Science.gov

Sample records for high-resolution ultraviolet spectroscopy

  1. High-resolution extreme-ultraviolet spectroscopy of potassium using anti-Stokes radiation

    NASA Technical Reports Server (NTRS)

    Rothenberg, J. E.; Young, J. F.; Harris, S. E.

    1981-01-01

    The use of a new extreme-ultraviolet radiation source based on spontaneous anti-Stokes scattering for high-resolution absorption spectroscopy of transition originating from the 3p6 shell of potassium is reported. The region from 546.6 to 536.8 A is scanned at a resolution of about 1.2 Kayser. Within this region, four previously unreported lines are observed.

  2. HIGH-RESOLUTION SPECTROSCOPY OF FEIGE 24 IN THE EXTREME-ULTRAVIOLET

    SciTech Connect

    Kowalski, M. P.; Wood, K. S.; Yentis, D. J.; Berendse, F. B.; Cruddace, R. G.; Barstow, M. A.; Lapington, J. S.; Fritz, G. G.; Barbee, T. W. Jr E-mail: kent.wood@nrl.navy.mil E-mail: raymond.cruddace@nrl.navy.mil E-mail: jsl12@star.le.ac.uk E-mail: barbee2@llnl.gov

    2011-04-01

    We report the first high-resolution (R = 4000) spectroscopic observation of the binary DA white dwarf Feige 24 in the extreme-ultraviolet band 220-250 A. A stellar atmosphere model assuming a homogeneous element distribution yields a best fit to the data that excludes a significant abundance of photospheric helium. The upper limit on the photospheric helium abundance is 2.5 x 10{sup -6} (90% confidence), equivalent to a lower limit of 1.2 x 10{sup -13} M{sub sun} on the overlying layer of hydrogen. An ionized interstellar He component (3.9 x 10{sup 17} cm{sup -2}) is clearly present along the line of sight, which implies an He ionization fraction of 0.72, considerably higher than is typical of the local interstellar medium. However, some of this material may be associated with circumstellar gas, which has been detected by analysis of the C IV absorption line doublet in a Hubble Space Telescope/Space Telescope Imaging Spectrograph spectrum.

  3. High-resolution detectors for imaging and spectroscopy at ultraviolet and soft X-ray wavelengths

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Morgan, J. S.; Slater, D. C.

    1988-01-01

    The Multi-Anode Microchannel Arrays (MAMAs) are a family of pulse-counting imaging array detectors designed specifically for astrophysical investigations in space. The MAMAs have a number of unique performance characteristics which make them particularly suitable for imaging and spectroscopy at ultraviolet and soft X-ray wavelengths. First, they employ 'solar blind' photocathodes eliminating the 'red leak' problem associated with solid state arrays such as the CCDs. Second, they operate with zero readout noise, yielding photon-statistics limited signals. Third, they utilize a random readout technique and can determine both the location of a detected photon and also its arrival time to an accuracy of the order of 100 ns. This paper gives an overview of the construction, mode of operation, and performance characteristics of the MAMA detectors and describes the current status of the development program.

  4. High Resolution Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brünken, S.; Schlemmer, S.

    2016-05-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limitations of conventional absorption spectroscopy. Throughout this review examples demonstrating the strong interplay between laboratory and observational studies will be given.

  5. High-resolution pulse-counting array detectors for imaging and spectroscopy at ultraviolet wavelengths

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn; Bybee, Richard L.

    1986-01-01

    The performance characteristics of multianode microchannel array (MAMA) detector systems which have formats as large as 256 x 1024 pixels and which have application to imaging and spectroscopy at UV wavelengths are evaluated. Sealed and open-structure MAMA detector tubes with opaque CsI photocathodes can determine the arrival time of the detected photon to an accuracy of 100 ns or better. Very large format MAMA detectors with CsI and Cs2Te photocathodes and active areas of 52 x 52 mm (2048 x 2048 pixels) will be used as the UV solar blind detectors for the NASA STIS.

  6. High-resolution FUSE and HST ultraviolet spectroscopy of the white dwarf central star of Sh 2-216

    NASA Astrophysics Data System (ADS)

    Rauch, T.; Ziegler, M.; Werner, K.; Kruk, J. W.; Oliveira, C. M.; Vande Putte, D.; Mignani, R. P.; Kerber, F.

    2007-07-01

    Context: We perform a comprehensive spectral analysis of LS V +46° 21 in order to compare its photospheric properties to theoretical predictions from stellar evolution theory as well as from diffusion calculations. Aims: LS V +46° 21 is the DAO-type central star of the planetary nebula Sh 2-216. High-resolution, high-S/N ultraviolet observations obtained with FUSE and STIS aboard the HST as well as the optical spectrum have been analyzed in order to determine the photospheric parameters and the spectroscopic distance. Methods: We performed a detailed spectral analysis of the ultraviolet and optical spectrum by means of state-of-the-art NLTE model-atmosphere techniques. Results: From the N IV - N V, O IV - O VI, Si IV - Si V, and Fe V - Fe VII ionization equilibria, we determined an effective temperature of (95± 2) kK with high precision. The surface gravity is log g = 6.9± 0.2. An unexplained discrepancy appears between the spectroscopic distance d = 224+46-58 pc and the parallax distance d = 129+6-5 pc of LS V +46° 21. For the first time, we have identified Mg IV and Ar VI absorption lines in the spectrum of a hydrogen-rich central star and determined the Mg and Ar abundances as well as the individual abundances of iron-group elements (Cr, Mn, Fe, Co, and Ni). With the realistic treatment of metal opacities up to the iron group in the model-atmosphere calculations, the so-called Balmer-line problem (found in models that neglect metal-line blanketing) vanishes. Conclusions: Spectral analysis by means of NLTE model atmospheres has presently arrived at a high level of sophistication, which is now hampered largely by the lack of reliable atomic data and accurate line-broadening tables. Strong efforts should be made to improve upon this situation. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract

  7. Characterization of REE-Bearing Minerals and Synthetic Materials Using High Resolution Ultraviolet to Near-Infrared Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoefen, T. M.; Livo, K. E.; Giles, S. A.; Lowers, H. A.; Swayze, G. A.; Taylor, C. D.; Verplanck, P. L.; Emsbo, P.; Koenig, A.; Mccafferty, A. E.

    2014-12-01

    Diagnostic crystal field 4fn-4fn transition features in the ultraviolet (UV) to near-infrared (NIR) region of the electromagnetic spectrum have been observed in many common rare earth element (REE)-bearing minerals. The partial filling of the 4f electron shell combined with a shielding effect caused by the fully filled 5s25p6-electron shells, which weaken any effects from external magnetic or electric fields on the electrons, makes rare earth ions unique. The narrow absorption features occur as a result of parity forbidden transitions and crystal field splitting of the trivalent REEs, and since they are well shielded, only subtle wavelengths shifts are seen in their spectral features. Synthetic single REE phosphates, carbonates, oxides, hydroxides and glasses have been measured in the lab to help identify absorption band positions that are characteristic of each REE as they occur in different minerals. Because spectral resolution is critical to identifying shifts in the absorption band positions, these materials have been measured on several different high resolution spectrometers. Using a combination of Ocean Optics USB 2000+ UV-VIS, USB2000+ VIS-NIR and ASD FS 4 spectrometers we have characterized REE-bearing materials from 0.2 to 2.5 microns with a spectral resolution of ~2 nm between 0.2 and 1.0 microns and 11 to 12 nm between 1.0 and 2.5 microns. Results to date suggest that wavelength shifts and variations in the degree of crystal field splitting allow spectral differentiation between REE-bearing minerals. To support these results, a comprehensive suite of marine phosphates, paleo-beach placers, IOCG deposits, alkaline to peralkaline igneous complexes, pegmatites associated with alkaline magmas and carbonatite intrusives, have been measured and included in our database. Core, rock chips, billets, sediment samples and grab samples were manually scanned to identify the most intense or spectrally different REE features. While REE-bearing minerals have been

  8. Very High Resolution Ultraviolet Spectroscopy of a Chemically Peculiar Star: Results of the chi LUPI Pathfinder Project

    NASA Astrophysics Data System (ADS)

    Leckrone, David S.; Proffitt, Charles R.; Wahlgren, Glenn M.; Johansson, Sveneric G.; Brage, Tomas

    1999-03-01

    We summarize here the results of a major eight-year investigation of the extraordinarily detailed UV spectrum of the sharp-lined, nonmagnetic, main-sequence, chemically peculiar star chi Lupi (B9.5p HgMn + A2 Vm). The UV observations are composed of 345 Å of the spectrum acquired with the Goddard High Resolution Spectrograph (GHRS) on board the Hubble Space Telescope at an average resolution of 0.023 Å. The complete set of echelle spectrograms is presented as an atlas in a companion paper. These data were supplemented by optical-wavelength spectra obtained at the Anglo-Australian Telescope. Quantitatively accurate analysis and theoretical interpretation of these data required major improvements in the accuracy and completeness of available atomic data-wavelengths, transition probabilities, hyperfine structure, and isotope shifts-for the lowest ionization states of many elements. A large, international group of theoretical and experimental atomic physicists has collaborated in this investigation, and their results are summarized or referenced in this paper. In turn, the GHRS observations of chi Lupi have become a useful source of data for atomic spectroscopy, displaying many transitions that are difficult to observe in a laboratory setting. Measured abundances or upper limits are presented for 72 ions of 51 chemical elements, spanning the periodic table. We have confirmed and refined previously identified isotopic abundance anomalies in mercury and platinum and have discovered similar isotopic anomalies in thallium and, tentatively, in lead. Large discrepancies among the LTE abundances derived, using a chemically homogeneous model atmosphere, from two or three ionization states of the same element are found to be common. In some cases these are due to departures from LTE in the ionization equilibria, but the largest such discrepancies probably result from chemical stratification within the photosphere. We find qualitative trends in the abundances of the elements

  9. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P.; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J.; Neves, R. F. C.; Lopes, M. C. A.; de Oliveira, E. M.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Lima, M. A. P.; Jones, D. B.

    2015-10-01

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  10. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations.

    PubMed

    Ferreira da Silva, F; Lange, E; Limão-Vieira, P; Jones, N C; Hoffmann, S V; Hubin-Franskin, M-J; Delwiche, J; Brunger, M J; Neves, R F C; Lopes, M C A; de Oliveira, E M; da Costa, R F; Varella, M T do N; Bettega, M H F; Blanco, F; García, G; Lima, M A P; Jones, D B

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range. PMID:26472380

  11. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    SciTech Connect

    Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P. E-mail: michael.brunger@flinders.edu.au; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J. E-mail: michael.brunger@flinders.edu.au; and others

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  12. Electronic state spectroscopy by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy and ab initio calculations of ethyl acetate

    NASA Astrophysics Data System (ADS)

    Śmialek, Malgorzata A.; Łabuda, Marta; Guthmuller, Julien; Hubin-Franskin, Marie-Jeanne; Delwiche, Jacques; Hoffmann, Søren Vrønning; Jones, Nykola C.; Mason, Nigel J.; Limão-Vieira, Paulo

    2016-06-01

    The high-resolution vacuum ultraviolet photoabsorption spectrum of ethyl acetate, C4H8O2, is presented over the energy range 4.5-10.7 eV (275.5-116.0 nm). Valence and Rydberg transitions and their associated vibronic series observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Also, the photoabsorption cross sections have been used to calculate the photolysis lifetime of this ester in the upper stratosphere (20-50 km). Calculations have also been carried out to determine the ionisation energies and fine structure of the lowest ionic state of ethyl acetate and are compared with a newly recorded photoelectron spectrum (from 9.5 to 16.7 eV). Vibrational structure is observed in the first photoelectron band of this molecule for the first time.

  13. Star formation seen with high resolution spectroscopy.

    NASA Astrophysics Data System (ADS)

    Winnewisser, G.

    1990-03-01

    More than 90 anorganic and organic molecules have been detected by high resolution spectroscopy in interstellar molecular clouds or in the envelopes of stars. The detected wavelengths of the lines - predominantly located in the millimeter- and submillimeter wavelength region - unequivocally identify the molecules and give precise knowledge of the physical and chemical conditions of molecular clouds from which the radiation emanates. The line intensities and line profiles contain information about the densities, temperatures and dynamics prevailing in molecular clouds.

  14. High-Resolution Infrared Spectroscopy with Synchrotron Sources

    SciTech Connect

    McKellar, A.

    2010-01-01

    Most applications of synchrotron radiation lie in the ultraviolet and X-ray region, but it also serves as a valuable continuum source of infrared (IR) light which is much brighter (i.e. more highly directional) than that from normal thermal sources. The synchrotron brightness advantage was originally exploited for high spatial resolution spectroscopy of condensed-phase samples. But it is also valuable for high spectral resolution of gas-phase samples, particularly in the difficult far-IR (terahertz) range (1/{lambda} {approx} 10-1000 cm{sup -1}). Essentially, the synchrotron replaces the usual thermal source in a Fourier transform IR spectrometer, giving a increase of up to two (or even more) orders of magnitude in signal at very high-resolution. Following up on pioneering work in Sweden (MAX-lab) and France (LURE), a number of new facilities have recently been constructed for high-resolution gas-phase IR spectroscopy. In the present paper, this new field is reviewed. The advantages and difficulties associated with synchrotron IR spectroscopy are outlined, current and new facilities are described, and past, present, and future spectroscopic results are summarized.

  15. Electronic excitation of carbonyl sulphide (COS) by high-resolution vacuum ultraviolet photoabsorption and electron-impact spectroscopy in the energy region from 4 to 11 eV

    SciTech Connect

    Limão-Vieira, P.; Ferreira da Silva, F.; Almeida, D.; Hoshino, M.; Tanaka, H.; Mogi, D.; Tanioka, T.; Mason, N. J.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.

    2015-02-14

    The electronic state spectroscopy of carbonyl sulphide, COS, has been investigated using high resolution vacuum ultraviolet photoabsorption spectroscopy and electron energy loss spectroscopy in the energy range of 4.0–10.8 eV. The spectrum reveals several new features not previously reported in the literature. Vibronic structure has been observed, notably in the low energy absorption dipole forbidden band assigned to the (4π←3π) ({sup 1}Δ←{sup 1}Σ{sup +}) transition, with a new weak transition assigned to ({sup 1}Σ{sup −}←{sup 1}Σ{sup +}) reported here for the first time. The absolute optical oscillator strengths are determined for ground state to {sup 1}Σ{sup +} and {sup 1}Π transitions. Based on our recent measurements of differential cross sections for the optically allowed ({sup 1}Σ{sup +} and {sup 1}Π) transitions of COS by electron impact, the optical oscillator strength f{sub 0} value and integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis. Subsequently, ICSs predicted by the scaling are confirmed down to 60 eV in the intermediate energy region. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of carbonyl sulphide in the upper stratosphere (20–50 km)

  16. Electronic excitation of carbonyl sulphide (COS) by high-resolution vacuum ultraviolet photoabsorption and electron-impact spectroscopy in the energy region from 4 to 11 eV.

    PubMed

    Limão-Vieira, P; Ferreira da Silva, F; Almeida, D; Hoshino, M; Tanaka, H; Mogi, D; Tanioka, T; Mason, N J; Hoffmann, S V; Hubin-Franskin, M-J; Delwiche, J

    2015-02-14

    The electronic state spectroscopy of carbonyl sulphide, COS, has been investigated using high resolution vacuum ultraviolet photoabsorption spectroscopy and electron energy loss spectroscopy in the energy range of 4.0-10.8 eV. The spectrum reveals several new features not previously reported in the literature. Vibronic structure has been observed, notably in the low energy absorption dipole forbidden band assigned to the (4π←3π) ((1)Δ←(1)Σ(+)) transition, with a new weak transition assigned to ((1)Σ(-)←(1)Σ(+)) reported here for the first time. The absolute optical oscillator strengths are determined for ground state to (1)Σ(+) and (1)Π transitions. Based on our recent measurements of differential cross sections for the optically allowed ((1)Σ(+) and (1)Π) transitions of COS by electron impact, the optical oscillator strength f0 value and integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis. Subsequently, ICSs predicted by the scaling are confirmed down to 60 eV in the intermediate energy region. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of carbonyl sulphide in the upper stratosphere (20-50 km). PMID:25681902

  17. Valence and Ionic Lowest-Lying Electronic States of Isobutyl Formate Studied by High-Resolution Vacuum Ultraviolet Photoabsorption, Photoelectron Spectroscopy, and Ab Initio Calculations.

    PubMed

    Śmiałek, M A; Łabuda, M; Guthmuller, J; Hoffmann, S V; Jones, N C; MacDonald, M A; Zuin, L; Mason, N J; Limão-Vieira, P

    2015-08-13

    The highest resolution vacuum ultraviolet photoabsorption spectrum of isobutyl formate, C5H10O2, yet reported is presented over the energy range 4.5-10.7 eV (275.5-118.0 nm) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series observed in the photoabsorption spectrum have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of isobutyl formate and are compared with a newly recorded photoelectron spectrum (from 9.0 to 27.0 eV). The value of the first ionization energy was determined to be 10.508 eV (adiabatic) and 10.837 eV (vertical). New vibrational structure is observed in the first photoelectron band, predominantly resulting from C-O and C═O stretches of the molecule. The photoabsorption cross sections have been used to calculate the photolysis lifetime of isobutyl formate in the upper stratosphere (20-50 km), indicating that the hydroxyl radical processes will be the main loss process for isobutyl formate. PMID:26176891

  18. High resolution ultraviolet imaging spectrometer for latent image analysis.

    PubMed

    Lyu, Hang; Liao, Ningfang; Li, Hongsong; Wu, Wenmin

    2016-03-21

    In this work, we present a close-range ultraviolet imaging spectrometer with high spatial resolution, and reasonably high spectral resolution. As the transmissive optical components cause chromatic aberration in the ultraviolet (UV) spectral range, an all-reflective imaging scheme is introduced to promote the image quality. The proposed instrument consists of an oscillating mirror, a Cassegrain objective, a Michelson structure, an Offner relay, and a UV enhanced CCD. The finished spectrometer has a spatial resolution of 29.30μm on the target plane; the spectral scope covers both near and middle UV band; and can obtain approximately 100 wavelength samples over the range of 240~370nm. The control computer coordinates all the components of the instrument and enables capturing a series of images, which can be reconstructed into an interferogram datacube. The datacube can be converted into a spectrum datacube, which contains spectral information of each pixel with many wavelength samples. A spectral calibration is carried out by using a high pressure mercury discharge lamp. A test run demonstrated that this interferometric configuration can obtain high resolution spectrum datacube. The pattern recognition algorithm is introduced to analyze the datacube and distinguish the latent traces from the base materials. This design is particularly good at identifying the latent traces in the application field of forensic imaging. PMID:27136837

  19. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2003-01-01

    Spectroscopic parameters (such as line position, intensity, broadening and shifting coefficients and their temperature dependences, line mixing coefficients etc.) for various molecular species of atmospheric interest are determined. In order to achieve these results, infrared spectra of several molecular bands are obtained using high-resolution recording instruments such as tunable diode laser spectrometer and Fourier transform spectrometers. Using sophisticated analysis routines (Multispectrum nonlinear least squares technique) these high-resolution infrared spectra are processed to determine the various spectral line parameters that are cited above. Spectra were taken using the McMath-Pierce Fourier transform spectrometer (FTS) at the National Solar Observatory on Kitt Peak, Arizona as well as the Bruker FTS at the Pacific Northwest National Laboratory (PNNL) at Richland, Washington. Most of the spectra are acquired not only at room temperature, but also at several different cold temperatures. This procedure is necessary to study the variation of the spectral line parameters as a function of temperature in order to simulate the Earth's and other planetary atmospheric environments. Depending upon the strength or weakness of the various bands recorded and analyzed, the length(s) of the absorption cells in which the gas samples under study are kept varied from a few centimeters up to several meters and the sample temperatures varied from approximately +30 C to -63 C. Research on several infrared bands of various molecular species and their isotopomers are undertaken. Those studies are briefly described.

  20. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  1. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon-and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  2. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2006-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as H2O (water vapor), O3 (ozone), HCN (hydrogen cyanide), CH4 (methane), NO2 (nitrogen dioxide) and CO (carbon monoxide). The data required for the analyses were obtained from two different Fourier Transform Spectrometers (FTS); one of which is located at the National Solar Observatory (NSO) on Kitt Peak, Arizona and the other instrument is located at the Pacific Northwest National Laboratories (PNNL) at Richland, Washington. The data were analyzed using a modified multispectrum nonlinear least squares fitting algorithm developed by Dr. D. Chris Benner of the College of William and Mary. The results from these studies made significant improvements in the line positons and intensities for these molecules. The measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced shift coefficients for hundreds of infrared transitions of HCN, CO3 CH4 and H2O were also performed during this period. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research Satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields. The research conducted during the period 2003-2006 has resulted in publications given in this paper. In addition to Journal publications, several oral and poster presentations were given at various Scientific conferences within the United States

  3. Applications of high resolution inverse Raman spectroscopy

    SciTech Connect

    Owyoung, A.; Esherick, P.

    1980-01-01

    The use of high-power, narrow-band lasers has significantly improved the resolving power and sensitivity of inverse Raman spectroscopy of gases. In this paper we shall describe this technique, illustrate its capabilities by showing some Q-branch spectra of heavy spherical tops, and survey some possible future applications.

  4. High-resolution flurescence spectroscopy in immunoanalysis

    SciTech Connect

    Grubor, Nenad M.

    2005-05-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  5. High resolution X-ray spectroscopy using microcalorimeters

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Holt, S. S.; Madejski, G. M.; Moseley, S. H.; Schoelkopf, R. J.; Szymkowiak, A. E.

    1988-01-01

    The use of microcalorimeters for high-resolution, high quantum efficiency, nondispersive X-ray spectroscopy has been demonstrated over the past few years. In this paper, the principles of X-ray calorimetry are reviewed, and the results of ongoing X-ray tests using microcalorimetry are summarized. An approach to building an X-ray calorimeter spectrometer is discussed.

  6. High-Resolution Electronics: Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet (Adv. Mater. 31/2016).

    PubMed

    Liu, Xuying; Kanehara, Masayuki; Liu, Chuan; Sakamoto, Kenji; Yasuda, Takeshi; Takeya, Jun; Minari, Takeo

    2016-08-01

    On page 6568, T. Minari and co-workers describe spontaneous patterning based on the parallel vacuum ultraviolet (PVUV) technique, enabling the homogeneous integration of complex, high-resolution electronic circuits, even on large-scale, flexible, transparent substrates. Irradiation of PVUV to the hydrophobic polymer surface precisely renders the selected surface into highly wettable regions with sharply defined boundaries, which spontaneously guides a metal nanoparticle ink into a series of circuit lines and gaps with the widths down to a resolution of 1 μm. PMID:27511534

  7. Future Directions in Ultraviolet Spectroscopy

    NASA Technical Reports Server (NTRS)

    Sonneborn, George (Editor); Moos, Warren; VanSteenberg, Michael

    2009-01-01

    The 'Future Directions in Ultraviolet Spectroscopy' conference was inspired by the accomplishments of the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission. The FUSE mission was launched in June 1999 and spent over eight years exploring the far-ultraviolet universe, gathering over 64 million seconds of high-resolution spectral data on nearly 3000 astronomical targets. The goal of this conference was not only to celebrate the accomplishments of FUSE, but to look toward the future and understand the major scientific drivers for the ultraviolet capabilities of the next generation fo space observatories. Invited speakers presented discussions based on measurements made by FUSE and other ultraviolet instruments, assessed their connection with measurements made with other techniques and, where appropriate, discussed the implications of low-z measurements for high-z phenomena. In addition to the oral presentations, many participants presented poster papers. The breadth of these presentation made it clear that much good science is still in progress with FUSE data and that these result will continue to have relevance in many scientific areas.

  8. An Introduction to High Resolution Coherent Multidimensional Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Wells, Thresa A.; House, Zuri R.; Strangfeld, Benjamin R.

    2013-06-01

    High resolution coherent multidimensional spectroscopy is a technique that can be used to analyze and assign peaks for molecules that have resisted spectral analysis. Molecules that yield heavily congested and seemingly patternless spectra using conventional methods can yield 2D spectra that have recognizable patterns. The off-diagonal region of the coherent 2D plot shows only cross-peaks that are related by rotational selection rules. The resulting patterns facilitate peak assignment if they are sufficiently resolved. For systems that are not well-resolved, coherent 3D spectra may be generated to further improve resolution and provide selectivity. This presentation will provide an introduction to high resolution coherent 2D and 3D spectroscopies.

  9. Single-sided sensor for high-resolution NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Perlo, J.; Casanova, F.; Blümich, B.

    2006-06-01

    The unavoidable spatial inhomogeneity of the static magnetic field generated by open sensors has precluded their use for high-resolution NMR spectroscopy. In fact, this application was deemed impossible because these field variations are usually orders of magnitude larger than those created by the microscopic structure of the molecules to be detected. Recently, chemical shift resolved NMR spectra were observed for the first time outside a portable single-sided magnet by implementing a method that exploits inhomogeneities in the rf field designed to reproduce variations of the static magnetic field [J. Perlo, V. Demas, F. Casanova, C.A. Meriles, J. Reimer, A. Pines, B. Blümich, High-resolution spectroscopy with a portable single-sided sensor, Science 308 (2005) 1279]. In this communication, we describe in detail the magnet system built from permanent magnets as well as the rf coil geometry used to compensate the static field variations.

  10. High-Resolution Fourier-Transform Ultraviolet-Visible Spectrometer for the Measurement of Atmospheric Trace Species: Application to OH.

    PubMed

    Cageao, R P; Blavier, J F; McGuire, J P; Jiang, Y; Nemtchinov, V; Mills, F P; Sander, S P

    2001-04-20

    A compact, high-resolution Fourier-transform spectrometer for atmospheric near-ultraviolet spectroscopy has been installed at the Jet Propulsion Laboratory's Table Mountain Facility (34.4 degrees N, 117.7 degrees W, elevation 2290 m). This instrument is designed with an unapodized resolving power near 500,000 at 300 nm to provide high-resolution spectra from 290 to 675 nm for the quantification of column abundances of trace atmospheric species. The measurement technique used is spectral analysis of molecular absorptions of solar radiation. The instrument, accompanying systems designs, and results of the atmospheric hydroxyl column observations are described. PMID:18357206

  11. Adaptive optics high resolution spectroscopy: present status and future direction

    SciTech Connect

    Alcock, C; Angel, R; Ciarlo, D; Fugate, R O; Ge, J; Kuzmenko, P; Lloyd-Hart, M; Macintosh, B; Najita, J; Woolf, N

    1999-07-27

    High resolution spectroscopy experiments with visible adaptive optics (AO) telescopes at Starfire Optical Range and Mt. Wilson have demonstrated that spectral resolution can be routinely improved by a factor of - 10 over the seeing-limited case with no extra light losses at visible wavelengths. With large CCDs now available, a very wide wavelength range can be covered in a single exposure. In the near future, most large ground-based telescopes will be equipped with powerful A0 systems. Most of these systems are aimed primarily at diffraction-limited operation in the near IR. An exciting new opportunity will thus open up for high resolution IR spectroscopy. Immersion echelle gratings with much coarser grooves being developed by us at LLNL will play a critical role in achieving high spectral resolution with a compact and low cost IR cryogenically cooled spectrograph and simultaneous large wavelength coverage on relatively small IR detectors. We have constructed a new A0 optimized spectrograph at Steward Observatory to provide R = 200,000 in the optical, which is being commissioned at the Starfire Optical Range 3.5m telescope. We have completed the optical design of the LLNL IR Immersion Spectrograph (LISPEC) to take advantage of improved silicon etching technology. Key words: adaptive optics, spectroscopy, high resolution, immersion gratings

  12. High Resolution Coherent 3d Spectroscopy of Bromine

    NASA Astrophysics Data System (ADS)

    Strangfeld, Benjamin R.; Wells, Thresa A.; House, Zuri R.; Chen, Peter C.

    2013-06-01

    The high resolution gas phase electronic spectrum of bromine is rather congested due to many overlapping vibrational and rotational transitions with similar transition frequencies, and also due to isotopomeric effects. Expansion into the second dimension will remove some of this congestion; however through the implementation of High Resolution Coherent 3D Spectroscopy, the density of peaks is further reduced by at least two orders of magnitude. This allows for the selective examination of a small number of spatially resolved multidimensional bands, separated by vibrational quantum number and by isotopomer, which facilitates the fitting of many rovibrational peaks in bromine. The ability to derive information about the molecular constants for the electronic states involved will be discussed.

  13. High resolution coherent three dimensional spectroscopy of NO2.

    PubMed

    Wells, Thresa A; Muthike, Angelar K; Robinson, Jessica E; Chen, Peter C

    2015-06-01

    Expansion from coherent 2D spectroscopy to coherent 3D spectroscopy can provide significant advantages when studying molecules that have heavily perturbed energy levels. This paper illustrates such advantages by demonstrating how high resolution coherent 3D (HRC3D) spectroscopy can be used to study a portion of the visible spectrum of nitrogen dioxide. High resolution coherent 2D spectra usually contain rotational and vibrational patterns that are easy to analyze, but severe congestion and complexity preclude its effective use for many parts of the NO2 spectrum. HRC3D spectroscopy appears to be much more effective; multidimensional rotational and vibrational patterns produced by this new technique are easy to identify even in the presence of strong perturbations. A method for assigning peaks, which is based upon analyzing the resulting multidimensional patterns, has been developed. The higher level of multidimensionality is useful for reducing uncertainty in peak assignments, improving spectral resolution, providing simultaneous information on multiple levels and states, and predicting, verifying, and categorizing peaks. PMID:26049446

  14. A high-resolution Fourier Transform Spectrometer for planetary spectroscopy

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Sinton, W. M.

    1973-01-01

    The employment of a high-resolution Fourier Transform Spectrometer (FTS) is described for planetary and other astronomical spectroscopy in conjunction with the 88-inch telescope at Mauna Kea Observatory. The FTS system is designed for a broad range of uses, including double-beam laboratory spectroscopy, infrared gas chromatography, and nuclear magnetic resonance spectroscopy. The data system is well-suited to astronomical applications because of its great speed in acquiring and transforming data, and because of the enormous storage capability of the magnetic tape unit supplied with the system. The basic instrument is outlined 2nd some of the initial results from the first attempted use on the Mauna Kea 88-inch telescope are reported.

  15. MAGELLAN: High resolution spectroscopy at FUV and EUV wavelengths

    NASA Technical Reports Server (NTRS)

    Grewing, M.; Alighieri, S. D.; Burton, W.; Coleman, C. I.; Hoekstra, R.; Jamar, C.; Labeque, A.; Laurent, C.; Vidal-Madjar, A.; Rafanelli, P.

    1982-01-01

    The aim of ESA's MAGELLAN mission is to provide high resolution spectra of celestial sources down to sixteenth magnitude over the extreme ultraviolet wavelength range (between 50 and 140 nm). This range extends from studies of interstellar matter in the disc and halo of this and other galaxies, to stellar envelopes, hot and evolved stars, clusters, intergalactic matter, nuclei of galaxies, quasars, and, finally, planets and satellites. The instrument has a nonconventional optical design using only one reflecting surface; a high groove density concave grating collects the star light, diffracts it and focuses its spectrum into a bidimensional windowless detector operated in a photon counting mode. The slitless configuration provides the spectra of all the sources (point like and extended) in the field of view of the grating. This field of view is limited by a grid collimator to reduce the diffuse background, the stray light and the probability of overlapping spectra in crowded fields.

  16. High resolution X-ray spectroscopy of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    1990-01-01

    After a brief review of the principal problems of AGN research, selected potential high-resolution observations are discussed with a view toward assessing their scientific value and the degree of resolution they will require. Two classes of observations pertaining directly to AGNs are discussed. Fe K-alpha spectroscopy relevant to the dynamical and thermal character of the emission line zones; and measurement of resonance line absorption by highly-ionized species in BL Lac objects, which should provide information about entrainment of interstellar material by relativistic jets. A third class of potentially important observations uses AGNs as background light sources in order to directly measure the distance to clusters of galaxies.

  17. High resolution ultrasonic spectroscopy system for nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Chen, C. H.

    1991-01-01

    With increased demand for high resolution ultrasonic evaluation, computer based systems or work stations become essential. The ultrasonic spectroscopy method of nondestructive evaluation (NDE) was used to develop a high resolution ultrasonic inspection system supported by modern signal processing, pattern recognition, and neural network technologies. The basic system which was completed consists of a 386/20 MHz PC (IBM AT compatible), a pulser/receiver, a digital oscilloscope with serial and parallel communications to the computer, an immersion tank with motor control of X-Y axis movement, and the supporting software package, IUNDE, for interactive ultrasonic evaluation. Although the hardware components are commercially available, the software development is entirely original. By integrating signal processing, pattern recognition, maximum entropy spectral analysis, and artificial neural network functions into the system, many NDE tasks can be performed. The high resolution graphics capability provides visualization of complex NDE problems. The phase 3 efforts involve intensive marketing of the software package and collaborative work with industrial sectors.

  18. Techniques in molecular spectroscopy: from broad bandwidth to high resolution

    NASA Astrophysics Data System (ADS)

    Cossel, Kevin C.

    This thesis presents a range of different experiments all seeking to extended the capabilities of molecular spectroscopy and enable new applications. The new technique of cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) provides a unique combination of broad bandwidth, high resolution, and high sensitivity that can be useful for a wide range of applications. Previous demonstrations of CE-DFCS were confined to the visible or near-infrared and operated over a limited bandwidth: for many applications it is desirable to increase the spectral coverage and to extend to the mid-infrared where strong, fundamental vibrational modes of molecules occur. There are several key requirements for CE-DFCS: a frequency comb source that provides broad bandwidth and high resolution, an optical cavity for high sensitivity, and a detection system capable of multiplex detection of the comb spectrum transmitted through the cavity. We first discuss comb sources with emphasis on the coherence properties of spectral broadening in nonlinear fiber and the development of a high-power frequency comb source in the mid-infrared based on an optical-parametric oscillator (OPO). To take advantage of this new mid-infrared comb source for spectroscopy, we also discuss the development of a rapid-scan Fourier-transform spectrometer (FTS). We then discuss the first demonstration of CE-DFCS with spectrally broadened light from a highly nonlinear fiber with the application to measurements of impurities in semiconductor manufacturing gases. We also cover our efforts towards extending CE-DFCS to the mid-infrared using the mid-infrared OPO and FTS to measure ppb levels of various gases important for breath analysis and atmospheric chemistry and highlight some future applications of this system. In addition to the study of neutral molecules, broad-bandwidth and high-resolution spectra of molecular ions are useful for astrochemistry where many of the observed molecules are ionic, for studying

  19. Metallicity determination of M dwarfs. High-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindgren, Sara; Heiter, Ulrike; Seifahrt, Andreas

    2016-02-01

    Context. Several new techniques to determine the metallicity of M dwarfs with better precision have been developed over the last decades. However, most of these studies were based on empirical methods. In order to enable detailed abundance analysis, standard methods established for warmer solar-like stars, i.e. model-dependent methods using fitting of synthetic spectra, still need to be used. Aims: In this work we continue the reliability confirmation and development of metallicity determinations of M dwarfs using high-resolution infrared spectra. The reliability was confirmed through analysis of M dwarfs in four binary systems with FGK dwarf companions and by comparison with previous optical studies of the FGK dwarfs. Methods: The metallicity determination was based on spectra taken in the J band (1.1-1.4 μm) with the CRIRES spectrograph. In this part of the infrared, the density of stellar molecular lines is limited, reducing the amount of blends with atomic lines enabling an accurate continuum placement. Lines of several atomic species were used to determine the stellar metallicity. Results: All binaries show excellent agreement between the derived metallicity of the M dwarf and its binary companion. Our results are also in good agreement with values found in the literature. Furthermore, we propose an alternative way to determine the effective temperature of M dwarfs of spectral types later than M2 through synthetic spectral fitting of the FeH lines in our observed spectra. Conclusions: We have confirmed that a reliable metallicity determination of M dwarfs can be achieved using high-resolution infrared spectroscopy. We also note that metallicites obtained with photometric metallicity calibrations available for M dwarfs only partly agree with the results we obtain from high-resolution spectroscopy. Based on data obtained at ESO-VLT, Paranal Observatory, Chile, Program ID 082.D-0838(A) and 084.D-1042(A).

  20. High Resolution Laboratory Spectroscopy: Unraveling the Secrets of Interstellar Chemistry

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.

    2008-05-01

    At present, over 140 different chemical compounds have been identified in interstellar and circumstellar gas. Such observations have offered a unique avenue by which to probe the cold, dense regions in our Galaxy and in external galaxies. Because these molecules are primarily present in colder material, they are usually studied at high spectral resolutions (1 part in 106-107) via their pure rotational transitions, which typically occur at millimeter and sub-millimeter wavelengths. Such studies cannot be carried out, however, without the input of high resolution laboratory spectroscopy. Such measurements provide the "fingerprint” spectral pattern critical for accurate astronomical identifications. Because of the complexity of current interstellar spectra and the propensity of unidentified features, precise laboratory data are essential. Current methods employed in the laboratory for high resolution measurements include millimeter/sub-mm direct absorption, velocity modulation, and Fourier transform microwave spectroscopy (FTMW). Each of these experimental techniques has certain unique advantages, which will be discussed. Also of importance are the synthetic methods utilized to create the radicals, ions, and other transient species typically found in interstellar space. Such molecules are generated in DC and AC glow discharges, pulsed supersonic jet expansions, and using Broida-type ovens. In addition, spectral analyses can be quite complex, in particular if there are low lying excited torsional or electronic states, or if molecular inversion is present. Recent laboratory results for potential interstellar species will also be presented, in particular those for negative ions, phosphorus-bearing radicals, and organic "prebiotic” species.

  1. High Resolution Phonon-assisted Quasi-resonance Fluorescence Spectroscopy.

    PubMed

    Czarnocki, Cyprian; Kerfoot, Mark L; Casara, Joshua; Jacobs, Andrew R; Jennings, Cameron; Scheibner, Michael

    2016-01-01

    High resolution optical spectroscopy methods are demanding in terms of either technology, equipment, complexity, time or a combination of these. Here we demonstrate an optical spectroscopy method that is capable of resolving spectral features beyond that of the spin fine structure and homogeneous linewidth of single quantum dots (QDs) using a standard, easy-to-use spectrometer setup. This method incorporates both laser and photoluminescence spectroscopy, combining the advantage of laser line-width limited resolution with multi-channel photoluminescence detection. Such a scheme allows for considerable improvement of resolution over that of a common single-stage spectrometer. The method uses phonons to assist in the measurement of the photoluminescence of a single quantum dot after resonant excitation of its ground state transition. The phonon's energy difference allows one to separate and filter out the laser light exciting the quantum dot. An advantageous feature of this method is its straight forward integration into standard spectroscopy setups, which are accessible to most researchers. PMID:27405015

  2. Recent Results in Quantum Chemical Kinetics from High Resolution Spectroscopy

    SciTech Connect

    Quack, Martin

    2007-12-26

    We outline the approach of our group to derive intramolecular kinetic primary processes from high resolution spectroscopy. We then review recent results on intramolecular vibrational redistribution (IVR) and on tunneling processes. Examples are the quantum dynamics of the C-H-chromophore in organic molecules, hydrogen bond dynamics in (HF){sub 2} and stereomutation dynamics in H{sub 2}O{sub 2} and related chiral molecules. We finally discuss the time scales for these and further processes which range from 10 fs to more than seconds in terms of successive symmetry breakings, leading to the question of nuclear spin symmetry and parity violation as well as the question of CPT symmetry.

  3. High Resolution Absorption Spectroscopy using Externally Dispersed Interferometry

    SciTech Connect

    Edelstein, J; Erskine, D J

    2005-07-06

    We describe the use of Externally Dispersed Interferometry (EDI) for high-resolution absorption spectroscopy. By adding a small fixed-delay interferometer to a dispersive spectrograph, a precise fiducial grid in wavelength is created over the entire spectrograph bandwidth. The fiducial grid interacts with narrow spectral features in the input spectrum to create a moire pattern. EDI uses the moire pattern to obtain new information about the spectra that is otherwise unavailable, thereby improving spectrograph performance. We describe the theory and practice of EDI instruments and demonstrate improvements in the spectral resolution of conventional spectrographs by a factor of 2 to 6. The improvement of spectral resolution offered by EDI can benefit space instruments by reducing spectrograph size or increasing instantaneous bandwidth.

  4. High Resolution K-Band Spectroscopy of Selected M Dwarfs

    NASA Astrophysics Data System (ADS)

    Nakajima, Tadashi

    2013-06-01

    We propose to obtain high-resolution K-band spectra of selected M dwarfs to study stellar properties such as effective temperature and metallicity. M dwarfs are under scrutiny as potential planet hosts. They have sufficiently low masses and small radii that exoplanets induce considerably larger reflex velocities and transit depths than an identical planet would around larger, more massive hosts. The low temperatures of M dwarfs imply short-period planets are in the habitable zone. However, due to the cool atmosphere, the characterization of M dwarfs at visible wavelengths has been rather difficult and the previously known stellar parameters have been rather crude. Recently a new method to use medium resolution K-band spectroscopy to determine the effective temperature and metallicity was devised. The purposes of this proposal is to examine the validity of the new method with a spectral resolution one order of magnitude higher and, if possible, to find a better method to determine the stellar properties.

  5. Generation of high-resolution kagome lattice structures using extreme ultraviolet interference lithography

    NASA Astrophysics Data System (ADS)

    Wang, Li; Terhalle, Bernd; Guzenko, Vitaliy A.; Farhan, Alan; Hojeij, Mohamad; Ekinci, Yasin

    2012-08-01

    High-resolution kagome lattice structures with feature sizes down to the sub-50 nm regime are fabricated using diffraction-based extreme ultraviolet interference lithography. The resulting interference pattern of multiple beams is sensitive to the relative phase of the interfering beams. The precise control of their phases is achieved by precise positioning of transmission diffraction gratings on a mask using a high-end electron beam lithography tool. The presented method may find applications in providing high-resolution and large-area kagome lattice structures for studies on frustrated magnetic systems, photonic crystals, and plasmonics.

  6. Improvement of sensitivity in high-resolution Rutherford backscattering spectroscopy

    SciTech Connect

    Hashimoto, H.; Nakajima, K.; Suzuki, M.; Kimura, K.; Sasakawa, K.

    2011-06-15

    The sensitivity (limit of detection) of high-resolution Rutherford backscattering spectroscopy (HRBS) is mainly determined by the background noise of the spectrometer. There are two major origins of the background noise in HRBS, one is the stray ions scattered from the inner wall of the vacuum chamber of the spectrometer and the other is the dark noise of the microchannel plate (MCP) detector which is commonly used as a focal plane detector of the spectrometer in HRBS. In order to reject the stray ions, several barriers are installed inside the spectrometer and a thin Mylar foil is mounted in front of the detector. The dark noise of the MCP detector is rejected by the coincidence measurement with the secondary electrons emitted from the Mylar foil upon the ion passage. After these improvements, the background noise is reduced by a factor of 200 at a maximum. The detection limit can be improved down to 10 ppm for As in Si at a measurement time of 1 h under ideal conditions.

  7. High-resolution NMR spectroscopy under the fume hood.

    PubMed

    Küster, Simon K; Danieli, Ernesto; Blümich, Bernhard; Casanova, Federico

    2011-08-01

    This work reports the possibility to acquire high-resolution (1)H NMR spectra with a fist-sized NMR magnet directly installed under the fume hood. The small NMR sensor based on permanent magnets was used to monitor the trimerization of propionaldehyde catalyzed by indium trichloride in real time by continuously circulating the reaction mixture through the magnet bore in a closed loop with the help of a peristaltic pump. Thanks to the chemical selectivity of NMR spectroscopy the progress of the reaction can be monitored on-line by determining the concentrations of both reactant and product from the area under their respective lines in the NMR spectra as a function of time. This in situ measurement demonstrates that NMR probes can be used in chemistry laboratories, e.g. for reaction optimization, or installed at specific points of interest along industrial process lines. Therefore, it will open the door for the implementation of feedback control based on spectroscopic NMR data. PMID:21698335

  8. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    SciTech Connect

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  9. High-Resolution Spectroscopy of the Lunar Sodium Exosphere

    NASA Technical Reports Server (NTRS)

    Mierkiewicz, E. J.; Oliversen, R. J.; Roesler, F. L.; Lupie, O. L.

    2014-01-01

    We have applied high-resolution Fabry-Perot spectroscopy to the study of the lunar sodium exosphere for the study of exospheric effective temperature and velocity variations. Observing from the National Solar Observatory McMath-Pierce Telescope, we used a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,000 to measure line widths and Doppler shifts of the sodium D2 (5889.95 Å) emission line. Our field of view was 360 km, and measurements were made in equatorial and polar regions from 500 km to 3500 km off the limb. Data were obtained from full moon to 3 days following full moon (waning phase) in March 2009. Measured Doppler line widths within 1100 km of the sunlit east and south lunar limbs for observations between 5 and 40 deg lunar phase imply effective temperatures ranging between 3260 +/- 190 and 1000 +/- 135 K. Preliminary line center analysis indicates velocity displacements between different locations off the lunar limb ranging between 100 and 600 m/s from the lunar rest velocity with a precision of +/-20 to +/-50 m/s depending on brightness. Based on the success of these exploratory observations, an extensive program has been initiated that is expected to constrain lunar atmospheric and surface-process modeling and help quantify source and escape mechanisms.

  10. Pluto's atmosphere in 2015 from high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Roe, Henry G.; Cook, Jason C.; Mace, Gregory N.; Holler, Bryan J.; Young, Leslie A.; McLane, Jacob N.; Jaffe, Daniel T.

    2015-11-01

    Pluto's thin N2/CH4 atmosphere is in vapor-pressure equilibrium with ices on its surface. The atmosphere evolves seasonally with the varying insolation pattern on Pluto's heterogenous surface, perhaps even largely freezing out to the surface during the coldest portion of Pluto's year. We use high-resolution (R≈25,000-50,000) near-infrared spectroscopy to resolve atmospheric methane absorption lines from Pluto's continuum spectra, as well as separate Pluto's atmospheric lines from the telluric spectrum. In addition to measuring the abundance and temperature of Pluto's atmospheric CH4, with broad wavelength coverage we are able to search for the inevitable products of N2/CH4 photochemistry. In 2015 we are undertaking an intensive campaign using NIRSPEC at Keck Observatory and IGRINS (Immersion Grating INfrared Spectrometer) at McDonald Observatory to coincide with the New Horizons Pluto encounter. We will report initial results from this 2015 campaign and compare the state of Pluto's atmosphere at the time of the New Horizons encounter with earlier years.

  11. Johann Spectrometer for High Resolution X-ray Spectroscopy

    SciTech Connect

    Machek, Pavel; Froeba, Michael; Welter, Edmund; Caliebe, Wolfgang; Brueggmann, Ulf; Draeger, Guenter

    2007-01-19

    A newly designed vacuum Johann spectrometer with a large focusing analyzer crystal for inelastic x-ray scattering and high resolution fluorescence spectroscopy has been installed at the DORIS III storage ring. Spherically bent crystals with a maximum diameter of 125 mm, and cylindrically bent crystals are employed as dispersive optical elements. Standard radius of curvature of the crystals is 1000 mm, however, the design of the mechanical components also facilitates measurements with smaller and larger bending radii. Up to four crystals are mounted on a revolving crystal changer which enables crystal changes without breaking the vacuum. The spectrometer works at fixed Bragg angle. It is preferably designed for the measurements in non-scanning mode with a broad beam spot, and offers a large flexibility to set the sample to the optimum position inside the Rowland circle. A deep depletion CCD camera is employed as a position sensitive detector to collect the energy-analyzed photons on the circumference of the Rowland circle. The vacuum in the spectrometer tank is typically 10-6 mbar. The sample chamber is separated from the tank either by 25 {mu}m thick Kapton windows, which allows samples to be measured under ambient conditions, or by two gate valves. The spectrometer is currently installed at wiggler beamline W1 whose working range is 4-10.5 keV with typical flux at the sample of 5x1010photons/s/mm2. The capabilities of the spectrometer are illustrated by resonant inelastic experiments on 3d transition metals and rare earth compounds, and by chemical shift measurements on chromium compounds.

  12. Johann Spectrometer for High Resolution X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Machek, Pavel; Welter, Edmund; Caliebe, Wolfgang; Brüggmann, Ulf; Dräger, Günter; Fröba, Michael

    2007-01-01

    A newly designed vacuum Johann spectrometer with a large focusing analyzer crystal for inelastic x-ray scattering and high resolution fluorescence spectroscopy has been installed at the DORIS III storage ring. Spherically bent crystals with a maximum diameter of 125 mm, and cylindrically bent crystals are employed as dispersive optical elements. Standard radius of curvature of the crystals is 1000 mm, however, the design of the mechanical components also facilitates measurements with smaller and larger bending radii. Up to four crystals are mounted on a revolving crystal changer which enables crystal changes without breaking the vacuum. The spectrometer works at fixed Bragg angle. It is preferably designed for the measurements in non-scanning mode with a broad beam spot, and offers a large flexibility to set the sample to the optimum position inside the Rowland circle. A deep depletion CCD camera is employed as a position sensitive detector to collect the energy-analyzed photons on the circumference of the Rowland circle. The vacuum in the spectrometer tank is typically 10-6 mbar. The sample chamber is separated from the tank either by 25 μm thick Kapton windows, which allows samples to be measured under ambient conditions, or by two gate valves. The spectrometer is currently installed at wiggler beamline W1 whose working range is 4-10.5 keV with typical flux at the sample of 5×1010photons/s/mm2. The capabilities of the spectrometer are illustrated by resonant inelastic experiments on 3d transition metals and rare earth compounds, and by chemical shift measurements on chromium compounds.

  13. High-resolution tunnelling spectroscopy of a graphene quartet.

    PubMed

    Song, Young Jae; Otte, Alexander F; Kuk, Young; Hu, Yike; Torrance, David B; First, Phillip N; de Heer, Walt A; Min, Hongki; Adam, Shaffique; Stiles, Mark D; MacDonald, Allan H; Stroscio, Joseph A

    2010-09-01

    Electrons in a single sheet of graphene behave quite differently from those in traditional two-dimensional electron systems. Like massless relativistic particles, they have linear dispersion and chiral eigenstates. Furthermore, two sets of electrons centred at different points in reciprocal space ('valleys') have this dispersion, giving rise to valley degeneracy. The symmetry between valleys, together with spin symmetry, leads to a fourfold quartet degeneracy of the Landau levels, observed as peaks in the density of states produced by an applied magnetic field. Recent electron transport measurements have observed the lifting of the fourfold degeneracy in very large applied magnetic fields, separating the quartet into integer and, more recently, fractional levels. The exact nature of the broken-symmetry states that form within the Landau levels and lift these degeneracies is unclear at present and is a topic of intense theoretical debate. Here we study the detailed features of the four quantum states that make up a degenerate graphene Landau level. We use high-resolution scanning tunnelling spectroscopy at temperatures as low as 10 mK in an applied magnetic field to study the top layer of multilayer epitaxial graphene. When the Fermi level lies inside the fourfold Landau manifold, significant electron correlation effects result in an enhanced valley splitting for even filling factors, and an enhanced electron spin splitting for odd filling factors. Most unexpectedly, we observe states with Landau level filling factors of 7/2, 9/2 and 11/2, suggestive of new many-body states in graphene. PMID:20829790

  14. Characterizing The Nearest Young Moving Groups Through High Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    McCarthy, Kyle; Wilhelm, Ronald J.

    2015-01-01

    We present a detailed method for characterizing the nearest young moving groups via high resolution spectroscopy. This method has three diagnostics which classify a moving group: (1) Chemical Homogeneity, (2) Kinematic Traceback, and (3) Isochrone Fitting. We have applied this technique on 10 F- and G-type stars from the AB Doradus Moving Group (ABD) and found 8 stars share similar metal abundances with an average abundance for ABD of <[M/H]> = -0.03 ± 0.06; of the two outliers, one is metal rich and the other metal poor. Seven stars follow a common traceback and share a common origin around 125 Myr. One of the outlying traceback stars diverges around 90-100 Myr, and is the same star which is metal rich. Eight stars fall along the same isochrone of 100 Myr, which is synonymous with the main sequence. We further evaluated this technique on 5 members of the newly discovered Octans-Near Moving Group (ONMG). Two of these were listed as possible members with the other three being probable members. There is a large spread in the metal abundance with <[M/H]> = -0.17 ± 0.1 and no core group of stars that define the cluster in abundance space. ONMG is also enigmatic because several age indicators (e.g. lithium abundance, surface gravities, activity) indicate a much younger cluster; however, the traceback age shows these stars were closest around 150 Myr (though this age should be taken very lightly) and 4 of the 5 stars fall on the main sequence. We therefore conclude that while these stars do share present day velocities and positions, the group is not well defined in abundance, origin, or age, and should be concidered with caution.

  15. Valence and ionic lowest-lying electronic states of ethyl formate as studied by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy, and ab initio calculations

    SciTech Connect

    Śmiałek, M. A.; Duflot, D.; Mason, N. J.; Hoffmann, S. V.; Jones, N. C.; Limão-Vieira, P.

    2014-09-14

    The highest resolution vacuum ultraviolet photoabsorption spectrum of ethyl formate, C{sub 2}H{sub 5}OCHO, yet reported is presented over the wavelength range 115.0–275.5 nm (10.75–4.5 eV) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series, observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of ethyl formate and are compared with a newly recorded He(I) photoelectron spectrum (from 10.1 to 16.1 eV). New vibrational structure is observed in the first photoelectron band. The photoabsorption cross sections have been used to calculate the photolysis lifetime of ethyl formate in the upper stratosphere (20–50 km)

  16. Valence and ionic lowest-lying electronic states of ethyl formate as studied by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy, and ab initio calculations.

    PubMed

    Śmiałek, M A; Łabuda, M; Guthmuller, J; Hubin-Franskin, M-J; Delwiche, J; Duflot, D; Mason, N J; Hoffmann, S V; Jones, N C; Limão-Vieira, P

    2014-09-14

    The highest resolution vacuum ultraviolet photoabsorption spectrum of ethyl formate, C2H5OCHO, yet reported is presented over the wavelength range 115.0-275.5 nm (10.75-4.5 eV) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series, observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of ethyl formate and are compared with a newly recorded He(I) photoelectron spectrum (from 10.1 to 16.1 eV). New vibrational structure is observed in the first photoelectron band. The photoabsorption cross sections have been used to calculate the photolysis lifetime of ethyl formate in the upper stratosphere (20-50 km). PMID:25217920

  17. High Resolution Coherent Three-Dimensional Spectroscopy of Iodine

    NASA Astrophysics Data System (ADS)

    House, Zuri R.; Wells, Thresa A.; Chen, Peter C.; Strangfeld, Benjamin R.

    2013-06-01

    The heavy congestion found in many one-dimensional spectra can make it difficult to study many transitions. A new coherent three-dimensional spectroscopic technique has been developed to eliminate the kind of congestion commonly seen in high resolution electronic spectra. The molecule used for this test was Iodine. A well-characterized transition (X to B) was used to determine which four wave mixing process or processes were responsible for the peaks in the resulting multidimensional spectrum. The resolution of several peaks that overlap in a coherent 2D spectrum can be accomplished by using a higher dimensional (3D) spectroscopic method. This talk will discuss strategies for finding spectroscopic constants using this high resolution coherent 3D spectroscopic method.

  18. High Resolution Thz and FIR Spectroscopy of SOCl_2

    NASA Astrophysics Data System (ADS)

    Martin-Drumel, M. A.; Cuisset, A.; Sadovskii, D. A.; Mouret, G.; Hindle, F.; Pirali, O.

    2013-06-01

    Thionyl chloride (SOCl_2) is an extremely powerful oxidant widely used in industrial processes and playing a role in the chemistry of the atmosphere. In addition, it has a molecular configuration similar to that of phosgene (COCl_2), and is therefore of particular interest for security and defense applications. Low resolution vibrational spectra of gas phase SOCl_2 as well as high resolution pure rotational transitions up to 25 GHz have previously been investigated. To date no high resolution data are reported at frequencies higher than 25 GHz. We have investigated the THz absorption spectrum of SOCl_2 in the spectral region 70-650 GHz using a frequency multiplier chain coupled to a 1 m long single path cell containing a pressure of about 15 μbar. At the time of the writing, about 8000 pure rotational transitions of SO^{35}Cl_2 with highest J and K_a values of 110 and 50 respectively have been assigned on the spectrum. We have also recorded the high resolution FIR spectra of SOCl_2 in the spectral range 50-700 wn using synchrotron radiation at the AILES beamline of SOLEIL facility. A White-type cell aligned with an absorption path length of 150 m has been used to record, at a resolution of 0.001 wn, two spectra at pressures of 5 and 56 μbar of SOCl_2. On these spectra all FIR modes of SOCl_2 are observed (ν_2 to ν_6) and present a resolved rotational structure. Their analysis is in progress. T. J. Johnson et al., J. Phys. Chem. A 107, 6183 (2003) D. E. Martz and R. T. Lagemann, J. Chem. Phys. 22,1193 (1954) H. S. P. Müller and M. C. L. Gerry, J. Chem. Soc. Faraday Trans. 90, 3473 (1994)

  19. High-Resolution Spectroscopy of Some Very Inactive Southern Stars

    NASA Astrophysics Data System (ADS)

    Villarreal, A.; King, J. R.; Soderblom, D. R.; Henry, T. J.

    2001-12-01

    We have obtained high-resolution echelle spectra of a few dozen solar-type stars that an earlier low resolution Ca II H & K survey suggested have modest evels of chromospheric activity. We present Hα -based chromospheric activity measures, binarity information, and Li abundances of the sample. As expected, our spectra: confirm the low levels of chromospheric activity; suggest that these objects are apparently single; indicate the stars have small projected rotational velocities; and yield low photospheric abundances of Li. This work was supported by NSF grant AST-0086576 to JRK.

  20. Quadrature phase interferometer for high resolution force spectroscopy

    NASA Astrophysics Data System (ADS)

    Paolino, Pierdomenico; Aguilar Sandoval, Felipe A.; Bellon, Ludovic

    2013-09-01

    In this article, we present a deflection measurement setup for Atomic Force Microscopy (AFM). It is based on a quadrature phase differential interferometer: we measure the optical path difference between a laser beam reflecting above the cantilever tip and a reference beam reflecting on the static base of the sensor. A design with very low environmental susceptibility and another allowing calibrated measurements on a wide spectral range are described. Both enable a very high resolution (down to 2.5 × 10^{-15} m/sqrtHz), illustrated by thermal noise measurements on AFM cantilevers. They present an excellent long-term stability and a constant sensitivity independent of the optical phase of the interferometer. A quick review shows that our precision is equaling or out-performing the best results reported in the literature, but for a much larger deflection range, up to a few μm.

  1. High-resolution near-infrared spectroscopy of water dimer

    NASA Technical Reports Server (NTRS)

    Huang, Z. S.; Miller, R. E.

    1989-01-01

    High-resolution near-infrared spectra are reported for all of the O-H stretch vibrational bands of the water dimer. The four O-H vibrations are characterized as essentially independent proton-donor or proton-acceptor motions. In addition to the rotational and vibrational information contained in these spectra, details are obtained concerning the internal tunneling dynamics in both the ground and excited vibrational states. These results show that, for tunneling motions which involve the interchange of the proton donor and acceptor molecules, the associated frequencies decrease substantially due to vibrational excitation. The predissociation lifetimes for the various states of the dimer are determined from linewidth measurements. These results clearly show that the predissociation dynamics is strongly dependent on the tunneling states, as well as the Ka quantum number, indicating that the internal tunneling dynamics plays an important role in determining the dissociation rate in this complex.

  2. Quadrature phase interferometer for high resolution force spectroscopy

    SciTech Connect

    Paolino, Pierdomenico; Aguilar Sandoval, Felipe A.; Bellon, Ludovic

    2013-09-15

    In this article, we present a deflection measurement setup for Atomic Force Microscopy (AFM). It is based on a quadrature phase differential interferometer: we measure the optical path difference between a laser beam reflecting above the cantilever tip and a reference beam reflecting on the static base of the sensor. A design with very low environmental susceptibility and another allowing calibrated measurements on a wide spectral range are described. Both enable a very high resolution (down to 2.5×10{sup −15} m/√(Hz)), illustrated by thermal noise measurements on AFM cantilevers. They present an excellent long-term stability and a constant sensitivity independent of the optical phase of the interferometer. A quick review shows that our precision is equaling or out-performing the best results reported in the literature, but for a much larger deflection range, up to a few μm.

  3. High resolution spectroscopy from low altitude satellites. [gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Nakano, G. H.; Imhof, W. L.

    1978-01-01

    The P 78 1 satellite to be placed in a synchronous polar orbit at an altitude of 550-660 km will carry two identical high resolution spectrometers each consisting of a single (approximately 85 cc) intrinsic germanium IGE detector. The payload also includes a pair of phoswitch scintillators, an array of CdTe detectors and several particle detectors, all of which are mounted on the wheel of the satellite. The intrinsic high purity IGE detectors receive cooling from two Stirling cycle refrigerators and facilitate the assembly of large and complex detector arrays planned for the next generation of high sensitivity instruments such as those planned for the gamma ray observatory. The major subsystems of the spectrometer are discussed as well as its capabilities.

  4. Quadrature phase interferometer for high resolution force spectroscopy.

    PubMed

    Paolino, Pierdomenico; Aguilar Sandoval, Felipe A; Bellon, Ludovic

    2013-09-01

    In this article, we present a deflection measurement setup for Atomic Force Microscopy (AFM). It is based on a quadrature phase differential interferometer: we measure the optical path difference between a laser beam reflecting above the cantilever tip and a reference beam reflecting on the static base of the sensor. A design with very low environmental susceptibility and another allowing calibrated measurements on a wide spectral range are described. Both enable a very high resolution (down to 2.5×10(-15) m/√Hz), illustrated by thermal noise measurements on AFM cantilevers. They present an excellent long-term stability and a constant sensitivity independent of the optical phase of the interferometer. A quick review shows that our precision is equaling or out-performing the best results reported in the literature, but for a much larger deflection range, up to a few μm. PMID:24089852

  5. High-resolution spectroscopy of a giant solar filament

    NASA Astrophysics Data System (ADS)

    Kuckein, Christoph; Denker, Carsten; Verma, Meetu

    2014-01-01

    High-resolution spectra of a giant solar quiescent filament were taken with the Echelle spectrograph at the Vacuum Tower Telescope (VTT; Tenerife, Spain). A mosaic of various spectroheliograms (Hα, Hα+/-0.5 Å and Na D2) were chosen to examine the filament at different heights in the solar atmosphere. In addition, full-disk images (He i 10830 Å and Ca ii K) of the Chromspheric Telescope and full-disk magnetograms of the Helioseismic and Magnetic Imager were used to complement the spectra. Preliminary results are shown of this filament, which had extremely large linear dimensions (~740'') and was observed in November 2011 while it traversed the northern solar hemisphere.

  6. CARMENES science preparation. High-resolution spectroscopy of M dwarfs

    NASA Astrophysics Data System (ADS)

    Montes, D.; Caballero, J. A.; Jeffers, S.; Alonso-Floriano, F. J.; Mundt, R.; CARMENES Consortium

    2015-05-01

    To ensure an efficient use of CARMENES observing time, and the highest chances of success, it is necessary first to select the most promising targets. To achieve this, we are observing 500 M dwarfs at high-resolution (R = 30,000-48,000), from which we determine the projected rotational velocity vsin{i} with an accuracy better than 0.5-0.2 km/s and radial-velocity stability better than 0.2-0.1 km/s. Our aim is to have at least two spectra at different epochs of the final 300 CARMENES targets. Our observations with FEROS at ESO/MPG 2.2 m La Silla, CAFE at 2.2 m Calar Alto and HRS at Hobby Eberly Telescope allow us to identify single- and double-line spectroscopic binaries and, especially, fast rotators, which should be discarded from the target list for exoplanet searches. Here we present preliminary results.

  7. A polarimeter for the high resolution ultraviolet spectrometer/polarimeter. [Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Calvert, J. A.

    1980-01-01

    The design requirements of the polarimeter were established by the scientific optical objectives of the experiment to be launched aboard the Solar Max Mission which will study active solar regions. The polarization of the light is accomplished by a rotating magnesium fluoride quarter wave plate. The quarter wave plates are rotated in 22 1/2 degree steps about an axis coincidental with the light beam. As the light beam passes through the wave plate, the transformation that occurs can be expressed by mathematical equations. By having the wave plates calibrated, the data obtained from solar flares can be analyzed and meaningful information provided to the investigators. The polarimeter has two wave plates with different optical characteristics to provide both redundancy and versatility. A four mirror polarizer was added behind one wave plate to provide additional polarization. The mechanical design, testing, and operation of the polarimeter for the high resolution ultraviolet spectrometer/polarimeter are described.

  8. High resolution {gamma}-ray spectroscopy: The first 85 years

    SciTech Connect

    Deslattes, R.D.

    2000-02-01

    This opening review attempts to follow the main trends in crystal diffraction spectrometry of nuclear {gamma} rays from its 1914 beginning in Rutherford's laboratory to the ultra-high resolution instrumentation realized in the current generation of spectrometers at the Institute Laue Langeven (ILL). The authors perspective is that of an instrumentalist hoping to convey a sense of intellectual debt to a number of predecessors, each of whom realized a certain elegance in making the tools that have enabled much good science, including that to which the remainder of this workshop is dedicated. This overview follows some of the main ideas along a trajectory toward higher resolution at higher energies, thereby enabling not only the disentangling of dense spectra, but also allowing detailed study of aspects of spectral profiles sensitive to excited state lifetimes and interatomic potentials. The parallel evolution toward increasing efficiency while preserving needed resolution is also an interesting story of artful compromise that should not be neglected. Finally, it is the robustness of the measurement chain connecting {gamma}-ray wavelengths with optical wave-lengths associated with the Rydberg constant that only recently has allowed {gamma}-ray data to contribute to determine of particle masses and fundamental constants, as will be described in more detail in other papers from this workshop.

  9. High Resolution Spectroscopy of Two FK Comae Stars

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.

    The FK Comae stars are a class of extremely rapidly rotating G-K giants that exhibit among the brightest UV and X-ray emission seen in late type stars. Previous IUE and optical observations have indicated that the activity (the extreme surface fluxes) in FK Comae may be qualitatively different from that in "normal" late type stars, and that the other four members of the class are far less bizarre than FK Comae itself. A definitive method for determining the structure of the outer atmospheres of these stars, and deciding whether the heating mechanism is normal chromospheric heating or accretion heating is by analysis of high resolution SWP spectra. We propose, in collaboration with S. Rucinski, to obtain 16-20 hour collaborative NASA-ESA SWP-HI spectra of FK Comae, which exhibits Hot and MgII line widths of ˜500 kms^-1, and HD 36705, which appears to be a far less bizarre member of this class. These observations would be the first high dispersion SWP spectra ever obtained of FK Comae stars.

  10. Exploring conical intersections through high resolution photofragment translational spectroscopy

    NASA Astrophysics Data System (ADS)

    Ashfold, Michael

    2007-03-01

    High resolution measurements of the kinetic energies of H atom fragments formed during UV photolysis of gas phase imidazole, [1,2] pyrrole, [3] phenol [4] and thiophenol molecules show that: (i) X-H (X = N, O, S) bond fission is an important non-radiative decay process from the ^1πσ* excited states in each of these molecules, and (ii) that the respective co-fragments (imidazolyl, pyrrolyl, phenoxyl and thiophenoxyl) are formed in very limited sub-sets of their available vibrational states. Identification of these product states yields uniquely detailed insights into the vibronic couplings involved in the photo-induced evolution from parent molecule to ultimate fragments. [1] M.N.R. Ashfold, B. Cronin, A.L. Devine, R.N. Dixon and M.G.D. Nix, Science (2006), 312, 1637. [2] A.L. Devine, B. Cronin, M.G.D. Nix and M.N.R. Ashfold, J. Chem. Phys. (in press). [3] B. Cronin, M.G.D. Nix, R.H. Qadiri and M.N.R. Ashfold, Phys. Chem. Chem. Phys. (2004), 6, 5031. [4] M.G.D. Nix, A.L. Devine, B. Cronin, R.N. Dixon and M.N.R. Ashfold, J. Chem. Phys. (2006), 125, 133318.

