QTL for bone mass.

    PubMed

    Nie, Ying; Kumarasamy, Sivarajan; Waghulde, Harshal; Cheng, Xi; Mell, Blair; Czernik, Piotr J; Lecka-Czernik, Beata; Joe, Bina

    2016-06-01

    Through linkage analysis of the Dahl salt-sensitive (S) rat and the spontaneously hypertensive rat (SHR), a blood pressure (BP) quantitative trait locus (QTL) was previously located on rat chromosome 9. Subsequent substitution mapping studies of this QTL revealed multiple BP QTLs within the originally identified logarithm of odds plot by linkage analysis. The focus of this study was on a 14.39 Mb region, the distal portion of which remained unmapped in our previous studies. High-resolution substitution mapping for a BP QTL in the setting of a high-salt diet indicated that an SHR-derived congenic segment of 787.9 kb containing the gene secreted phosphoprotein-2 (Spp2) lowered BP and urinary protein excretion. A nonsynonymous G/T polymorphism in the Spp2 gene was detected between the S and S.SHR congenic rats. A survey of 45 strains showed that the T allele was rare, being detected only in some substrains of SHR and WKY. Protein modeling prediction through SWISSPROT indicated that the predicted protein product of this variant was significantly altered. Importantly, in addition to improved cardiovascular and renal function, high salt-fed congenic animals carrying the SHR T variant of Spp2 had significantly lower bone mass and altered bone microarchitecture. Total bone volume and volume of trabecular bone, cortical thickness, and degree of mineralization of cortical bone were all significantly reduced in congenic rats. Our study points to opposing effects of a congenic segment containing the prioritized candidate gene Spp2 on BP and bone mass. PMID:27113531

  1. 10-year spatial and temporal trends of PM2.5 concentrations in the southeastern US estimated using high-resolution satellite data

    NASA Astrophysics Data System (ADS)

    Hu, X.; Waller, L. A.; Lyapustin, A.; Wang, Y.; Liu, Y.

    2014-06-01

    Long-term PM2.5 exposure has been associated with various adverse health outcomes. However, most ground monitors are located in urban areas, leading to a potentially biased representation of true regional PM2.5 levels. To facilitate epidemiological studies, accurate estimates of the spatiotemporally continuous distribution of PM2.5 concentrations are important. Satellite-retrieved aerosol optical depth (AOD) has been increasingly used for PM2.5 concentration estimation due to its comprehensive spatial coverage. Nevertheless, previous studies indicated that an inherent disadvantage of many AOD products is their coarse spatial resolution. For instance, the available spatial resolutions of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging SpectroRadiometer (MISR) AOD products are 10 and 17.6 km, respectively. In this paper, a new AOD product with 1 km spatial resolution retrieved by the multi-angle implementation of atmospheric correction (MAIAC) algorithm based on MODIS measurements was used. A two-stage model was developed to account for both spatial and temporal variability in the PM2.5-AOD relationship by incorporating the MAIAC AOD, meteorological fields, and land use variables as predictors. Our study area is in the southeastern US centered at the Atlanta metro area, and data from 2001 to 2010 were collected from various sources. The model was fitted annually, and we obtained model fitting R2 ranging from 0.71 to 0.85, mean prediction error (MPE) from 1.73 to 2.50 μg m-3, and root mean squared prediction error (RMSPE) from 2.75 to 4.10 μg m-3. In addition, we found cross-validation R2 ranging from 0.62 to 0.78, MPE from 2.00 to 3.01 μg m-3, and RMSPE from 3.12 to 5.00 μg m-3, indicating a good agreement between the estimated and observed values. Spatial trends showed that high PM2.5 levels occurred in urban areas and along major highways, while low concentrations appeared in rural or mountainous areas. Our time

  2. Very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Aronson, A. I.

    1974-01-01

    A primary sensor used in environmental and earth-resource observation, the Very High Resolution Radiometer (VHRR) was designed for use on the ITOS D series spacecraft. The VHRR provides a 0.47 mile resolution made possible with a mercury-cadmium-telluride detector cooled to approximately 105 K by a passive radiator cooler. The components of this system are described. The optical subsystem of the VHRR consists of a scanning mirror, a Dall-Kirkham telescope, a dichroic beam splitter, relay lenses, spectral filters, and an IR detector. Signal electronics amplify and condition the signals from the infrared and visible light detector. Sync generator electronics provides the necessary time signals. Scan-drive electronics is used for commutation of the motor winding, velocity, and phase control. A table lists the performance parameters of the VHRR.

  3. High resolution Doppler lidar

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Hays, Paul B.; Barnes, John E.

    1989-01-01

    A high resolution lidar system was implemented to measure winds in the lower atmosphere. The wind speed along the line of sight was determined by measuring the Doppler shift of the aerosol backscattered laser signal. The system in its present configuration is stable, and behaves as indicated by theoretical simulations. This system was built to demonstrate the capabilities of the detector system as a prototype for a spaceborne lidar. The detector system investigated consisted of a plane Fabry-Perot etalon, and a 12-ring anode detector. This system is generically similar to the Fabry-Perot interferometer developed for passive wind measurements on board the Dynamics Explorer satellite. That this detector system performs well in a lidar configuration was demonstrated.

  4. High resolution ultrasonic densitometer

    SciTech Connect

    Dress, W.B.

    1983-01-01

    The velocity of torsional stress pulses in an ultrasonic waveguide of non-circular cross section is affected by the temperature and density of the surrounding medium. Measurement of the transit times of acoustic echoes from the ends of a sensor section are interpreted as level, density, and temperature of the fluid environment surrounding that section. This paper examines methods of making these measurements to obtain high resolution, temperature-corrected absolute and relative density and level determinations of the fluid. Possible applications include on-line process monitoring, a hand-held density probe for battery charge state indication, and precise inventory control for such diverse fluids as uranium salt solutions in accountability storage and gasoline in service station storage tanks.

  5. Improving In Vivo High-Resolution CT Imaging of the Tumour Vasculature in Xenograft Mouse Models through Reduction of Motion and Bone-Streak Artefacts

    PubMed Central

    Kersemans, Veerle; Kannan, Pavitra; Beech, John S.; Bates, Russell; Irving, Benjamin; Gilchrist, Stuart; Allen, Philip D.; Thompson, James; Kinchesh, Paul; Casteleyn, Christophe; Schnabel, Julia; Partridge, Mike; Muschel, Ruth J.; Smart, Sean C.

    2015-01-01

    Introduction Preclinical in vivo CT is commonly used to visualise vessels at a macroscopic scale. However, it is prone to many artefacts which can degrade the quality of CT images significantly. Although some artefacts can be partially corrected for during image processing, they are best avoided during acquisition. Here, a novel imaging cradle and tumour holder was designed to maximise CT resolution. This approach was used to improve preclinical in vivo imaging of the tumour vasculature. Procedures A custom built cradle containing a tumour holder was developed and fix-mounted to the CT system gantry to avoid artefacts arising from scanner vibrations and out-of-field sample positioning. The tumour holder separated the tumour from bones along the axis of rotation of the CT scanner to avoid bone-streaking. It also kept the tumour stationary and insensitive to respiratory motion. System performance was evaluated in terms of tumour immobilisation and reduction of motion and bone artefacts. Pre- and post-contrast CT followed by sequential DCE-MRI of the tumour vasculature in xenograft transplanted mice was performed to confirm vessel patency and demonstrate the multimodal capacity of the new cradle. Vessel characteristics such as diameter, and branching were quantified. Results Image artefacts originating from bones and out-of-field sample positioning were avoided whilst those resulting from motions were reduced significantly, thereby maximising the resolution that can be achieved with CT imaging in vivo. Tumour vessels ≥ 77 μm could be resolved and blood flow to the tumour remained functional. The diameter of each tumour vessel was determined and plotted as histograms and vessel branching maps were created. Multimodal imaging using this cradle assembly was preserved and demonstrated. Conclusions The presented imaging workflow minimised image artefacts arising from scanner induced vibrations, respiratory motion and radiopaque structures and enabled in vivo CT imaging

  6. Helmholtz-pair transmit coil with integrated receive array for high-resolution MRI of trabecular bone in the distal tibia at 7 T

    PubMed Central

    Wright, Alexander C.; Lemdiasov, Rostislav; Connick, Thomas J.; Bhagat, Yusuf A.; Magland, Jeremy F.; Song, Hee Kwon; Toddes, Steven P.; Ludwig, Reinhold; Wehrli, Felix W.

    2011-01-01

    A Helmholtz-pair local transmit RF coil with an integrated four-element receive array RF coil and foot immobilization platform was designed and constructed for imaging the distal tibia in a whole-body 7 T MRI scanner. Simulations and measurements of the B1 field distribution of the transmit coil are described, along with SAR considerations for operation at 7 T. Results of imaging the trabecular bone of three volunteers at 1.5 T, 3 T and 7 T are presented, using identical 1.5 T and 3 T versions of the 7 T four-element receive array. The spatially registered images reveal improved visibility for individual trabeculae and show average gains in SNR of 2.8x and 4.9x for imaging at 7 T compared to 3 T and 1.5 T, respectively. The results thus display an approximately linear dependence of SNR with field strength and enable the practical utility of 7 T scanners for micro-MRI of trabecular bone. PMID:21402488

  7. Geometric modeling of the temporal bone for cochlea implant simulation

    NASA Astrophysics Data System (ADS)

    Todd, Catherine A.; Naghdy, Fazel; O'Leary, Stephen

    2004-05-01

    The first stage in the development of a clinically valid surgical simulator for training otologic surgeons in performing cochlea implantation is presented. For this purpose, a geometric model of the temporal bone has been derived from a cadaver specimen using the biomedical image processing software package Analyze (AnalyzeDirect, Inc) and its three-dimensional reconstruction is examined. Simulator construction begins with registration and processing of a Computer Tomography (CT) medical image sequence. Important anatomical structures of the middle and inner ear are identified and segmented from each scan in a semi-automated threshold-based approach. Linear interpolation between image slices produces a three-dimensional volume dataset: the geometrical model. Artefacts are effectively eliminated using a semi-automatic seeded region-growing algorithm and unnecessary bony structures are removed. Once validated by an Ear, Nose and Throat (ENT) specialist, the model may be imported into the Reachin Application Programming Interface (API) (Reachin Technologies AB) for visual and haptic rendering associated with a virtual mastoidectomy. Interaction with the model is realized with haptics interfacing, providing the user with accurate torque and force feedback. Electrode array insertion into the cochlea will be introduced in the final stage of design.

  8. Histopathologic ear findings of syphilis: a temporal bone study.

    PubMed

    Hızlı, Ömer; Hızlı, Pelin; Kaya, Serdar; Monsanto, Rafael da Costa; Paparella, Michael M; Cureoglu, Sebahattin

    2016-09-01

    To the best of our knowledge, histopathologic studies of syphilitic ears have generally focused on hydropic changes; so far, no such studies have investigated peripheral vestibular otopathology using differential interference contrast microscopy, in patients with syphilis. For this study, we examined 13 human temporal bone samples from 8 patients with a history of syphilis. Using conventional light microscopy, we performed qualitative histopathologic assessment. In addition, using differential interference contrast microscopy, we performed type I and type II vestibular hair cell counts on each vestibular sense organ with minimal autolysis; in which the neuroepithelium was oriented perpendicular to the plane of section. We then compared vestibular hair cell densities (cells per 0.01 mm² surface area) in the syphilis group vs. the control group. In the syphilis group, we observed precipitate in the endolymphatic or perilymphatic spaces in 1 (7.7 %) of the samples and endolymphatic hydrops in eight (61.5 %) of the samples. Hydrops involved the cochlea (four samples) and/or saccule (four samples). In addition, the syphilis group experienced a significant loss of type II vestibular hair cells in the maculae of the utricle and saccule, and in the cristae of the lateral and posterior semicircular canals, as compared with the control group (P < 0.05). PMID:26573155

  9. Differential Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones

    NASA Astrophysics Data System (ADS)

    Nakajima, Hideko Heidi; Dong, Wei; Olson, Elizabeth S.; Merchant, Saumil N.; Ravicz, Michael E.; Rosowski, John J.

    2009-02-01

    We present the first simultaneous sound pressure measurements in scala vestibuli and scala tympani of the cochlea in human cadaveric temporal bones. Micro-scale fiberoptic pressure sensors enabled the study of differential sound pressure at the cochlear base. This differential pressure is the input to the cochlear partition, driving cochlear waves and auditory transduction. Results showed that: pressure of scala vestibuli was much greater than scala tympani except at low and high frequencies where scala tympani pressure affects the input to the cochlea; the differential pressure proved to be an excellent measure of normal ossicular transduction of sound (shown to decrease 30-50 dB with ossicular disarticulation, whereas the individual scala pressures were significantly affected by non-ossicular conduction of sound at high frequencies); the middle-ear gain and differential pressure were generally bandpass in frequency dependence; and the middle-ear delay in the human was over twice that of the gerbil. Concurrent stapes velocity measurements allowed determination of the differential impedance across the partition and round-window impedance. The differential impedance was generally resistive, while the round-window impedance was consistent with a compliance in conjunction with distributed inertia and damping. Our techniques can be used to study inner-ear conductive pathologies (e.g., semicircular dehiscence), as well as non-ossicular cochlear stimulation (e.g., round-window stimulation) - situations that cannot be completely quantified by measurements of stapes velocity or scala-vestibuli pressure by themselves.

  10. High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.

    1999-01-01

    This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.

  11. High Resolution Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brünken, S.; Schlemmer, S.

    2016-05-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limitations of conventional absorption spectroscopy. Throughout this review examples demonstrating the strong interplay between laboratory and observational studies will be given.

  12. Audiologic Patterns of Otic Capsule Preserving Temporal Bone Fracture: Effects of the Affected Subsites

    PubMed Central

    Kim, So Young; Kim, Yoon Joong; Kim, Young Ho; Park, Min-Hyun

    2016-01-01

    Objectives. This study was aimed to assess the relationship between the type of temporal bone area involved and conductive hearing loss. Methods. We enrolled 97 patients who visited the otolaryngology clinics of Seoul National University Hospital or Boramae Medical Center, Seoul Metropolitan Government-Seoul National University with temporal bone fracture between January 2004 and January 2014. Audiometric parameters, including initial and improved air-bone (AB) conduction gap values, were reviewed in accordance with the temporal bone computed tomography (external auditory canal [EAC], middle ear [ME], mastoid [M], and ossicle [O]). Results. Patients with ossicular chain involvement exhibited a larger AB gap compared to those with no ossicular chain involvement at 250, 1,000, 2,000, and 4,000 Hz. Among the groups without ossicular chain involvement, the initial AB gap was largest in patients with EAC+ME+M involvement, followed by the ME+M and M-only involvement groups. The greatest improvement in the AB gap was observed in the EAC+ME+M group followed by the ME+M and M-only groups, irrespective of ossicular chain involvement. Improvements in AB gap values were smallest at 2,000 Hz. Conclusion. Conductive hearing loss pattern differed according to the temporal bone area involved. Therefore, areas such as the hematoma and hemotympanum, as well as the fracture line of the temporal bone area, must be evaluated to predict audiologic patterns with otic capsule preserving temporal bone fracture. PMID:27337953

  13. High-resolution peripheral quantitative computed tomography and finite element analysis of bone strength at the distal radius in ovariectomized adult rhesus monkey demonstrate efficacy of odanacatib and differentiation from alendronate.