  11. High resolution photoelectron spectroscopy of clusters of Group V elements

    SciTech Connect

    Wang, Lai-sheng; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    High resolution HeI (580{angstrom}) photoelectron spectra of As{sub 2}, As{sub 4}, and P{sub 4} were obtained with a newly-built high temperature molecular beam source. Vibrational structure was resolved in the photoelectron spectra of the three cluster species. The Jahn-Teller effect is discussed for the {sup 2}E and {sup 2}T{sub 2} states of P{sub 4}{sup +} and As{sub 4}{sup +}. As a result of the Jahn-Teller effect, the {sup 2}E state splits into two bands, and the {sup 2}T{sub 2} state splits into three bands, in combination with the spin-orbit effect. It was observed that the {nu}{sub 2} normal vibrational mode was involved in the vibronic interaction of the {sup 2}E state, while both the {nu}{sub 2} and {nu}{sub 3} modes were active in the {sup 2}T{sub 2} state. 26 refs., 5 figs., 3 tabs.

  12. High Resolution FIR and IR Spectroscopy of Methanol Isotopologues

    SciTech Connect

    Lees, R. M.; Xu, Li-Hong; Appadoo, D. R. T.; Billinghurst, B.

    2010-02-03

    New astronomical facilities such as HIFI on the Herschel Space Observatory, the SOFIA airborne IR telescope and the ALMA sub-mm telescope array will yield spectra from interstellar and protostellar sources with vastly increased sensitivity and frequency coverage. This creates the need for major enhancements to laboratory databases for the more prominent interstellar 'weed' species in order to model and account for their lines in observed spectra in the search for new and more exotic interstellar molecular 'flowers'. With its large-amplitude internal torsional motion, methanol has particularly rich spectra throughout the FIR and IR regions and, being very widely distributed throughout the galaxy, is perhaps the most notorious interstellar weed. Thus, we have recorded new spectra for a variety of methanol isotopic species on the high-resolution FTIR spectrometer on the CLS FIR beamline. The aim is to extend quantum number coverage of the data, improve our understanding of the energy level structure, and provide the astronomical community with better databases and models of the spectral patterns with greater predictive power for a range of astrophysical conditions.

  13. High Resolution X-Ray Spectroscopy Using Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.

    1997-01-01

    During the past 13 years high resolution X ray spectrometers have been developed that use cryogenically cooled microcalorimeters. These devices have inherently high signal-to-noise by operating at temperatures below 0.1 K and can achieve an energy resolution of < 10 eV over the 0.1-10 keV band. Existing devices use doped semiconductor thermometers and typically employ HgTe absorbers. The energy resolution depends on achieving a low heat capacity for the device. For soft X ray applications a relatively thin absorber (approximately 1 micrometer) may be used and an energy resolution of approximately 7 eV has been achieved. For applications up to approximately 10 keV an absorber thickness of approximately 10 micrometer is required and the energy resolution is typically approximately 12 eV. Improvements to the energy resolution in this energy band could be achieved if the problems of thermalizing X rays in low heat capacity superconductors can be overcome. The recent work on transition edge thermometers by Irwin et nl. looks particularly promising because of the higher sensitivity achievable from a sharp superconducting transition. The relatively low impedance of such a device permits the use of a low noise SQUID amplifier for readout. This would also significantly reduce the cryogen heat load compared with JFETs required by higher impedance semiconductor thermometers.

  14. High-Resolution Laser Spectroscopy on the Negative Osmium Ion

    SciTech Connect

    Warring, U.; Amoretti, M.; Canali, C.; Fischer, A.; Heyne, R.; Meier, J. O.; Morhard, Ch.; Kellerbauer, A.

    2009-01-30

    We have applied a combination of laser excitation and electric-field detachment to negative atomic ions for the first time, resulting in an enhancement of the excited-state detection efficiency for spectroscopy by at least 2 orders of magnitude. Applying the new method, a measurement of the bound-bound electric-dipole transition frequency in {sup 192}Os{sup -} was performed using collinear spectroscopy with a narrow-bandwidth cw laser. The transition frequency was found to be 257.831 190(35) THz [wavelength 1162.747 06(16) nm, wave number 8600.3227(12) cm{sup -1}], in agreement with the only prior measurement, but with more than 100-fold higher precision.

  15. Giant quiescent solar filament observed with high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuckein, C.; Verma, M.; Denker, C.

    2016-05-01

    Aims: An extremely large filament was studied in various layers of the solar atmosphere. The inferred physical parameters and the morphological aspects are compared with smaller quiescent filaments. Methods: A giant quiet-Sun filament was observed with the high-resolution Echelle spectrograph at the Vacuum Tower Telescope at Observatorio del Teide, Tenerife, Spain, on 2011 November 15. A mosaic of spectra (ten maps of 100″ × 182″) was recorded simultaneously in the chromospheric absorption lines Hα and Na i D2. Physical parameters of the filament plasma were derived using cloud model (CM) inversions and line core fits. The spectra were complemented with full-disk filtergrams (He i λ10830 Å, Hα, and Ca ii K) of the Chromospheric Telescope (ChroTel) and full-disk magnetograms of the Helioseismic and Magnetic Imager (HMI). Results: The filament had extremely large linear dimensions (~817 arcsec), which corresponds to about 658 Mm along a great circle on the solar surface. A total amount of 175119 Hα contrast profiles were inverted using the CM approach. The inferred mean line-of-sight (LOS) velocity, Doppler width, and source function were similar to previous works of smaller quiescent filaments. However, the derived optical thickness was higher. LOS velocity trends inferred from the Hα line core fits were in accord but weaker than those obtained with CM inversions. Signatures of counter-streaming flows were detected in the filament. The largest brightening conglomerates in the line core of Na i D2 coincided well with small-scale magnetic fields as seen by HMI. Mixed magnetic polarities were detected close to the ends of barbs. The computation of photospheric horizontal flows based on HMI magnetograms revealed flow kernels with a size of 5-8 Mm and velocities of 0.30-0.45 km s-1 at the ends of the filament. Conclusions: The physical properties of extremely large filaments are similar to their smaller counterparts, except for the optical thickness, which in

  16. Molecular Chirality: Enantiomer Differentiation by High-Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hirota, Eizi

    2014-06-01

    I have demonstrated that triple resonance performed on a three-rotational-level system of a chiral molecule of C1 symmetry exhibits signals opposite in phase for different enantiomers, thereby making enantiomer differentiation possible by microwave spectroscopy This prediction was realized by Patterson et al. on 1,2-propanediol and 1,3-butanediol. We thus now add a powerful method: microwave spectroscopy to the study of chiral molecules, for which hitherto only the measurement of optical rotation has been employed. Although microwave spectroscopy is applied to molecules in the gaseous phase, it is unprecedentedly superior to the traditional method: polarimeter in resolution, accuracy, sensitivity, and so on, and I anticipate a new fascinating research area to be opened in the field of molecular chirality. More versatile and efficient systems should be invented and developed for microwave spectroscopy, in order to cope well with new applications expected for this method For C2 and Cn (n ≥ 3)chiral molecules, the three-rotational-level systems treated above for C1 molecules are no more available within one vibronic state. It should, however, be pointed out that, if we take into account an excited vibronic state in addition to the ground state, for example, we may encounter many three-level systems. Namely, either one rotational transition in the ground state is combined with two vibronic transitions, or such a rotational transition in an excited state may be connected through two vibronic transitions to a rotational level in the ground state manifold. The racemization obviously plays a crucial role in the study of molecular chirality. However, like many other terms employed in chemistry, this important process has been "defined" only in a vague way, in other words, it includes many kinds of processes, which are not well classified on a molecular basis. I shall mention an attempt to obviate these shortcomings in the definition of racemization and also to clarify the

  17. High-Resolution Waveguide THz Spectroscopy of Biological Molecules☆

    PubMed Central

    Laman, N.; Harsha, S. Sree; Grischkowsky, D.; Melinger, Joseph S.

    2008-01-01

    Abstract Low-frequency vibrational modes of biological molecules consist of intramolecular modes, which are dependent on the molecule as a whole, as well as intermolecular modes, which arise from hydrogen-bonding interactions and van der Waals forces. Vibrational modes thus contain important information about conformation dynamics of biological molecules, and can also be used for identification purposes. However, conventional Fourier transform infrared spectroscopy and terahertz time-domain spectroscopy (THz-TDS) often result in broad, overlapping features that are difficult to distinguish. The technique of waveguide THz-TDS has been recently developed, resulting in sharper features. For this technique, an ordered polycrystalline film of the molecule is formed on a metal sample plate. This plate is incorporated into a metal parallel-plate waveguide and probed via waveguide THz-TDS. The planar order of the film reduces the inhomogeneous broadening, and cooling of the samples to 77K reduces the homogenous broadening. This combination results in the line-narrowing of THz vibrational modes, in some cases to an unprecedented degree. Here, this technique has been demonstrated with seven small biological molecules, thymine, deoxycytidine, adenosine, D-glucose, tryptophan, glycine, and L-alanine. The successful demonstration of this technique shows the possibilities and promise for future studies of internal vibrational modes of large biological molecules. PMID:17933879

  18. High resolution ion Doppler spectroscopy at Prairie View Rotamak

    SciTech Connect

    Houshmandyar, Saeid; Yang Xiaokang; Magee, Richard

    2012-10-15

    A fast ion Doppler spectroscopy (IDS) diagnostic system is installed on the Prairie View Rotamak to measure ion temperature and plasma flow. The diagnostic employs a single channel photomultiplier tube and a Jarrell-Ash 50 monochromator with a diffraction grating line density of 1180 lines/mm, which allows for first order spectra of 200-600 nm. The motorized gear of the monochromator allows spectral resolution of 0.01 nm. Equal IDS measurements are observed for various impurity emission lines of which carbon lines exhibit stronger intensities. Furthermore, the diagnostics is examined in an experiment where plasma experiences sudden disruption and quick recovery. In this case, the IDS measurements show {approx}130% increase in ion temperature. Flow measurements are shown to be consistent with plasma rotation.

  19. Mobile sensor for high resolution NMR spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Danieli, Ernesto; Mauler, Jörg; Perlo, Juan; Blümich, Bernhard; Casanova, Federico

    2009-05-01

    In this work we describe the construction of a mobile NMR tomograph with a highly homogeneous magnetic field. Fast MRI techniques as well as NMR spectroscopy measurements were carried out. The magnet is based on a Halbach array built from identical permanent magnet blocks generating a magnetic field of 0.22 T. To shim the field inhomogeneities inherent to magnet arrays constructed from these materials, a shim strategy based on the use of movable magnet blocks is employed. With this approach a reduction of the line-width from ˜20 kHz to less than 0.1 kHz was achieved, that is by more than two orders of magnitude, in a volume of 21 cm 3. Implementing a RARE sequence, 3D images of different objects placed in this volume were obtained in short experimental times. Moreover, by reducing the sample size to 1 cm 3, sub ppm resolution is obtained in 1H NMR spectra.

  20. High resolution gamma-ray spectroscopy at GANIL

    SciTech Connect

    France, G. de

    2014-11-11

    Gamma-ray spectroscopy is intensively used at GANIL to measure low lying states in exotic nuclei on the neutron-rich as well as on the neutron-deficient side of the nuclear chart. On the neutron deficient border, gamma-rays have been observed for the first time in {sup 92}Pd. The level scheme which could be established points to the role of isoscalar pairing. On the neutron rich side, the lifetime of excited states in nuclei around {sup 68}Ni have been been measured using the plunger technique. This allows us to study the evolution of collectivity in a broad range of nuclei. In 2014 GANIL will host the AGATA array for a campaign of at least 2 years. This array is based on the gamma-ray tracking technique, which allows an impressive gain in resolving power.

  1. High resolution FTIR spectroscopy of the ClO radical

    NASA Technical Reports Server (NTRS)

    Lang, Valerie; Sander, Stanley P.; Friedl, Randy

    1988-01-01

    The chlorine monoxide radical, ClO, plays a significant role in the catalytic destruction of ozone in the Earth's stratosphere. Because of its atmospheric importance, ClO has been the subject of numerous observational attempts. In order to deduce ClO concentrations from stratospheric infrared measurements, the infrared spectroscopy of ClO must be well characterized. Approximately 830 individual lines were measured form ClO imfrared spectra with the ClO concentration between 1 x 10 to the 13th power and 6 x 10 to the 13th power molecules per cu cu. The lines were then averaged and fit to a function of m (where m = O, -J or J+1 for the Q,P and R branches respectively) to obtain the band strength, S sub v and the first Herman-Wallis coefficient, alpha. The total S sub v for the two main isotopmers was 13.11 plus or minus 1 cm(-2) atm(-1) while alpha was 0.00412 plus or minus .00062.

  2. High-resolution vacuum-ultraviolet photoabsorption spectra of 1-butyne and 2-butyne

    SciTech Connect

    Jacovella, U.; Holland, D. M. P.; Boyé-Péronne, S.; Gans, B.; Oliveira, N. de; Joyeux, D.; Archer, L. E.; Lucchese, R. R.; Xu, H.; Pratt, S. T.

    2015-07-21

    The absolute photoabsorption cross sections of 1- and 2-butyne have been recorded at high resolution by using the vacuum-ultraviolet Fourier-Transform spectrometer at the SOLEIL Synchrotron. Both spectra show more resolved structure than previously observed, especially in the case of 2-butyne. In this work, we assess the potential importance of Rydberg states with higher values of orbital angular momentum, l, than are typically observed in photoabsorption experiments from ground state molecules. We show how the character of the highest occupied molecular orbitals in 1- and 2-butyne suggests the potential importance of transitions to such high-l (l = 3 and 4) Rydberg states. Furthermore, we use theoretical calculations of the partial wave composition of the absorption cross section just above the ionization threshold and the principle of continuity of oscillator strength through an ionization threshold to support this conclusion. The new absolute photoabsorption cross sections are discussed in light of these arguments, and the results are consistent with the expectations. This type of argument should be valuable for assessing the potential importance of different Rydberg series when sufficiently accurate direct quantum chemical calculations are difficult, for example, in the n ≥ 5 manifolds of excited states of larger molecules.

  3. High-resolution Ultraviolet Radiation Fields of Classical T Tauri Stars

    NASA Astrophysics Data System (ADS)

    France, Kevin; Schindhelm, Eric; Bergin, Edwin A.; Roueff, Evelyne; Abgrall, Hervé

    2014-04-01

    The far-ultraviolet (FUV; 912-1700 Å) radiation field from accreting central stars in classical T Tauri systems influences the disk chemistry during the period of giant planet formation. The FUV field may also play a critical role in determining the evolution of the inner disk (r < 10 AU), from a gas- and dust-rich primordial disk to a transitional system where the optically thick warm dust distribution has been depleted. Previous efforts to measure the true stellar+accretion-generated FUV luminosity (both hot gas emission lines and continua) have been complicated by a combination of low-sensitivity and/or low-spectral resolution and did not include the contribution from the bright Lyα emission line. In this work, we present a high-resolution spectroscopic study of the FUV radiation fields of 16 T Tauri stars whose dust disks display a range of evolutionary states. We include reconstructed Lyα line profiles and remove atomic and molecular disk emission (from H2 and CO fluorescence) to provide robust measurements of both the FUV continuum and hot gas lines (e.g., Lyα, N V, C IV, He II) for an appreciable sample of T Tauri stars for the first time. We find that the flux of the typical classical T Tauri star FUV radiation field at 1 AU from the central star is ~107 times the average interstellar radiation field. The Lyα emission line contributes an average of 88% of the total FUV flux, with the FUV continuum accounting for an average of 8%. Both the FUV continuum and Lyα flux are strongly correlated with C IV flux, suggesting that accretion processes dominate the production of both of these components. On average, only ~0.5% of the total FUV flux is emitted between the Lyman limit (912 Å) and the H2 (0-0) absorption band at 1110 Å. The total and component-level high-resolution radiation fields are made publicly available in machine-readable format. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space

  4. High-resolution ultraviolet radiation fields of classical T Tauri stars

    SciTech Connect

    France, Kevin; Schindhelm, Eric; Bergin, Edwin A.; Roueff, Evelyne; Abgrall, Hervé

    2014-04-01

    The far-ultraviolet (FUV; 912-1700 Å) radiation field from accreting central stars in classical T Tauri systems influences the disk chemistry during the period of giant planet formation. The FUV field may also play a critical role in determining the evolution of the inner disk (r < 10 AU), from a gas- and dust-rich primordial disk to a transitional system where the optically thick warm dust distribution has been depleted. Previous efforts to measure the true stellar+accretion-generated FUV luminosity (both hot gas emission lines and continua) have been complicated by a combination of low-sensitivity and/or low-spectral resolution and did not include the contribution from the bright Lyα emission line. In this work, we present a high-resolution spectroscopic study of the FUV radiation fields of 16 T Tauri stars whose dust disks display a range of evolutionary states. We include reconstructed Lyα line profiles and remove atomic and molecular disk emission (from H{sub 2} and CO fluorescence) to provide robust measurements of both the FUV continuum and hot gas lines (e.g., Lyα, N V, C IV, He II) for an appreciable sample of T Tauri stars for the first time. We find that the flux of the typical classical T Tauri star FUV radiation field at 1 AU from the central star is ∼10{sup 7} times the average interstellar radiation field. The Lyα emission line contributes an average of 88% of the total FUV flux, with the FUV continuum accounting for an average of 8%. Both the FUV continuum and Lyα flux are strongly correlated with C IV flux, suggesting that accretion processes dominate the production of both of these components. On average, only ∼0.5% of the total FUV flux is emitted between the Lyman limit (912 Å) and the H{sub 2} (0-0) absorption band at 1110 Å. The total and component-level high-resolution radiation fields are made publicly available in machine-readable format.

  5. Ultra high resolution molecular beam cars spectroscopy with application to planetary atmospheric molecules

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1982-01-01

    The measurement of high resolution pulsed and continuous wave (CW) coherent anti-Stokes Raman spectroscopy (CARS) measurements in pulsed and steady state supersonic expansions were demonstrated. Pulsed molecular beam sources were characterized, and saturation of a Raman transition and, for the first time, the Raman spectrum of a complex molecular cluster were observed. The observation of CW CARS spectra in a molecular expansion and the effects of transit time broadening is described. Supersonic expansion is established as a viable technique for high resolution Raman spectroscopy of cold molecules with resolutions of 100 MH2.

  6. High-Resolution Solid-State NMR Spectroscopy: Characterization of Polymorphism in Cimetidine, a Pharmaceutical Compound

    ERIC Educational Resources Information Center

    Pacilio, Julia E.; Tokarski, John T.; Quiñones, Rosalynn; Iuliucci, Robbie J.

    2014-01-01

    High-resolution solid-state NMR (SSNMR) spectroscopy has many advantages as a tool to characterize solid-phase material that finds applications in polymer chemistry, nanotechnology, materials science, biomolecular structure determination, and others, including the pharmaceutical industry. The technology associated with achieving high resolution…

  7. High-resolution far ultraviolet spectrum of electron-excited SO(sub 2)

    NASA Technical Reports Server (NTRS)

    Palle, P. V.; Ajello, J.; Bhardwaj, A.

    2004-01-01

    The high resolution UV capabilities (lamda/delta lambda = 10(sup 5)) of the Hubble Space Telscope (HST) equipped with the Space Telescope Imaging Spectrograph (STIS) reflects a need for high resolution laboratory UV spectral data base for comparison with observation.

  8. Application of high-resolution laser spectroscopy to the monitoring of vapor-phase metals

    SciTech Connect

    Lipert, R.J.; Wang, Z.M.; Schuler, R.; Edelson, M.C.

    1992-10-01

    Research conducted in the Ames Laboratory Nuclear Safeguards and Security Program is reviewed. Progress in applying high-resolution laser spectroscopy to the monitoring of vapor-phase metals is described. The spectroscopic techniques employed include fluorescence excitation in an atomic beam, laser atomic absorption in a heat-pipe oven and atomic beam, Doppler-free saturated absorption in a heat-pipe oven, and Doppler-free polarization spectroscopy for the stabilization of the laser wavelength.

  9. Very high resolution UV and X-ray spectroscopy and imagery of solar active regions

    NASA Technical Reports Server (NTRS)

    Bruner, M.; Brown, W. A.; Haisch, B. M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.

  10. High-resolution heteronuclear correlation spectroscopy based on spatial encoding and coherence transfer in inhomogeneous fields

    NASA Astrophysics Data System (ADS)

    Wang, Kaiyu; Zhang, Zhiyong; Chen, Hao; Cai, Shuhui; Chen, Zhong

    2015-11-01

    Two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy has been proven to be a powerful technique for chemical, biological, and medical studies. Heteronuclear single quantum correlation (HSQC) and heteronuclear multiple bond correlation (HMBC) are two frequently used 2D NMR methods. In combination with spatially encoded techniques, a heteronuclear 2D NMR spectrum can be acquired in several seconds and may be applied to monitoring chemical reactions. However, it is difficult to obtain high-resolution NMR spectra in inhomogeneous fields. Inspired by the idea of tracing the difference of precession frequencies between two different spins to yield high-resolution spectra, we propose a method with correlation acquisition option and J-resolved-like acquisition option to ultrafast obtain high-resolution HSQC/HMBC spectra and heteronuclear J-resolved-like spectra in inhomogeneous fields.

  11. [Measurement of OH radicals in flame with high resolution differential optical absorption spectroscopy].

    PubMed

    Liu, Yu; Liu, Wen-Qing; Kan, Rui-Feng; Si, Fu-Qi; Xu, Zhen-Yu; Hu, Ren-Zhi; Xie, Pin-Hua

    2011-10-01

    The present paper describes a new developed high resolution differential optical absorption spectroscopy instrument used for the measurement of OH radicals in flame. The instrument consists of a Xenon lamp for light source; a double pass high resolution echelle spectrometer with a resolution of 3.3 pm; a multiple-reflection cell of 20 meter base length, in which the light reflects in the cell for 176 times, so the whole path length of light can achieve 3 520 meters. The OH radicals'6 absorption lines around 308 nm were simultaneously observed in the experiment. By using high resolution DOAS technology, the OH radicals in candles, kerosene lamp, and alcohol burner flames were monitored, and their concentrations were also inverted. PMID:22250529

  12. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    SciTech Connect

    Rahn, L.A.

    1993-12-01

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  13. High-Resolution 3D Structure Determination of Kaliotoxin by Solid-State NMR Spectroscopy

    PubMed Central

    Korukottu, Jegannath; Schneider, Robert; Vijayan, Vinesh; Lange, Adam; Pongs, Olaf; Becker, Stefan; Baldus, Marc; Zweckstetter, Markus

    2008-01-01

    High-resolution solid-state NMR spectroscopy can provide structural information of proteins that cannot be studied by X-ray crystallography or solution NMR spectroscopy. Here we demonstrate that it is possible to determine a protein structure by solid-state NMR to a resolution comparable to that by solution NMR. Using an iterative assignment and structure calculation protocol, a large number of distance restraints was extracted from 1H/1H mixing experiments recorded on a single uniformly labeled sample under magic angle spinning conditions. The calculated structure has a coordinate precision of 0.6 Å and 1.3 Å for the backbone and side chain heavy atoms, respectively, and deviates from the structure observed in solution. The approach is expected to be applicable to larger systems enabling the determination of high-resolution structures of amyloid or membrane proteins. PMID:18523586

  14. High resolution X-ray spectroscopy of astrophysical sources: current and future

    NASA Astrophysics Data System (ADS)

    Paerels, Frits

    High resolution spectroscopy of cosmic X-ray sources has become a well-established technique over the last decade, with the wide variety of investigations performed with the diffraction grating spectrometers on Chandra and XMM-Newton. I will review some of the common themes that have emerged from these studies, which comprises observations of "sources" as varied as the intergalactic medium and the atmospheres of hot neutron stars. With the microcalorimeter spectrometer array on Astro-H, we will be making two more big steps: true imaging spectroscopy, and extension of the high resolution to the Fe K band. I will outline some of the issues we will encounter, against the background of possible discoveries we may make.

  15. High-resolution ultraviolet spectral irradiance monitoring program in polar regions - nearly a decade of data available to polar researchers in ozone and ultraviolet-related studies

    SciTech Connect

    Booth, C.R.; Lucas, T.B.; Mestechkina, T.; Tusson, J. IV

    1994-12-31

    The Antarctic Ultraviolet Spectroradiometer Monitoring Network was established by the U.S. National Science Foundation (NSF) in 1988 in response to predictions of increased ultraviolet (UV) radiation in the polar regions. It is the first automated, high-resolution UV scanning spectroradiometer network installed in the world. The network consists of five automated, high-resolution spectroradiometers, placed in strategic locations in Antarctica and the Arctic, and one established in San Diego to collect data and serve as a training and testing facility. The network, which makes essential measurements of UV spectral irradiance, has been successfully operated in the harshest environments of Antarctica and the Arctic. It is currently returning data to researchers studying the effects of ozone depletion on terrestrial and marine biological systems, as well as being used to develop and verify models of atmospheric light transmission. 24 refs., 1 fig., 2 tabs.

  16. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall G. E.; Goncharov, V.

    2012-05-29

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  17. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall, G.E.

    2011-05-31

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  18. Beamline 9.0.1 - a high-resolution undulator beamline for gas-phase spectroscopy

    SciTech Connect

    Bozek, J.D.; Heimann, P.A.; Mossessian, D.

    1997-04-01

    Beamline 9.0.1 at the Advanced Light Source is an undulator beamline with a Spherical Grating Monochromator (SGM) which provides very high resolution and flux over the photon energy range 20-320eV. The beamline has been used primarily by the atomic and molecular science community to conduct spectroscopy experiments using electron, ion and fluorescence photon detection. A description of the beamline and its performance will be provided in this abstract.

  19. Update of High Resolution (e,e'K^+) Hypernuclear Spectroscopy at Jefferson Lab's Hall A

    SciTech Connect

    Cusanno, F; Bydzovsky, P; Chang, C C; Cisbani, E; De Jager, C W; De Leo, R; Frullani, S; Garibaldi, F; Higinbotham, D W; Iodice, M; LeRose, J J; Markowitz, P; Marrone, S; Sotona, M; Urciuoli, G M

    2010-03-01

    Updated results of the experiment E94-107 hypernuclear spectroscopy in Hall A of the Thomas Jefferson National Accelerator Facility (Jefferson Lab), are presented. The experiment provides high resolution spectra of excitation energy for 12B_\\Lambda, 16N_\\Lambda, and 9Li_\\Lambda hypernuclei obtained by electroproduction of strangeness. A new theoretical calculation for 12B_\\Lambda, final results for 16N_\\Lambda, and discussion of the preliminary results of 9Li_\\Lambda are reported.

  20. Ultraviolet Spectroscopy of Narrow CMEs

    NASA Astrophysics Data System (ADS)

    Dobrzycka, D.; Raymond, J. C.; Biesecker, D. A.; Li, J.; Ciaravella, A.

    2002-12-01

    Coronal mass ejections (CMEs) are commonly described as new, discrete, bright features appearing in the field of view of a white light coronagraph and moving outward over a period of minutes to hours. Apparent angular widths of the CMEs cover a wide range, from few to 360°. The very narrow structures (narrower than ~15-20°) form only a small subset of all the observed CMEs and are usually referred to as rays, spikes, fans, etc. Recently, Gilbert et al. (2001, ApJ, 550, 1093) reported LASCO white light observations of 15 selected narrow CMEs. We extended the study and analyzed ultraviolet spectroscopy of narrow ejections, including several events listed by Gilbert et al. The data were obtained by the Ultraviolet Coronagraph Spectrometer (UVCS/SOHO). We present comparison of narrow and large CMEs and discuss the relation of the narrow CMEs to coronal jets and/or other narrow transient events. This work is supported by NASA under Grant NAG5-11420 to the Smithsonian Astrophysical Observatory, by the Italian Space Agency and by PRODEX (Swiss contribution).

  1. Ultraviolet, Visible, and Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Penner, Michael H.

    Spectroscopy in the ultraviolet-visible (UV-Vis) range is one of the most commonly encountered laboratory techniques in food analysis. Diverse examples, such as the quantification of macrocomponents (total carbohydrate by the phenol-sulfuric acid method), quantification of microcomponents, (thiamin by the thiochrome fluorometric procedure), estimates of rancidity (lipid oxidation status by the thiobarbituric acid test), and surveillance testing (enzyme-linked immunoassays), are presented in this text. In each of these cases, the analytical signal for which the assay is based is either the emission or absorption of radiation in the UV-Vis range. This signal may be inherent in the analyte, such as the absorbance of radiation in the visible range by pigments, or a result of a chemical reaction involving the analyte, such as the colorimetric copper-based Lowry method for the analysis of soluble protein.

  2. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap

    SciTech Connect

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Träbert, E.; Widmann, K.; Hell, N.

    2014-11-15

    A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Å to above 300 Å. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 μm wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Å above 100 Å, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution.

  3. High-resolution heteronuclear multi-dimensional NMR spectroscopy in magnetic fields with unknown spatial variations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyong; Huang, Yuqing; Smith, Pieter E. S.; Wang, Kaiyu; Cai, Shuhui; Chen, Zhong

    2014-05-01

    Heteronuclear NMR spectroscopy is an extremely powerful tool for determining the structures of organic molecules and is of particular significance in the structural analysis of proteins. In order to leverage the method’s potential for structural investigations, obtaining high-resolution NMR spectra is essential and this is generally accomplished by using very homogeneous magnetic fields. However, there are several situations where magnetic field distortions and thus line broadening is unavoidable, for example, the samples under investigation may be inherently heterogeneous, and the magnet’s homogeneity may be poor. This line broadening can hinder resonance assignment or even render it impossible. We put forth a new class of pulse sequences for obtaining high-resolution heteronuclear spectra in magnetic fields with unknown spatial variations based on distant dipolar field modulations. This strategy’s capabilities are demonstrated with the acquisition of high-resolution 2D gHSQC and gHMBC spectra. These sequences’ performances are evaluated on the basis of their sensitivities and acquisition efficiencies. Moreover, we show that by encoding and decoding NMR observables spatially, as is done in ultrafast NMR, an extra dimension containing J-coupling information can be obtained without increasing the time necessary to acquire a heteronuclear correlation spectrum. Since the new sequences relax magnetic field homogeneity constraints imposed upon high-resolution NMR, they may be applied in portable NMR sensors and studies of heterogeneous chemical and biological materials.

  4. Broadband High-Resolution Spectroscopy with Fabry-Perot Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Wang, Yin; Wysocki, Gerard

    2014-06-01

    Simultaneous spectroscopic detection of large molecules with broad ro-vibrational spectra, and small molecules with well-resolved narrow spectral lines requires both broadband optical frequency coverage (>50 wn) and high resolution (<0.01 wn) to perform accurate spectral measurements. With the advent of room temperature, high power, continuous wave quantum cascade lasers (QCLs), high resolution mid-IR spectrometers for field applications became feasible. So far to address the broadband spectral coverage, external cavity (EC) QCLs with >100 wn tuning ranges have been spectroscopic sources of choice in the mid-IR; however EC-QCLs are rather complex opto-mechanical systems, which are vibration-sensitive, and construction of robust transportable systems is difficult. In this work we present a new method of performing broadband mid-IR spectroscopy using two free-running Fabry-Perot (FP) QCLs to perform multi-heterodyne down-conversion of optical signals to RF domain. The sample transmission spectrum probed by one multi-mode FP-QCL is down-converted to the RF domain through an optical multi-heterodyne process using a second FP-QCL as the local oscillator. Both a broadband multi-mode spectral measurement as well as high-resolution ( 15 MHz or 0.0005 wn) absorption spectroscopy of NH3 and N2O are demonstrated and show potential for all-solid-state FP-laser-based spectrometers for chemical sensing. Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, "High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers," Appl Phys Lett 104, 0311141-0311145 (2014)

  5. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models

    SciTech Connect

    Kempton, Eliza M.-R.; Perna, Rosalba; Heng, Kevin

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup –1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption

  6. High Resolution Transmission Spectroscopy as a Diagnostic for Jovian Exoplanet Atmospheres: Constraints from Theoretical Models

    NASA Astrophysics Data System (ADS)

    Kempton, Eliza M.-R.; Perna, Rosalba; Heng, Kevin

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s-1, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption signatures.

  7. Fast acquisition of high-resolution 2D NMR spectroscopy in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Lin, Liangjie; Wei, Zhiliang; Zeng, Qing; Yang, Jian; Lin, Yanqin; Chen, Zhong

    2016-05-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical and biological analyses. In this study, we combine the J-coupling coherence transfer module with the echo-train acquisition technique for fast acquisition of high-resolution 2D NMR spectra in magnetic fields with unknown spatial variations. The proposed method shows satisfactory performance on a 5 mM ethyl 3-bromopropionate sample, under a 5-kHz (10 ppm at 11.7 T) B0 inhomogeneous field, as well as under varying degrees of pulse-flip-angle deviations. Moreover, a simulative ex situ NMR measurement is also conducted to show the effectiveness of the proposed pulse sequence.

  8. HERMES at Mercator, competitive high-resolution spectroscopy with a small telescope

    NASA Astrophysics Data System (ADS)

    Raskin , G.; Van Winckel, H.

    2014-01-01

    HERMES, a fibre-fed high-resolution (R = 85 000) échelle spectrograph with good stability and excellent throughput, is the work-horse instrument of the 1.2-m Mercator telescope on La Palma. HERMES targets building up time series of high-quality data of variable stellar phenomena, mainly for asteroseismology and binary-evolution research. In this paper we present the HERMES project and discuss the instrument design, performance, and a future upgrade. We also present some results of the first four years of HERMES observations. We illustrate the value of small telescopes, equipped with efficient instrumentation, for high-resolution spectroscopy. Based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  9. Protected Plasmonic Nanostructures for High Resolution Chemical Imaging using Tip Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Butt, Rebecca; Barrios, Carlos; Malkovskiy, Andrey; Kisliuk, Alexander; Sokolov, Alexei; Foster, Mark

    2009-03-01

    Tip enhanced Raman spectroscopy (TERS), an emerging technique that combines optical microscopy and scanning probe microscopy, provides the sensitivity and selectivity necessary for high-resolution chemical imaging of polymer surfaces. An unprecedented 20 nm lateral resolution for the chemical imaging has been achieved. Unfortunately, the fragile plasmonic structures used to enhance the electric field are prone to mechanical, chemical, and thermal degradation. Developing robust noble metal nanostructures with stable plasmonic resonance is essential to reliable high resolution chemical imaging. Covering the metal layer with organic and inorganic ultrathin coatings is being investigated to extend the plasmonic activity of the engineered nanostructures. Addition of an ultrathin aluminum oxide (Al2O3) coating to a silver-coated scanning probe microscopy tip for TERS significantly improves plasmonic structure stability without sacrificing the initial TERS efficiency. This ultrathin coating provides wear resistance and stops chemical degradation responsible for the loss of signal enhancement.

  10. High resolution coherent three dimensional spectroscopy of NO{sub 2}

    SciTech Connect

    Wells, Thresa A.; Muthike, Angelar K.; Robinson, Jessica E.; Chen, Peter C.

    2015-06-07

    Expansion from coherent 2D spectroscopy to coherent 3D spectroscopy can provide significant advantages when studying molecules that have heavily perturbed energy levels. This paper illustrates such advantages by demonstrating how high resolution coherent 3D (HRC3D) spectroscopy can be used to study a portion of the visible spectrum of nitrogen dioxide. High resolution coherent 2D spectra usually contain rotational and vibrational patterns that are easy to analyze, but severe congestion and complexity preclude its effective use for many parts of the NO{sub 2} spectrum. HRC3D spectroscopy appears to be much more effective; multidimensional rotational and vibrational patterns produced by this new technique are easy to identify even in the presence of strong perturbations. A method for assigning peaks, which is based upon analyzing the resulting multidimensional patterns, has been developed. The higher level of multidimensionality is useful for reducing uncertainty in peak assignments, improving spectral resolution, providing simultaneous information on multiple levels and states, and predicting, verifying, and categorizing peaks.

  11. Synchrotron-Based High Resolution Spectroscopy of N-Bearing Pahs

    NASA Astrophysics Data System (ADS)

    Gruet, Sébastien; Pirali, Olivier; Goubet, Manuel; Brechignac, Philippe

    2014-06-01

    For thirty years, the Polycyclic Aromatic Hydrocarbons (PAHs) have been suspected to give rise to the numerous Unidentified Infrared Bands (UIBs) observed in most astrophysical objects. Pure carbon molecules as well as derivatives with nitrogen atom(s) incorporated into the carbon skeleton have been considered. These N-bearing molecules are interesting candidates for astronomical research since they possess a larger permanent dipole moment than purely carbon-based PAHs. Most of the data reported in the literature deal with rotationally unresolved data. During the last decade, high-resolution microwave spectroscopy initiated high resolution studies of this broad family of molecules. Recent advances in laboratory techniques permitted to provide interesting new results to rotationally resolve the IR/Far-IR vibrational bands of these relatively large C-bearing molecules, in particular, making use of synchrotron radiation as the IR continuum source of high resolution Fourier transform (FT) spectrometers. We will present an overview of the synchrotron-based high resolution FTIR spectroscopy of 5 aza-derivatives of naphthalene (isoquinoline, quinoline, quinoxaline, quinazoline, [1,5] naphthyridine) using a room temperature long path absorption cell at the French facility SOLEIL. In support to the rovibrational analysis of these FIR spectra, very accurate anharmonic DFT calculations were performed. A. Leger, J. L. Puget, Astron. Astrophys. 137, L5-L8 (1984) L. J. Allamandola et al. Astrophys. J. 290, L25-L28 (1985). Z. Kisiel et al. J. Mol. Spectrosc. 217, 115 (2003) S. Thorwirth et al. Astrophys. J. 662, 1309 (2007) D. McNaughton et al. J. Chem. Phys. 124, 154305 (2011). S. Albert et al. Faraday Discuss. 150, 71-99 (2011) B. E. Brumfield et al. Phys. Chem. Lett. 3, 1985-1988 (2012) O. Pirali et al. Phys. Chem. Chem. Phys. 15, 10141 (2013) M. Goubet, O. Pirali, J. Chem. Phys., 140, 044322 (2014).

  12. High-Resolution Threshold Photoionization and Photoelectron Spectroscopy of Propene and 2-BUTYNE

    NASA Astrophysics Data System (ADS)

    Michaud, Julie M.; Vasilatou, Konstantina; Merkt, Frédéric

    2009-06-01

    The high-resolution photoionization and pulsed-field ionization zero-kinetic energy (PFI-ZEKE) photoelectron spectra of propene and 2-butyne and their perdeuterated isotopologues have been recorded in the vicinity of the first adiabatic ionization energy following single-photon excitation from the neutral ground state using a narrowband vacuum ultraviolet laser system. The spectral resolution of better than 0.1 cm^{-1} achieved in these spectra has enabled us to partially resolve the rotational structure of the photoelectron spectra and to obtain information on the internal rotation/torsional vibration of the methyl groups in the cationic ground state. The intensity distributions observed in the photoelectron spectra will be discussed in terms of rovibronic photoionization selection rules and Franck-Condon factors for transitions between the neutral and ionized molecules.

  13. High-resolution pulsed-field ionization photoelectron spectroscopy using multi-bunch synchrotron radiation

    SciTech Connect

    Hsu, C.W.; Evans, M.; Ng, C.Y.; Heimann, P.

    1997-04-01

    BL9.0.2.2 is the newly constructed experimental End Station 2 at the Chemical Dynamics Beamline 9.0.2 of the Advanced Light Source (ALS). It is dedicated to the high resolution photoionization study of molecules of interest to atmospheric and combustion chemistry. This End Station is equipped with a high resolution scanning monochromator, which has been demonstrated to have a world record resolution of E/{delta}E=70,000. Taking the advantage of the high resolution ALS light, the authors have improved the energy resolution in threshold photoelectron spectroscopy (TPES) to 0.8 meV. The TPES is a popular technique for photoionization experiments at all synchrotron radiation facilities due to its high energy resolution as compared to that of traditional photoelectron spectroscopy (PES). TPES achieves higher energy resolution by preferentially detecting near zero kinetic energy photoelectrons resulting from threshold photoionization. However, the spectra obtained from the TPES technique generally are complicated by the simultaneous detection of electrons with nonzero kinetic energy, which are not fully discriminated against. On the other hand, the spectra obtained from pulsed field ionization photoelectron spectroscopy (PFI-PES) are completely free of the contamination from kinetic electrons. The PFI-PE technique basically involves the detection of the photoelectrons from field ionization of the very high-n Rydberg states, a few cm{sup {minus}1} below the ionization energy (IE), by applying a delayed pulsed electric field. Within a delay of a few microseconds, all the prompt electrons formed from direct ionization will escape from the photoionization region and will not be collected. The authors have recently overcome problems with energy resolution of an electron time-of-flight technique, and incorporated the PFI-PE technique with multi-bunch VUV synchrotron radiation.

  14. High-Resolution Kaonic-Atom X-ray Spectroscopy with Transition-Edge-Sensor Microcalorimeters

    NASA Astrophysics Data System (ADS)

    Okada, S.; Bennett, D. A.; Doriese, W. B.; Fowler, J. W.; Irwin, K. D.; Ishimoto, S.; Sato, M.; Schmidt, D. R.; Swetz, D. S.; Tatsuno, H.; Ullom, J. N.; Yamada, S.

    2014-09-01

    We are preparing for an ultra-high resolution X-ray spectroscopy of kaonic atoms using an X-ray spectrometer based on an array of superconducting transition-edge-sensor microcalorimeters developed by NIST. The instrument has excellent energy resolutions of 2-3 eV (FWHM) at 6 keV and a large collecting area of about 20 mm. This will open new door to investigate kaon-nucleus strong interaction and provide new accurate charged-kaon mass value.

  15. High-resolution magic-angle-spinning NMR spectroscopy of intact tissue.

    PubMed

    Giskeødegård, Guro F; Cao, Maria D; Bathen, Tone F

    2015-01-01

    High-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy is a nondestructive technique that is used to obtain the metabolite profile of a tissue sample. This method requires minimal sample preparation. However, it is important to handle the sample with care and keep it frozen during preparation to minimize degradation. Here, we describe a typical protocol for HR-MAS analysis of intact tissue. We also include examples of typical pulse sequence programs and quantification methods that are used today. PMID:25677145

  16. Determination of Ionization Potential of Calcium by High-Resolution Resonance Ionization Spectroscopy

    NASA Astrophysics Data System (ADS)

    Miyabe, Masabumi; Geppert, Christopher; Kato, Masaaki; Oba, Masaki; Wakaida, Ikuo; Watanabe, Kazuo; Wendt, Klaus D. A.

    2006-03-01

    High-resolution resonance ionization spectroscopy has been utilized to determine a precise ionization potential of Ca. Three-step resonance excitation with single-mode extended-cavity diode lasers populates long and unperturbed Rydberg series of 4snp (1P1) and 4snf (1F3) states in the range of n=20--150. Using an extended Ritz formula for quantum defects, the series convergence limit has been determined to be 49305.9240(20) cm-1 with the accuracy improved one order of magnitude higher than previously reported ones.

  17. High-Resolution Spectroscopy with the Chandra X-ray Observatory

    ScienceCinema

    Canizares, Claude R. [MIT, Cambridge, Massachusetts, United States

    2010-01-08

    The capabilities of the Chandra X-ray Observatory and XMM-Newton for high-resolution spectroscopy have brought tradition plasma diagnostic techniques to the study of cosmic plasma. Observations have probed nearly every class of astronomical object, from young proto-starts through massive O starts and black hole binaries, supernova remnants, active galactic nuclei, and the intergalactic medium. Many of these sources show remarkable rich spectra that reveal new physical information, such as emission measure distributions, elemental abundances, accretion disk and wind signatures, and time variability. This talk will present an overview of the Chandra instrumentaton and selected examples of spectral observations of astrophysical and cosmological importance.

  18. Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet.

    PubMed

    Liu, Xuying; Kanehara, Masayuki; Liu, Chuan; Sakamoto, Kenji; Yasuda, Takeshi; Takeya, Jun; Minari, Takeo

    2016-08-01

    A spontaneous patterning technique via parallel vacuum ultraviolet is developed for fabricating large-scale, complex electronic circuits with 1 μm resolution. The prepared organic thin-film transistors exhibit a low contact resistance of 1.5 kΩ cm, and high mobilities of 0.3 and 1.5 cm(2) V(-1) s(-1) in the devices with channel lengths of 1 and 5 μm, respectively. PMID:27184834

  19. High-resolution VUV spectroscopy: New results from the Advanced Light Source

    SciTech Connect

    Schlachter, F.; Bozek, J.

    1996-06-01

    Third-generation synchrotron light sources are providing photon beams of unprecedented brightness for researchers in atomic and molecular physics. Beamline 9.0.1, an undulator beamline at the Advanced Light Source (ALS), produces a beam in the vacuum-ultraviolet (VUV) region of the spectrum with exceptional flux and spectral resolution. Exciting new results from experiments in atomic and molecular VUV spectroscopy of doubly excited autoionizing states of helium, hollow lithium, and photoelectron spectroscopy of small molecules using Beamline 9.0.1 at the ALS are reported.

  20. High-resolution ultra-violet observations of the interstellar diffuse clouds toward Mu Columbae

    NASA Technical Reports Server (NTRS)

    Sofia, Ulysses J.; Savage, Blair D.; Cardelli, Jason A.

    1993-01-01

    Data obtained from the Goddard High Resolution spectrograph (GHRS) are used to study differences in gas-phase abundances of ions occurring in the diffuse neutral clouds toward mu Col. The sight-line characteristics determined in previous studies are reviewed and results for the cloud velocities, absorption equivalent widths, ion column densities, and depletions are presented. It is found that interstellar features from four distinct absorption regions with low-ionization gas are apparent in the GHRS data at heliocentric velocities of 23, 41, 53, and 62 km/s. Absorption by Mg II, Si II, and possibly Al II also occurs over the heliocentric velocity range from -17 to 0 km/s. The presence of stronger Si III absorption over this velocity region indicates that the absorption arises from an ionized gas region.

  1. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    SciTech Connect

    Niu, B.

    1992-09-01

    High resolution He I[alpha] photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a soft'' mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  2. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    SciTech Connect

    Niu, B.

    1992-09-01

    High resolution He I{alpha} photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a ``soft`` mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  3. High-Resolution Structure of the Photosynthetic Mn4Ca Catalyst from X-ray Spectroscopy

    SciTech Connect

    Yachandra, Vittal; Yano, Junko; Kern, Jan; Pushkar, Yulia; Sauer, Kenneth; Glatzel, Pieter; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.

    2007-08-01

    The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, are described. Issues of X-ray damage especially at the metal sites in the Mn4Ca cluster are discussed. The structure of the Mn4Ca catalyst at high-resolution which has so far eluded attempts of determination by X-ray diffraction, EXAFS and other spectroscopic techniques has been addressed using polarized EXAFS techniques applied to oriented PS II membrane preparations and PS II single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and K? emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.

  4. A tunable low-energy photon source for high-resolution angle-resolved photoemission spectroscopy

    SciTech Connect

    Harter, John W.; Monkman, Eric J.; Shai, Daniel E.; Nie Yuefeng; Uchida, Masaki; Burganov, Bulat; Chatterjee, Shouvik; King, Philip D. C.; Shen, Kyle M.

    2012-11-15

    We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to {approx}7 eV, delivering under typical conditions >10{sup 12} ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.

  5. Automatic pole-zero/zero-pole digital compensator for high-resolution spectroscopy: Design and experiments

    SciTech Connect

    Geraci, A.; Pullia, A.; Ripamonti, G.

    1999-08-01

    In a high-resolution spectroscopy system the relatively long exponential decay due to the charge preamplifier is customarily canceled in an analogue fashion by means of a PZ (Pole-Zero) stage. The accurateness of such a compensation has a big impact on the energy resolution because it strongly affects the baseline-stability problems. The authors have automatically and on-line performed such a compensation in a digital way, while maintaining a spectroscopy performance and keeping at minimum both the ADC sampling frequency (thus power consumption) and its resolution (thus cost). This is done through an IIR filter, implemented within a FPGA by a DSP. The so-compensated waveform has, in excellent approximation, an all-pole shape. Starting from such a signal, the minimum-noise filters for energy and/or time measurements are then promptly synthesized and implemented for real time operation through the same DSP.

  6. Forensic examination of electrical tapes using high resolution magic angle spinning ¹H NMR spectroscopy.

    PubMed

    Schoenberger, Torsten; Simmross, Ulrich; Poppe, Christian

    2016-01-01

    The application of high resolution magic angle spinning (HR-MAS) (1)H NMR spectroscopy is ideally suited for the differentiation of plastics. In addition to the actual material composition, the different types of polymer architectures and tacticity provide characteristic signals in the fingerprint of the (1)H NMR spectra. The method facilitates forensic comparison, as even small amounts of insoluble but swellable plastic particles are utilized. The performance of HR-MAS NMR can be verified against other methods that were recently addressed in various articles about forensic tape comparison. In this study samples of the 90 electrical tapes already referenced by the FBI laboratory were used. The discrimination power of HR-MAS is demonstrated by the fact that more tape groups can be distinguished by NMR spectroscopy than by using the combined evaluation of several commonly used analytical techniques. An additional advantage of this robust and quick method is the very simple sample preparation. PMID:26558760

  7. High resolution Halpha spectroscopy and R-band photometry of Swift J1357.2-0933

    NASA Astrophysics Data System (ADS)

    Casares, Jorge; Torres, Manuel A. P.; Negueruela, Ignacio; Gonzalez-Fernandez, Carlos; Corral-Santana, Jesus M.; Zurita, Cristina; Llano, Sergio Rodriguez

    2011-03-01

    We report on high resolution Halpha spectroscopy and time-resolved photometry of the optical counterpart to the X-ray transient Swift J1357.2-0933 in outburst (Krimm et al. ATEL #3138). SPECTROSCOPY: Six 30-33 min spectra were obtained on the nights of 2011 Feb 25-27 using the IDS Spectrograph on the 2.5m Isaac Newton Telescope (INT) at the Observatorio del Roque de Los Muchachos. The observations were performed with the H1800V grating and a slit width 1.6 arcsec to yield a spectral coverage of 6270-7000 Angs with a 30 km/s FWHM spectral resolution at Halpha..

  8. High-resolution laser spectroscopy with the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE

    NASA Astrophysics Data System (ADS)

    Cocolios, T. E.; de Groote, R. P.; Billowes, J.; Bissell, M. L.; Budinčević, I.; Day Goodacre, T.; Farooq-Smith, G. J.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Gins, W.; Heylen, H.; Kron, T.; Li, R.; Lynch, K. M.; Marsh, B. A.; Neyens, G.; Rossel, R. E.; Rothe, S.; Smith, A. J.; Stroke, H. H.; Wendt, K. D. A.; Wilkins, S. G.; Yang, X.

    2016-06-01

    The Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN has achieved high-resolution resonance ionisation laser spectroscopy with a full width at half maximum linewidth of 20(1) MHz for 219,221 Fr, and has measured isotopes as short lived as 5 ms with 214 Fr. This development allows for greater precision in the study of hyperfine structures and isotope shifts, as well as a higher selectivity of single-isotope, even single-isomer, beams. These achievements are linked with the development of a new laser laboratory and new data-acquisition systems.

  9. Determination of band oscillator strengths of atmospheric molecules from high resolution vacuum ultraviolet cross section measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.

    1986-01-01

    An account is given of progress in work on (1) the determination of band oscillator strengths of the Schumann-Runge absorption bands of (16)O2 and (18)O2 from cross section measurements conducted at 79 K; (2) the determination of the absolute absorption cross section of the Schumann-Runge bands of (16)O(18)O from optical depth measurements performed on mixtures of (16)O2, (18)O2 and (16)O(18)O at 79K; and (3) the influence of Schumann-Runge linewing contributions on the determination of the Herzberg continuum absorption cross section of (16)O2 in the wavelength region 194 to 204 nm. The experimental investigations are effected at high resolution with a 6.65 m scanning spectrometer which is, by virtue of its small instrumental width (EWHM = 0.0013 nm), uniquely suitable for cross section measurements of molecular bands with discrete rotational structure. Absolute cross sections, which are independent of the instrumental function and from which band oscillator strengths are directly determined, are measured for the absorption bands that are most predissociated. Such measurements are needed for (1) accurate calculations of the stratospheric production of atomic oxygen and heavy ozone formed following the photopredissociation of (18)O(16)O by solar radiation penetrating between the absorption lines of (16)O2; (2) elucidation of the mechanism of predissociation of the upper state of the Schumann-Runge bands; and (3) determination of the true shape of the Herzberg continuum cross section.

  10. High-resolution solar spectral irradiance from extreme ultraviolet to far infrared

    NASA Astrophysics Data System (ADS)

    Fontenla, J. M.; Harder, J.; Livingston, W.; Snow, M.; Woods, T.

    2011-10-01

    This paper presents new extremely high-resolution solar spectral irradiance (SSI) calculations covering wavelengths from 0.12 nm to 100 micron obtained by the Solar Irradiance Physical Modeling (SRPM) system. Daily solar irradiance spectra were constructed for most of Solar Cycle 23 based on a set of physical models of the solar features and non-LTE calculations of their emitted spectra as function of viewing angle, and solar images specifying the distribution of features on the solar disk. Various observational tests are used to assess the quality of the spectra provided here. The present work emphasizes the effects on the SSI of the upper chromosphere and full-non-LTE radiative transfer calculation of level populations and ionizations that are essential for physically consistent results at UV wavelengths and for deep lines in the visible and IR. This paper also considers the photodissociation continuum opacity of molecular species, e.g., CH and OH, and proposes the consideration of NH photodissociation which can solve the puzzle of the missing near-UV opacity in the spectral range of the near-UV. Finally, this paper is based on physical models of the solar atmosphere and extends the previous lower-layer models into the upper-transition-region and coronal layers that are the dominant source of photons at wavelengths shorter than ˜50 nm (except for the He II 30.4 nm line, mainly formed in the lower-transition-region).

  11. High-Resolution Electron Energy-Loss Spectroscopy (HREELS) Using a Monochromated TEM/STEM

    NASA Technical Reports Server (NTRS)

    Sai, Z. R.; Bradley, J. P.; Erni, R.; Browning, N.

    2005-01-01

    A 200 keV FEI TF20 XT monochromated (scanning) transmission electron microscope funded by NASA's SRLIDAP program is undergoing installation at Lawrence Livermore National Laboratory. Instrument specifications in STEM mode are Cs =1.0 mm, Cc =1.2 mm, image resolution =0.18 nm, and in TEM mode Cs =1.3 mm, Cc =1.3 mm, information limit =0.14 nm. Key features of the instrument are a voltage-stabilized high tension (HT) supply, a monochromator, a high-resolution electron energy-loss spectrometer/energy filter, a high-resolution annular darkfield detector, and a solid-state x-ray energy-dispersive spectrometer. The high-tension tank contains additional sections for 60Hz and high frequency filtering, resulting in an operating voltage of 200 kV plus or minus 0.005V, a greater than 10-fold improvement over earlier systems. The monochromator is a single Wien filter design. The energy filter is a Gatan model 866 Tridiem-ERS high resolution GIF spec d for less than or equal to 0.15 eV energy resolution with 29 pA of current in a 2 nm diameter probe. 0.13 eV has already been achieved during early installation. The x-ray detector (EDAX/Genesis 4000) has a take-off angle of 20 degrees, an active area of 30 square millimeters, and a solid angle of 0.3 steradians. The higher solid angle is possible because the objective pole-piece allows the detector to be positioned as close as 9.47 mm from the specimen. The voltage-stabilized HT supply, monochromator and GIF enable high-resolution electron energy-loss spectroscopy (HREELS) with energy resolution comparable to synchrotron XANES, but with approximately 100X better spatial resolution. The region between 0 and 100 eV is called the low-loss or valence electron energy-loss spectroscopy (VEELS) region where features due to collective plasma oscillations and single electron transitions of valence electrons are observed. Most of the low-loss VEELS features we are detecting are being observed for the first time in IDPs. A major focus of

  12. High-Resolution Spectroscopy of Metal-rich Giants in ω Centauri: First Indication of Type Ia Supernova Enrichment

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Pasquini, L.; Hill, V.; Ferraro, F. R.; Bellazzini, M.

    2002-04-01

    We have obtained high-resolution, high signal-to-noise ratio spectra for six red giants in ω Centauri: three belong to the recently discovered metal-rich red giant branch (RGB-a as defined by Pancino et al.) and three to the metal-intermediate population (RGB-MInt). Accurate iron, copper, and α-element (Ca and Si) abundances have been derived and discussed. In particular, we have obtained the first direct abundance determination based on high-resolution spectroscopy for the RGB-a population, <[Fe/H]>=-0.60+/-0.15. Although this value is lower than previous estimates based on calcium triplet measurements, we confirm that this population is the most metal-rich in ω Cen. In addition, we have found a significant difference in the α-element enhancement of the two populations. The three RGB-MInt stars have the expected overabundance, typical of halo and globular cluster stars: <[α/Fe]>=0.29+/-0.01. The three RGB-a stars show, instead, a significantly lower α-enhancement: <[α/Fe]>=0.10+/-0.04. We have also detected an increasing trend of [Cu/Fe] with metallicity, similar to the one observed for field stars by Sneden et al. The observational facts presented in this Letter, if confirmed by larger samples of giants, are the first indication that supernovae Type Ia ejecta have contaminated the medium from which the metal-rich RGB-a stars have formed. The implications for current scenarios on the formation and evolution of ω Cen are briefly discussed. Based on Ultraviolet-Visual Echelle Spectrograph observations collected at the European Southern Observatory, Paranal, Chile, within the observing program 165.L-0263. Also based on Wide-Field Imager observations collected at La Silla, Chile, within the observing programs 62.L-0354 and 64.L-0439.

  13. Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Tenne, Dmitri

    2007-03-01

    Conventional vibrational spectroscopies operating in visible and infrared range fail to measure the phonon spectra of nanoscale ferroelectric structures because of extremely weak signals and the overwhelming substrate contribution. In this talk, application of ultraviolet (UV) Raman spectroscopy for studies of lattice dynamics and ferroelectric phase transitions in nanoscale ferroelectrics will be presented. We demonstrate that UV Raman spectroscopy is an effective technique allowing the observation of phonons and determination of the ferroelectric phase transition temperature (Tc) in nanoscale ferroelectrics, specifically, BaTiO3/SrTiO3 superlattices having the ferroelectric BaTiO3 layers as thin as 1 unit cell, and single BaTiO3 layers as thin as 4 nm. BaTiO3/SrTiO3 superlattices and ultrathin BaTiO3 films studied were grown by molecular beam epitaxy on SrTiO3 as well as GdScO3 and DyScO3 substrates. Excellent epitaxial quality and atomically abrupt interfaces are evidenced by X-ray diffraction and high resolution transmission electron microscopy. UV Raman results show that one-unit-cell thick BaTiO3 layers in BaTiO3/SrTiO3 superlattices are ferroelectric with the Tc as high as 250 K, and induce the polarization in much thicker SrTiO3 layers adjacent to them. The Tc in superlattices was tuned by hundreds of degrees from ˜170 to 650 K by varying the thicknesses of BaTiO3 and SrTiO3 layers. Using scandate substrates enables growth of superlattices with systematically changed coherent strain, thus allowing studying the stress effect on the ferroelectric phase transitions. UV Raman data are supported by the thermodynamic calculations of polarization in superlattices as a function of temperature. The work was done in collaboration with A. Soukiassian, W. Tian, D.G. Schlom, Y.L. Li, L.-Q. Chen, X.X. Xi (Pennsylvania State University), A. Bruchhausen, A. Fainstein (Centro Atomico Bariloche & Instituto Balseiro, Argentina), R. S. Katiyar (University of Puerto Rico), A

  14. High-resolution, vacuum-ultraviolet absorption spectrum of boron trifluoride

    SciTech Connect

    Hughes, Patrick P.; Thompson, Alan K.; Vest, Robert E.; Sprague, Matthew K.; Irikura, Karl K.; Beasten, Amy; McComb, Jacob C.; Al-Sheikhly, Mohamad; Coplan, Michael A.; Clark, Charles W.

    2014-11-21

    In the course of investigations of thermal neutron detection based on mixtures of {sup 10}BF{sub 3} with other gases, knowledge was required of the photoabsorption cross sections of {sup 10}BF{sub 3} for wavelengths between 135 and 205 nm. Large discrepancies in the values reported in existing literature led to the absolute measurements reported in this communication. The measurements were made at the SURF III Synchrotron Ultraviolet Radiation Facility at the National Institute of Standards and Technology. The measured absorption cross sections vary from 10{sup −20} cm{sup 2} at 135 nm to less than 10{sup −21} cm{sup 2} in the region from 165 to 205 nm. Three previously unreported absorption features with resolvable structure were found in the regions 135–145 nm, 150–165 nm, and 190–205 nm. Quantum mechanical calculations, using the TD-B3LYP/aug-cc-pVDZ variant of time-dependent density functional theory implemented in Gaussian 09, suggest that the observed absorption features arise from symmetry-changing adiabatic transitions.

  15. Cassini UVIS Solar Zenith Angle Studies of Titan Dayglow Based on N2 High Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ajello, Joseph; West, Robert; Holsclaw, Greg; Royer, Emilie; Heays, Alan; Bradley, Todd; Stevens, Michael

    2014-11-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan’s day and night limb-airglow on multiple occasions, including during an eclipse observation. On one occasion the UVIS made a Solar Zenith Angle (SZA) study of the Titan limb dayglow (2011 DOY 171) from about 70 to 95 degrees SZA. The UV intensity variation observations of the N2 photoelectron excited spectral features from the EUV (563-118.2 nm) and FUV (111.5-191.2nm) sub-systems followed a Chapman function. For other observations at night on the limb, the emission features are much weaker in intensity. Beyond 120 deg SZA, when the upper atmosphere of Titan below 1200 km is in total XUV darkness, there is an indication of weak and sporadic night side UV airglow emission excited by magnetosphere plasma collisions with ambient thermosphere gas, with similar N2 excited features as above in the daylight or twilight glow over an extended altitude range. We have analyzed the UVIS airglow spectra with models based on high resolution laboratory electron impact induced fluorescence spectra. We have measured high-resolution (FWHM = 0.2 Å) extreme-ultraviolet (EUV, 800-1350 Å) laboratory emission spectra of molecular nitrogen excited by electron impact at 20 and 100 eV. Molecular emission was observed to vibrationally-excited ground state levels as high as v''=17, from the a 1Πg , b 1Πu, and b‧ 1Σu+ excited valence states and the Rydberg series c‧n+1 1Σu+, cn 1Πu and o 1Πu for n between 3 and 9. A total of 491 emission features were observed from N2 electronic-vibrational transitions and atomic N I and N II multiplets. Their emission cross sections were measured.The blended molecular emission bands were disentangled with the aid of a model which solves the coupled-Schroedinger equation

  16. Continuous wave terahertz wave spectrometer based on diode laser pumping: potential applications in high resolution spectroscopy.

    PubMed

    Tanabe, Tadao; Ragam, Srinivasa; Oyama, Yutaka

    2009-11-01

    We constructed a high resolution terahertz (THz) spectroscopic system with an automatic scanning control using a continuous wave (cw) THz wave generator based on difference frequency generation method by excitation of phonon-polariton mode in GaP. The pump and signals lasers were compact, tunable external cavity laser, and distributed feedback (DFB) lasers, respectively. The generated THz waves were tuned automatically by changing the temperature of the DFB laser using a system control. We present the water vapor transmission characteristics of the THz wave and also absorption spectrum of a white polyethylene in the frequency range of 1.97-2.45 THz. The spectroscopic measurements performed at an output power level of 2 nW, which was obtained with a 15-mm-long GaP crystal at 2 THz. The advantage of this cw THz spectrometer is wide frequency tuning range (0.7-4.42 THz) with an estimated linewidth of full width at quarter maximum <8 MHz and this system has a potential application in high resolution spectroscopy. PMID:19947715

  17. High-resolution magic-angle spinning (13)C spectroscopy of brain tissue at natural abundance.

    PubMed

    Yang, Yongxia; Chen, Lei; Gao, Hongchang; Zeng, Danlin; Yue, Yong; Liu, Maili; Lei, Hao; Deng, Feng; Ye, Chaohui

    2006-03-01

    High-resolution magic-angle spinning (MAS) (1)H and (13)C magnetic resonance spectroscopy (MRS) has recently been applied to study the metabolism in intact biological tissue samples. Because of the low natural abundance and the low gyromagnetic ratio of the (13)C nuclei, signal enhancement techniques such as cross-polarization (CP) and distortionless enhancement by polarization transfer (DEPT) are often employed in MAS (13)C MRS to improve the detection sensitivity. In this study, several sensitivity enhancement techniques commonly used in liquid- and solid-state NMR, including CP, DEPT and nuclear Overhauser enhancement (NOE), were combined with MAS to acquire high-resolution (13)C spectra on intact rat brain tissue at natural abundance, and were compared for their performances. The results showed that different signal enhancement techniques are sensitive to different classes of molecules/metabolites, depending on their molecular weights and mobility. DEPT was found to enhance the signals of low-molecular weight metabolites exclusively, while the signals of lipids, which often are associated with membranes and have relatively lower mobility, were highly sensitive to CP enhancement. PMID:16477685

  18. In situ high-resolution X-ray photoelectron spectroscopy - Fundamental insights in surface reactions

    NASA Astrophysics Data System (ADS)

    Papp, Christian; Steinrück, Hans-Peter

    2013-11-01

    Since the advent of third generation synchrotron light sources optimized for providing soft X-rays up to 2 keV, X-ray photoelectron spectroscopy (XPS) has been developed to be an outstanding tool to study surface properties and surface reactions at an unprecedented level. The high resolution allows identifying various surface species, and for small molecules even the vibrational fine structure can be resolved in the XP spectra. The high photon flux reduces the required measuring time per spectrum to the domain of a few seconds or even less, which enables to follow surface processes in situ. Moreover, it also provides access to very small coverages down to below 0.1% of a monolayer, enabling the investigation of minority species or processes at defect sites. The photon energy can be adjusted according to the requirement of a particular experiment, i.e., to maximize or minimize the surface sensitivity or the photoionization cross-section of the substrate or the adsorbate. For a few instruments worldwide, a next step forward was taken by combining in situ high-resolution spectrometers with supersonic molecular beams. These beams allow to control and vary the kinetic and internal energies of the incident molecules and provide a local pressure of up to ~10-5 mbar, which can be switched on and off in a controllable way, thus offering a well-defined time structure to study adsorption or reaction processes.

  19. High-resolution X-ray spectroscopy of four active galaxies - Probing the intercloud medium

    NASA Technical Reports Server (NTRS)

    Lum, Kenneth S. K.; Canizares, Claude R.; Markert, Thomas H.; Arnaud, Keith A.

    1990-01-01

    The focal plane crystal spectrometer (FPCS) on the Einstein Observatory has been used to perform a high-resolution spectroscopic search for oxygen X-ray line emission from four active galaxies: Fairall 9, Mrk 421, Mrk 501, and PKS 0548 - 322. Specifically, O VIII Ly-alpha and Ly-beta, whose unredshifted energies are 653 and 775 eV, respectively, were sought. No narrow-line emission was detected within the energy bands searched. Upper limits are calculated on the line flux from these sources of 30 eV equivalent width and use a photoionization model to place corresponding upper limits on the densities of diffuse gas surrounding the active nuclei. The upper limits on gas density range from about 0.02-50/cu cm and probe various radial distances from the central source. This is the first time high-resolution X-ray spectroscopy has been used to place constraints on the intercloud medium in active galaxies.

  20. Diamond-machined ZnSe immersion grating for NIR high-resolution spectroscopy

    SciTech Connect

    Ikeda, Y; Kobayashi, N; Kuzmenko, P J; Little, S L; Yasui, C; Kondo, S; Minami, A; Motohara, K

    2008-07-25

    ZnSe immersion gratings (n {approx} 2.45) provide the possibility of high-resolution spectroscopy for the near-infrared (NIR) region. Since ZnSe has a lower internal attenuation than other NIR materials, it is most suitable for immersion grating, particularly in short NIR region (0.8-1.4 {micro}m). We are developing an extremely high-resolution spectrograph with {lambda}/{Delta}{lambda} = 100,000, WINERED, customized for the short NIR region, using ZnSe (or ZnS) immersion grating. However, it had been very difficult to make fine grooves on ZnSe substrate with a small pitch of less than 50 {micro}m because ZnSe is a soft/brittle material. We have overcome this problem and successfully machined sharp grooves with fine pitch on ZnSe substrates by nano precision fly-cutting technique at LLNL. The optical testing of the sample grating with HeNe laser shows an excellent performance: the relative efficiency more than 87.4 % at 0.633 {micro}m for a classical grating configuration. The diffraction efficiency when used as an immersion grating is estimated to be more than 65 % at 1 {micro}m. Following this progress, we are about to start machining a grating on a large ZnSe prism with an entrance aperture of 23mm x 50mm and the blaze angle of 70{sup o}.