    PubMed

    Cabal, Antonio; Jayakar, Richa Y; Sardesai, Swanand; Phillips, Eual A; Szumiloski, John; Posavec, Diane J; Mathers, Parker D; Savitz, Alan T; Scott, Boyd B; Winkelmann, Christopher T; Motzel, Sherri; Cook, Lynn; Hargreaves, Richard; Evelhoch, Jeffrey L; Dardzinski, Bernard J; Hangartner, Thomas N; McCracken, Paul J; Duong, Le T; Williams, Donald S

    2013-10-01

    Translational evaluation of disease progression and treatment response is critical to the development of therapies for osteoporosis. In this study, longitudinal in-vivo monitoring of odanacatib (ODN) treatment efficacy was compared to alendronate (ALN) in ovariectomized (OVX) non-human primates (NHPs) using high-resolution peripheral computed tomography (HR-pQCT). Treatment effects were evaluated using several determinants of bone strength, density and quality, including volumetric bone mineral density (vBMD), three-dimensional structure, finite element analysis (FEA) estimated peak force and biomechanical properties at the ultradistal (UD) radius at baseline, 3, 6, 9, 12, and 18 months of dosing in three treatment groups: vehicle (VEH), low ODN (2 mg/kg/day, L-ODN), and ALN (30 μg/kg/week). Biomechanical axial compression tests were performed at the end of the study. Bone strength estimates using FEA were validated by ex-vivo mechanical compression testing experiments. After 18months of dosing, L-ODN demonstrated significant increases from baseline in integral vBMD (13.5%), cortical thickness (24.4%), total bone volume fraction BV/TV (13.5%), FEA-estimated peak force (26.6%) and peak stress (17.1%), respectively. Increases from baseline for L-ODN at 18 months were significantly higher than that for ALN in DXA-based aBMD (7.6%), cortical thickness (22.9%), integral vBMD (12.2%), total BV/TV (10.1%), FEA peak force (17.7%) and FEA peak stress (11.5%), respectively. These results demonstrate a superior efficacy of ODN treatment compared to ALN at the UD radii in ovariectomized NHPs. PMID:23791777

  14. Osteoradionecrosis of sphenoid and temporal bones in a patient with maxillary sinus carcinoma: A case report

    SciTech Connect

    Inokuchi, T.; Sano, K.; Kaminogo, M. )

    1990-09-01

    A case of radionecrosis of sphenoid and temporal bones is reported. The patient received a combination of surgery, radiotherapy, and chemotherapy for his left maxillary sinus carcinoma. After the combined therapy, necrosis accompanying inflammation developed in the maxillary and temporal regions. Excision of the necrotic tissues was done, and the left ascending ramus of the mandible was resected because of persistent tumor mass at the left infratemporal fossa. Although the excision wound of the maxilla healed by epithelialization, an area of nonvital bone remained exposed in the temporal region, where progressive osteonecrosis with infection led to breakdown of the skin. The necrotic bones of the zygomatic arch and the sphenotemporal sutural region became visible through the skin defect, and computerized tomography scan revealed bone necrosis involving the inferolateral area and the base of the skull. Excision of the necrotic bone and reconstruction with sternocleidomastoid myocutaneous flap were performed.

  15. Clinical evaluation of a high-resolution new peripheral quantitative computerized tomography (pQCT) scanner for the bone densitometry at the lower limbs

    NASA Astrophysics Data System (ADS)

    Braun, M. J.; Meta, M. D.; Schneider, P.; Reiners, Chr

    1998-08-01

    Precision, long-term stability, linearity and accuracy of the x-ray peripheral quantitative computerized tomographic (pQCT) bone scanner XCT 3000 (Norland-Stratec Medical Sys.) were evaluated using the European Forearm Phantom (EFP). In vivo measurements were assessed using a standardized procedure at the distal femur and the distal tibia. In the patient-scan mode, the spatial resolution of the system was lp/mm as measured at the 10% level of the modulation transfer function (MTF). The contrast-detail diagram (CDD) yielded a minimal difference in attenuation coefficient (AC) of 0.07 at an object size of 0.5 mm. The effective dose for humans was calculated to be less than 1.5 Sv per scan. Short-term precision in vivo was expressed as root mean square standard deviation of paired measurements of 20 healthy volunteers (%). At the distal femur total volumetric density (ToD) and total cross-sectional area (ToA) were found to be less sensitive to positioning errors than at the distal tibia. Structural parameters like the polar cross-sectional moment of inertia or the polar cross-sectional moment of resistance showed a good short-term precision at the distal femur ( and 1.4%). The relation between the two skeletal sites with respect to or showed a high

  16. High Resolution Formaldehyde Photochemistry

    NASA Astrophysics Data System (ADS)

    Ernest, C. T.; Bauer, D.; Hynes, A. J.

    2010-12-01

    Formaldehyde (HCHO) is the most abundant and most important organic carbonyl compound in the atmosphere. The sources of formaldehyde are the oxidation of methane, isoprene, acetone, and other volatile organic compounds (VOCs); fossil fuel combustion; and biomass burning. The dominant loss mechanism for formaldehyde is photolysis which occurs via two pathways: (R1) HCHO + hv → HCO + H (R2) HCHO + hv → H2 + CO The first pathway (R1) is referred to as the radical channel, while the second pathway (R2) is referred to as the molecular channel. The products of both pathways play a significant role in atmospheric chemistry. The CO that is produced in the molecular channel undergoes further oxidation to produce CO2. Under atmospheric conditions, the H atom and formyl radical that are produced in the radical channel undergo rapid reactions with O2 to produce the hydroperoxyl radical (HO2) via (R3) and (R4). (R3) HCO + O2 → HO2 + CO (R4) H + O2 → HO2 Thus, for every photon absorbed, the photolysis of formaldehyde can contribute one CO2 molecule to the global greenhouse budget or two HO2 radicals to the tropospheric HOx (OH + HO2) cycle. The HO2 radicals produced during formaldehyde photolysis have also been implicated in the formation of photochemical smog. The HO2 radicals act as radical chain carriers and convert NO to NO2, which ultimately results in the catalytic production of O3. Constraining the yield of HO2 produced via HCHO photolysis is essential for improving tropospheric chemistry models. In this study, both the absorption cross section and the quantum yield of the radical channel (R1) were measured at high resolution over the tropospherically relevant wavelength range 304-330 nm. For the cross section measurements a narrow linewidth Nd:YAG pumped dye laser was used with a multi-pass cell. Partial pressures of HCHO were kept below 0.3 torr. Simultaneous measurement of OH LIF in a flame allowed absolute calibration of the wavelength scale. Pressure

  17. High resolution time interval meter

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  18. A computerized tomography study of the morphological interrelationship between the temporal bones and the craniofacial complex

    PubMed Central

    Costa, Helder Nunes; Slavicek, Rudolf; Sato, Sadao

    2012-01-01

    The hypothesis that the temporal bones are at the center of the dynamics of the craniofacial complex, directly influencing facial morphology, has been put forward long ago. This study examines the role of the spatial positioning of temporal bones (frontal and sagittal inclination) in terms of influencing overall facial morphology. Several 3D linear, angular and orthogonal measurements obtained through computerized analysis of virtual models of 163 modern human skulls reconstructed from cone-beam computed tomography images were analyzed and correlated. Additionally, the sample was divided into two subgroups based on the median value of temporal bone sagittal inclination [anterior rotation group (n = 82); posterior rotation group (n = 81)], and differences between groups evaluated. Correlation coefficients showed that sagittal inclination of the temporal bone was significantly (P < 0.01) related to midline flexion, transversal width and anterior–posterior length of the basicranium, to the anterior–posterior positioning of the mandible and maxilla, and posterior midfacial height. Frontal inclination of the temporal bone was significantly related (P < 0.01) to basicranium anterior–posterior and transversal dimensions, and to posterior midfacial height. In comparison with the posterior rotation group, the anterior rotation group presented a less flexed and anterior–posteriorly longer cranial base, a narrower skull, porion and the articular eminence located more superiorly and posteriorly, a shorter posterior midfacial height, the palatal plane rotated clockwise, a more retrognathic maxilla and mandible, and the upper posterior occlusal plane more inclined and posteriorly located. The results suggest that differences in craniofacial morphology are highly integrated with differences in the positional relationship of the temporal bones. The sagittal inclination of the temporal bone seems to have a greater impact on the 3D morphology of the craniofacial complex than

  19. Enhancing Realism of Wet Surfaces in Temporal Bone Surgical Simulation

    PubMed Central

    Kerwin, Thomas; Shen, Han-Wei; Stredney, Don

    2009-01-01

    We present techniques to improve visual realism in an interactive surgical simulation application: a mastoidectomy simulator that offers a training environment for medical residents as a complement to using a cadaver. As well as displaying the mastoid bone through volume rendering, the simulation allows users to experience haptic feedback and appropriate sound cues while controlling a virtual bone drill and suction/irrigation device. The techniques employed to improve realism consist of a fluid simulator and a shading model. The former allows for deformable boundaries based on volumetric bone data, while the latter gives a wet look to the rendered bone to emulate more closely the appearance of the bone in a surgical environment. The fluid rendering includes bleeding effects, meniscus rendering, and refraction. We incorporate a planar computational fluid dynamics simulation into our three-dimensional rendering to effect realistic blood diffusion. Maintaining real-time performance while drilling away bone in the simulation is critical for engagement with the system. PMID:19590102

  20. Temporal Bone Osteomyelitis: The Relationship with Malignant Otitis Externa, the Diagnostic Dilemma, and Changing Trends

    PubMed Central

    Chen, Jia-Cheng; Yeh, Chien-Fu; Shiao, An-Suey; Tu, Tzong-Yang

    2014-01-01

    Fifty-five patients hospitalized for osteomyelitis of the temporal bone between 1990 and 2011 were divided into two study groups: group 1 was patients collected from 1990 to 2001 and group 2 was composed of patients between 2002 and 2011. Clinical diagnostic criteria and epidemiologic data were analyzed to illustrate the altering features of osteomyelitis of the temporal bone. Group 1 patients were characterized by high prevalence of diabetes and more commonly suffered from otalgia, otitis externa and granulation tissue in the external auditory canal and higher positive culture for Pseudomonas aeruginosa. Noticeable changing trends were found between both groups, including declining prevalence of diabetes, fewer patients complaining of pain or presenting with otitis externa, and canal granulation, and increased variety of pathogens in group 2. We should highlight the index of clinical suspicion for osteomyelitis of the temporal bone, even in nondiabetic or immunocompetent patients. Painless otorrhea patients were also at risk of osteomyelitis of the temporal bone, especially patients with previous otologic operation. Increased multiplicity of pathogens amplified the difficulty of diagnosis for osteomyelitis of the temporal bone. PMID:24963511

  1. A high-resolution imaging technique using a whole-body, research photon counting detector CT system

    NASA Astrophysics Data System (ADS)

    Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D. L.; Jorgensen, S.; Ritman, E.; McCollough, C.

    2016-03-01

    A high-resolution (HR) data collection mode has been introduced to a whole-body, research photon-counting-detector CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm x 0.45 mm detector pixels were used, which corresponded to a pixel size of 0.25 mm x 0.25 mm at the iso-center. Spatial resolution of this HR mode was quantified by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed by two experienced radiologists. High spatial resolution of the HR mode was evidenced by the MTF measurement, with 15 lp/cm and 20 lp/cm at 10% and 2% modulation. Images from anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also benefit from this high resolution mode.

  2. A High-Resolution Imaging Technique using a Whole-body, Research Photon Counting Detector CT System

    PubMed Central

    Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D. L.; Jorgensen, S.; Ritman, E.; McCollough, C.

    2016-01-01

    A high-resolution (HR) data collection mode has been introduced to the whole-body, research photon-counting-detector CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm × 0.45 mm detectors pixels were used, which corresponded to a pixel size of 0.225 mm × 0.225 mm at the iso-center. Spatial resolution of this HR mode was quantified by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed by two experienced radiologists. Comparison of the HR mode images against their energy integrating system (EID) equivalents using comb filters was also performed. High spatial resolution of the HR mode was evidenced by the MTF measurement, with 15 lp/cm and 20 lp/cm at 10% and 2% MTF. Images from anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD system but hardly visible with the EID system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also benefit from this high resolution mode. PMID:27330238

  3. High resolution extremity CT for biomechanics modeling

    SciTech Connect

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  4. Mature Teratoma of the Temporal Bone in 3.5-Month-Old Baby Girl

    PubMed Central

    Alqurashi, Alshema; Bakry, Essa; Straube, Marta; Rickert, Christian H.; Mir-Salim, Parwis

    2015-01-01

    Mature teratoma is a benign germ cell tumor rarely located in the temporal bone. We are reporting a case of a mature teratoma of the temporal bone in a healthy borne 3.5-month-old baby girl with a 2-day suggestive history of otitis media and polypoidal mass expulsing from the external auditory canal of the left ear. A definitive diagnosis is made after complete excision and histological examination of the tissue. Total surgical excision of the tumor is the treatment of choice. PMID:25945275

  5. Temporal Changes of Microarchitectural and Mechanical Parameters of Cancellous Bone in the Osteoporotic Rabbit

    PubMed Central

    Wen, Xin-Xin; Xu, Chao; Wang, Fa-Qi; Feng, Ya-Fei; Zhao, Xiong; Yan, Ya-Bo; Lei, Wei

    2015-01-01

    This study was aimed at elucidating the temporal changes of microarchitectural and mechanical parameters of cancellous bone in the osteoporotic rabbit model induced by ovariectomy (OVX) combined with glucocorticoid (GC) administration. Osteoporotic (OP) group received bilateral OVX combined with injections of GC, while sham group only received sham operation. Cancellous bone quality in vertebrae and femoral condyles in each group was assessed by DXA, μCT, nanoindentation, and biomechanical tests at pre-OVX and 4, 6, and 8 weeks after injection. With regard to femoral condyles, nanoindentation test could detect significant decline in tissue modulus and hardness at 4 weeks. However, BMD and microarchitecture of femoral condylar cancellous bone changed significantly at 6 weeks. In vertebrae, BMD, microarchitecture, nanoindentation, and biomechanical tests changed significantly at 4 weeks. Our data demonstrated that temporal changes of microarchitectural and mechanical parameters of cancellous bone in the osteoporotic rabbit were significant. The temporal changes of cancellous bone in different anatomical sites might be different. The nanoindentation method could detect the changes of bone quality at an earlier stage at both femoral condyle and vertebra in the osteoporotic rabbit model than other methods (μCT, BMD). PMID:25918705

  6. Temporal bone fracture following blunt trauma caused by a flying fish.

    PubMed

    Goldenberg, D; Karam, M; Danino, J; Flax-Goldenberg, R; Joachims, H Z

    1998-10-01

    Blunt trauma to the temporal region can cause fracture of the skull base, loss of hearing, vestibular symptoms and otorrhoea. The most common causes of blunt trauma to the ear and surrounding area are motor vehicle accidents, violent encounters, and sports-related accidents. We present an obscure case of a man who was struck in the ear by a flying fish while wading in the sea with resulting temporal bone fracture, sudden deafness, vertigo, cerebrospinal fluid otorrhoea, and pneumocephalus. PMID:10211221

  7. Determination of osteocalcin in meat and bone meal of bovine and porcine origin using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry and high-resolution hybrid mass spectrometry.

    PubMed

    Balizs, Gabor; Weise, Christoph; Rozycki, Christel; Opialla, Tobias; Sawada, Stefanie; Zagon, Jutta; Lampen, Alfonso

    2011-05-01

    A method has been developed for determining the origin of meat and bone meal (MBM) by detecting species-specific osteocalcin (OC) using matrix-assisted laser desorption ionization/time-of-flight (MALDI/TOF) and high-resolution hybrid mass spectrometry (HR-Q/TOF MS). The analysis is based on the detection of typical species-specific OC and its tryptic peptide fragments which differ in mass due to differences in the amino-acid sequences between species. After dissolving the MBM samples in EDTA buffer, purification after ultrafiltration was performed using two methods: solid-phase extraction using Zip-Tip C(18) or size exclusion coupled with reverse-phase chromatography. Fractions containing partially purified intact OC were analyzed using LC-Q/TOF and MALDI/TOF mass spectrometry. Species-specific OC was detected at the typical protonated and doubly protonated molecular ions. Furthermore, typical porcine- and bovine-derived tryptic fragments from MBM were detected after enzymatic digestion. In order to determine the underlying amino-acid sequences and to confirm the assignment to OC-derived peptides, MS/MS analysis was carried out. In conclusion, we were able to detect OC in bovine and porcine MBM with high sensitivity and the MS-based method described here by which total OC mass and marker peptides of digested OC are recorded can be used as an alternative approach to detect genus-specific differences in MBM and can be applied as a confirmatory method to mainly immunological osteocalcin screening methods. PMID:21504815

  8. High-Resolution US of Rheumatologic Diseases.

    PubMed

    Taljanovic, Mihra S; Melville, David M; Gimber, Lana H; Scalcione, Luke R; Miller, Margaret D; Kwoh, C Kent; Klauser, Andrea S

    2015-01-01

    For the past 15 years, high-resolution ultrasonography (US) is being routinely and increasingly used for initial evaluation and treatment follow-up of rheumatologic diseases. This imaging technique is performed by using high-frequency linear transducers and has proved to be a powerful diagnostic tool in evaluation of articular erosions, simple and complex joint and bursal effusions, tendon sheath effusions, and synovitis, with results comparable to those of magnetic resonance imaging, excluding detection of bone marrow edema. Crystal deposition diseases including gouty arthropathy and calcium pyrophosphate deposition disease (CPPD) have characteristic appearances at US, enabling differentiation between these two diseases and from inflammatory arthropathies. Enthesopathy, which frequently accompanies psoriatic and reactive arthritis, also has a characteristic appearance at high-resolution US, distinguishing these two entities from other inflammatory and metabolic arthropathies. The presence of Doppler signal in examined joints, bursae, and tendon sheaths indicates active synovitis. Microbubble echo contrast agents augment detection of tissue vascularity and may act in the future as a drug delivery vehicle. Frequently, joint, tendon sheath, and bursal fluid aspirations and therapeutic injections are performed under US guidance. The authors describe the high-resolution US technique including gray-scale, color or power Doppler, and contrast agent-enhanced US that is used in evaluation of rheumatologic diseases of the wrist and hand and the ankle and foot in their routine clinical practice. This article demonstrates imaging findings of normal joints, rheumatoid arthritis, gouty arthritis, CPPD, psoriatic and reactive arthritis, and osteoarthritis. PMID:26562235

  9. Metastatic Prostate Cancer to the Left Temporal Bone: A Case Report and Review of the Literature

    PubMed Central

    Faucett, Erynne A.; Richins, Hal; Khan, Rihan; Jacob, Abraham

    2015-01-01

    Breast, lung, and prostate cancers are the three most common malignancies to metastasize to the temporal bone. Still, metastatic prostate cancer of the temporal bone is a rare finding, with approximately 21 cases reported in the literature and only 2 cases discovered more than 10 years after initial treatment of the primary. This disease may be asymptomatic and discovered incidentally; however, hearing loss, otalgia, cranial nerve palsies, and visual changes can all be presenting symptoms. We present the case of a 95-year-old man with history of primary prostate cancer treated 12 years earlier that was seen for new-onset asymmetric hearing loss and otalgia. The tympanic membranes and middle ears were normal; however, based on radiologic findings and eventual biopsy, the patient was diagnosed with extensive metastatic prostate cancer to the left temporal bone. This case (1) demonstrates that a high index of suspicion for unusual etiologies of seemingly benign symptoms must be maintained in elderly patients having prior history of cancer and (2) substantiates the value of temporal bone imaging when diagnosis may be unclear from history and physical exam. PMID:26294996

  10. Pneumatization of Mastoid Air Cells, Temporal Bone, Ethmoid and Sphenoid Sinuses. Any Correlation?

    PubMed

    Hindi, Khalid; Alazzawi, Sarmad; Raman, Rajagopalan; Prepageran, Narayanan; Rahmat, Kartini

    2014-12-01

    The aim of this study is to assess the pneumatization of the paranasal sinuses (PNS) and other parts of temporal bone such as mastoid air cells and to investigate if there was any association between the aeration of these structures among the three major ethnic groups in Malaysia (Malay, Chinese, Indian) as this would be representative of Asia. A retrospective review of 150 computed tomography (CT) scans of PNS and temporal bones was done and analysed. The pneumatization of each area was obtained and compared using statistical analysis. Patients with a history of previous medical or surgical problems in the intended areas were excluded from the study. The pneumatization of the mastoid air cells and other temporal bone parts were noted to be symmetrical in more than 75 %. There was a positive correlation between the pneumatization of mastoid air cells and that of the sphenoid sinus. The prevalence of Agger nasi, Haller's and Onodi cells was observed to be significantly higher in the Chinese group. Preoperative assessment of the temporal bone and PNS with CT scan may be helpful in the evaluation of their anatomical landmark and decrease the possibility of surgical complications related to 3D structures. PMID:26396957

  11. A method for generating high resolution satellite image time series

    NASA Astrophysics Data System (ADS)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  12. Combined Mastoid/Middle Cranial Fossa Repair of Temporal Bone Encephalocele

    PubMed Central

    Souliere Jr., Charles R.; Langman, Alan W.

    1998-01-01

    Temporal bone encephalocele (TBE) has become less common as the incidence of chronic mastoid infection and surgery for this condition has decreased. Due to its declining incidence, the diagnosis of TBE may be delayed and result in the development of serious complications such as cerebrospinal fluid leak, meningitis, epidural or subdural abscess. Six cases of large (>1 cm) TBE of diverse etiology are described. Two patients had suffered previous temporal bone fractures, two had had prior mastoidectomy, and two patients had long-standing chronic mastoiditis. Two patients had undergone prior unsuccessful transmastoid repair. All patients underwent successful tegmen-dural repair with autogenous fascia, bone, and/or cartilage, primarily via a combined mastoid-middle fossa approach. Accurate dural closure and support of intacranial contents are imperative to prevent recurrence. We find that permanent repair can best be performed with a combined mastoid middle cranial fassa approach. ImagesFigure 1 PMID:17171064

  13. Temporal bone fracture under lateral impact: biomechanical and macroscopic evaluation.

    PubMed

    Montava, Marion; Masson, Catherine; Lavieille, Jean-Pierre; Mancini, Julien; Soussan, Jerome; Chaumoitre, Kathia; Arnoux, Pierre-Jean

    2016-03-01

    This work was conducted to study biomechanical properties and macroscopic analysis of petrous fracture by lateral impact. Seven embalmed intact human cadaver heads were tested to failure using an electrohydraulic testing device. Dynamic loading was done at 2 m/s on temporal region with maximal deflection to 12 mm. Anthropometric and pathological data were determined by pretest and posttest computed tomography images, macroscopic evaluation, and anatomical dissection. Biomechanical data were obtained. Results indicated the head to have nonlinear structural response. The overall mean values of failure forces, deflections, stiffness, occipital, and frontal peak acceleration were 7.1 kN (±1.1), 9.1 mm (±1.8), 1.3 kN/mm (±0.4), 90.5 g (±22.5), and 65.4 g (±16), respectively. The seven lateral impacts caused fractures, temporal fractures in six cases. We observed very strong homogeneity for the biomechanical and pathological results between different trials in our study and between data from various experiments and our study. No statistical correlation was found between anthropometric, biomechanical, and pathological data. These data will assist in the development and validation of finite element models of head injury. PMID:26036776

  14. High resolution digital delay timer

    DOEpatents

    Martin, Albert D.

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  15. Advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The advanced very high resolution radiometer development program is considered. The program covered the design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical structural model, and a life test model. Special bench test and calibration equipment was also developed for use on the program.

  16. Giant Cell Tumor of the Temporal Bone with Direct Invasion into the Middle Ear and Skull Base: A Case Report

    PubMed Central

    Iizuka, Takashi; Furukawa, Masayuki; Ishii, Hisato; Kasai, Misato; Hayashi, Chieri; Arai, Hajime; Ikeda, Katsuhisa

    2012-01-01

    Giant cell tumor (GCT) is classified as a benign bone tumor, and it is frequently identified at the epiphysis of long bones and relatively rare in the temporal bone. For orthopedists expert at recognizing bone and soft tissue tumors, the diagnosis of GCT is relatively easy; however, since head and neck surgeons experience few cases of GCT, it may be difficult to diagnose when it occurs in the temporal bone. A 32-year-old man complained of left hearing loss, aural fullness, and tinnitus. Examination of the ear revealed a bulging tumor. Audiologic examination demonstrated conductive hearing loss of the left ear. Computer tomograph of the temporal bone showed a soft-tissue-density specification indicating bone destruction at the left temporal bone. The tumor invaded the skull base. Imaging examinations using magnetic resonance imaging revealed a nonhomogenous isosignal intensity area on T1 at the left temporal bone. After intravenous gadolinium, the mass showed unequal enhancement. This patient subsequently underwent surgery to remove the lesion using transmastoid and middle fossa approach. Pathological examinations from specimens of the tumor revealed characteristic of GCT. No clinical or radiological evidence of tumor recurrence was detected for 4 years. PMID:22953120

  17. Advanced BMP Gene Therapies for Temporal and Spatial Control of Bone Regeneration

    PubMed Central

    Wilson, C.G.; Martín-Saavedra, F.M.; Vilaboa, N.; Franceschi, R.T.

    2013-01-01

    Spatial and temporal patterns of bone morphogenetic protein (BMP) signaling are crucial to the assembly of appropriately positioned and shaped bones of the face and head. This review advances the hypothesis that reconstitution of such patterns with cutting-edge gene therapies will transform the clinical management of craniofacial bone defects attributed to trauma, disease, or surgical resection. Gradients in BMP signaling within developing limbs and orofacial primordia regulate proliferation and differentiation of mesenchymal progenitors. Similarly, vascular and mesenchymal cells express BMPs in various places and at various times during normal fracture healing. In non-healing fractures of long bones, BMP signaling is severely attenuated. Devices that release recombinant BMPs promote healing of bone in spinal fusions and, in some cases, of open fractures, but cannot control the timing and localization of BMP release. Gene therapies with regulated expression systems may provide substantial improvements in efficacy and safety compared with protein-based therapies. Synthetic gene switches, activated by pharmacologics or light or hyperthermic stimuli, provide several avenues for the non-invasive regulation of the expression of BMP transgenes in both time and space. Through new gene therapy platforms such as these, active control over BMP signaling can be achieved to accelerate bone regeneration. PMID:23539558

  18. Virtual temporal bone: creation and application of a new computer-based teaching tool.

    PubMed

    Mason, T P; Applebaum, E L; Rasmussen, M; Millman, A; Evenhouse, R; Panko, W

    2000-02-01

    The human temporal bone is a 3-dimensionally complex anatomic region with many unique qualities that make anatomic teaching and learning difficult. Current teaching tools have proved only partially adequate for the needs of the aspiring otologic surgeon in learning this anatomy. We used a variety of computerized image processing and reconstruction techniques to reconstruct an anatomically accurate 3-dimensional computer model of the human temporal bone from serial histologic sections. The model is viewed with a specialized visualization system that allows it to be manipulated easily in a stereoscopic virtual environment. The model may then be interactively studied from any viewpoint, greatly simplifying the task of conceptualizing and learning this anatomy. The system also provides for simultaneous computer networking that can bring distant participants into a single shared virtual teaching environment. Future directions of the project are discussed. PMID:10652385

  19. Effects of radiation on the temporal bone in patients with head and neck cancer.

    PubMed

    Lambert, Elton M; Gunn, G Brandon; Gidley, Paul W

    2016-09-01

    Radiotherapy is a key component in the treatment of many head and neck cancers, and its potential to cause long-term adverse effects has become increasingly recognized. In this review, we describe the short-term and long-term sequelae of radiation-associated changes in and injury to the temporal bone and its related structures. The pathophysiology of radiation-induced injury and its clinical entities, including sensorineural hearing loss, chronic otitis media, osteoradionecrosis, and radiation-associated malignancies, are described. We also discuss radiation dose to the head and neck as it relates to these conditions. An improved understanding of radiation's effects on the temporal bone will enable physicians and researchers to continue efforts to reduce radiotherapy-related sequelae and guide clinicians in diagnosing and treating the various otologic conditions that can arise in patients with head and neck cancer who have received radiotherapy. © 2016 Wiley Periodicals, Inc. Head Neck 38: 1428-1435, 2016. PMID:27453348

  20. Temporal bone metastasis as a sign of relapsing chronic lymphocytic leukemia

    PubMed Central

    Aljafar, Hadeel M.; Alsuhibani, Sari S.; Alahmari, Mohammad S.; Alzahrani, Musaed A.

    2015-01-01

    Otologic manifestations in chronic lymphocytic leukemia (CLL) are common presentations. However, temporal bone metastasis is rarely described as a sign of relapsing CLL. A 65-year-old male diabetic patient known to have CLL on remission presented to the outpatient otolaryngology clinic with a one month history of progressive bilateral otalgia and right otorrhea, despite multiple courses of antibiotics. He was admitted with suspicion of malignant otitis externa. Left ear showed large hemorrhagic bullae on the posterior segment of tympanic membrane. Left sided facial paralysis developed on the third day of admission. Full recovery of facial paralysis is achieved by 10 days course of corticotherapy. Histological examination of middle ear tissue biopsy showed infiltration by monotonous small lymphoid cells, showing round nuclei, condensed chromatin suggestive of CLL. Although rare, unusual otologic manifestations should raise the suspicion of a temporal bone metastasis as a sign of relapsing CLL. PMID:26446337

  1. Variability of the temporal bone surface's topography: implications for otologic surgery

    NASA Astrophysics Data System (ADS)

    Lecoeur, Jérémy; Noble, Jack H.; Balachandran, Ramya; Labadie, Robert F.; Dawant, Benoit M.