  1. Low energy nuclear spin excitations in Ho metal investigated by high resolution neutron spectroscopy.

    PubMed

    Chatterji, Tapan; Jalarvo, Niina

    2013-04-17

    We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter. PMID:23507905

  2. Past, Present and Future Prospects of High Resolution X-ray Spectroscopy of Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Kaastra, J.

    2006-08-01

    The first high resolution X-ray spectra of clusters of galaxies have revolutionised the study of cooling flows. These excellent data have been obtained with an instrument (the RGS of XMM-Newton) that has not been optimised for spectroscopy of extended sources. I will present a few recent examples of what can be achieved further with the RGS in combination with the imaging EPIC cameras for the study of chemical enrichment of clusters. The new generation of high spectral resolution imaging TES arrays that is currently being studied for a variety of possible future X-ray observatories (such as XEUS, Constellation-X, DIOS, Estremo and NEW) offer exciting new opportunities to study the physics of clusters of galaxies. I will present examples of how these new instruments will achieve this.

  3. Alkyl-terminated Si(111) surfaces: A high-resolution, core level photoelectron spectroscopy study

    SciTech Connect

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E.

    1999-01-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied with high-resolution core level photoelectron spectroscopy (PES). Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) Olefin insertion into the H{endash}Si bond of the H{endash}Si(111) surface, and (ii) replacement of Cl on the Cl{endash}Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, PES has revealed a C 1s component shifted to lower binding energy and a Si 2p component shifted to higher binding energy. Both components are attributed to the presence of a C{endash}Si bond at the interface. Along with photoelectron diffraction data [Appl. Phys. Lett. {bold 71}, 1056, (1997)], these data are used to show that these two synthetic methods can be used to functionalize the Si(111) surface. {copyright} {ital 1999 American Institute of Physics.}

  4. Superconducting Detector System for High-Resolution Energy-Dispersive Soft X-Ray Spectroscopy

    SciTech Connect

    Friedrich, S; Niedermayr, T; Drury, O; Funk, T; Frank, M; Labov, S E; Cramer, S

    2001-02-21

    Synchrotron-based soft x-ray spectroscopy is often limited by detector performance. Grating spectrometers have the resolution, but lack the efficiency for the analysis of dilute samples. Semiconducting Si(Li) or Ge detectors are efficient, but often lack the resolution to separate weak signals from strong nearby lines in multi-element samples. Superconducting tunnel junctions (STJs) operated at temperatures below 1 K can be used as high-resolution high-efficiency x-ray detectors. They combine high energy resolution around 10 eV FWHM with the broad band efficiency of energy-dispersive detectors. We have designed a two-stage adiabatic demagnetization refrigerator (ADR) to operate STJ detectors in x-ray fluorescence measurements at beam line 4 of the ALS. We demonstrate the capabilities of such a detector system for fluorescence analysis of dilute metal sites in proteins and inorganic model compounds.

  5. Recent results on high resolution hypernuclear spectroscopy by electroproduction at Jefferson Lab, Hall A

    SciTech Connect

    F. Garibaldi; H. Breuer; P. Brindza; P. Bydzovski; G. Chang; E. Cisbani; S. Colilli; F. Cusanno; R. De Leo; G. De Cataldo; K. De Jager; R. Feuerbach; E. Folts; R. Fratoni; S. Frullani; F. Giuliani; M. Gricia; D. Higinbotham; M. Iodice; B. Kross; L. Lagamba; J.J.Le Rose; M. Lucentini; P. Markowitz; S. Marrone; R. Michaels; E. Nappi; Y. Qiang; B. Reitz; F. Santavenere; J. Segal; M. Sotona; G.M.Urciuoli; P. Veneroni; B.Wojtsekhowski; C. Zorn

    2005-12-01

    The first ''systematic'' study of 1 p shell hypernuclei with electromagnetic probes has started in Hall A at Jefferson Lab [?]. The aim is to perform hypernuclear high resolution spectroscopy by the electroproduction of strangeness on four 1p-shell targets: 12C, 9Be, 16O, 7Li. The first part of the experiment on 12C and 9Be has been performed in 2004, the second part (16O and 7Li) is scheduled for June 2005. To overcome the major experimental difficulties, namely the low counting rate and the challenging Particle IDentification (PID), two septum magnets and a Ring Imaging CHerenkov (RICH) detector had to be added to the existing apparatus. After underlining the particular role the electroproduction reaction plays in hypernuclear physics we describe the challenging modifications of the Hall A apparatus. Preliminary results on 12C and 9Be are presented.

  6. Oxidation of diamond films by atomic oxygen: High resolution electron energy loss spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Shpilman, Z.; Gouzman, I.; Grossman, E.; Akhvlediani, R.; Hoffman, A.

    2007-12-01

    Diamond surface oxidation by atomic oxygen, annealing up to ˜700°C, and in situ exposure to thermally activated hydrogen were studied by high resolution electron energy loss spectroscopy (HREELS). After atomic oxygen (AO) exposure, HREELS revealed peaks associated with CHx groups, carbonyl, ether, and peroxide-type species and strong quenching of the diamond optical phonon and its overtones. Upon annealing of the oxidized surfaces, the diamond optical phonon overtones at 300 and 450meV emerge and carbonyl and peroxide species gradually desorb. The diamond surface was not completely regenerated after annealing to ˜700°C and in situ exposure to thermally activated hydrogen, probably due to the irreversible deterioration of the surface by AO.

  7. High-resolution photoelectron spectroscopy analysis of sulfidation of brass at the rubber/brass interface

    NASA Astrophysics Data System (ADS)

    Ozawa, Kenichi; Kakubo, Takashi; Shimizu, Katsunori; Amino, Naoya; Mase, Kazuhiko; Komatsu, Takayuki

    2013-01-01

    High resolution photoelectron spectroscopy is utilized to investigate the chemical composition at the rubber/brass interface to elucidate the origin of strong adhesion as well as the degradation between rubber and brass. Special attention has been given to copper sulfides formed at the interface during the vulcanization reaction at 170 °C. At least five sulfur-containing species are identified in the adhesive interlayer including crystalline CuS and amorphous CuxS (x ≃ 2). These copper sulfide species are not uniformly distributed within the layer, but there exits the concentration gradation; the concentration of CuxS is high in the region on the rubber side and is diminished in the deeper region, while vice versa for that of CuS. Degradation of the interface adhesive strength by prolonged vulcanization arises from the decrease in the CuxS/CuS ratio accompanying desulfurization of the adhesive layer.

  8. High Resolution Spectroscopy of Naphthalene Calibrated by AN Optical Frequency Comb

    NASA Astrophysics Data System (ADS)

    Nishiyama, Akiko; Nakashima, Kazuki; Matsuba, Ayumi; Misono, Masatoshi

    2015-06-01

    In high-resolution molecular spectroscopy, the precise measure of the optical frequency is crucial to evaluate minute shifts and splittings of the energy levels. On the other hand, in such spectroscopy, thousands of spectral lines distributed over several wavenumbers have to be measured by a continuously scanning cw laser. Therefore, the continuously changing optical frequency of the scanning laser has to be determined with enough precision. To satisfy these contradictory requirements, we have been developed two types of high-resolution spectroscopic systems employing an optical frequency comb. One of the systems employs RF band-pass filters to generate equally spaced frequency markers for optical frequency calibration, and is appropriate for wide wavelength-range measurement with relatively high scanning rate.^a In the other system, the beat frequency between the optical frequency comb and the scanning laser is controlled by an acousto-optic frequency shifter. This system is suitable for more precise measurement, and enables detailed analyses of frequency characteristics of scanning laser.^b In the present study, we observe Doppler-free two-photon absorption spectra of A^1B1u (v_4 = 1) ← X^1A_g (v = 0) transition of naphthalene around 298 nm. The spectral lines are rotationally resolved and the resolution is about 100 kHz. For ^qQ transition, the rotational lines are assigned, and molecular constants in the excited state are determined. In addition, we analyze the origin of the measured linewidth and Coriolis interactions between energy levels. To determine molecular constants more precisely, we proceed to measure and analyze spectra of other transitions, such as ^sS transitions. ^a A. Nishiyama, D. Ishikawa, and M. Misono, J. Opt. Soc. Am. B 30, 2107 (2013). ^b A. Nishiyama, A. Matsuba, and M. Misono, Opt. Lett. 39, 4923 (2014).

  9. a Thz Photomixing Synthesizer Based on a Fiber Frequency Comb for High Resolution Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hindle, Francis; Mouret, Gael; Cuisset, Arnaud; Yang, Chun; Eliet, Sophie; Bocquet, Robin

    2010-06-01

    To date the principal application for photomixing sources has been for high resolution spectroscopy of gases due to the large tuning range and spectral purity. New Developments of the Opto-Electronic THz Spectrometer have been performed in order to obtain a powerful tool for High-Resolution Spectroscopy. The combination of two extended cavity laser diodes and fast charge carrier lifetime semiconductor materials has allowed a continuous-wave THz spectrometer to be constructed based on optical heterodyning. Unlike many THz sources, this instrument gives access to all frequencies in the range 0.3 to 3.5 THz with a resolution of 1 MHz. The main spectroscopic applications of this spectrometer were dedicated to line profile analysis of rotational transitions referenced in the spectroscopic databases. One limitation of the THz spectrometer was accuracy with which the generated frequency is known. Recently, this obstacle has been circled with the construction of a photomixing spectrometer where the two pump lasers are phase locked to two modes of a repetition rate stabilized frequency doubled fiber laser frequency comb. In order to achieve a tuning range in excess to 100 MHz a third cw laser was required in the new configuration of the THz spectrometer. To assess the performances of this instrument, the frequencies of the pure rotational transitions of OCS molecules have been measured between 0,8 to 1,2 THz. A rms inferior to 100 kHz, deduced from the frequencies measured, demonstrates that the THz photomixing synthesizer is now able to be competitive with microwave and submillimeter techniques. S. Matton, F. Rohart, R. Bocquet, D. Bigourd, A. Cuisset, F. Hindle, G. Mouret, J. Mol. Spectrosc., 2006, 239: 182. C. Yang, J. Buldyreva, I. E. Gordon, F. Rohart, A. Cuisset, G. Mouret, R. Bocquet, F. Hindle, J. Quant. Spectrosc. Radiat. Transfer, 2008, 109: 2857. G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, D. Rovera, Opt. Express, 2009, 17: 22031.

  10. Partial-Homogeneity-Based Two-Dimensional High-Resolution Nuclear Magnetic Resonance Spectroscopy under Inhomogeneous Magnetic Fields.

    PubMed

    Qiu, Wenqi; Wei, Zhiliang; Ding, Nan; Yang, Yu; Ye, Qimiao; Lin, Yulan; Chen, Zhong

    2016-05-18

    High-resolution multidimensional nuclear magnetic resonance (NMR) spectroscopy serves as an irreplaceable and versatile tool in various chemical investigations. In this study, a method based on the concept of partial homogeneity is developed to offer two-dimensional (2D) high-resolution NMR spectra under inhomogeneous fields. Oscillating gradients are exerted to encode the high-resolution information, and a field-inhomogeneity correction algorithm based on pattern recognition is designed to recover high-resolution spectra. Under fields where inhomogeneity primarily distributes along a single orientation, the proposed method will improve performances of 2D NMR spectroscopy without increasing the experimental duration or significant loss in sensitivity, and thus may open important perspectives for studies of inhomogeneous chemical systems. PMID:26891886

  11. High-resolution atomic force microscopy and spectroscopy of native membrane proteins

    NASA Astrophysics Data System (ADS)

    Bippes, Christian A.; Muller, Daniel J.

    2011-08-01

    Membranes confining cells and cellular compartments are essential for life. Membrane proteins are molecular machines that equip cell membranes with highly sophisticated functionality. Examples of such functions are signaling, ion pumping, energy conversion, molecular transport, specific ligand binding, cell adhesion and protein trafficking. However, it is not well understood how most membrane proteins work and how the living cell regulates their function. We review how atomic force microscopy (AFM) can be applied for structural and functional investigations of native membrane proteins. High-resolution time-lapse AFM imaging records membrane proteins at work, their oligomeric state and their dynamic assembly. The AFM stylus resembles a multifunctional toolbox that allows the measurement of several chemical and physical parameters at the nanoscale. In the single-molecule force spectroscopy (SMFS) mode, AFM quantifies and localizes interactions in membrane proteins that stabilize their folding and modulate their functional state. Dynamic SMFS discloses fascinating insights into the free energy landscape of membrane proteins. Single-cell force spectroscopy quantifies the interactions of live cells with their environment to single-receptor resolution. In the future, technological progress in AFM-based approaches will enable us to study the physical nature of biological interactions in more detail and decipher how cells control basic processes.

  12. Exploring the High-Resolution Spectroscopy of Molecules that can Affect the Quality of your Life

    NASA Astrophysics Data System (ADS)

    Miller, Terry A.

    2014-06-01

    Few things affect your quality of life more than the air you breathe and the temperature of your immediate environment. Since more than 80% of the energy used in the industrialized world today is still derived from fossil fuels, these two quantities are not unrelated. Most organic molecules injected into the troposphere are degraded via oxidative processes involving free radical intermediates, and many of these intermediates are the same as the ones involved in the combustion of fossil fuels. Key oxidizing intermediates are hydroxyl, OH (day), and nitrate, NO_3 (night), and early intermediates of oxidized organic compounds include the alkoxy (RO) and peroxy (RO_2) families of radicals. Recently we have explored the spectroscopy of RO, RO_2, and NO_3 radicals both for diagnostic purposes and to characterize their molecular properties and benchmark quantum chemistry calculations. We have utilized moderate resolution cavity ringdown spectroscopy (CRDS) to study ambient temperature radicals and high resolution CRDS and laser induced fluorescence (LIF) to study jet-cooled radicals. Peroxy radicals and NO_3 have weak tilde{A}-tilde{X} electronic transitions in the near infrared which we have studied with CRDS. Comparable LIF measurements have been made for the alkoxy species in the UV. Both vibrational and rotational resolution of the electronic spectra is observed. Data obtained from the spectral observations provide information about both the geometric and electronic structure of these radicals as well as their dynamics and also provide the capability for unambiguous diagnostics of their concentrations and reactions.

  13. Millimeter and Sub-millimeter High Resolution Spectroscopy: New Frontiers with ALMA

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.

    2016-06-01

    It is becoming increasingly clear that new laboratory data will be critical for the next decade of observations with the Atacama Large Millimeter Array (ALMA). The high spatial resolution offered by ALMA will probe new regions of molecular complexity, including the inner envelopes of evolved stars, regions dominated by UV radiation, and the densest cores of molecular clouds. New molecular lines will be discovered in the wide wavelength range covered by the ALMA bands, and high resolution, gas-phase spectroscopy are needed to provide crucial “rest frequencies.” In particular, highly accurate methods that measure millimeter and sub-millimeter rotational transitions, such as direct absorption and Fourier transform mm-wave techniques, are important, especially when coupled to exotic molecular production schemes. Recent ALMA studies of SH+ and larger organic species have already demonstrated the need for laboratory measurements. New laboratory work will likely be required for circumstellar refractory molecules, radicals and ions generated near photon-dominated regions (PDRs), and large, organic-type species. This talk will give an overview of current contributions of laboratory spectroscopy to ALMA observations, summarize relevant spectroscopic techniques, and provide input into future prospects and directions.

  14. Far Infrared High Resolution Synchrotron FTIR Spectroscopy of the Low Frequency Bending Modes of Dmso

    NASA Astrophysics Data System (ADS)

    Cuisset, Arnaud; Smirnova, Irina; Bocquet, Robin; Hindle, Francis; Mouret, Gael; Sadovskii, Dmitrii A.; Pirali, Olivier; Roy, Pascale

    2010-06-01

    In addition to its importance for industrial and environmental studies, the monitoring of DiMethylSulfOxyde (DMSO, (CH_3)_2SO) concentrations is of considerable interest for civil protection. The existing high resolution gas phase spectroscopic data of DMSO only concerned the pure rotational transitions in the ground state. In the Far-IR domain, the low-frequency rovibrational transitions have never previously resolved. The high brightness of the AILES beamline of the synchrotron SOLEIL and the instrumental sensitivity provided by the multipass cell allowed to measure for the first time these transitions. 1581 A-type and C-type transitions in the ν11 band have been assigned and 25 molecular constants of Watson's s-form hamiltonian developed to degree 8 have been fitted within the experimental accuracy. The use of then synchrotron radiation has opened many possibilities for new spectroscopic studies. Together with several other recent studies, our successful measurement and analysis of DMSO convincingly demonstrates the potential of the AILES beamline for high resolution FIR spectroscopy. Thus our present work is just at the beginning of unraveling the rovibrational structure of low frequency bending and torsional vibrational states of DMSO and yielding important comprehensive structural and spectroscopic information on this molecule. L. Margules, R. A. Motienko, E. A. Alekseev, J. Demaison, J. Molec. Spectrosc., 260(23),2009 V. Typke, M. Dakkouri, J. Molec. Struct., 599(177),2001 A. Cuisset, L. Nanobashvili, I. Smirnova, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy, D. Sadovskii, Chem. Phys. Lett., accepted for publication

  15. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    SciTech Connect

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

  16. M31 GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY

    SciTech Connect

    Colucci, Janet E.; McWilliam, Andrew; Cohen, Judith G. E-mail: sacamero@umich.ed E-mail: andy@ociw.ed

    2009-10-10

    We report the first detailed chemical abundances for five globular clusters (GCs) in M31 from high-resolution (R approx 25,000) spectroscopy of their integrated light (IL). These GCs are the first in a larger set of clusters observed as part of an ongoing project to study the formation history of M31 and its GC population. The data presented here were obtained with the HIRES echelle spectrograph on the Keck I telescope and are analyzed using a new IL spectra analysis method that we have developed. In these clusters, we measure abundances for Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, and Ba, ages >=10 Gyr, and a range in [Fe/H] of -0.9 to -2.2. As is typical of Milky Way GCs, we find these M31 GCs to be enhanced in the alpha-elements Ca, Si, and Ti relative to Fe. We also find [Mg/Fe] to be low relative to other [alpha/Fe], and [Al/Fe] to be enhanced in the IL abundances. These results imply that abundances of Mg, Al (and likely O, Na) recovered from IL do display the inter- and intra-cluster abundance variations seen in individual Milky Way GC stars, and that special care should be taken in the future in interpreting low- or high-resolution IL abundances of GCs that are based on Mg-dominated absorption features. Fe-peak and the neutron-capture elements Ba and Y also follow Milky Way abundance trends. We also present high-precision velocity dispersion measurements for all five M31 GCs, as well as independent constraints on the reddening toward the clusters from our analysis.

  17. Correlating high-resolution magic angle spinning NMR spectroscopy and gene analysis in osteoarthritic cartilage.

    PubMed

    Tufts, Lauren; Shet Vishnudas, Keerthi; Fu, Eunice; Kurhanewicz, John; Ries, Michael; Alliston, Tamara; Li, Xiaojuan

    2015-05-01

    Osteoarthritis (OA) is a common multifactorial and heterogeneous degenerative joint disease, and biochemical changes in cartilage matrix occur during the early stages of OA before morphological changes occur. Thus, it is desired to measure regional biochemical changes in the joint. High-resolution magic angle spinning (HRMAS) NMR spectroscopy is a powerful method of observing cartilaginous biochemical changes ex vivo, including the concentrations of alanine and N-acetyl, which are markers of collagen and total proteoglycan content, respectively. Previous studies have observed significant changes in chondrocyte metabolism of OA cartilage via the altered gene expression profiles of ACAN, COL2A1 and MMP13, which encode aggrecan, type II collagen and matrix metalloproteinase 13 (a protein crucial in the degradation of type II collagen), respectively. Employing HRMAS, this study aimed to elucidate potential relationships between N-acetyl and/or alanine and ACAN, COL2A1 and/or MMP13 expression profiles in OA cartilage. Thirty samples from the condyles of five subjects undergoing total knee arthroplasty to treat OA were collected. HRMAS spectra were obtained at 11.7 T for each sample. RNA was subsequently extracted to determine gene expression profiles. A significant negative correlation between N-acetyl metabolite and ACAN gene expression levels was observed; this provides further evidence of N-acetyl as a biomarker of cartilage degeneration. The alanine doublet was distinguished in the spectra of 15 of the 30 specimens of this study. Alanine can only be detected with HRMAS NMR spectroscopy when the collagen framework has been degraded such that alanine is sufficiently mobile to form a distinguished peak in the spectrum. Thus, HRMAS NMR spectroscopy may provide unique localized measurements of collagenous degeneration in OA cartilage. The identification of imaging markers that could provide a link between OA pathology and chondrocyte metabolism will facilitate the

  18. What can we Expect of High-Resolution Spectroscopies on Carbohydrates?

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Ecija, Patricia; Uriarte, Iciar; Usabiaga, Imanol; Fernández, José A.; Basterretxea, Francisco J.; Lesarri, Alberto; Davis, Benjamin G.

    2015-06-01

    Carbohydrates are one of the most multifaceted building blocks, performing numerous roles in living organisms. We present several structural investigations on carbohydrates exploiting an experimental strategy which combines microwave (MW) and laser spectroscopies in high-resolution. Laser spectroscopy offers high sensitivity coupled to mass and conformer selectivity, making it ideal for polysaccharides studies. On the other hand, microwave spectroscopy provides much higher resolution and direct access to molecular structure of monosaccharides. This combined approach provides not only accurate chemical insight on conformation, structure and molecular properties, but also benchmarking standards guiding the development of theoretical calculations. In order to illustrate the possibilities of a combined MW-laser approach we present results on the conformational landscape and structural properties of several monosaccharides and oligosaccharides including microsolvation and molecular recognition processes of carbohydrates. E.J. Cocinero, A. Lesarri, P. écija, F.J. Basterretxea, J.-U. Grabow, J.A. Fernández and F. Casta {n}o Angew. Chem. Int. Ed. 51, 3119-3124, 2012. E.J. Cocinero, A. Lesarri, P. écija, Á. Cimas, B.G. Davis, F.J. Basterretxea, J.A. Fernández and F. Casta {n}o J. Am. Chem. Soc. 135, 2845-2852, 2013. E.J. Cocinero, P. Çarçabal, T.D. Vaden, J.P. Simons and B.G. Davis Nature 469, 76-80, 2011. C.S. Barry, E.J. Cocinero, P. Çarçabal, D.P. Gamblin, E.C. Stanca-Kaposta, S. M. Fernández-Alonso, S. Rudić, J.P. Simons and B.G. Davis J. Am. Chem. Soc. 135, 16895-16903, 2013.

  19. Determination of Spectroscopic Properties of Atmospheric Molecules from High Resolution Vacuum Ultraviolet Cross Section and Wavelength Measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Yoshino, K.

    1999-01-01

    We have studied the spectroscopy and the cross sections of the simple molecules of atmospheric interest such as oxygen, nitric oxide, carbon dioxide, and water. We have made cross section measurements on an absolute base without the effects from the limited instrumental resolution. We have used the following different instruments- the grating spectrometer (6.65-m at CfA, 3-m at Photon Factory), VUV Fourier transform spectrometer at Imperial College, and then moved the same one to the Photon Factory. Selection of the instruments depend on the appearance of molecular bands, and their wavelength region. For example, the cross section measurements of Doppler limited bands can been done with the Fourier transform spectrometer at the very high resolution (0.025/ cm resolution). All of these spectroscopic measurements are needed for accurate calculations of the production of atomic oxygen penetration of solar radiation into the Earth's atmosphere, and photochemistry of minor molecules.

  20. Mapping the Local Interstellar Medium Using High-Resolution UV Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Malamut, Craig; Redfield, S.; Linsky, J.

    2013-01-01

    Observations using the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope have provided high-resolution near ultraviolet spectra showing MgII, FeII and MnII absorption in the local interstellar medium (LISM). The sample includes sight lines towards over 30 stars within 100 parsecs and across a wide range of spectral types. Observations span the entire sky, probing previously unobserved regions of the LISM. The heavy ions studied in this survey produce narrow absorption features that make possible the identification of multiple interstellar components. Our simultaneous fits of the MgII, FeII, and MnII doublets reveal anywhere from one to six individual absorption components in a particular sight line, where the number of absorbers roughly correlates with the length of the sight line. The simultaneous fitting procedure reduces the systematic errors involved in continuum placement and number of absorbers. Already, sight lines show evidence of previously unidentified clouds within the Local Bubble. These measurements will be added to a growing data set of 81 near UV sight lines. The increase in the number of sight lines will test and improve a three dimensional kinematic model of the local interstellar medium. With an improved understanding of the LISM's kinematical structure, it will be possible to distinguish blended components within the absorption features of lighter ions. Specifically, the MAST Archive contains FUV observations of interstellar absorption by low mass ions (DI, CII, NI, OI) along the the same sight lines. The combination of these data will constrain properties of the LISM such as temperature, turbulence, ionization, abundances and depletions. We acknowledge support for this project through NASA HST Grant GO-11568 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555, and a student research fellowship from the

  1. High-Resolution Spectroscopy of Mars: Recent Results and Implications for Atmospheric Evolution

    NASA Technical Reports Server (NTRS)

    Krasnopolsky, V. A.; Owen, T. C.; Maillard, J. P.

    1999-01-01

    It is believed that Earth, Venus, and Mars were formed by the same rocky and icy planetesimals, which resembled meteorites and comets in their composition, respectively. These planets are thus expected to have initially had the same chemical and isotope composition. Scaling the mass of the terrestrial ocean by the planetary mass ratio, the expected initial H2O abundance on Mars is a layer of about 1 km thick. Scaling the abundance of CO2 on Venus, the expected initial CO2 abundance on Mars is 15 bars. Evidently, significant parts of the initial H2O and CO2 abundances have been lost. Intense meteorite impact erosion and hydrodynamic escape of hydrogen (which could drag to escape more heavy species) were dominant loss processes in the first 0.8 Byr. Later, atmospheric sputtering by O+ ions resulted in the dissociation of CO2 and massive losses of O, C, and H. Formation of carbonates also reduced CO2 to its present abundance which currently exists in the atmosphere, on the polar caps, and is absorbed by regolith. Water loss is currently due to thermal escape of H and nonthermal escape of O, both formed by photodissociation of H2O. All loss processes resulted in fractionation of the H, O, and C isotopes. Therefore, the current isotope ratios in H2O and CO2 are clues to the history of volatiles on Mars. There are three tools to study H2O and CO2 isotopes in the martian atmosphere: (i) mass spectrometry from landing probes, (ii) analyses of Mars' gases trapped in the SNC meteorites which were ejected from Mars, and (iii) high-resolution spectroscopy of the H2O andCO2 bands. Method (i) is the best but is the most expensive. Mass spectrometers to be used should be designed for high-precision isotope measurements. Method (ii) makes it possible to reach an uncertainty +/- 0.1%. However, the obtained results are affected by some uncontrolled interactions: isotope fractionations of (1) trapped gases and (2) those released in pyrolysis, (3) contribution of the impactor, isotope

  2. The Astro-H Mission and High Resolution X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kelley, Richard L.; Mitsuda, K.; Awaki, H.; Fujimoto, R.; den Herder, J. W.; Ishida, M.; Kilbourne, C. A.; Kunieda, H.; Maeda, Y.; McCammon, D.; Ohashi, T.; Okajima, T.; Porter, F.; Serlemitsos, P.; Soong, Y.; Szymkowiak, A. E.; Takahashi, T.; Takei, Y.; Tashiro, M.; Tawara, Y.; Yamasaki, N. Y.; Astro-H Collaboration

    2010-03-01

    The Japan Aerospace Exploration Agency's Institute of Space and Aeronautical Science (JAXA/ISAS) is developing a major new high-energy astrophysics observatory. Astro-H will provide broadband, high-resolution spectroscopy and imaging over the 0.3-600 keV band using four co-aligned instruments operated simultaneously. The mission will have major US participation supported by NASA as well as contributions from Europe and Canada. For high-resolution x-ray spectroscopy, the soft x-ray spectrometer (SXS) will feature an x-ray calorimeter spectrometer and x-ray mirror. The instrument will cover the energy range 0.3-12 keV and is expected to have an energy resolution better than 5 eV (FWHM) with a collecting area of over 200 cm2 at 6 keV. The cooling system will have both cryogenic and mechanical coolers for up to five years of operation. The SXS is a joint collaboration between NASA/GSFC, ISAS/JAXA and SRON, and the NASA participation was selected as an Explorers Mission of Opportunity in June 2008. As part of this investigation, a fully supported US guest observer program was also proposed and is under review by NASA. Other instruments on Astro-H include a soft x-ray imager (SXI) consisting of a large area CCD camera with 35 arcmin field-of-view and a hard x-ray imager (HXI) that uses focusing x-ray optics combined with both double-sided silicon strip detectors and CdTe array. The 12-m focal length optical system will provide an effective area of 300 cm2 at 30 keV, and high sensitivity from 10-80 keV using multilayer x-ray mirrors with 2-4 arcmin imaging. The soft gamma detector (SGD) is a non-focusing instrument based on a new, narrow-field-of-view Compton telescope with an energy range of 10-600 keV and sensitivity at 300 keV that is more than 10 times higher than Suzaku. Astro-H is planned for launch in 2014 aboard a JAXA HII-A rocket.

  3. [Design of airborne dual channel ultraviolet-visible imaging spectrometer with large field of view, wide spectrum, and high resolution].

    PubMed

    Hao, Ai-Hua; Hu, Bing-Liang; Bai, Jia-Guang; Li, Li-Bo; Yu, Tao; Li, Si-Yuan

    2013-12-01

    The ultraviolet-visible (UV-Vis 200-500 nm) imaging spectrometer is an important part of space remote sensing. Based on special requirements and practical application of the airborne UV-VIS spectrometer, a kind of scanning imaging spectrometer using area array CCD is proposed, which can meet the application requirements of large field of view, wide spectrum and high resolution. It overcomes low spatial resolution of traditional line array CCD scanning imaging spectrometer, and limited field of view of the pushbroom imaging spectrometer. In addition, dual channel was designed to reduce stray light. 400-500 nm band includes two order spectrum for 200-250 nm band, and variation of radiance from earth between the shorter wavelength (<290 nm) and the longer wavelength (>310 nm) is above three orders of magnitude. In the structure design of the system, the imaging spectrometer is composed of a two-mirror concentric telescope and two Czerny-Turner plane grating imaging spectrometers. The whole system doesn't use any additional optical elements in addition to spherical mirrors. The whole system has the advantage of simple structure, excellent performance, and very good feasibility. The modulation transfer function value of full spectrum and full field of view is above 0.6. PMID:24611417

  4. Quantitative neuropathology by high resolution magic angle spinning proton magnetic resonance spectroscopy

    PubMed Central

    Cheng, L. L.; Ma, M. J.; Becerra, L.; Ptak, T.; Tracey, I.; Lackner, A.; González, R. G.

    1997-01-01

    We describe a method that directly relates tissue neuropathological analysis to medical imaging. Presently, only indirect and often tenuous relationships are made between imaging (such as MRI or x-ray computed tomography) and neuropathology. We present a biochemistry-based, quantitative neuropathological method that can help to precisely quantify information provided by in vivo proton magnetic resonance spectroscopy (1HMRS), an emerging medical imaging technique. This method, high resolution magic angle spinning (HRMAS) 1HMRS, is rapid and requires only small amounts of unprocessed samples. Unlike chemical extraction or other forms of tissue processing, this method analyzes tissue directly, thus minimizing artifacts. We demonstrate the utility of this method by assessing neuronal damage using multiple tissue samples from differently affected brain regions in a case of Pick disease, a human neurodegenerative disorder. Among different regions, we found an excellent correlation between neuronal loss shown by traditional neurohistopathology and decrease of the neuronal marker N-acetylaspartate measured by HRMAS 1HMRS. This result demonstrates for the first time, to our knowledge, a direct, quantitative link between a decrease in N-acetylaspartate and neuronal loss in a human neurodegenerative disease. As a quantitative method, HRMAS 1HMRS has potential applications in experimental and clinical neuropathologic investigations. It should also provide a rational basis for the interpretation of in vivo 1HMRS studies of human neurological disorders. PMID:9177231

  5. Determination of reference ultrasound parameters for model and hydrofluoroalkane propellants using high-resolution ultrasonic spectroscopy.

    PubMed

    Hoe, Susan; Young, Paul M; Rogueda, Philippe; Traini, Daniela

    2008-01-01

    The aim of this research was to determine the reference ultrasonic velocity (v) and attenuation coefficient (alpha) for 2H, 3H-perfluoropentane (HPFP), 1,1,1,2-tetrafluoroethane (HFA-134a) and 1,1,1,2,3,3,3-tetrafluoroethane (HFA-227) propellants, for the future purpose of characterising pressurised metered dose inhaler (pMDI) formulations using high-resolution ultrasonic spectroscopy (HRUS). Perfluoroheptane (PFH) was used as a reference material for HPFP. With its velocity and attenuation coefficient determined at 25 degrees C, HPFP was subsequently used as a reference for HFA-134a and HFA-227. It was found that there is a linear decline in ultrasonic velocity with an increase in temperature. As with HPFP, the ultrasonic velocity of HFA-134a and HFA-227 were successfully calculated at 25 degrees C. However, the difference in density and viscosity between reference and sample prevented accurate determination of reference attenuation coefficient for the hydrofluoroalkanes. With ultrasonic velocity alone, dispersion concentration and stability monitoring for experimental pMDI formulations is possible using HRUS. However, at this point in time measurement of particle size is not feasible. PMID:18459053

  6. High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals

    DOE PAGESBeta

    Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, Lynn A.; Watkins, S. P.

    2016-01-01

    Here, Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-dopants. We present high-resolution photoluminescence spectroscopy studies of unintentionally doped and Sn doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I10 bound exciton transition which was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. PL linewidths are exceptionally sharp for these samples, enabling clear identification of several donor species. Temperature dependent PL measurements of the I10 line emission energy and intensity dependence reveal a behavior similar tomore » other shallow donors in ZnO. Ionized donor bound exciton and two electron satellite transitions of the I10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule), confirming the shallow nature of this defect center, which we attribute to a SnZn double donor compensated by an unknown single acceptor.« less

  7. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping.

    PubMed

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E W; Guo, Jiandong

    2015-08-01

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi2Sr2CaCu2O(8+δ). The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution. PMID:26329206

  8. On the accuracy of CO line positions for high resolution IR stellar spectroscopy

    NASA Technical Reports Server (NTRS)

    Sauval, A. J.; Farrenq, R.; Guelachvili, G.; Grevesse, N.; Farmer, C. B.; Norton, R. H.

    1992-01-01

    The paper demonstrates the high accuracy of line positions derived from improved sets of Dunham coefficients for the four more abundant isotopic species of carbon monoxide - (C-12)(O-16), (C-13)(O-16), (C-12)(O-18), and (C-12)(O-17) - which are present in the sun and in cool stellar atmospheres. These new spectroscopic constants make it possible to predict very accurate positions of CO lines at any J-values, especially at very high rotational excitation (up to J around 135). Earlier proposed identifications of CO lines at large J-values are checked, and some incorrect identifications in sunspot spectra are found. The present accurate line positions are also compared with predictions from other available sets of molecular constants. It is concluded that the present improved sets of molecular constants are the most appropriate to all problems of high-resolution stellar and solar spectroscopy at any J- and v-values, particularly for synthetic spectra of cool stars.

  9. High-Resolution Spectroscopy of Winds Associated with T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Iguchi, Naoto; Itoh, Yoichi

    2016-02-01

    We carried out optical high-resolution spectroscopy of T Tauri stars using the Subaru Telescope. Using archived data from the Keck Telescope and the Very Large Telescope, we detected forbidden lines of [S II] at 4069 Å, in addition to those of [O I] at 5577 Å and 6300 Å, for 13 T Tauri stars. We consider that low-velocity components of these forbidden lines emanate from the wind associated with T Tauri stars. Using two flux ratios of the three lines, we simultaneously determined the hydrogen density and temperature of the winds. The winds of T Tauri stars have a hydrogen density of 2.5 × 106 cm-3 - 2.5 × 109 cm-3 and a temperature of 10800 -18 000 K. The mass loss rates by the wind are estimated to lie in the range from 2.0 × 10-10 M⊙ yr-1 to 1.4 × 10-9 M⊙ yr-1. The mass loss rates are found to increase with increasing mass accretion rates. The ratio of the mass loss rate to the mass accretion rate is 0.001-0.1 for classical T Tauri stars and 0.1-1 for transitional disk objects.

  10. Practical high resolution detection method for laser-induced breakdown spectroscopy

    SciTech Connect

    Andrew J. Effenberger Jr; Jill R. Scott

    2012-02-01

    A Fabry-Perot etalon was coupled to a Czerny-Turner spectrometer to acquire high-resolution measurements in laser-induced breakdown spectroscopy (LIBS). The spectrometer was built using an inexpensive etalon coupled to a standard 0.5-m imaging spectrometer. The Hg emission doublet at 313.2 nm was used to evaluate instrument performance because it has a splitting of 29 pm. The 313.2 nm doublet was chosen due to the similar splitting seen in isotope splitting from uranium at 424.437 nm, which is 25 pm. The Hg doublet was easily resolved from a continuous source Hg-lamp with a 2 s acquisition. The doublet was also resolved in LIBS spectra of cinnabar (HgS) from the accumulation of 600 laser shots at rate of 10 Hz, or 1 min, under a helium atmosphere. In addition to observed spitting of the 313.2 nm Hg doublet, the FWHM of the 313.1844 nm line from the doublet is reported at varying He atmospheric pressures. The high performance, low cost, and compact footprint makes this system highly competitive with 2-m double pass Czerny-Turner spectrometers.

  11. High resolution electron microscopy and spectroscopy of ferritin in thin window liquid cells

    NASA Astrophysics Data System (ADS)

    Wang, Canhui; Qiao, Qiao; Shokuhfar, Tolou; Klie, Robert

    2014-03-01

    In-situ transmission electron microscopy (TEM) has seen a dramatic increase in interest in recent years with the commercial development of liquid and gas stages. High-resolution TEM characterization of samples in a liquid environment remains limited by radiation damage and loss of resolution due to the thick window-layers required by the in-situ stages. We introduce thin-window static-liquid cells that enable sample imaging with atomic resolution and electron energy-loss (EEL) spectroscopy with 1.3 nm resolution. Using this approach, atomic and electronic structures of biological samples such as ferritin is studied via in-situ transmission electron microscopy experiments. Ferritin in solution is encapsulated using the static liquid cells with reduced window thickness. The integrity of the thin window liquid cell is maintained by controlling the electron dose rate. Radiation damage of samples, such as liquid water and protein, is quantitatively studied to allow precision control of radiation damage level within the liquid cells. Biochemical reactions, such as valence change of the iron in a functioning ferritin, is observed and will be quantified. Relevant biochemical activity: the release and uptake of Fe atoms through the channels of ferritin protein shell is also imaged at atomic resolution. This work is funded by Michigan Technological University. The UIC JEOL JEM-ARM200CF is supported by an MRI-R2 grant from the National Science Foundation (Grant No. DMR-0959470).

  12. High-resolution x-ray absorption spectroscopy studies of metal compounds in neurodegenerative brain tissue

    SciTech Connect

    Collingwood, J.F.; Mikhaylova, A.; Davidson, M.R.; Batich, C.; Streit, W.J.; Eskin, T.; Terry, J.; Barrea, R.; Underhill, R.S.; Dobson, J.

    2008-06-16

    Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (< 5 microns). Recent progress in developing the technique is reviewed. Synchrotron X-rays are used to map tissue sections for metals of interest, and XANES and XAFS are used to characterize anomalous concentrations of the metals in-situ so that they can be correlated with tissue structures and disease pathology. Iron anomalies associated with biogenic magnetite, ferritin and haemoglobin are located and identified in an avian tissue model with a pixel resolution {approx} 5 microns. Subsequent studies include brain tissue sections from transgenic Huntington's mice, and the first high-resolution mapping and identification of iron biominerals in human Alzheimer's and control autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.

  13. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping

    SciTech Connect

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E. W.; Guo, Jiandong

    2015-08-15

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ}. The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution.

  14. Earle K. Plyler Prize Talk: Using High Resolution Electronic Spectroscopy to Probe Reactive Chemical Intermediates

    NASA Astrophysics Data System (ADS)

    Miller, Terry

    2009-03-01

    Gas phase chemical reactions, such as occur in atmospheric chemistry, combustion, plasma processing, etc. are of great importance to our economy and society. These reactions are typically very complex involving up to 1000's of elementary steps with a corresponding number of reactive chemical intermediates. Spectrospic diagnostics, based upon well analyzed and well understood spectra of the intermediates, are crucial for monitoring such reactions and unraveling their mechanisms. These spectral analyses often benefit from the guidance provided by quantum chemical calculations and conversely the molecular parameters, experimentally determined from the spectra, serve as ``gold standards'' for benchmarking such calculations. Such standards are especially valuable for reactive intermediates whose electronic or geometric structure is particularly complex because of electron-spin interactions, Jahn-Teller effects or other vibronic interactions, hindered internal motions, large molecular size and weight, etc. The organic alkoxy, RO., and peroxy, RO2., (R=alkyl group) free radicals are excellent examples of such species. The talk will focus on our recent characterization of these radicals via their ``high-resolution,'' mostly rotationally resolved, electronic spectra utilizing the techniques of laser induced fluorescence, stimulated emission pumping, and cavity ringdown spectroscopy. Selected spectra, their analysis, and the molecular information resulting therefrom will be discussed.

  15. High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals

    SciTech Connect

    Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, Lynn A.; Watkins, S. P.

    2016-01-01

    Here, Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-dopants. We present high-resolution photoluminescence spectroscopy studies of unintentionally doped and Sn doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I10 bound exciton transition which was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. PL linewidths are exceptionally sharp for these samples, enabling clear identification of several donor species. Temperature dependent PL measurements of the I10 line emission energy and intensity dependence reveal a behavior similar to other shallow donors in ZnO. Ionized donor bound exciton and two electron satellite transitions of the I10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule), confirming the shallow nature of this defect center, which we attribute to a SnZn double donor compensated by an unknown single acceptor.

  16. Spectral characteristics of chlorites and Mg-serpentines using high- resolution reflectance spectroscopy

    USGS Publications Warehouse

    King, T.V.V.; Clark, R.N.

    1989-01-01

    The present laboratory study using high-resolution reflectance spectroscopy (0.25-2.7 ??m) focuses on two primary phyllosilicate groups, serpentines and chlorites. The results show that it is possible to spectrally distinguish between isochemical end-members of the Mg-rich serpentine group (chrysotile, antigorite, and lizardite) and to recognize spectral variations in chlorites as a function of Fe/Mg ratio (~8-38 wt% Fe). The position and relative strength of the 1.4-??m absorption feature in the trioctahedral chlorites appear to be correlated to the total iron content and/or the Mg/Si ratio and the loss on ignition values of the sample. Spectral differences in the 2.3-??m wavelength region can be attributed to differences in lattice environments and are characteristic for specific trioctahedral chlorites. The 1.4-??m feature in the isochemical Mg-rich serpentines (total iron content ~1.5-7.0 wt%) show marked spectral differences, apparently due to structural differences. -Authors

  17. Advances in Computational High-Resolution Mechanical Spectroscopy HRMSPart I: Logarithmic Decrement

    NASA Astrophysics Data System (ADS)

    Majewski, M.; Piłat, A.; Magalas, L. B.

    2012-02-01

    The comparison between different methods used to compute the logarithmic decrement in high-resolution mechanical spectroscopy (HRMS) is analyzed. The performance of parametric OMI method (Optimization in Multiple Intervals) and interpolated discrete Fourier transform (IpDFT) methods are investigated as a function of the sampling frequency used to digitize free decaying oscillations in low-frequency resonant mechanical spectrometers. It is clearly demonstrated that a new Yoshida-Magalas (YM) method is the most powerful IpDFT-based method which outperforms the standard Yoshida (Y) method and other DFT-based methods. Four IpDFT methods and the OMI method are carefully analyzed as a function of the sampling frequency. The results presented in this work clearly show that the relative error in the estimation of the logarithmic decrement depends both on the length of free decaying signal and on the sampling frequency. The effect of the sampling frequency was not yet reported in the literature. The performance of different methods used in the computations of the logarithmic decrement can be listed in the following order: (1) the OMI, (2) the Yoshida-Magalas YM, (3) the Yoshida-Magalas YMC, and finally (4) the Yoshida Y.

  18. High-resolution spectroscopy on the laser-cooling candidate La^{-}.

    PubMed

    Jordan, E; Cerchiari, G; Fritzsche, S; Kellerbauer, A

    2015-09-11

    The bound-bound transition from the 5d^{2}6s^{2} ^{3}F_{2}^{e} ground state to the 5d6s^{2}6p ^{3}D_{1}^{o} excited state in negative lanthanum has been proposed as a candidate for laser cooling, which has not yet been achieved for negative ions. Anion laser cooling holds the potential to allow the production of ultracold ensembles of any negatively charged species. We have studied the aforementioned transition in a beam of negative La ions by high-resolution laser spectroscopy. The center-of-gravity frequency was measured to be 96.592 80(10) THz. Seven of the nine expected hyperfine structure transitions were resolved. The observed peaks were unambiguously assigned to the predicted hyperfine transitions by a fit, confirmed by multiconfigurational self-consistent field calculations. From the determined hyperfine structure we conclude that La^{-} is a promising laser cooling candidate. Using this transition, only three laser beams would be required to repump all hyperfine levels of the ground state. PMID:26406825

  19. High-resolution X-ray spectroscopy: the coming-of-age

    NASA Astrophysics Data System (ADS)

    Kaastra, J.

    2016-06-01

    Since the launch of Chandra and XMM-Newton, high-resolution X-ray spectra of cosmic sources of all kinds have become available. These spectra have resulted in major scientific breakthroughs. However, due to the techniques used, in general high-quality spectra can only be obtained for the brightest few sources of each class. Moreover, except for the most compact extended sources, like cool core clusters, grating spectra are limited to point sources. ASTRO-H makes another major step forward, in yielding for the first time high-quality spectra of extended sources, and improved spectral sensitivity in the Fe-K band. With the launch of Athena, X-ray spectroscopy will become mature. It allows us to extend the investigations from the few handful of brightest sources of each category to a large number of sources far away in space and time, or to get high time-resolution, high-spectral resolution spectra of bright time variable sources.

  20. High resolution X-ray spectroscopy of SN 1987 A: monitoring with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Sturm, R.; Haberl, F.; Aschenbach, B.; Hasinger, G.

    2010-06-01

    Context. The ongoing propagation of the supernova blast wave of SN 1987 A through its inner circumstellar ring has caused a drastic increase in X-ray luminosity in the past few years, which has allowed detailed high resolution X-ray spectroscopy to be performed with the Reflection Grating Spectrometer. Aims: We report the results of our XMM-Newton monitoring of SN 1987 A, which may be used to follow the detailed evolution of the arising supernova remnant. Methods: The fluxes and broadening of the numerous emission lines measured in the dispersed spectra provide information about the evolution of the X-ray emitting plasma and its dynamics. These were analyzed in combination with the EPIC-pn spectra, which allow a precise determination of the higher temperature plasma. We modeled individual emission lines and fitted plasma emission models. Results: For observations between 2003 and 2007 in particular, we detect significant evolution in the plasma parameters and a deceleration of the radial velocity in the lower temperature plasma regions. We detected (at 3σ-level) an iron K feature in the coadded EPIC-pn spectra. Conclusions: By comparing with Chandra grating observations in 2004, we observe a clear temporal coherence of the spectral evolution and the sudden deceleration of the expansion velocity detectable in X-ray images ~6100 days after the explosion.

  1. High-efficiency blazed transmission gratings for high-resolution soft x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alexander R.; Schattenburg, Mark L.

    2015-09-01

    High-resolution spectroscopy of astrophysical sources is the key to gaining a quantitative understanding of the history, dynamics, and current conditions of the cosmos. A large-area (> 1,000 cm2), high resolving power (R = λ/Δλ> 3000) soft x-ray grating spectrometer (XGS) that covers the lines of C, N, O, Ne and Fe ions is the ideal tool to address a number of high-priority science questions from the 2010 Decadal Survey, such as the connection between super-massive black holes and large-scale structure via cosmic feedback, the evolution of large- scale structure, the behavior of matter at high densities, and the conditions close to black holes. While no grating missions or instruments are currently approved, an XGS aboard a potential future X-ray Surveyor could easily surpass the above performance metrics. To improve the chances for future soft x-ray grating spectroscopy missions or instruments, grating technology has to progress and advance to higher Technology Readiness Levels (TRLs). To that end we have developed Critical-Angle Transmission (CAT) gratings that combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, high transparency at higher energies). A CAT grating-based spectrometer can provide performance 1-2 orders of magnitude better than current grating instruments on Chandra and Newton-XMM with minimal resource requirements. At present we have fabricated large-area freestanding CAT gratings with narrow integrated support structures from silicon-on- insulator wafers using advanced lithography and a combination of deep reactive-ion and wet etching. Our latest x-ray test results show record high absolute diffraction efficiencies in blazed orders in excess of 30% with room for improvement.

  2. High-efficiency blazed transmission gratings for high-resolution soft x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alexander R.; Schattenburg, Mark L.

    2015-01-01

    High-resolution spectroscopy of astrophysical sources is the key to gaining a quantitative understanding of the history, dynamics, and current conditions of the cosmos. A large-area (> 1,000 cm2), high resolving power (R = λ/Δλ > 3,000) soft x-ray spectrometer that covers the lines of C, N, O, Ne and Fe ions is the ideal tool to address a number of high-priority sciences questions from the 2010 Decadal Survey, such as the connection between super-massive black holes and large-scale structure via cosmic feedback, the evolution of large-scale structure, the behavior of matter at high densities, and the conditions close to black holes. Numerous mission concepts that meet these requirements have been studied and proposed over the last few years, including grating instruments for the International X-ray Observatory. Nevertheless, no grating missions are currently approved. To improve the chances for future soft x-ray grating spectroscopy missions, grating technology has to progress and be advanced to higher TRLs. We have developed Critical-Angle Transmission (CAT) gratings that combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, transparent at higher energies). A CAT grating-based spectrometer can provide performance 1-2 orders of magnitude better than current grating instruments on Chandra and Newton-XMM with minimal resource requirements. We have fabricated large-area free-standing CAT gratings with minimal integrated support structures from silicon-on-insulator wafers using advanced lithography and a combination of deep reactive-ion and wet etching, and will present our latest x-ray test results showing record high diffraction efficiencies in blazed orders.

  3. Ultraviolet spectroscopy of cometary comae

    NASA Technical Reports Server (NTRS)

    Feldman, Paul D.

    1991-01-01

    During the past decade, vacuum ultraviolet spectra of over 30 comets have been obtained with the IUE satellite observatory. With few exceptions, the spectra of these comets appear to be similar, with OH and H produced by the photodissociation of water being the dominant species and emissions of C, O, S, CS and CO2(+) usually present. Although signs of variabiity of many kinds in comet spectra appear, the evidence from the UV observations suggests that all comets have the same basic chemical composition and that observed differences are due to evolution and ageing processes. During the 1985-86 apparition of Comet Halley, spectra were also obtained by other spacecraft and by sounding rocket instruments, including a long-slit imaging spectrograph.

  4. High Resolution Imaging Spectroscopy for Characterizing Soil Properties over Large Areas

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Kumar, P.

    2014-12-01

    Quantitative mapping of high resolution surface soil texture (percentage sand, silt and clay), soil organic matter and chemical constituents are important for understanding infiltration, runoff and other surficial hydrologic processes at different scales. The Visible Near Infrared Analysis (VNIRA) method, which is a combination of imaging spectroscopy and laboratory chemical analysis with an underlying statistical model, has been established for the quantification of soil properties from imaging spectrometer data. In this study we characterize the feasibility of quantifying soil properties over large areas with the aim that these methods may be extended to space-borne sensors such as HyspIRI. Hyperspectral Infrared Imager (HyspIRI) is a space-borne NASA mission concept having 10nm contiguous bands in the VSWIR region (380nm to 2500nm) of the electromagnetic spectra. High resolution (7.6m) Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data collected by NASA immediately after the massive 2011 Mississippi River floods at the Birds Point New Madrid (BPNM) floodway, coupled with in situ samples obtained at the time of the flight, is used to generate HyspIRI like data at 60m resolution. The VNIRA method is applied in a data-mining framework for quantification of the different soil textural properties and chemical constituents. The empirical models are further used for creating quantitative maps of the soil properties for the entire BPNM floodway. These maps are compared with the fine resolution AVIRIS maps of the same area for the different legacy landscape features and spatial correlations with the underlying topography immediately disturbed by the flooding event. The scales of variation in the soil constituents captured by the fine resolution data are also compared to the scales of variation captured by coarser resolution data. This study further explores the issues of applicability, challenges (such as the sensitivity of NDVI from mixed neighborhood pixels

  5. HIGH RESOLUTION X-RAY SPECTROSCOPY OF THE LOCAL HOT GAS ALONG THE 3C 273 SIGHTLINE

    SciTech Connect

    Fang, Taotao; Jiang, Xiaochuan

    2014-04-20

    X-ray observations of highly ionized metal absorption lines at z = 0 provide critical information on the hot gas distribution in and around the Milky Way. We present a study of more than 10 yr of Chandra and XMM-Newton observations of 3C 273, one of the brightest extragalactic X-ray sources. Compared with previous works, we obtain much tighter constraints on the physical properties of the X-ray absorber. We also find a large, non-thermal velocity at ∼100-150 km s{sup –1}, the main reason for the higher line equivalent width when compared with other sightlines. Using joint analysis with X-ray emission and ultraviolet observations, we derive a size of 5-15 kpc and a temperature of (1.5-1.8) × 10{sup 6} K for the X-ray absorber. The 3C 273 sightline passes through a number of Galactic structures, including radio loops I and IV, the North Polar Spur, and the neighborhood of the newly discovered ''Fermi bubbles''. We argue that the X-ray absorber is unlikely to be associated with the nearby radio loops I and IV; however, the non-thermal velocity can be naturally explained as the result of the expansion of the ''Fermi bubbles''. Our data imply a shock-expansion velocity of 200-300 km s{sup –1}. Our study indicates a likely complex environment for the production of the Galactic X-ray absorbers along different sightlines, and highlights the significance of probing galactic feedback with high resolution X-ray spectroscopy.

  6. Ge-diode detector combined with crystal-diffraction spectrometer permits high-resolution gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Namenson, A. I.; Smither, R. K.

    1969-01-01

    Crystal-diffraction spectrometer, combined with a lithium-drifted Ge-diode detector, performs high-resolution gamma ray spectroscopy on the complicated neutron-capture gamma ray spectra. The system is most useful in the 1-3 MeV energy range and improves the signal to background ratio.

  7. Direct ultraviolet imaging and spectroscopy of betelgeuse

    NASA Astrophysics Data System (ADS)

    Dupree, A. K.; Stefanik, R. P.

    2013-05-01

    Direct images of Betelgeuse were obtained over a span of 4 years with the Faint Object Camera on the Hubble Space Telescope. These images reveal the extended ultraviolet continuum emission (~2 times the optical diameter), the varying overall ultraviolet flux levels and a pattern of bright surface continuum features that change in position and appearance over several months or less. Concurrent photometry and radial velocity measures support the model of a pulsating star, first discovered in the ultraviolet from IUE. Spatially resolved HST spectroscopy reveals a larger extention in chromospheric emissions of Mg II as well as the rotation of the supergiant. Changing localized subsonic flows occur in the low chromosphere that can cover a substantial fraction of the stellar disk and may initiate the mass outflow.

  8. Fluorescence Spectroscopy as a Rapid, High-Resolution Tool for Detecting Biomolecules in Glacial Ice

    NASA Astrophysics Data System (ADS)

    Rohde, R. A.; Price, P. B.; Bramall, N.; Bay, R.

    2007-12-01

    We have developed new instruments utilizing the intrinsic fluorescence of specific biomolecules as a sensitive, non-destructive tool for detecting microorganisms. Using a 224-nm excitation, we detect protein-bound tryptophan (an amino acid present in all cells) at a detection threshold of approximately 1 cell per laser excitation volume and a duty cycle of 100 ms per measurement. Tryptophan is easily distinguished from inorganic backgrounds due to its characteristic spectral shape and ~300 times higher intensity per unit volume than typical inorganic compounds. A different excitation was also used to detect coenzyme F420, a characteristic marker for viable methanogenic cells. At the National Ice Core Laboratory, systematic scans of a 1 meter core sections took about 15 minutes and generated ~5000 measurements per meter. The high-resolution of this work revealed strong variability of microbial content on a scale of cm within individual cores, which suggests that microbial deposition at polar sites is strongly influenced by meteorological events (e.g. storms) on subannual and interannual scales. In addition, high levels of microbes are found to correlate with anomalously high concentrations of metabolic gases (e.g. methane, nitrous oxide, and 18O/16O of O2), suggesting that many of the isolated "gas artifacts" identified in deep ice cores are the accumulated waste products of in situ metabolism. This means that fluorescence spectroscopy may be a useful tool for identifying regions where high microbial concentrations have contaminated gas records. The existing instrumentation is suitcase portable and could be easily deployed in a variety of environments. Future versions of these instruments may be practical for continuous, rapid scans of entire cores, as an on-site deployable technique for characterizing microbial abundances in ice, and for searching for as few as 1 microbe per cm3 in ice-bound planets. This work was supported by NSF grant ANT-0440609.

  9. Long-term High-Resolution Spectroscopy of γ Cas, ζ Tau, and π Aqr

    NASA Astrophysics Data System (ADS)

    Bjorkman, K. S.; Miroshnichenko, A. S.; Krugov, V. D.

    2000-05-01

    High-resolution spectroscopic data (λ λ 5285-6595 Angstroms) for three bright classical Be stars with unusual Hα profiles (γ Cas, ζ Tau, and π Aqr) have been obtained during the time period 1993-2000 at the Ritter Observatory of the University of Toledo. The data for γ Cas are supplemented by medium-resolution spectroscopy taken at the Terskol station of the Main Astronomical Observatory of the Ukranian Academy of Sciences. The stars show the presence of an additional variable (central) emission peak in the Hα line, which has a double-peaked profile in most stars of this type. Long-term radial velocity (RV) variations of H I, He I, Si II, and Fe II lines are detected in γ Cas and ζ Tau. The RV of the central peak of Hα in ζ Tau seem to follow the binary orbital motion (period 132.9 days) on top of the long-term variations (period 1420 days). In γ Cas this peak shows a constant trend towards negative velocities since 1993, which is opposite to the behavior of other emission lines. Short-term RV variations of the Hα emission peak with a period 84 days are found in π Aqr during its weak-disk phase (since 1996). This work has been supported in part by NASA grant NAG5-8054 to the Univ. of Toledo, and by a Cottrell Scholars Award to KSB from the Research Corporation. Support for Ritter Observatory has been provided in part by NSF grant AST-9024802, and in part by a grant from the Fund for Astrophysical Research.

  10. High-Resolution Spectroscopy of Stratospheric Ethane Following the Jupiter Impact of 2009

    NASA Technical Reports Server (NTRS)

    Fast, Kelly; Kostiuk, Theodor; Livengood, Timothy A.; Hewagama, Tilak; Amen, John

    2010-01-01

    We report on high-resolution infrared spectroscopy of ethane (C2H6) performed at the latitude of an impact site on Jupiter discovered on 19 July 2009 by A. Wesley from a location in Murrumbateman, Australia. The observations used the NASA Goddard Space Flight Center's Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. HIPWAC is a mid-infrared (9-12 microns) heterodyne spectrometer operating at the highest limit of spectral resolving power (lambda\\Delta\\lambda > l06), providing information on atmospheric constituent abundance and temperature through fully resolved tine shapes. Ethane is a stable trace product of methane photochemistry that is nearly uniformly mixed in Jupiter's stratosphere, providing an effective probe of that altitude region. Ethane emission line profiles near 11,74 microns in the Ug band were measured in Jupiter's stratosphere at 25 MHz (11.00083/cm) resolution. A sequence of spectra of ethane acquired over a range of longitude at the impact latitude (56S planetocentric) probes constituent abundance and temperature profile, both on and off the impact region. Near the site of the impact, ethane emission increased above levels measured well outside the impact region. Radiative transfer analysis indicates increased ethane mole fraction (30% greater). Variation in the measured continuum level and line intensities within 75deg of the impact longitude indicate the presence of an opacity source (haze) at altitudes near and above the tropopause and as high as the 10-mbar level near the impact site. The indication of possible haze opacity up to the 10-mbar level in the atmosphere is consistent with measurements made by HIPWAC's predecessor as part of the IRTF Shoemaker Levy-9 campaign in 1994.

  11. Imaging and high-resolution spectroscopy of the Planetary Nebula NGC 3242

    NASA Astrophysics Data System (ADS)

    Gómez-Muñoz, Marco Antonio; Wendolyn Blanco Cárdenas, Mónica; Vázquez, Roberto; Zavala, Saúl A.; Guillén, Pedro F.; Ayala, Sandra A.

    2015-08-01

    We present a high-resolution imaging and high-dispersion spectroscopy study of the complex morphological and kinematical structure of the planetary nebula NGC 3242. We analyze narrowband Hα, [O III] and [N II] images, addressing important morphological features: in the [O III] image we found one knot oriented to PA=-4°, in the [N II] image, three knots oriented at PA1=155°, PA2=+157°, and PA3=-45.5°, and in the Hα image, two bubbles in the internal region, one of them oriented toward SE and the other toward NW. Additionally we used the unsharp-masking technique and found faint structures in the halo that have not been studied before. These structures are presented in two pairs of arcs, one pair oriented toward PA=-35° and the other toward PA=140°. NGC 3242 is a morphologically rich PN with bubbles, asymmetrical outflows, and some knots in a double-shell nebular structure. Ground-based long-slit echelle spectra were obtained crossing NGC 3242 at twelve different positions to precisely determine kinematical features in the structure of the nebula. We obtain a systemic velocity of VLSR=-6.6 km/s. We have used the software SHAPE (Steffen et al. 2011, IEEE Trans. Vis. Comput. Graphics, 17, 454), to reconstruct a 3D model of NGC 3242 which fits all our observational data. Preliminary results (deprojected velocities and kinematical ages) of all these structures will be presented.This project has been supported by grant PAPIIT-DGAPA-UNAM IN107914. MWB is in grateful receipt of a DGAPA-UNAM postdoctoral scholarship. MAG acknowledges CONACYT for his graduate scholarship.

  12. IGRINS Near-IR High-resolution Spectroscopy of Multiple Jets around LkHα 234

    NASA Astrophysics Data System (ADS)

    Oh, Heeyoung; Pyo, Tae-Soo; Yuk, In-Soo; Park, Byeong-Gon; Park, Chan; Chun, Moo-Young; Pak, Soojong; Kim, Kang-Min; Sok Oh, Jae; Jeong, Ueejeong; Yu, Young Sam; Lee, Jae-Joon; Kim, Hwihyun; Hwang, Narae; Kaplan, Kyle; Pavel, Michael; Mace, Gregory; Lee, Hye-In; Nguyen Le, Huynh Anh; Lee, Sungho; Jaffe, Daniel T.

    2016-02-01

    We present the results of high-resolution near-IR spectroscopy toward the multiple outflows around the Herbig Be star LkHα 234 using the Immersion Grating Infrared Spectrograph. Previous studies indicate that the region around LkHα 234 is complex, with several embedded young stellar objects and the outflows associated with them. In simultaneous H- and K-band spectra from HH 167, we detected 5 [Fe ii] and 14 H2 emission lines. We revealed a new [Fe ii] jet driven by radio continuum source VLA 3B. Position-velocity diagrams of the H2 1-0 S(1) λ2.122 μm line show multiple velocity peaks. The kinematics may be explained by a geometrical bow shock model. We detected a component of H2 emission at the systemic velocity (VLSR = -10.2 km s-1) along the whole slit in all slit positions, which may arise from the ambient photodissociation region. Low-velocity gas dominates the molecular hydrogen emission from knots A and B in HH 167, which is close to the systemic velocity; [Fe ii] emission lines are detected farther from the systemic velocity, at VLSR = -100--130 km s-1. We infer that the H2 emission arises from shocked gas entrained by a high-velocity outflow. Population diagrams of H2 lines imply that the gas is thermalized at a temperature of 2500-3000 K and the emission results from shock excitation. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  13. High Resolution Far Infrared Fourier Transform Spectroscopy of the NH_2 Radical.

    NASA Astrophysics Data System (ADS)

    Martin-Drumel, M. A.; Pirali, O.; Balcon, D.; Vervloet, M.

    2011-06-01

    First identified toward Sgr B2, the NH_2 radical has recently been detected in the interstellar medium by the HIFI instrument on board of Herschel. Despite the fact that this radical has not been detected in brown dwarfs and exoplanets yet, it is already included in physical and chemical models of those environments (temperature higher than 2000 K expected in several objects). Its detection in those objects will depend on the existence of a reliable high temperature and high resolution spectroscopic database on the NH_2 radical.The absorption spectrum of NH_2 has been recorded between 15 and 700 Cm-1 at the highest resolution available using the Bruker IFS125HR Fourier transform interferometer connected to the far infrared AILES beamline at SOLEIL (R=0.001 Cm-1). The radical was produced by an electrical discharge (DC) through a continuous flow of NH_3 and He using the White-type discharge cell developped on the beamline (optical path: 24m). Thanks to the brilliance of the synchrotron radiation, more than 700 pure rotational transitions of NH_2 have been identified with high N values (NMax=25) in its fundamental and first excited vibrational modes. By comparison to the previous FT spectroscopic study on that radical in the FIR spectral range, asymmetric splitting as well as fine and hyperfine structure have been resolved for several transitions. E. F. Van Dishoeck, D. J. Jansen, P. Schilke, T. G. Phillips The Astrophysical Journal 416, L83-L86 (1993) C. M. Persson, J. H. Black, J. Cernicharo et al. Astronomy and Astrophysics 521, L45 (2010) K. Lodders and B. Fegley, Jr Icarus 155, 393-424 (2002) I. Morino and K. Kawaguchi Journal of Molecular Spectroscopy 182, 428-438 (1997)

  14. Superconducting tunnel junction x-ray detectors for high resolution spectroscopy

    SciTech Connect

    Labov, S., LLNL

    1998-06-01

    We are developing low-tcmpaature detectors for optical, ultraviolet, X-ray, and gamma-ray spectroscopy, and for biomolecular mass spectrometry. We present here a some of our recent work in developing these detectors and some of the first results in applying these detectors to X-ray fluorescence analysis. We have measured thin-film Nb/Al/Al{sub 2}O{sub 3}/Al/Nb superconducting tunnel junction (STJ) X-ray detectors in the 0 2 to 1 keV band with a range of different junction sizes and aluminum film thicknesses. In one case, we have achieved the statistical limit to the energy resolution in this band. We have measured the performance of these STJ detectors as a function of count rate. and demonstrated a resolution of 13 eV FWHM at 271 eV with an output count rate of 20,600 cts/s Using X rays from SSRL to study compos- ite materials, we have demonstrated that we can resolve the L lines of transition metals from the nearby K lines of light elements We describe the first use of a low-temperature X-ray detector to measure X-ray fluoresccncc from the dilute metal component in a protein.

  15. Ultraviolet Spectroscopy of Asteroid(4) Vesta

    NASA Technical Reports Server (NTRS)

    Li, Jian-Yang; Bodewits, Dennis; Feaga, Lori M.; Landsman, Wayne; A'Hearn, Michael F.; Mutchler, Max J.; Russell, Christopher T.; McFadden, Lucy A.; Raymond, Carol A.

    2011-01-01

    We report a comprehensive review of the UV-visible spectrum and rotational lightcurve of Vesta combining new observations by Hubble Space Telescope and Swift with archival International Ultraviolet Explorer observations. The geometric albedos of Vesta from 220 nm to 953 nm arc derived by carefully comparing these observations from various instruments at different times and observing geometries. Vesta has a rotationally averaged geometric albedo of 0.09 at 250 nm, 0.14 at 300 nm, 0.26 at 373 nm, 0.38 at 673 nm, and 0.30 at 950 nm. The linear spectral slope in the ultraviolet displays a sharp minimum ncar sub-Earth longitude of 20deg, and maximum in the eastern hemisphere. This is completely consistent with the distribution of the spectral slope in the visible wavelength. The uncertainty of the measurement in the ultraviolet is approx.20%, and in the visible wavelengths better than 10%. The amplitude of Vesta's rotational lightcurves is approx.10% throughout the range of wavelengths we observed, but is smaller at 950 nm (approx.6%) ncar the 1-micron mafic band center. Contrary to earlier reports, we found no evidence for any difference between the phasing of the ultraviolet and visible/ncar-infrared lightcurves with respect to sub-Earth longitude. Vesta's average spectrum between 220 and 950 nm can well be described by measured reflectance spectra of fine particle howardite-like materials of basaltic achondrite meteorites. Combining this with the in-phase behavior of the ultraviolet, visible. and ncar-infrared lightcurves, and the spectral slopes with respect to the rotational phase, we conclude that there is no global ultraviolet/visible reversal on Vesta. Consequently, this implies lack of global space weathering on Vesta. Keyword,: Asteroid Vesta; Spectrophotometry; Spectroscopy; Ultraviolet observations; Hubble Space Telescope observations

  16. Development of an Apparatus for High-Resolution Auger Photoelectron Coincidence Spectroscopy (APECS) and Electron Ion Coincidence (EICO) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto

    We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.

  17. Site-selective high-resolution X-ray absorption spectroscopy and high-resolution X-ray emission spectroscopy of cobalt nanoparticles.

    PubMed

    Kühn, Timna-Josua; Hormes, Josef; Matoussevitch, Nina; Bönnemann, Helmut; Glatzel, Pieter

    2014-08-18

    The special (macroscopic) properties of nanoparticles are mainly due to their large surface-to-volume ratio. Thus, the separate characterization of geometric and electronic properties of surface and bulk would be favorable for a better understanding of the properties of nanoparticles. Because of the chemical sensitivity of X-ray fluorescence lines, in particular those involving higher lying electronic states, high-resolution fluorescence-detected X-ray absorption spectra (HRFD-XAS) offer these opportunities. In this study, three types of wet-chemically synthesized Co nanoparticles, ∼6 nm in diameter with varying thicknesses of a protective shell, were investigated at the ID26 beamline of the European Synchrotron Radiation Facility. HRFD-XAS spectra at the Co K-edge, that is, X-ray absorption near-edge structure (HRFD-XANES) and extended X-ray absorption fine structure (HRFD-EXAFS) spectra, were recorded via detection of the Kβ1,3 fluorescence at specific energies. As these spectra are only partly site-selective due to a strong overlap of the emission lines, a numerical procedure was applied based on a least-squares fitting procedure, realized by singular value decomposition. The detailed analysis of the obtained site-selective spectra, regarding chemical composition and crystallographic phase, using measured and simulated FEFF9-based reference spectra, showed that the metallic core had mainly hexagonal close-packed structure with lattice constants matching bulk Co; the spectra for the shell could be satisfactorily fitted by a mixture of CoO and CoCO3; however, with an obvious need for at least a third compound. To obtain additional information about ligands attached to Co, valence-to-core X-ray emission spectra (VTC-XES) using the Kβ2,5 and the satellite structure Kβ″ and VTC-XANES spectra thereof were also recorded, by which the former results are confirmed. Further on, FEFF simulations indicate that a Co-N compound is a very likely candidate for the third

  18. The Wesleyan Hobby-Eberly High-Resolution Exoplanetary Atmospheric Transmission Spectroscopy Survey: Latest Results

    NASA Astrophysics Data System (ADS)

    Jensen, Adam G.; Redfield, S.; Cochran, W. D.; Endl, M.; Koesterke, L.; Barman, T. S.

    2013-01-01

    The Wesleyan Hobby-Eberly High-Resolution Exoplanetary Atmospheric Transmission Spectroscopy Survey (W[HE]2ATS2) has used the 9.2m Hobby-Eberly Telescope (HET) at McDonald Observatory to make observations of the transmission spectra of hot Jupiter atmospheres at high spectral resolution ( 60,000). This program has made the first ground-based detection of neutral sodium in an exoplanetary atmosphere (Redfield et al. 2008) and the first detection of exoplanetary Hα (Jensen et al. 2012). A primary goal of exoplanet characterization science is to press toward smaller, Earth-like atmospheres. Though such Earth-like atmospheres are largely beyond the reach of current instrumentation, the W[HE]2ATS2 program has obtained data on a hot Neptune-class planet and a highly irradiated hot Jupiter. The purpose of studying a hot Neptune is to explore a planet with a lower surface gravity and possibly a different atmospheric molecular weight and scale height. The goal of observing the irradiated hot Jupiter is to explore the effects of star-planet interactions on exoplanetary atmospheres. Though such a planet is not a precise analogy to Super-Earths or Earth-like planets, there is a great deal of interest in planets around relatively active M dwarf stars, where the habitable zone is much closer to the star and the star-planet interaction may have a great effect on the planet’s atmosphere. Here we present our initial results for our newest data, where we search for resonance absorption lines of alkali metals such as sodium and potassium, and nonthermally excited material such as n=2 hydrogen detected through Hα absorption. We also discuss directions for future work with the HET and the W[HE]2ATS2 program. This work is supported by the National Science Foundation through an Astronomy and Astrophysics Research Grant (AST-0903573). The Hobby-Eberly Telescope is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig

  19. High-resolution spectroscopy for Cepheids distance determination. IV. Time series of Hα line profiles

    NASA Astrophysics Data System (ADS)

    Nardetto, N.; Groh, J. H.; Kraus, S.; Millour, F.; Gillet, D.

    2008-10-01

    Context: In recent years, infrared interferometry has revealed the presence of faint dusty circumstellar envelopes (CSE) around Cepheids. However the size, shape, chemical nature, and the interaction of the CSE with the star itself are still under investigation. The presence of a CSE might have an effect on the angular diameter estimates used in the interferometric Baade-Wesselink and surface-brightness methods of determining the distance of Cepheids. Aims: By studying Hα profiles as a function of the period, we investigate the permanent mass loss and the CSE around Cepheids. Our high spectral- and time-resolution data, combined with a very good S/N, will be useful in constraining future hydrodynamical models of Cepheids atmosphere and their close environment. Methods: We present HARPS (High Accuracy Radial velocity Planetary Search project developed by the European Southern Observatory.) high-resolution spectroscopy (R = 120 000) of eight galactic Cepheids: R Tra, S Cru, Y Sgr, β Dor, zeta Gem, RZ Vel, ell Car, and RS Pup, providing a good period sampling (P = 3.39 d to P = 41.52 d). The Hα line profiles are described for all stars using a 2D (wavelength versus pulsation phase) representation. For each star, an average spectral line profile is derived, together with its first moment (γ-velocity) and its asymmetry (γ-asymmetry). Results: Short-period Cepheids show Hα line profiles following the pulsating envelope of the star, while long-period Cepheids show very complex line profiles and, in particular, large asymmetries. We find a new relationship between the period of Cepheids and their γ-velocities and -asymmetries. These results may be related to the dynamical structure of the atmosphere and to a permanent mass loss of Cepheids. In particular, we confirm for ell Car a dominant absorption component whose velocity is constant and nearly of zero km s-1 in the stellar rest frame. This component is attributed to the presence of circumstellar envelope

  20. Investigation of Exploding Wire Plasmas Using High Resolution Point Projection X-ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Knapp, Patrick

    2011-10-01

    We have determined the properties of plasma around and between two exploding wires using high-resolution x-ray absorption spectroscopy. Plasma densities and temperatures ranging from 1020 cm-3 and a few eV to 1017 cm-3 and 30 eV have been measured in experiments at Cornell University with two 25 μm aluminum (Al) wires spaced 1 mm apart driven by ~ 100 kA peak current pulses with 50 - 100 ns rise time. The wire plasma was backlit by the 1 . 4 - 1 . 6 keV continuum radiation produced by a Mo wire X-pinch. The spectrometer employed two spherically bent quartz crystals to record the absorption and backlighter spectra simultaneously. The transition between the dense Al wire core and the coronal plasma is seen as a transition from cold K-edge absorption to Mg-, Na- and finally Ne-like absorption at the boundary. In the plasma that accumulates between the wires, ionization states up to Be-Like Al have been seen. The spectrometer geometry and ~ 2 μm X-pinch source size provide 0 . 3 eV spectral resolution and 20 μm spatial resolution, enabling us to see 1 --> 2 satellite transitions as separate lines as well as O-, F- and N-like 1 --> 3 transitions that have not been seen before. A step wedge was used to calibrate the transmission, enabling density to be measured within 50 % and temperature to be measured within 25 % . A genetic algorithm was developed to fit synthetic spectra calculated using the collisional-radiative code SCRAM to the experimental spectra. In order to obtain agreement it was necessary to assume 3 plasma regions with variable thicknesses, thereby allowing the inferred plasma conditions to vary along the absorption path. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the National Nuclear Security Administration under DE-AC04-94AL85000 This research was carried out at Cornell University sponsored by the NNSA Stewardship Science Academic Alliances program under DOE agreement DE-FC03-02NA00057.

  1. The high-resolution microchannel plate detector for FUV spectroscopy in the BepiColombo mission

    NASA Astrophysics Data System (ADS)

    Murakami, Go; Ezawa, Fukuhiro; Yoshioka, Kazuo; Yoshikawa, Ichiro; Chassefiere, Eric; Maria, Jean-Luc

    Mariner-10 UV measurements and telescopic spectroscopy from the Earth identified six elements (Ca, Na, K, H, He, and O) in the Mercury's exosphere. Other species are expected, e.g. H2 , OH, and some noble gasses (Ar, Ne, and Xe). All species representative of the surface composition, directly produced by impact vaporization driven by micrometeoroids, physical sputtering, photo-stimulated desorption, and thermal desorption from the regolith, should also be present. To determine the composition of the Mercury's exosphere, the PHEBUS (Probing of Hermean Exosphere By Ultraviolet Spectroscopy) instrument on Mercury Planetary Orbiter (MPO) will measure the emission lines of the exosphere. PHEBUS is a dual FUV-EUV spectrometer working in the wavelength range from 55 to 315 nm. We are now developing the compact detector system sensitive to FUV airglow emissions of the Mercury. The FUV detector is required to have high spatial resolution (80 µm) so that the wavelength resolution of the PHEBUS instrument should be 2 nm at the FUV range. The FUV detector consists of a Cs2 Te photocathode, microchannel plates (MCPs), and a resistive anode encoder (RAE). In a position-sensitive system with an RAE, the spatial resolution is determined by the signal-to-noise ratios at the anode terminals. Therefore, a high and stable electron gain of MCPs allows the position determination of each photoelectron event with high spatial resolution. We studied a method for achieving a high and stable electron gain. We fabricated a test model of the FUV detector incorporating a clamped pair of MCPs (V-stack) followed by a gap and a clamped triplet of MCPs (Z-stack) in cascade. We have investigated the effect of the negative potential applied across the inter-stack (V-Z) gap on the PHD and the spatial resolution by means of calculation and experiments. The calculation with a simple ballistic model showed that the negative inter-stack potential reduced the size of the electron cloud by 70%. The result

  2. A HIGH-RESOLUTION PHOTOIONIZATION AND PHOTOELECTRON STUDY OF {sup 58}Ni USING A VACUUM ULTRAVIOLET LASER

    SciTech Connect

    Shi Xiaoyu; Huang Huang; Jacobson, Brian; Chang, Yih-Chung; Ng, C. Y.; Yin Qingzhu

    2012-03-01

    In order to provide high-resolution spectroscopic data of nickel ({sup 58}Ni) and its cation ({sup 58}Ni{sup +}) for the assignment of vacuum ultraviolet (VUV) stellar spectra, we have obtained the photoionization efficiency (PIE) spectra of {sup 58}Ni by using a supersonically cooled laser ablation transition-metal beam source and a broadly tunable VUV laser in the range of 61,100-73,600 cm{sup -1}, covering the photoionization transitions: Ni{sup +} (3d{sup 92} D) <- Ni (3d{sup 8}4s{sup 23} D), Ni{sup +}(3d{sup 92} D) <- Ni(3d{sup 8}4s{sup 23} F), and Ni{sup +} (3d{sup 8}4s{sup 4} F) <- Ni(3d{sup 8}4s{sup 23} F). We have also measured the VUV laser pulsed-field-ionization-photoelectron (PFI-PE) spectra of {sup 58}Ni in these regions. The VUV-PFI-PE measurement has allowed the determination of a precise value of 61,619.89 {+-} 0.8 cm{sup -1} (7.6399 {+-} 0.0001 eV) for the ionization energy (IE) of {sup 58}Ni. Due to the narrow VUV laser optical bandwidth of 0.4 cm{sup -1} used in the present study, many complex autoionizing resonances exhibiting Fano line shape profiles are resolved in the PIE spectra. Four autoionizing Rydberg series originating from two-electron and one-electron excitations from the Ni(3d{sup 8}4s{sup 23} F{sub 4}) ground state to converge to the respective Ni{sup +}({sup 2} D{sub 3/2}) and Ni{sup +}({sup 4} F{sub J} ) (J = 9/2, 7/2, and 5/2) ion states are identified. The Rydberg analysis, along with VUV-PFI-PE measurements, has yielded highly precise IE values for the formation of these excited ionic states from the Ni(3d{sup 8}4s{sup 23} F{sub 4}) ground state. The IE values, relative photoionization cross sections, and autoionizing Rydberg resonances observed in the present study are relevant to astrophysics by enhancing the atomic database of iron group transition metal atoms and for understanding the Ni and Ni{sup +} contribution to the VUV opacity in the solar atmosphere.

  3. Investigating Protostellar Carbon Reservoirs with High-Resolution Spectroscopy Toward Massive Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Smith, R. L.; Blake, G. A.; Boogert, A. C. A.; Pontoppidan, K. M.; Lockwood, A. C.

    2014-09-01

    High-resolution CO spectra toward massive YSOs reveal less dispersion in [12C16O]/[13C16O] gas compared to low-mass YSOs, while these ratios may be similarly affected by CO ice. Our new data suggest that CO2 may not originate from a CO reservoir.

  4. High-Resolution Vibration-Rotation Spectroscopy of CO[subscript 2]: Understanding the Boltzmann Distribution

    ERIC Educational Resources Information Center

    Castle, Karen J.

    2007-01-01

    In this undergraduate physical chemistry laboratory experiment, students acquire a high-resolution infrared absorption spectrum of carbon dioxide and use their data to show that the rotational-vibrational state populations follow a Boltzmann distribution. Data are acquired with a mid-infrared laser source and infrared detector. Appropriate…

  5. High-resolution three-dimensional spin- and angle-resolved photoelectron spectrometer using vacuum ultraviolet laser light

    NASA Astrophysics Data System (ADS)

    Yaji, Koichiro; Harasawa, Ayumi; Kuroda, Kenta; Toyohisa, Sogen; Nakayama, Mitsuhiro; Ishida, Yukiaki; Fukushima, Akiko; Watanabe, Shuntaro; Chen, Chuangtian; Komori, Fumio; Shin, Shik

    2016-05-01

    We describe a spin- and angle-resolved photoelectron spectroscopy (SARPES) apparatus with a vacuum-ultraviolet (VUV) laser (hν = 6.994 eV) developed at the Laser and Synchrotron Research Center at the Institute for Solid State Physics, The University of Tokyo. The spectrometer consists of a hemispherical photoelectron analyzer equipped with an electron deflector function and twin very-low-energy-electron-diffraction-type spin detectors, which allows us to analyze the spin vector of a photoelectron three-dimensionally with both high energy and angular resolutions. The combination of the high-performance spectrometer and the high-photon-flux VUV laser can achieve an energy resolution of 1.7 meV for SARPES. We demonstrate that the present laser-SARPES machine realizes a quick SARPES on the spin-split band structure of a Bi(111) film even with 7 meV energy and 0.7∘ angular resolutions along the entrance-slit direction. This laser-SARPES machine is applicable to the investigation of spin-dependent electronic states on an energy scale of a few meV.

  6. High-resolution three-dimensional spin- and angle-resolved photoelectron spectrometer using vacuum ultraviolet laser light.

    PubMed

    Yaji, Koichiro; Harasawa, Ayumi; Kuroda, Kenta; Toyohisa, Sogen; Nakayama, Mitsuhiro; Ishida, Yukiaki; Fukushima, Akiko; Watanabe, Shuntaro; Chen, Chuangtian; Komori, Fumio; Shin, Shik

    2016-05-01

    We describe a spin- and angle-resolved photoelectron spectroscopy (SARPES) apparatus with a vacuum-ultraviolet (VUV) laser (hν = 6.994 eV) developed at the Laser and Synchrotron Research Center at the Institute for Solid State Physics, The University of Tokyo. The spectrometer consists of a hemispherical photoelectron analyzer equipped with an electron deflector function and twin very-low-energy-electron-diffraction-type spin detectors, which allows us to analyze the spin vector of a photoelectron three-dimensionally with both high energy and angular resolutions. The combination of the high-performance spectrometer and the high-photon-flux VUV laser can achieve an energy resolution of 1.7 meV for SARPES. We demonstrate that the present laser-SARPES machine realizes a quick SARPES on the spin-split band structure of a Bi(111) film even with 7 meV energy and 0.7(∘) angular resolutions along the entrance-slit direction. This laser-SARPES machine is applicable to the investigation of spin-dependent electronic states on an energy scale of a few meV. PMID:27250396

  7. Sensitivity enhancement in high resolution stimulated Raman spectroscopy of gases with hollow-core photonic crystal fibers.

    PubMed

    Doménech, José Luis; Cueto, Maite

    2013-10-15

    We show the first experimental evidence of the sensitivity enhancement that can be achieved in high resolution stimulated Raman spectroscopy of gases using hollow-core photonic crystal fibers (HCPCFs). Using low power cw lasers and a HCPCF containing the gas, we have observed more than four orders of magnitude enhancement of sensitivity when compared with the cw single focus regime, and a similar sensitivity to that achieved in the more sensitive quasi-cw setups with multipass cells. PMID:24321926

  8. Coordination defects in bismuth-modified arsenic selenide glasses: High-resolution x-ray photoelectron spectroscopy measurements

    SciTech Connect

    Golovchak, Roman; Shpotyuk, Oleh

    2008-05-01

    The possibility of coordination defects formation in Bi-modified chalcogenide glasses is examined by high-resolution x-ray photoelectron spectroscopy. The results provide evidence for the formation of positively charged fourfold coordinated defects on As and Bi sites in glasses with low Bi concentration. At high Bi concentration, mixed As{sub 2}Se{sub 3}-Bi{sub 2}Se{sub 3} nanocrystallites are formed in the investigated Se-rich As-Se glasses.

  9. High-Resolution Spectroscopy of Auroras on Jupiter and Saturn/Earth Dayglow

    NASA Technical Reports Server (NTRS)

    Gladstone, G. Randall

    1999-01-01

    The purpose of the grant was to allow the researcher to: (1) reduce and analyze Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometers (ORFEUS) II observations of Jupiter (200s) and Saturn (1200s); (2) Reduce and analyze selected ORFEUS-II Earth Far Ultraviolet (FUV) airglow data; (3) Modify existing scripts for simulating Earth FUV airglow emissions to model a subset of the ORFEUS data.

  10. High-resolution Infrared Spectroscopy of Starspots on RS CVn Stars

    NASA Astrophysics Data System (ADS)

    O'Neal, D.; Neff, J. E.; Saar, S. H.

    1997-12-01

    We present results from a study of magnetically active stars using the PHOENIX infrared spectrograph at KPNO. We constrain starspot coverages on RS CVn stars using high-resolution observations of two temperature-sensitive OH lines near 1.563mu m (6397 cm(-1) ). The use of these features holds two advantages over the TiO bands that we have used previously: the OH lines are visible in spots up to ~ 4500 K; and spots are much brighter, relative to the unspotted photosphere, in the infrared than in the visible. These properties also make these OH lines excellent candidates for the first Doppler imaging study to use high-resolution observations of infrared spectral features. Using the OH lines, we also search for previously unknown secondary stars in ``single-lined'' RS CVn binary systems, including II Pegasi (HD 224085).

  11. High-resolution multiple quantum MAS NMR spectroscopy of half-integer quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Wu, Gang; Rovnyank, David; Sun, Boqin; Griffin, Robert G.

    1996-02-01

    We demonstrate the utility of a two-pulse sequence in obtaining high-resolution solid state NMR spectra of half-integer quadrupolar nuclei with magic-angle-spinning (MAS). The experiment, which utilizes multiple/single-quantum correlation, was first described in a different form by Frydman and Harwood [J. Am. Chem. Soc. 117 (1995) 5367] and yields high-resolution isotropic NMR spectra where shifts are determined by the sum of resonance offset (chemical shift) and second-order quadrupolar effects. The two-pulse sequence described here is shown to provide a higher and more uniform excitation of multiple-quantum coherence than the three-pulse sequence used previously.

  12. Differential high-resolution stimulated CW Raman spectroscopy of hydrogen in a hollow-core fiber.

    PubMed

    Westergaard, Philip G; Lassen, Mikael; Petersen, Jan C

    2015-06-15

    We demonstrate sensitive high-resolution stimulated Raman measurements of hydrogen using a hollow-core photonic crystal fiber (HC-PCF). The Raman transition is pumped by a narrow linewidth (< 50 kHz) 1064 nm continuous-wave (CW) fiber laser. The probe light is produced by a homebuilt CW optical parametric oscillator (OPO), tunable from around 800 nm to 1300 nm (linewidth ∼ 5 MHz). These narrow linewidth lasers allow for an excellent spectral resolution of approximately 10(-4) cm(-1). The setup employs a differential measurement technique for noise rejection in the probe beam, which also eliminates background signals from the fiber. With the high sensitivity obtained, Raman signals were observed with only a few mW of optical power in both the pump and probe beams. This demonstration allows for high resolution Raman identification of molecules and quantification of Raman signal strengths. PMID:26193604

  13. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    SciTech Connect

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.; Maryland Univ., College Park, MD . Dept. of Chemistry and Biochemistry; Lawrence Berkeley Lab., CA )

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeI{alpha} (584{angstrom}) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As{sub 2}, As{sub 4}, and ZnCl{sub 2} are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab.

  14. High resolution mass spectroscopy for the characterization of complex, fossil organic mixtures

    SciTech Connect

    Winans, R.E.; Haas, G.W.; Kim, Y.L.; Hunt, J.E.

    1995-12-31

    The nature of molecules with heteroatom functionality in the Argonne Premium Coal Samples and petroleum samples is being explored using high resolution mass spectrometry (HRMS). Both desorption electron impact and desorption chemical ionization (DCI) are used to sample the mixtures. Structural information is obtained from tandem MS experiments using high resolution to select the ions to fragment. The first DCI HRMS spectra of complex mixtures will be shown. Quantitative aspects and the method for obtaining precise mass measurements in chemical ionization will be discussed. Molecular weight distribution determined by DCI are similar to those determined by laser desorption and field ionization mass spectrometry with very little ion intensity observed at greater than 1000 Daltons. Results will be correlated with other techniques such as NMR, XPS, and XANES.

  15. High resolution X- and gamma-ray spectroscopy of cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1983-01-01

    A high resolution X-ray spectrometer and large area phoswich detector were designed and co-aligned in a common elevation mounting in order to measure solar and cosmic X-ray and gamma ray emission in the 13 to 600 KeV energy range from a balloon. The instrument is described and results obtained for the Crab Nebula, the supernova remnant Cas A, and the Sun are discussed and analyzed.

  16. New High Resolution Spectroscopy Studies of Methyl Nitrite CH_3ONO

    NASA Astrophysics Data System (ADS)

    Sironneau, V.; Chelin, P.; Tchana, F. Kwabia; Kleiner, I.; Orphal, J.; Pirali, O.; Guillemin, J.-C.; Margules, L.; Motiyenko, R.; Cooke, S.; Youngblood, W. J.; Agnew, A.; Dewberry, C. T.

    2010-06-01

    Methyl nitrite CH3ONO is an important species in atmospheric chemistry involved in photochemical oxidation of volatile organic compounds. The cis conformer (more stable by about 298 cm-1) has a high internal rotation potential barrier for the methyl group (731 cm-1) whereas for the trans conformer the barrier to internal rotation is extremely low (10 cm-1), leading to large internal rotation splittings. Only one high resolution infrared study was performed prior to this study. For the first time, high-resolution spectrum of CH3ONO was recorded in the far infrared region (30-500 cm-1) using the synchrotron SOLEIL far-infrared beamline (AILES) and a Fourier transform (FT) spectrometer. Some 987 lines were assigned for the cis isomer up to J=65 and combined with 66 previously recorded microwave lines. In addition, high-resolution spectrum of the ν9 band of the cis isomer around 627.9 cm-1 was also recorded using the FT spectrometer at LISA. New microwave data is currently recorded to improve the knowledge of both the cis and trans ground state parameters. P. N. Gosh, A. Bauder and Hs. H. Gunthard, Chem. Phys. 53, 39-60 (1980) P. H. Turner, M. J. Corkill, and A. P. Cox, J. Chem. Phys. 83, 1473-1482 1979) L. M. Goss, C. D. Mortensen and T. A. Blake, J. Mol. Spectrosc., 225, 182-188 (2004)

  17. Ultraviolet spectroscopy of R Coronae Borealis

    NASA Technical Reports Server (NTRS)

    Holm, A. V.; Doherty, L. R.

    1988-01-01

    Observations of the hydrogen-deficient supergiant R CrB were obtained with the IUE over an interval of 54 days in order to study the nature of this star's irregular, small-amplitude variations in light. By chance, the series of observations coincided with a dip in the light intermediate between the normal fluctuations and the deep declines associated with the formation of an obscuring dust cloud. High-resolution spectra have been used to search for radial velocity variations, while low-resolution spectra yield ultraviolet light curves down to 1810 A. Both types of spectra have been analyzed for indications of temperature changes. It is found that a combination of photospheric temperature variation and variable extinction is necessary to account for the details of the observations. A simple, ad hoc, periodic model is presented in which the amount of obscuring dust varies in proportion to the drop in temperature, but at a later time, reproduces the wavelength dependence of both the amplitudes and phase shifts of the light curves. The radial velocities are consistent with pulsation being responsible for the temperature variation.

  18. Coherent Vibrational Dynamics and High-Resolution Nonlinear Spectroscopy: A Comparison with the Air/DMSO Liquid Interface

    SciTech Connect

    Velarde Ruiz Esparza, Luis A.; Lu, Zhou; Wang, Hongfei

    2013-12-27

    In this report we present a comparative study on the C-H stretching vibrations at air/DMSO (dimethyl sulfoxide) interface with both the free-induction decay (FID) coherent vibrational dynamics and sub-wavenumber high resolution sum-frequency generation vibrational spectroscopy measurements. In principle the frequency-domain and time-domain spectroscopic measurements should generate identical information for a given molecular system. However, when the molecular systems are with several coupled or overlapping vibrational modes, to obtain detailed spectroscopic and coherent dynamics information is not as straightforward and rather difficult from either the time-domain or the frequency domain measurements. For the case of air/DMSO interface that is with moderately complex vibrational spectra, we show that the frequency-domain measurement with sub-wavenumber high-resolution SFGVS is probably more advantageous than the time-domain measurement in obtaining quantitative understanding of the structure and coherent dynamics of the molecular interface.

  19. Use of a Continuous Wave Laser and Pockels Cell for Sensitive High-Resolution Collinear Resonance Ionization Spectroscopy

    NASA Astrophysics Data System (ADS)

    de Groote, R. P.; Budinčević, I.; Billowes, J.; Bissell, M. L.; Cocolios, T. E.; Farooq-Smith, G. J.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Heylen, H.; Li, R.; Lynch, K. M.; Marsh, B. A.; Neyens, G.; Rossel, R. E.; Rothe, S.; Stroke, H. H.; Wendt, K. D. A.; Wilkins, S. G.; Yang, X.

    2015-09-01

    New technical developments have led to a 2 orders of magnitude improvement of the resolution of the collinear resonance ionization spectroscopy (CRIS) experiment at ISOLDE, CERN, without sacrificing the high efficiency of the CRIS technique. Experimental linewidths of 20(1) MHz were obtained on radioactive beams of francium, allowing us for the first time to determine the electric quadrupole moment of the short lived [t1 /2=22.0 (5 ) ms ] 219Fr Qs=-1.21 (2 ) eb , which would not have been possible without the advantages offered by the new method. This method relies on a continuous-wave laser and an external Pockels cell to produce narrow-band light pulses, required to reach the high resolution in two-step resonance ionization. Exotic nuclei produced at rates of a few hundred ions/s can now be studied with high resolution, allowing detailed studies of the anchor points for nuclear theories.

  20. Use of a Continuous Wave Laser and Pockels Cell for Sensitive High-Resolution Collinear Resonance Ionization Spectroscopy.

    PubMed

    de Groote, R P; Budinčević, I; Billowes, J; Bissell, M L; Cocolios, T E; Farooq-Smith, G J; Fedosseev, V N; Flanagan, K T; Franchoo, S; Garcia Ruiz, R F; Heylen, H; Li, R; Lynch, K M; Marsh, B A; Neyens, G; Rossel, R E; Rothe, S; Stroke, H H; Wendt, K D A; Wilkins, S G; Yang, X

    2015-09-25

    New technical developments have led to a 2 orders of magnitude improvement of the resolution of the collinear resonance ionization spectroscopy (CRIS) experiment at ISOLDE, CERN, without sacrificing the high efficiency of the CRIS technique. Experimental linewidths of 20(1) MHz were obtained on radioactive beams of francium, allowing us for the first time to determine the electric quadrupole moment of the short lived [t_{1/2}=22.0(5) ms] ^{219}Fr Q_{s}=-1.21(2) eb, which would not have been possible without the advantages offered by the new method. This method relies on a continuous-wave laser and an external Pockels cell to produce narrow-band light pulses, required to reach the high resolution in two-step resonance ionization. Exotic nuclei produced at rates of a few hundred ions/s can now be studied with high resolution, allowing detailed studies of the anchor points for nuclear theories. PMID:26451548

  1. HIGH-RESOLUTION XMM-NEWTON SPECTROSCOPY OF THE COOLING FLOW CLUSTER A3112

    SciTech Connect

    Bulbul, G. Esra; Smith, Randall K.; Foster, Adam; Cottam, Jean; Loewenstein, Michael; Mushotzky, Richard; Shafer, Richard

    2012-03-01

    We examine high signal-to-noise XMM-Newton European Photon Imaging Camera (EPIC) and Reflection Grating Spectrometer (RGS) observations to determine the physical characteristics of the gas in the cool core and outskirts of the nearby rich cluster A3112. The XMM-Newton Extended Source Analysis Software data reduction and background modeling methods were used to analyze the XMM-Newton EPIC data. From the EPIC data, we find that the iron and silicon abundance gradients show significant increase toward the center of the cluster while the oxygen abundance profile is centrally peaked but has a shallower distribution than that of iron. The X-ray mass modeling is based on the temperature and deprojected density distributions of the intracluster medium determined from EPIC observations. The total mass of A3112 obeys the M-T scaling relations found using XMM-Newton and Chandra observations of massive clusters at r{sub 500}. The gas mass fraction f{sub gas} = 0.149{sup +0.036}{sub -0.032} at r{sub 500} is consistent with the seven-year Wilkinson Microwave Anisotropy Probe results. The comparisons of line fluxes and flux limits on the Fe XVII and Fe XVIII lines obtained from high-resolution RGS spectra indicate that there is no spectral evidence for cooler gas associated with the cluster with temperature below 1.0 keV in the central <38'' ({approx}52 kpc) region of A3112. High-resolution RGS spectra also yield an upper limit to the turbulent motions in the compact core of A3112 (206 km s{sup -1}). We find that the contribution of turbulence to total energy is less than 6%. This upper limit is consistent with the energy contribution measured in recent high-resolution simulations of relaxed galaxy clusters.

  2. High Resolution UV Emission Spectroscopy of Molecules Excited by Electron Impact

    NASA Technical Reports Server (NTRS)

    James, G. K.; Ajello, J. M.; Beegle, L.; Ciocca, M.; Dziczek, D.; Kanik, I.; Noren, C.; Jonin, C.; Hansen, D.

    1999-01-01

    Photodissociation via discrete line absorption into predissociating Rydberg and valence states is the dominant destruction mechanism of CO and other molecules in the interstellar medium and molecular clouds. Accurate values for the rovibronic oscillator strengths of these transitions and predissociation yields of the excited states are required for input into the photochemical models that attempt to reproduce observed abundances. We report here on our latest experimental results of the electron collisional properties of CO and N2 obtained using the 3-meter high resolution single-scattering spectroscopic facility at JPL.

  3. High resolution spectroscopy of the new FU Orionis object BBW 76

    NASA Astrophysics Data System (ADS)

    Eisloeffel, J.; Hessman, F. V.; Mundt, R.

    1990-06-01

    High-resolution spectra of the new FU Orionis object BBW 76 are presented. Although the photometric outburst of this FU Orionis object could not be observed, its spectral characteristics clearly identify it as belonging to this class. BBW 76 shows Balmer line profiles typical for FU Orionis stars. Its absorption line spectrum and, in particular, the line widths are strikingly similar to that of FU Ori. Other similarities to FU Ori are the presence of an arclike nebula, and the FIR luminosities and color temperatures.

  4. High-resolution spectroscopy with the multi-anode microchannel array detector systems

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Joseph, C. L.; Wolf, S. C.

    1982-01-01

    The results of a series of high-resolution spectroscopic observations undertaken with a linear (1 x 1024)-pixel visible-light Multi-Anode Microchannel Array (MAMA) detector on the Coudespectrograph of the 2.2-meter telescope at the Mauna Kea Observatory and on the vacuum spectrograph of the McMath Solar telescope at the Kitt Peak National Observatory are described. In addition, the two-dimensional MAMA detector systems with (16 x 1024)-pixel, (24 x 1024)-pixel, and (256 x 1024)-pixel formats which are now being readied for use in a series of ground-based, balloon, and sounding-rocket observing programs are briefly described.

  5. Analysis of the Thermal Degradation of the Individual Anthocyanin Compounds of Black Carrot (Daucus carota L.): A New Approach Using High-Resolution Proton Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Iliopoulou, Ioanna; Thaeron, Delphine; Baker, Ashley; Jones, Anita; Robertson, Neil

    2015-08-12

    The black carrot dye is a mixture of cyanidin molecules, the nuclear magnetic resonance (NMR) spectrum of which shows a highly overlapped aromatic region. In this study, the (1)H NMR (800 MHz) aromatic chemical shifts of the mixture were fully assigned by overlaying them with the characterized (1)H NMR chemical shifts of the separated compounds. The latter were isolated using reverse-phase high-performance liquid chromatography (RP-HPLC), and their chemical shifts were identified using (1)H and two-dimensional (2D) correlation spectroscopy (COSY) NMR spectroscopy. The stability of the black carrot mixture to heat exposure was investigated at pH 3.6, 6.8, and 8.0 by heat-treating aqueous solutions at 100 °C and the powdered material at 180 °C. From integration of high-resolution (1)H NMR spectra, it was possible to follow the relative degradation of each compound, offering advantages over the commonly used ultraviolet/visible (UV/vis) and HPLC approaches. UV/vis spectroscopy and CIE color measurements were used to determine thermally induced color changes, under normal cooking conditions. PMID:26160425

  6. Synthesis, High-Resolution Infrared Spectroscopy, and Vibrational Structure of Cubane, C8H8.

    PubMed

    Boudon, V; Lamy, M; Dugue-Boyé, F; Pirali, O; Gruet, S; D'Accolti, L; Fusco, C; Annese, C; Alikhani, M E

    2016-06-30

    Carbon-cage molecules have generated a considerable interest from both experimental and theoretical points of view. We recently performed a high-resolution study of adamantane (C10H16), the smallest hydrocarbon cage belonging to the diamandoid family ( Pirali , O. ; et al. J. Chem. Phys. 2012 , 136 , 024310 ). There exist another family of hydrocarbon cages with additional interesting chemical properties: the so-called platonic hydrocarbons that comprise dodecahedrane (C20H20) and cubane (C8H8). Both possess C-C bond angles that deviate from the tetrahedral angle (109.8°) of the sp(3) hybridized form of carbon. This generates a considerable strain in the molecule. We report a new wide-range high-resolution study of the infrared spectrum of cubane. The sample was synthesized in Bari upon decarboxylation of 1,4-cubanedicarboxylic acid thanks to the improved synthesis of literature. Several spectra have been recorded at the AILES beamline of the SOLEIL synchrotron facility. They cover the 600-3200 cm(-1) region. Besides the three infrared-active fundamentals (ν10, ν11, and ν12), we could record many combination bands, all of them displaying a well-resolved octahedral rotational structure. We present here a preliminary analysis of some of the recorded bands, performed thanks the SPVIEW and XTDS software, based on the tensorial formalism developed in the Dijon group. A comparison with ab initio calculations, allowing to identify some combination bands, is also presented. PMID:27267150

  7. Spatially resolved high resolution x-ray spectroscopy for magnetically confined fusion plasmas (invited)

    SciTech Connect

    Ince-Cushman, A.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Marmar, E. S.; Bitter, M.; Hill, K. W.; Scott, S.; Gu, M. F.; Eikenberry, E.; Broennimann, Ch.; Lee, S. G.

    2008-10-15

    The use of high resolution x-ray crystal spectrometers to diagnose fusion plasmas has been limited by the poor spatial localization associated with chord integrated measurements. Taking advantage of a new x-ray imaging spectrometer concept [M. Bitter et al., Rev. Sci. Instrum. 75, 3660 (2004)], and improvements in x-ray detector technology [Ch. Broennimann et al., J. Synchrotron Radiat. 13, 120 (2006)], a spatially resolving high resolution x-ray spectrometer has been built and installed on the Alcator C-Mod tokamak. This instrument utilizes a spherically bent quartz crystal and a set of two dimensional x-ray detectors arranged in the Johann configuration [H. H. Johann, Z. Phys. 69, 185 (1931)] to image the entire plasma cross section with a spatial resolution of about 1 cm. The spectrometer was designed to measure line emission from H-like and He-like argon in the wavelength range 3.7 and 4.0 A with a resolving power of approximately 10 000 at frame rates up to 200 Hz. Using spectral tomographic techniques [I. Condrea, Phys. Plasmas 11, 2427 (2004)] the line integrated spectra can be inverted to infer profiles of impurity emissivity, velocity, and temperature. From these quantities it is then possible to calculate impurity density and electron temperature profiles. An overview of the instrument, analysis techniques, and example profiles are presented.

  8. High-resolution subtyping of Staphylococcus aureus strains by means of Fourier-transform infrared spectroscopy.

    PubMed

    Johler, Sophia; Stephan, Roger; Althaus, Denise; Ehling-Schulz, Monika; Grunert, Tom

    2016-05-01

    Staphylococcus aureus causes a variety of serious illnesses in humans and animals. Subtyping of S. aureus isolates plays a crucial role in epidemiological investigations. Metabolic fingerprinting by Fourier-transform infrared (FTIR) spectroscopy is commonly used to identify microbes at species as well as subspecies level. In this study, we aimed to assess the suitability of FTIR spectroscopy as a tool for S. aureus subtyping. To this end, we compared the subtyping performance of FTIR spectroscopy to other subtyping methods such as pulsed field gel electrophoresis (PFGE) and spa typing in a blinded experimental setup and investigated the ability of FTIR spectroscopy for identifying S. aureus clonal complexes (CC). A total of 70 S. aureus strains from human, animal, and food sources were selected, for which clonal complexes and a unique virulence and resistance gene pattern had been determined by DNA microarray analysis. FTIR spectral analysis resulted in high discriminatory power similar as obtained by spa typing and PFGE. High directional concordance was found between FTIR spectroscopy based subtypes and capsular polysaccharide expression detected by FTIR spectroscopy and the cap specific locus, reflecting strain specific expression of capsular polysaccharides and/or other surface glycopolymers, such as wall teichoic acid, peptidoglycane, and lipoteichoic acid. Supervised chemometrics showed only limited possibilities for differentiation of S. aureus CC by FTIR spectroscopy with the exception of CC45 and CC705. In conclusion, FTIR spectroscopy represents a valuable tool for S. aureus subtyping, which complements current molecular and proteomic strain typing. PMID:27021524

  9. High-Resolution Infrared Spectroscopy of Cubane, C_8H_8

    NASA Astrophysics Data System (ADS)

    Boudon, Vincent; Pirali, Olivier; Gruet, Sébastien; D'accolti, Lucia; Fusco, Caterina; Annese, Cosimo

    2014-06-01

    Carbon-cage molecules have generated a considerable interest from both experimental and theoretical point of views. We recently performed a high-resolution study of adamantane (C10H16), the smallest hydrocarbon cage belonging to the diamandoid family. There exist another family of hydrocarbon cages with additional interesting chemical properties: the so-called Platonic hydrocarbons that comprise dodecahedrane (C20H20) and cubane (C_8H_8). Both possess C-C bond angles that deviate from the tetrahedral angle (109.8°) of the sp^3 hybridized form of carbon. This generates a considerable strain in the molecule. Cubane itself has the highest density of all hydrocarbons (1.29 g/cm^3). This makes it able to store larges amounts of energy, although the molecule is fully stable. Up to now, only one high-resolution study of cubane has been performed on a few bands [2]. We report here a new wide-range high-resolution study of the infrared spectrum of cubane. The sample was synthesized in Bari upon decarboxylation of 1,4-cubanedicarboxylic acid thanks to the improved synthesis of literature [3]; its {}1H and 13C NMR, FTIR, and mass spectrometry agreed with reported data [4]. Several spectra have been recorded at the AILES beamline of the SOLEIL French synchrotron facility. They cover the 800 to 3100 cm-1 region. Besides the three infrared-active fundamentals (ν10, ν11 and ν12), we could record many combination bands, all of them displaying a well-resolved octahedral rotational structure. We present here a preliminary analysis of some of the recorded bands, performed thanks the SPVIEW and XTDS software, based on the tensrorial formalism developed in the Dijon group [5]. [1] O. Pirali, V. Boudon, J. Oomens, M. Vervloet, J. Chem. Phys., 136, 024310 (2012). [2] A. S. Pine, A. G. Maki, A. G. Robiette, B. J. Krohn, J. K. G. Watson, Th. Urbanek, J. Am. Chem. Soc., 106, 891-897 (1984). [3] P. E. Eaton, N. Nordari, J. Tsanaktsidis, P. S. Upadhyaya, Synthesis, 1, 501, (1995). [4] E

  10. High resolution infrared spectroscopy: Some new approaches and applications to planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.

    1978-01-01

    The principles of spectral line formation and of techniques for retrieval of atmospheric temperature and constituent profiles are discussed. Applications to the atmospheres of Earth, Mars, Venus, and Jupiter are illustrated by results obtained with Fourier transform and infrared heterodyne spectrometers at resolving powers (lambda/delta hyperon lambda of approximately 10,000 and approximately 10 to the seventh power), respectively, showing the high complementarity of spectroscopy at these two widely different resolving powers. The principles of heterodyne spectroscopy are presented and its applications to atmospheric probing and to laboratory spectroscopy are discussed. Direct absorption spectroscopy with tuneable semiconductor lasers is discussed in terms of precision frequency-and line strength-measurements, showing substantial advances in laboratory infrared spectroscopy.

  11. High-resolution photoassociation spectroscopy of the 6Li2 A(11Σu+) state

    NASA Astrophysics Data System (ADS)

    Gunton, Will; Semczuk, Mariusz; Dattani, Nikesh S.; Madison, Kirk W.

    2013-12-01

    We present spectroscopic measurements of seven vibrational levels v=29-35 of the A(11Σu+) excited state of Li2 molecules by the photoassociation of a degenerate Fermi gas of 6Li atoms. The absolute uncertainty of our measurements is ±0.00002 cm-1 (±600 kHz) and we use these new data to further refine an analytic potential for this state. This work provides high accuracy photoassociation resonance locations essential for the eventual high-resolution mapping of the X(11Σg+) state enabling further improvements to the s-wave scattering length determination of Li and enabling the eventual creation of ultracold ground-state 6Li2 molecules.

  12. High-resolution spectroscopy and mode identification in non-radially pulsating stars

    NASA Astrophysics Data System (ADS)

    Pollard, K. R.; Wright, D. J.; Zima, W.; Cottrell, P. L.; De Cat, P.

    2008-12-01

    We have obtained high-resolution spectroscopic data of a sample of non-radially pulsating stars with the HERCULES spectrograph on the 1.0-m telescope at the Mt John University Observatory in New Zealand. We have developed and used a new technique which cross- correlates stellar spectra with scaled delta function templates to obtain high signal-to-noise representative spectral line profiles for further analysis. Using these profiles, and employing the Fourier Parameter Fit method, we have been able to place constraints on the degree, ℓ, and azimuthal order, m, of the non-radial pulsation modes in one β Cephei star, V2052 Oph and two γ Doradus stars, QW Pup and HD 139095.

  13. High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited).

    PubMed

    Forrest, C J; Radha, P B; Glebov, V Yu; Goncharov, V N; Knauer, J P; Pruyne, A; Romanofsky, M; Sangster, T C; Shoup, M J; Stoeckl, C; Casey, D T; Gatu-Johnson, M; Gardner, S

    2012-10-01

    The areal density (ρR) of cryogenic DT implosions on Omega is inferred by measuring the spectrum of neutrons that elastically scatter off the dense deuterium (D) and tritium (T) fuel. Neutron time-of-flight (nTOF) techniques are used to measure the energy spectrum with high resolution. High signal-to-background data has been recorded on cryogenic DT implosions using a well-collimated 13.4-m line of sight and an nTOF detector with an advanced liquid scintillator compound. An innovative method to analyze the elastically scattered neutron spectra was developed using well-known cross sections of the DT nuclear reactions. The estimated areal densities are consistent with alternative ρR measurements and 1-D simulations. PMID:23126921

  14. High-resolution NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids.

    PubMed

    Nucci, Nathaniel V; Valentine, Kathleen G; Wand, A Joshua

    2014-04-01

    High-resolution multi-dimensional solution NMR is unique as a biophysical and biochemical tool in its ability to examine both the structure and dynamics of macromolecules at atomic resolution. Conventional solution NMR approaches, however, are largely limited to examinations of relatively small (<25kDa) molecules, mostly due to the spectroscopic consequences of slow rotational diffusion. Encapsulation of macromolecules within the protective nanoscale aqueous interior of reverse micelles dissolved in low viscosity fluids has been developed as a means through which the 'slow tumbling problem' can be overcome. This approach has been successfully applied to diverse proteins and nucleic acids ranging up to 100kDa, considerably widening the range of biological macromolecules to which conventional solution NMR methodologies may be applied. Recent advances in methodology have significantly broadened the utility of this approach in structural biology and molecular biophysics. PMID:24656086

  15. High resolution FTIR spectroscopy of 1,1,1,2-tetrafluoroethane: ν6

    NASA Astrophysics Data System (ADS)

    Thompson, Christopher D.; Robertson, Evan G.; Evans, Corey J.; McNaughton, Don

    2003-03-01

    High resolution FTIR spectra of 1,1,1,2-tetrafluoromethane (R134a) were recorded using both an enclosive flow cell and a supersonic jet expansion. The temperature in the collisionally cooled enclosive flow was approximately 150 K, whilst in the jet a rotational temperature of 65 K was achieved. A rovibrational analysis was performed for ν6, an a/b hybrid band at 1104.5 cm-1. Least squares fits were used to derive effective rotational and centrifugal distortion constants for ν6 using a total of 799 assigned transitions with quantum numbers up to Ka=21 and J=32. A second fit is presented considering the Coriolis interactions with two dark state combination bands perturbing the rotational structure of the fundamental, fitting a total of 1118 lines and with quantum numbers up to Ka=21 and J=42.

  16. High resolution gamma-ray spectroscopy applied to bulk sample analysis

    SciTech Connect

    Kosanke, K.L.; Koch, C.D.; Wilson, R.D.

    1980-01-01

    A high resolution Ge(Li) gamma-ray spectrometer has been installed and made operational for use in routine bulk sample analysis by the Bendix Field Engineering Corporation (BFEC) geochemical analysis department. The Ge(Li) spectrometer provides bulk sample analyses for potassium, uranium, and thorium that are superior to those obtained by the BFEC sodium iodide spectrometer. The near term analysis scheme permits a direct assay for uranium that corrects for bulk sample self-absorption effects and is independent of the uranium/radium disequilibrium condition of the sample. A more complete analysis scheme has been developed that fully utilizes the gamma-ray data provided by the Ge(Li) spectrometer and that more properly accounts for the sample self-absorption effect. This new analysis scheme should be implemented on the BFEC Ge(Li) spectrometer at the earliest date.

  17. High-resolution spectroscopy of jet-cooled CH{sub 5}{sup +}: Progress

    SciTech Connect

    Savage, C.; Dong, F.; Nesbitt, D. J.

    2015-01-22

    Protonated methane (CH{sub 5}{sup +}) is thought to be a highly abundant molecular ion in interstellar medium, as well as a potentially bright μwave- mm wave emitter that could serve as a tracer for methane. This paper describes progress and first successful efforts to obtain a high resolution, supersonically cooled spectrum of CH{sub 5}{sup +} in the 2900-3100 cm{sup −1} region, formed in a slit supersonic discharge at low jet temperatures and with sub-Doppler resolution. Short term precision in frequency measurement (< 5 MHz on an hour time scale) is obtained from a thermally controlled optical transfer cavity servoloop locked onto a frequency stabilized HeNe laser. Long term precision (< 20 MHz day-to-day) due to pressure, temperature and humidity dependent index of refraction effects in the optical transfer cavity is also present and discussed.

  18. High Resolution Near-IR Spectroscopy of Protostars With Large Telescopes

    NASA Technical Reports Server (NTRS)

    Greene, Tom; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    It is now possible to measure absorption spectra of Class I protostars using D greater than or = 8m telescopes equipped with sensitive cryogenic IR spectrographs. Our latest high-resolution (R approx. 20,000) Keck data reveal that Class I protostars are indeed low-mass stars with dwarf-like features. However, they differ from T Tauri stars in that Class I protostars have much higher IR veilings (tau(sub k) greater than or = 1 - 3+) and they are rotating quickly, v sin i greater than 20 km/s. Interestingly, the vast majority of protostellar absorption spectra show stellar - not disk - absorption features. A preliminary H-R diagram suggests that protostellar photospheres may have different physical structures than T Tauri stars, perhaps due to their higher accretion rates.

  19. High-resolution NMR spectroscopy of biological tissues usingprojected Magic Angle Spinning

    SciTech Connect

    Martin, Rachel W.; Jachmann, Rebecca C.; Sakellariou, Dimitris; Nielsen, Ulla Gro; Pines, Alexander

    2005-01-27

    High-resolution NMR spectra of materials subject toanisotropic broadening are usually obtained by rotating the sample aboutthe magic angle, which is 54.7 degrees to the static magnetic field. Inprojected Magic Angle Spinning (p-MAS), the sample is spun about twoangles, neither of which is the magic angle. This provides a method ofobtaining isotropic spectra while spinning at shallow angles. The p-MASexperiment may be used in situations where spinning the sample at themagic angle is not possible due to geometric or other constraints,allowing the choice of spinning angle to be determined by factors such asthe shape of the sample, rather than by the spin physics. The applicationof this technique to bovine tissue samples is demonstrated as a proof ofprinciple for future biological or medical applications.

  20. High-resolution NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids

    NASA Astrophysics Data System (ADS)

    Nucci, Nathaniel V.; Valentine, Kathleen G.; Wand, A. Joshua

    2014-04-01

    High-resolution multi-dimensional solution NMR is unique as a biophysical and biochemical tool in its ability to examine both the structure and dynamics of macromolecules at atomic resolution. Conventional solution NMR approaches, however, are largely limited to examinations of relatively small (<25 kDa) molecules, mostly due to the spectroscopic consequences of slow rotational diffusion. Encapsulation of macromolecules within the protective nanoscale aqueous interior of reverse micelles dissolved in low viscosity fluids has been developed as a means through which the ‘slow tumbling problem' can be overcome. This approach has been successfully applied to diverse proteins and nucleic acids ranging up to 100 kDa, considerably widening the range of biological macromolecules to which conventional solution NMR methodologies may be applied. Recent advances in methodology have significantly broadened the utility of this approach in structural biology and molecular biophysics.

  1. High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited)

    SciTech Connect

    Forrest, C. J.; Radha, P. B.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Pruyne, A.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J. III; Stoeckl, C.; Casey, D. T.; Gatu-Johnson, M.; Gardner, S.

    2012-10-15

    The areal density ({rho}R) of cryogenic DT implosions on Omega is inferred by measuring the spectrum of neutrons that elastically scatter off the dense deuterium (D) and tritium (T) fuel. Neutron time-of-flight (nTOF) techniques are used to measure the energy spectrum with high resolution. High signal-to-background data has been recorded on cryogenic DT implosions using a well-collimated 13.4-m line of sight and an nTOF detector with an advanced liquid scintillator compound. An innovative method to analyze the elastically scattered neutron spectra was developed using well-known cross sections of the DT nuclear reactions. The estimated areal densities are consistent with alternative {rho}R measurements and 1-D simulations.

  2. High-resolution photoassociation spectroscopy of ultracold ytterbium atoms by using the intercombination transition.

    PubMed

    Tojo, Satoshi; Kitagawa, Masaaki; Enomoto, Katsunari; Kato, Yutaka; Takasu, Yosuke; Kumakura, Mitsutaka; Takahashi, Yoshiro

    2006-04-21

    We observed high-resolution photoassociation spectra of laser-cooled ytterbium (Yb) atoms in the spin-forbidden 1S0 - 3P1 intercombination line. The rovibrational levels in the 0u+ state were measured for red detunings of the photoassociation laser ranging from 2.9 MHz to 1.97 GHz with respect to the atomic resonance. The rotational splitting of the vibrational levels near the dissociation limit were fully resolved due to the sub-MHz linewidth of the spectra in contrast to previous measurements using the spin-allowed singlet transition. In addition, from a comparison between the spectra of 174Yb and those of 176Yb, a d-wave shape resonance for 174Yb is strongly suggested. PMID:16712155

  3. CARMENES at PPVI. High-Resolution Spectroscopy of M Dwarfs with FEROS, CAFE and HRS

    NASA Astrophysics Data System (ADS)

    Alonso-Floriano, F. J.; Montes, D.; Jeffers, S.; Caballero, J. A.; Zechmeister, M.; Mundt, R.; Reiners, A.; Amado, P. J.; Casal, E.; Cortés-Contreras, M.; Modroño, Z.; Ribas, I.; Rodríguez-López, C.; Quirrenbach, A.

    2013-07-01

    To ensure an efficient use of CARMENES observing time, and the highest chances of success, it is necessary first to select the most promising targets. To achieve this, we are observing ~500 M dwarfs at high-resolution (R = 30,000-48,000), from which we determine the projected rotational velocity vsini with an accuracy better than 0.5-0.2 km/s and radial-velocity stability better than 0.2-0.1 km/s. Our aim is to have at least two spectra at different epochs of the final 300 CARMENES targets. Our observations with FEROS at ESO/MPG 2.2m La Silla , CAFE at 2.2m Calar Alto and HRS at Hobby Eberly Telescope allow us to identify single- and double-line spectroscopic binaries and, especially, fast rotators, which should be discarded from the target list for exoplanet searches. Here we present preliminary results.

  4. Improving Ramsey spectroscopy in the extreme-ultraviolet region with a random-sampling approach

    SciTech Connect

    Eramo, R.; Bellini, M.; Corsi, C.; Liontos, I.; Cavalieri, S.

    2011-04-15

    Ramsey-like techniques, based on the coherent excitation of a sample by delayed and phase-correlated pulses, are promising tools for high-precision spectroscopic tests of QED in the extreme-ultraviolet (xuv) spectral region, but currently suffer experimental limitations related to long acquisition times and critical stability issues. Here we propose a random subsampling approach to Ramsey spectroscopy that, by allowing experimentalists to reach a given spectral resolution goal in a fraction of the usual acquisition time, leads to substantial improvements in high-resolution spectroscopy and may open the way to a widespread application of Ramsey-like techniques to precision measurements in the xuv spectral region.

  5. An atomic beam of 6Li — 7Li for high resolution spectroscopy from matrix isolation sublimation

    NASA Astrophysics Data System (ADS)

    Oliveira, A. N.; Sacramento, R. L.; Silva, B. A.; Uhlmann, F. O.; Wolff, W.; Cesar, C. L.

    2016-07-01

    We propose the Matrix Isolation Sublimation (MlSu) technique for generating cold lithium atoms for the measurement of the 6Li - 7Li isotope shift in D1 and D2 transitions. The technique is capable of generating cold 6Li and 7Li beams at 4 K with forward velocity of 125 m/s. Using this beam we offer a distinguished source of lithium atoms for transitions measurements, adding a new possibility to make high resolution spectroscopy towards improving the experimental checks of the theory.

  6. High-resolution Inductively Coupled Plasma--Atomic Emission Spectroscopy applied to problems in Nuclear Waste Management

    SciTech Connect

    Edelson, M.C.; Winge, R.K.; Eckels, D.E. ); Douglas, J.G. )

    1990-01-01

    High-resolution Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) is a variant of the more conventional ICP-AES that is widely used for environmental monitoring. The relevance of high-resolution capabilities of three such analytical problems are discussed herein. (1) Pu in very complex, radioactive matrices can be determined with good accuracy without the need for prior chemical separations. Isotopically resolved spectra from actinides in fuel dissolver solutions can be obtained after a simple ion-exchange step. (2) High-resolution methods permit the simultaneous determination of fission products and actinides in simulated high-level nuclear waste solutions. Such measurements can be useful for both safeguards and waste processing. (3) The ICP-AES technique, with a photodiode array detector, can be used to determine the composition of nuclear waste glasses. Such measurements can assist the glass producer as well as providing predictors of nuclear waste form performance in a repository. 16 refs., 5 figs., 4 tabs.

  7. High Resolution X-Ray Absorption Spectroscopy: Distribution of Matter in and around Galaxies

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert; MIT/CAT Team

    2015-10-01

    The chemical evolution of the Universe embraces aspects that reachdeep into modern astrophysics and cosmology. We want to know how present and past matter is affected by various levels and types of nucleo-synthesis and stellar evolution. Three major categories were be identified: 1. The study of pre-mordial star formation including periods of super-massive black hole formation, 2. The embedded evolution of the intergalactic medium IGM, 3. The status and evolution of stars and the interstellar medium ISM in galaxies. Today a fourth category relates to our understanding of dark matter in relationwith these three categories. The X-ray band is particularly sensitive to K- and L-shell absorption and scattering from high abundant elements like C, N, O, Ne, Mg, Si, S,Ar, Ca, Fe, and Ni. Like the Lyman alpha forest in the optical band, absorbers in the IGM produce an X-ray line forest along the line of sight in the X-rayspectrum of a background quasar. Similary bright X-ray sources within galaxies and the Milky Way produce a continuum, which is being absorbed by elements invarious phases of the ISM. High resolution X-ray absorption surveys are possible with technologies ready for flight within decade. == high efficiency X-ray optics with optical performance 3== high resolution X-ray gratings with R 3000 for E 1.5 keV== X-ray micro-calorimeters with R 2000 for E 1.5 keV. The vision for the next decade needs to lead to means and strategies which allows us to perform such absorption surveys as effectively as surveys are now or in very near future quite common in astronomy pursued in other wave length bands such as optical, IR, and sub-mm.

  8. Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy.

    PubMed

    Kuse, Naoya; Ozawa, Akira; Kobayashi, Yohei

    2013-05-01

    We demonstrate a fiber Bragg grating (FBG) strain sensor with optical frequency combs. To precisely characterize the optical response of the FBG when strain is applied, dual-comb spectroscopy is used. Highly sensitive dual-comb spectroscopy of the FBG enabled strain measurements with a resolution of 34 nε. The optical spectral bandwidth of the measurement exceeds 1 THz. Compared with conventional FBG strain sensor using a continuous-wave laser that requires rather slow frequency scanning with a limited range, the dynamic range and multiplexing capability are significantly improved by using broadband dual-comb spectroscopy. PMID:23669971

  9. Estimation of porphyrin concentration in the kerogen fraction of shales using high-resolution reflectance spectroscopy

    NASA Technical Reports Server (NTRS)

    Holden, Peter N.; Gaffey, Michael J.; Sundararaman, P.

    1991-01-01

    An interpretive model for estimating porphyrin concentration in bitumen and kerogen from spectral reaflectance data in the visible and near-ultraviolet region of the spectrum is derived and calibrated. Preliminary results obtained using the model are consistent with concentrations determined from the bitumen extract and suggest that 40 to 60 percent of the total porphyrin concentration remains in the kerogen after extraction of bitumen from thermally immature samples. The reflectance technique will contribute to porphyrin and kerogen studies and can be applied at its present level of development to several areas of geologic and paleo-oceanographic research.

  10. High resolution Raman spectroscopy of complexes and clusters in molecular beams

    SciTech Connect

    Felker, P.M.

    1991-01-01

    The DOE-sponsored project in this laboratory has two facets. The first is the development of methods of nonlinear Raman spectroscopy for application in studies of sparse samples. The second is the application of such methods to structural and dynamical studies of species in supersonic molecular beams. The progress we have made in both of these areas is described in this paper. The report is divided into five remaining sections. The first pertains to theoretical and experimental developments in Fourier transform stimulated emission spectroscopy and Fourier transform hole-burning spectroscopy. The second deals with progress in the development of ionization-detected stimulated Raman spectroscopies (IDSRS). The third describes results from the application of IDSRS methods to studies of jet-cooled benzene clusters. The fourth describes IDSRS results from studies of hydrogen-bonded complexes containing phenols. The fifth relates to studies of carbazole-(Ar){sub n} clusters.

  11. Quantitative high-resolution on-line NMR spectroscopy in reaction and process monitoring.

    PubMed

    Maiwald, Michael; Fischer, Holger H; Kim, Young-Kyu; Albert, Klaus; Hasse, Hans

    2004-02-01

    On-line nuclear magnetic resonance spectroscopy (on-line NMR) is a powerful technique for reaction and process monitoring. Different set-ups for direct coupling of reaction and separation equipment with on-line NMR spectroscopy are described. NMR spectroscopy can be used to obtain both qualitative and quantitative information from complex reacting multicomponent mixtures for equilibrium or reaction kinetic studies. Commercial NMR probes can be used at pressures up to 35 MPa and temperatures up to 400 K. Applications are presented for studies of equilibria and kinetics of complex formaldehyde-containing mixtures as well as homogeneously and heterogeneously catalyzed esterification kinetics. Direct coupling of a thin-film evaporator is described as an example for the benefits of on-line NMR spectroscopy in process monitoring. PMID:14729025

  12. High resolution Raman spectroscopy of complexes and clusters in molecular beams. Performance report

    SciTech Connect

    Felker, P.M.

    1991-12-31

    The DOE-sponsored project in this laboratory has two facets. The first is the development of methods of nonlinear Raman spectroscopy for application in studies of sparse samples. The second is the application of such methods to structural and dynamical studies of species in supersonic molecular beams. The progress we have made in both of these areas is described in this paper. The report is divided into five remaining sections. The first pertains to theoretical and experimental developments in Fourier transform stimulated emission spectroscopy and Fourier transform hole-burning spectroscopy. The second deals with progress in the development of ionization-detected stimulated Raman spectroscopies (IDSRS). The third describes results from the application of IDSRS methods to studies of jet-cooled benzene clusters. The fourth describes IDSRS results from studies of hydrogen-bonded complexes containing phenols. The fifth relates to studies of carbazole-(Ar){sub n} clusters.

  13. A High Resolution Fourier-Transform Spectrometer for the Measurement of Atmospheric Column Abundances

    NASA Technical Reports Server (NTRS)

    Cageao, R.; Sander, S.; Blavier, J.; Jiang, Y.; Nemtchinov, V.

    2000-01-01

    A compact, high resolution Fourier-transform spectrometer for atmospheric near ultraviolet spectroscopy has been installed at the Jet Propulsion Laboratory's Table Mountain Facility (34.4N, 117.7 W, elevation 2290m).

  14. WSO-UV project for high-resolution spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Sachkov, M.; Shustov, B.; Savanov, I.; Gómez de Castro, A. I.

    2014-01-01

    During the last three decades, astronomers have had practically continuous access to the 100-300 nm spectral range that is unreachable with ground-based instruments but where astrophysical processes can be efficiently studied with unprecedented capability since the resonance lines of the most abundant atoms and ions at temperatures between 3 000 and 300 000 K are in the UV. The successful International Ultraviolet Explorer (IUE) observatory, Russian ASTRON mission and successor instruments such as the COS and STIS spectrographs on-board the Hubble Space Telescope (HST) demonstrate the major impact that observations in the UV wavelength range have had on modern astronomy. The access to space-based observatories is very limited. For the next decade, for the post-HST era, the World Space Observatory UltraViolet (WSO-UV) will be the only large telescope class mission for UV observations, both spectroscopic and imaging. By its potential, the WSO-–UV mission is similar to the HST, though it exceeds the HST/STIS in sensitivity by a factor 5-10, but all the observing time will be available for UV astronomy. In this paper, we briefly outline the WSO-UV mission model, instrumentation description, science management plan as well as some of the key science issues that WSO-UV will address during its lifetime.

  15. High Resolution X-Ray Spectroscopy of zeta Puppis with the XMM-Newton Reflection Grating Spectrometer

    NASA Technical Reports Server (NTRS)

    Kahn, S. M.; Leutenegger, M. A.; Cottam, J.; Rauw, G.; Vreux, J.-M.; denBoggende, A. J. F.; Mewe, R.; Guedel, M.

    2000-01-01

    We present the first high resolution X-ray spectrum of the bright O4Ief supergiant star Puppis, obtained with the Reflection Grating Spectrometer on- board XMM-Newton. The spectrum exhibits bright emission lines of hydrogen-like and helium-like ions of nitrogen, oxygen, neon, magnesium, and silicon, as well as neon-like ions of iron. The lines are all significantly resolved, with characteristic velocity widths of order 1000 - 1500 km/ s. The nitrogen lines are especially strong, and indicate that the shocked gas in the wind is mixed with CNO-burned material, as has been previously inferred for the atmosphere of this star from ultraviolet spectra. We find that the forbidden to intercombination line ratios within the helium-like triplets are anomalously low for N VI, O VII, and Ne IX. While this is sometimes indicative of high electron density, we show that in this case, it is instead caused by the intense ultraviolet radiation field of the star. We use this interpretation to derive constraints on the location of the X-ray emitting shocks within the wind that agree remarkably well with current theoretical models for this system.

  16. High Resolution Spectroscopy in the Non-thermal Infrared: Use of an Existing Coude System

    NASA Astrophysics Data System (ADS)

    Basri, Gibor; Marcy, Geoffrey W.

    1993-05-01

    We describe a recent effort to use a NICMOS 3 chip as the detector on the 160" coude spectrograph camera at Lick Observatory. This new instrument (IRCS) has a useful spectral range of 1-2mu with spectral coverage in one exposure of about 25 Angstroms, and resolutions up to 75000. We have successfully obtained astronomical observations with essentially no modification of the (uncooled) spectrograph, using an existing grating blazed at 1.22mu , and a dewar without optics (but containing a filter) easily mounted at the position of the old photographic plates. The throughput of the system is very high. Its sensitivity is primarily limited by the background from the warm spectrograph. Using filters with 0.1mu bandwidth, the expected background is negligible below 1.5mu , but limits exposures to one minute near 2mu . With an optimized dewar, one can remain photon (rather than background) limited down to 10th magnitude even at 2mu . Our current system (using a test dewar and engineering grade chip) has been tested at 1.6mu . We have operated with and without an image slicer. We show spectra and discuss the current successes and problems. Our first application is to study the Zeeman--sensitive line at 1.56mu at high resolution. We expect to be able to achieve S/N of 200:1 in 10 minutes on 6th magnitude stars now, and eventually 100:1 in one hour on 10th magnitude stars using the 3-m telescope. This opens the possibility of measuring magnetic fields for large numbers of RS CVN and dM(e) stars (in addition to many G,K dwarfs), and even perhaps a few pre-main sequence stars. There is a lot of potential for science in the 1-2mu range at high resolution, which cannot be done as easily with any other type of instrument. This includes: (1) molecular lines in giants and winds, (2) lines from the ISM for abundances and kinematics, (3) detailed atmospheric analysis of embedded stars (and disks?).