    2012-02-01

    Otologic surgery is performed for a variety of reasons including treatment of recurrent ear infections, alleviation of dizziness, and restoration of hearing loss. A typical ear surgery consists of a tympanomastoidectomy in which both the middle ear is explored via a tympanic membrane flap and the bone behind the ear is removed via mastoidectomy to treat disease and/or provide additional access. The mastoid dissection is performed using a high-speed drill to excavate bone based on a pre-operative CT scan. Intraoperatively, the surface of the mastoid component of the temporal bone provides visual feedback allowing the surgeon to guide their dissection. Dissection begins in "safe areas" which, based on surface topography, are believed to be correlated with greatest distance from surface to vital anatomy thus decreasing the chance of injury to the brain, large blood vessels (e.g. the internal jugular vein and internal carotid artery), the inner ear, and the facial nerve. "Safe areas" have been identified based on surgical experience with no identifiable studies showing correlation of the surface with subsurface anatomy. The purpose of our study was to investigate whether such a correlation exists. Through a three-step registration process, we defined a correspondence between each of twenty five clinically-applicable temporal bone CT scans of patients and an atlas and explored displacement and angular differences of surface topography and depth of critical structures from the surface of the skull. The results of this study reflect current knowledge of osteogenesis and anatomy. Based on two features (distance and angular difference), two regions (suprahelical and posterior) of the temporal bone show the least variability between surface and subsurface anatomy.

  2. Stapes model using high-resolution μCT

    NASA Astrophysics Data System (ADS)

    Baek, Jong Dae; Puria, Sunil

    2008-02-01

    Understanding the biomechanics of the middle ear is important for surgical reconstructions. As the output of the middle ear, the stapes plays a key role in transferring acoustic vibrations to the cochlea. In order to develop anatomically-based mathematical models, which are needed to improve our understanding of stapes dynamics, detailed morphometry of the stapes is required. High-resolution micro-CT imaging techniques were used to generate three-dimensional reconstructions of cadaveric temporal bones from 5 species commonly used in experimental middle ear research: the chinchilla, human (relatively mid-frequency hearing limit), cat, guinea pig, and gerbil (relatively high-frequency hearing limit). From the standard discretizations of micro-CT images and corresponding 3-D volume reconstructions, the centers of mass, principle axes, stapes head areas and stapes footplate areas were calculated. Mechanical relationships were estimated between the capitulum area and the footplate area and inter-species comparisons were performed between the cross-sectional shapes of the anterior and posterior crura. Quantitative dynamic properties were estimated from the rigid body motion calculations. The parameters estimated in this study will be useful for building biocomputational models of the stapes for a variety of species.

  3. Temporal aneurysmal bone cyst: cost-effective method to achieve gross total resection.

    PubMed

    Sodhi, Harsimrat Bir Singh; Salunke, Pravin; Agrawal, Parimal; Gupta, Kirti

    2016-08-01

    Aneurysmal bone cyst (ABC) is a vascular benign bony expansile lesion. The treatment is gross total resection. Surgery for a skull base aneurysmal bone cyst poses a significant challenge because of its vascularity and the adjacent neurovascular structures. We present the case of a young male with a temporal aneurysmal bone cyst who underwent gross total resection of the lesion. The external carotid artery (ECA) was temporarily clamped to cut off the vascular supply. There was no intraoperative event, and the patient made a good postoperative clinical recovery. This technique was used as an alternative to subselective endovascular embolization of the ECA branches. This case represents a simple yet cost-effective surgical technique to control bleeding for a highly vascular lesion such as ABCs, especially in resource-deficient countries. PMID:27334736

  4. Inflammatory myofibroblastic tumor of the temporal bone presenting with pulsatile tinnitus: a case report

    PubMed Central

    2013-01-01

    Introduction Inflammatory myofibroblastic tumor of the temporal bone is an unusual but distinct disease entity. The most common presenting symptoms are otalgia, otorrhea, hearing loss, facial palsy, and vertigo. We describe here what we believe to be the first reported case of a patient presenting with persistent pulsatile tinnitus. The clinical features, radiological and histopathologic findings, and treatment outcomes of the patient are presented. Case presentation A 59-year-old woman of Chinese Han origin presented with complaints of left-sided pulsatile tinnitus and progressive hearing loss for several years. Clinical evaluations revealed a reddish mass behind the intact tympanic membrane, and a moderately severe conductive hearing loss in the left ear. The computed tomographic imaging of the temporal bone demonstrated a slightly ill-defined left middle ear soft tissue mass involving the posterior portion of the mesotympanum and epitympanum, and the mastoid antrum. The patient underwent surgical excision of the lesion which subsequently resolved her symptoms. Postoperative pathology was consistent with an inflammatory myofibroblastic tumor. Conclusions An inflammatory myofibroblastic tumor of the temporal bone can present clinically with pulsatile tinnitus and masquerade as venous hum or vascular tumors of the middle ear; therefore, it should be included in the differential diagnosis of pulsatile tinnitus. PMID:23787119

  5. High-Resolution Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff; Goetz, Alexander F. H.

    1990-01-01

    Earth resources observed in greater detail. High-Resolution Imaging Spectrometer, undergoing development for use in NASA's Earth Observing System, measures reflectance of Earth's surface in visible and near-infrared wavelengths. From an orbit around Earth, instrument scans surface of Earth in 200 wavelength bands simultaneously. Produces images enabling identification of minerals in rocks and soils, important algal pigments in oceans and inland waters, changes in spectra associated with biochemistry of plant canopies, compositions of atmospheric aerosols, sizes of grains in snow, and contamination of snow by impurities that absorb visible light.

  6. High Resolution Scanning Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Miranda, Felix A. (Inventor)

    2000-01-01

    The present invention provides a High Resolution Scanning Reflectarray Antenna (HRSRA) for the purpose of tracking ground terminals and space craft communication applications. The present invention provides an alternative to using gimbaled parabolic dish antennas and direct radiating phased arrays. When compared to a gimbaled parabolic dish, the HRSRA offers the advantages of vibration free steering without incurring appreciable cost or prime power penalties. In addition, it offers full beam steering at a fraction of the cost of direct radiating arrays and is more efficient.

  7. New strategies for high precision surgery of the temporal bone using a robotic approach for cochlear implantation.

    PubMed

    Klenzner, Thomas; Ngan, Chiu Chun; Knapp, Felix Bernhard; Knoop, Hayo; Kromeier, Jan; Aschendorff, Antje; Papastathopoulos, Evangelos; Raczkowsky, Joerg; Wörn, Heinz; Schipper, Joerg

    2009-07-01

    The aim of the study was to demonstrate a collision-free trajectory of an instrument through the facial recess to the site of planned cochleostomy guided by a surgery robot. The indication for cochlear implantation is still expanding toward more substantial residual hearing. A cochleostomy as atraumatic as possible will influence the preservation of inner ear function. The employment of a highly precise instrument guidance using a robot could represent a feasible solution for a constant reproducible surgical procedure. Screw markers for a point-based registration were fixed on a human temporal bone specimen prepared with a mastoidectomy and posterior tympanotomy. A DICOM dataset has been generated thereof in a 64-multislice computer tomography (CT). A virtual trajectory in a 3D model has been planned representing the path of instrumentation toward the desired spot of cochleostomy. A 1.9-mm endoscope has been mounted onto the robot system RobaCKa (Staeubli RX90CR) to visualize this trajectory. The target registration error added up to 0.25 mm, which met the desirable tolerance of <0.5 mm. A collision-free propagation of the endoscope into the tympanic cavity via the facial recess has been performed by the robot and the spot of cochleostomy could be visualized through the endoscope. Using a DICOM dataset of a high-resolution CT and a robot as a positioning platform for surgical instruments could be a feasible approach to perform a highly precise and constant reproducible cochleostomy. Furthermore, it could be a crucial step to preserve substantial residual hearing in terms of expanding the indications for cochlear implantation. PMID:19015866

  8. The High Resolution Hurricane Test

    NASA Astrophysics Data System (ADS)

    Tripoli, G. J.

    2009-09-01

    It has been suggested that an answer to the hurricane intensity forecast problem is to use very high cloud-resolving resolution in operational forecast models. In consideration of this hypothesis, the United States National Atmospheric and Oceanic Administration commissioned a major study to take place over the past 1.5 years whereby the hypothesis would be tested with 6 different hurricane models featuring different dynamics cores and different physics. These models included the GFDL hurricane, Navy COAMPS, the WRF-ARW, WRF-AHW, WRF-NMM, and the UW-NMS. The experiment design was to choose and optimal mix of historic hurricanes where good observations of intensity at land fall existed and run 5 day model forecasts with 3 different resolutions of about 9-12 km (low resolution), 3-4 km (medium resolution) and 1-1.5 km (high resolution) and document how much the forecast improved in each case. The project focused on 10 storms over 2-12, 1-5 day forecast periods, for a total of 67 simulations. Not all groups completed all 67 simulations, but there were sufficient results to reach a stunning conclusion. The results of these tests suggested that little or no improvement in intensity prediction was achieved with high resolution.

  9. High-resolution adaptive spiking sonar.

    PubMed

    Alvarez, Fernando J; Kuc, Roman

    2009-05-01

    A new sonar system based on the conventional 6500 ranging module is presented that generates a sequence of spikes whose temporal density is related to the strength of the received echo. This system notably improves the resolution of a previous system by shortening the discharge cycle of the integrator included in the module. The operation is controlled by a PIC18F452 device, which can adapt the duration of the discharge to changing features of the echo, providing the system with a novel adaptive behavior. The performance of the new sensor is characterized and compared with that of the previous system by performing rotational scans of simple objects with different reflecting strengths. Some applications are suggested that exploit the high resolution and adaptability of this sensor. PMID:19473919

  10. Characterization of Ultrasound Propagation Through Ex-vivo Human Temporal Bone

    PubMed Central

    Ammi, Azzdine Y.; Mast, T. Douglas; Huang, I-Hua; Abruzzo, Todd A.; Coussios, Constantin-C.; Shaw, George J.; Holland, Christy K.

    2016-01-01

    Adjuvant therapies that lower the thrombolytic dose or increase its efficacy would represent a significant breakthrough in the treatment of patients with ischemic stroke (Eggers 2006; Tsivgoulis and Alexandrov 2007). The objective of this study was to perform intracranial measurements of the acoustic pressure field generated by 0.12, 1.03 and 2.00 MHz ultrasound transducers to identify optimal ultrasound parameters that would maximize penetration and minimize aberration of the beam. To achieve this goal, in vitro experiments were conducted on five human skull specimens. In a water-filled tank, two unfocused transducers (0.12 and 1.03 MHz) and one focused transducer (2.00 MHz) were consecutively placed near the right temporal bone of each skull. A hydrophone, mounted on a micropositioning system, was moved to an estimated location of the middle cerebral artery (MCA) origin and measurements of the surrounding acoustic pressure field were performed. For each measurement, the distance from the position of maximum acoustic pressure to the estimated origin of the MCA inside the skulls was quantified. The –3 dB depth of field and beam width in the skull were also investigated as a function of the three frequencies. Results show that the transducer alignment relative to the skull is a significant determinant of the detailed behavior of the acoustic field inside the skull. For optimal penetration, insonation normal to the temporal bone was needed. The shape of the 0.12-MHz intracranial beam was more distorted than those at 1.03 and 2.00 MHz due to the large aperture and beam width. However, lower ultrasound pressure reduction was observed at 0.12 MHz (22.5%). At 1.03 and 2.00 MHz two skulls had an insufficient temporal bone window and attenuated the beam severely (up to 96.6% pressure reduction). For all frequencies, constructive and destructive interference patterns were seen near the contralateral skull wall at various elevations. The 0.12-MHz ultrasound beam depth of

  11. High Resolution Neutral Atom Microscope

    NASA Astrophysics Data System (ADS)

    Bucay, Igal; Castillo-Garza, Rodrigo; Stratis, Georgios; Raizen, Mark

    2015-03-01

    We are developing a high resolution neutral atom microscope based on metastable atom electron spectroscopy (MAES). When a metastable atom of a noble gas is near a solid, a surface electron will tunnel to an empty energy level of the metastable atom, thereby ejecting the excited electron from the atom. The emitted electrons carry information regarding the local topography and electronic, magnetic, and chemical structures of most hard materials. Furthermore, using a chromatic aberration corrected magnetic hexapole lens we expect to attain a spatial resolution below 10 nm. We will use this microscope to investigate how local phenomena can give rise to macroscopic effects in materials that cannot be probed using a scanning tunneling microscope, namely insulating transition metal oxides.

  12. Enhanced High Resolution RBS System

    SciTech Connect

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 A ring TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron registered accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  13. Enhanced High Resolution RBS System

    NASA Astrophysics Data System (ADS)

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 Å TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron® accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  14. High Resolution Thermometry for EXACT

    NASA Technical Reports Server (NTRS)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  15. HRSC: High resolution stereo camera

    USGS Publications Warehouse

    Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W., III; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.

    2009-01-01

    The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.

  16. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  17. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  18. High resolution tomographic instrument development

    NASA Astrophysics Data System (ADS)

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefitted greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  19. High-resolution computed tomographic study of the retrotympanum. Anatomic correlations.

    PubMed

    Parlier-Cuau, C; Champsaur, P; Perrin, E; Rabischong, P; Lassau, J P

    1998-01-01

    The aim of this study was to define the imaging of the retrotympanum precisely by means of high-resolution CT. Based on 66 scans of petrous bones performed in 49 patients observed in an otologic department, several retrotympanic structures were studied: the pyramidal eminence, ponticulus, subiculum, chordal ridge, tympanic sinus of Proctor, sinus tympani and recess of the facial n. The variations in morphology and depth were noted as well as the relationship between the pyramid and the facial canal. In a second phase the same anatomic structures were studied in 24 temporal bones removed from embalmed cadavers and investigated with the same radiologic technique. Anatomic correlations were made for six temporal bones to confirm the general applicability of our radiologic hypotheses. In CT the pyramidal eminence was visualised in 100% of cases, the chordal ridge in 52%, the ponticulus in 63% and the subiculum in 57%. As regards the different recesses, the sinus tympani was visualised in 95% of cases, the posterior tympanic sinus of Proctor in 38%, the fossula of Grivot in 47% and the facial recess in 80%. The mean depth of the sinus tympani was 2.7 mm and that of the tympanic sinus of Proctor was 1.65 mm; the fossula of Grivot was assessed as 2.1 mm and the facial recess as 2.2 mm. A better knowledge of these sinuses and their variations will aid the surgeon, particularly in a posterior tympanotomy or a retro-facial approach. PMID:9706682

  20. [Massive Gorham-Stout osteolysis of the temporal bone and the craniocervical transition].