  17. On-chip near-infrared spectroscopy of CO2 using high resolution plasmonic filter array

    NASA Astrophysics Data System (ADS)

    Chong, Xinyuan; Li, Erwen; Squire, Kenneth; Wang, Alan X.

    2016-05-01

    We report an ultra-compact, cost-effective on-chip near-infrared spectroscopy system for CO2 sensing using narrow-band optical filter array based on plasmonic gratings with a waveguide layer. By varying the periodicity of the gratings, the transmission spectra of the filters can be continuously tuned to cover the 2.0 μm sensing window with high spectral resolution around 10 nm. Our experimental results show that the on-chip spectroscopy system can resolve the two symmetric vibrational bands of CO2 at 2.0 μm wavelength, which proves its potential to replace the expensive commercial IR spectroscopy system for on-site gas sensing.

  18. New results in high-resolution X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Žitnik, Matjaž; Kavčič, Matjaž; Bučar, Klemen; Mihelič, Andrej; Bohinc, Rok

    2014-04-01

    We present some recent results dealing with resonant inelastic X-ray scattering (RIXS) on atomic targets in the 3-5 keV enegy region. In this so-called tender spectral region, the K-shell fluorescence branching ratios become reasonably large, but a full vacuum enclosure is still preferable to avoid detection efficiency loss due to the sizeable arms of high resolution crystal spectrometers. By squeezing energy resolution in the fluorescence decay channel, one may improve the spectral resolution of photoabsorption, enable separation of multielectron excitation and relaxation channels, and completely eliminate the need to scan across the selected energy range of the photon probe in order to acquire the photoabsorption spectrum. On the other hand, the spectra may be untrivially modified by effects such as interference of absorption-emission paths or structured relaxation modes, and a more elaborated modelling is needed to understand the emitted signal. We illustrate these aspects by presenting four cases: the reconstruction of Ar KM and Ar KL absorption edges from a series of highly resolved emission spectra recorded at different probe energies, the reconstruction of the Xe L3 edge from a single X-ray emission spectrum, and the analysis of the radiative Ar K-MM Auger decay preceeded by the resonant or nonresonant photon absorption.

  19. 5f-electron states in uranium dioxide investigated using high-resolution neutron spectroscopy

    NASA Astrophysics Data System (ADS)

    Amoretti, G.; Blaise, A.; Caciuffo, R.; Fournier, J. M.; Hutchings, M. T.; Osborn, R.; Taylor, A. D.

    1989-07-01

    High-resolution, high-energy-transfer, inelastic neutron scattering has been used to explore the crystal-field (CF) excitations in UO2. As all the dipole-allowed transitions within the free-ion ground manifold have been identified, the observations provide a complete determination of the crystal-field potential and 5f-electron eigenstates. The fourth- and sixth-degree CF parameters are V4=-123 meV and V6=26.5 meV. In spite of the strength of the CF, the ground state is accurately given by the intermediate-coupling approximation with little modification by J-mixing effects. In the antiferromagnetic phase below TN=30.8 K, a splitting of the cubic CF levels, due to the combined effects of the molecular field and the distortion of the oxygen-ligand cage surrounding the U4+ ions, has been observed. Detailed CF calculations are presented both for the case of a double-k magnetic structure with a monoclinic distortion of the oxygen sublattice, and for a combined triple-k distortion and magnetic order. The observed splittings are shown to be more consistent with the triple-k model.

  20. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons: The Realm of Anharmonicity

    NASA Technical Reports Server (NTRS)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2016-01-01

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3 micrometers CH stretching region of Polycyclic Aromatic Hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold ((is) approximately 4K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions enhanced with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main modes that fall within 0.5% of the experimental frequencies. The implications for the Aromatic Infrared Bands, specifically the 3-m band are discussed.

  1. Lineshape spectroscopy with a very high resolution, very high signal-to-noise crystal spectrometer

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Chen, H.; Emig, J.; Hell, N.; Bitter, M.; Hill, K. W.; Allan, P.; Brown, C. R. D.; Hill, M. P.; Hoarty, D. J.; Hobbs, L. M. R.; James, S. F.

    2016-06-01

    We have developed a high-resolution x-ray spectrometer for measuring the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility. The instrument utilizes a spherically bent crystal geometry to spatially focus and spectrally analyze photons from foil or microdot targets. The high photon collection efficiency resulting from its imaging properties allows the instrument to be mounted outside the Orion chamber, where it is far less sensitive to particles, hard x-rays, or electromagnetic pulses than instruments housed close to the target chamber center in ten-inch manipulators. Moreover, Bragg angles above 50° are possible, which provide greatly improved spectral resolution compared to radially viewing, near grazing-incidence crystal spectrometers. These properties make the new instrument an ideal lineshape diagnostic for determining plasma temperature and density. We describe its calibration on the Livermore electron beam ion trap facility and present spectral data of the K-shell emission from highly charged sulfur produced by long-pulse as well as short-pulse beams on the Orion laser in the United Kingdom.

  2. Applications of High Resolution Laser: Induced Breakdown Spectroscopy for Environmental and Biological Samples

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Labbe, Nicole; Wagner, Rebekah J.

    This chapter details the application of LIBS in a number of environmental areas of research such as carbon sequestration and climate change. LIBS has also been shown to be useful in other high resolution environmental applications for example, elemental mapping and detection of metals in plant materials. LIBS has also been used in phytoremediation applications. Other biological research involves a detailed understanding of wood chemistry response to precipitation variations and also to forest fires. A cross-section of Mountain pine (pinceae Pinus pungen Lamb.) was scanned using a translational stage to determine the differences in the chemical features both before and after a fire event. Consequently, by monitoring the elemental composition pattern of a tree and by looking for abrupt changes, one can reconstruct the disturbance history of a tree and a forest. Lastly we have shown that multivariate analysis of the LIBS data is necessary to standardize the analysis and correlate to other standard laboratory techniques. LIBS along with multivariate statistical analysis makes it a very powerful technology that can be transferred from laboratory to field applications with ease.

  3. High-resolution rovibrational spectroscopy of carbon monoxide isotopologues isolated in solid parahydrogen.

    PubMed

    Fajardo, Mario E

    2013-12-19

    We report high-resolution infrared absorption spectra of six different CO isotopologues isolated in cryogenic parahydrogen (pH2) solids. These data provide a stringent test for theories of nearly free molecular rotors in crystalline solids, such as crystal field theory, rotation-translation coupling theory, and the pseudorotating cage model. A gas-phase molecule rotates about its center-of-mass (C.M.); a trapped molecule instead rotates about its "center of interaction" (C.I.) with the trapping cage, which may differ from the C.M. for heteronuclear diatomics like CO. Isotopic manipulation of CO allows the systematic variation of the C.M. relative to the C.I. We report remarkably good straight line correlation plots between the observed matrix effects and C.M. locations. Extrapolation of these lines to the limit of vanishing matrix effects yields an "experimental prediction" of the C.I. in excellent (fortuitous?) agreement with the C.I. calculated using a linear pH2-CO-pH2 toy model. PMID:24102285

  4. Applications of High Resolution Laser Induced Breakdown Spectroscopy for Environmental and Biological Samples

    SciTech Connect

    Martin, Madhavi Z; Labbe, Nicole; Wagner, Rebekah J.

    2013-01-01

    This chapter details the application of LIBS in a number of environmental areas of research such as carbon sequestration and climate change. LIBS has also been shown to be useful in other high resolution environmental applications for example, elemental mapping and detection of metals in plant materials. LIBS has also been used in phytoremediation applications. Other biological research involves a detailed understanding of wood chemistry response to precipitation variations and also to forest fires. A cross-section of Mountain pine (pinceae Pinus pungen Lamb.) was scanned using a translational stage to determine the differences in the chemical features both before and after a fire event. Consequently, by monitoring the elemental composition pattern of a tree and by looking for abrupt changes, one can reconstruct the disturbance history of a tree and a forest. Lastly we have shown that multivariate analysis of the LIBS data is necessary to standardize the analysis and correlate to other standard laboratory techniques. LIBS along with multivariate statistical analysis makes it a very powerful technology that can be transferred from laboratory to field applications with ease.

  5. ISIS: An Interactive Spectral Interpretation System for High Resolution X-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Houck, J. C.; Denicola, L. A.

    The Interactive Spectral Interpretation System (ISIS) is designed to facilitate the interpretation and analysis of high resolution X-ray spectra like those obtained using the grating spectrographs on Chandra and XMM and the microcalorimeter on Astro-E. It is being developed as an interactive tool for studying the physics of X-ray spectrum formation, supporting measurement and identification of spectral features, and interaction with a database of atomic structure parameters and plasma emission models. The current version uses the atomic data and collisional ionization equilibrium models in the Astrophysical Plasma Emission Database (APED) of Brickhouse et.al., and also provides access to earlier plasma emission models including Raymond-Smith and MEKAL. Although the current version focuses on collisional ionization equilibrium plasmas, the system is designed to allow use of other databases to provide better support for studies of non-equilibrium and photoionized plasmas. To maximize portability between Unix operating systems, ISIS is being written entirely in ANSI C using free-software components (CFITSIO, PGPLOT and S-Lang).

  6. Spectroscopy of 9B via high-resolution ejectile-tagged recoil break-up

    NASA Astrophysics Data System (ADS)

    Wheldon, C.; Kokalova, Tz.; Freer, M.; Walshe, J.; Hertenberger, R.; Wirth, H.-F.; Ashwood, N. I.; Barr, M.; Curtis, N.; Faestermann, Th.; Lutter, R.; Malcolm, J. D.; Marín-Lámbarri, D. J.

    2015-02-01

    An experiment has been carried out using the 9Be(3He ,t )B9* reaction at a beam energy of 33 MeV. A large acceptance silicon-strip array was used to detect the B9* break-up in coincidence with the triton ejectiles in the high-resolution Munich-Q3D spectrograph. The excitation energy regime <3 MeV has been explored and the spectrum resulting from proton decaying states, isolated and characterized. Additional resonance strength is observed at 1.86 MeV ±70 keV(stat) ±35 keV(syst), in agreement with two other recent measurements at higher energies and different angles. The consequences for the "missing" ½+ first excited state are discussed. Additionally, the branching ratios for the 2.36 MeV 5/2 - state have been measured as Γα 0/Γ =0.98 ±0.12 and Γp 0/Γ =0.016 ±0.008 , in close agreement with earlier work.

  7. Lineshape spectroscopy with a very high resolution, very high signal-to-noise crystal spectrometer.

    PubMed

    Beiersdorfer, P; Magee, E W; Brown, G V; Chen, H; Emig, J; Hell, N; Bitter, M; Hill, K W; Allan, P; Brown, C R D; Hill, M P; Hoarty, D J; Hobbs, L M R; James, S F

    2016-06-01

    We have developed a high-resolution x-ray spectrometer for measuring the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility. The instrument utilizes a spherically bent crystal geometry to spatially focus and spectrally analyze photons from foil or microdot targets. The high photon collection efficiency resulting from its imaging properties allows the instrument to be mounted outside the Orion chamber, where it is far less sensitive to particles, hard x-rays, or electromagnetic pulses than instruments housed close to the target chamber center in ten-inch manipulators. Moreover, Bragg angles above 50° are possible, which provide greatly improved spectral resolution compared to radially viewing, near grazing-incidence crystal spectrometers. These properties make the new instrument an ideal lineshape diagnostic for determining plasma temperature and density. We describe its calibration on the Livermore electron beam ion trap facility and present spectral data of the K-shell emission from highly charged sulfur produced by long-pulse as well as short-pulse beams on the Orion laser in the United Kingdom. PMID:27370448

  8. High-Resolution Spectroscopy of C3 around 3 μm

    NASA Astrophysics Data System (ADS)

    Krieg, J.; Lutter, V.; Endres, C. P.; Keppeler, I. H.; Jensen, P.; Harding, M. E.; Vazquez, J.; Schlemmer, S.; Giesen, T. F.; Thorwirth, S.

    2013-03-01

    We report on the detection of the (1001)-(0000) vibrational band of gas-phase C3 and the two of its mono 13C substituted isotopologs in the infrared region around 3200 cm-1. Additionally, the associated hot band (1111)-(0110) has been assigned for the parent isotopolog. Spectra have been recorded using a supersonic jet spectrometer with a laser ablation source in combination with a continuous-wave optical parametric oscillator as radiation source. High-level quantum-chemical ab initio calculations have been performed and used to assist the assignment. A combined fit for the vibrational states of C3 found in this study has been done together with previously reported high-resolution data to increase the accuracy of the molecular parameters, especially for the ground state. The vibrational energies are 3260.126, 3205.593, and 3224.751 cm-1 for the (1001) state of C3, 12C13C12C, and 13C12C12C, respectively. The (1111) state of C3 has been found to be at 3330.509 cm-1.

  9. High Resolution FTIR Spectroscopy of DCCCl: Anharmonic Resonances in the nu(1) and nu(2) Bands.

    PubMed

    Wang, DongBing; Imajo, Takashi; Tanaka, Keiichi; Tanaka, Takehiko; Bürger, Hans

    2001-05-01

    High-resolution infrared spectra of the nu(1) and nu(2) bands of DCCCl were observed using Bruker IFS 120HR Fourier transform spectrometers at resolutions of 0.0044 and 0.0035 cm(-1), respectively. For the DCC(35)Cl isotopomer, the nu(1) as well as the nu(2) band was found to be heavily perturbed. Detailed analyses revealed that the nu(1) state is in resonance with the l=0 substate of the nu(3)+4nu(4) state and that the nu(2) state is in resonance with the l=0 substate of the nu(3)+4nu(5) state. The rotational constants played a key role in identifying the perturbing states. In contrast, for the DCC(37)Cl isotopomer, the rotational structures of the nu(1) and nu(2) states are almost regular but slightly perturbed by interactions with the nu(3)+4nu(4) and nu(3)+4nu(5) states, respectively. The constants of resonances as well as the molecular constants for the nu(1), nu(2), nu(3)+4nu(4) and nu(3)+4nu(5) states were determined. Copyright 2001 Academic Press. PMID:11336523

  10. High Resolution FTIR Spectroscopy of DCCCl: Anharmonic Resonances in the ν 1 and ν 2 Bands

    NASA Astrophysics Data System (ADS)

    Wang, DongBing; Imajo, Takashi; Tanaka, Keiichi; Tanaka, Takehiko; Bürger, Hans

    2001-05-01

    High-resolution infrared spectra of the ν1 and ν2 bands of DCCCl were observed using Bruker IFS 120HR Fourier transform spectrometers at resolutions of 0.0044 and 0.0035 cm-1, respectively. For the DCC35Cl isotopomer, the ν1 as well as the ν2 band was found to be heavily perturbed. Detailed analyses revealed that the ν1 state is in resonance with the l=0 substate of the ν3+4ν4 state and that the ν2 state is in resonance with the l=0 substate of the ν3+4ν5 state. The rotational constants played a key role in identifying the perturbing states. In contrast, for the DCC37Cl isotopomer, the rotational structures of the ν1 and ν2 states are almost regular but slightly perturbed by interactions with the ν3+4ν4 and ν3+4ν5 states, respectively. The constants of resonances as well as the molecular constants for the ν1, ν2, ν3+4ν4 and ν3+4ν5 states were determined.

  11. High-resolution electron momentum spectroscopy of valence satellites of carbon disulfide

    NASA Astrophysics Data System (ADS)

    Huang, Chengwu; Shan, Xu; Zhang, Zhe; Wang, Enliang; Li, Zhongjun; Chen, XiangJun

    2010-09-01

    The binding energy spectrum of carbon disulphide (CS2) in the energy range of 9-23 eV has been measured by a high-resolution (e,2e) spectrometer employing asymmetric noncoplanar kinematics at an impact energy of 2500 eV plus the binding energy. Taking the advantage of the high energy resolution of 0.54 eV, four main peaks and five satellites in the outer-valence region are resolved. The assignments and pole strengths for these satellite states are achieved by comparing the experimental electron momentum profiles with the corresponding theoretical ones calculated using Hartree-Fock and density functional theory methods. The results are also compared in detail with the recent SAC-CI general-R calculations. General agreement is satisfactory, while the present experiment suggests cooperative contributions from Π2u, Σg+2 states to satellite 2 and Σg+2, Π2g states to satellite 3. Besides, relatively low pole strength for X Π2g state is obtained which contradicts all the theoretical calculations [2ph-TDA, ADC(3), SAC-CI general-R, ADC(4)] so far.

  12. High-resolution photoelectron imaging spectroscopy of cryogenically cooled Fe4O- and Fe5O-

    NASA Astrophysics Data System (ADS)

    Weichman, Marissa L.; DeVine, Jessalyn A.; Neumark, Daniel M.

    2016-08-01

    We report high-resolution photodetachment spectra of the cryogenically cooled iron monoxide clusters Fe4O- and Fe5O- obtained with slow photoelectron velocity-map imaging (cryo-SEVI). Well-resolved vibrational progressions are observed in both sets of spectra, and transitions to low-lying excited states of both species are seen. In order to identify the structural isomers, electronic states, and vibrational modes that contribute to the cryo-SEVI spectra of these clusters, experimental results are compared with density functional theory calculations and Franck-Condon simulations. The main bands observed in the SEVI spectra are assigned to the 15A2←16B2 photodetachment transition of Fe4O- and the 17A'←18A″ photodetachment transition of Fe5O-. We report electron affinities of 1.6980(3) eV for Fe4O and 1.8616(3) eV for Fe5O, although there is some uncertainty as to whether the 15A2 state is the true ground state of Fe4O. The iron atoms have a distorted tetrahedral geometry in Fe4O0/- and a distorted trigonal-bipyramidal arrangement in Fe5O0/-. For both neutral and anionic species, the oxygen atom preferably binds in a μ2-oxo configuration along the cluster edge. This finding is in contrast to prior predictions that Fe5O0/- exhibits a μ3 face-bound structure.

  13. HIGH-RESOLUTION INFRARED IMAGING AND SPECTROSCOPY OF THE Z CANIS MAJORIS SYSTEM DURING QUIESCENCE AND OUTBURST

    SciTech Connect

    Hinkley, Sasha; Hillenbrand, Lynne; Crepp, Justin R.; Oppenheimer, Ben R.; Zimmerman, Neil; Brenner, Douglas; Rice, Emily L.; Pueyo, Laurent; Vasisht, Gautam; Roberts, Jennifer E.; Roberts, Lewis C. Jr.; Burruss, Rick; Wallace, J. Kent; Cady, Eric; Zhai, Chengxing; Kraus, Adam L.; Ireland, Michael J.; Beichman, Charles; Dekany, Richard; Parry, Ian R.; and others

    2013-01-20

    We present adaptive optics photometry and spectra in the JHKL bands along with high spectral resolution K-band spectroscopy for each component of the Z Canis Majoris system. Our high angular resolution photometry of this very young ({approx}<1 Myr) binary, comprised of an FU Ori object and a Herbig Ae/Be star, was gathered shortly after the 2008 outburst while our high-resolution spectroscopy was gathered during a quiescent phase. Our photometry conclusively determines that the outburst was due solely to the embedded Herbig Ae/Be member, supporting results from earlier works, and that the optically visible FU Ori component decreased slightly ({approx}30%) in luminosity during the same period, consistent with previous works on the variability of FU Ori type systems. Further, our high-resolution K-band spectra definitively demonstrate that the 2.294 {mu}m CO absorption feature seen in composite spectra of the system is due solely to the FU Ori component, while a prominent CO emission feature at the same wavelength, long suspected to be associated with the innermost regions of a circumstellar accretion disk, can be assigned to the Herbig Ae/Be member. These findings clarify previous analyses of the origin of the CO emission in this complex system.

  14. Mid-infrared high-resolution absorption spectroscopy by use of a semimonolithic entangled-cavity optical parametric oscillator.

    PubMed

    Desormeaux, A; Lefebvre, M; Rosencher, E; Huignard, J P

    2004-12-15

    By recording low-pressure absorption lines of N2O around 3.9 microm, we fully qualify a pulsed entangled-cavity doubly resonant optical parametric oscillator as a power tool for high-resolution spectroscopy. This compact source runs at a high repetition rate (>10 kHz) with a low threshold of oscillation (<8 microJ), is mode-hop-free tunable over 5 cm(-1), and displays single-frequency Fourier-transformed-limited operation (linewidth <0.005 cm(-1)). A high potential for nonlinear spectroscopy is also expected given the high peak power (70 W) and the good quality (M2 < 2) of the output beam. PMID:15645813

  15. High-resolution terahertz spectroscopy with a single tunable frequency comb.

    PubMed

    Skryl, A S; Pavelyev, D G; Tretyakov, M Y; Bakunov, M I

    2014-12-29

    We report an improvement of three orders of magnitude in the spectral resolution of a recently proposed single-comb terahertz spectroscopy [Opt. Lett.39, 5669 (2014)]. The improvement is achieved by using a femtosecond optical pulse train with a tunable repetition rate. Terahertz comb with tunable spectral line spacing generated by the train is detected via nonlinear mixing with a harmonic of a CW signal from a microwave frequency synthesizer. By applying this technique to the low-pressure gas spectroscopy, we achieved a 100 kHz spectral resolution in measuring separate absorption lines of the rotational manifold of fluoroform (CF3H). PMID:25607192

  16. USING HIGH-RESOLUTION SOLUTION-STATE NMR SPECTROSCOPY TO INVESTIGATE PMDI REACTIONS WITH WOOD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solution-state NMR spectroscopy provides a powerful tool for understanding the formation of chemical bonds between wood components and adhesives. Finely ground cell wall (CW) material fully dissolves in a solvent system containing dimethylsulfoxide (DMSO-d6) and N-methyl¬imidazole (NMI-d6), keeping ...

  17. High resolution spectroscopy of six SOCl2 isotopologues from the microwave to the far-infrared

    NASA Astrophysics Data System (ADS)

    Martin-Drumel, M. A.; Roucou, A.; Brown, G. G.; Thorwirth, S.; Pirali, O.; Mouret, G.; Hindle, F.; McCarthy, M. C.; Cuisset, A.

    2016-02-01

    Despite its potential role as an atmospheric pollutant, thionyl chloride, SOCl2, remains poorly characterized in the gas phase. In this study, the pure rotational and ro-vibrational spectra of six isotopologues of this molecule, all detected in natural abundance, have been extensively studied from the cm-wave band to the far-infrared region by means of three complementary techniques: chirped-pulse Fourier transform microwave spectroscopy, sub-millimeter-wave spectroscopy using frequency multiplier chain, and synchrotron-based far-infrared spectroscopy. Owing to the complex line pattern which results from two nuclei with non-zero spins, new, high-level quantum-chemical calculations of the hyperfine structure played a crucial role in the spectroscopic analysis. From the combined experimental and theoretical work, an accurate semi-experimental equilibrium structure (reSE) of SOCl2 has been derived. With the present data, spectroscopy-based methods can now be applied with confidence to detect and monitor this species, either by remote sensing or in situ.

  18. Determination of Spectroscopic Properties of Atmospheric Molecules from High Resolution Vacuum Ultraviolet Cross Section and Wavelength Measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Yoshino, K.

    1997-01-01

    An account is given of progress during the period 8/l/96-7/31/97 on work on (a) cross section measurements of O2 S-R using a Fourier transform spectrometer (FTS) at the Photon Factory in Japan; (b) the determination of the predissociation linewidths of the Schumann-Runge bands (S-R) of 02; (c) cross section measurements of 02 Herzberg bands using a Fourier transform spectrometer (FTS) at Imperial College; and (d) cross section measurements of H2O in the wavelength region 120-188 nm. The experimental investigations are effected at high resolution with a 6.65 m scanning spectrometer and with the Fourier transform spectrometer. Below 175 nm, synchrotron radiation is most suitable for cross section measurements in combination with spectrometers at the Photon Factory Japan. Cross section measurements of the Doppler limited bands depend on using the very high resolution, available with the Fourier transform spectrometer, (0.025/cm resolution). All of these spectroscopic measurements are needed for accurate calculations of the production of atomic oxygen, the penetration of solar radiation into the Earth's atmosphere, and photochemistry of minor molecules.

  19. Understanding AGB evolution in Galactic bulge stars from high-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Uttenthaler, S.; Blommaert, J. A. D. L.; Wood, P. R.; Lebzelter, T.; Aringer, B.; Schultheis, M.; Ryde, N.

    2015-08-01

    An analysis of high-resolution near-infrared spectra of a sample of 45 asymptotic giant branch (AGB) stars towards the Galactic bulge is presented. The sample consists of two subsamples, a larger one in the inner and intermediate bulge, and a smaller one in the outer bulge. The data are analysed with the help of hydrostatic model atmospheres and spectral synthesis. We derive the radial velocity of all stars, and the atmospheric chemical mix ([Fe/H], C/O, 12C/13C, Al, Si, Ti, and Y) where possible. Our ability to model the spectra is mainly limited by the (in)completeness of atomic and molecular line lists, at least for temperatures down to Teff ≈ 3100 K. We find that the subsample in the inner and intermediate bulge is quite homogeneous, with a slightly subsolar mean metallicity and only few stars with supersolar metallicity, in agreement with previous studies of non-variable M-type giants in the bulge. All sample stars are oxygen-rich, C/O < 1.0. The C/O and carbon isotopic ratios suggest that third dredge-up (3DUP) is absent among the sample stars, except for two stars in the outer bulge that are known to contain technetium. These stars are also more metal-poor than the stars in the intermediate or inner bulge. Current stellar masses are determined from linear pulsation models. The masses, metallicities and 3DUP behaviour are compared to AGB evolutionary models. We conclude that these models are partly in conflict with our observations. Furthermore, we conclude that the stars in the inner and intermediate bulge belong to a more metal-rich population that follows bar-like kinematics, whereas the stars in the outer bulge belong to the metal-poor, spheroidal bulge population.

  20. HIGH-RESOLUTION FOURIER TRANSFORM SPECTROSCOPY OF LANTHANUM IN Ar DISCHARGE IN THE NEAR-INFRARED

    SciTech Connect

    Güzelçimen, F.; Başar, Gö.; Tamanis, M.; Kruzins, A.; Ferber, R.; Windholz, L.; Kröger, S. E-mail: sophie.kroeger@htw-berlin.de

    2013-10-01

    A high-resolution spectrum of lanthanum has been recorded by a Fourier Transform spectrometer in the wavelength range from 833 nm to 1666 nm (6000 cm{sup –1} to 12,000 cm{sup –1}) using as light source a hollow cathode lamp operated with argon as the discharge carrier gas. In total, 2386 spectral lines were detected in this region, of which 555 lines could be classified as La I transitions and 10 lines as La II transitions. All La II transitions and 534 of these La I transitions were classified for the first time, and 6 of the La II transitions and 433 of the classified La I transitions appear to be new lines, which could not be found in the literature. The corresponding energy level data of classified lines are given. Additionally, 430 lines are assigned as Ar I lines and 394 as Ar II lines, of which 179 and 77, respectively, were classified for the first time. All 77 classified Ar II transitions as well as 159 of the classified Ar I transitions are new lines. Furthermore, the wavenumbers of 997 unclassified spectral lines were determined, 235 of which could be assigned as La lines, because of their hyperfine pattern. The remaining 762 lines may be either unclassified Ar lines or unresolved and unclassified La lines with only one symmetrical peak with an FWHM in the same order of magnitude as the Ar lines. The accuracy of the wavenumber for the classified lines with signal-to-noise-ratio higher than four is better than 0.006 cm{sup –1} which corresponds to an accuracy of 0.0004 nm at 830 nm and 0.0017 nm at 1660 nm, respectively.

  1. Jupiter’s tropospheric composition and cloud structure from high-resolution ground-based spectroscopy

    NASA Astrophysics Data System (ADS)

    Giles, Rohini Sara; Fletcher, Leigh N.; Irwin, Patrick G. J.

    2015-11-01

    The CRIRES instrument on the Very Large Telescope was used to make high-resolution (R=100,000) observations of Jupiter in the 4.5-5.2 μm spectral range. At these wavelengths, Jupiter’s atmosphere is optically thin and the spectra are sensitive to the 4-8 bar region. This enabled us to spectrally resolve the line shapes of four minor species in Jupiter’s troposphere: CH3D, GeH4, AsH3 and PH3. The slit was aligned north-south along Jupiter’s central meridian, allowing us to search for latitudinal variability in these line shapes. The spectra were analysed using the NEMESIS radiative transfer code and retrieval algorithm.The CH3D line shape is narrower in the cool zones than in the warm belts. CH3D is chemically stable and does not condense in Jupiter’s atmosphere, so this difference cannot be due to variations in the CH3D abundance. Instead, it can be modelled as variations in the opacity of a deep cloud located at around 4 bar. This deep cloud is opaque in the zones and transparent in the belts.We also observe variability in the GeH4 line shape, with stronger absorption features in the belts than in the zones. As a disequilibrium species, GeH4 is expected to vary with latitude, but we found that the variations in the line shape could be entirely explained by the variations in the cloud structure.In contrast, there is clear evidence for spatial variability in the remaining two molecular species, AsH3 and PH3. Their absorption features are weak near the equator and significantly stronger at high latitudes. A full latitudinal retrieval leads to a broadly symmetric profile for both species, with a minimum at the equator and an enhancement towards the poles.

  2. High Resolution Emission Spectroscopy of the Vibration-Rotation Bands of Hbo and Hbs.

    NASA Astrophysics Data System (ADS)

    Li, G.; Ram, R. S.; Hargreaves, R. J.; Bernath, P. F.; Li, H.

    2012-06-01

    The vibration-rotation spectra of HBO and HBS have been investigated at high resolution using a Fourier transform spectrometer. The HBO molecules were produced in a high temperature furnace from the reaction of H2O vapor with boron by heating a mixture of crystalline boron and boron oxide (B2O3) at a temperature ˜1350°C. The spectra were recorded in the 1100-2200 cm-1 and 1700-4000 cm-1 wavenumber regions covering the ν3 and ν1 fundamentals, respectively. In total 24 vibrational bands involving 30 vibrational levels of H11BO and 12 bands involving 18 levels of H10BO have been rotationally analyzed. After combining the existing microwave and infrared measurements, the absolute term values have been determined for a number of vibrationally-excited states of H11BO and H10BO. The HBS molecules were formed by the reaction of CS2 and water vapor with crystalline boron at a temperature ˜1300°C. The spectra were recorded in the 850-1500 cm-1 and 1750-4000 cm-1 wavenumber regions covering the ν3 and ν1 frequency regions. In total 29 vibrational bands involving 33 vibrationally-excited levels of H11BS and 9 bands involving 12 vibrational levels of H10BS have been analyzed. The fitted spectroscopic parameters agree very well with the results of our {ab initio} calculations. {L}-resonance interactions observed between the 0200 (Σ) and 0220 (Δ) levels of HBO and HBS were analyzed using a 2×2 matrix to yield deperturbed constants.

  3. HIGH-RESOLUTION, DIFFERENTIAL, NEAR-INFRARED TRANSMISSION SPECTROSCOPY OF GJ 1214b

    SciTech Connect

    Crossfield, I. J. M.; Hansen, Brad M. S.; Barman, Travis

    2011-08-01

    The nearby star GJ 1214 hosts a planet intermediate in radius and mass between Earth and Neptune, resulting in some uncertainty as to its nature. We have observed this planet, GJ 1214b, during transit with the high-resolution, near-infrared NIRSPEC spectrograph on the Keck II telescope, in order to characterize the planet's atmosphere. By cross-correlating the spectral changes through transit with a suite of theoretical atmosphere models, we search for variations associated with absorption in the planet atmosphere. Our observations are sufficient to rule out tested model atmospheres with wavelength-dependent transit depth variations {approx}> 5 x 10{sup -4} over the wavelength range 2.1-2.4 {mu}m. Our sensitivity is limited by variable slit loss and telluric transmission effects. We find no positive signatures but successfully rule out a number of plausible atmospheric models, including the default assumption of a gaseous, H-dominated atmosphere in chemical equilibrium. Such an atmosphere can be made consistent if the absorption due to methane is reduced. Clouds can also render such an atmosphere consistent with our observations, but only if they lie higher in the atmosphere than indicated by recent optical and infrared measurements. When taken in concert with other observational constraints, our results support a model in which the atmosphere of GJ 1214b contains significant H and He, but where CH{sub 4} is depleted. If this depletion is the result of photochemical processes, it may also produce a haze that suppresses spectral features in the optical.

  4. High-Resolution Spectroscopy of Long-Range Molecular States of 85Rb_2

    NASA Astrophysics Data System (ADS)

    Carollo, Ryan; Eyler, Edward E.; Bruneau, Yoann; Gould, Phillip; Stwalley, W. C.

    2015-06-01

    We present analysis of low-n long-range molecular Rydberg states in 85Rb_2, based on high-resolution spectra. The weakly bound states are accessed by bound-bound transitions from high-v levels of the a ^3 σ _u^+ state, which are prepared by photoassociation of laser-cooled atoms. Single-photon transitions to target states near the 5s + 7p asymptote are excited by a frequency-doubled pulse-amplified CW laser with a narrow linewidth, under 200 MHz. The long-range portion of the bonding potential is dominated by the elastic scattering interaction of the Rydberg electron of a perturbed 7p atom and a nearby ground-state atom, in much the same manner as trilobite states. We use time of flight to selectively measure molecular ions, which are formed via autoionization. This technique gives a two orders-of-magnitude improvement in linewidth over our previous work, reported in Ref. [1]. We also present calculations of a proposed scheme for STIRAP transfer from the current v''=35 level of the a ^3 σ _u^+ state to the v''=39 level. The long-range states accessible to us are defined in large part by the Franck-Condon factors, which are dominated by the outer lobe of the wavefunction. Thus, choosing a v'' sets R, and determines the Franck-Condon window. The proposed v'' = 39 level has a classical outer turning point at ˜ 72 a_0, and will provide access to higher-n states with longer-range wells. This work is supported by the NSF and AFOSR. [1] M. A. Bellos et al., Phys. Rev. Lett. 111, 053001 (2013)

  5. SUBARU HIGH-RESOLUTION SPECTROSCOPY OF STAR G IN THE TYCHO SUPERNOVA REMNANT

    SciTech Connect

    Kerzendorf, Wolfgang E.; Schmidt, Brian P.; Yong, David; Asplund, M.; Nomoto, Ken'ichi; Podsiadlowski, Ph.; Frebel, Anna; Fesen, Robert A. E-mail: brian@mso.anu.edu.au E-mail: nomoto@astron.s.u-tokyo.ac.jp E-mail: anna@astro.as.utexas.edu

    2009-08-20

    It is widely believed that Type Ia supernovae (SNe Ia) originate in binary systems where a white dwarf accretes material from a companion star until its mass approaches the Chandrasekhar mass and carbon is ignited in the white dwarf's core. This scenario predicts that the donor star should survive the supernova (SNe) explosion, providing an opportunity to understand the progenitors of SNe Ia. In this paper, we argue that rotation is a generic signature expected of most nongiant donor stars that is easily measurable. Ruiz-Lapuente et al. examined stars in the center of the remnant of SN 1572 (Tycho SN) and showed evidence that a subgiant star (Star G by their naming convention) near the remnant's center was the system's donor star. We present high-resolution (R {approx_equal} 40, 000) spectra taken with the High Dispersion Spectrograph on Subaru of this candidate donor star and measure the star's radial velocity as 79 {+-} 2 km s{sup -1} with respect to the local standard of rest and put an upper limit on the star's rotation of 7.5 km s{sup -1}. In addition, by comparing images that were taken in 1970 and 2004, we measure the proper motion of Star G to be {mu} {sub l} = -1.6 {+-} 2.1 mas yr{sup -1} and {mu} {sub b} = -2.7 {+-} 1.6 mas yr{sup -1}. We demonstrate that all of the measured properties of Star G presented in this paper are consistent with those of a star in the direction of Tycho SN that is not associated with the SN event. However, we discuss an unlikely, but still viable scenario for Star G to be the donor star, and suggest further observations that might be able to confirm or refute it.

  6. High-resolution infrared spectroscopy and ab initio studies of the cyclopropane-carbon dioxide interaction.

    PubMed

    Su, Zheng; Tam, Wai Shun; Xu, Yunjie

    2006-01-14

    A jet-cooled high-resolution infrared spectrum of the cyclopropane-carbon dioxide complex was detected for the first time, using a rapid scan infrared spectrometer with an astigmatic multipass sample cell. The spectrum was recorded in the vicinity of the CO2 asymmetric stretching band (nu3) and exhibits a b-dipole selection rule. Altogether, over 200 lines were observed, assigned, and fitted to Watson's S-reduction Hamiltonian. Rotational and quartic distortion constants were obtained. The band origin was located at 2347.6263(2) cm(-1), redshifted by 1.5230(2) cm(-1) from the corresponding frequency of the CO2 monomer. The experimentally determined structure shows that CO2 lies next to a C-C bond edge and is perpendicular to the C3 ring, indicating that the interaction is characterized by the bonding between the carbon atom of CO2 and the pseudo-pi system of cyclopropane. The intermolecular distance between the carbon atom of CO2 and the center of mass of cyclopropane was determined to be 3.667(2) A. Complete ab initio geometry optimizations and harmonic frequency calculations were carried out at the level of second-order Moller-Plesset perturbation theory with four different basis sets: cc-pVDZ, 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ. The lowest-energy structure identified with the three larger basis sets is in accord with the experimental finding. In addition, a transition state was identified and the tunneling barrier height was computed. PMID:16422587

  7. Aberration-corrected aspheric grating designs for the Lyman/Far-Ultraviolet Spectroscopic Explorer high-resolution spectrograph - A comparison

    NASA Technical Reports Server (NTRS)

    Trout, Catherine; Content, David; Davila, Pam

    1992-01-01

    Two approaches to reducing the optical aberrations of concave diffraction gratings have been studied to obtain candidate grating designs for the Lyman/Far-Ultraviolet Spectroscopic Explorer mission. The first approach involves shaping the grating substrate while using straight and equally spaced grooves. The second approach involves using a gating substrate with a relatively simple figure and holographically controlling the groove curvature and spacing. Specific designs derived from both approaches are analyzed and compared.

  8. High-resolution optical spectroscopy using multimode interference in a compact tapered fibre

    NASA Astrophysics Data System (ADS)

    Wan, Noel H.; Meng, Fan; Schröder, Tim; Shiue, Ren-Jye; Chen, Edward H.; Englund, Dirk

    2015-07-01

    Optical spectroscopy is a fundamental tool in numerous areas of science and technology. Much effort has focused on miniaturizing spectrometers, but thus far at the cost of spectral resolution and broad operating range. Here we describe a compact spectrometer that achieves both high spectral resolution and broad bandwidth. The device relies on imaging multimode interference from leaky modes along a multimode tapered optical fibre, resulting in spectrally distinguishable spatial patterns over a wide range of wavelengths from 500 to 1,600 nm. This tapered fibre multimode interference spectrometer achieves a spectral resolution down to 40 pm in the visible spectrum and 10 pm in the near-infrared spectrum (corresponding to resolving powers of 104-105). Multimode interference spectroscopy is suitable in a variety of device geometries, including planar waveguides in a broad range of transparent materials.

  9. Rapid probe of the nicotine spectra by high-resolution rotational spectroscopy.

    PubMed

    Grabow, Jens-Uwe; Mata, S; Alonso, José L; Peña, I; Blanco, S; López, Juan C; Cabezas, C

    2011-12-21

    Nicotine has been investigated in the gas phase and two conformational forms were characterized through their rotational spectra. Two spectroscopic techniques have been used to obtain the spectra: a new design of broadband Fourier transform microwave (FTMW) spectroscopy with an in-phase/quadrature-phase-modulation passage-acquired-coherence technique (IMPACT) and narrowband FTMW spectroscopy with coaxially oriented beam-resonator arrangement (COBRA). The rotational, centrifugal distortion and hyperfine quadrupole coupling constants of two conformers of nicotine have been determined and found to be in N-methyl trans configurations with the pyridine and pyrrolidine rings perpendicular to one another. The quadrupole hyperfine structure originated by two (14)N nuclei has been completely resolved for both conformers and used for their unambiguous identification. PMID:22020263

  10. Ultraviolet Photodissociation Action Spectroscopy of Protonated Azabenzenes

    NASA Astrophysics Data System (ADS)

    Hansen, Christopher S.; Blanksby, Stephen J.; Bieske, Evan; Reimers, Jeffrey R.; Trevitt, Adam J.

    2014-06-01

    Azabenzenes are derivatives of benzene containing between one and six nitrogen atoms. Protonated azabenzenes are the fundamental building blocks of many biomolecules, charge-transfer dyes, ionic liquids and fluorescent tags. However, despite their ubiquity, there exists limited spectroscopic data that reveals the structure, behaviour and stability of these systems in their excited states. For the case of pyridinium (C_5H_5N-H^+), the simplest azabenzene, the electronic spectroscopy is complicated by short excited state lifetimes, efficient non-radiative deactivation methods and limited fluorescence. Ultraviolet (UV) photodissociation (PD) action spectroscopy provides new insight into the spectroscopic details, excited state behaviour and photodissociation processes of a series of protonated azabenzenes including pyridinium, diazeniums and their substituted derivatives. The room-temperature UV PD action spectra, often exhibiting vibronic detail,^b will be presented alongside PD mass spectra and the kinetic data from structurally-diagnostic ion-molecule reaction kinetics. Analysis of the spectra, with the aid of quantum chemical calculations, reveal that many azabenzenes prefer a non-planar excited state geometry reminiscent of the structures encountered in 'channel 3'-like deactivation of aromatics. The normal modes active in this isomerization contribute largely to the spectroscopy of the N-pyridinium ion as they build upon totally-symmetric vibronic transitions leading to repeating sets of closely-spaced spectral features. Hansen, C.S. et al.; J. Am. Soc. Mass Spectrom. 24:932-940 (2013) Hansen, C.S. et al.; J. Phys. Chem. A 117:10839-10846 (2013)

  11. Estimating photosynthesis with high resolution field spectroscopy in a Mediterranean grassland under different nutrient availability

    NASA Astrophysics Data System (ADS)

    Perez-Priego, O.; Guan, J.; Fava, F.; Rossini, M.; Wutzler, T.; Moreno, G.; Carrara, A.; Kolle, O.; Schrumpf, M.; Reichstein, M.; Migliavacca, M.

    2014-12-01

    Recent studies have shown how human induced N:P imbalances are affecting essential processes (e.g. photosynthesis, plant growth rate) that lead to important changes in ecosystem structure and function. In this regard, the accuracy of the approaches based on remotely-sensed data for monitoring and modeling gross primary production (GPP) relies on the ability of vegetation indices (VIs) to track the dynamics of vegetation physiological and biophysical properties/variables. Promising results have been recently obtained when Chlorophyll-sensitive VIs and Chlorophyll fluorescence are combined with structural indices in the framework of the Monteith's light use efficiency (LUE) model. However, further ground-based experiments are required to validate LUE model performances, and their capability to be generalized under different nutrient availability conditions. In this study, the overall objective was to investigate the sensitivity of VIs to track short- and long-term GPP variations in a Mediterranean grassland under different N and P fertilization treatments. Spectral VIs were acquired manually using high resolution spectrometers (HR4000, OceanOptics, USA) along a phenological cycle. The VIs examined included photochemical reflectance index (PRI), MERIS terrestrial-chlorophyll index (MTCI) and normalized difference vegetation index (NDVI). Solar-induced chlorophyll fluorescence calculated at the oxygen absorption band O2-A (F760) using spectral fitting methods was also used. Simultaneously, measurements of GPP and environmental variables were conducted using a transient-state canopy chamber. Overall, GPP, F760 and VIs showed a clear seasonal time-trend in all treatments, which was driven by the phenological development of the grassland. Results showed significant differences (p<0.05) in midday GPP values between N and without N addition plots, in particular at the peak of the growing season during the flowering stage and at the end of the season during senescence. While

  12. High Resolution Spectroscopy Using a Tunable Thz Synthesizer Based on Photomixing

    NASA Astrophysics Data System (ADS)

    Cuisset, Arnaud; Hindle, Francis; Mouret, Gael; Eliet, Sophie; Guinet, Mickael; Bocquet, Robin

    2011-06-01

    Optical heterodyning, also know as photomixing is an attractive solution as a single device able to cover the entire frequency range from 300 GHz to 3 THz. As the THz frequency is extracted from the difference frequency of two lasers, the accuracy with which the generated frequency is known is directly determined by the frequency accuracy of the lasers. In order to fully characterize the spectral fingerprint of a given molecule an accuracy approximately one order of magnitude finer than the Doppler linewidth is required, around 100 kHz for smaller polar compounds. To generate accurate cw-THz the frequency spacing of the modes of a Frequency Comb (FC) has been employed to constrain the emission frequency of a photomixing source.footnote{G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, D. Rovera, Opt. Express, 2009, 17: 22031.} Two phase locked loops are implemented coherently locking the two cw-lasers (CW1 and CW2) to different modes of the FC. Although this solution allows accurate generation of narrowband THz the continuous tuning of the frequency presents some obstacles. To overcome these difficulties a system architecture with a third cw-laser (CW3) phase locked to CW2 has been implemented. The beatnote between CW2 and CW3 is free from the FC modes therefore the PLL frequency can be freely scanned over its entire operating range, in our case around 200 MHz. The most of polar compounds may be studied at high resolution in the THz domain with this synthesizer. Three different examples of THz analysis with atmospherical and astrophysical interests will be presented: The ground and vibrationnally excited states of H_2CO revisited in the 0.5-2 THz frequency region The rotational dependences of the broadening coefficients of CH_3Cl studied at high J and K values The molecular discrimination of a complex mixture containing methanol and ethanol. F. Hindle, A. Cuisset, G. Mouret, R. Bocquet Comptes Rendus Physique, 2008, 9: 262-275.

  13. Determination of spectroscopic properties of atmospheric molecules from high resolution vacuum ultraviolet cross section and wavelength measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Yoshino, K.; Freeman, D. E.

    1988-01-01

    Progress is given on work on: cross section measurements in the transmission window regions of the Schumann-Runge bands of oxygen; the determinations of predissociation linewidths; the theoretical calculation of band oscillator strengths of the Schumann-Runge absorption bands of O-16O-18; the determination of molecular spectroscopic constants; and the combined Herzberg continuum cross sections. The experimental investigations relevant to the cross section measurements, predissociation linewidths, and molecular spectroscopic constants are effected at high resolution with a 6.65 m scanning spectrometer which is, by virtue of its small instrumental width (FWHM = 0.0013 nm), suitable for cross section measurements of molecular bands with discrete rotational structure. Such measurements are needed for accurate calculations of the stratospheric production of atomic oxygen and heavy ozone formed following the photo-predissociation of O-16O-18 by solar radiation penetrating between the absorption lines of O-16(sub 2).

  14. Discrimination of Basal Cell Carcinoma from Normal Skin Tissue Using High-Resolution Magic Angle Spinning 1H NMR Spectroscopy

    PubMed Central

    Mun, Je-Ho; Lee, Heonho; Yoon, Dahye; Kim, Byung-Soo; Kim, Moon-Bum; Kim, Shukmann

    2016-01-01

    High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy is a useful tool for investigating the metabolism of various cancers. Basal cell carcinoma (BCC) is the most common skin cancer. However, to our knowledge, data on metabolic profiling of BCC have not been reported in the literature. The objective of the present study was to investigate the metabolic profiling of cutaneous BCC using HR-MAS 1H NMR spectroscopy. HR-MAS 1H NMR spectroscopy was used to analyze the metabolite profile and metabolite intensity of histopathologically confirmed BCC tissues and normal skin tissue (NST) samples. The metabolic intensity normalized to the total spectral intensities in BCC and NST was compared, and multivariate analysis was performed with orthogonal partial least-squares discriminant analysis (OPLS-DA). P values < 0.05 were considered statistically significant. Univariate analysis revealed 9 metabolites that showed statistically significant difference between BCC and NST. In multivariate analysis, the OPLS-DA models built with the HR-MAS NMR metabolic profiles revealed a clear separation of BCC from NST. The receiver operating characteristic curve generated from the results revealed an excellent discrimination of BCC from NST with an area under the curve (AUC) value of 0.961. The present study demonstrated that the metabolite profile and metabolite intensity differ between BCC and NST, and that HR-MAS 1H NMR spectroscopy can be a valuable tool in the diagnosis of BCC. PMID:26934749

  15. High-resolution photodetachment spectroscopy from the lowest threshold of O{sup -}

    SciTech Connect

    Joiner, Anne; Mohr, Robert H.; Yukich, J. N.

    2011-03-15

    We conducted photodetachment spectroscopy near the lowest detachment threshold from O{sup -} in a 1-T field with sufficient resolution to observe a magnetic field structure similar to that observed in experiments conducted at the threshold of the electron affinity. These observations included not only cyclotron structure but also, to a smaller degree, individual Zeeman thresholds. The experiment was conducted in a Penning ion trap and with a single-mode, tunable, amplified diode laser. Finally, analysis of our results yielded a measurement of the lowest threshold energy.

  16. Activators of photoluminescence in calcite: evidence from high-resolution, laser-excited luminescence spectroscopy

    USGS Publications Warehouse

    Pedone, V.A.; Cercone, K.R.; Burruss, R.C.

    1990-01-01

    Laser-excited luminescence spectroscopy of a red-algal, biogenic calcite and a synthetic Mn-calcite can make the distinction between organic and trace-element activators of photoluminescence. Organic-activated photoluminescence in biogenic calcite is characterized by significant peak shifts and increasing intensity with shorter-wavelength excitation and by significant decreases in intensity after heating to ??? 400??C. In contrast, Mn-activated photoluminescence shows no peak shift, greatest intensity under green excitation and limited changes after heating. Examination of samples with a high-sensitivity spectrometer using several wavelengths of exciting light is necessary for identification of photoluminescence activators. ?? 1990.

  17. High-Resolution Imaging and Spectroscopy at High Pressure: A Novel Liquid Cell for the TEM

    PubMed Central

    Tanase, Mihaela; Winterstein, Jonathan; Sharma, Renu; Aksyuk, Vladimir; Holland, Glenn; Liddle, J. Alexander

    2016-01-01

    We demonstrate quantitative core-loss electron energy-loss spectroscopy of iron oxide nanoparticles and imaging resolution of Ag nanoparticles in liquid down to 0.24 nm, in both transmission and scanning-transmission modes, in a novel, monolithic liquid cell developed for the transmission electron microscope (TEM). At typical SiN membrane thicknesses of 50 nm the liquid layer thickness has a maximum change of only 30 nm for the entire TEM viewing area of 200 μm × 200 μm. PMID:26650072

  18. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy

    PubMed Central

    Hindle, Francis; Yang, Chun; Mouret, Gael; Cuisset, Arnaud; Bocquet, Robin; Lampin, Jean-François; Blary, Karine; Peytavit, Emilien; Akalin, Tahsin; Ducournau, Guillaume

    2009-01-01

    A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements. PMID:22291552

  19. High-Resolution Hypernuclear Spectroscopy Electron Scattering at Jlab, Hall A

    SciTech Connect

    Franco Garibaldi

    2010-12-01

    Hypernuclear spectroscopy via electromagnetic induced reactions is a valuable and powerful way to study hypernuclei, hadronic systems with non-zero strangeness content, providing an alternative to the hadron induced reactions mainly studied so far. Electron-induced hypernuclear spectroscopy has been studied in Hall A at Jefferson Lab on three nuclei, 12C, 16O, and 9Be with unprecedented resolution and with an improved particle identification system, using a RICH detector, in order to unambiguously identify kaons, thus allowing the measurement of high-quality, almost background-free, hypernuclear spectra. Two superconducting septum magnets were added to the existing apparatus in order to permit particle detection at very forward angle providing a reasonable counting rate. These studies have provided the first quantitative information on, for instance, core-excited states in hypernuclei. In the case of oxygen, a waterfall target has been employed allowing for the simultaneous measurement of hypernuclear production on oxygen and of elementary kaon-Lambda electro-production on protons: a crucial measurement to disentangle the contribution of the elementary reaction from the measured hypernuclear production cross section, yielding direct access to the nucleus-hypernucleus transition structure. Final results for 12C and 16O as well as preliminary results on 9Be will be presented.

  20. High-precision three-dimensional field mapping of a high resolution magnetic spectrometer for hypernuclear spectroscopy at JLab

    SciTech Connect

    Fujii, Yuu; Hashimoto, Osamu; Miyoshi, Toshinobu; Nakamura, Satoshi N.; Ohtani, Atsushi; Okayasu, Yuichi; Oyamada, Masamichi; Yamamoto, Yosuke; Kato, Seigo; Matsui, Jumei; Sako, Katsuhisa; Brindza, Paul

    2015-09-01

    The High Resolution Kaon Spectrometer (HKS), which consists of two quadrupole magnets and one dipole magnet, was designed and constructed for high-resolution spectroscopy of hypernuclei using the (e,e'K+) reaction in Hall C, Jefferson Lab (JLab). It was used to analyze momenta of around 1.2 GeV/c K^+ s with a resolution of 2 ×10^-4 (FWHM). To achieve the target resolution, a full three-dimensional magnetic field measurement of each magnet was successfully performed, and a full three-dimensional magnetic field map of the HKS magnets was reconstructed. Using the measured field map, the initial reconstruction function was generated. The target resolution would be achieved via careful tuning of the reconstruction function of HKS with the p(e,e'K+)Lambda,Sigma^0 and C-12 (e,e'K+)12_Lambda B_g.s. reactions. After tuning of the initial reconstruction function generated from the measured map, the estimated HKS momentum resolution was 2.2×10^-4 (FWHM).

  1. High resolution broad-band spectroscopy in the NIR using the Triplespec externally dispersed interferometer at the Hale telescope

    NASA Astrophysics Data System (ADS)

    Erskine, David J.; Edelstein, J.; Sirk, M.; Wishnow, E.; Ishikawa, Y.; McDonald, E.; Shourt, W. V.

    2014-07-01

    High resolution broad-band spectroscopy at near-infrared wavelengths has been performed using externally dis- persed interferometry (EDI) at the Hale telescope at Mt. Palomar. The EDI technique uses a field-widened Michelson interferometer in series with a dispersive spectrograph, and is able to recover a spectrum with a resolution 4 to 10 times higher than the existing grating spectrograph. This method increases the resolution well beyond the classical limits enforced by the slit width and the detector pixel Nyquist limit and, in principle, decreases the effect of pupil variation on the instrument line-shape function. The EDI technique permits arbi- trarily higher resolution measurements using the higher throughput, lower weight, size, and expense of a lower resolution spectrograph. Observations of many stars were performed with the TEDI interferometer mounted within the central hole of the 200 inch primary mirror. Light from the interferometer was then dispersed by the TripleSpec near-infrared echelle spectrograph. Continuous spectra between 950 and 2450 nm with a resolution as high as ~27,000 were recovered from data taken with TripleSpec at a native resolution of ˜2,700. Aspects of data analysis for interferometric spectral reconstruction are described. This technique has applications in im- proving measurements of high-resolution stellar template spectra, critical for precision Doppler velocimetry using conventional spectroscopic methods. A new interferometer to be applied for this purpose at visible wavelengths is under construction.

  2. Structural analysis of IPC zeolites and related materials using positron annihilation spectroscopy and high-resolution argon adsorption.

    PubMed

    Jagiello, J; Sterling, M; Eliášová, P; Opanasenko, M; Zukal, A; Morris, R E; Navaro, M; Mayoral, A; Crivelli, P; Warringham, R; Mitchell, S; Pérez-Ramírez, J; Čejka, J

    2016-06-01

    The advanced investigation of pore networks in isoreticular zeolites and mesoporous materials related to the IPC family was performed using high-resolution argon adsorption experiments coupled with the development of a state-of-the-art non-local density functional theory approach. The optimization of a kernel for model sorption isotherms for materials possessing the same layer structure, differing only in the interlayer connectivity (e.g. oxygen bridges, single- or double-four-ring building units, mesoscale pillars etc.) revealed remarkable differences in their porous systems. Using high-resolution adsorption data, the bimodal pore size distribution consistent with crystallographic data for IPC-6, IPC-7 and UTL samples is shown for the first time. A dynamic assessment by positron annihilation lifetime spectroscopy (PALS) provided complementary insights, simply distinguishing the enhanced accessibility of the pore network in samples incorporating mesoscale pillars and revealing the presence of a certain fraction of micropores undetected by gas sorption. Nonetheless, subtle differences in the pore size could not be discriminated based on the widely-applied Tao-Eldrup model. The combination of both methods can be useful for the advanced characterization of microporous, mesoporous and hierarchical materials. PMID:27210107

  3. Method And Apparatus For High Resolution Ex-Situ Nmr Spectroscopy

    DOEpatents

    Pines, Alexander; Meriles, Carlos A.; Heise, Henrike; Sakellariou, Dimitrios; Moule, Adam

    2004-01-06

    A method and apparatus for ex-situ nuclear magnetic resonance spectroscopy for use on samples outside the physical limits of the magnets in inhomogeneous static and radio-frequency fields. Chemical shift spectra can be resolved with the method using sequences of correlated, composite z-rotation pulses in the presence of spatially matched static and radio frequency field gradients producing nutation echoes. The amplitude of the echoes is modulated by the chemical shift interaction and an inhomogeneity free FID may be recovered by stroboscopically sampling the maxima of the echoes. In an alternative embodiment, full-passage adiabatic pulses are consecutively applied. One embodiment of the apparatus generates a static magnetic field that has a variable saddle point.

  4. High resolution core level spectroscopy of hydrogen-terminated (1 0 0) diamond.

    PubMed

    Schenk, A K; Rietwyk, K J; Tadich, A; Stacey, A; Ley, L; Pakes, C I

    2016-08-01

    Synchrotron-based photoelectron spectroscopy experiments are presented that address a long standing inconsistency in the treatment of the C1s core level of hydrogen terminated (1 0 0) diamond. Through a comparison of surface and bulk sensitive measurements we show that there is a surface related core level component to lower binding energy of the bulk diamond component; this component has a chemical shift of [Formula: see text] eV which has been attributed to carbon atoms which are part of the hydrogen termination. Additionally, our results indicate that the asymmetry of the hydrogen terminated (1 0 0) diamond C1s core level is an intrinsic aspect of the bulk diamond peak which we have attributed to sub-surface carbon layers. PMID:27299369

  5. Natural abundance high-resolution solid state 2 H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.

    1994-08-01

    We report for the first time an approach for natural abundance solid state 2 H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1 H decoupling (HPPD) and 1 H- 2 H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2 H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2 H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1 H to 2 H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.

  6. Natural abundance high-resolution solid state 2 H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.

    1994-08-01

    We report for the first time an approach for natural abundance solid state 2H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1H decoupling (HPPD) and 1H- 2H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1H to 2H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.

  7. Multiresonant Spectroscopy and the High-Resolution Threshold Photoionization of Combustion Free Radicals

    SciTech Connect

    Edward R. Grant

    2005-09-07

    This report describes the results of a program of research on the thermochemistry, spectroscopy and intramolecular relaxation dynamics of the combustion intermediate, HCO. We prepare this radical from acetaldehyde as a photo-precursor in a differentially pumped laser-ionization source quadrupole mass spectrometer. Using a multiresonant spectroscopic technique established in our laboratory, we select individual rotational states and overcome Franck-Condon barriers associated with neutral-to-cation geometry changes to promote transitions to individual autoionizing series and state-resolved ionization thresholds. Systematic analysis of rotational structure and associated lineshapes provide experimental insight on autoionization dynamics as input for theoretical modeling. Extrapolation of series, combined with direct threshold-photoelectron detection, yield precise ionization potentials that constitute an important contribution to the thermochemical base of information on HCO.

  8. High Resolution Spectroscopy of 12B Hypernuclei by the (e,e'K) Reaction

    SciTech Connect

    M. Sarsour

    2002-05-01

    Jefferson Laboratory experiment E89-009 used the reaction (e,e' K+ ) to produce 12/{Lambda}B hypernuclei from a carbon target. The scattered electrons were tagged at 0 degrees to take advantage of the increased virtual photon flux at forward angles, and the electroproduced kaons were also detected at small angles, {approx}3 degrees, to minimize the momentum transfer. To do this, a splitter magnet was used to bend the scattered electrons into an Enge split-pole spectrometer and the kaons into a short orbit spectrometer. In addition to increasing the production rate, tagging the scattered electrons at 0 degrees minimizes the optical aberrations on the focal plane of the Enge split-pole spectrometer. In this experiment, the spectroscopy of the 12/{Lambda}B hypernuclei was studied and excellent energy resolution was achieved, {approx} 918 keV. The differential cross section of the ground state doublet was also calculated.

  9. High resolution core level spectroscopy of hydrogen-terminated (1 0 0) diamond

    NASA Astrophysics Data System (ADS)

    Schenk, A. K.; Rietwyk, K. J.; Tadich, A.; Stacey, A.; Ley, L.; Pakes, C. I.

    2016-08-01

    Synchrotron-based photoelectron spectroscopy experiments are presented that address a long standing inconsistency in the treatment of the C1s core level of hydrogen terminated (1 0 0) diamond. Through a comparison of surface and bulk sensitive measurements we show that there is a surface related core level component to lower binding energy of the bulk diamond component; this component has a chemical shift of -0.16+/- 0.05 eV which has been attributed to carbon atoms which are part of the hydrogen termination. Additionally, our results indicate that the asymmetry of the hydrogen terminated (1 0 0) diamond C1s core level is an intrinsic aspect of the bulk diamond peak which we have attributed to sub-surface carbon layers.

  10. High-resolution (13)C nuclear magnetic resonance spectroscopy pattern recognition of fish oil capsules.

    PubMed

    Aursand, Marit; Standal, Inger B; Axelson, David E

    2007-01-10

    13C NMR (nuclear magnetic resonance) spectroscopy, in conjunction with multivariate analysis of commercial fish oil-related health food products, have been used to provide discrimination concerning the nature, composition, refinement, and/or adulteration or authentication of the products. Supervised (probabilistic neural networks, PNN) and unsupervised (principal component analysis, PCA; Kohonen neural networks; generative topographic mapping, GTM) pattern recognition techniques were used to visualize and classify samples. Simple PCA score plots demonstrated excellent, but not totally unambiguous, class distinctions, whereas Kohonen and GTM visualization provided better results. Quantitative class predictions with accuracies >95% were achieved with PNN analysis. Trout, salmon, and cod oils were completely and correctly classified. Samples reported to be salmon oils and cod liver oils did not cluster with true salmon and cod liver oil samples, indicating mislabeling or adulteration. PMID:17199311

  11. High-intensity xenon plasma discharge lamp for bulk-sensitive high-resolution photoemission spectroscopy

    SciTech Connect

    Souma, S.; Sato, T.; Takahashi, T.; Baltzer, P.

    2007-12-15

    We have developed a highly brilliant xenon (Xe) discharge lamp operated by microwave-induced electron cyclotron resonance (ECR) for ultrahigh-resolution bulk-sensitive photoemission spectroscopy (PES). We observed at least eight strong radiation lines from neutral or singly ionized Xe atoms in the energy region of 8.4-10.7 eV. The photon flux of the strongest Xe I resonance line at 8.437 eV is comparable to that of the He I{alpha} line (21.218 eV) from the He-ECR discharge lamp. Stable operation for more than 300 h is achieved by efficient air-cooling of a ceramic tube in the resonance cavity. The high bulk sensitivity and high-energy resolution of PES using the Xe lines are demonstrated for some typical materials.

  12. High-resolution emission spectroscopy of random lasing in GaN films pumped by UV-pulsed laser

    NASA Astrophysics Data System (ADS)

    Cachoncinlle, C.; Millon, E.; Petit, A.

    2016-06-01

    We report on room temperature photoluminescence on GaN films grown by metal organic chemical vapor deposition (MOCVD). A NdYAG pulsed-laser at 266 nm illuminates the films. Two components, at 363 nm and 370 nm, are identified in the near band edge structure on the spectra. A laser threshold of 700±150 kW cm-2 is evidenced and corresponds to random lasing in the GaN film. A drastic narrowing of the spectral bandwidth from 5.2 to 1.8 nm is observed at 370 nm. High-resolution spectroscopy measurements show laser mode widths thinner than 50 pm leading to a high quality factor Q=7750. Low-resolution measurements show redshift from 370.0 to 373.1 nm for one component and from 363.1 nm to 363.9 nm for the other. Interpretation of this redshift is discussed.

  13. High resolution Fourier transform spectroscopy and crystal-field analysis in Tm,Ho:BaY2F8

    NASA Astrophysics Data System (ADS)

    Baraldi, A.; Capelletti, R.; Mazzera, M.; Riolo, P.; Amoretti, G.; Magnani, N.; Sani, E.; Toncelli, A.; Tonelli, M.

    2005-01-01

    A Tm3+- Ho3+ -codoped single crystal of monoclinic BaY2F8 has been characterized by means of high resolution FTIR spectroscopy in the wave number range 2000-24000 cm-1 and in the temperature range 9-300 K. The energy level schemes of the two lanthanide ions as determined by the optical absorption spectra is presented, analyzed, and fitted within a single ion Hamiltonian model. The very small energy separation (about 0.6-1.6 cm-1) measured between the first and second sublevels of the ground state manifolds for both the ions is in line with the theoretical predictions. The impurity-phonon coupling is put into evidence by the thermally induced line shift and broadening, and by the detection of vibronic replicas of a few lines.

  14. THE APPLICATION OF HIGH RESOLUTION ELECTRON ENERGY LOSS SPECTROSCOPY TO THE CHARACTERIZATION OF ADSORBED MOLECULES ON RHODIUM SINGLE CRYSTAL SURFACES

    SciTech Connect

    Dubois, L.H.; Somorjai, G.A.

    1980-01-01

    The scattering of low energy electrons by metal surfaces has been studied for many years now. The electron's ease of generation and detection and high surface sensitivity (low penetration depth) make it an ideal probe for surface scientists. The impinging electron can interact with the surface in basically two ways: it can either elastically reflect (or diffract) from the surface without losing energy or lose a portion of it's incident energy and inelastically scatter. In this paper we will be concerned with only one of many possible inelastic scattering processes: the loss of the electron's energy to the vibrational modes of atoms and molecules chemisorbed on the surface. This technique is known as high resolution electron energy loss spectroscopy (or ELS, EELS, HRELS, HREELS, etc.).

  15. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing

    PubMed Central

    Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo

    2016-01-01

    The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line. PMID:26901199

  16. Variation of Surface Charge along the Surface of Wool Fibers Assessed by High-Resolution Force Spectroscopy

    PubMed Central

    Zimmerman, Bonnie; Chow, James; Abbott, Albert G.; Ellison, Michael S.; Kennedy, Marian S.; Dean, Delphine

    2011-01-01

    In this study, we have mapped the surface charge of wool fibers using chemically specific high-resolution force spectroscopy in order to better understand the dispersion of amino acids in relation to fiber morphology. The inter-surface forces between standard atomic force microscopy (AFM) probe tips (tip radius ~ 50 nm) functionalized with COOH and NH3 terminated alkanethiol self assembling monolayers and the wool surface were used to estimate the surface charge per unit area using linear Poisson-Boltzmann-based electrostatic double layer theory. The positional measurement of nano-scale surface charge showed a correlation between the surface charge and fiber morphology, indicated that basic amino acids are located near the scale edges. PMID:21866220

  17. Design and performance of a soft-x-ray interferometer for ultra-high-resolution fourier transform spectroscopy

    SciTech Connect

    Moler, E.J.; Hussain, Z.; Duarte, R.M.; Howells, M.R.

    1997-04-01

    A Fourier Transform Soft X-ray spectrometer (FT-SX) has been designed and is under construction for the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory as a branch of beamline 9.3.2. The spectrometer is a novel soft x-ray interferometer designed for ultra-high resolution (theoretical resolving power E/{delta}E{approximately}10{sup 6}) spectroscopy in the photon energy region of 60-120 eV. This instrument is expected to provide experimental results which sensitively test models of correlated electron processes in atomic and molecular physics. The design criteria and consequent technical challenges posed by the short wavelengths of x-rays and desired resolving power are discussed. The fundamental and practical aspects of soft x-ray interferometry are also explored.