    PubMed

    Plontke, S; Koitschev, A; Ernemann, U; Pressler, H; Zimmermann, R; Plasswilm, L

    2002-04-01

    Massive osteolysis Gorham-Stout is a rare, benign but locally aggressive angiomatosis which results in destruction and resorption of bone. The etiology and pathogenesis are undefined. The occurrence of the disease in the skull base is uncommon. A 54-year-old female presented with isolated, one-sided surditas. Eight years before the patient underwent surgery and radiation therapy for treatment of hypopharyngeal cancer. A transtemporal biopsy was taken and a highly vascularized, cystic lesion with destruction of the right occipital and temporal bone and the atlas was found. Histopathology showed thin-walled capillaries with flattened endothelial lining cells. After exclusion of malignant and infectious components the diagnosis of Gorham's disease was established. Review of the literature suggests radiation therapy as the method of choice for stopping the disease's progress. The aim of this case report is to emphasize the Gorham-Stout-Syndrome as a rare differential diagnosis for skull base lesions. PMID:12063694

  1. The temporal bones from Sima de los Huesos Middle Pleistocene site (Sierra de Atapuerca, Spain). A phylogenetic approach.

    PubMed

    Martínez, I; Arsuaga, J L

    1997-01-01

    Three well-preserved crania and 22 temporal bones were recovered from the Sima de los Huesos Middle Pleistocene site up to and including the 1994 field season. This is the largest sample of hominid temporal bones known from a single Middle Pleistocene site and it offers the chance to characterize the temporal bone morphology of an European Middle Pleistocene population and to study the phylogenetic relationships of the SH sample with other Upper and Middle Pleistocene hominids. We have carried out a cladistic analysis based on nine traits commonly used in phylogenetic analysis of Middle and Late Pleistocene hominids: shape of the temporal squama superior border, articular eminence morphology, contribution of the sphenoid bone to the median glenoid wall, postglenoid process projection, tympanic plate orientation, presence of the styloid process, mastoid process projection, digastric groove morphology and anterior mastoid tubercle. We have found two autapomorphies on the Home erectus temporal bone: strong reduction of the postglenoid process and absence of the styloid process. Modern humans, Neandertals and the Middle Pleistocene fossils from Europe and Africa constitute a clade characterized by a convex superior border of the temporal squama. The European Middle Pleistocene fossils from Sima de los Huesos, Petralona, Steinheim, Bilzingsleben and Castel di Guido share a Neandertal apomorphy: a relatively flat articular eminence. The fossils from Ehringsdorf, La Chaise Suardi and Biache-Saint-Vaast also display another Neandertal derived trait: an anteriorly obliterated digastric groove. Modern humans and the African Middle Pleistocene fossils share a synapomorphy: a sagittally orientated tympanic plate. PMID:9300344

  2. High resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Loudin, Jim; Dinyari, Rostam; Huie, Phil; Butterwick, Alex; Peumans, Peter; Palanker, Daniel

    2009-02-01

    Electronic retinal prostheses seek to restore sight in patients with retinal degeneration by delivering pulsed electric currents to retinal neurons via an array of microelectrodes. Most implants use inductive or optical transmission of information and power to an intraocular receiver, with decoded signals subsequently distributed to retinal electrodes through an intraocular cable. Surgical complexity could be minimized by an "integrated" prosthesis, in which both power and data are delivered directly to the stimulating array without any discrete components or cables. We present here an integrated retinal prosthesis system based on a photodiode array implant. Video frames are processed and imaged onto the retinal implant by a video goggle projection system operating at near-infrared wavelengths (~ 900 nm). Photodiodes convert light into pulsed electric current, with charge injection maximized by specially optimized series photodiode circuits. Prostheses of three different pixel densities (16 pix/mm2, 64 pix/mm2, and 256 pix/mm2) have been designed, simulated, and prototyped. Retinal tissue response to subretinal implants made of various materials has been investigated in RCS rats. The resulting prosthesis can provide sufficient charge injection for high resolution retinal stimulation without the need for implantation of any bulky discrete elements such as coils or tethers. In addition, since every pixel functions independently, pixel arrays may be placed separately in the subretinal space, providing visual stimulation to a larger field of view.

  3. High resolution time interval counter

    DOEpatents

    Condreva, Kenneth J.

    1994-01-01

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured.

  4. High resolution time interval counter

    DOEpatents

    Condreva, K.J.

    1994-07-26

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured. 3 figs.

  5. High-Resolution Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  6. High resolution auditory perception system

    NASA Astrophysics Data System (ADS)

    Alam, Iftekhar; Ghatol, Ashok

    2005-04-01

    Blindness is a sensory disability which is difficult to treat but can to some extent be helped by artificial aids. The paper describes the design aspects of a high resolution auditory perception system, which is designed on the principle of air sonar with binaural perception. This system is a vision substitution aid for enabling blind persons. The blind person wears ultrasonic eyeglasses which has ultrasonic sensor array embedded on it. The system has been designed to operate in multiresolution modes. The ultrasonic sound from the transmitter array is reflected back by the objects, falling in the beam of the array and is received. The received signal is converted to a sound signal, which is presented stereophonically for auditory perception. A detailed study has been done as the background work required for the system implementation; the appropriate range analysis procedure, analysis of space-time signals, the acoustic sensors study, amplification methods and study of the removal of noise using filters. Finally the system implementation including both the hardware and the software part of it has been described. Experimental results on actual blind subjects and inferences obtained during the study have also been included.

  7. High-resolution slug testing.

    PubMed

    Zemansky, G M; McElwee, C D

    2005-01-01

    The hydraulic conductivity (K) variation has important ramifications for ground water flow and the transport of contaminants in ground water. The delineation of the nature of that variation can be critical to complete characterization of a site and the planning of effective and efficient remedial measures. Site-specific features (such as high-conductivity zones) need to be quantified. Our alluvial field site in the Kansas River valley exhibits spatial variability, very high conductivities, and nonlinear behavior for slug tests in the sand and gravel aquifer. High-resolution, multilevel slug tests have been performed in a number of wells that are fully screened. A general nonlinear model based on the Navier-Stokes equation, nonlinear frictional loss, non-Darcian flow, acceleration effects, radius changes in the wellbore, and a Hvorslev model for the aquifer has been used to analyze the data, employing an automated processing system that runs within the Excel spreadsheet program. It is concluded that slug tests can provide the necessary data to identify the nature of both horizontal and vertical K variation in an aquifer and that improved delineation or higher resolution of K structure is possible with shorter test intervals. The gradation into zones of higher conductivity is sharper than seen previously, and the maximum conductivity observed is greater than previously measured. However, data from this project indicate that well development, the presence of fines, and the antecedent history of the well are important interrelated factors in regard to slug-test response and can prevent obtaining consistent results in some cases. PMID:15819943

  8. Global high resolution climate reconstructions

    NASA Astrophysics Data System (ADS)

    Schubert-Frisius, Martina; Feser, Frauke; Zahn, Matthias; von Storch, Hans; Rast, Sebastian

    2014-05-01

    Long-term reanalysis products represent an important data source for numerous climate studies. However, their coarse spatial resolution for data sets spanning the last more than 50 years and well known inhomogeneities in space and time make it difficult to derive changes in meteorological variables over time. We therefore use spectral nudging technique to down-scale the global reanalysis data to a finer resolution with a general global circulation model. With this technique the new calculated higher resolved global model fields are attracted to the large-scale state of the coarse resolution reanalysis. Besides the conservation of large-scale atmospheric information and the resulting finer topography, a surplus in contents of information in meteorological phenomena of small spatial extensions is expected. Following this strategy a simulation with the global high-resolution atmospheric model ECHAM6 (T255L95), developed by MPI-M Hamburg, will be started by spectrally nudging NCEP1 reanalysis for the time period from 1948 until 2013. Selected wavelengths of more than 1000 km of vorticity, divergence, temperature and the logarithm of the surface pressure will be imposed onto the simulated GCM counterparts at levels above 750 hPa. SST and sea ice distribution are taken from the NCEP1 data set. These simulations enable the investigation of long-term changes in meteorological phenomena; the focus is put here on intense storms. Various horizontal wavelength selections and associated vertical profiles in the strength of nudging were tested. The temporarily best configuration resulted in large time correlations for 2m-temperature and 10m wind speed at several selected locations in Germany in comparison to observations. Correlations were highest for extra-tropical regions, while over the western part of the Pacific and Indian Ocean relative low time correlations were found. In a continuing study meteorological quantities at different levels and the influences of the nudging

  9. Practising high-resolution anoscopy.

    PubMed

    Palefsky, Joel M

    2012-12-01

    The incidence of anal cancer is increasing in the general population among both men and women. The incidence is particularly high among men who have sex with men and HIV-infected men and women. Anal cancer is similar to cervical cancer and is associated with human papillomavirus (HPV). Anal cancer is potentially preventable through primary prevention with HPV vaccination or secondary prevention. Secondary prevention is modelled after cervical cancer, where cytology is used as a screening tool to identify women who need colposcopy. Colposcopy includes magnification of the cervix, which, along with acetic acid and Lugol's solution, is used to visualise and biopsy potentially precancerous lesions, enabling treatment before progression to cervical cancer. Anal cancer is likely preceded by high-grade anal intraepithelial neoplasia (HGAIN), and a colposcope with acetic acid and Lugol's solution may similarly be used to visualise HGAIN to permit biopsy and treatment in an effort to prevent anal cancer. To distinguish it from cervical colposcopy, this technique is called high-resolution anoscopy (HRA). Many of the features that distinguish low-grade AIN from HGAIN are similar to those of the cervix, but HRA poses several additional challenges compared with cervical colposcopy. These include uneven topography; obscuring of lesions due to haemorrhoids, folds, stool or mucus; or lesions being located at the base of folds and anal glands. Consequently, a long learning curve is typically required before becoming fully competent in this technique. The technique of HRA, its uses and challenges in prevention of anal cancer are described in this article. PMID:23380236

  10. Prognostic Factors Including Proliferation Markers Ki-67, bax, and bcl-2 in Temporal Bone Paraganglioma

    PubMed Central

    Gjuric, Mislav; Völker, Uwe; Katalinic, Alexander; Wolf, Stephan Rüdiger

    1997-01-01

    Valuable criteria with which to predict the clinical behavior of the temporal bone paraganglioma or the response to treatment are lacking. The analysis of markers of cell proliferation is a possibility to estimate the prognosis. Extensive patient data on 40 temporal bone paragangliomas were gathered over the years and correlated with the data obtained by staining histologic sections with bcl-2, bax, and MIB I markers of cellular proliferation. The immunohistochemistry was in all cases negative for bcl-2, positive for bax, and for Ki-67 positive in 20% of tumors. The scores for Ki-67 did not correlate with the majority of clinical parameters, except for treatment modality, preoperative hearing loss, and cranial nerve involvement. The tendency toward poorer hearing and a higher incidence of preoperative lower cranial nerve palsies was demonstrated in patients with higher Ki-67 scores. Furthermore, the higher rate of subtotal tumor removals in these patients reveals technical difficulties in accomplishing a radical removal, although the incidence of residual tumors was thus not affected. In view of the present information obtained with proliferation markers, the site of tumor origin still remains the most predictive variable for the course of the disease. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:17171028

  11. Acoustic effects of a superior semicircular canal dehiscence: a temporal bone study.

    PubMed

    Luers, J C; Pazen, D; Meister, H; Lauxmann, M; Eiber, A; Beutner, D; Hüttenbrink, K B

    2015-03-01

    A dehiscence of the superior semicircular canal is said to be responsible for a number of specific and unspecific ear symptoms and possible a conductive hearing loss of up to 40 dB. As in vivo a dehiscence would not be opened against air, but is naturally patched with dura and the brain, it was our aim to investigate the effects of an superior semicircular canal dehiscence on the air conduction hearing in fresh human temporal bones with different boundary conditions. At ten fresh human temporal bones, we investigated the transmission of sound energy through the middle and inner ear using a round window microphone and laser Doppler vibrometer for perilymph motions inside the dehiscence. After baseline measurements, the superior semicircular canal was opened. We investigated the change of the transfer function when the canal is opened against air (pressure equivalent water column), against a water column and when it is patched with a layer of dura. Opening the superior semicircular canal resulted in a loss of sound transmission of maximal 10-15 dB only in frequencies below 1 kHz. When covering the dehiscence with a water column, the conductive hearing component was reduced to 6-8 dB. Placing a dura patch on top of the dehiscence resulted in a normalization of the transfer function. If our experiments are consistent with the conditions in vivo, then superior semicircular canal dehiscence does not lead to an extensive and clinically considerable conductive air conduction component. PMID:24381023

  12. Studying the effect of noise on the performance of 2D and 3D texture measures for quantifying the trabecular bone structure as obtained with high resolution MR imaging at 3 tesla

    NASA Astrophysics Data System (ADS)

    Monetti, Roberto; Bauer, Jan; Mueller, Dirk; Rummeny, Ernst J.; Link, Thomas M.; Majumdar, Sharmila; Matsuura, Maiko; Eckstein, Felix; Sidorenko, Irina; Raeth, Christoph W.

    2008-03-01

    3.0 Tesla MRI devices are becoming popular in clinical applications since they render images with a higher signal-tonoise ratio than the former 1.5 Tesla MRI devices. Here, we investigate if higher signal-to-noise ratio can be beneficial for a quantitative image analysis in the context of bone research. We performed a detailed analysis of the effect of noise on the performance of 2D morphometric linear measures and a 3D nonlinear measure with respect to their correlation with biomechanical properties of the bone expressed by the maximum compressive strength. The performance of both 2D and 3D texture measures was relatively insensitive to superimposed artificial noise. This finding suggests that MR sequences for visualizing bone structures at 3T should rather be optimized to spatial resolution (or scanning time) than to signal-to-noise ratio.

  13. High-Resolution Intravital Microscopy

    PubMed Central

    Andresen, Volker; Pollok, Karolin; Rinnenthal, Jan-Leo; Oehme, Laura; Günther, Robert; Spiecker, Heinrich; Radbruch, Helena; Gerhard, Jenny; Sporbert, Anje; Cseresnyes, Zoltan; Hauser, Anja E.; Niesner, Raluca

    2012-01-01

    Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy - the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning) while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs) of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and developmental biology

  14. Fibrous Dysplasia of the Temporal Bone with External Auditory Canal Stenosis and Secondary Cholesteatoma.

    PubMed

    Liu, Yu Hsi; Chang, Kuo Ping

    2016-04-01

    Fibrous dysplasia is a slowly progressive benign fibro-osseous disease, rarely occurring in temporal bones. In these cases, most bony lesions developed from the bony part of the external auditory canals, causing otalgia, hearing impairment, otorrhea, and ear hygiene blockade and probably leading to secondary cholesteatoma. We presented the medical history of a 24-year-old woman with temporal monostotic fibrous dysplasia with secondary cholesteatoma. The initial presentation was unilateral conductive hearing loss. A hard external canal tumor contributing to canal stenosis and a near-absent tympanic membrane were found. Canaloplasty and type I tympanoplasty were performed, but the symptoms recurred after 5 years. She received canal wall down tympanomastoidectomy with ossciculoplasty at the second time, and secondary cholesteatoma in the middle ear was diagnosed. Fifteen years later, left otorrhea recurred again and transcanal endoscopic surgery was performed for middle ear clearance. Currently, revision surgeries provide a stable auditory condition, but her monostotic temporal fibrous dysplasia is still in place. PMID:27340999

  15. Pneumatization of the zygomatic process of temporal bone on computed tomograms

    PubMed Central

    Friedrich, Reinhard E.; Viezens, Liska; Grzyska, Ulrich

    2016-01-01

    Purpose: Zygomatic air cells (ZAC) are a variant of temporal bone pneumatization that needs no treatment. However, ZAC can have an impact on surgical procedures in the temporo-mandibular joint region. Recent reports suggest that computed tomography will disclose more ZAC than can be diagnosed on panoramic radiography. The aim of this study was to analyze ZAC prevalence on CT in a population that was not pre-selected by admission to a dental clinic. Furthermore, an extensive literature review was performed to assess the prevalence of ZAC and to address the impact of imaging technique on the definition of the item. Material and methods: Digitalized cranial CTs of 2007 patients were retrospectively analyzed. The Frankfort horizontal was used to define a ZAC on sagittal CTs. Results: In this study group, 806 were female (40.16%) and 1,201 were male (59.84%). Mean age was 49.96 years in the whole group (female: 55.83 years, male: 46.01 years). A ZAC was diagnosed in 152 patients (female: 66, male: 86). Unilateral ZAC surpasses bilateral findings (115 vs. 37 patients). ZAC were diagnosed in children 5 years of age and older. Sectional imaging techniques show a better visualization of the region of interest. However, presently an increase of ZAC prevalence attributable to imaging technique cannot conclusively be derived from the current literature. The normal finding of a ZAC on radiograms is a sharply defined homogenous transparent lesion restricted to the zygomatic process of the temporal bone that has no volume effect on the shape of the process. Conclusion: ZAC is an anatomical variant of the temporal bone that has come into focus of maxillofacial radiology due to its noticeable aspect on panoramic radiograms. The harmless variant can be expected in about one in thirteen individuals undergoing facial radiology. Panoramic radiograms appear to be sufficient to present ZAC of relevant size. However, in preparation for surgical procedures affecting the articular eminence

  16. Primary Ewing's sarcoma of the squamous part of temporal bone in a young girl treated with adjuvant volumetric arc therapy.