  18. Development of high-resolution real-time sub-ppb ethane spectroscopy and some pilot studies in life science.

    PubMed

    Skeldon, Kenneth D; Gibson, Graham M; Wyse, Cathy A; McMillan, Lesley C; Monk, Steve D; Longbottom, Chris; Padgett, Miles J

    2005-08-01

    We describe a high-resolution real-time spectroscopy system targeted to ethane gas with sensitivity > or = 70 ppt and response time from > or = 0.7 s. The measurement technique is based on a mid-IR lead-salt laser passing through a Herriott cell through which a gas sample flows. We compare wavelength scanning and locked configurations and discuss their relative merits. The technology has been motivated by clinical breath testing applications, ethane being widely regarded as the most important breath biomarker for cell damage via free-radical-mediated oxidative attack. We discuss preliminary human and animal studies in which ultrasensitive real-time ethane detection offers new diagnostic and monitoring potential. PMID:16075884

  19. High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array

    SciTech Connect

    Noroozian, Omid; Mates, John A. B.; Bennett, Douglas A.; Brevik, Justus A.; Fowler, Joseph W.; Gao, Jiansong; Hilton, Gene C.; Horansky, Robert D.; Irwin, Kent D.; Schmidt, Daniel R.; Vale, Leila R.; Ullom, Joel N.; Kang, Zhao

    2013-11-11

    We demonstrate very high resolution photon spectroscopy with a microwave-multiplexed two-pixel transition-edge sensor (TES) array. We measured a {sup 153}Gd photon source and achieved an energy resolution of 63 eV full-width-at-half-maximum at 97 keV and an equivalent readout system noise of 86 pA/√(Hz) at the TES. The readout circuit consists of superconducting microwave resonators coupled to radio-frequency superconducting-quantum-interference-devices and transduces changes in input current to changes in phase of a microwave signal. We use flux-ramp modulation to linearize the response and evade low-frequency noise. This demonstration establishes one path for the readout of cryogenic X-ray and gamma-ray sensor arrays with more than 10{sup 3} elements and spectral resolving powers R=λ/Δλ>10{sup 3}.

  20. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing.

    PubMed

    Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo

    2016-01-01

    The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF₂ microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line. PMID:26901199

  1. Experimentally characterizing the electronic structures of f-electron systems using advanced high resolution Fourier transform microwave spectroscopies

    SciTech Connect

    Cooke, Stephen, A

    2013-02-03

    We aim to (i) provide data that directly addresses the fundamental roles of actinide valence electrons in chemical bonding, and (ii) serve to provide prototypical data for the heavy element computational chemistry community. These goals will be achieved through the first pure rotational spectroscopic measurements on prototypical systems at ultra-high resolution. These systems encompass low oxidation state uranium and thorium compounds including, but not limited to, UX and ThX, X = F, Cl, Br, I, and UY and ThY, Y = O, S, and other simple U and Th-containing compounds. Our primary experimental tools involve time-domain rotational spectroscopy achieving line widths and resolutions of a few kHz.

  2. High-resolution three-dimensional compositional imaging by double-pulse laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Schiavo, C.; Menichetti, L.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Poggialini, F.; Pagnotta, S.; Palleschi, V.

    2016-08-01

    In this paper we present a new instrument specifically realized for high-resolution three-dimensional compositional analysis and mapping of materials. The instrument is based on the coupling of a Double-Pulse Laser-Induced Breakdown Spectroscopy (LIBS) instrument with an optical microscope. The compositional mapping of the samples is obtained by scanning the laser beam across the surface of the sample, while the in depth analysis is performed by sending multiple laser pulses on the same point. Depths of analysis of several tens of microns can be obtained. The instrument presented has definite advantages with respect to Laser Ablation-ICP Mass Spectrometry in many applications related to material analysis, biomedicine and environmental diagnostics. An application to the diagnostics of industrial ceramics is presented, demonstrating the feasibility of Double-Pulse LIBS Imaging and its advantages with respect to conventional single-pulse LIBS imaging.

  3. High-Resolution Rotational Spectroscopy Study of the Smallest Sugar Dimer: Interplay of Hydrogen Bonds in the Glycolaldehyde Dimer.

    PubMed

    Zinn, Sabrina; Medcraft, Chris; Betz, Thomas; Schnell, Melanie

    2016-05-10

    Molecular recognition of carbohydrates plays an important role in nature. The aggregation of the smallest sugar, glycolaldehyde, was studied in a conformer-selective manner using high-resolution rotational spectroscopy. Two different dimer structures were observed. The most stable conformer reveals C2 -symmetry by forming two intermolecular hydrogen bonds, giving up the strong intramolecular hydrogen bonds of the monomers and thus showing high hydrogen bond selectivity. By analyzing the spectra of the (13) C and (18) O isotopologues of the dimer in natural abundance, we could precisely determine the heavy backbone structure of the dimer. Comparison to the monomer structure and the complex with water provides insight into intermolecular interactions. Despite hydrogen bonding being the dominant interaction, precise predictions from quantum-chemical calculations highly rely on the consideration of dispersion. PMID:27060475

  4. ALMA-backed NIR high resolution integral field spectroscopy of the NUGA galaxy NGC 1433

    NASA Astrophysics Data System (ADS)

    Smajić, Semir; Moser, Lydia; Eckart, Andreas; Valencia-S., Mónica; Combes, Françoise; Horrobin, Matthew; García-Burillo, Santiago; García-Marín, Macarena; Fischer, Sebastian; Zuther, Jens

    2014-07-01

    Aims: We present the results of near-infrared (NIR) H- and K-band European Southern Observatory SINFONI integral field spectroscopy (IFS) of the Seyfert 2 galaxy NGC 1433. We investigate the central 500 pc of this nearby galaxy, concentrating on excitation conditions, morphology, and stellar content. NGC 1433 was selected from our extended NUGA(-south) sample, which was additionally observed with the Atacama Large Millimeter/submillimeter Array (ALMA). NGC 1433 is a ringed, spiral galaxy with a main stellar bar in roughly east-west direction (PA 94°) and a secondary bar in the nuclear region (PA 31°). Several dusty filaments are detected in the nuclear region with the Hubble Space Telescope. ALMA detects molecular CO emission coinciding with these filaments. The active galactic nucleus is not strong and the galaxy is also classified as a low-ionization emission-line region (LINER). Methods: The NIR is less affected by dust extinction than optical light and is sensitive to the mass-dominating stellar populations. SINFONI integral field spectroscopy combines NIR imaging and spectroscopy, allowing us to analyse several emission and absorption lines to investigate the stellar populations and ionization mechanisms over the 10″ × 10″ field of view (FOV). Results: We present emission and absorption line measurements in the central kpc of NGC 1433. We detect a narrow Balmer line and several H2 lines. We find that the stellar continuum peaks in the optical and NIR in the same position, indicating that there is no covering of the center by a nuclear dust lane. A strong velocity gradient is detected in all emission lines at that position. The position angle of this gradient is at 155° whereas the galactic rotation is at a position angle of 201°. Our measures of the molecular hydrogen lines, hydrogen recombination lines, and [Fe ii] indicate that the excitation at the nucleus is caused by thermal excitation, i.e., shocks that can be associated with active galactic

  5. High-Resolution Ultraviolet Spectra of the Dwarf Seyfert 1 Galaxy NGC 4395: Evidence for Intrinsic Absorption

    NASA Astrophysics Data System (ADS)

    Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Schmitt, H. R.; Filippenko, A. V.; Ho, L. C.; Shields, J. C.; Turner, T. J.

    2004-09-01

    We present ultraviolet spectra of the dwarf Seyfert 1 nucleus of NGC 4395, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Hubble Space Telescope Space Telescope Imaging Spectrograph at velocity resolutions of 7-15 km s-1. We confirm our earlier claim of C IV absorption in low-resolution UV spectra and detect a number of other absorption lines with lower ionization potentials. In addition to the Galactic lines, we identify two kinematic components of absorption that are likely to be intrinsic to NGC 4395. We consider possible origins of the absorption, including the interstellar medium (ISM) of NGC 4395, the narrow-line region, the outflowing UV absorbers, and the X-ray ``warm absorbers.'' Component 1, at a radial velocity of -770 km s-1 with respect to the nucleus, is only identified in the C IV λ1548.2 line. It most likely represents an outflowing UV absorber, similar to those seen in a majority of Seyfert 1 galaxies, although additional observations are needed to confirm the reality of this feature. Component 2, at -114 km s-1, most likely arises in the ISM of NGC 4395; its ionic column densities cannot be matched by photoionization models with a power-law continuum. Our models of the highly ionized X-ray absorbers claimed for this active galactic nucleus indicate that they would have undetectable C IV absorption, but large O VI and H I columns should be present. We attribute our lack of detection of the O VI and Lyβ absorption from the X-ray absorbers to a combination of noise and dilution of the nuclear spectrum by hot stars in the large FUSE aperture. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555 these observations are associated with proposal GO-9362. Also based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer

  6. Determination of spectroscopic properties of atmospheric molecules from high resolution vacuum ultraviolet cross section and wavelength measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Yoshino, K.; Freeman, D. E.

    1993-01-01

    An account is given of progress during the six-month period 1 Nov. 1992 to 30 Apr. 1993 on work on (1) cross section measurements of the Schumann-Runge continuum; (2) the determination of the predissociation linewidths of the Schumann-Runge bands of O2; (3) the determination of the molecular constants of the ground state of O2; (4) cross section measurements of CO2 in wavelength region 120-170 nm; and (4) determination of dissociation energy of O2. The experimental investigations are effected at high resolution with a 6.65 m scanning spectrometer which is, by virtue of its small instrumental width (FWHM = 0.0013 nm), uniquely suitable for cross section measurements of molecular bands with discrete rotational structure. Below 175 nm and in the region of the S-R continuum, synchrotron radiation is suitable for cross section measurements. All of these spectroscopic measurements are needed for accurate calculations of the production of atomic oxygen and penetration of solar radiation into the Earth's atmosphere.

  7. 256-pixel microcalorimeter array for high-resolution γ-ray spectroscopy of mixed-actinide materials

    NASA Astrophysics Data System (ADS)

    Winkler, R.; Hoover, A. S.; Rabin, M. W.; Bennett, D. A.; Doriese, W. B.; Fowler, J. W.; Hays-Wehle, J.; Horansky, R. D.; Reintsema, C. D.; Schmidt, D. R.; Vale, L. R.; Ullom, J. N.

    2015-01-01

    The application of cryogenic microcalorimeter detectors to γ-ray spectroscopy allows for measurements with unprecedented energy resolution. These detectors are ideally suited for γ-ray spectroscopy applications for which the measurement quality is limited by the spectral overlap of many closely spaced transitions using conventional detector technologies. The non-destructive analysis of mixed-isotope Pu materials is one such application where the precision can be potentially improved utilizing microcalorimeter detectors compared to current state-of-the-art high-purity Ge detectors (HPGe). The LANL-NIST γ-ray spectrometer, a 256-pixel microcalorimeter array based on transition-edge sensors (TESs), was recently commissioned and used to collect data on a variety of Pu isotopic standards to characterize the instrument performance. These measurements represent the first time the simultaneous readout of all 256 pixels for measurements of mixed-isotope Pu materials has been achieved. The LANL-NIST γ-ray spectrometer has demonstrated an average pixel resolution of 55 eV full-width-at-half-maximum at 100 keV, nearly an order of magnitude better than HPGe detectors. Some challenges of the analysis of many-channel ultra-high resolution data and the techniques used to produce quality spectra for isotopic analysis will be presented. The LANL-NIST γ-ray spectrometer has also demonstrated stable operation and obtained high resolution measurements at total array event rates beyond 1 kHz. For a total event rate of 1.25 kHz, approximately 5.6 cps/pixel, a 72.2 eV average FWHM for the 103 keV photopeak of 153Gd was achieved.

  8. High Resolution Stark Spectroscopy of Model Donor-Acceptor Aminobenzonitriles in the Gas Phase.

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Clements, Casey L.; Bird, Ryan G.; Pratt, David W.; Alvarez-Valtierra, Leonardo

    2011-06-01

    Electronic communication between donor-acceptor systems is prevalent in many chemical processes. Unfortunately, an accurate description of the changes in molecular geometry responsible for intramolecular charge transfer (ICT) is difficult to ascertain. Reported here are the S0, LA, and LB electronic state structures and dipole moments of two model ICT systems, 4-(1H-pyrrol-l-yl)benzonitrile (PBN) and 4-(1-pyrrolidinyl)benzonitrile (PDBN), as measured by rotationally resolved electronic spectroscopy. As was observed for phenylpyrrole, the unsaturted rings of PBN become collectively more planar following excitation with UV light, in support of the planar ICT model. However, in PDBN the twist/inversion angle between rings is nearly zero in both the ground and excited electronic states. The unperturbed dipole moments measured here, taken in conjunction with available solvatochromism data, provide an estimate for the polarization, dispersion, and charge transfer contributions to solvent-mediated excited state stabilization. J.A. Thomas, J.W. Young, A.J. Fleisher, L. Álvarez-Valtierra, and D.W. Pratt, J. Phys. Chem. Lett. 1, 2017 (2010).

  9. High-resolution imaging and spectroscopy of interfacial water at single bond limit

    NASA Astrophysics Data System (ADS)

    Jiang, Ying

    Hydrogen bond is one of the most important weak interactions in nature and plays an essential role in a broad spectrum of physics, chemistry, biology, energy and material sciences. The conventional methods for studying hydrogen-bonding interaction are all based on spectroscopic or diffraction techniques. However, those techniques have poor spatial resolution and only measure the average properties of many hydrogen bonds, which are susceptible to the structural inhomogeneity and local environments, especially when interfacial systems are concerned. The spatial variation and inter-bond coupling of the hydrogen bonds leads to significant spectral broadening, which prohibits the accurate understanding of the experimental data. In this talk, I will present our recent progress on the development of new-generation scanning probe microscopy/spectroscopy (SPM/S) with unprecedentedly high sensitivity and resolution, for addressing weak inter- and intra-molecular interactions, such as hydrogen bonds and van der Waals force. Based on a qPlus sensor, we have succeeded to push the real-space study of a prototypical hydrogen-bonded system, i.e. water, down to single bond limit. Combined with state-of-the-arts quantum simulations, we have discovered exotic nuclear quantum effects (NQEs) in interfacial water and revealed the quantum nature of the hydrogen bond from a completely new perspective

  10. The high-resolution absorption spectroscopy branch on the VUV beamline DESIRS at SOLEIL.

    PubMed

    de Oliveira, Nelson; Joyeux, Denis; Roudjane, Mourad; Gil, Jean François; Pilette, Bertrand; Archer, Lucy; Ito, Kenji; Nahon, Laurent

    2016-07-01

    A VUV absorption spectroscopy facility designed for ultra-high spectral resolution is in operation as a dedicated branch on the DESIRS beamline at Synchrotron SOLEIL. This branch includes a unique VUV Fourier transform spectrometer (FTS) and a dedicated versatile gas sample chamber. The FTS instrument can cover a large UV-VUV spectral range from 4 to 30 eV, with an ultimate line width of 0.08 cm(-1) on a large spectral window, ΔE/E = 7%, over which all spectral features can be acquired in a multiplex way. The performance can be considered to be a middle ground between broadband moderate-resolution spectrometers based on gratings and ultra-high-spectral-resolution VUV tunable-laser-based techniques over very narrow spectral windows. The various available gaseous-sample-handling setups, which function over a wide range of pressures and temperatures, and the acquisition methodology are described. A selection of experimental results illustrates the performance and limitations of the FTS-based facility. PMID:27359137

  11. High-resolution spectroscopy of the blue compact dwarf galaxy Haro 15 - II. Chemodynamics

    NASA Astrophysics Data System (ADS)

    Hägele, Guillermo F.; Firpo, Verónica; Bosch, Guillermo; Díaz, Ángeles I.; Morrell, Nidia

    2012-06-01

    We present a detailed study of the physical properties of the nebular material in four star-forming knots of the blue compact dwarf galaxy Haro 15. Using long-slit and echelle spectroscopy obtained at Las Campanas Observatory, we study the physical conditions (electron density and temperatures), ionic and total chemical abundances of several atoms, reddening and ionization structure, for the global flux and for the different kinematical components. The latter was derived by comparing the oxygen and sulphur ionic ratios to their corresponding observed emission-line ratios (the η and η' plots) in different regions of the galaxy. Applying the direct method or empirical relationships for abundance determination, we perform a comparative analysis between these regions. The similarities found in the ionization structure of the different kinematical components imply that the effective temperatures of the ionizing radiation fields are very similar in spite of some small differences in the ionization state of the different elements. Therefore, the different gaseous kinematical components identified in each star-forming knot are probably ionized by the same star cluster. However, the difference in the ionizing structure of the two knots with knot A showing a lower effective temperature than knot B suggests a different evolutionary stage for them consistent with the presence of an older and more evolved stellar population in the first.

  12. Determination of rank and kerogen type by high resolution NMR spectroscopy

    SciTech Connect

    Dickinson, W.W.; Collen, J.D. ); Newman, R.H. )

    1990-06-01

    Nuclear magnetic resonance (NMR) spectroscopy is a nondestructive technique for measuring the chemical and structural properties of organic matter. Although used in organic geochemistry for the past 14 years, the technique has continually undergone refinement. Initially, only the aromatic and aliphatic signal areas of the carbon NMR spectrum could be measured. Carboxylic groups as well as oxygen-substituted groups on aromatic and aliphatic carbon can now be qualitatively measured. The authors have examined coal and shale samples of various ranks from the Williston and San Juan basins, USA, and the Taranaki and Great South basins, New Zealand. Kerogen type can be distinguished on a plot of aromaticity versus the methylene to methyl ratio. For type III kerogens, vitrinite reflectance correlates very well with the percent of oxygen substitution on aromatic carbon and aromaticity. These parameters are excellent indicators of rank because they reflect the decrease in oxygen content and the increase in aromatic carbon as organic matter matures. Although the initial cost of NMR equipment is high, the vast amount of chemical information on kerogen that may be obtained from a small sample and very little laboratory preparation make it a valuable tool for petroleum geochemistry.

  13. High Resolution Photoacoustic Spectroscopy of the Oxygen A-Band to Support the OCO Missions

    NASA Astrophysics Data System (ADS)

    Cich, M. J.; Lunny, E. M.; Bui, T. Q.; Drouin, B. J.; Okumura, M.; Stroscio, G. D.

    2015-12-01

    NASA's Orbiting Carbon Observatory missions require spectroscopic parameterization of the Oxygen A-Band absorption (757-775 nm) with unprecedented detail to meet the objective of delivering space-based column CO2 measurements with an accuracy of better than 1 ppm. This requires spectroscopic parameters with accuracies at the 0.1% level. To achieve this it is necessary for line shape models to include deviations from the Voigt line shape, including the collisional effects of Dicke narrowing, speed-dependence, line mixing (LM), and collision-induced absorption (CIA). To measure these effects to high accuracy, new innovative lab measurements are required. LM and CIA in particular are difficult to measure using standard spectroscopic techniques because, while present at atmospheric temperatures, these effects are difficult to quantify. At pressures of several atmospheres these effects contribute several percent to the A-Band absorption. While the O2 A-band is too weak for direct absorption measurements via a diode laser, a very sensitive photoacoustic spectroscopy technique is being used to study the pressure- dependence of the spectral line shape up to pressures of 5 atm. This spectrometer has a high S/N of about 10,000 and an advantageous zero baseline. In addition, temperature effects on the line shape are studied using a newly developed temperature control scheme. The latest results are reported.

  14. Next generation techniques in the high resolution spectroscopy of biologically relevant molecules.

    PubMed

    Neill, Justin L; Douglass, Kevin O; Pate, Brooks H; Pratt, David W

    2011-04-28

    Recent advances in the technology of test and measurement equipment driven by the computer and telecommunications industries have made possible the development of a new broadband, Fourier-transform microwave spectrometer that operates on principles similar to FTNMR. This technique uses a high sample-rate arbitrary waveform generator to construct a phase-locked chirped microwave pulse that gives a linear frequency sweep over a wide frequency range in 1 μs. The chirped pulse efficiently polarizes the molecular sample at all frequencies lying within this band. The subsequent free induction decay of this polarization is measured with a high-speed digitizer and then fast Fourier-transformed to yield a broadband, frequency-resolved rotational spectrum, spanning up to 11.5 GHz and containing lines that are as narrow as 100 kHz. This new technique is called chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy. The technique offers the potential to determine the structural and dynamical properties of very large molecules solely from fully resolved pure rotational spectra. FTMW double resonance techniques employing a low-resolution UV laser facilitate an easy assignment of overlapping spectra produced by different conformers in the sample. Of particular interest are the energy landscapes of conformationally flexible molecules of biological importance, including studies of their interaction with solvent and/or other weakly bound molecules. An example is provided from the authors' work on p-methoxyphenethylamine, a neurotransmitter, and its complexes with water. PMID:21394332

  15. High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Labbé, Nicole; André, Nicolas; Harris, Ronny; Ebinger, Michael; Wullschleger, Stan D.; Vass, Arpad A.

    2007-12-01

    Laser-induced breakdown spectroscopy (LIBS) has been used in the elemental analysis for a variety of environmental samples and as a proof of concept for a host of forensic applications. In the first application, LIBS was used for the rapid detection of carbon from a number of different soil types. In this application, a major breakthrough was achieved by using a multivariate analytical approach that has brought us closer towards a "universal calibration curve". In a second application, it has been demonstrated that LIBS in combination with multivariate analysis can be employed to analyze the chemical composition of annual tree growth rings and correlate them to external parameters such as changes in climate, forest fires, and disturbances involving human activity. The objectives of using this technology in fire scar determinations are: 1) To determine the characteristic spectra of wood exposed to forest fires and 2) To examine the viability of this technique for detecting fire occurrences in stems that did not develop fire scars. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications. LIBS was also applied to a variety of proof of concept forensic applications such as the analysis of cremains (human cremation remains) and elemental composition analysis of prosthetic implants.

  16. High Resolution Applications of Laser-Induced Breakdown Spectroscopy for Environmental and Forensic Applications

    SciTech Connect

    Martin, Madhavi Z; Labbe, Nicole; Andre, Nicolas O; Harris, Ronny D; Ebinger, Michael H; Wullschleger, Stan D; Vass, Arpad Alexander

    2007-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been used in the elemental analysis for a variety of environmental samples and as a proof of concept for a host of forensic applications. In the first application, LIBS was used for the rapid detection of carbon from a number of different soil types. In this application, a major breakthrough was achieved by using a multivariate analytical approach that has brought us closer towards a "universal calibration curve". In a second application, it has been demonstrated that LIBS in combination with multivariate analysis can be employed to analyze the chemical composition of annual tree growth rings and correlate them to external parameters such as changes in climate, forest fires, and disturbances involving human activity. The objectives of using this technology in fire scar determinations are: 1) To determine the characteristic spectra of wood exposed to forest fires and 2) To examine the viability of this technique for detecting fire occurrences in stems that did not develop fire scars. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications. LIBS was also applied to a variety of proof of concept forensic applications such as the analysis of cremains (human cremation remains) and elemental composition analysis of prosthetic implants.

  17. High-Resolution Laser-Induced Breakdown Spectroscopy used in Homeland Security and Forensic Applications

    SciTech Connect

    Martin, Madhavi Z; Wullschleger, Stan D; Vass, Arpad Alexander; Martin, Rodger Carl; Grissino-Mayer, Henri

    2006-01-01

    The technique of laser-induced breakdown spectroscopy (LIBS) to detect elements for a variety of homeland security applications such as nuclear materials identification and inventory,and forensic applications has been demonstrated. For nuclear materials applications, we detected and profiled metals in coatings that were used to encapsulate nuclear fuel. Multivariate analysis has been successfully employed in the quantification of elements present in treated wood and engineered wood composites. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications related to homeland security. Three key advantages are evident: (1) small samples (mg) are sufficient; (2) samples can be analyzed by LIBS very rapidly, and (3) biological materials such as human and animal bones and wood can be analyzed with minimal sample preparation. For forensic applications they have used LIBS to determine differences in animal and human bones. They have also applied this technique in the determination of counterfeit and non-counterfeit currency. They recently applied LIBS in helping to solve a murder case.

  18. New Atomic Data for Doubly Ionized Iron Group Atoms by High Resolution UV Fourier Transform Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smith, Peter L.; Pickering, Juliet C.; Thorne, A. P.

    2002-01-01

    Currently available laboratory spectroscopic data of doubly ionized iron-group element were obtained about 50 years ago using spectrographs of modest dispersion, photographic plates, and eye estimates of intensities. The accuracy of the older wavelength data is about 10 mAngstroms at best, whereas wavelengths are now needed to an accuracy of 1 part in 10(exp 6) to 10(exp 7) (0.2 to 2 mAngstroms at 2000 Angstroms). The Fourier transform (FT) spectroscopy group at Imperial College, London, and collaborators at the Harvard College Observatory have used a unique VUV FT spectrometer in a program focussed on improving knowledge of spectra of many neutral and singly and doubly ionized, astrophysically important, iron group elements. Spectra of Fe II and Fe III have been recorded at UV and VUV wavelengths with signal-to-noise ratios of several hundred for the stronger lines. Wavelengths and energy levels for Fe III are an order of magnitude more accurate than previous work; analysis is close to completion. f-values for Fe II have been published.

  19. High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential.

    PubMed

    Uhlig, J; Doriese, W B; Fowler, J W; Swetz, D S; Jaye, C; Fischer, D A; Reintsema, C D; Bennett, D A; Vale, L R; Mandal, U; O'Neil, G C; Miaja-Avila, L; Joe, Y I; El Nahhas, A; Fullagar, W; Gustafsson, F Parnefjord; Sundström, V; Kurunthu, D; Hilton, G C; Schmidt, D R; Ullom, J N

    2015-05-01

    X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edge sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies. PMID:25931095

  20. High-resolution, far-ultraviolet study of Beta Draconis (G2 Ib-II) - Transition region structure and energy balance

    NASA Technical Reports Server (NTRS)

    Brown, A.; Jordan, C.; Stencel, R. E.; Linsky, J. L.; Ayres, T. R.

    1984-01-01

    High-resolution far ultraviolet spectra of the star Beta Draconis have been obtained with the IUE satellite. The observations and emission line data from the spectra are presented, the interpretation of the emission line widths and shifts is discussed, and the implications are given in terms of atmospheric properties. The emission measure distribution is derived, and density diagnostics involving both line ratios and line opacity arguments is investigated. The methods for calculating spherically symmetric models of the atmospheric structure are outlined, and several such models are presented. The extension of these models to log T(e) greater than 5.3 using the observed X-ray flux is addressed, the energy balance of an 'optimum' model is investigated, and possible models of energy transport and deposition are discussed.

  1. Changes in plant defense chemistry (pyrrolizidine alkaloids) revealed through high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Carvalho, Sabrina; Macel, Mirka; Schlerf, Martin; Moghaddam, Fatemeh Eghbali; Mulder, Patrick P. J.; Skidmore, Andrew K.; van der Putten, Wim H.

    2013-06-01

    Plant toxic biochemicals play an important role in defense against natural enemies and often are toxic to humans and livestock. Hyperspectral reflectance is an established method for primary chemical detection and could be further used to determine plant toxicity in the field. In order to make a first step for pyrrolizidine alkaloids detection (toxic defense compound against mammals and many insects) we studied how such spectral data can estimate plant defense chemistry under controlled conditions. In a greenhouse, we grew three related plant species that defend against generalist herbivores through pyrrolizidine alkaloids: Jacobaea vulgaris, Jacobaea erucifolia and Senecio inaequidens, and analyzed the relation between spectral measurements and chemical concentrations using multivariate statistics. Nutrient addition enhanced tertiary-amine pyrrolizidine alkaloids contents of J. vulgaris and J. erucifolia and decreased N-oxide contents in S. inaequidens and J. vulgaris. Pyrrolizidine alkaloids could be predicted with a moderate accuracy. Pyrrolizidine alkaloid forms tertiary-amines and epoxides were predicted with 63% and 56% of the variation explained, respectively. The most relevant spectral regions selected for prediction were associated with electron transitions and Csbnd H, Osbnd H, and Nsbnd H bonds in the 1530 and 2100 nm regions. Given the relatively low concentration in pyrrolizidine alkaloids concentration (in the order of mg g-1) and resultant predictions, it is promising that pyrrolizidine alkaloids interact with incident light. Further studies should be considered to determine if such a non-destructive method may predict changes in PA concentration in relation to plant natural enemies. Spectroscopy may be used to study plant defenses in intact plant tissues, and may provide managers of toxic plants, food industry and multitrophic-interaction researchers with faster and larger monitoring possibilities.

  2. High Resolution Time-resolved UCLES Spectroscopy of AE Aqr: I. The Secondary Star Revealed

    NASA Astrophysics Data System (ADS)

    Echevarria, J.; Diego, F.; Mills, D.; Connon Smith, R.

    2006-06-01

    High-dispersion time-resolved spectroscopy of the cataclysmic variable AE Aqr has been obtained. The emission lines have a complex structure that make difficult to measure the motion of the white dwarf. The cross correlation for the absorption lines shows a clear asymmetric profile as expected from a heated side of the red star. The spectral type for the secondary star varies from K2 to K5; there are clear indications that the temperature varies as a function of star longitude. The radial velocity analysis yield Kab = 165.2 ± 0.6 Km s-1 for the cross-correlated secondary star. The rotational velocity of the red star has been measured as a function of orbital period. It shows ellipsoidal variations with a period half the orbital period. The rotational velocities vary within the range Vrot sin i = 105 ± 3 Km s-1 and Vrot sin i = 130 ± 3 Km s-1. The former can be used to constrain the white dwarf semi-amplitude value to yield Kem = 139 ± 4 Km s-1 consistent with derived values from published radial velocity measurements. From a variation in the absorption line strength of 30%, we constrain the inclination angle to i = 58° ± 3. The estimated masses of the binary are: Mw = 1.07 ± 0.07 M? and Mr = 0.90 ± 0.05 M?. If this is correct we should expect a spectral type of G5 if the secondary star is a main sequence star. We suggest that the discrepancy is explained if the star has a radius 40% greater than a main sequence star for a mass of 0.90 M?.

  3. MULTI-EPOCH OBSERVATIONS OF HD 69830: HIGH-RESOLUTION SPECTROSCOPY AND LIMITS TO VARIABILITY

    SciTech Connect

    Beichman, C. A.; Tanner, A. M.; Bryden, G.; Akeson, R. L.; Ciardi, D. R.; Lisse, C. M.; Boden, A. F.; Dodson-Robinson, S. E.; Salyk, C.; Wyatt, M. C.

    2011-12-10

    The main-sequence solar-type star HD 69830 has an unusually large amount of dusty debris orbiting close to three planets found via the radial velocity technique. In order to explore the dynamical interaction between the dust and planets, we have performed multi-epoch photometry and spectroscopy of the system over several orbits of the outer dust. We find no evidence for changes in either the dust amount or its composition, with upper limits of 5%-7% (1{sigma} per spectral element) on the variability of the dust spectrum over 1 year, 3.3% (1{sigma}) on the broadband disk emission over 4 years, and 33% (1{sigma}) on the broadband disk emission over 24 years. Detailed modeling of the spectrum of the emitting dust indicates that the dust is located outside of the orbits of the three planets and has a composition similar to main-belt, C-type asteroids in our solar system. Additionally, we find no evidence for a wide variety of gas species associated with the dust. Our new higher signal-to-noise spectra do not confirm our previously claimed detection of H{sub 2}O ice leading to a firm conclusion that the debris can be associated with the break-up of one or more C-type asteroids formed in the dry, inner regions of the protoplanetary disk of the HD 69830 system. The modeling of the spectral energy distribution and high spatial resolution observations in the mid-infrared are consistent with a {approx}1 AU location for the emitting material.

  4. Spectroscopy and high-resolution imaging of the gravitational lens SDSS J1206+4332

    NASA Astrophysics Data System (ADS)

    Agnello, Adriano; Sonnenfeld, Alessandro; Suyu, Sherry H.; Treu, Tommaso; Fassnacht, Christopher D.; Mason, Charlotte; Bradač, Maruša; Auger, Matthew W.

    2016-06-01

    We present spectroscopy and laser guide star adaptive optics (LGSAO) images of the doubly imaged lensed quasar SDSS J1206+4332. We revise the deflector redshift proposed previously to zd = 0.745, and measure for the first time its velocity dispersion σ = (290 ± 30) km s-1. The LGSAO data show the lensed quasar host galaxy stretching over the astroid caustic thus forming an extra pair of merging images, which was previously thought to be an unrelated galaxy in seeing limited data. Owing to the peculiar geometry, the lens acts as a natural coronagraph on the broad-line region of the quasar so that only narrow C III]emission is found in the fold arc. We use the data to reconstruct the source structure and deflector potential, including nearby perturbers. We reconstruct the point-spread function (PSF) from the quasar images themselves, since no additional point source is present in the field of view. From gravitational lensing and stellar dynamics, we find the slope of the total mass density profile to be γ' = -log ρ/log r = 1.93 ± 0.09. We discuss the potential of SDSS J1206+4332 for measuring a time-delay distance (and thus H0 and other cosmological parameters), or as a standard ruler, in combination with the time-delay published by the COSMOGRAIL collaboration. We conclude that this system is very promising for cosmography. However, in order to achieve competitive precision and accuracy, an independent characterization of the PSF is needed. Spatially resolved kinematics of the deflector would reduce the uncertainties further. Both are within the reach of current observational facilities.

  5. High-resolution electronic spectroscopy of the doorway states to intramolecular charge transfer.

    PubMed

    Fleisher, Adam J; Bird, Ryan G; Zaleski, Daniel P; Pate, Brooks H; Pratt, David W

    2013-04-25

    Reported here are several of the ground, first, and second excited state structures and dipole moments of three benchmark intramolecular charge transfer (ICT) systems; 4-(1H-pyrrol-1-yl)benzonitrile (PBN), 4,4'-dimethylaminobenzonitrile (DMABN), and 4-(1-pyrrolidinyl)benzonitrile (PYRBN), isolated in the gas phase and probed by rotationally resolved spectroscopy in a molecular beam. The related molecules 1-phenylpyrrole (PP) and 4-aminobenzonitrile (ABN) also are discussed. We find that the S1 electronic state is of B symmetry in all five molecules. In PBN, a second excited state (S2) of A symmetry is found only ~400 cm(-1) above the presumed origin of the S1 state. The change in dipole moment upon excitation to the A state is measured to be Δμ ≈ 3.0 D, significantly smaller than the value predicted by theory and also smaller than that observed for the "anomalous" ICT band of PBN in solution. The B state dipole moments of DMABN and PYRBN are large, ~10.6 D, slightly larger than those attributed to "normal" LE fluorescence in solution. In addition, we find the unsaturated donor molecules (PP, PBN) to be twisted in their ground states and to become more planar upon excitation, even in the A state, whereas the saturated donor molecules (ABN, DMABN, PYRBN), initially planar, either remain planar or become more twisted in their excited states. It thus appears that the model that is appropriate for describing ICT in these systems depends on the geometry of the ground state. PMID:22913563

  6. High-Resolution Infrared Imaging and Spectroscopy of the Pistol Nebula: Evidence for Ejection

    NASA Astrophysics Data System (ADS)

    Figer, Donald F.; Morris, Mark; Geballe, T. R.; Rich, R. Michael; Serabyn, Eugene; McLean, Ian S.; Puetter, R. C.; Yahil, Amos

    1999-11-01

    We present new infrared images, obtained with the Hubble Space Telescope (HST) Near-Infrared Camera and Multiobject Spectrometer (NICMOS), and Brα (4.05 μm) spectroscopy, obtained using CGS4 on UKIRT, of the Pistol Star and its associated nebula. We find strong evidence to support the hypothesis that the Pistol Nebula was ejected from the Pistol Star. The Paα (1.87 μm) NICMOS image shows that the nebula completely surrounds the Pistol Star, although the line intensity is much stronger on its northern and western edges. The Brα CGS4 spectra show the classical ringlike signature of quasi-spherical expansion. The blueshifted emission (Vmax~-60 km s-1) is much weaker than the redshifted emission (Vmax~+10 km s-1), where the velocities are with respect to the velocity of the Pistol Star; further, the redshifted emission spans a very narrow range of velocities, i.e., it appears ``flattened'' in the position-velocity diagram. These data suggest that the nebula was ejected from the star several thousand years ago, with a velocity between the current terminal velocity of the stellar wind (95 km s-1) and the present expansion velocity of gas in the outer shell of the nebula (60 km s-1). The Paα image reveals several emission-line stars in the region, including two newly identified emission-line stars north of the Pistol Star, both of which are likely to be the hottest known stars in the Galactic center with spectral types earlier than WC8 and Teff>50,000 K). The presence of these stars, the morphology of the Paα emission, and the velocity field in the gas suggest that the side of the nebula farthest from us is approaching, and being ionized by, the hot stars of the Quintuplet and that the highest velocity redshifted gas has been decelerated by winds from the Quintuplet stars. We also discuss the possibility that the nebular gas might be magnetically confined by the ambient magnetic field delineated by the nearby nonthermal filaments. Based on observations with the

  7. Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards

    NASA Astrophysics Data System (ADS)

    Ye, Jun

    1997-09-01

    Advanced laser stabilization techniques now enable one to lock laser frequencies onto line centers of natural atomic/molecular resonances with unprecedented precision and accuracy. In this dissertation we discuss our effort in utilizing these techniques to establish visible optical frequency standards. By summarizing our earlier results on frequency measurements of the 87Rb D2 line at 780 nm 127I2 hyperfine transitions at 532 nm, we show the advantage of using a higher quality reference line, usually characterized by its narrower linewidth, higher attainable signal-to-noise ratio and lower sensitivity toward external perturbations. We then present a novel approach of cavity-enhanced frequency modulation spectroscopy for ultra-sensitive detections. The powerful utility of this new technique in the field of frequency standards is demonstrated by probing saturated molecular overtone transitions in the visible and near infrared. Weakly-absorbing gases such as C2H2 and C2HD are placed inside an external high-finesse resonator to enhance their detection sensitivities. A frequency modulation technique is employed to achieve a shot noise limited signal-to- noise ratio. The rf modulation frequency is chosen to match the cavity's free spectral range in order to avoid the cavity-induced conversion of laser frequency noise into amplitude noise. The molecular saturated dispersion signal is directly recovered after demodulation of the cavity transmitted light. A record high integrated absorption sensitivity of 5× 10-13/ (1× 10-14/cm) (at 1 second averaging time) has been obtained. Systematic studies on this new technique are presented on topics of detection sensitivity, signal line shape, signal size and slope, and pressure dependent linewidth broadening and linecenter shift. A Nd:YAG laser is stabilized on the P(5) transition in the (ν2+3/ ν3) overtone band of C2HD at 1.064 μm. Its absolute frequency is established. The excellent signal- to-noise ratio produces a frequency

  8. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoacetica metabolic profiles.

    PubMed

    Xue, Junfeng; Isern, Nancy G; Ewing, R James; Liyu, Andrei V; Sears, Jesse A; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R; Ahring, Birgitte K; Majors, Paul D

    2014-10-01

    An in situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution NMR (HR-NMR) spectroscopy. In situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at 500 MHz, and aliquots of the bioreactor contents were taken for 600-MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol, and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in situ NMR bioreactor facilitated monitoring of the fermentation process, enabling identification of intermediate and endpoint metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts. PMID:24946863

  9. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoaceticum metabolic profiles

    SciTech Connect

    Xue, Junfeng; Isern, Nancy G.; Ewing, R James; Liyu, Andrey V.; Sears, Jesse A.; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R.; Ahring, Birgitte K.; Majors, Paul D.

    2014-06-20

    An in-situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch-growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution, high sensitivity NMR (HR-NMR) spectroscopy. In-situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at an NMR frequency of 500 MHz, and aliquots of the bioreactor contents were taken for 600 MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in-situ NMR bioreactor facilitated monitoring of the fermentation process in real time, enabling identification of intermediate and end-point metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with the HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  10. High-resolution optical spectroscopy of Os-with a view to laser cooling of atomic anions

    NASA Astrophysics Data System (ADS)

    Kellerbauer, Alban; Fritzsche, Stephan

    2012-11-01

    Atomic anions are generally not amenable to optical spectroscopy because they are loosely bound systems and rarely have bound excited states. Until recently, there was only one known negative ion with a strong bound-bound electronic transition, the osmium anion Os-. The electric-dipole transition between the 4Fe9/2 ground and 6DoJ excited state of this ion provides unique insight into the structure of atomic anions. In addition, it may enable the preparation of ultracold ensembles of negative ions. Laser excitation of the electric-dipole transition in Os- ions could be used to laser-cool them to microkelvin temperatures. If demonstrated to be successful, the technique would allow the cooling of any species of negatively charged ions - from subatomic particles to molecular anions - to ultracold temperatures by sympathetic cooling. We have been investigating the bound-bound electric-dipole transition in Os- by high-resolution laser spectroscopy with a view to using it for the first laser cooling of negative ions. The principle of the method, its potential applications, as well as experimental results are presented.

  11. Resonant x-ray emission spectroscopy of liquid water: novel instrumentation, high resolution, and the"map" approach

    SciTech Connect

    Weinhardt, L.; Fuchs, O.; Blum, M.; Bär, M.; Weigand, M.; Denlinger, J.D.; Zubavichus, Y.; Zharnikov, M.; Grunze, M.; Heske, C.; Umbach, E.

    2008-06-17

    Techniques to study the electronic structure of liquids are rare. Most recently, resonant x-ray emission spectroscopy (XES) has been shown to be an extremely versatile spectroscopy to study both occupied and unoccupied electronic states for liquids in thermodynamic equilibrium. However, XES requires high-brilliance soft x-ray synchrotron radiation and poses significant technical challenges to maintain a liquid sample in an ultra-high vacuum environment. Our group has therefore developed and constructed a novel experimental setup for the study of liquids, with the long-term goal of investigating the electronic structure of biological systems in aqueous environments. We have developed a flow-through liquid cell in which the liquid is separated from vacuum by a thin Si3N4 or SiC window and which allows a precise control of temperature. This approach has significant advantages compared to static liquids cells used in the past. Furthermore, we have designed a dedicated high-transmission, high-resolution soft x-ray spectrometer. The high transmission makes it possible to measure complete resonant XES"maps" in less than an hour, giving unprecedented detailed insight into the electronic structure of the investigated sample. Using this new equipment we have investigated the electronic structure of liquid water. Furthermore, our XES spectra and maps give information about ultra-fast dissociation on the timescale of the O 1s core hole lifetime, which is strongly affected by the initial state hydrogen bonding configuration.

  12. Structural model of homogeneous As–S glasses derived from Raman spectroscopy and high-resolution XPS

    SciTech Connect

    Golovchak, R.; Shpotyuk, O.; Mccloy, J. S.; Riley, B. J.; Windisch, C. F.; Sundaram, S. K.; Kovalskiy, A.; Jain, H.

    2010-11-28

    The structure of homogeneous bulk As x S100- x (25 ≤ x ≤ 42) glasses, prepared by the conventional rocking–melting–quenching method, was investigated using high-resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. It is shown that the main building blocks of their glass networks are regular AsS3/2 pyramids and sulfur chains. In the S-rich domain, the existence of quasi-tetrahedral (QT) S = As(S1/2)3 units is deduced from XPS data, but with a concentration not exceeding ~3–5% of total atomic sites. Therefore, QT units do not appear as primary building blocks of the glass backbone in these materials, and an optimally-constrained network may not be an appropriate description for glasses when x < 40. Finally, it is shown that, in contrast to Se-based glasses, the ‘chain-crossing’ model is only partially applicable to sulfide glasses.

  13. Experiments with the High Resolution Kaon Spectrometer at Jlab Hall C and the New Spectroscopy of ^12_Lambda B Hypernuclei

    SciTech Connect

    Tang, Liguang; Chen, Chunhua; Gogami, Toshiyuki; Kawama, Daisuke; Han, Yuncheng; Yuan, Lulin; Matsumura, Akihiko; Okayasu, Yuichi; Seva, Tomislav; Rodriguez, Victor; Baturin, Pavlo; Acha Quimper, Armando; Achenbach, Carsten; Ahmidouch, Abdellah; Albayrak, Ibrahim; Androic, Darko; Asaturyan, Arshak; Asaturyan, Razmik; Ates, Ozgur; Badui, Rafael; Baker, Oliver; Benmokhtar, Fatiha; Boeglin, Werner; Bono, Jason; Bosted, Peter; Brash, Edward; Carter, Philip; Carlini, Roger; Chiba, Atsushi; Christy, Michael; Cole, Leon; Dalton, Mark; Danagoulian, Samuel; Daniel, Aji; De Leo, Raffaele; Dharmawardane, Kahanawita; Doi, Daisuke; Egiyan, Kim; Elaasar, Mostafa; Ent, Rolf; Fenker, Howard; Fujii, Yu; Furic, Miroslav; Gabrielyan, Marianna; Gan, Liping; Garibaldi, Franco; Gaskell, David; Gasparian, Ashot; Gibson, Edward; Gueye, Paul; Hashimoto, Osamu; Honda, D; Horn, Tanja; Hu, Bitao; Hungerford, Ed; Jayalath, Chandana; Jones, Mark; Johnston, Kathleen; Kalantarians, Narbe; Kanda, Hiroki; Kaneta, M; Kato, F; Kato, Seigo; Kawai, Masaharu; Keppel, Cynthia; Khanal, Hari; Kohl, M; Kramer, Laird; Lan, Kejian; Li, Ya; Habarakada Liyanage, Anusha; Luo, Wei; Mack, David; Maeda, Kazushige; Malace, Simona; Margaryan, Amur; Marikyan, Gagik; Markowitz, Pete; Maruta, Tomofumi; Maruyama, Nayuta; Maxwell, Victor; Millener, David; Miyoshi, Toshinobu; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Motoba, Toshio; Nagao, Sho; Nakamura, Satoshi; Narayan, Amrendra; Neville, Casey; Niculescu, Gabriel; Niculescu, Maria; Nunez, Angel; Nuruzzaman, nfn; Nomura, Hiroshi; Nonaka, Kenichi; Ohtani, Atsushi; Oyamada, Masamichi; Perez, Naipy; Petkovic, Tomislav; Pochodzalla, J; Qiu, Xiyu; Randeniya, Kapugodage; Raue, Brian; Reinhold, Joerg; Rivera, R; Roche, Julie; Samanta, Chhanda; Sato, Yoshinori; Sawatzky, Bradley; Segbefia, Edwin; Schott, Diane; Shichijo, Ayako; Simicevic, Neven; Smith, Gregory; Song, Yushou; Sumihama, Mizuki; Tadevosyan, Vardan; Takahashi, Toshiyuki; Taniya, Naotaka; Tsukada, Kyo; Tvaskis, Vladas; Veilleux, Micah; Vulcan, William; Wells, Steven; Wesselmann, Frank; Wood, Stephen; Yamamoto, Taku; Yan, Chen; Ye, Z; Yokota, Kosuke; Zhamkochyan, Simon; Zhu, Lingyan

    2014-09-01

    Since the pioneering experiment, E89-009 studying hypernuclear spectroscopy using the $(e,e^{\\prime}K^+)$ reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "Tilt Method", to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet were added to produce precision, high-resolution hypernuclear spectroscopy. These two experiments, E01-011 and E05-115, resulted in two new data sets, producing sub-MeV energy resolution in the spectra of ${}^{7}_{\\Lambda}\\text{He}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{28}_{\\Lambda} \\text{Al}$ and ${}^{7}_{\\Lambda}\\text{He}$, ${}^{10}_{\\Lambda}\\text{Be}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{52}_{\\Lambda}\\text{V}$. All three experiments obtained a ${}^{12}_{\\Lambda}\\text{B}$, spectrum, which is the most characteristic $p$-shell hypernucleus and is commonly used for calibration. Independent analyses of these different experiments demonstrate excellent consistency and provide the clearest level structure to date of this hypernucleus as produced by the $(e,e^{\\prime}K^+)$ reaction. This paper presents details of these experiments, and the extraction and analysis of the observed ${}^{12}_{\\Lambda}\\text{B}$ spectrum.

  14. Characterization of carbonaceous meteoritic fragments found in Antarctica by high-resolution Raman spectroscopy and SEM/EDS

    NASA Astrophysics Data System (ADS)

    Dall Asen, Analia; Baer, Brandon; Mittelstaedt, Jake; Gerton, Jordan; Bromley, Benjamin; Kenyon, Scott

    2016-03-01

    Carbonaceous chondritic meteorites are composed mainly of chondrules (micro/millimeter-sized inclusions) surrounding by a matrix of microparticles, and are considered the most primitive surviving materials from the early Solar System. Understanding their properties and history may provide clues to the formation of planets from micron-size dust grains in the Solar nebula. Our approach is to study the structure and composition of carbonaceous chondrites with high-resolution micro-Raman spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. These techniques enable us to capture details on a wide range of spatial scales, from micrometers to millimeters. Here we provide the first analysis of a set of meteorite fragments from Antarctica (MIL 07002 and ALH 84028), mapping elemental and molecular abundances, as well as large-scale morphological features. We present characterizations of individual chondrules and the surrounding matrix, and we consider on how our findings reflect physical processes believed to be operating during the early stages of planet formation.

  15. The SEGUE Stellar Parameter Pipeline. III. Comparison with High-Resolution Spectroscopy of SDSS/SEGUE Field Stars

    SciTech Connect

    Allende Prieto, C.; Sivarani, T.; Beers, T.C.; Lee, Y.S.; Koesterke, L.; Shetrone, M.; Sneden, C.; Lambert, D.L.; Wilhelm, R.; Rockosi, C.M.; Lai, D.

    2007-10-01

    The authors report high-resolution spectroscopy of 125 field stars previously observed as part of the Sloan Digital Sky Survey and its program for Galactic studies, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). These spectra are used to measure radial velocities and to derive atmospheric parameters, which they compare with those reported by the SEGUE Stellar Parameter Pipeline (SSPP). The SSPP obtains estimates of these quantities based on SDSS ugriz photometry and low-resolution (R {approx} 2000) spectroscopy. For F- and G-type stars observed with high signal-to-noise ratios (S/N), they empirically determine the typical random uncertainties in the radial velocities, effective temperatures, surface gravities, and metallicities delivered by the SSPP to be 2.4 km s{sup -1}, 130 K (2.2%), 0.21 dex, and 0.11 dex, respectively, with systematic uncertainties of a similar magnitude in the effective temperatures and metallicities. They estimate random errors for lower S/N spectra based on numerical simulations.

  16. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS FROM SDSS/SEGUE. I. ATMOSPHERIC PARAMETERS AND CHEMICAL COMPOSITIONS

    SciTech Connect

    Aoki, Wako; Suda, Takuma; Beers, Timothy C.; Lee, Young Sun; Honda, Satoshi; Ito, Hiroko; Takada-Hidai, Masahide; Frebel, Anna; Fujimoto, Masayuki Y.; Carollo, Daniela; Sivarani, Thirupathi E-mail: takuma.suda@nao.ac.jp E-mail: lee@pa.msu.edu E-mail: hidai@apus.rh.u-tokai.ac.jp E-mail: fujimoto@astro1.sci.hokudai.ac.jp E-mail: sivarani@iiap.res.in

    2013-01-01

    Chemical compositions are determined based on high-resolution spectroscopy for 137 candidate extremely metal-poor (EMP) stars selected from the Sloan Digital Sky Survey (SDSS) and its first stellar extension, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). High-resolution spectra with moderate signal-to-noise (S/N) ratios were obtained with the High Dispersion Spectrograph of the Subaru Telescope. Most of the sample (approximately 80%) are main-sequence turnoff stars, including dwarfs and subgiants. Four cool main-sequence stars, the most metal-deficient such stars known, are included in the remaining sample. Good agreement is found between effective temperatures estimated by the SEGUE stellar parameter pipeline, based on the SDSS/SEGUE medium-resolution spectra, and those estimated from the broadband (V - K){sub 0} and (g - r){sub 0} colors. Our abundance measurements reveal that 70 stars in our sample have [Fe/H] < -3, adding a significant number of EMP stars to the currently known sample. Our analyses determine the abundances of eight elements (C, Na, Mg, Ca, Ti, Cr, Sr, and Ba) in addition to Fe. The fraction of carbon-enhanced metal-poor stars ([C/Fe] > +0.7) among the 25 giants in our sample is as high as 36%, while only a lower limit on the fraction (9%) is estimated for turnoff stars. This paper is the first of a series of papers based on these observational results. The following papers in this series will discuss the higher-resolution and higher-S/N observations of a subset of this sample, the metallicity distribution function, binarity, and correlations between the chemical composition and kinematics of extremely metal-poor stars.

  17. Globular Cluster Abundances from High-resolution, Integrated-light Spectroscopy. III. The Large Magellanic Cloud: Fe and Ages

    NASA Astrophysics Data System (ADS)

    Colucci, Janet E.; Bernstein, Rebecca A.; Cameron, Scott A.; McWilliam, Andrew

    2011-07-01

    In this paper, we refine our method for the abundance analysis of high-resolution spectroscopy of the integrated light of unresolved globular clusters (GCs). This method was previously demonstrated for the analysis of old (>10 Gyr) Milky Way (MW) GCs. Here, we extend the technique to young clusters using a training set of nine GCs in the Large Magellanic Cloud. Depending on the signal-to-noise ratio of the data, we use 20-100 Fe lines per cluster to successfully constrain the ages of old clusters to within a ~5 Gyr range, the ages of ~2 Gyr clusters to a 1-2 Gyr range, and the ages of the youngest clusters (0.05-1 Gyr) to a ~200 Myr range. We also demonstrate that we can measure [Fe/H] in clusters with any age less than 12 Gyr with similar or only slightly larger uncertainties (0.1-0.25 dex) than those obtained for old MW GCs (0.1 dex) the slightly larger uncertainties are due to the rapid evolution in stellar populations at these ages. In this paper, we present only Fe abundances and ages. In the next paper in this series, we present our complete analysis of ~20 elements for which we are able to measure abundances. For several of the clusters in this sample, there are no high-resolution abundances in the literature from individual member stars; our results are the first detailed chemical abundances available. The spectra used in this paper were obtained at Las Campanas with the echelle on the du Pont Telescope and with the MIKE spectrograph on the Magellan Clay Telescope. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  18. GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. III. THE LARGE MAGELLANIC CLOUD: Fe AND AGES

    SciTech Connect

    Colucci, Janet E.; Bernstein, Rebecca A.; McWilliam, Andrew E-mail: rab@ucolick.org E-mail: andy@ociw.edu

    2011-07-01

    In this paper, we refine our method for the abundance analysis of high-resolution spectroscopy of the integrated light of unresolved globular clusters (GCs). This method was previously demonstrated for the analysis of old (>10 Gyr) Milky Way (MW) GCs. Here, we extend the technique to young clusters using a training set of nine GCs in the Large Magellanic Cloud. Depending on the signal-to-noise ratio of the data, we use 20-100 Fe lines per cluster to successfully constrain the ages of old clusters to within a {approx}5 Gyr range, the ages of {approx}2 Gyr clusters to a 1-2 Gyr range, and the ages of the youngest clusters (0.05-1 Gyr) to a {approx}200 Myr range. We also demonstrate that we can measure [Fe/H] in clusters with any age less than 12 Gyr with similar or only slightly larger uncertainties (0.1-0.25 dex) than those obtained for old MW GCs (0.1 dex); the slightly larger uncertainties are due to the rapid evolution in stellar populations at these ages. In this paper, we present only Fe abundances and ages. In the next paper in this series, we present our complete analysis of {approx}20 elements for which we are able to measure abundances. For several of the clusters in this sample, there are no high-resolution abundances in the literature from individual member stars; our results are the first detailed chemical abundances available. The spectra used in this paper were obtained at Las Campanas with the echelle on the du Pont Telescope and with the MIKE spectrograph on the Magellan Clay Telescope.

  19. New frontiers of high-resolution spectroscopy: Probing the atmospheres of brown dwarfs and reflected light from exoplanets

    NASA Astrophysics Data System (ADS)

    Birkby, Jayne; Alonso, Roi; Brogi, Matteo; Charbonneau, David; Fortney, Jonathan; Hoyer, Sergio; Johnson, John Asher; de Kok, Remco; Lopez-Morales, Mercedes; Montet, Ben; Snellen, Ignas

    2015-12-01

    High-resolution spectroscopy (R>25,000) is a robust and powerful tool in the near-infrared characterization of exoplanet atmospheres. It has unambiguously revealed the presence of carbon monoxide and water in several hot Jupiters, measured the rotation rate of beta Pic b, and suggested the presence of fast day-to-night winds in one atmosphere. The method is applicable to transiting, non-transiting, and directly-imaged planets. It works by resolving broad molecular bands in the planetary spectrum into a dense, unique forest of individual lines and tracing them directly by their Doppler shift, while the star and tellurics remain essentially stationary. I will focus on two ongoing efforts to expand this technique. First, I will present new results on 51 Peg b revealing its infrared atmospheric compositional properties, then I will discuss an ongoing optical HARPS-N/TNG campaign (due mid October 2015) to obtain a detailed albedo spectrum of 51 Peg b at 387-691 nm in bins of 50nm. This spectrum would provide strong constraints on the previously claimed high albedo and potentially cloudy nature of this planet. Second, I will discuss preliminary results from Keck/NIRSPAO observations (due late September 2015) of LHS 6343 C, a 1000 K transiting brown dwarf with an M-dwarf host star. The high-resolution method converts this system into an eclipsing, double-lined spectroscopic binary, thus allowing dynamical mass and radius estimates of the components, free from astrophysical assumptions. Alongside probing the atmospheric composition of the brown dwarf, these data would provide the first model-independent study of the bulk properties of an old brown dwarf, with masses accurate to <5%, placing a crucial constraint on brown dwarf evolution models.

  20. 15N/14N Ratio Determination in the ISM with Herschel with High Resolution Spectroscopy of Nitrogen Radicals

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Bailleux, S.; Wlodarczak, G.; Pirali, O.; Martin-Drumel, M.-A.; Roy, P.; Roueff, E.; Gerin, M.

    2011-06-01

    The very high resolution of the HIFI instrument (134 kHz-1MHz) on board of Herschel needs very accurate laboratory measurements to detect unambiguously the signature of stable and unstable molecular species. Concerning the pure rotation spectra of new species, and particularly of open shell molecules, the first prediction could be far away and up to few hundred MHz. The 15N/14N ratio is not well measured in the ISM. However, the 15N/14N in the isotopomers is a potential tracer of the formation processes and the possible link with cometary molecules. Recent measurements include the detection of 15NH_2D N15NH+ and 15NH_3. The NH and NH_2 species are the simplest nitrogen radicals and are intermediate products in the NH_3 synthesis. They have been easily detected by Herschel and it therefore is interesting to now search for 15NH and 15NH_2. No spectrocopic data have been reported for these two radicals up to now. We present here the studies with high resolution spectroscopy in the THz range. The high sensitivity and the wide range of Synchrotron (0.6-6 THz) was essential to improve the prediction of the spectra of these two species in order to measure them in Lille (0.6-1 THz) with both a higher accuracy and resolution. The combined studies now give the most accurate predictions. ISM searches on these radicals are in progress in the HERSCHEL spectra. This work is supported by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS) M. Gerin, N. Marcellino, N. Biver, et al., Astron. & Astrophys. 498 (2009) 9. L. Bizzochi, P. Caselli, and L. Dore, Astron. & Astrophys. 510 (2010) L5. D. C. Lis, A. Wooten, M. Gerin and E. Roueff, Astrophys. J. 710 (2010) L49.

  1. Properties of the Open Cluster Tombaugh 1 from High-resolution Spectroscopy and uvbyCaHβ Photometry

    NASA Astrophysics Data System (ADS)

    Sales Silva, João V.; Carraro, Giovanni; Anthony-Twarog, Barbara J.; Moni Bidin, Christian; Costa, Edgardo; Twarog, Bruce A.

    2016-01-01

    Open clusters can be the key to deepening our knowledge on various issues involving the structure and evolution of the Galactic disk and details of stellar evolution because a cluster's properties are applicable to all its members. However, the number of open clusters with detailed analysis from high-resolution spectroscopy or precision photometry imposes severe limitations on studies of these objects. To expand the number of open clusters with well-defined chemical abundances and fundamental parameters, we investigate the poorly studied, anticenter open cluster Tombaugh 1. Using precision uvbyCaHβ photometry and high-resolution spectroscopy, we derive the cluster's reddening, obtain photometric metallicity estimates, and, for the first time, present a detailed abundance analysis of 10 potential cluster stars (nine clump stars and one Cepheid). Using the radial position from the cluster center and multiple color indices, we have isolated a sample of unevolved, probable single-star members of Tombaugh 1. From 51 stars, the cluster reddening is found to be E(b-y) = 0.221 ± 0.006 or E(B-V) = 0.303 ± 0.008, where the errors refer to the internal standard errors of the mean. The weighted photometric metallicity from m1 and hk is [Fe/H] = -0.10 ± 0.02, while a match to the Victoria-Regina Strömgren isochrones leads to an age of 0.95 ± 0.10 Gyr and an apparent modulus of (m-M) = 13.10 ± 0.10. Radial velocities identify six giants as probable cluster members, and the elemental abundances of Fe, Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Y, Ba, Ce, and Nd have been derived for both the cluster and the field stars. Tombaugh 1 appears to be a typical inner thin disk, intermediate-age open cluster of slightly subsolar metallicity, located just beyond the solar circle, with solar elemental abundance ratios except for the heavy s-process elements, which are a factor of two above solar. Its metallicity is consistent with a steep metallicity gradient in the galactocentric region

  2. High-resolution line-shape spectroscopy during a laser pulse based on Dual-Broad-Band-CARS interferometry

    SciTech Connect

    Vereschagin, Konstantin A; Vereschagin, Alexey K; Smirnov, Valery V; Stelmakh, O M; Fabelinskii, V I; Clauss, W; Klimenko, D N; Oschwald, M E-mail: Al_Vereshchagin@mail.r E-mail: stelmakh@kapella.gpi.r

    2006-07-31

    A high-resolution spectroscopic method is developed for recording Raman spectra of molecular transitions in transient objects during a laser pulse with a resolution of {approx}0.1 cm{sup -1}. The method is based on CARS spectroscopy using a Fabry-Perot interferometer for spectral analysis of the CARS signal and detecting a circular interferometric pattern on a two-dimensional multichannel photodetector. It is shown that the use of the Dual-Broad-Band-CARS configuration to obtain the CARS process provides the efficient averaging of the spectral-amplitude noise of the CARS signal generated by a laser pulse and, in combination with the angular integration of the two-dimensional interference pattern, considerably improves the quality of interferograms. The method was tested upon diagnostics of the transient oxygen-hydrogen flame where information on the shapes of spectral lines of the Q-branch of hydrogen molecules required for measuring temperature was simultaneously obtained and used. (special issue devoted to the 90th anniversary of a.m. prokhorov)

  3. Evaluation of Cancer Metabolomics Using ex vivo High Resolution Magic Angle Spinning (HRMAS) Magnetic Resonance Spectroscopy (MRS)

    PubMed Central

    Fuss, Taylor L.; Cheng, Leo L.

    2016-01-01

    According to World Health Organization (WHO) estimates, cancer is responsible for more deaths than all coronary heart disease or stroke worldwide, serving as a major public health threat around the world. High resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS) has demonstrated its usefulness in the identification of cancer metabolic markers with the potential to improve diagnosis and prognosis for the oncology clinic, due partially to its ability to preserve tissue architecture for subsequent histological and molecular pathology analysis. Capable of the quantification of individual metabolites, ratios of metabolites, and entire metabolomic profiles, HRMAS MRS is one of the major techniques now used in cancer metabolomic research. This article reviews and discusses literature reports of HRMAS MRS studies of cancer metabolomics published between 2010 and 2015 according to anatomical origins, including brain, breast, prostate, lung, gastrointestinal, and neuroendocrine cancers. These studies focused on improving diagnosis and understanding patient prognostication, monitoring treatment effects, as well as correlating with the use of in vivo MRS in cancer clinics. PMID:27011205

  4. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    SciTech Connect

    Zhang, Libing; Lu, Zhou; Velarde, Luis; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Arthur; Wang, Hong-Fei; Yang, Bin

    2015-03-03

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.

  5. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    DOE PAGESBeta

    Zhang, Libing; Lu, Zhou; Velarde, Luis; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Arthur; Wang, Hong-Fei; Yang, Bin

    2015-03-03

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signaturesmore » in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.« less

  6. Triosmium clusters on a support: determination of structure by X-ray absorption spectroscopy and high-resolution microscopy.

    PubMed

    Mehraeen, Shareghe; Kulkarni, Apoorva; Chi, Miaofang; Reed, Bryan W; Okamoto, Norihiko L; Browning, Nigel D; Gates, Bruce C

    2011-01-17

    The structures of small, robust metal clusters on a solid support were determined by a combination of spectroscopic and microscopic methods: extended X-ray absorption fine structure (EXAFS) spectroscopy, scanning transmission electron microscopy (STEM), and aberration-corrected STEM. The samples were synthesized from [Os(3) (CO)(12) ] on MgO powder to provide supported clusters intended to be triosmium. The results demonstrate that the supported clusters are robust in the absence of oxidants. Conventional high-angle annular dark-field (HAADF) STEM images demonstrate a high degree of uniformity of the clusters, with root-mean-square (rms) radii of 2.03±0.06 Å. The EXAFS OsOs coordination number of 2.1±0.4 confirms the presence of triosmium clusters on average and correspondingly determines an average rms cluster radius of 2.02±0.04 Å. The high-resolution STEM images show the individual Os atoms in the clusters, confirming the triangular structures of their frames and determining OsOs distances of 2.80±0.14 Å, matching the EXAFS value of 2.89±0.06 Å. IR and EXAFS spectra demonstrate the presence of CO ligands on the clusters. This set of techniques is recommended as optimal for detailed and reliable structural characterization of supported clusters. PMID:21226118

  7. Triosmium Clusters on a Support: Determination of Structure by X-Ray Absorption Spectroscopy and High-Resolution Microscopy

    SciTech Connect

    Shareghe, Mehraeen; Chi, Miaofang; Browning, Nigel D.

    2011-01-01

    The structures of small, robust metal clusters on a solid support were determined by a combination of spectroscopic and microscopic methods: extended X-ray absorption fine structure (EXAFS) spectroscopy, scanning transmission electron microscopy (STEM), and aberration-corrected STEM. The samples were synthesized from [Os{sub 3}(CO){sub 12}] on MgO powder to provide supported clusters intended to be triosmium. The results demonstrate that the supported clusters are robust in the absence of oxidants. Conventional high-angle annular dark-field (HAADF) STEM images demonstrate a high degree of uniformity of the clusters, with root-mean-square (rms) radii of 2.03 {+-} 0.06 {angstrom}. The EXAFS OsOs coordination number of 2.1 {+-} 0.4 confirms the presence of triosmium clusters on average and correspondingly determines an average rms cluster radius of 2.02 {+-} 0.04 {angstrom}. The high-resolution STEM images show the individual Os atoms in the clusters, confirming the triangular structures of their frames and determining OsOs distances of 2.80 {+-} 0.14 {angstrom}, matching the EXAFS value of 2.89 {+-} 0.06 {angstrom}. IR and EXAFS spectra demonstrate the presence of CO ligands on the clusters. This set of techniques is recommended as optimal for detailed and reliable structural characterization of supported clusters.

  8. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: LEO IV

    SciTech Connect

    Simon, Joshua D.; McWilliam, Andrew; Thompson, Ian B.; Frebel, Anna; Kirby, Evan N. E-mail: andy@ociw.ed E-mail: afrebel@cfa.harvard.ed

    2010-06-10

    We present high-resolution Magellan/MIKE spectroscopy of the brightest star in the ultra-faint dwarf galaxy Leo IV. We measure an iron abundance of [Fe/H] = -3.2, adding to the rapidly growing sample of extremely metal-poor (EMP) stars being identified in Milky Way satellite galaxies. The star is enhanced in the {alpha} elements Mg, Ca, and Ti by {approx}0.3 dex, very similar to the typical Milky Way halo abundance pattern. All of the light and iron-peak elements follow the trends established by EMP halo stars, but the neutron-capture elements Ba and Sr are significantly underabundant. These results are quite similar to those found for stars in the ultra-faint dwarfs Ursa Major II, Coma Berenices, Booetes I, and Hercules, suggesting that the chemical evolution of the lowest-luminosity galaxies may be universal. The abundance pattern we observe is consistent with predictions for nucleosynthesis from a Population III supernova explosion. The extremely low metallicity of this star also supports the idea that a significant fraction ({approx}>10%) of the stars in the faintest dwarfs have metallicities below [Fe/H] = -3.0.

  9. Formation, characterization, and stability of methaneselenolate monolayers on Au(111): an electrochemical high-resolution photoemission spectroscopy and DFT study.