    PubMed

    Nandi, Moujhuri; Bhattacharya, Jibak; Goswami, Suchanda; Goswami, Chanchal

    2015-01-01

    Ewing's sarcoma (ES)/peripheral primitive neuroectodermal tumors usually arise in the long bones of children and young adults. Primary ES of the cranium is unusual. Treatment involves multi-modality therapy incorporating surgery, radiotherapy and chemotherapy; outcomes are similar to those arising from long bones. We report a case of Primary ES of the squamous part of temporal bone with intracranial extension in a 9-year-old girl who was treated with surgery, chemotherapy followed by adjuvant radiotherapy by volumetric arc therapy. Post 1-year of treatment the girl is performing well in her classes. PMID:26881573

  17. Chondrosarcoma of the temporal bone. Diagnosis and treatment of 13 cases and review of the literature

    SciTech Connect

    Coltrera, M.D.; Googe, P.B.; Harrist, T.J.; Hyams, V.J.; Schiller, A.L.; Goodman, M.L.

    1986-12-15

    Chondrosarcoma of the temporal bone is a rare lesion. Clinically it has been confused with multiple sclerosis, glomus jugulare tumors, meningioma, and chordomas. The cranial nerve palsies frequently observed with the tumors are related to the anatomic locations of the tumors. Thirteen patients with this entity are presented and the eleven other cases in the literature are reviewed. Histologically the tumors are low grade and exhibit myxoid features. The myxoid features must be differentiated from chordoma and chondroid chordoma. The tumor locations preclude surgical excision and conventional radiation therapy can cause unacceptable neurologic sequelae. Proton beam therapy has been effective in short-term results and appears capable of avoiding serious neurologic side effects.

  18. High resolution scintillation detector with semiconductor readout

    DOEpatents

    Levin, Craig S.; Hoffman, Edward J.

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  19. High Resolution PDF Measurements on Ag Nanoparticles

    SciTech Connect

    Rocha, Tulio C. R.; Martin, Chris; Kycia, Stefan; Zanchet, Daniela

    2009-01-29

    The quantitative analysis of structural defects in Ag nanoparticles was addressed in this work. We performed atomic scale structural characterization by a combination of x-ray diffraction (XRD) using the Pair Distribution Function analysis (PDF) and High Resolution Transmission Electron Microscopy (HRTEM). The XRD measurements were performed using an innovative instrumentation setup to provide high resolution PDF patterns.

  20. Radiologic and Audiologic Findings in the Temporal Bone of Patients with CHARGE Syndrome

    PubMed Central

    Ha, Jennifer; Ong, Frederick; Wood, Bradley; Vijayasekaran, Shyan

    2016-01-01

    Background: CHARGE syndrome is a common congenital anomaly. Hearing loss affects 60%-90% of these children. As temporal bone computed tomography (CT) has become more sophisticated, more abnormalities of the middle and inner ear have been found. We present the detailed CT findings for children with CHARGE syndrome and the correlation of the CT findings with audiograms. Methods: We performed a retrospective medical records review of 12 patients with CHARGE syndrome, identified between 1990-2011 at Princess Margaret Hospital for Children in Western Australia, who underwent temporal bone CT for evaluation of hearing loss. Results: We present our findings for the 24 ears in terms of the cochlear, semicircular canal, middle ear, facial nerve, external auditory canal, venous, and jugular anomalies. The internal auditory canal was normal in 83.3% (n=20) of ears. Three (12.5%) ears had enlarged basal turns, and 4 (16.7%) each had hypoplastic and incompletely partitioned apical turns. The majority (n=13, 56.5%) of the vestibules were dysplastic. Up to 70.8% had abnormalities of the semicircular canal. The middle ear cavity was normal in 55% (n=11) of ears; however, up to 80% of the ears had some abnormality of the ossicles, and up to 70% had an abnormality of the facial nerve (7th cranial nerve) segments, especially in the labyrinthine segment. CT findings did not correlate with the audiograms. Conclusion: The management of children with CHARGE syndrome is complex, requiring early evaluation and close attention of the multidisciplinary team. Early identification of hearing deficits is vital for patients' linguistic development. PMID:27303220

  1. Morphological study of styloid process of the temporal bone and its clinical implications

    PubMed Central

    Vadgaonkar, Rajanigandha; Prabhu, Latha V.; Rai, Rajalakshmi; Pai, Mangala M.; Tonse, Mamatha; Jiji, P. J.

    2015-01-01

    The objective of this study was to study the morphometry of the styloid process of temporal bone and prevalence of elongated styloid process. The morphology of elongated styloid process along with its embryological and clinical importance are discussed. The present study included 110 human dry skulls which were procured from the bone collections of the department of anatomy. The styloid process was observed macroscopically on both sides of all the skulls, the elongations if any were noted. All the styloids were measured for their length, thickness at different levels and interstyloid distance at various levels. Out of 110 specimens, only 5 skulls (4.5%) exhibited the elongated styloid process. Among them, 3 skulls (2.7%) had unilateral elongation and 2 skulls (1.8%) had bilateral elongation of the styloid process. The mean length of the styloid process was 17.8±9.3 mm and 18.2±5.6 mm for the right and left sides, respectively. The prevalence of elongated styloid process in the present study was 4.5%. The clinical anatomy of this congenital variant is important to the neurosurgeon and radiologist, while interpreting the computed tomogram and magnetic resonance image scans. The morphological knowledge of elongated styloid process is clinically important since the course of the vertebral artery may be distorted in such situations. PMID:26417479

  2. Ultrasound-induced hyperthermia for the spatio-temporal control of gene expression in bone repair

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher; Padilla, Frédéric; Zhang, Man; Vilaboa, Nuria; Kripfgans, Oliver; Fowlkes, Brian; Franceschi, Renny

    2012-10-01

    Spatial and temporal control over the expression of growth/differentiation factors is of great interest for regeneration of bone, but technologies capable of providing tight and active control over gene expression remain elusive. We propose the use of focused ultrasound for the targeted activation of heat shock-sensitive expression systems in engineered bone. We report in vitro results with cells that express firefly luciferase (fLuc) under the control of a heat shock protein promoter. Cells were embedded in fibrin scaffolds and exposed to focused ultrasound, using a custom 3.3MHz transducer (focal length 4", f-number 1.33", focal dimension 1.2mm lateral FWHM) in CW mode for 2-20 minutes at intensities ISPTA=120-440 W/cm2. The kinetics of ultrasound-mediated activation of the cells was compared with that of strictly thermal activation. Bioluminescence imaging revealed fLuc expression in an area ≥2.5mm in diameter at the position of the ultrasound focus, and the diameter and intensity of the signal increased with the amplitude of the acoustic energy. We also found that ultrasound activated fLuc expression with substantially shorter exposures than thermal activation. Our results demonstrate the potential for focused ultrasound to selectively activate the expression of a gene of interest in an engineered tissue and suggest that focused ultrasound activates the heat shock pathway by a combination of thermal and non-thermal mechanisms.

  3. Giant cell granuloma of the temporal bone in a mixed martial arts fighter.

    PubMed

    Maerki, Jennifer; Riddle, Nicole D; Newman, Jason; Husson, Michael A; Lee, John Y K

    2012-10-01

    Background and Importance Giant cell granuloma (GCG) is a rare, benign, non-neoplastic lesion of the head and neck. More common in the jaw bones, there have been few reports of the lesion arising in the temporal bone. Initially referred to as a "giant cell reparative granuloma," due to the previously accepted notion of its nature in attempting to repair areas of injury, the term "giant cell granuloma" is now more frequently used as this lesion has been found in patients without a history of trauma. In addition, several cases with a destructive nature, in contrast to a reparative one, have been observed. Clinical Presentation We report a case of GCG presenting as a head and neck tumor with dural attachments and extension into the middle cranial fossa in a mixed martial arts fighter. Conclusion Giant cell granulomas are typically treated surgically and have a good prognosis; however, care must be taken when they present in unusual locations. This case supports the theory of trauma and inflammation as risk factors for GCG. PMID:23946929

  4. Multi-temporal MRI carpal bone volumes analysis by principal axes registration

    NASA Astrophysics Data System (ADS)

    Ferretti, Roberta; Dellepiane, Silvana

    2016-03-01

    In this paper, a principal axes registration technique is presented, with the relevant application to segmented volumes. The purpose of the proposed registration is to compare multi-temporal volumes of carpal bones from Magnetic Resonance Imaging (MRI) acquisitions. Starting from the study of the second-order moment matrix, the eigenvectors are calculated to allow the rotation of volumes with respect to reference axes. Then the volumes are spatially translated to become perfectly overlapped. A quantitative evaluation of the results obtained is carried out by computing classical indices from the confusion matrix, which depict similarity measures between the volumes of the same organ as extracted from MRI acquisitions executed at different moments. Within the medical field, the way a registration can be used to compare multi-temporal images is of great interest, since it provides the physician with a tool which allows a visual monitoring of a disease evolution. The segmentation method used herein is based on the graph theory and is a robust, unsupervised and parameters independent method. Patients affected by rheumatic diseases have been considered.

  5. Dual-time-point FDG-PET/CT Imaging of Temporal Bone Chondroblastoma: A Report of Two Cases

    PubMed Central

    Toriihara, Akira; Tsunoda, Atsunobu; Takemoto, Akira; Kubota, Kazunori; Machida, Youichi; Tateishi, Ukihide

    2015-01-01

    Temporal bone chondroblastoma is an extremely rare benign bone tumor. We encountered two cases showing similar imaging findings on computed tomography (CT), magnetic resonance imaging (MRI), and dual-time-point 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/CT. In both cases, CT images revealed temporal bone defects and sclerotic changes around the tumor. Most parts of the tumor showed low signal intensity on T2-weighted MRI images and non-uniform enhancement on gadolinium contrast-enhanced T1-weighted images. No increase in signal intensity was noted in diffusion-weighted images. Dual-time-point PET/CT showed markedly elevated 18F-FDG uptake, which increased from the early to delayed phase. Nevertheless, immunohistochemical analysis of the resected tumor tissue revealed weak expression of glucose transporter-1 and hexokinase II in both tumors. Temporal bone tumors, showing markedly elevated 18F-FDG uptake, which increases from the early to delayed phase on PET/CT images, may be diagnosed as malignant bone tumors. Therefore, the differential diagnosis should include chondroblastoma in combination with its characteristic findings on CT and MRI. PMID:27408892

  6. Dual-time-point FDG-PET/CT Imaging of Temporal Bone Chondroblastoma: A Report of Two Cases.

    PubMed

    Toriihara, Akira; Tsunoda, Atsunobu; Takemoto, Akira; Kubota, Kazunori; Machida, Youichi; Tateishi, Ukihide

    2015-01-01

    Temporal bone chondroblastoma is an extremely rare benign bone tumor. We encountered two cases showing similar imaging findings on computed tomography (CT), magnetic resonance imaging (MRI), and dual-time-point (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET)/CT. In both cases, CT images revealed temporal bone defects and sclerotic changes around the tumor. Most parts of the tumor showed low signal intensity on T2-weighted MRI images and non-uniform enhancement on gadolinium contrast-enhanced T1-weighted images. No increase in signal intensity was noted in diffusion-weighted images. Dual-time-point PET/CT showed markedly elevated (18)F-FDG uptake, which increased from the early to delayed phase. Nevertheless, immunohistochemical analysis of the resected tumor tissue revealed weak expression of glucose transporter-1 and hexokinase II in both tumors. Temporal bone tumors, showing markedly elevated (18)F-FDG uptake, which increases from the early to delayed phase on PET/CT images, may be diagnosed as malignant bone tumors. Therefore, the differential diagnosis should include chondroblastoma in combination with its characteristic findings on CT and MRI. PMID:27408892

  7. Variation and diversity in Homo erectus: a 3D geometric morphometric analysis of the temporal bone.

    PubMed

    Terhune, Claire E; Kimbel, William H; Lockwood, Charles A

    2007-07-01

    Although the level of taxonomic diversity within the fossil hominin species Homo erectus (sensu lato) is continually debated, there have been relatively few studies aiming to quantify the morphology of this species. Instead, most researchers have relied on qualitative descriptions or the evaluation of nonmetric characters, which in many cases display continuous variation. Also, only a few studies have used quantitative data to formally test hypotheses regarding the taxonomic composition of the "erectus" hypodigm. Despite these previous analyses, however, and perhaps in part due to these varied approaches for assessing variation within specimens typically referred to H. erectus (sensu lato) and the general lack of rigorous statistical testing of how variation within this taxon is partitioned, there is currently little consensus regarding whether this group is a single species, or whether it should instead be split into separate temporal or geographically delimited taxa. In order to evaluate possible explanations for variation within H. erectus, we tested the general hypothesis that variation within the temporal bone morphology of H. erectus is consistent with that of a single species, using great apes and humans as comparative taxa. Eighteen three-dimensional (3D) landmarks of the temporal bone were digitized on a total of 520 extant and fossil hominid crania. Landmarks were registered by Generalized Procrustes Analysis, and Procrustes distances were calculated for comparisons of individuals within and between the extant taxa. Distances between fossil specimens and between a priori groupings of fossils were then compared to the distances calculated within the extant taxa to assess the variation within the H. erectus sample relative to that of known species, subspecies, and populations. Results of these analyses indicate that shape variation within the entire H. erectus sample is generally higher than extant hominid intraspecific variation, and putative H. ergaster

  8. Dual camera system for acquisition of high resolution images

    NASA Astrophysics Data System (ADS)

    Papon, Jeremie A.; Broussard, Randy P.; Ives, Robert W.