    PubMed

    Cometto, F P; Calderón, C A; Morán, M; Ruano, G; Ascolani, H; Zampieri, G; Paredes-Olivera, P; Patrito, E M

    2014-04-01

    We investigated the mechanism of formation and stability of self-assembled monolayers (SAMs) of methaneselenolate on Au(111) prepared by the immersion method in ethanolic solutions of dimethyl diselenide (DMDSe). The adsorbed species were characterized by electrochemical measurements and high-resolution photoelectron spectroscopy (HR-XPS). The importance of the headgroup on formation mechanism and the stability of the SAMs was addressed by comparatively studying methaneselenolate (MSe) and methanethiolate (MT) monolayers. Density Functional Theory (DFT) calculations were performed to identify the elementary reaction steps in the mechanisms of formation and decomposition of the monolayers. Reductive desorption and HR-XPS measurements indicated that a MSe monolayer is formed at short immersion times by the cleavage of the Se-Se bond of DMDSe. However, the monolayer decomposes at long immersion times at room temperature, as evidenced by the appearance of atomic Se on the surface. The decomposition is more pronounced for MSe than for MT monolayers. The MSe monolayer stability can be greatly improved by two modifications in the preparation method: immersion at low temperatures (-20 °C) and the addition of a reducing agent to the forming solution. PMID:24645647

  10. High Resolution and Low-Temperature Photoelectron Spectroscopy of an Oxygen-Linked Fullerene Dimer Dianion: C120O2-

    SciTech Connect

    Wang, Xue B.; Matheis, Katerina; Ioffe, Ilya N.; Goryunkov, Alexey A.; Yang, Jie; Kappes, Manfred M.; Wang, Lai S.

    2008-03-21

    C120O comprises two C60 cages linked by a furan ring and is formed by reactions of C60O and C60. We have produced doubly-charged anions of this fullerene dimer (C120O2–) and studied its electronic structure and stability using photoelectron spectroscopy and theoretical calculations. High resolution and vibrationally resolved photoelectron spectra were obtained at 70 K and at several photon energies. The second electron affinity of C120O was measured to be 1.02 ± 0.03 eV and the intramolecular Coulomb repulsion was estimated to be about 0.8 eV in C120O2– on the basis of the observed repulsive Coulomb barrier. A low-lying excited state (2B1) was also observed for C120O– at 0.09 eV above the ground state (2A1). The C120O2– dianion can be viewed as a single electron on each C60 ball very weakly coupled. Theoretical calculations showed that the singlet and triplet states of C120O2– are nearly degenerate and can both be present in the experiment. The computed electron binding energies and excitation energies, as well as Franck-Condon factors, are used to help interpret the photoelectron spectra. A C-C bond-cleaved isomer, C60-O-C602–, was also observed with a higher electron binding energy of 1.54 eV.

  11. High resolution cathodoluminescence spectroscopy of carbonate cementation in Khurmala Formation (Paleocene-L. Eocene) from Iraqi Kurdistan Region, Northern Iraq

    NASA Astrophysics Data System (ADS)

    Omer, Muhamed F.; Omer, Dilshad; Zebari, Bahroz Gh.

    2014-12-01

    A combination of high resolution cathodoluminsecnce-spectroscopy (HRS-CL) with spatial electron microprobe analysis and optical microscopy is used to determine paragenesis and history of cementation in the limestones and dolostones of Khurmala Formation which is exposed in many parts of Northern Iraq. Khurmala Formation was subjected to different diagenetic processes such as micritization, compaction, dissolution, neomorphism, pyritization and cementation that occurred during marine to shallow burial stages and culminated during intermediate to deep burial later stages. Five dolomite textures are recognized and classified according to crystal size distribution and crystal-boundary shape. Dolomitization is closely associated with the development of secondary porosity that pre-and postdates dissolution and corrosion; meanwhile such porosity was not noticed in the associated limestones. Microprobe analysis revealed three types of cement, calcite, dolomite and ankerite which range in their luminescence from dull to bright. Cathodoluminescence study indicated four main texture generations. These are (1) unzoned microdolomite of planar and subhedral shape, with syntaxial rim cement of echinoderm that show dull to red luminescence, (2) equant calcite cements filling interparticle pores which shows dull luminescence and weak zonal growth, (3.1) homogenous intrinsic blue stoichiometric calcite with dull luminescence and without activators, (3.2) coarse blocky calcite cement with strong oscillatory zoning and bright orange luminescence which postdates other calcite cements, (4) ankerite cement with red to orange, non-luminescence growth zonation which is the last formed cement.

  12. Baseline restoration and pile-up correction based on bipolar cusp-like shaping for high-resolution radiation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kafaee, Mahdi; Moussavi-Zarandi, Ali

    2016-04-01

    The baseline may shift in many radiation measurement systems. The shift is time variant and depends on the events. Also, with high count rates, pulses may overlap in random time intervals. These phenomena can affect the peak values of the pulses. Piled-up events are traditionally rejected, but this reduces the detection efficiency considerably. In other approaches, the corrupted events are reconstructed, and information about the single pulses is extracted. The peaks carry much of the basic information, so many shaping methods have been proposed so far. For pile-up mitigation, a narrow unipolar shaping is enough, but a baseline shift is eliminated by using bipolar shaping. However, the latter decreases the signal-to-noise ratio (SNR), which is critical for high-resolution spectroscopy. In this paper, we propose bipolar cusp-like shaping as a tradeoff between mitigating the baseline shift and pulse pile-up. A novel recursive algorithm, implementable on digital pulse processors (DPPs), is introduced and is then evaluated. Finally, the superior noise-reduction capability is studied by using Monte Carlo simulations, a real piled-up pulse stream shaped by using the algorithm, and the results show its advantages.

  13. Structure of Se-rich As-Se glasses by high-resolution x-ray photoelectron spectroscopy

    SciTech Connect

    Golovchak, R.; Kovalskiy, A.; Miller, A. C.; Jain, H.; Shpotyuk, O.

    2007-09-15

    To establish the validity of various proposed structural models, we have investigated the structure of the binary As{sub x}Se{sub 100-x} chalcogenide glass family (x{<=}40) by high-resolution x-ray photoelectron spectroscopy. From the composition dependence of the valence band, the contributions to the density of states from the 4p lone pair electrons of Se and the 4p bonding states and 4s electrons of Se and As are identified in the top part of the band. The analysis of Se 3d and As 3d core-level spectra supports the so-called chain crossing model for the atomic structure of Se-rich As{sub x}Se{sub 100-x} bulk glasses. The results also indicate small deviations ({approx}3-8%) from this model, especially for glass compositions with short Se chains (25

  14. Hydrogenated graphene on Ir(111): A high-resolution electron energy loss spectroscopy study of the vibrational spectrum

    NASA Astrophysics Data System (ADS)

    Kyhl, Line; Balog, Richard; Angot, Thierry; Hornekær, Liv; Bisson, Régis

    2016-03-01

    Hydrogen atom adsorption on high-quality graphene on Ir(111) [gr/Ir(111)] is investigated using high-resolution electron energy loss spectroscopy. The evolution of the vibrational spectrum, up to 400 meV, of gr/Ir(111) upon increasing hydrogen atom exposures is measured. The two dominant binding configurations of atomic hydrogen are identified as (1) graphanelike hydrogen clusters on the parts of the graphene more strongly interacting with the Ir(111) surface and (2) dimers bound more weakly to the freestanding parts of the graphene. The graphanelike surface structures lead to increased corrugation of the graphene sheet, yielding graphane-related phonon components. Additionally, a recent theoretical prediction of the existence of a bending character for a LO/TO graphane chair phonon mode is experimentally verified. No clear evidence was found for hydrogen bound on both sides of a high-quality graphene sheet and phonon features strongly suggest interactions between graphanelike hydrogen clusters and Ir atoms in the substrate.

  15. Vibrational Spectral Signatures of Crystalline Cellulose Using High Resolution Broadband Sum Frequency Generation Vibrational Spectroscopy (HR-BB-SFG-VS)

    SciTech Connect

    Zhang, Libing; Lu, Zhou; Velarde Ruiz Esparza, Luis A.; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Art J.; Wang, Hongfei; Yang, Bin

    2015-03-03

    Here we reported the first sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) study on both the C-H and O-H region spectra of crystalline cellulose. HR-BB-SFG-VS has about 10 times better resolution than the conventional scanning SFG-VS and is known to be able to measure the intrinsic spectral lineshape and to resolve much more spectral details. With HR-BB-SFG-VS, we found that in cellulose from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the OH regions were unique for different allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C-H regions varied in all samples examined. Even though the origin of the different behaviors of the crystalline cellulose in the O-H and C-H vibrational frequency regions is yet to be correlated to the structure of cellulose, these results provided new spectroscopic methods and opportunities to classify and understand the basic crystalline structure, as well as variations, in polymorphism of the crystalline cellulose structure.

  16. High resolution infrared spectroscopy from space: A preliminary report on the results of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment on Spacelab 3

    NASA Technical Reports Server (NTRS)

    Farmer, Crofton B.; Raper, Odell F.

    1987-01-01

    The ATMOS (Atmospheric Trace Molecule Spectroscopy) experiment has the broad purpose of investigating the physical structure, chemistry, and dynamics of the upper atmosphere through the study of the distributions of the neutral minor and trace constituents and their seasonal and long-term variations. The technique used is high-resolution infrared absorption spectroscopy using the Sun as the radiation source, observing the changes in the transmission of the atmosphere as the line-of-sight from the Sun to the spacecraft penetrates the atmosphere close to the Earth's limb at sunrise and sunset. During these periods, interferograms are generated at the rate of one each second which yield, when transformed, high resolution spectra covering the 2.2 to 16 micron region of the infrared. Twenty such occultations were recorded during the Spacelab 3 flight, which have produced concentration profiles for a large number of minor and trace upper atmospheric species in both the Northern and Southern Hemispheres. Several of these species have not previously been observed in spectroscopic data. The data reduction and analysis procedures used following the flight are discussed; a number of examples of the spectra obtained are shown, and a bar graph of the species detected thus far in the analysis is given which shows the altitude ranges for which concentration profiles were retrieved.

  17. Live-cell high resolution magic angle spinning magnetic resonance spectroscopy for in vivo analysis of Pseudomonas aeruginosa metabolomics.

    PubMed

    Righi, Valeria; Constantinou, Caterina; Kesarwani, Meenu; Rahme, Laurence G; Tzika, Aria A

    2013-09-01

    Pseudomonas aeruginosa (PA) is a pathogenic gram-negative bacterium that is widespread in nature, inhabiting soil, water, plants and animals. PA is a prevalent cause of deleterious human infections, particularly in patients whose host defense mechanisms have been compromised. Metabolomics is an important tool used to study host-pathogen interactions and to identify novel therapeutic targets and corresponding compounds. The aim of the present study was to report the metabolic profile of live PA bacteria using in vivo high-resolution magic angle spinning (HRMAS) nuclear magnetic resonance spectroscopy (NMR), in combination with 1- and 2-dimensional HRMAS NMR. This methodology provides a new and powerful technique to rapidly interrogate the metabolome of intact bacterial cells and has several advantages over traditional techniques that identify metabolome components from disrupted cells. Furthermore, application of multidimensional HRMAS NMR, in combination with the novel technique total through-Bond correlation Spectroscopy (TOBSY), is a promising approach that may be used to obtain in vivo metabolomics information from intact live bacterial cells and can mediate such analyses in a short period of time. Moreover, HRMAS (1)H NMR enables the investigation of the associations between metabolites and cell processes. In the present study, we detected and quantified several informative metabolic molecules in live PA cells, including N-acetyl, betaine, citrulline, alanine and glycine, which are important in peptidoglycan synthesis. The results provided a complete metabolic profile of PA for future studies of PA clinical isolates and mutants. In addition, this in vivo NMR biomedical approach might have clinical utility and should prove useful in gene function validation, the study of pathogenetic mechanisms, the classification of microbial strains into functional/clinical groups, the testing of anti-bacterial agents and the determination of metabolic profiles of bacterial

  18. Characterization of metabolites in infiltrating gliomas using ex vivo ¹H high-resolution magic angle spinning spectroscopy.

    PubMed

    Elkhaled, Adam; Jalbert, Llewellyn; Constantin, Alexandra; Yoshihara, Hikari A I; Phillips, Joanna J; Molinaro, Annette M; Chang, Susan M; Nelson, Sarah J

    2014-05-01

    Gliomas are routinely graded according to histopathological criteria established by the World Health Organization. Although this classification can be used to understand some of the variance in the clinical outcome of patients, there is still substantial heterogeneity within and between lesions of the same grade. This study evaluated image-guided tissue samples acquired from a large cohort of patients presenting with either new or recurrent gliomas of grades II-IV using ex vivo proton high-resolution magic angle spinning spectroscopy. The quantification of metabolite levels revealed several discrete profiles associated with primary glioma subtypes, as well as secondary subtypes that had undergone transformation to a higher grade at the time of recurrence. Statistical modeling further demonstrated that these metabolomic profiles could be differentially classified with respect to pathological grading and inter-grade conversions. Importantly, the myo-inositol to total choline index allowed for a separation of recurrent low-grade gliomas on different pathological trajectories, the heightened ratio of phosphocholine to glycerophosphocholine uniformly characterized several forms of glioblastoma multiforme, and the onco-metabolite D-2-hydroxyglutarate was shown to help distinguish secondary from primary grade IV glioma, as well as grade II and III from grade IV glioma. These data provide evidence that metabolite levels are of interest in the assessment of both intra-grade and intra-lesional malignancy. Such information could be used to enhance the diagnostic specificity of in vivo spectroscopy and to aid in the selection of the most appropriate therapy for individual patients. PMID:24596146

  19. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Krishna, R.; Jones, A. N.; McDermott, L.; Marsden, B. J.

    2015-12-01

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated 'D'peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of 'G' and 'D' in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure.

  20. AEGIS: An Astrophysics Experiment for Grating and Imaging Spectroscopy---a Soft X-ray, High-resolution Spectrometer

    NASA Astrophysics Data System (ADS)

    Huenemoerder, David; Bautz, M. W.; Davis, J. E.; Heilmann, R. K.; Houck, J. C.; Marshall, H. L.; Neilsen, J.; Nicastro, F.; Nowak, M. A.; Schattenburg, M. L.; Schulz, N. S.; Smith, R. K.; Wolk, S.; AEGIS Team

    2012-01-01

    AEGIS is a concept for a high-resolution soft X-ray spectroscopic observatory developed in response to NASA's request for definitions of the next X-ray astronomy mission. At a small fraction of the cost of the once-planned International X-ray Observatory (IXO), AEGIS has capabilities that surpass IXO grating spectrometer requirements, and which are far superior to those of existing soft X-ray spectrometers. AEGIS incorporates innovative technology in X-ray optics, diffraction gratings and detectors. The mirror uses high area-to-mass ratio segmented glass architecture developed for IXO, but with smaller aperture and larger graze angles optimized for high-throughput grating spectroscopy with low mass and cost. The unique Critical Angle Transmission gratings combine low mass and relaxed figure and alignment tolerances of Chandra transmission gratings but with high diffraction efficiency and resolving power of blazed reflection gratings. With more than an order of magnitude better performance over Chandra and XMM grating spectrometers, AEGIS can obtain high quality spectra of bright AGN in a few hours rather than 10 days. Such high resolving power allows detailed kinematic studies of galactic outflows, hot gas in galactic haloes, and stellar accretion flows. Absorption line spectroscopy will be used to study large scale structure, cosmic feedback, and growth of black holes in thousands of sources to great distances. AEGIS will enable powerful multi-wavelength investigations, for example with Hubble/COS in the UV to characterize the intergalactic medium. AEGIS will be the first observatory with sufficient resolution below 1 keV to resolve thermally-broadened lines in hot ( 10 MK) plasmas. Here we describe key science investigations enable by Aegis, its scientific payload and mission plan. Acknowledgements: Support was provided in part by: NASA SAO contract SV3-73016 to MIT for the Chandra X-ray Center and Science Instruments; NASA grant NNX08AI62G; and the MKI

  1. High resolution absorption spectroscopy of the ν1=2-6 acetylenic overtone bands of propyne: Spectroscopy and dynamics

    NASA Astrophysics Data System (ADS)

    Campargue, A.; Biennier, L.; Garnache, A.; Kachanov, A.; Romanini, D.; Herman, M.

    1999-11-01

    The rotationally resolved nν1 (n=2-6) overtone transitions of the CH acetylenic stretching of propyne (CH3-C≡C-H) have been recorded by using Fourier transform spectroscopy (n=2), various intracavity laser absorption spectrometers (n=3, 4, and 6) and cavity ring down spectroscopy (CRDS) (n=5). The 2ν1, 3ν1, and 6ν1 bands exhibit a well-resolved and mostly unperturbed J-rotational structure, whose analysis is reported. The 5ν1 band recorded by pulsed CRDS shows an unresolved rotational envelope. In the region of 12 700 cm-1, an anharmonic interaction is confirmed between 4ν1 and 3ν1+ν3+ν5. The band at a higher wave number in this dyad exhibits a partly resolved K-structure, whose analysis is reported. The mixing coefficient of the two interacting states is determined consistently using different procedures. The 1/35 anharmonic resonance evidenced in the 4ν1 manifold induces weaker intensity borrowing from the 2ν1 and 3ν1 levels to the ν1+ν3+ν5 and 2ν1+ν3+ν5 level, respectively, which have been predicted and identified. Several hot bands around the 2ν1, 3ν1, and 3ν1+ν3+ν5 bands arising from the ν9=1 and ν10=1 and 2 bending levels are identified and rotationally analyzed, also leading to determine x1,9 [-20.3(3) cm-1], x1,10 [-1.7975(75) cm-1], and x3,10 [-6.56 cm-1]. The J-clumps of the P and R branches in the 6ν1 band at 18 499 cm-1 show a Lorentzian homogeneous profile mostly J-independent with an average full width at half maximum (FWHM) of 0.17 cm-1, attributed to arising from the intramolecular vibrational energy redistribution towards the bath of vibrational states. A detailed comparative examination of the fine structure in all investigated nν1 (n=2 to 7) overtone bands and the similar behavior of the cold and hot bands arising from ν10=1 definitively suggests that a highly specific low-order anharmonic coupling, still unidentified, dominates the hierarchy of interaction mechanisms connecting the nν1 levels to the background

  2. Ultraviolet imaging and spectroscopy of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Gerard, Jean-Claude

    1994-01-01

    The main scientific results of the participation of the Institute of Astrophysics (Belgium) in the NASA's Pioneer Venus mission are reported on. The data were obtained with the Pioneer Orbiter's Ultraviolet Spectrometer (POUVS). The instrument provided a morphological study of the nitric oxide ultraviolet night glow. Information concerning the altitude of the airglow emitting layer was also collected and used to constrain models of turbulent transport on the night side of the planet. Models of the odd nitrogen thermospheric chemistry and transport were developed to analyze the observations and derive the properties of the global circulation of Venus' upper atmosphere. Images of the Jovian ultraviolet aurora were obtained. The morphology and the time variations of the HI Ly-alpha and H2 Lyman and Werner bands were acquired at different longitudes. The observed distribution was compared with the results of the spectrometric observations made with the Voyager and the International Ultraviolet Explorer missions. Images concerning the Io surface albedo and Saturn's disk and ring's reflectivity were also obtained.

  3. Development of spatially resolved high resolution x-ray spectroscopy for fusion and light-source research

    NASA Astrophysics Data System (ADS)

    Lu, J.; Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Pablant, N. A.; Efthimion, P.; Beiersdorfer, P.; Chen, H.; Widmann, K.; Sanchez del Rio, M.

    2014-09-01

    One dimensional spatially resolved high resolution x-ray spectroscopy with spherically bent crystals and 2D pixelated detectors is an established technique on magnetic confinement fusion (MCF) experiments world wide for Doppler measurements of spatial profiles of plasma ion temperature and flow velocity. This technique is being further developed for diagnosis of High Energy Density Physics (HEDP) plasmas at laser-plasma facilities and synchrotron/x-ray free electron laser (XFEL) facilities. Useful spatial resolution (micron scale) of such small-scale plasma sources requires magnification, because of the finite pixel size of x-ray CCD detectors (13.5 μm). A von-Hamos like spectrometer using spherical crystals is capable of magnification, as well as uniform sagittal focusing across the full x-ray spectrum, and is being tested in laboratory experiments using a tungsten-target microfocus (5-10 μm) x-ray tube and 13-μm pixel x-ray CCD. A spatial resolution better than 10 μm has been demonstrated. Good spectral resolution is indicated by small differences (0.02 - 0.1 eV) of measured line widths with best available published natural line widths. Progress and status of HEDP measurements and the physics basis for these diagnostics are presented. A new type of x-ray crystal spectrometer with a convex spherically bent crystal is also reported. The status of testing of a 2D imaging microscope using matched pairs of spherical crystals with x rays will also be presented. The use of computational x-ray optics codes in development of these instrumental concepts is addressed.

  4. Application of High-Resolution Magic-Angle Spinning NMR Spectroscopy to Define the Cell Uptake of MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Calabi, Luisella; Alfieri, Goffredo; Biondi, Luca; De Miranda, Mario; Paleari, Lino; Ghelli, Stefano

    2002-06-01

    A new method, based on proton high-resolution magic-angle spinning ( 1H HR-MAS) NMR spectroscopy, has been employed to study the cell uptake of magnetic resonance imaging contrast agents (MRI-CAs). The method was tested on human red blood cells (HRBC) and white blood cells (HWBC) by using three gadolinium complexes, widely used in diagnostics, Gd-BOPTA, Gd-DTPA, and Gd-DOTA, and the analogous complexes obtained by replacing Gd(III) with Dy(III), Nd(III), and Tb(III) (i.e., complexes isostructural to the ones of gadolinium but acting as shift agents). The method is based on the evaluation of the magnetic effects, line broadening, or induced lanthanide shift (LIS) caused by these complexes on NMR signals of intra- and extracellular water. Since magnetic effects are directly linked to permeability, this method is direct. In all the tests, these magnetic effects were detected for the extracellular water signal only, providing a direct proof that these complexes are not able to cross the cell membrane. Line broadening effects (i.e., the use of gadolinium complexes) only allow qualitative evaluations. On the contrary, LIS effects can be measured with high precision and they can be related to the concentration of the paramagnetic species in the cellular compartments. This is possible because the HR-MAS technique provides the complete elimination of bulk magnetic susceptibility (BMS) shift and the differentiation of extra- and intracellular water signals. Thus with this method, the rapid quantification of the MRI-CA amount inside and outside the cells is actually feasible.

  5. The transient gamma-ray spectrometer: A new high resolution detector for gamma-ray burst spectroscopy

    SciTech Connect

    Seifert, H.; Baker, R.; Cline, T.L.; Gehrels, N.; Jermakian, J.; Nolan, T.; Ramaty, R.; Sheppard, D.A.; Smith, G.; Stilwell, D.E.; Teegarden, B.J.; Trombka, J.; Owens, A.; Cork, C.P.; Landis, D.A.; Luke, P.N.; Madden, N.W.; Malone, D.; Pehl, R.H.; Yaver, H.; Hurley, K.; Mathias, S.; Post, A.H. Jr.

    1992-01-01

    The Transient Gamma-Ray Spectrometer (TGRS) to be flown aboard the WIND spacecraft is primarily designed to perform high resolution spectroscopy of transient gamma-ray events, such as cosmic [gamma]-ray bursts and solar flares, over the energy range 20 keV to 10 MeV with an expected spectroscopic resolution of E/[delta]E = 500. The detector itself consists of a 215 cm[sup 3] high purity n-type Ge crystal kept at cryogenic temperatures by a passive radiative cooler. The geometric field of view defined by the cooler is 170[degrees]. To avoid continuous triggers caused by soft solar events, a thin Be/Cu sun-shield around the sides of the cooler has been provided. A passive Mo/Pb occulter, which modulates signals from within [+-]5[degrees] of the ecliptic plane at the spacecraft spin frequency, is used to identify and study solar flares, as well as emission from the galactic plane and center. Thus, in addition to transient event measurements, the instrument will allow the search for possible diffuse background lines and monitor the 511 keV positron annihilation radiation from the galactic center. In order to handle the typically large burst count rates which can be in excess of 100 kHz, burst data are stored directly in an on-board 2.75 Mbit burst memory with an absolute timing accuracy of [+-]1.5 ms after ground processing. This capacity is sufficient to store the entire spectral data set of all but the largest bursts. The experiment is scheduled to be launched on a Delta II launch vehicle from Cape Canaveral in the fall of 1993.

  6. High Resolution Infrared Spectroscopy of CH_3F-({ortho}-H_2){n} Cluster in Solid {para}-H_2

    NASA Astrophysics Data System (ADS)

    Kawasaki, Hiroyuki; Mizoguchi, Asao; Kanamori, Hideto

    2015-06-01

    The absorption spectrum of the ν3 (C-F stretching) mode of CH_3F in solid {para}-H_2 by FTIR showed a series of equal interval peaks. Their interpretation was that the {}-th peak of this series was due to CH_3F-({ortho}-H_2){n} clusters which were formed CH_3F and {n}'s {ortho}-H_2 in first nearest neighbor sites of the {para}-H_2 crystal with {hcp} structure. In order to understand this system in more detail, we have studied these peaks, especially {n} = 0 - 3 corresponding to 1037 - 1041 wn, by using high-resolution and high-sensitive infrared quantum cascade (QC) laser spectroscopy. Before now, we found many peaks around each {n}-th peak of the cluster, which we didn't know their origins. We observed photochromic phenomenon of these peaks by taking an advantage of the high brightness of the laser. In this study, we focus on satellite series consisting of six peaks which locate at the lower energy side of each main peak. All the peaks showed a common red shouldered line profile, which corresponds to partly resolved transitions of {ortho}- and {para}- CH_3F. The spectral pattern and time behavior of the peaks may suggest that these satellite series originate from a family of CH_3F clusters involving {ortho}-H_2 in second nearest neighbor sites. A model function assuming this idea is used to resolve the observed spectrum into each Lorentzian component, and then some common features of the satellite peaks are extracted and the physical meanings of them will be discussed. K. Yoshioka and D. T. Anderson, J. Chem. Phys. 119 (2003) 4731-4742 A. R. W. McKellar, A. Mizoguchi, and H. Kanamori, J. Chem. Phys. 135 (2011) 124511 A. R. W. McKellar, A. Mizoguchi, and H. Kanamori, Phys. Chem. Chem. Phys. 13 (2011) 11587-11589.

  7. Ultraviolet spectroscopy of planetary nebulae: Cosmological implications

    NASA Technical Reports Server (NTRS)

    Ferland, Gary J.

    1990-01-01

    Optical spectrophotometry of PW Vulpeculae (Nova Vul 1984 no. 1) is combined with ultraviolet data to estimate electron temperatures, densities, and abundances in the ejecta of this slow classical nova. The reddening, distance, and evolution of the ultraviolet spectrum are also discussed. Abundances are nearly solar, with the exception of Nitrogen, which is substantially higher. Although Neon has been reported to be enhanced in several novae, it does not seem to be the case for PW Vul. Photoionization model calculations are presented of the ejecta that give a reasonable match of the observed emission spectrum. A strong featureless continuum shows that very hot, presumably shock heated, gas plays a major role in determining the energetics of this nova. Emission from this hot gas is responsible for the ionization of the nebular gas. A calculation of the masses of both the hot coronal gas and the cooler nebular gas shows that the former may account for most of the mass of the ejecta.

  8. Combined use of high-resolution α-glucosidase inhibition profiling and high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for investigation of antidiabetic principles in crude plant extracts.

    PubMed

    Kongstad, Kenneth T; Özdemir, Ceylan; Barzak, Asmah; Wubshet, Sileshi G; Staerk, Dan

    2015-03-01

    Type 2 diabetes is a metabolic disorder affecting millions of people worldwide, and new drug leads or functional foods containing selective α-glucosidase inhibitors are needed. Crude extract of 24 plants were assessed for α-glucosidase inhibitory activity. Methanol extracts of Cinnamomum zeylanicum bark, Rheum rhabarbarum peel, and Rheum palmatum root and ethyl acetate extracts of C. zeylanicum bark, Allium ascalonicum peel, and R. palmatum root showed IC50 values below 20 μg/mL. Subsequently, high-resolution α-glucosidase profiling was used in combination with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of metabolites responsible for the α-glucosidase inhibitory activity. Quercetin (1) and its dimer (2), trimer (3), and tetramer (4) were identified as main α-glucosidase inhibitors in A. ascalonicum peel, whereas (E)-piceatannol 3'-O-β-D-glucopyranoside (5), (E)-rhapontigenin 3'-O-β-D-glucopyranoside (6), (E)-piceatannol (8), and emodin (12) were identified as main α-glucosidase inhibitors in R. palmatum root. PMID:25652946

  9. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    SciTech Connect

    Niemi, K.; O'Connell, D.; Gans, T.; Oliveira, N. de; Joyeux, D.; Nahon, L.; Booth, J. P.

    2013-07-15

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N{sub 2}/O{sub 2} (4:1) admixtures. A maximum in the O-atom concentration of (9.1 {+-} 0.7) Multiplication-Sign 10{sup 20} m{sup -3} was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 {+-} 0.4) Multiplication-Sign 10{sup 19} m{sup -3} at 0.1 vol. %.

  10. The subgiant branch of ω Centauri seen through high-resolution spectroscopy. I. The first stellar generation in ω Cen?

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Mucciarelli, A.; Sbordone, L.; Bellazzini, M.; Pasquini, L.; Monaco, L.; Ferraro, F. R.

    2011-03-01

    We analysed high-resolution UVES spectra of six stars belonging to the subgiant branch of ω Centauri, and derived abundance ratios of 19 chemical elements (namely Al, Ba, C, Ca, Co, Cr, Cu, Fe, La, Mg, Mn, N, Na, Ni, Sc, Si, Sr, Ti, and Y). A comparison with previous abundance determinations for red giants provided remarkable agreement and allowed us to identify the sub-populations to which our targets belong. We found that three targets belong to a low-metallicity population at [Fe/H] ≃ -2.0 dex, [α/Fe] ≃ +0.4 dex and [s/Fe] ≃ 0 dex. Stars with similar characteristics were found in small amounts by past surveys of red giants. We discuss the possibility that they belong to a separate sub-population that we name VMP (very metal-poor, at most 5% of the total cluster population), which - in the self-enrichment hypothesis - is the best-candidate first stellar generation in ω Cen. Two of the remaining targets belong to the dominant metal-poor population (MP) at [Fe/H] ≃ -1.7 dex, and the last one to the metal-intermediate (MInt) one at [Fe/H] ≃ -1.2 dex. The existence of the newly defined VMP population could help to understand some puzzling results based on low-resolution spectroscopy for age differences determinations, because the metallicity resolution of these studies was probably not enough to detect the VMP population. The VMP could also correspond to some of the additional substructures of the subgiant-branch region found in the latest HST photometry. After trying to correlate chemical abundances with substructures in the subgiant branch of ω Cen, we found that the age difference between the VMP and MP populations should be small (0 ± 2 Gyr), while the difference between the MP and MInt populations could be slightly larger (2 ± 2 Gyr). Based on data collected at the ESO VLT in Chile, with UVES and FLAMES under programs 68.D-0332(A) and 079.D-0021. Also based on literature data from the ESO WFI, under programs 62.L-0354 and 63.L-0439, and on data

  11. Tabletop Extreme Ultraviolet Spectroscopy of Element-Specific Organometallic Photophysics

    NASA Astrophysics Data System (ADS)

    Vura-Weis, Josh

    High-harmonic extreme ultraviolet (XUV) spectroscopy has the potential to provide the elemental, oxidation-state, and spin-state specificity of core-level spectroscopy with the convenience and ultrafast time resolution of tabletop laser sources. We will show that M-edge spectroscopy of first-row transition metal complexes (3p -->3d excitation) is a sensitive probe of the electronic structure of organometallic complexes in solution. Furthermore, this technique can be used to determine the relaxation dynamics of these molecules in the first few femtoseconds to nanoseconds after photoexcitation.

  12. Ultraviolet and visual spectroscopy of DB white dwarfs

    NASA Technical Reports Server (NTRS)

    Wegner, G.; Nelan, E. P.

    1987-01-01

    Visual wavelength and ultraviolet spectroscopy and model atmospheres of DB white dwarfs are reported. The results yield no evidence for lines of C or any other element besides H or He in the spectra. Upper limits for carbon are in the range C:He less than 10 to the -5th to the -7th for the ultraviolet data and C:He less than 0.01-0.001 for the visual. The upper limits are consistent with the convective dredging theory for the origin of the atmospheric carbon observed in the cooler DQ members of the helium-rich white dwarf sequence. Additional new DBA stars are reported.

  13. CHARACTERIZATION OF NON-DERIVATIZED PLANT CELL WALLS USING HIGH-RESOLUTION SOLUTION-STATE NMR SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recently described plant cell wall dissolution system has been logically modified to utilize perdeuterated solvents to allow direct in-nmr-tube dissolution and high-resolution solution-state NMR of the whole cell wall without derivatization. Finely ground cell wall material dissolves in a solvent ...

  14. Ultraviolet and extreme ultraviolet spectroscopy of the solar corona at the Naval Research Laboratory.

    PubMed

    Moses, J D; Ko, Y-K; Laming, J M; Provornikova, E A; Strachan, L; Beltran, S Tun

    2015-11-01

    We review the history of ultraviolet and extreme ultraviolet spectroscopy with a specific focus on such activities at the Naval Research Laboratory and on studies of the extended solar corona and solar-wind source regions. We describe the problem of forecasting solar energetic particle events and discuss an observational technique designed to solve this problem by detecting supra-thermal seed particles as extended wings on spectral lines. Such seed particles are believed to be a necessary prerequisite for particle acceleration by heliospheric shock waves driven by a coronal mass ejection. PMID:26560611

  15. Ultraviolet Spectroscopy of Narrow Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Dobrzycka, D.; Raymond, J. C.; Biesecker, D. A.; Li, J.; Ciaravella, A.

    2003-05-01

    We present Ultraviolet Coronagraph Spectrometer (UVCS) observations of five narrow coronal mass ejections (CMEs) that were among 15 narrow CMEs originally selected by Gilbert and coworkers. Two events (1999 March 27, April 15) were ``structured,'' i.e., in white-light data they exhibited well-defined interior features, and three (1999 May 9, May 21, June 3) were ``unstructured,'' i.e., appeared featureless. In UVCS data the events were seen as 4°-13° wide enhancements of the strongest coronal lines H I Lyα and O VI λλ1032, 1037. We derived electron densities for several of the events from the Large Angle and Spectrometric Coronagraph Experiment (LASCO) C2 white-light observations. They are comparable to or smaller than densities inferred for other CMEs. We modeled the observable properties of examples of the structured (1999 April 15) and unstructured (1999 May 9) narrow CMEs at different heights in the corona between 1.5 and 2 Rsolar. The derived electron temperatures, densities, and outflow speeds are similar for those two types of ejections. They were compared with properties of polar coronal jets and other CMEs. We discuss different scenarios of narrow CME formation as either a jet formed by reconnection onto open field lines or a CME ejected by expansion of closed field structures. Overall, we conclude that the existing observations do not definitively place the narrow CMEs into the jet or the CME picture, but the acceleration of the 1999 April 15 event resembles acceleration seen in many CMEs, rather than constant speeds or deceleration observed in jets.

  16. High Resolution 1H NMR Spectroscopy in Rat Liver Using Magic Angle Turning at a 1 Hz Spinning Rate

    SciTech Connect

    Hu, Jian Zhi ); Rommereim, Donald N. ); Wind, Robert A. )

    2001-12-01

    It is demonstrated that a high resolution 1H NMR spectrum of excised rat liver can be obtained using the technique of magic angle turning at a sample spinning rate of 1 Hz. A variant of the phase-corrected magic angle turning (PHORMAT) pulse sequence that includes a water suppression segment was developed for the investigation. The spectral resolution achieved with PHORMAT is approaching that obtained from a standard magic angle spinning experiment at a spinning rate of several kHz. With such ultra-slow spinning, tissue and cell damage associated with the standard MAS experiment is minimized or eliminated. The technique is potentially useful for obtaining high-resolution 1H spectra in live animals.

  17. High-resolution Fourier-transform emission spectroscopy of the A(1)II-X(1)Σ(+) system of AIH.

    PubMed

    Ram, R S; Bernath, P F

    1996-06-01

    The emission spectrum of the A(1)II-X(1)Σ(+) system of AIH, excited in a hollow-cathode discharge lamp, has been observed at high resolution with a Fourier-transform spectrometer. The rotational lines in the 0-0 and the 1-1 bands have been measured with a precision of ±0.001 cm(-1). The present measurements provide a considerable improvement overthe previous data of Zeeman and Ritter [Can. J. Phys. 32, 555 (1954)]. The present data, combined with the previous high-resolution measurements of the 1-0 vibration-rotation band by White et al. [J. Chem. Phys. 99, 8371 (1993)] and the J = 1-0 pure rotational line of Goto and Saito [Astrophys. J. 452, L147 (1995)] have been used to determine improved molecular constants for the A(1)!! state. PMID:21085436

  18. Goals for the application of high-resolution X-ray spectroscopy to the diagnosis of stellar coronal plasmas

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.

    Examples are provided of how high-resolution X-ray spectra may be used to determine the temperature and emission measure distributions, electron densities, steady and transient flow velocities, and location of active regions in stellar coronas. For each type of measurement, the minimum spectral resolution required to resolve the most useful spectral features is estimated. In general, high sensitivity is required to obtain sufficient signal-to-noise to exploit the high spectral resolution. Although difficult, each measurement should be achievable with the instrumentation proposed for AXAF.

  19. Goals for the application of high-resolution X-ray spectroscopy to the diagnosis of stellar coronal plasmas

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.

    1990-01-01

    Examples are provided of how high-resolution X-ray spectra may be used to determine the temperature and emission measure distributions, electron densities, steady and transient flow velocities, and location of active regions in stellar coronas. For each type of measurement, the minimum spectral resolution required to resolve the most useful spectral features is estimated. In general, high sensitivity is required to obtain sufficient signal-to-noise to exploit the high spectral resolution. Although difficult, each measurement should be achievable with the instrumentation proposed for AXAF.

  20. Prospects for High Resolution Neutron Spectroscopy on high power fusion devices in view of the recent diagnostic developments at JET

    SciTech Connect

    Ericsson, Goeran; Sunden, E. Andersson; Conroy, S.; Johnson, M. Gatu; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Ronchi, E.; Sjsoetrand, H.; Weiszflog, M.; Kaellne, J.; Gorini, G.; Ognissanto, F.; Tardocchi, M.; Angelone, M.; Popovichev, S.

    2008-03-12

    An evaluation of three different candidate techniques for a 14-MeV High Resolution Neutron Spectrometer for a high power fusion device is presented. The performance is estimated for a modelled neutron emission for ITER plasma scenario 4. As performance indicators we use the estimated time-resolution achieved in measurements of three plasma parameters, namely, the ion temperature, the intensity of neutron emission due to neutral beam--thermal plasma interactions and the intensity of the so-called alpha knock-on neutron tail. It is found that only the MPR technique can deliver results on all three parameters with reasonable time resolution.

  1. High resolution spectroscopy of Red Giant Branch stars and the chemical evolution of the Fornax dwarf spheroidal galaxy

    NASA Astrophysics Data System (ADS)

    Lemasle, B.; de Boer, T. J. L.; Hill, V.; Tolstoy, E.; Irwin, M. J.; Jablonka, P.; Venn, K.; Battaglia, G.; Starkenburg, E.; Shetrone, M.; Letarte, B.; Francois, P.; Helmi, A.; Primas, F.; Kaufer, A.; Szeifert, T.

    2014-12-01

    From VLT-FLAMES high-resolution spectra, we determine the abundances of several α, iron-peak and neutron-capture elements in 47 Red Giant Branch stars in the Fornax dwarf spheroidal galaxy. We confirm that SNe Ia started to contribute to the chemical enrichment of Fornax at [Fe/H] between --2.0 and --1.8 dex. Combining these abundances with accurate age estimates, we date the onset of SNe Ia to ≈ 12--10 Gyrs ago. Our results are compatible with an initial mass function that lacks the most massive stars and with a star formation going on throughout the whole history of Fornax.

  2. High-resolution spectroscopy of V854 Cen in decline - absorption and emission lines of C2 molecules

    NASA Astrophysics Data System (ADS)

    Kameswara Rao, N.; Lambert, David L.

    2000-04-01

    High-resolution optical spectra of the R Coronae Borealis (RCB) star V854 Centauri in the early stages of a decline show, in addition to the features reported for other RCBs in decline, narrow absorption lines from the C2 Phillips system. The low rotational temperature, Trot=1150K, of the C2 ground electronic state suggests the cold gas is associated with the developing shroud of carbon dust. These absorption lines were not seen at a fainter magnitude on the rise from minimum light, nor at maximum light. This is the first detection of cold gas around an RCB star.

  3. High-resolution Spectroscopy of a Young, Low-metallicity Optically Thin L = 0.02L* Star-forming Galaxy at z = 3.12

    NASA Astrophysics Data System (ADS)

    Vanzella, E.; De Barros, S.; Cupani, G.; Karman, W.; Gronke, M.; Balestra, I.; Coe, D.; Mignoli, M.; Brusa, M.; Calura, F.; Caminha, G.-B.; Caputi, K.; Castellano, M.; Christensen, L.; Comastri, A.; Cristiani, S.; Dijkstra, M.; Fontana, A.; Giallongo, E.; Giavalisco, M.; Gilli, R.; Grazian, A.; Grillo, C.; Koekemoer, A.; Meneghetti, M.; Nonino, M.; Pentericci, L.; Rosati, P.; Schaerer, D.; Verhamme, A.; Vignali, C.; Zamorani, G.

    2016-04-01

    We present VLT/X-Shooter and MUSE spectroscopy of a faint F814W = 28.60 ± 0.33 ({M}{UV}=-17.0), low-mass (≲{10}7{M}ȯ ), and compact (R eff = 62 pc) freshly star-forming galaxy at z = 3.1169 magnified (16×) by the Hubble Frontier Fields galaxy cluster Abell S1063. Gravitational lensing allows for a significant jump toward low-luminosity regimes, in moderately high-resolution spectroscopy (R=λ /dλ ∼ 3000{--}7400). We measured C iv λ 1548,1550, He ii λ 1640, O iii]λ 1661,1666, C iii]λ λ 1907,1909, Hβ, [O iii]λ λ 4959,5007 emission lines with {FWHM}≲ 50 km s‑1 and (de-lensed) fluxes spanning the interval 1.0× {10}-19{--}2× {10}-18 erg s‑1 cm‑2 at signal-to-noise ratio (S/N) = 4–30. The double-peaked Lyα emission with {{Δ }}v({red}-{blue})=280(±7) km s‑1 and de-lensed fluxes {2.4}({blue)}| {8.5}({red)}× {10}-18 erg s‑1 cm‑2 (S/N = {38}({blue)}| {110}({red)}) indicate a low column density of neutral hydrogen gas consistent with a highly ionized interstellar medium as also inferred from the large [O iii]λ 5007/ [O ii]λ 3727 \\gt \\quad 10 ratio. We detect C iv λ 1548,1550 resonant doublet in emission, each component with {FWHM}≲ 45 km s‑1 and redshifted by +51(±10) km s‑1 relative to the systemic redshift. We interpret this as nebular emission tracing an expanding optically thin interstellar medium. Both C iv λ 1548,1550 and He ii λ 1640 suggest the presence of hot and massive stars (with a possible faint active galactic nucleus). The ultraviolet slope is remarkably blue, β =-2.95+/- 0.20 ({F}λ ={λ }β ), consistent with a dust-free and young ≲20 Myr galaxy. Line ratios suggest an oxygen abundance 12 + log(O/H)\\quad \\lt \\quad 7.8. We are witnessing an early episode of star formation in which a relatively low N H i and negligible dust attenuation might favor a leakage of ionizing radiation. This galaxy currently represents a unique low-luminosity reference object for future studies of the reionization epoch with

  4. High-resolution Spectroscopy of a Young, Low-metallicity Optically Thin L = 0.02L* Star-forming Galaxy at z = 3.12

    NASA Astrophysics Data System (ADS)

    Vanzella, E.; De Barros, S.; Cupani, G.; Karman, W.; Gronke, M.; Balestra, I.; Coe, D.; Mignoli, M.; Brusa, M.; Calura, F.; Caminha, G.-B.; Caputi, K.; Castellano, M.; Christensen, L.; Comastri, A.; Cristiani, S.; Dijkstra, M.; Fontana, A.; Giallongo, E.; Giavalisco, M.; Gilli, R.; Grazian, A.; Grillo, C.; Koekemoer, A.; Meneghetti, M.; Nonino, M.; Pentericci, L.; Rosati, P.; Schaerer, D.; Verhamme, A.; Vignali, C.; Zamorani, G.

    2016-04-01

    We present VLT/X-Shooter and MUSE spectroscopy of a faint F814W = 28.60 ± 0.33 ({M}{UV}=-17.0), low-mass (≲{10}7{M}ȯ ), and compact (R eff = 62 pc) freshly star-forming galaxy at z = 3.1169 magnified (16×) by the Hubble Frontier Fields galaxy cluster Abell S1063. Gravitational lensing allows for a significant jump toward low-luminosity regimes, in moderately high-resolution spectroscopy (R=λ /dλ ˜ 3000{--}7400). We measured C iv λ 1548,1550, He ii λ 1640, O iii]λ 1661,1666, C iii]λ λ 1907,1909, Hβ, [O iii]λ λ 4959,5007 emission lines with {FWHM}≲ 50 km s‑1 and (de-lensed) fluxes spanning the interval 1.0× {10}-19{--}2× {10}-18 erg s‑1 cm‑2 at signal-to-noise ratio (S/N) = 4–30. The double-peaked Lyα emission with {{Δ }}v({red}-{blue})=280(±7) km s‑1 and de-lensed fluxes {2.4}({blue)}| {8.5}({red)}× {10}-18 erg s‑1 cm‑2 (S/N = {38}({blue)}| {110}({red)}) indicate a low column density of neutral hydrogen gas consistent with a highly ionized interstellar medium as also inferred from the large [O iii]λ 5007/ [O ii]λ 3727 \\gt \\quad 10 ratio. We detect C iv λ 1548,1550 resonant doublet in emission, each component with {FWHM}≲ 45 km s‑1 and redshifted by +51(±10) km s‑1 relative to the systemic redshift. We interpret this as nebular emission tracing an expanding optically thin interstellar medium. Both C iv λ 1548,1550 and He ii λ 1640 suggest the presence of hot and massive stars (with a possible faint active galactic nucleus). The ultraviolet slope is remarkably blue, β =-2.95+/- 0.20 ({F}λ ={λ }β ), consistent with a dust-free and young ≲20 Myr galaxy. Line ratios suggest an oxygen abundance 12 + log(O/H)\\quad \\lt \\quad 7.8. We are witnessing an early episode of star formation in which a relatively low N H i and negligible dust attenuation might favor a leakage of ionizing radiation. This galaxy currently represents a unique low-luminosity reference object for future studies of the reionization epoch with the

  5. High-Resolution Laser Spectroscopy of the S1 ← S0 Transition of Cl-NAPHTHALENES

    NASA Astrophysics Data System (ADS)

    Kasahara, Shunji; Yamamoto, Ryo

    2015-06-01

    High-resolution fluorescence excitation spectra of the S1 ← S0 electronic transition have been observed for 1-Cl naphthalene (1-ClN) and 2-Cl naphthalene (2-ClN). Sub-Doppler excitation spectra were measured by crossing a single-mode UV laser beam perpendicular to a collimated molecular beam. The absolute wavenumber was calibrated with accuracy 0.0002 cm-1 by measurement of the Doppler-free saturation spectrum of iodine molecule and fringe pattern of the stabilized etalon. For 2-ClN, the rotationally resolved high-resolution spectra were obtained for the 0^0_0 and 0^0_0+1042 cm-1 bands, and these molecular constants were determined in high accuracy. The obtained molecular constants of the 0^0_0 band are good agreement with the ones reported by Plusquellic et. al. For the 0^0_0+1042 cm-1 band, the local energy shifts were found. On the other hand, for 1-ClN, the rotational lines were not fully resolved because the fluorescence lifetime is shorter than the one of 2-ClN. Then we determined the molecular constants of 1-ClN from the comparison the observed spectrum with calculated one. D. F. Plusquellic, S. R. Davis, and F. Jahanmir, J. Chem. Phys., 115, 225 (2001).

  6. High-resolution Fourier transform infrared synchrotron spectroscopy of the NO2 in-plane rock band of nitromethane

    NASA Astrophysics Data System (ADS)

    Dawadi, Mahesh B.; Twagirayezu, Sylvestre; Perry, David S.; Billinghurst, Brant E.

    2015-09-01

    The high-resolution rotationally resolved Fourier-transform infrared spectrum of the NO2 in-plane rock band (440-510 cm-1) of nitromethane (CH3NO2) has been recorded using the Far-Infrared Beamline at the Canadian Light Source, with a resolution of 0.00096 cm-1. About 1773 transitions reaching the upper state levels m‧ = 0; Ka‧ ⩽ 7;J‧ ⩽ 50 have been assigned using an automated ground-state combination difference program together with the traditional Loomis-Wood approach. These data from the lowest torsional state, m‧ = 0, were fit using the six-fold torsion-rotation program developed by Ilyushin et al. (2010). The analysis reveals that the rotational energy level structure in the upper vibrational state is similar to that of the ground vibrational state, but the sign and magnitude of high-order constants are significantly changed suggesting the presence of multiple perturbations.

  7. High-Resolution X-Ray Spectroscopy of the Galactic Supernova Remnant Puppis A with the XMM-Newton RGS

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shinya; Akamatsu, Hiroki; Konami, Saori; Tamagawa, Toru

    2012-01-01

    We present high-resolution X-ray spectra of cloud-shock interaction regions in the eastern and northern rims of the Galactic supernova remnant Puppis A, using the Reflection Grating Spectrometer onboard the XMM-Newton satellite. A number of emission lines including K(alpha) triplets of He-like N, O , and Ne are clearly resolved for the first time. Intensity ratios of forbidden to resonance lines in the triplets are found to be higher than predictions by thermal emission models having plausible plasma parameters. The anomalous line ratios cannot be reproduced by effects of resonance scattering, recombination, or inner-shell ionization processes, but could be explained by charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. Our observations thus provide observational support for charge-exchange X-ray emission in supernova remnants.

  8. Extracting the Redox Orbitals in Li Battery Materials with High-Resolution X-Ray Compton Scattering Spectroscopy

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Barbiellini, B.; Orikasa, Y.; Go, N.; Sakurai, H.; Kaprzyk, S.; Itou, M.; Yamamoto, K.; Uchimoto, Y.; Wang, Yung Jui; Hafiz, H.; Bansil, A.; Sakurai, Y.

    2015-02-01

    We present an incisive spectroscopic technique for directly probing redox orbitals based on bulk electron momentum density measurements via high-resolution x-ray Compton scattering. Application of our method to spinel LixMn2O4 , a lithium ion battery cathode material, is discussed. The orbital involved in the lithium insertion and extraction process is shown to mainly be the oxygen 2 p orbital. Moreover, the manganese 3 d states are shown to experience spatial delocalization involving 0.16 ±0.05 electrons per Mn site during the battery operation. Our analysis provides a clear understanding of the fundamental redox process involved in the working of a lithium ion battery.

  9. Extracting the Redox Orbitals in Li Battery Materials with High-Resolution X-Ray Compton Scattering Spectroscopy

    NASA Astrophysics Data System (ADS)

    Barbiellini, B.; Suzuki, K.; Orikasa, Y.; Go, N.; Sakurai, H.; Kaprzyk, S.; Itou, M.; Yamamoto, K.; Uchimoto, Y.; Wang, Yung Jui; Hafiz, H.; Bansil, A.; Sakurai, Y.

    2015-03-01

    We present an incisive spectroscopic technique for directly probing redox orbitals based on bulk electron momentum density measurements via high-resolution X-ray Compton scattering. Application of our method to spinel LixMn2O4 (a lithium ion battery cathode material) is discussed. The orbital involved in lithium insertion and extraction process is mainly the oxygen 2p orbital. Moreover, the manganese 3d states are shown to experience spatial delocalization involving 0.16 electrons per Mn site during the battery operation. Our analysis provides a clear understanding of the fundamental redox process involved in the working of the lithium ion battery. Work supported in part by the US DOE.

  10. Temperature-sensitive gating of hCx26: high-resolution Raman spectroscopy sheds light on conformational changes

    PubMed Central

    Kniggendorf, Ann-Kathrin; Meinhardt-Wollweber, Merve; Yuan, Xiaogang; Roth, Bernhard; Seifert, Astrid; Fertig, Niels; Zeilinger, Carsten

    2014-01-01

    The temperature-sensitive gating of human Connexin 26 (hCx26) was analyzed with confocal Raman microscopy. High-resolution Raman spectra covering the spectral range between 400 and 1500 rel. cm−1 with a spectral resolution of 1 cm−1 were fully annotated, revealing notable differences between the spectrum recorded from solubilized hCx26 in Ca2+-buffered POPC at 10°C and any other set of protein conditions (temperature, Ca2+ presence, POPC presence). Spectral components originating from specific amino acids show that the TM1/EL1 parahelix and probably the TM4 trans-membrane helix and the plug domain are involved in the gating process responsible for fully closing the hemichannel. PMID:25071948

  11. Temperature-sensitive gating of hCx26: high-resolution Raman spectroscopy sheds light on conformational changes.

    PubMed

    Kniggendorf, Ann-Kathrin; Meinhardt-Wollweber, Merve; Yuan, Xiaogang; Roth, Bernhard; Seifert, Astrid; Fertig, Niels; Zeilinger, Carsten

    2014-07-01

    The temperature-sensitive gating of human Connexin 26 (hCx26) was analyzed with confocal Raman microscopy. High-resolution Raman spectra covering the spectral range between 400 and 1500 rel. cm(-1) with a spectral resolution of 1 cm(-1) were fully annotated, revealing notable differences between the spectrum recorded from solubilized hCx26 in Ca(2+)-buffered POPC at 10°C and any other set of protein conditions (temperature, Ca(2+) presence, POPC presence). Spectral components originating from specific amino acids show that the TM1/EL1 parahelix and probably the TM4 trans-membrane helix and the plug domain are involved in the gating process responsible for fully closing the hemichannel. PMID:25071948

  12. High Resolution Infrared Spectroscopy and Semi-Experimental Structures of Si2C3 and Ge2C3

    NASA Astrophysics Data System (ADS)

    Lutter, Volker; Giesen, Thomas; Gauss, Jürgen; Thorwirth, Sven

    2014-06-01

    Molecular species of group 14 elements e.g. carbon, silicon, and germanium are well suited to study cumulenic bond properties and to compare experimental results with high level quantum chemical calculations. In our recent investigation of SiC_3Si and GeC_3Ge, a high resolution laser spectrometer has been used to record rotationally resolved spectra of selected isotopologues at 5 μm. We derived semi-empirical values for Si-C and Ge-C bond distances based on spectroscopic data and corresponding zero-point vibrational corrections calculated at the CCSD(T)/cc-pVXZ level of theory (with X = T and Q). Comparison of semi-empirical structural parameters with those from quantum chemical calculations reveals very good agreement for both molecules. Relativistic effects are found negligible for SiC_3Si and small for GeC_3Ge.

  13. High-resolution X-ray spectroscopy of the Crab Nebula and the oxygen abundance of the interstellar medium

    NASA Technical Reports Server (NTRS)

    Schattenburg, M. L.; Canizares, C. R.

    1986-01-01

    The measurement and analysis of a high-resolution soft X-ray spectrum of the Crab Nebula obtained with the Focal Plane Crystal Spectrometer on the Einstein Observatory are reported. A hydrogen column density of 3.45 + or - 0.42 x 10 to the 21st/sq cm and an oxygen column density of 2.78 + or - 0.55 x 10 to the 18th/sq cm, corresponding to an oxygen abundance of 1.1 + or - 0.3 times solar, were obtained. The absence of any evident oxygen depletion effects suggests that most interstellar grains are reasonably transparent to soft X-rays, implying sizes of less than 0.4 micron. The detailed spectrum in the vicinity of the oxygen edge gives marginal evidence for a resonant absorption line and suggests an edge from singly ionized oxygen.

  14. Spectroscopic study on deuterated benzenes. II. High-resolution laser spectroscopy and rotational structure in the S1 state

    NASA Astrophysics Data System (ADS)

    Kunishige, Sachi; Katori, Toshiharu; Baba, Masaaki; Hayashi, Masato; Hasegawa, Hirokazu; Ohshima, Yasuhiro

    2015-12-01

    High-resolution spectra of the S1←S0 transition in jet-cooled deuterated benzenes were observed using pulse dye amplification of single-mode laser light and mass-selective resonance enhanced multiphoton ionization (REMPI) detection. The vibrational and rotational structures were accurately analyzed for the vibronic levels in the S1 state. The degenerate 61 levels of C6H6 or C6D6 are split into 6a1 and 6b1 in many of deuterated benzenes. The rigid-rotor rotational constants were assessed and found to be slightly different between 6a and 6b because of different mean molecular structures. Their rotational levels are significantly shifted by Coriolis interactions. It was found that the Coriolis parameter proportionally changed with the number of substituted D atoms.

  15. Spectroscopic study on deuterated benzenes. II. High-resolution laser spectroscopy and rotational structure in the S(1) state.

    PubMed

    Kunishige, Sachi; Katori, Toshiharu; Baba, Masaaki; Hayashi, Masato; Hasegawa, Hirokazu; Ohshima, Yasuhiro

    2015-12-28

    High-resolution spectra of the S1←S0 transition in jet-cooled deuterated benzenes were observed using pulse dye amplification of single-mode laser light and mass-selective resonance enhanced multiphoton ionization (REMPI) detection. The vibrational and rotational structures were accurately analyzed for the vibronic levels in the S1 state. The degenerate 6(1) levels of C6H6 or C6D6 are split into 6a(1) and 6b(1) in many of deuterated benzenes. The rigid-rotor rotational constants were assessed and found to be slightly different between 6a and 6b because of different mean molecular structures. Their rotational levels are significantly shifted by Coriolis interactions. It was found that the Coriolis parameter proportionally changed with the number of substituted D atoms. PMID:26723667

  16. High-resolution spectroscopy of the C2 Swan 0-0 band from Comet P/Halley

    NASA Astrophysics Data System (ADS)

    Lambert, D. L.; Sheffer, Y.; Danks, A. C.; Arpigny, C.; Magain, P.

    1990-04-01

    High-resolution spectra of the C2 Swan system's 0-0 band from Comet P/Halley in March 1986 show that the populations of the upper state's rotational levels may be described by two rotational temperatures. The low rotational levels provide a low temperature, Trot = about 600 - 700 K. The higher levels correspond to about 3200 K. If a contribution from the 3200-K molecules is subtracted from the populations of the low-J-prime levels, the latter are characterized by Trot = about 190 K. A comparison with recent predictions for C2 molecules fluorescing in sunlight shows that the observed and predicted level populations are in good agreement for J-prime greater than about 15, but there is a sharp disagreement for the low rotational levels.

  17. High-Resolution Vibrational Spectra of Furazan II. The B1 Fundamental ν 11 at ~ 1175 cm-1 from Fourier-Transform Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stiefvater, Otto L.

    1992-03-01

    The high-resolution FT-IR spectrum of the A-type fundamental ν11 of furazan ( C2H2N20) has been recorded and analysed against the background of rotational information from DRM microwave spectroscopy to yield the band origin as ν110= 1175.3377 + 0.0001 cm-1 . The combined use of microwave (MW) and FT-IR data gives this band origin with a statistical uncertainty of σ= 10-6cm-1 and leads to a refinement of the rotational constants of the state ν11 = 1 over those derivable from either MW or FT-IR data alone

  18. The design and construction of a high-resolution velocity-map imaging apparatus for photoelectron spectroscopy studies of size-selected clusters

    SciTech Connect

    León, Iker; Yang, Zheng; Liu, Hong-Tao; Wang, Lai-Sheng

    2014-08-15

    A new velocity-map imaging apparatus equipped with a laser-vaporization supersonic cluster source and a time-of-flight mass spectrometer is described for high-resolution photoelectron spectroscopy studies of size-selected cluster anions. Vibrationally cold anion clusters are produced using a laser-vaporization supersonic cluster source, size-selected by a time-of-flight mass spectrometer, and then focused co-linearly into the interaction zone of the high-resolution velocity-map imaging (VMI) system. The multilens VMI system is optimized via systematic simulations and can reach a resolution of 1.2 cm{sup −1} (FWHM) for near threshold electrons while maintaining photoelectron kinetic energy resolutions (ΔKE/KE) of ∼0.53% for higher energy electrons. The new VMI lens has superior focusing power over a large energy range, yielding highly circular images with distortions no larger than 1.0025 between the long and short radii. The detailed design, simulation, construction, testing, and performance of the high-resolution VMI apparatus are presented.

  19. High-resolution luminescence spectroscopy study of down-conversion routes in NaGdF4:Nd3+ and NaGdF4:Tm3+ using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    van der Kolk, E.; Dorenbos, P.; Krämer, K.; Biner, D.; Güdel, H. U.

    2008-03-01

    Down-conversion in lanthanide doped luminescent materials is a promising route to significantly enhance the energy efficiency of silicon solar cells, plasma display panels, or mercury-free lighting tubes because it results in the emission of two photons for each absorbed higher energy photon. The Gd3+/Eu3+ ion couple shows down-conversion of vacuum-ultraviolet light into visible light with an efficiency close to 190%. The low absorption strength of the G7/26 levels of Gd3+ (the starting point of the down-conversion process), however, prevents efficient excitation of the down-conversion process and therefore application. We have performed a high resolution luminescence spectroscopy study, using synchrotron radiation, in order to investigate the possibility to use the strong 4f→5d absorption transitions of Nd3+ and Tm3+ to sensitize the high energy G7/26 level of Gd3+ in the phosphors NaGdF4:2%Nd3+ and NaGdF4:2%Tm3+ . Tm3+ appears to be an efficient sensitizer of the G7/26 state of Gd3+ . It was also found that sensitization is followed by two successive energy transfer processes exciting two Tm3+ ions in the H43 state which results in the emission of two infrared photons for one absorbed vacuum-ultraviolet photon. Nd3+ is not a good sensitizer of the G7/26 state in NaGdF4 . Instead Nd3+ efficiently transfers its energy by cross relaxation to the lower energy DJ6 states of Gd3+ but leaving the Nd3+ ion excited in the F3/24 state. Successive energy transfer from Gd3+ back to Nd3+ excites a second Nd3+ ion in the F3/24 state. Also, in this case, two infrared photons can be emitted for one absorbed vacuum-ultraviolet photon.

  20. Optical and ultraviolet spectroscopy of three F + B binary stars

    NASA Astrophysics Data System (ADS)

    Bopp, Bernard W.; Dempsey, Robert C.; Parsons, Sidney B.

    1991-05-01

    Optical and ultraviolet spectroscopy is presented for three F + B objects that are members of the first group of strongly interacting, F II + B systems. The data obtained confirm that HD 59771, HD 242257, and CoD -30 5135 are all binary star systems consisting of a luminous F-type component and a B star. Strong, variable H-alpha emission is seen in all the stars. It is found that the UV spectrum of HD 59771 resembles the spectrum of HD 207739. CoD -30 5135 has the most dramatic mid-UV spectrum seen among the scores of observed cool + hot star systems.

  1. IR Band profiling of dichlorodifluoromethane in the greenhouse window: high-resolution FTIR spectroscopy of ν2 and ν8.

    PubMed

    Evans, Corey J; Sinik, Atilla; Medcraft, Chris; McNaughton, Don; Appadoo, Dominique; Robertson, Evan G

    2014-04-01

    The IR spectrum of dichlorodifluoromethane (i.e., R12 or Freon-12) is central to its role as a major greenhouse contributor. In this study, high-resolution (0.000 96 cm(-1)) Fourier transform infrared spectra have been measured for R12 samples either cooled to around 150 K or at ambient temperature using facilities on the infrared beamline of the Australian Synchrotron. Over 14,000 lines of C(35)Cl2F2 and C(35)Cl(37)ClF2 were assigned to the b-type ν2 band centered around 668 cm(-1). For the c-type ν8 band at 1161 cm(-1), over 10,000 lines were assigned to the two isotopologues. Rovibrational fits resulted in upper state constants for all these band systems. Localized avoided crossings in the ν8 system of C(35)Cl2F2, resulting from both a direct b-axis Coriolis interaction with ν3 + ν4 + ν7 and an indirect interaction with ν3 + ν4 + ν9, were treated. An improved set of ground state constants for C(35)Cl(37)ClF2 was obtained by a combined fit of IR ground state combination differences and previously published millimeter wave lines. Together these new sets of constants allow for accurate prediction of these bands and direct comparison with satellite data to enable accurate quantification. PMID:24611450

  2. R-matrix calculations of triplet gerade states of molecular hydrogen and their use for high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Oueslati, H.; Argoubi, F.; Bezzaouia, S.; Telmini, M.; Jungen, Ch.

    2014-03-01

    A variational R-matrix approach combined with multichannel quantum defect theory is used for a computational study of triplet gerade states of H2. Electron-ion reaction (quantum defect) matrices are calculated as functions of internuclear distance and energy for the bound and continuum ranges including singly and doubly excited configurations built on the 1σg (X+2Σg+) and 1σu (A+2Σu+) core states of the H2+ ion. It is shown how these matrices can be reduced to effective quantum defect functions adapted to the analysis of high-resolution spectra in the bound range. These R-matrix effective quantum defects are finally adjusted to the available experimental data [Sprecher et al., J. Phys. Chem. A 117, 9462 (2013), 10.1021/jp311793t], producing agreement with experiment to within 0.5 cm-1, nearly as good as obtained by Sprecher et al. In addition, the R-matrix calculations predict the evolution of the quantum defects for higher energies, in a range extending far into the electronic continuum.

  3. An Elliptical Crystal Spectrometer Suitable for EXAFS Studies of Laser Compressed Materials and for High Resolution X-Ray Spectroscopy.

    PubMed

    Ridgeley, A; Goodman, D; Hall, T A

    1995-01-01

    Using an x-ray spectrometer with an elliptically curved crystal it is possible to study absorption spectra from a target placed at one focus of the ellipse using a backlighting source placed at the other focus. This principle has been used to develop a spectrometer for EXAFS studies of laser compressed materials. The backlighting source is placed at one focus of the ellipse and the laser compressed EXAFS sample at the other. Using this technique a small area of the EXAFS target can be probed, thereby minimizing any spatial variations in the compressed plasma due to nonuniformities in the laser beams. Also, the dispersive nature of the crystal ensures that it acts as a bandpass filter, so that the EXAFS sample is not probed by other x-ray wavelengths which may cause unwanted heating. Another advantage is that compressed and uncompressed EXAFS spectra can be compared on a single shot. The optical properties of the spectrometer are discussed analytically and using a computer ray-tracing program. The development and alignment of the elliptical spectrometer are discussed, and its performance using both x-ray film and a CCD detector is evaluated. The use of the elliptical spectrometer as a high-resolution x-ray instrument is presented. PMID:21307480

  4. Using wide-field quantitative diffuse reflectance spectroscopy in combination with high-resolution imaging for margin assessment

    NASA Astrophysics Data System (ADS)

    Kennedy, Stephanie; Mueller, Jenna; Bydlon, Torre; Brown, J. Quincy; Ramanujam, Nimmi

    2011-03-01

    Due to the large number of women diagnosed with breast cancer and the lack of intra-operative tools, breast cancer margin assessment presents a significant unmet clinical need. Diffuse reflectance spectral imaging provides a method for quantitatively interrogating margins of lumpectomy specimens. We have previously found that [β- carotene]/μs' is a diagnostically important parameter but both parameters, [β-carotene] and μs', were derived from a low resolution parameter map and are subject to the tissue type and heterogeneity present in the breast. In this study, we used diffuse reflectance measurements from individual sites co-registered with high resolution microendoscopy (HRME) images to determine if the combined performance of these technologies could improve margin assessment. By comparing the optical parameters of [β-carotene] and μs' to the quantitative HRME image endpoints of feature size, feature density and normalized fluorescence, we determined that adding HRME to spectral imaging can improve the specificity of our diffuse reflectance spectral imaging system.

  5. An in-depth look at the lunar crater Copernicus: Exposed mineralogy by high-resolution near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Bugiolacchi, Roberto; Mall, Urs; Bhatt, Megha; McKenna-Lawlor, Susan; Banaszkiewicz, Marek; Brønstad, Kjell; Nathues, Andreas; Søraas, Finn; Ullaland, Kjetil; Pedersen, Rolf B.