    2007-02-01

    Video surveillance is ubiquitous in modern society, but surveillance cameras are severely limited in utility by their low resolution. With this in mind, we have developed a system that can autonomously take high resolution still frame images of moving objects. In order to do this, we combine a low resolution video camera and a high resolution still frame camera mounted on a pan/tilt mount. In order to determine what should be photographed (objects of interest), we employ a hierarchical method which first separates foreground from background using a temporal-based median filtering technique. We then use a feed-forward neural network classifier on the foreground regions to determine whether the regions contain the objects of interest. This is done over several frames, and a motion vector is deduced for the object. The pan/tilt mount then focuses the high resolution camera on the next predicted location of the object, and an image is acquired. All components are controlled through a single MATLAB graphical user interface (GUI). The final system we present will be able to detect multiple moving objects simultaneously, track them, and acquire high resolution images of them. Results will demonstrate performance tracking and imaging varying numbers of objects moving at different speeds.

  9. Diffuse Osteoradionecrosis of Temporal Bone as a Late Complication of Adjuvant Radiotherapy to Parotid Bed: A Case Report

    PubMed Central

    Abraham, Sisha Liz; Iype, Elizabeth Mathew; Jagan, Vijay

    2014-01-01

    Localized osteoradionecrosis of bony external auditory canal has been described as a late complication of external beam radiotherapy which is delivered to parotid bed after surgical resection of parotid malignancies. Diffuse osteoradionecrosis of temporal bone is rarely seen in such a setting and it is usually caused by resection of part of the bone for surgical clearance, followed by post-operative radiotherapy.This condition warrants aggressive treatment, in order to avoid potentially life threatening intracranial complications. In this report, we are presenting an uncommon case of extensive osteoradionecrosis which involved the entire temporal bone, in a patient who was treated for mucoepidermoid carcinoma of parotid twelve years ago, with total conservative parotidectomy and adjuvant radiotherapy. PMID:24995229

  10. Three-dimensional (3D) microarchitecture correlations with 2D projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions: effects of resolution and noise.

    PubMed

    Winzenrieth, Renaud; Michelet, Franck; Hans, Didier

    2013-01-01

    The aim of the present study is to determine the level of correlation between the 3-dimensional (3D) characteristics of trabecular bone microarchitecture, as evaluated using microcomputed tomography (μCT) reconstruction, and trabecular bone score (TBS), as evaluated using 2D projection images directly derived from 3D μCT reconstruction (TBSμCT). Moreover, we have evaluated the effects of image degradation (resolution and noise) and X-ray energy of projection on these correlations. Thirty human cadaveric vertebrae were acquired on a microscanner at an isotropic resolution of 93 μm. The 3D microarchitecture parameters were obtained using MicroView (GE Healthcare, Wauwatosa, MI). The 2D projections of these 3D models were generated using the Beer-Lambert law at different X-ray energies. Degradation of image resolution was simulated (from 93 to 1488 μm). Relationships between 3D microarchitecture parameters and TBSμCT at different resolutions were evaluated using linear regression analysis. Significant correlations were observed between TBSμCT and 3D microarchitecture parameters, regardless of the resolution. Correlations were detected that were strongly to intermediately positive for connectivity density (0.711 ≤ r² ≤ 0.752) and trabecular number (0.584 ≤ r² ≤ 0.648) and negative for trabecular space (-0.407 ≤ r² ≤ -0.491), up to a pixel size of 1023 μm. In addition, TBSμCT values were strongly correlated between each other (0.77 ≤ r² ≤ 0.96). Study results show that the correlations between TBSμCT at 93 μm and 3D microarchitecture parameters are weakly impacted by the degradation of image resolution and the presence of noise. PMID:22749406

  11. Delayed loss of hearing after hearing preservation cochlear implantation: Human temporal bone pathology and implications for etiology.

    PubMed

    Quesnel, Alicia M; Nakajima, Hideko Heidi; Rosowski, John J; Hansen, Marlan R; Gantz, Bruce J; Nadol, Joseph B

    2016-03-01

    After initially successful preservation of residual hearing with cochlear implantation, some patients experience subsequent delayed hearing loss. The etiology of such delayed hearing loss is unknown. Human temporal bone pathology is critically important in investigating the etiology, and directing future efforts to maximize long term hearing preservation in cochlear implant patients. Here we present the temporal bone pathology from a patient implanted during life with an Iowa/Nucleus Hybrid S8 implant, with initially preserved residual hearing and subsequent hearing loss. Both temporal bones were removed for histologic processing and evaluated. Complete clinical and audiologic records were available. He had bilateral symmetric high frequency severe to profound hearing loss prior to implantation. Since he was implanted unilaterally, the unimplanted ear was presumed to be representative of the pre-implantation pathology related to his hearing loss. The implanted and contralateral unimplanted temporal bones both showed complete degeneration of inner hair cells and outer hair cells in the basal half of the cochleae, and only mild patchy loss of inner hair cells and outer hair cells in the apical half. The total spiral ganglion neuron counts were similar in both ears: 15,138 (56% of normal for age) in the unimplanted right ear and 13,722 (51% of normal for age) in the implanted left ear. In the basal turn of the implanted left cochlea, loose fibrous tissue and new bone formation filled the scala tympani, and part of the scala vestibuli. Delayed loss of initially preserved hearing after cochlear implantation was not explained by additional post-implantation degeneration of hair cells or spiral ganglion neurons in this patient. Decreased compliance at the round window and increased damping in the scala tympani due to intracochlear fibrosis and new bone formation might explain part of the post-implantation hearing loss. Reduction of the inflammatory and immune response to

  12. High Resolution Aerosol Modeling: Decadal Changes in Radiative Forcing

    SciTech Connect

    Bergmann, D J; Chuang, C C; Govindasamy, B; Cameron-Smith, P J; Rotman, D A

    2005-02-01

    The Atmospheric Science Division of LLNL has performed high-resolution calculations of direct sulfate forcing using a DOE-provided computer resource at NERSC. We integrated our global chemistry-aerosol model (IMPACT) with the LLNL high-resolution global climate model (horizontal resolution as high as 100 km) to examine the temporal evolution of sulfate forcing since 1950. We note that all previous assessments of sulfate forcing reported in IPCC (2001) were based on global models with coarse spatial resolutions ({approx} 300 km or even coarser). However, the short lifetime of aerosols ({approx} days) results in large spatial and temporal variations of radiative forcing by sulfate. As a result, global climate models with coarse resolutions do not accurately simulate sulfate forcing on regional scales. It requires much finer spatial resolutions in order to address the effects of regional anthropogenic SO{sub 2} emissions on the global atmosphere as well as the effects of long-range transport of sulfate aerosols on the regional climate forcing. By taking advantage of the tera-scale computer resources at NERSC, we simulated the historic direct sulfate forcing at much finer spatial resolutions than ever attempted before. Furthermore, we performed high-resolution chemistry simulations and saved monthly averaged oxidant fields, which will be used in subsequent simulations of sulfate aerosol formation and their radiative impact.

  13. High-Resolution Plots of Trigonometric Functions.

    ERIC Educational Resources Information Center

    Stick, Marvin E.; Stick, Michael J.

    1985-01-01

    Provides computer programs (for Apple microcomputers) for drawing (in high resolution graphics) a three-leaved rose, concentric circles, circumscribed and inscribed astroids. Sample output and discussions of the mathematics involved in the programs are included. (JN)

  14. NOAA's Use of High-Resolution Imagery

    NASA Technical Reports Server (NTRS)

    Hund, Erik

    2007-01-01

    NOAA's use of high-resolution imagery consists of: a) Shoreline mapping and nautical chart revision; b) Coastal land cover mapping; c) Benthic habitat mapping; d) Disaster response; and e) Imagery collection and support for coastal programs.

  15. High resolution nitrogen dioxide observations: retrieval, evaluation, and interpretation

    NASA Astrophysics Data System (ADS)

    Lamsal, L. N.; Janz, S. J.; Krotkov, N. A.; Pickering, K. E.; Kowalewski, M. G.; Loughner, C.; Spurr, R. J. D.; Crawford, J. H.

    2015-12-01

    The Airborne Compact Atmospheric Mapper (ACAM) deployed during the DISCOVER-AQ Maryland field campaign made hyperspectral remote sensing measurements in the 304-910 nm range allowing observations of several tropospheric pollutants including nitrogen dioxide (NO2) at an unprecedented spatial resolution of 1.5x0.75 km2. We apply the DOAS method, include high resolution information for surface reflectivity and vertical distributions of NO2 and aerosols, and account for temporal variation in atmospheric NO2 to retrieve lower tropospheric NO2 column. We compare NO2 from ACAM with observations from in-situ aircraft, ground-based PANDORA, and space-based OMI, and NO2 simulation from air quality models. The high resolution ACAM measurements offer not only new insights into our understanding of atmospheric composition and chemistry through observation of sub-sampling variability in typical satellite and model resolutions, but also opportunities for algorithm improvements for upcoming geostationary air quality missions.

  16. High Resolution Rapid Revisits Insar Monitoring of Surface Deformation

    NASA Astrophysics Data System (ADS)

    Singhroy, V.; Li, J.; Charbonneau, F.

    2014-12-01

    Monitoring surface deformation on strategic energy and transportation corridors requires high resolution spatial and temporal InSAR images for mitigation and safety purposes. High resolution air photos, lidar and other satellite images are very useful in areas where the landslides can be fatal. Recently, radar interferometry (InSAR) techniques using more rapid revisit images from several radar satellites are increasingly being used in active deformation monitoring. The Canadian RADARSAT Constellation (RCM) is a three-satellite mission that will provide rapid revisits of four days interferometric (InSAR) capabilities that will be very useful for complex deformation monitoring. For instance, the monitoring of surface deformation due to permafrost activity, complex rock slide motion and steam assisted oil extraction will benefit from this new rapid revisit capability. This paper provide examples of how the high resolution (1-3 m) rapid revisit InSAR capabilities will improve our monitoring of surface deformation and provide insights in understanding triggering mechanisms. We analysed over a hundred high resolution InSAR images over a two year period on three geologically different sites with various configurations of topography, geomorphology, and geology conditions. We show from our analysis that the more frequent InSAR acquisitions are providing more information in understanding the rates of movement and failure process of permafrost triggered retrogressive thaw flows; the complex motion of an asymmetrical wedge failure of an active rock slide and the identification of over pressure zones related to oil extraction using steam injection. Keywords: High resolution, InSAR, rapid revisits, triggering mechanisms, oil extraction.

  17. Temporal variation and lack of host specificity among bacterial endosymbionts of Osedax bone worms (Polychaeta: Siboglinidae)

    PubMed Central

    2012-01-01

    Background Osedax worms use a proliferative root system to extract nutrients from the bones of sunken vertebrate carcasses. The roots contain bacterial endosymbionts that contribute to the nutrition of these mouthless and gutless worms. The worms acquire these essential endosymbionts locally from the environment in which their larvae settle. Here we report on the temporal dynamics of endosymbiont diversity hosted by nine Osedax species sampled during a three-year investigation of an experimental whale fall at 1820-m depth in the Monterey Bay, California. The host species were identified by their unique mitochondrial COI haplotypes. The endosymbionts were identified by ribotyping with PCR primers specifically designed to target Oceanospirillales. Results Thirty-two endosymbiont ribotypes associated with these worms clustered into two distinct bacterial ribospecies that together comprise a monophyletic group, mostly restricted to deep waters (>1000 m). Statistical analyses confirmed significant changes in the relative abundances of host species and the two dominant endosymbiont ribospecies during the three-year sampling period. Bone type (whale vs. cow) also had a significant effect on host species, but not on the two dominant symbiont ribospecies. No statistically significant association existed between the host species and endosymbiont ribospecies. Conclusions Standard PCR and direct sequencing proved to be an efficient method for ribotyping the numerically dominant endosymbiont strains infecting a large sample of host individuals; however, this method did not adequately represent the frequency of mixed infections, which appears to be the rule rather than an exception for Osedax individuals. Through cloning and the use of experimental dilution series, we determined that minority ribotypes constituting less than 30% of a mixture would not likely be detected, leading to underestimates of the frequency of multiple infections in host individuals. PMID:23006795

  18. Three-Dimensional Virtual Model of the Human Temporal Bone: A Stand-Alone, Downloadable Teaching Tool

    PubMed Central

    Wang, Haobing; Northrop, Clarinda; Burgess, Barbara; Liberman, M. Charles; Merchant, Saumil N.

    2007-01-01

    Objective To develop a three-dimensional virtual model of a human temporal bone based on serial histologic sections. Background The three-dimensional anatomy of the human temporal bone is complex, and learning it is a challenge for students in basic science and in clinical medicine. Methods Every fifth histologic section from a 14-year-old male was digitized and imported into a general purpose three-dimensional rendering and analysis software package called Amira (version 3.1). The sections were aligned, and anatomic structures of interest were segmented. Results The three-dimensional model is a surface rendering of these structures of interest, which currently includes the bone and air spaces of the temporal bone; the perilymph and endolymph spaces; the sensory epithelia of the cochlear and vestibular labyrinths; the ossicles and tympanic membrane; the middle ear muscles; the carotid artery; and the cochlear, vestibular, and facial nerves. For each structure, the surface transparency can be individually controlled, thereby revealing the three-dimensional relations between surface landmarks and underlying structures. The three-dimensional surface model can also be “sliced open” at any section and the appropriate raw histologic image superimposed on the cleavage plane. The image stack can also be resectioned in any arbitrary plane. Conclusion This model is a powerful teaching tool for learning the complex anatomy of the human temporal bone and for relating the two-dimensional morphology seen in a histologic section to the three-dimensional anatomy. The model can be downloaded from the Eaton-Peabody Laboratory web site, packaged within a cross-platform freeware three-dimensional viewer, which allows full rotation and transparency control. PMID:16791035

  19. High-resolution secondary reconstructions with the use of flat panel CT in the clinical assessment of patients with cochlear implants.

    PubMed

    Pearl, M S; Roy, A; Limb, C J

    2014-06-01

    Radiologic assessment of cochlear implants can be limited because of metallic streak artifacts and the high attenuation of the temporal bones. We report on 14 patients with 18 cochlear implants (17 Med-El standard 31.5-mm arrays, 1 Med-El medium 24-mm array) who underwent flat panel CT with the use of high-resolution secondary reconstruction techniques. Flat panel CT depicted the insertion site, cochlear implant course, and all 216 individual electrode contacts. The calculated mean angular insertion depth for standard arrays was 591.9° (SD = 70.9; range, 280°). High-resolution secondary reconstructions of the initial flat panel CT dataset, by use of a manually generated field of view, Hounsfield unit kernel type, and sharp image characteristics, provided high-quality images with improved spatial resolution. Flat panel CT is a promising imaging tool for the postoperative evaluation of cochlear implant placement. PMID:24371026

  20. Differential Intracochlear Sound Pressure Measurements in Human Temporal Bones with an Off-the-Shelf Sensor

    PubMed Central

    Salcher, Rolf; Püschel, Klaus; Lenarz, Thomas; Maier, Hannes

    2016-01-01

    The standard method to determine the output level of acoustic and mechanical stimulation to the inner ear is measurement of vibration response of the stapes in human cadaveric temporal bones (TBs) by laser Doppler vibrometry. However, this method is reliable only if the intact ossicular chain is stimulated. For other stimulation modes an alternative method is needed. The differential intracochlear sound pressure between scala vestibuli (SV) and scala tympani (ST) is assumed to correlate with excitation. Using a custom-made pressure sensor it has been successfully measured and used to determine the output level of acoustic and mechanical stimulation. To make this method generally accessible, an off-the-shelf pressure sensor (Samba Preclin 420 LP, Samba Sensors) was tested here for intracochlear sound pressure measurements. During acoustic stimulation, intracochlear sound pressures were simultaneously measurable in SV and ST between 0.1 and 8 kHz with sufficient signal-to-noise ratios with this sensor. The pressure differences were comparable to results obtained with custom-made sensors. Our results demonstrated that the pressure sensor Samba Preclin 420 LP is usable for measurements of intracochlear sound pressures in SV and ST and for the determination of differential intracochlear sound pressures. PMID:27610377

  1. A critical look at persistent problems in the diagnosis, staging and treatment of temporal bone carcinoma.

    PubMed

    Zanoletti, Elisabetta; Lovato, Andrea; Stritoni, Paola; Martini, Alessandro; Mazzoni, Antonio; Marioni, Gino

    2015-12-01

    Temporal bone squamous cell carcinoma (TBSCC) is an uncommon malignancy with a distinctly poor prognosis in advanced cases. There is still much controversy surrounding the rational diagnostic/therapeutic approach to TBSCC. Diagnostic differences are due mainly to: the small number of cases reported (even in the largest available series); the inappropriate histological heterogeneity of several case series; the lack of an internationally-accepted staging system for TBSCC; the frequent absence of adequate radiological imaging to enable a malignancy's local, regional and distant extension to be studied in detail; and a non-standardized approach to final histological assessment of the surgical margins. As for the therapeutic approaches, several issues are still debated, including the choice between en bloc and piecemeal primary surgery for the tumor's removal, and the role of elective neck dissection. Although radiotherapy seems to be an effective adjuvant therapy in advanced cases, its role in low-stage tumors or as a primary treatment has yet to be established. The value of chemotherapy is also still unclear. The treatment strategy for TBSCC is often based on the combined experience of a given surgeon and institution, bearing the results reportedly achieved by other oncology centers in mind. To date, the optimal management of TBSCC is still elusive. We aimed to critically review the ongoing crucial issues concerning the management of TBSCC, analyzing how it is diagnosed, staged and treated, the management of recurrences, rational follow-up schedules, and prognostic factors for this disease. PMID:26549119

  2. Differential Intracochlear Sound Pressure Measurements in Human Temporal Bones with an Off-the-Shelf Sensor.

    PubMed

    Grossöhmichen, Martin; Salcher, Rolf; Püschel, Klaus; Lenarz, Thomas; Maier, Hannes

    2016-01-01

    The standard method to determine the output level of acoustic and mechanical stimulation to the inner ear is measurement of vibration response of the stapes in human cadaveric temporal bones (TBs) by laser Doppler vibrometry. However, this method is reliable only if the intact ossicular chain is stimulated. For other stimulation modes an alternative method is needed. The differential intracochlear sound pressure between scala vestibuli (SV) and scala tympani (ST) is assumed to correlate with excitation. Using a custom-made pressure sensor it has been successfully measured and used to determine the output level of acoustic and mechanical stimulation. To make this method generally accessible, an off-the-shelf pressure sensor (Samba Preclin 420 LP, Samba Sensors) was tested here for intracochlear sound pressure measurements. During acoustic stimulation, intracochlear sound pressures were simultaneously measurable in SV and ST between 0.1 and 8 kHz with sufficient signal-to-noise ratios with this sensor. The pressure differences were comparable to results obtained with custom-made sensors. Our results demonstrated that the pressure sensor Samba Preclin 420 LP is usable for measurements of intracochlear sound pressures in SV and ST and for the determination of differential intracochlear sound pressures. PMID:27610377

  3. Operative findings of conductive hearing loss with intact tympanic membrane and normal temporal bone computed tomography.

    PubMed

    Kim, Se-Hyung; Cho, Yang-Sun; Kim, Hye Jeong; Kim, Hyung-Jin

    2014-06-01

    Despite recent technological advances in diagnostic methods including imaging technology, it is often difficult to establish a preoperative diagnosis of conductive hearing loss (CHL) in patients with an intact tympanic membrane (TM). Especially, in patients with a normal temporal bone computed tomography (TBCT), preoperative diagnosis is more difficult. We investigated middle ear disorders encountered in patients with CHL involving an intact TM and normal TBCT. We also analyzed the surgical results with special reference to the pathology. We reviewed the medical records of 365 patients with intact TM, who underwent exploratory tympanotomy for CHL. Fifty nine patients (67 ears, eight bilateral surgeries) had a normal preoperative TBCT findings reported by neuro-radiologists. Demographic data, otologic history, TM findings, preoperative imaging findings, intraoperative findings, and pre- and postoperative audiologic data were obtained and analyzed. Exploration was performed most frequently in the second and fifth decades. The most common postoperative diagnosis was stapedial fixation with non-progressive hearing loss. The most commonly performed hearing-restoring procedure was stapedotomy with piston wire prosthesis insertion. Various types of hearing-restoring procedures during exploration resulted in effective hearing improvement, especially with better outcome in the ossicular chain fixation group. In patients with CHL who have intact TM and normal TBCT, we should consider an exploratory tympanotomy for exact diagnosis and hearing improvement. Information of the common operative findings from this study may help in preoperative counseling. PMID:23744181

  4. Completely-in-the-canal magnet-drive hearing device: a temporal bone study.

    PubMed

    Mahboubi, Hossein; Malley, Melinda J D; Paulick, Peyton; Merlo, Mark W; Bachman, Mark; Djalilian, Hamid R

    2013-03-01

    The magnet-drive hearing device (MHD) is a small completely-in-the-canal hearing aid prototype that drives the tympanic membrane (TM) through a magnetic interface. A cadaveric temporal bone was prepared. The MHD was coupled to a nickel-epoxy pellet glued to the umbo. Frequency sweeps between 0.3 and 10 kHz were performed, and the MHD was driven with various levels of current. Displacements of the posterior crus of the stapes were measured using a laser Doppler vibrometer and compared with sound-induced displacements. The MHD had a linear frequency response and low total harmonic distortion. The pellet placement altered the stapes movements; however, the changes were statistically insignificant. Inputs of 100 and 300 mV produced displacements equivalent to those of the natural sound at 70- and 80-dB sound pressure level, respectively. The coupling of this novel device using a magnetic interface to the umbo had a frequency output wider than air conduction devices, and its actuator was effective in driving the TM. PMID:23264118

  5. High-Resolution Projection Microstereolithography for Patterning of Neovasculature.

    PubMed

    Raman, Ritu; Bhaduri, Basanta; Mir, Mustafa; Shkumatov, Artem; Lee, Min Kyung; Popescu, Gabriel; Kong, Hyunjoon; Bashir, Rashid

    2016-03-01

    To gain a quantitative understanding of the way cells sense, process, and respond to dynamic environmental signals in real-time requires developing in vitro model systems that accurately replicate the 3D structure and function of native tissue. A high-resolution projection stereolithography apparatus (μSLA) capable of multimaterial and grayscale 3D patterning of cells and biomaterials at <5 μm resolution is presented. Murine cells (fibroblasts, myoblasts, endothelial, and bone marrow stromal cells) encapsulated within photosensitive hydrogels using the μSLA remain viable up to two weeks after fabrication. Harnessing the high-resolution fabrication capabilities of this machine, sub-millimeter scale angiogenic cell-encapsulating patches designed to promote targeted growth of neovasculature are printed, as assessed in vitro via enzyme-linked immunosorbent assay (ELISA) and in ovo via a chick chorioallantoic membrane assay (CAM). This application establishes the μSLA as an enabling technology that is widely adaptable to any application that requires high-resolution patterning of cells and cells signals. By providing an efficient and robust method of engineering microscale tissues with encapsulated cells, this apparatus has a range of applications including fundamental studies of extracellular matrix interactions, high throughput drug testing of physiologically relevant substitutes for native tissue, and programmable tissue engineering for applications in regenerative medicine. PMID:26696464

  6. Progress on LAMOST High Resolution Spectrograph Project

    NASA Astrophysics Data System (ADS)

    Zhang, KaI

    2015-08-01

    To explore more science case, LAMOST doesn't only has strong power on celestial spectral survey but also reserves an access to high resolution spectrograph with a few optional fibers. This commissioned spectrograph gets high resolution of R=30,000 - 60,000 at a broad visible band from 370nm to 760nm. With the consideration about site seeing variation in future, single science fiber covers wider field on sky of 4.5arcsec instead of the present 3.3arcsec. An oversize Echelle R4 grating and a pre-slit image slicer are adopted to relieve the spectrograph resolution pressure. High resolution observation will parallel to the low resolution spectral survey at a small cost of losing a few fibers (10 - 20) on telescope focal plane. These science fibers will locate at the different sky areas for more approciate choice. The presentation will give the detailed design introduction and the current project status.

  7. Pou3f4-Mediated Regulation of Ephrin-B2 Controls Temporal Bone Development in the Mouse

    PubMed Central

    Raft, Steven; Coate, Thomas M.; Kelley, Matthew W.; Crenshaw, E. Bryan; Wu, Doris K.

    2014-01-01

    The temporal bone encases conductive and sensorineural elements of the ear. Mutations of POU3F4 are associated with unique temporal bone abnormalities and X-linked mixed deafness (DFNX2/DFN3). However, the target genes and developmental processes controlled by POU3F4 transcription factor activity have remained largely uncharacterized. Ephrin-B2 (Efnb2) is a signaling molecule with well-documented effects on cell adhesion, proliferation, and migration. Our analyses of targeted mouse mutants revealed that Efnb2 loss-of-function phenocopies temporal bone abnormalities of Pou3f4 hemizygous null neonates: qualitatively identical malformations of the stapes, styloid process, internal auditory canal, and cochlear capsule were present in both mutants. Using failed/insufficient separation of the stapes and styloid process as a quantitative trait, we found that single gene Efnb2 loss-of-function and compound Pou3f4/Efnb2 loss-of-function caused a more severe phenotype than single gene Pou3f4 loss-of-function. Pou3f4 and Efnb2 gene expression domains overlapped at the site of impending stapes-styloid process separation and at subcapsular mesenchyme surrounding the cochlea; at both these sites, Efnb2 expression was attenuated in Pou3f4 hemizygous null mutants relative to control. Results of immunoprecipitation experiments using chromatin isolated from nascent middle ear mesenchyme supported the hypothesis of a physical association between Pou3f4 and specific non-coding sequence of Efnb2. We propose that Efnb2 is a target of Pou3f4 transcription factor activity and an effector of mesenchymal patterning during temporal bone development. PMID:25299585

  8. Improving Depiction of Temporal Bone Anatomy With Low-Radiation Dose CT by an Integrated Circuit Detector in Pediatric Patients

    PubMed Central

    He, Jingzhen; Zu, Yuliang; Wang, Qing; Ma, Xiangxing

    2014-01-01

    Abstract The purpose of this study was to determine the performance of low-dose computed tomography (CT) scanning with integrated circuit (IC) detector in defining fine structures of temporal bone in children by comparing with the conventional detector. The study was performed with the approval of our institutional review board and the patients’ anonymity was maintained. A total of 86 children <3 years of age underwent imaging of temporal bone with low-dose CT (80 kV/150 mAs) equipped with either IC detector or conventional discrete circuit (DC) detector. The image noise was measured for quantitative analysis. Thirty-five structures of temporal bone were further assessed and rated by 2 radiologists for qualitative analysis. κ Statistics were performed to determine the agreement reached between the 2 radiologists on each image. Mann–Whitney U test was used to determine the difference in image quality between the 2 detector systems. Objective analysis showed that the image noise was significantly lower (P < 0.001) with the IC detector than with the DC detector. The κ values for qualitative assessment of the 35 fine anatomical structures revealed high interobserver agreement. The delineation for 30 of the 35 landmarks (86%) with the IC detector was superior to that with the conventional DC detector (P < 0.05) although there were no differences in the delineation of the remaining 5 structures (P > 0.05). The low-dose CT images acquired with the IC detector provide better depiction of fine osseous structures of temporal bone than that with the conventional DC detector. PMID:25526489

  9. High-resolution Imaging Techniques for the Assessment of Osteoporosis

    PubMed Central

    Krug, Roland; Burghardt, Andrew J.; Majumdar, Sharmila; Link, Thomas M.

    2010-01-01

    Synopsis The importance of assessing the bone’s microarchitectural make-up in addition to its mineral density in the context of osteoporosis has been emphasized in a number of publications. The high spatial resolution required to resolve the bone’s microstructure in a clinically feasible scan time is challenging. Currently, the best suited modalities meeting these requirements in vivo are high-resolution peripheral quantitative imaging (HR-pQCT) and magnetic resonance imaging (MRI). Whereas HR-pQCT is limited to peripheral skeleton regions like the wrist and ankle, MRI can also image other sites like the proximal femur but usually with lower spatial resolution. In addition Multidetector-CT has been used for high-resolution imaging of trabecular bone structure, however, the radiation dose is a limiting factor. This article provides an overview of the different modalities, technical requirements and recent developments in this emerging field. Details regarding imaging protocols as well as image post-processing methods for bone structure quantification are discussed. PMID:20609895

  10. A prospective evaluation of the combined helical tomotherapy and chemotherapy in pediatric patients with unresectable rhabdomyosarcoma of the temporal bone.

    PubMed

    Zhang, Xinxin; Ma, Kun; Wang, Jaling; Wu, Wenming; Ma, Lin; Huang, Deliang

    2014-09-01

    We determined the efficacy of combined helical tomotherapy (HT) and chemotherapy in primary/recurrent unresectable rhabdomyosarcoma (RMS) of temporal bone. For this purpose, 9 patients (7 males/2 females), aged 4-9 (average: 6.89) years, with unresectable embryonal RMS of the temporal bone were treated at our hospital. The tumors had either invaded the carotid artery in the cavernous sinus (7/9) or both the cavernous sinus and the skull base foramen (2/9); 7 patients had primary and 2 had recurrent RMS. All patients underwent 2 cycles of induction chemotherapy with VIE (vincristine, ifosfamide, and etoposide), followed by concurrent HT (50-70 Gy) and chemotherapy with VE (vincristine and etoposide for 2 cycles), and 11 cycles of adjuvant chemotherapy with VIE. As a result, all patients achieved complete response, and the 2-year tumor-free survival rate was 100 %. During a follow-up of 3-51 months, all 9 patients were alive. We, therefore, conclude that the induction chemotherapy, adjuvant chemotherapy with VIE and concurrent HT and chemotherapy with VE regimen is effective in treating unresectable embryonal RMS of the temporal bone. The combined modality treatment may achieve the best chance of cure for these patients, thereby changing the therapeutic strategy from palliative to possibly curative. PMID:24619819