    2011-05-01

    Newly acquired, sequentially spaced, high-resolution near-infrared spectra across the central section of crater Copernicus' interior have been analyzed using a range of complementary techniques and indexes. We have developed a new interpretative method based on a multiple stage normalization process that appears to both confirm and expand on previous mineralogical estimations and mapping. In broad terms, the interpreted distribution of the principle mafic species suggests an overall composition of surface materials dominated by calcium-poor pyroxenes and minor olivine but with notable exceptions: the southern rim displays strong ca-rich pyroxene absorption features and five other locations, the uppermost northern crater wall, opposite rim sections facing the crater floor, and the central peak Pk1 and at the foot of Pk3, show instead strong olivine signatures. We also propose impact glass an alternative interpretation to the source of the weak but widespread olivine-like spectral signature found in low-reflectance samples, since it probably represents a major regolith constituent and component in large craters such as Copernicus. The high quality and performance of the SIR-2 data allows for the detection of diagnostic key mineral species even when investigating spectral samples with very subdued absorption features, confirming the intrinsic high-quality value of the returned data.

  6. A 23.75-GHz frequency comb with two low-finesse filtering cavities in series for high resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Lei, Hou; Hai-Nian, Han; Wei, Wang; Long, Zhang; Li-Hui, Pang; De-Hua, Li; Zhi-Yi, Wei

    2015-02-01

    A laser frequency comb with several tens GHz level is demonstrated, based on a Yb-doped femtosecond fiber laser and two low-finesse Fabry-Pérot cavities (FPCs) in series. The original 250-MHz mode-line-spacing of the source comb is filtered to 4.75 GHz and 23.75 GHz, respectively. According to the multi-beam interferences theory of FPC, the side-mode suppression rate of FPC schemes is in good agreement with our own theoretical results from 27 dB of a single FPC to 43 dB of paired FPCs. To maintain long-term stable operation and determine the absolute frequency mode number in the 23.75-GHz comb, the Pound-Drever-Hall (PDH) locking technology is utilized. Such stable tens GHz frequency combs have important applications in calibrating astronomical spectrographs with high resolution. Project supported by the National Basic Research Program of China (Grant No. 2012CB821304) and the National Natural Science Foundation of China (Grant Nos. 11078022 and 61378040).

  7. HIGH-RESOLUTION OPTICAL SPECTROSCOPY OF DY Cen: DIFFUSE INTERSTELLAR BANDS IN A PROTO-FULLERENE CIRCUMSTELLAR ENVIRONMENT?

    SciTech Connect

    Garcia-Hernandez, D. A.; Lambert, David L. E-mail: nkrao@iiap.res.in

    2012-11-01

    We search high-resolution and high-quality VLT/UVES optical spectra of the hot R Coronae Borealis star DY Cen for electronic transitions of the C{sub 60} molecule and diffuse interstellar bands (DIBs). We report the non-detection of the strongest C{sub 60} electronic transitions (e.g., those at {approx}3760, 3980, and 4024 A). The absence of C{sub 60} absorption bands may support recent laboratory results, which show that the {approx}7.0, 8.5, 17.4, and 18.8 {mu}m emission features seen in DY Cen-and other similar objects with polycyclic-aromatic-hydrocarbon-like dominated IR spectra-are attributable to proto-fullerenes or fullerene precursors rather than to C{sub 60}. DIBs toward DY Cen are normal for its reddening; the only exception is the DIB at 6284 A (possibly also the 7223 A DIB) which is found to be unusually strong. We also report the detection of a new broad (FWHM {approx} 2 A) and unidentified feature centered at {approx}4000 A. We suggest that this new band may be related to the circumstellar proto-fullerenes seen at infrared wavelengths.

  8. High Resolution Near-Infrared Spectroscopy of Comet C/2013 R1 (Lovejoy) using WINERED at Koyama Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Kawakita, Hideyo; Shinnaka, Yoshiharu; Ogawa, Sayuri; Kobayashi, Hitomi; Kondo, Sohei; Nakanishi, Kenshi; Kawanishi, Takafumi; Nakaoka, Tetsuya; Otsubo, Shogo; Kinoshita, Masaomi; Ikeda, Yuji; Yamamoto, Ryo; Izumi, Natsuko; Fukue, Kei; Hamano, Satoshi; Yasui, Chikako; Mito, Hiroyuki; Matsunaga, Noriyuki; Kobayashi, Naoto

    2014-11-01

    High resolution near-infrared spectroscopic observations of comet C/2013 R1 (Lovejoy) using the WINERED ( 3x10^4) spectrometer on the 1.3-m Araki telescope at Koyama Astronomical Observatory were carried out on UT 2013 November 30. The comet was at 0.91 AU from the Sun and 0.49 AU from the Earth at the observations. This comet was considered to originate in the Oort cloud and became bright in visible from October to December 2013. The newly developed instrument, WINERED, was a cross-dispersed Echelle spectrometer that can cover the wavelength range from 0.9 to 1.3 microns simultaneously. Many emission lines were recorded in the high signal-to-noise ratio spectra of comet Lovejoy. We report the line assignment of the detected emission lines and present our preliminary analysis for CN Red-band system.This research program is supported by the MEXT --- Supported Program for the Strategic Research Foundation at Private Universities, 2014 - 2018.

  9. The XMM-Newton View of Stellar Coronae: High-Resolution X-Ray Spectroscopy of Capella

    NASA Technical Reports Server (NTRS)

    Audard, M.; Behar, E.; Guedel, M.; Raassen, A. J. J.; Porquet, D.; Mewe, R.; Foley, C. A.; Bromage, G. E.

    2000-01-01

    We present the high-resolution RGS spectrum of the bright stellar binary Capella observed by the XMM-Newton satellite. A multi-thermal approach has been applied to fit the data and derive elemental abundances. The differential emission measure distribution is reconstructed using a Chebychev polynomial fit. The DEM shape is found to display a sharp peak around 7 MK, consistent with previous EUVE and ASCA results. A small but significant amount of emission measure is required around 1.8 MK in order to explain the O VII He-like triplet and the C VI Ly(alpha) line. Using the sensitivity to temperature of dielectronic recombination lines from O VI around 22 A, we confirm that the cool plasma temperature needs to be higher than 1.2 MK. In the approximation of a cool plasma described by one temperature, we used line ratios from the forbidden, intercombination, and resonance lines of the O VII triplet and derived an average density for the cool coronal plasma at the low density limit. A tentative study of line ratios from the M XI triplet gives an average temperature close to the sharp peak in emission measure and an average density of the order of 10(exp 12)cu cm, three orders of magnitude higher than for O VII. Implications for the coronal physics of Capella are discussed. We complement this paper with a discussion of the importance of the atomic code uncertainties on the spectral fitting procedure.

  10. Direct determination of phosphate sugars in biological material by (1)H high-resolution magic-angle-spinning NMR spectroscopy.

    PubMed

    Diserens, Gaëlle; Vermathen, Martina; Gjuroski, Ilche; Eggimann, Sandra; Precht, Christina; Boesch, Chris; Vermathen, Peter

    2016-08-01

    The study aim was to unambiguously assign nucleotide sugars, mainly UDP-X that are known to be important in glycosylation processes as sugar donors, and glucose-phosphates that are important intermediate metabolites for storage and transfer of energy directly in spectra of intact cells, as well as in skeletal muscle biopsies by (1)H high-resolution magic-angle-spinning (HR-MAS) NMR. The results demonstrate that sugar phosphates can be determined quickly and non-destructively in cells and biopsies by HR-MAS, which may prove valuable considering the importance of phosphate sugars in cell metabolism for nucleic acid synthesis. As proof of principle, an example of phosphate-sugar reaction and degradation kinetics after unfreezing the sample is shown for a cardiac muscle, suggesting the possibility to follow by HR-MAS NMR some metabolic pathways. Graphical abstract Glucose-phosphate sugars (Glc-1P and Glc-6P) detected in muscle by 1H HR-MAS NMR. PMID:27271261

  11. HIGH-RESOLUTION MID-INFRARED SPECTROSCOPY OF NGC 7538 IRS 1: PROBING CHEMISTRY IN A MASSIVE YOUNG STELLAR OBJECT

    SciTech Connect

    Knez, Claudia; Lacy, John H.; Evans, Neal J.; Van Dishoeck, Ewine F.; Richter, Matthew J.

    2009-05-01

    We present high-resolution (R = 75,000-100,000) mid-infrared spectra of the high-mass embedded young star IRS 1 in the NGC 7538 star-forming region. Absorption lines from many rotational states of C{sub 2}H{sub 2}, {sup 13}C{sup 12}CH{sub 2}, CH{sub 3}, CH{sub 4}, NH{sub 3}, HCN, HNCO, and CS are seen. The gas temperature, column density, covering factor, line width, and Doppler shift for each molecule are derived. All molecules were fit with two velocity components between -54 and -63 km s{sup -1}. We find high column densities ({approx}10{sup 16} cm{sup -2}) for all the observed molecules compared to values previously reported and present new results for CH{sub 3} and HNCO. Several physical and chemical models are considered. The favored model involves a nearly edge-on disk around a massive star. Radiation from dust in the inner disk passes through the disk atmosphere, where large molecular column densities can produce the observed absorption line spectrum.

  12. Concentration Profiling in Rat Tissue by High-Resolution Magic-Angle Spinning NMR Spectroscopy: Investigation of a Model Drug

    PubMed Central

    Lucas, Laura H.; Wilson, Sarah F.; Lunte, Craig E.; Larive, Cynthia K.

    2008-01-01

    The utility of high-resolution magic-angle spinning (HR-MAS) NMR for studying drug delivery in whole tissues was explored by dosing female Sprague–Dawley rats with topical or injectable benzoic acid (BA). In principle, HR-MAS NMR permits the detection of both intra- and extracellular compounds. This is an advantage over the previous detection of topically applied BA using microdialysis coupled to HPLC/UV as microdialysis samples only the extracellular space. Skin and muscle samples were analyzed by 1H HR-MAS NMR, and BA levels were determined using an external standard solution added to the sample rotor. One to two percent of the BA topical dose was detected in the muscle, showing that BA penetrated through the dermal and subcutaneous layers. Since BA was not detected in the muscle in the microdialysis studies, the NMR spectra revealed the intracellular localization of BA. The amount of BA detected in muscle after subcutaneous injection correlated with the distance from the dosing site. Overall, the results suggest that HR-MAS NMR can distinguish differences in the local concentration of BA varying with tissue type, dosage method, and tissue proximity to the dosing site. The results illustrate the potential of this technique for quantitative analysis of drug delivery and distribution and the challenges to be addressed as the method is refined. PMID:15859619

  13. High resolution, low h{nu} photoelectron spectroscopy with the use of a microwave excited rare gas lamp and ionic crystal filters

    SciTech Connect

    Suga, S.; Sekiyama, A.; Funabashi, G.; Yamaguchi, J.; Kimura, M.; Tsujibayashi, M.; Uyama, T.; Sugiyama, H.; Tomida, Y.; Kuwahara, G.; Kitayama, S.; Fukushima, K.; Kimura, K.; Yokoi, T.; Murakami, K.; Fujiwara, H.; Saitoh, Y.; Plucinski, L.; Schneider, C. M.

    2010-10-15

    The need for not only bulk sensitive but also extremely high resolution photoelectron spectroscopy for studying detailed electronic structures of strongly correlated electron systems is growing rapidly. Moreover, easy access to such a capability in one's own laboratory is desirable. Demonstrated here is the performance of a microwave excited rare gas (Xe, Kr, and Ar) lamp combined with ionic crystal filters (sapphire, CaF{sub 2}, and LiF), which can supply three strong lines near the photon energy of hnyu h{nu}=8.4, 10.0, and 11.6 eV, with the h{nu} resolution of better than 600 {mu}eV for photoelectron spectroscopy. Its performance is demonstrated on some materials by means of both angle-integrated and angle-resolved measurements.

  14. Far-ultraviolet spectroscopy of Comet Halley (1986 VI)

    SciTech Connect

    Dymond, K.F.

    1989-01-01

    Far-ultraviolet spectra were obtained of Comet Halley (1986 III) on 26 February 1986 and on 13 March 1986 using an imaging spectrograph launched aboard a sounding rocket. Most of the far-ultraviolet emissions are excited by fluorescence with solar line emission; therefore, the fluorescence excitation rates have been re-evaluated as functions of heliocentric velocity using high-resolution solar fluxes and the latest values for the oscillator strengths. The spectra are analyzed with particular emphasis placed on identifying the weak features present. The upper limits on the production rates of OCS and CS{sub 2} determined from upper limits placed on sulfur emissions are found to be consistent with production rates inferred by other observers. The upper limits on the brightness of the H{sub 2} {lambda}1608 emission have been used to place upper limits on the column density of H{sub 2} in the coma. These upper limits are {approx equal}3 times the column densities determined by models that assume that H{sub 2} is produced solely by photodissociation of H{sub 2}O. The presence of the O I {lambda}1356 emission in the comet spectra is evidence of the importance of electron impact processes in the inner coma, since this emission is probably excited from the ground state of neutral oxygen by electron impact. The spatial distribution of the CO Fourth Positive Band emissions and the C I {lambda}1561 and C I {lambda}1657 emissions are examined. The shapes of the C emission profiles cannot be adequately described by models which assume that C is produced by photodissociation of CO and other carbon bearing species.

  15. Precision Spectroscopy in Cold Molecules: the First Rotational Intervals of He_2^+ by High-Resolution Spectroscopy and Rydberg-Series Extrapolation

    NASA Astrophysics Data System (ADS)

    Jansen, Paul; Semeria, Luca; Scheidegger, Simon; Merkt, Frederic

    2015-06-01

    Having only three electrons, He_2^+ represents a system for which highly accurate ab initio calculations are possible. The latest calculation of rovibrational energies in He_2^+ do not include relativistic or QED corrections but claim an accuracy of about 120 MHz The available experimental data on He_2^+, though accurate to 300 MHz, are not precise enough to rigorously test these calculations or reveal the magnitude of the relativistic and QED corrections. We have performed high-resolution Rydberg spectroscopy of metastable He_2 molecules and employed multichannel-quantum-defect-theory extrapolation techniques to determine the rotational energy-level structure in the He_2^+ ion. To this end we have produced samples of helium molecules in the a ^3σ_u^+ state in supersonic beams with velocities tunable down to 100 m/s by combining a cryogenic supersonic-beam source with a multistage Zeeman decelerator. The metastable He_2 molecules are excited to np Rydberg states using the frequency doubled output of a pulse-amplified ring dye laser. Although the bandwidth of the laser systems is too large to observe the reduction of the Doppler width resulting from deceleration, the deceleration greatly simplifies the spectral assignments because of its spin-rotational state selectivity. Our approach enabled us to determine the rotational structure of He_2^+ with unprecedented accuracy, to determine the size of the relativistic and QED corrections by comparison with the results of Ref.~a and to precisely measure the rotational structure of the metastable state for comparison with the results of Focsa~et al. W.-C. Tung, M. Pavanello, L. Adamowicz, J. Chem. Phys. 136, 104309 (2012). D. Sprecher, J. Liu, T. Krähenmann, M. Schäfer, and F. Merkt, J. Chem. Phys. 140, 064304 (2014). M. Motsch, P. Jansen, J. A. Agner, H. Schmutz, and F. Merkt, Phys. Rev. A 89, 043420 (2014). C. Focsa, P. F. Bernath, and R. Colin, J. Mol. Spectrosc. 191, 209 (1998).

  16. The Lockheed OSO-8 program. Task 2: Analysis of data from the high resolution ultraviolet spectrometer experiment. [carbon 4 and silicon 4 line and emission spectra from solar flares

    NASA Technical Reports Server (NTRS)

    Bruner, E. C., Jr.

    1980-01-01

    The complete set of C 4 time sequences generated by the University of Colorado high resolution ultraviolet spectrometer experiment on OSO-8 were examined in a comprehensive and systematic fashion. As a result a new limit is placed on the acoustic flux passing through the transition zone of the Sun's atmosphere. It is found to be three orders of magnitude too small to heat the corona, and is consistent with zero. In collaborative efforts, the properties of transient C 4 brightenings were examined in considerable detail.

  17. INVESTIGATION INTO HOW WOOD CELL WALLS INTERACT WITH SYNTHETIC ADHESIVES USING HIGH-RESOLUTION SOLUTION-STATE NMR SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the continued growth of the wood adhesive industry and the need to create durable and environmentally friendly adhesive systems, it is still unclear whether covalent bonds contribute to wood adhesive bond strength. In order to investigate this question, solid-state NMR spectroscopy (NMR) has be...

  18. a Quantitative Method for Analyzing Radioactive Nuclides in Infinite Composite Materials Using High-Resolution Gamma-Ray Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Day, John Henry, Jr.

    1982-03-01

    A theory is formulated in which the concentration of a radionuclide uniformly distributed throughout an infinite medium is related to the photopeak count rate of a signature gamma ray acquired by a detector within the medium. The mass fraction of the i('th) radionuclide in the medium is given by f(,i) = W(,i)(psi)(,i) (E)/(lamda)(,i)I(,I)(E)K(E); where (psi)(,i)(E) and I(,i)(E) are the observed photopeak count rate and absolute intensity for a gamma-ray emission of energy E. (lamda)(,i) and W(,i) are the decay constant and isotopic mass, respectively. It is shown that the function K(E) is a source volume integration over(' )(epsilon)(E,R)B(E,R)exp( -(SIGMA)(mu)(E)r(R))/(VBAR)R(VBAR)('2) which depends on gamma-ray energy only. Values of the narrow-beam attenuation coefficient (mu) are known for many materials. However, several laboratory experiments are performed in order to obtain data from which to empirically determine the detector response function (epsilon)(E,R)(' )and the gamma-ray build -up-factor(' )B(E,R). Special experimental instrumentation for analyzing radionuclides in infinite composite materials using high -resolution gamma-ray spectrometry is introduced. A probe is constructed which contains a coaxial high-purity germanium crystal to detect the gamma rays, a cryostat to cool the crystal and electronic circuitry to process the signal from the detector. Laboratory models of natural formations are prepared using high-grade radioactive samples diluted with silicon dioxide to obtain the desired concentrations. Each model is sampled to obtain X-ray fluorescence, delayed neutron and fluorimetric analysis from independent laboratories to compare with results using the method presented in this work.

  19. High-resolution X-ray spectroscopy of rare events: a different look at local structure and chemistry

    PubMed Central

    Glatzel, Pieter; Robblee, John H.; Messinger, Johannes; Fernandez, Carmen; Cinco, Roehl; Visser, Henk; McFarlane, Karen; Bellacchio, Emanuele; Pizarro, Shelly; Sauer, Kenneth; Yachandra, Vittal K.; Klein, Melvin P.; Cox, Billie L.; Nealson, Kenneth H.; Cramer, Stephen P.

    2014-01-01

    The combination of large-acceptance high-resolution X-ray optics with bright synchrotron sources permits quantitative analysis of rare events such as X-ray fluorescence from very dilute systems, weak fluorescence transitions or X-ray Raman scattering. Transition-metal Kβ fluorescence contains information about spin and oxidation state; examples of the characterization of the Mn oxidation states in the oxygen-evolving complex of photosystem II and Mn-consuming spores from the marine bacillus SG-1 are presented. Weaker features of the Kβ spectrum resulting from valence-level and ‘interatomic’ ligand to metal transitions contain detailed information on the ligand-atom type, distance and orientation. Applications of this spectral region to characterize the local structure of model compounds are presented. X-ray Raman scattering (XRS) is an extremely rare event, but also represents a unique technique to obtain bulk-sensitive low-energy (<600 eV) X-ray absorption fine structure (XAFS) spectra using hard (~10 keV) X-rays. A photon is inelastically scattered, losing part of its energy to promote an electron into an unoccupied level. In many cases, the cross section is proportional to that of the corresponding absorption process yielding the same X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) features. XRS finds application for systems that defy XAFS analysis at low energies, e.g. liquids or highly concentrated complex systems, reactive compounds and samples under extreme conditions (pressure, temperature). Recent results are discussed. PMID:11512725

  20. Resonant photoelectron spectroscopy of Au{sub 2}{sup −} via a Feshbach state using high-resolution photoelectron imaging

    SciTech Connect

    León, Iker; Yang, Zheng; Wang, Lai-Sheng

    2013-11-21

    Photodetachment cross sections are measured across the detachment threshold of Au{sub 2}{sup −} between 1.90 and 2.02 eV using a tunable laser. In addition to obtaining a more accurate electron affinity for Au{sub 2} (1.9393 ± 0.0003 eV), we observe eight resonances above the detachment threshold, corresponding to excitations from the vibrational levels of the Au{sub 2}{sup −} ground state (X {sup 2}Σ{sub u}{sup +}) to those of a metastable excited state of Au{sub 2}{sup −} (or Feshbach resonances) at an excitation energy of 1.9717 ± 0.0003 eV and a vibrational frequency of 129.1 ± 1.5 cm{sup −1}. High-resolution photoelectron spectra of Au{sub 2}{sup −} are obtained using photoelectron imaging to follow the autodetachment processes by tuning the detachment laser to all the eight Feshbach resonances. We observe significant non-Franck-Condon behaviors in the resonant photoelectron spectra due to autodetachment from a given vibrational level of the Feshbach state to selective vibrational levels of the neutral final state. Using the spectroscopic data for the ground states of Au{sub 2}{sup −} (X {sup 2}Σ{sub u}{sup +}) and Au{sub 2} (X {sup 1}Σ{sub g}{sup +}), we estimate an equilibrium bond distance of 2.53 ± 0.02 Å for the Feshbach state of Au{sub 2}{sup −} by simulating the Franck-Condon factors for the resonant excitation and autodetachment processes.

  1. High-Cadence and High-Resolution Halpha Imaging Spectroscopy of a Circular Flare's Remote Ribbon with IBIS

    NASA Astrophysics Data System (ADS)

    Deng, Na; Tritschler, A.; Jing, J.; Chen, X.; Liu, C.; Reardon, K. P.; Denker, C.; Xu, Y.; Wang, H.

    2013-07-01

    We present an unprecedented high-resolution halpha imaging spectroscopic observation of a C4.1 flare taken with IBIS on 2011 October 22. The flare consists of a main circular ribbon that occurred in a parasitic magnetic configuration and a remote ribbon that was observed by the IBIS. Such a circular-ribbon flare with a remote brightening is predicted in 3D fan-spine reconnection but so far has been rarely reported. During the flare impulsive phase, we define "core" and "halo" structures in the observed ribbon. Examining the halpha emission spectra averaged in the flare core and halo areas, we find that only those from the flare cores show typical nonthermal electron beam heating characteristics. These characteristics include: broad and centrally reversed emission spectra, excess emission in the red wing with regard to the blue wing (i.e., red asymmetry), and redshifted bisectors of the emission spectra. We also observe rather quick timescales for the heating (30 s) and cooling (14--33 s) in the flare core locations. Therefore, we suggest that the flare cores revealed by IBIS track the sites of electron beam precipitation with exceptional spatial and temporal resolution. The flare cores show two-stage motion (a parallel motion along the ribbon followed by an expansion motion perpendicular to the ribbon) during the two impulsive phases of the flare. Some cores jump quickly (30 km/s) between discrete magnetic elements implying reconnection involving different flux tubes. We observe a very high temporal correlation (>0.9) between the integrated halpha and HXR emission during the flare impulsive phase. A short time delay (4.6 s) is also found in the halpha emission spikes relative to HXR bursts. The ionization timescale of the cool chromosphere and the extra time taken for the electrons to travel to the remote ribbon site may contribute to this delay.

  2. High-resolution optical spectroscopy of the yellow hypergiant V1302 Aql (=IRC+10420) in 2001-2014

    NASA Astrophysics Data System (ADS)

    Klochkova, V. G.; Chentsov, E. L.; Miroshnichenko, A. S.; Panchuk, V. E.; Yushkin, M. V.

    2016-07-01

    We present the results of a study of spectral features and the velocity field in the atmosphere and circumstellar envelope of the yellow hypergiant V1302 Aql, the optical counterpart of the IR source IRC+10420, based on high-resolution optical spectroscopic observations in 2001-2014. We measured heliocentric radial velocities of the following types of lines: forbidden and permitted pure emission, absorption and emission components of lines of ions, pure absorption (e.g. He I, Si II) and interstellar components of the Na I D lines, K I and diffuse interstellar bands (DIBs). Pure absorption and forbidden and permitted pure emission, which have heliocentric radial velocities Vr = 63.7 ± 0.3, 65.2 ± 0.3 and 62.0 ± 0.4 km s-1, respectively, are slightly redshifted relative to the systemic radial velocity (Vsys ˜ 60 km s-1). The positions of the absorption components of the lines with inverse P Cyg profiles are redshifted by ˜20 km s-1, suggesting that clumps falling on to the star have been stable over all observing dates. The average heliocentric radial velocity of the DIBs is Vr(DIB) = 4.6 ± 0.2 km s-1. A Hα line profile with the red peak slightly stronger than the blue one was observed only once, on 2007 November 24. Comparison of pure absorption lines observed in 2001-2014 with those in earlier data does not show noticeable variations. The kinematic picture in the atmosphere was stable for observations during 2001-2014. Our results as a whole let us conclude that the hypergiant has reached a phase of slowing down (or termination) of effective temperature growth and is currently located near the high-temperature boundary of the Yellow Void in the Hertszprung-Russell diagram.

  3. Extreme ultraviolet high-harmonic spectroscopy of solids

    NASA Astrophysics Data System (ADS)

    Luu, T. T.; Garg, M.; Kruchinin, S. Yu.; Moulet, A.; Hassan, M. Th.; Goulielmakis, E.

    2015-05-01

    Extreme ultraviolet (EUV) high-harmonic radiation emerging from laser-driven atoms, molecules or plasmas underlies powerful attosecond spectroscopy techniques and provides insight into fundamental structural and dynamic properties of matter. The advancement of these spectroscopy techniques to study strong-field electron dynamics in condensed matter calls for the generation and manipulation of EUV radiation in bulk solids, but this capability has remained beyond the reach of optical sciences. Recent experiments and theoretical predictions paved the way to strong-field physics in solids by demonstrating the generation and optical control of deep ultraviolet radiation in bulk semiconductors, driven by femtosecond mid-infrared fields or the coherent up-conversion of terahertz fields to multi-octave spectra in the mid-infrared and optical frequencies. Here we demonstrate that thin films of SiO2 exposed to intense, few-cycle to sub-cycle pulses give rise to wideband coherent EUV radiation extending in energy to about 40 electronvolts. Our study indicates the association of the emitted EUV radiation with intraband currents of multi-petahertz frequency, induced in the lowest conduction band of SiO2. To demonstrate the applicability of high-harmonic spectroscopy to solids, we exploit the EUV spectra to gain access to fine details of the energy dispersion profile of the conduction band that are as yet inaccessible by photoemission spectroscopy in wide-bandgap dielectrics. In addition, we use the EUV spectra to trace the attosecond control of the intraband electron motion induced by synthesized optical transients. Our work advances lightwave electronics in condensed matter into the realm of multi-petahertz frequencies and their attosecond control, and marks the advent of solid-state EUV photonics.

  4. Non-Destructive Evaluation of Materials via Ultraviolet Spectroscopy

    NASA Technical Reports Server (NTRS)

    Pugel, Betsy

    2008-01-01

    A document discusses the use of ultraviolet spectroscopy and imaging for the non-destructive evaluation of the degree of cure, aging, and other properties of resin-based composite materials. This method can be used in air, and is portable for field use. This method operates in reflectance, absorbance, and luminescence modes. The ultraviolet source is used to illuminate a composite surface of interest. In reflectance mode, the reflected response is acquired via the imaging system or via the spectrometer. The spectra are analyzed for organic compounds (conjugated organics) and inorganic compounds (semiconducting band-edge states; luminescing defect states such as silicates, used as adhesives for composite aerospace applications; and metal oxides commonly used as thermal coating paints on a wide range of spacecraft). The spectra are compared with a database for variation in conjugation, substitution, or length of molecule (in the case of organics) or band edge position (in the case of inorganics). This approach is useful in the understanding of material quality. It lacks the precision in defining the exact chemical structure that is found in other materials analysis techniques, but it is advantageous over methods such as nuclear magnetic resonance, infrared spectroscopy, and chromatography in that it can be used in the field to assess significant changes in chemical structure that may be linked to concerns associated with weaknesses or variations in structural integrity, without disassembly of or destruction to the structure of interest.

  5. Development of two-color laser system for high-resolution polarization spectroscopy measurements of atomic hydrogen.

    PubMed

    Bhuiyan, A H; Satija, A; Naik, S V; Lucht, R P

    2012-09-01

    We have developed a high-spectral-resolution laser system for two-photon pump, polarization spectroscopy probe (TPP-PSP) measurements of atomic hydrogen in flames. In the TPP-PSP technique, a 243-nm laser beam excites the two-photon 1S-2S transition, and excited n=2 atoms are then detected by polarization spectroscopy of the n=2 to n=3 transition using 656-nm laser radiation. The single-frequency-mode 243 and 656-nm beams are produced using injection-seeded optical parametric generators coupled with pulsed dye amplifiers. The use of single-mode lasers allows accurate measurement of signal line shapes and intensities even with significant pulse-to-pulse fluctuations in pulse energies. Use of single-mode lasers and introduction of a scheme to select nearly constant laser energies enable repeatable extraction of important spectral features in atomic hydrogen transitions. PMID:22940950

  6. Subaru High-Resolution Spectroscopy of Complex Metal Absorption Lines of the Quasar HS 1603+3820

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Yamada, Toru; Takada-Hidai, Masahide; Wang, Yiping; Kashikawa, Nobunari; Iye, Masanori; Tanaka, Ichi

    2003-03-01

    We present a high-resolution spectrum of the quasar HS 1603+3820 (zem=2.542), observed with the High Dispersion Spectrograph on the Subaru Telescope. This quasar, first discovered in the Hamburg/CfA Quasar Survey, has 11 C IV lines at 1.962.29 and resolves some of them into multiple narrow components with b<25 km s-1 because of the high spectral resolution R=45,000, while other lines show broad profiles (b>65 km s-1). We use three properties of C IV lines, specifically, time variability, covering factor, and absorption-line profile, to classify them into quasar intrinsic absorption lines (QIALs) and spatially intervening absorption lines (SIALs). The C IV lines at 2.42

  7. High-cadence and high-resolution Hα imaging spectroscopy of a circular flare's remote ribbon with IBIS

    SciTech Connect

    Deng, Na; Jing, Ju; Chen, Xin; Liu, Chang; Xu, Yan; Wang, Haimin; Tritschler, Alexandra; Reardon, Kevin; Denker, Carsten

    2013-06-01

    We present an unprecedented high-resolution Hα imaging spectroscopic observation of a C4.1 flare taken with the Interferometric Bidimensional Spectrometer (IBIS) in conjunction with the adaptive optics system at the 76 cm Dunn Solar Telescope on 2011 October 22 in the active region NOAA 11324. Such a two-dimensional spectroscopic observation covering the entire evolution of a flare ribbon with high spatial (0.''1 pixel{sup –1} image scale), cadence (4.8 s), and spectral (0.1 Å step size) resolution is rarely reported. The flare consists of a main circular ribbon that occurred in a parasitic magnetic configuration and a remote ribbon that was observed by the IBIS. Such a circular-ribbon flare with a remote brightening is predicted in three-dimensional fan-spine reconnection but so far has been rarely studied. During the flare impulsive phase, we define 'core' and 'halo' structures in the observed ribbon based on IBIS narrowband images in the Hα line wing and line center. Examining the Hα emission spectra averaged in the flare core and halo areas, we find that only those from the flare cores show typical nonthermal electron beam heating characteristics that have been revealed by previous theoretical simulations and observations of flaring Hα line profiles. These characteristics include broad and centrally reversed emission spectra, excess emission in the red wing with regard to the blue wing (i.e., red asymmetry), and redshifted bisectors of the emission spectra. We also observe rather quick timescales for the heating (∼30 s) and cooling (∼14-33 s) in the flare core locations. Therefore, we suggest that the flare cores revealed by IBIS track the sites of electron beam precipitation with exceptional spatial and temporal resolution. The flare cores show two-stage motion (a parallel motion along the ribbon followed by an expansion motion perpendicular to the ribbon) during the two impulsive phases of the flare. Some cores jump quickly (30 km s{sup –1

  8. High-resolution spectroscopy using synchrotron radiation for surface structure determination and the study of correlated electron systems

    SciTech Connect

    Moler, E.J. Jr.

    1996-05-01

    The surface structure of three molecular adsorbate systems on transition metal surfaces, ({radical}3 x {radical}3)R30{degrees} and (1.5 x 1.5)R18{degrees} CO adsorbed on Cu(111), and c(2x2) N2/Ni(100), have been determined using Angle-Resolved Photoemission Extended Fine Structure (ARPEFS). The adsorption site and bond lengths are reported for the adsorbate-metal bond and the first two substrate layers. The ARPEFS diffraction pattern of the shake-up peak for c(2x2) N2/Ni(100) is also discussed. A unique method of experimentally determining the angular momentum and intrinsic/extrinsic origin of core-level satellites is presented. We show for the first time that satellite peaks not associated with chemically differentiated atomic species display an ARPEFS intensity oscillation. Specifically, we present data for the C 1s from ({radical}3x{radical}3)R30 CO/Cu(111) and p2mg(2x1)CO/Ni(110), N is from c(2x2) N2/Ni(100), and Ni 3p from clean nickel(111). The satellite peaks in all cases exhibit ARPEFS curves which indicate an angular momentum identical to the main peak and are of an intrinsic nature. A Fourier Transform Soft X-ray spectrometer (FF-SX) has been designed and is under construction for the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. The spectrometer is designed for ultra-high resolution theoretical resolving power E/{Delta}E{approx}-10{sup 6} in the photon energy region of 60-120 eV. This instrument is expected to provide experimental results which sensitively test models of correlated electron processes in atomic and molecular physics. The design criteria and consequent technical challenges posed by the short wavelengths of x-rays and desired resolving power are discussed. The fundamental and practical aspects of soft x-ray interferometry are also explored.

  9. High-cadence and High-resolution Hα Imaging Spectroscopy of a Circular Flare's Remote Ribbon with IBIS

    NASA Astrophysics Data System (ADS)

    Deng, Na; Tritschler, Alexandra; Jing, Ju; Chen, Xin; Liu, Chang; Reardon, Kevin; Denker, Carsten; Xu, Yan; Wang, Haimin

    2013-06-01

    We present an unprecedented high-resolution Hα imaging spectroscopic observation of a C4.1 flare taken with the Interferometric Bidimensional Spectrometer (IBIS) in conjunction with the adaptive optics system at the 76 cm Dunn Solar Telescope on 2011 October 22 in the active region NOAA 11324. Such a two-dimensional spectroscopic observation covering the entire evolution of a flare ribbon with high spatial (0.''1 pixel-1 image scale), cadence (4.8 s), and spectral (0.1 Å step size) resolution is rarely reported. The flare consists of a main circular ribbon that occurred in a parasitic magnetic configuration and a remote ribbon that was observed by the IBIS. Such a circular-ribbon flare with a remote brightening is predicted in three-dimensional fan-spine reconnection but so far has been rarely studied. During the flare impulsive phase, we define "core" and "halo" structures in the observed ribbon based on IBIS narrowband images in the Hα line wing and line center. Examining the Hα emission spectra averaged in the flare core and halo areas, we find that only those from the flare cores show typical nonthermal electron beam heating characteristics that have been revealed by previous theoretical simulations and observations of flaring Hα line profiles. These characteristics include broad and centrally reversed emission spectra, excess emission in the red wing with regard to the blue wing (i.e., red asymmetry), and redshifted bisectors of the emission spectra. We also observe rather quick timescales for the heating (~30 s) and cooling (~14-33 s) in the flare core locations. Therefore, we suggest that the flare cores revealed by IBIS track the sites of electron beam precipitation with exceptional spatial and temporal resolution. The flare cores show two-stage motion (a parallel motion along the ribbon followed by an expansion motion perpendicular to the ribbon) during the two impulsive phases of the flare. Some cores jump quickly (30 km s-1) between discrete

  10. High resolution spectroscopy of the high latitude rapidly evolving post-AGB star SAO 85766 (= IRAS 18062+2410)

    NASA Astrophysics Data System (ADS)

    Parthasarathy, M.; García-Lario, P.; Sivarani, T.; Manchado, A.; Sanz Fernández de Córdoba, L.

    2000-05-01

    SAO 85766 (b = +20o) is an IRAS source with far-infrared colours similar to planetary nebulae. According to the HDE catalogue, its spectrum in 1940 was that of an A5 star. The UV fluxes and colours derived from data obtained by the TD1 satellite in 1972 also indicate that SAO 85766 was an A-type supergiant at that epoch. However, high resolution spectra of SAO 85766 obtained in 1993 in the wavelength interval 4350Ä to 8820Ä shows that now it is similar to that of an early B type post-AGB supergiant. In addition to the absorptions lines typical of a B1I type star, the spectrum of SAO 85766 is found to show numerous permitted and forbidden emission lines of several elements, typically observed in the spectra of young high density low excitation planetary nebulae. From an analysis of the absorption lines we have estimated Teff=22000+/-500 K, log g=3.0+/-0.5, xi t=15+/-2km s-1 and [M/H]=-0.6. Carbon is found to be strongly underabundant ([C/Fe] = -1.0), similarly to what has been observed in other high galactic latitude hot post-AGB stars. The underabundance of carbon and metals, high galactic latitude, high radial velocity (46 km s-1), the presence of planetary nebula type detached cold circumstellar dust shell and also the presence of low excitation nebular emission lines in the spectrum indicate that SAO 85766 is a low mass star in the post-AGB stage of evolution. The above mentioned characteristics and the variations observed in the spectrum of SAO 85766 suggest that it has rapidly evolved during the past 50 years and it is now in the early stages of the planetary nebula phase. The central star may just have become hot enough to photoionize the circumstellar envelope ejected during the previous AGB phase. >From an analysis of the nebular emission lines we find Te=10000+/- 500K and Ne=2.5 104 cm-3. The nebula also shows an abundance pattern similar to that of the central star. The rapid post-AGB evolution of SAO 85766 appears to be similar to that observed in the

  11. High resolution spectroscopy and chemical shift imaging of hyperpolarized 129Xe dissolved in the human brain in vivo at 1.5 tesla

    PubMed Central

    Rao, Madhwesha; Stewart, Neil J.; Norquay, Graham; Griffiths, Paul D.

    2016-01-01

    Purpose Upon inhalation, xenon diffuses into the bloodstream and is transported to the brain, where it dissolves in various compartments of the brain. Although up to five chemically distinct peaks have been previously observed in 129Xe rat head spectra, to date only three peaks have been reported in the human head. This study demonstrates high resolution spectroscopy and chemical shift imaging (CSI) of 129Xe dissolved in the human head at 1.5 Tesla. Methods A 129Xe radiofrequency coil was built in‐house and 129Xe gas was polarized using spin‐exchange optical pumping. Following the inhalation of 129Xe gas, NMR spectroscopy was performed with spectral resolution of 0.033 ppm. Two‐dimensional CSI in all three anatomical planes was performed with spectral resolution of 2.1 ppm and voxel size 20 mm × 20 mm. Results Spectra of hyperpolarized 129Xe dissolved in the human head showed five distinct peaks at 188 ppm, 192 ppm, 196 ppm, 200 ppm, and 217 ppm. Assignment of these peaks was consistent with earlier studies. Conclusion High resolution spectroscopy and CSI of hyperpolarized 129Xe dissolved in the human head has been demonstrated. For the first time, five distinct NMR peaks have been observed in 129Xe spectra from the human head in vivo. Magn Reson Med 75:2227–2234, 2016. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27080441

  12. "Long-term Timing and High Resolution Spectroscopy of Ultracompact Candidates V407 Vul and RX J0806.3+1527"

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2008-01-01

    We present new, extended X-ray timing measurements of the ultracompact binary candidates V407 Vul and RX J0806.3+1527 (J0806), as well as a summary of the first high resolution X-ray spectrum of 50806 obtained with the Chandra/LETG. The temporal baseline for both objects is about 12 years, and our measurements confirm the secular spin-up of their X-ray periods. The spin-up rate in J0806 is remarkably uniform at 3.55x10(exp -16) Hz/s, with a measurement precision of 0.2%, and we place a limit (90% confidence) on [dn/dt] < 4x10(exp -26) Hz/sq s. Interestingly, for V407 Vul we find the first evidence that the spin-up rate is slowing, with d(sup 2)n/dt(sup 2) = -2.8+/- 1x10(exp -26) Hz/sq s. This provides the first indication that torques in addition to gravitational radiation are present in V407 Vul. Further monitoring could constrain the nature of the torque, as either accretion-induced or due to unipolar induction. We also obtained the first high resolution X-ray spectrum of J0806 with an 80 ksec Chandra/LETG observation. We find evidence for emission features in the 25-50 Angstrom range, with the strongest feature centered at 27 Angstrom. The spectrum appears largely devoid of common lines of oxygen, nitrogen and neon, and we suggest the 27 Angstrom feature may be associated with heavier species, such as magnesium, silicon or sulphur. Deeper observations will be needed to fully exploit the apparently strong diagnostic potential of high resolution spectroscopy for these objects.

  13. Identification of unknown microcontaminants in Dutch river water by liquid chromatography-high resolution mass spectrometry and nuclear magnetic resonance spectroscopy.

    PubMed

    van Leerdam, J A; Vervoort, J; Stroomberg, G; de Voogt, P

    2014-11-01

    In the past decade during automated surface water monitoring in the river Meuse at border station Eijsden in The Netherlands, a set of unknown compounds were repeatedly detected by online liquid chromatography-diode-array detection in a relatively high signal intensity. Because of the unknown nature of the compounds, the consequently unknown fate of this mixture in water treatment processes, the location being close to the water inlet of a drinking water supply company and their possible adverse public health effects, it was deemed necessary to elucidate the identity of the compounds. No data are available for the occurrence of these unknowns at downstream locations. After concentration and fractionation of a sample by preparative Liquid Chromatography, identification experiments were performed using Liquid Chromatography-High Resolution Mass Spectrometry (LC-HR-MS) combined with High Resolution Nuclear Magnetic Resonance Spectroscopy (HR-NMR). Accurate mass determination of the unknown parent compound and its fragments obtained in MS/MS provided relevant information on the elemental composition of the unknown compounds. With the use of NMR techniques and the information about the elemental composition, the identity of the compounds in the different sample fractions was determined. Beside some regularly detected compounds in surface water, like caffeine and bisphenol-S, five dihydroxydiphenylmethane isomers were identified. The major unknown compound was identified as 4,4'-dihydroxy-3,5,3',5'-tetra(hydroxymethyl)diphenylmethane. This compound was confirmed by analysis of the pure reference compound. This is one of the first studies that employs the combination of high resolution MS with NMR for identification of truly unknown compounds in surface waters at the μg/L level. Five of the seven identified compounds are unexpected and not contained in the CAS database, while they can be presumed to be products generated during the production of resins. PMID:25296128

  14. High-resolution absorption spectroscopy of photoionized silicon plasma, a step toward measuring the efficiency of Resonant Auger Destruction

    NASA Astrophysics Data System (ADS)

    Loisel, Guillaume; Bailey, James; Hansen, Stephanie; Nagayama, Taisuke; Rochau, Gregory; Liedhal, Duane; Mancini, Roberto

    2013-10-01

    A remarkable opportunity to observe matter in a regime where the effects of General Relativity are significant has arisen through measurements of strongly red-shifted iron x-ray lines emitted from black hole accretion disks. A major uncertainty in the spectral formation models is the efficiency of Resonant Auger Destruction (RAD), in which fluorescent K α photons are resonantly absorbed by neighbor ions. The absorbing ion preferentially decays by Auger ionization, thus reducing the emerging K α intensity. If K α lines from L-shell ions are not observed in iron spectral emission, why are such lines observed from silicon plasma surrounding other accretion powered objects? To help answer this question, we are investigating photoionized silicon plasmas produced using intense x-rays from the Z facility. The incident spectral irradiance is determined with time-resolved absolute power measurements, multiple monochromatic gated images, and a 3-D view factor model. The charge state distribution, electron temperature, and electron density are determined using space-resolved backlit absorption spectroscopy. The measurements constrain photoionized plasma models and set the stage for future emission spectroscopy directly investigating the RAD process. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  15. Site-directed mutagenesis and high-resolution NMR spectroscopy of the active site of porphobilinogen deaminase

    SciTech Connect

    Scott, A.I.; Roessner, C.A.; Stolowich, N.J.; Karuso, P.; Williams, H.J.; Grant, S.K.; Gonzalez, M.D.; Hoshino, T. )

    1988-10-18

    The active site of porphobilinogen (PBG){sup 1} deaminase from Escherichia coli has been found to contain an unusual dipyrromethane derived from four molecules of 5-aminolevulinic acid (ALA) covalently linked to Cys-242, one of the two cysteine residues conserved in E. coli and human deaminase. By use of a hemA{sup {minus}} strain of E. coli the enzyme was enriched from (5-{sup 13}C)ALA and examined by {sup 1}H-detected multiple quantum coherence spectroscopy, which revealed all of the salient features of a dipyrromethane composed of two PBG units linked heat to tail and terminating in a CH{sub 2}-S bond to a cysteine residue. Site-specific mutagenesis of Cys-99 and Cys-242, respectively, has shown that substitution of Ser for Cys-99 does not affect the enzymatic activity, whereas substitution of Ser for Cys-242 removes essentially all of the catalytic activity as measured by the conversion of the substrate PBG to uro'gen I. The NMR spectrum of the covalent complex of deaminase with the suicide inhibitor 2-bromo-(2,11-{sup 13}C{sub 2})PBG reveals that the aminomethyl terminus of the inhibitor reacts with the enzyme's cofactor at the {alpha}-free pyrrole. NMR spectroscopy of the ES{sub 2} complex confirmed a PBG-derived head-to-tail dipyrromethane attached to the {alpha}-free pyrrole position of the enzyme. A mechanistic rationale for deaminase is presented.

  16. A Combined Synchrotron-Based High Resolution FTIR and Diode Laser Jet Infrared Spectroscopy Study of the Chiral Molecule CDBrClF

    NASA Astrophysics Data System (ADS)

    Albert, S.; Albert, K. Keppler; Quack, M.; Lerch, Ph.; Boudon, V.

    2013-06-01

    The experimental detection of molecular parity violation Δ_{PV}E is of great interest because of its importance in the understanding of fundamental aspects of molecular dynamics and symmetries. One possible method for this is measuring rovibrational or rotational frequency shifts in the infrared or microwave spectra of enantiomers. For that reason we have measured and analysed the rotationally resolved infrared spectrum of CDBrClF as a prototype spectrum for a chiral molecule using three different techniques. The spectrum has been recorded at room temperature with the Zurich Bruker IFS spectrometer ZP 2001 and with the Bruker interferometer 2009 connected to the Swiss synchrotron using a resolution of 0.0007 cm^{-1}. In addition, the IR spectrum of CDBrClF has been measured at low temperature with our diode laser jet setup in the ν_5 region. The spectra of the two major isotopomers CD^{81}Br^{35}ClF and CD^{79}Br^{35}ClF have been analysed within the ν_5 (CCl-stretch), ν_4 (CF-stretch) and ν_3 (CDF-bend) regions. A detailed rovibrational analysis of these bands is presented. The role for possible experiments in the experimental detection of molecular parity violation shall be discussed. M. Quack, Fundamental symmetries and symmetry violations in Handbook of High Resolution Spectroscopy, Vol. 1(Eds. M. Quack and F. Merkt), Wiley, Chichester, New York 2011, 659-722, M. Quack, J. Stohner and M. Willeke, Annu. Rev. Phys. Chem. 2008, 59, 741, A. Bakasov, T.K. Ha, and M. Quack, J. Chem. Phys. 1998, 109, 7263, R. Berger and M. Quack, J. Chem. Phys, 2000, 112, 3148. M. Quack and J. Stohner, Phys. Rev. Lett. 2000, 84, 3807, M. Quack and J. Stohner. J. Chem. Phys., 2003, 119, 11228. S. Albert, K. Keppler Albert and M. Quack, High Resolution Fourier Transform Infrared Spectroscopy in Handbook of High Resolution Spectroscopy, Vol. 2 (Eds. M. Quack and F. Merkt), Wiley, Chichester, New York 2011, 965-1019, S. Albert and M. Quack, ChemPhysChem, 2007, 8, 1271-1281. S. Albert

  17. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

    SciTech Connect

    Gotlieb, K.; Hussain, Z.; Bostwick, A.; Jozwiak, C.; Lanzara, A.

    2013-09-15

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-E{sub F} spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  18. Irradiation effects in 6H-SiC induced by neutron and heavy ions: Raman spectroscopy and high-resolution XRD analysis

    NASA Astrophysics Data System (ADS)

    Chen, Xiaofei; Zhou, Wei; Feng, Qijie; Zheng, Jian; Liu, Xiankun; Tang, Bin; Li, Jiangbo; Xue, Jianming; Peng, Shuming

    2016-09-01

    Irradiation effects of neutron and 3 MeV C+, Si+ in 6H-SiC were investigated by Raman spectroscopy and high-resolution XRD. The total disorder values of neutron irradiated SiC agree well with that of samples irradiated by ions at the same doses respectively. On the other hand, high-resolution XRD results shows that the lattice strain rate caused by neutron irradiation is 6.8%/dpa, while it is only 2.6%/dpa and 4.2%/dpa for Si+ and C+ irradiations respectively. Our results illustrate that the total disorder in neutron irradiated SiC can be accurately simulated by MeV Si+ or C+ irradiations at the same dose, but for the lattice strain and strain-related properties like surface hardness, the depth profile of irradiation damages induced by energetic ions must be considered. This research will contribute to a better understanding of the difference in irradiation effects between neutron and heavy ions.

  19. Probing the electronic and vibrational structure of Au2Al2(-) and Au2Al2 using photoelectron spectroscopy and high resolution photoelectron imaging.

    PubMed

    Lopez, Gary V; Czekner, Joseph; Jian, Tian; Li, Wei-Li; Yang, Zheng; Wang, Lai-Sheng

    2014-12-14

    The electronic and vibrational structures of Au2Al2(-) and Au2Al2 have been investigated using photoelectron spectroscopy (PES), high-resolution photoelectron imaging, and theoretical calculations. Photoelectron spectra taken at high photon energies with a magnetic-bottle apparatus reveal numerous detachment transitions and a large energy gap for the neutral Au2Al2. Vibrationally resolved PE spectra are obtained using high-resolution photoelectron imaging for the ground state detachment transition of Au2Al2(-) at various photon energies (670.55-843.03 nm). An accurate electron affinity of 1.4438(8) eV is obtained for the Au2Al2 neutral cluster, as well as two vibrational frequencies at 57 ± 8 and 305 ± 13 cm(-1). Hot bands transitions yield two vibrational frequencies for Au2Al2(-) at 57 ± 10 and 144 ± 12 cm(-1). The obtained vibrational and electronic structure information is compared with density functional calculations, unequivocally confirming that both Au2Al2(-) and Au2Al2 possess C2v tetrahedral structures. PMID:25494751

  20. Probing the electronic and vibrational structure of Au2Al2- and Au2Al2 using photoelectron spectroscopy and high resolution photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Lopez, Gary V.; Czekner, Joseph; Jian, Tian; Li, Wei-Li; Yang, Zheng; Wang, Lai-Sheng

    2014-12-01

    The electronic and vibrational structures of Au2Al2- and Au2Al2 have been investigated using photoelectron spectroscopy (PES), high-resolution photoelectron imaging, and theoretical calculations. Photoelectron spectra taken at high photon energies with a magnetic-bottle apparatus reveal numerous detachment transitions and a large energy gap for the neutral Au2Al2. Vibrationally resolved PE spectra are obtained using high-resolution photoelectron imaging for the ground state detachment transition of Au2Al2- at various photon energies (670.55-843.03 nm). An accurate electron affinity of 1.4438(8) eV is obtained for the Au2Al2 neutral cluster, as well as two vibrational frequencies at 57 ± 8 and 305 ± 13 cm-1. Hot bands transitions yield two vibrational frequencies for Au2Al2- at 57 ± 10 and 144 ± 12 cm-1. The obtained vibrational and electronic structure information is compared with density functional calculations, unequivocally confirming that both Au2Al2- and Au2Al2 possess C2v tetrahedral structures.

  1. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    SciTech Connect

    Bohlin, Alexis; Kliewer, Christopher J.

    2014-01-20

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N{sub 2}, H{sub 2}, CO{sub 2}, O{sub 2}, and CH{sub 4}. Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location.

  2. Selective detection and complete identification of triglycerides in cortical bone by high-resolution (1)H MAS NMR spectroscopy.

    PubMed

    Mroue, Kamal H; Xu, Jiadi; Zhu, Peizhi; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2016-07-28

    Using (1)H-based magic angle spinning solid-state NMR spectroscopy, we report an atomistic-level characterization of triglycerides in compact cortical bone. By suppressing contributions from immobile molecules present in bone, we show that a (1)H-based constant-time uniform-sign cross-peak (CTUC) two-dimensional COSY-type experiment that correlates the chemical shifts of protons can selectively detect a mobile triglyceride layer as the main component of small lipid droplets embedded on the surface of collagen fibrils. High sensitivity and resolution afforded by this NMR approach could be potentially utilized to investigate the origin of triglycerides and their pathological roles associated with bone fractures, diseases, and aging. PMID:27374353

  3. High-resolution spectroscopy and analysis of the ν1/ν3 stretching dyad of osmium tetroxide

    NASA Astrophysics Data System (ADS)

    Louviot, M.; Boudon, V.; Manceron, L.; Roy, P.; Balcon, D.

    2012-01-01

    OsO4 is a heavy tetrahedral molecule that may constitute a benchmark for quantum chemistry calculations. Its favorable spin statistics (due to the zero nuclear spin of oxygen atoms) is such that only A1 and A2 rovibrational levels are allowed, leading to a dense, but quite easily resolved spectrum. Most lines are single ones, instead of complex line clusters as in the case of other heavy spherical-tops like SF6, for instance. It is thus possible to fully assign and fit the spectrum and to obtain precise experimental effective molecular parameters. The strong ν3 stretching fundamental has been studied a long time ago as an isolated band [McDowell RS, Radziemski LJ, Flicker H, Galbraith HW, Kennedy RC, Nereson NG, et al. Journal of Chemical Physics 1978;88:1513-21; Bobin B, Valentin A, Henry L. Journal of Molecular Spectroscopy 1987;122:229-41]. We reinvestigate here this region and perform new assignments and effective Hamiltonian parameter fits for the four main isotopologues (192OsO4, 190OsO4, 189OsO4, 188OsO4), by considering the ν1/ν3 stretching dyad. A new experimental spectrum has been recorded at room temperature, thanks to a Bruker IFS 125 HR interferometer and using a natural abundance OsO4 sample. Assignments and analyses were performed thanks to the SPVIEW and XTDS softwares, respectively [Wenger Ch, Boudon V, Rotger M, Sanzharov M, Champion J-P. Journal of Molecular Spectroscopy 2008;251:102-13]. We provide precise effective Hamiltonian parameters, including band centers and Coriolis interaction parameters. We discuss isotopic shifts and estimate the band centers for the three minor isotopologues (187OsO4, 186OsO4, 184OsO4). The Q branches of the first two of them are clearly identified in the experimental spectrum.

  4. High-Resolution Infrared Spectroscopy Slit-Jet Cooled Hydroxymethyl Radical (CH_2OH): CH Symmetric Stretching Mode

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Chang, Chih-Hsuan; Nesbitt, David

    2014-06-01

    Hydroxymethyl radical (CH_2OH) plays an important role in combustion and environmental chemistry as a reactive intermediate. Reisler's group published the first rotationally resolved spectroscopy of CH_2OH with determined band origins for fundamental CH symmetric stretch state, CH asymmetric stretch state and OH stretch state, respectively. Here CH_2OH was first studied via sub-Doppler infrared spectroscopy in a slit-jet supersonic discharge expansion source. Rotationally resolved direct absorption spectra in the CH symmetric stretching mode were recorded. As a result of the low rotational temperature and sub-Doppler linewidths, the tunneling splittings due to the large amplitude of COH torsion slightly complicate the spectra. Each of the ground vibration state and the CH symmetric stretch state includes two levels. One level, with a 3:1 nuclear spin statistic ratio for Ka=0+/Ka=1+, is labeled as ``+". The other tunneling level, labeled as ``-", has Ka=0-/Ka=1- states with 1:3 nuclear spin statistics. Except for the Ka=0+ ← 0+ band published before, more bands (Ka=1+ ← 1+, Ka=0- ← 0- and Ka=1- ← 1-) were identified. The assigned transitions were fit to a Watson A-reduced symmetric top Hamiltonian to improve the accuracy of the band origin of CH symmetric state. The rotational parameters for both ground and CH symmetric stretch state were well determined. L. Feng, J. Wei and H. Reisler, J. Phys. Chem. A, Vol. 108. M. A. Roberts, E. N. Sharp-Williams and D. J. Nesbitt, J. Phys. Chem. A 2013, 117, 7042-7049

  5. High-Resolution Spectroscopy of the νb{16} Band of 1,3,5-TRIOXANE

    NASA Astrophysics Data System (ADS)

    Gibson, Bradley M.; Koeppen, Nicole; McCall, Benjamin J.

    2014-06-01

    1,3,5-trioxane, often used as a solid fuel or source of formaldehyde, is a symmetric top of the C3v group. Although the microwave and low-resolution vibrational spectra have been studied extensively, only the νb{17} band near 1072 wn has been observed with rotational resolution. Here, we will present our studies of trioxane vapor from 1140-1220 wn, covering the νb{16} band at a resolution of approximately 30 MHz. Solid trioxane was heated, and the resulting vapor was entrained in a continuous supersonic expansion of argon. Continuous-wave cavity ringdown spectroscopy was then performed using a frequency-stabilized external cavity quantum cascade laser (EC-QCL) as the light source. In addition to providing new ro-vibrational transition frequencies of trioxane, the present work serves to validate our newly-developed EC-QCL spectrometer and will be used to evaluate the cooling performance of the sheath-flow supercritical fluid expansion source currently under development. Oka, T., Tsuchiya, K., Iwata, S., and Morino, Y. Microwave Spectrum of s-Trioxane. Bull. Chem. Soc. Jpn. 37 (1964), 4-7. Stair, A.T. Jr. and Nielsen, J. Rud. Vibrational Spectra of sym-Trioxane. J. Chem. Phys. 27 (1957), 402-407. Henninot, J-F., Bolvin, H., Demaison, J., and Lemoine, B. The Infrared Spectrum of Trioxane in a Supersonic Slit Jet. J. Mol. Spect. 152 (1992), 62-68. Gibson, B.M., Stewart, J.T., and McCall, B.J., contribution TJ14, presented at the 68th International Symposium on Molecular Spectroscopy, Columbus, OH, USA, 2013.

  6. Hierarchy of bound states in the one-dimensional ferromagnetic Ising chain CoNb2O6 investigated by high-resolution time-domain terahertz spectroscopy.

    PubMed

    Morris, C M; Valdés Aguilar, R; Ghosh, A; Koohpayeh, S M; Krizan, J; Cava, R J; Tchernyshyov, O; McQueen, T M; Armitage, N P

    2014-04-01

    Kink bound states in the one-dimensional ferromagnetic Ising chain compound CoNb2O6 have been studied using high-resolution time-domain terahertz spectroscopy in zero applied magnetic field. When magnetic order develops at low temperature, nine bound states of kinks become visible. Their energies can be modeled exceedingly well by the Airy function solutions to a 1D Schrödinger equation with a linear confining potential. This sequence of bound states terminates at a threshold energy near 2 times the energy of the lowest bound state. Above this energy scale we observe a broad feature consistent with the onset of the two particle continuum. At energies just below this threshold we observe a prominent excitation that we interpret as a novel bound state of bound states--two pairs of kinks on neighboring chains. PMID:24745454

  7. Hierarchy of Bound States in the One-Dimensional Ferromagnetic Ising Chain CoNb2O6 Investigated by High-Resolution Time-Domain Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Morris, C. M.; Valdés Aguilar, R.; Ghosh, A.; Koohpayeh, S. M.; Krizan, J.; Cava, R. J.; Tchernyshyov, O.; McQueen, T. M.; Armitage, N. P.

    2014-04-01

    Kink bound states in the one-dimensional ferromagnetic Ising chain compound CoNb2O6 have been studied using high-resolution time-domain terahertz spectroscopy in zero applied magnetic field. When magnetic order develops at low temperature, nine bound states of kinks become visible. Their energies can be modeled exceedingly well by the Airy function solutions to a 1D Schrödinger equation with a linear confining potential. This sequence of bound states terminates at a threshold energy near 2 times the energy of the lowest bound state. Above this energy scale we observe a broad feature consistent with the onset of the two particle continuum. At energies just below this threshold we observe a prominent excitation that we interpret as a novel bound state of bound states—two pairs of kinks on neighboring chains.

  8. High-resolution spectroscopy of He2+ using Rydberg-series extrapolation and Zeeman-decelerated supersonic beams of metastable He2

    NASA Astrophysics Data System (ADS)

    Jansen, Paul; Semeria, Luca; Merkt, Frédéric

    2016-04-01

    Recently, high-resolution spectroscopy of slow beams of metastable helium molecules (He2∗) generated by multistage Zeeman deceleration was used in combination with Rydberg-series extrapolation techniques to obtain the lowest rotational interval in the molecular helium ion at a precision of 18 MHz (Jansen et al., 2015), limited by the temporal width of the Fourier-transform-limited laser pulses used to record the spectra. We present here an extension of these measurements in which we have (1) measured higher rotational intervals of He2+, (2) replaced the pulsed UV laser by a cw UV laser and improved the resolution of the spectra by a factor of more than five, and (3) studied MJ redistribution processes in regions of low magnetic fields of the Zeeman decelerator and shown how these processes can be exploited to assign transitions originating from specific spin-rotational levels (N″,J″) of He2∗ .

  9. Opto-mechano-electrical tripling in ZnO nanowires probed by photocurrent spectroscopy in a high-resolution transmission electron microscope

    SciTech Connect

    Zhang, C.; Golberg, D. E-mail: golberg.dmitri@nims.go.jp; Xu, Z. E-mail: golberg.dmitri@nims.go.jp; Kvashnin, D. G.; Tang, D.-M.; Xue, Y. M.; Bando, Y.; Sorokin, P. B.

    2015-08-31

    Photocurrent spectroscopy of individual free-standing ZnO nanowires inside a high-resolution transmission electron microscope (TEM) is reported. By using specially designed optical in situ TEM system capable of scanning tunneling microscopy probing paired with light illumination, opto-mechano-electrical tripling phenomenon in ZnO nanowires is demonstrated. Splitting of photocurrent spectra at around 3.3 eV under in situ TEM bending of ZnO nanowires directly corresponds to nanowire deformation and appearance of expanded and compressed nanowire sides. Theoretical simulation of a bent ZnO nanowire has an excellent agreement with the experimental data. The splitting effect could be explained by a change in the valence band structure of ZnO nanowires due to a lattice strain. The strain-induced splitting provides important clues for future flexible piezo-phototronics.

  10. C-12/C-13 and O-16/O-18 ratios in the atmosphere of Venus from high-resolution 10-micron spectroscopy

    SciTech Connect

    Bezard, B.; Marten, A.; Baluteau, J.P.; Coron, N.

    1987-12-01

    High-resolution observations of the thermal emission spectrum of Venus have been recorded in the 10.5-micron region, and these have led to the detection of several lines from the nu(3) - nu(1) bands of C-13O2 and C-12O-16O-18, as well as from the weak nu(3)+nu(2) - nu(1)+nu(2) band of C-12O2. The results obtained characterize the cloud top levels of Venus' atmosphere, at about 66 km; the derived ratios should be able to represent global values on Venus. These determinations are in agreement with in situ Pioneer Venus and Venera atmospheric composition measurements. It is demonstrated that important isotopic ratios are obtainable with ground-based spectroscopy. 26 references.

  11. High-resolution electron-energy-loss spectroscopy and photoelectron-diffraction studies of the geometric structure of adsorbates on single-crystal metal surfaces

    SciTech Connect

    Rosenblatt, D.H.

    1982-11-01

    Two techniques which have made important contributions to the understanding of surface phenomena are high resolution electron energy loss spectroscopy (EELS) and photoelectron diffraction (PD). EELS is capable of directly measuring the vibrational modes of clean and adsorbate covered metal surfaces. In this work, the design, construction, and performance of a new EELS spectrometer are described. These results are discussed in terms of possible structures of the O-Cu(001) system. Recommendations for improvements in this EELS spectrometer and guidelines for future spectrometers are given. PD experiments provide accurate quantitative information about the geometry of atoms and molecules adsorbed on metal surfaces. The technique has advantages when used to study disordered overlayers, molecular overlayers, multiple site systems, and adsorbates which are weak electron scatterers. Four experiments were carried out which exploit these advantages.

  12. Oxidized crystalline (3 × 1)-O surface phases of InAs and InSb studied by high-resolution photoelectron spectroscopy

    SciTech Connect

    Tuominen, M. E-mail: pekka.laukkanen@utu.fi; Lång, J.; Dahl, J.; Yasir, M.; Mäkelä, J.; Punkkinen, M. P. J.; Laukkanen, P. E-mail: pekka.laukkanen@utu.fi; Kokko, K.; Kuzmin, M.; Osiecki, J. R.; Schulte, K.

    2015-01-05

    The pre-oxidized crystalline (3×1)-O structure of InAs(100) has been recently found to significantly improve insulator/InAs junctions for devices, but the atomic structure and formation of this useful oxide layer are not well understood. We report high-resolution photoelectron spectroscopy analysis of (3×1)-O on InAs(100) and InSb(100). The findings reveal that the atomic structure of (3×1)-O consists of In atoms with unexpected negative (between −0.64 and −0.47 eV) and only moderate positive (In{sub 2}O type) core-level shifts; highly oxidized group-V sites; and four different oxygen sites. These fingerprint shifts are compared to those of previously studied oxides of III-V to elucidate oxidation processes.

  13. High-resolution continuous-flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2015-07-01

    Here we present an experimental setup for water stable isotope (δ18O and δD) continuous-flow measurements and provide metrics defining the performance of the setup during a major ice core measurement campaign (Roosevelt Island Climate Evolution; RICE). We also use the metrics to compare alternate systems. Our setup is the first continuous-flow laser spectroscopy system that is using off-axis integrated cavity output spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research, LGR) in combination with an evaporation unit to continuously analyze water samples from an ice core. A Water Vapor Isotope Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to (1) enable measurements on several water standards, (2) increase the temporal resolution by reducing the response time and (3) reduce the influence from memory effects. While this setup was designed for the continuous-flow analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The custom setups provide a shorter response time (~ 54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~ 62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the custom setups have a reduced memory effect. Stability tests comparing the custom and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the custom 2013 setup the precision after integration times of 103 s is 0.060 and 0.070 ‰ for δ18O and δD, respectively. The corresponding σAllan values for the custom 2014 setup are 0.030, 0.060 and 0.043 ‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042 ‰ after 103 s for δ18O, δD and δ17O, respectively. Both the custom setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The

  14. High-resolution continuous flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2014-12-01

    Here we present an experimental setup for water stable isotopes (δ18O and δD) continuous flow measurements. It is the first continuous flow laser spectroscopy system that is using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research - LGR) in combination with an evaporation unit to continuously analyze sample from an ice core. A Water Vapor Isotopic Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to: (1) increase the temporal resolution by reducing the response time (2) enable measurements on several water standards, and (3) to reduce the influence from memory effects. While this setup was designed for the Continuous Flow Analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The modified setup provides a shorter response time (~54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the modified setup has a reduced memory effect. Stability tests comparing the modified WVISS and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the 2013 modified setup the precision after integration times of 103 s are 0.060 and 0.070‰ for δ18O and δD, respectively. For the WVISS setup the corresponding σAllan values are 0.030, 0.060 and 0.043‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042‰ after 103 s for δ18O, δD and δ17O, respectively. Both the modified setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The σAllan values for δ18O of 0.30 and 0.18‰ for the modified (2013) and WVISS setup, respectively after averaging times of 104 s (2.78 h). The Isotopic Water Analyzer (IWA)-modified WVISS setup used during the

  15. High-resolution electron spectroscopy of lanthanide (Ce, Pr, and Nd) complexes of cyclooctatetraene: The role of 4f electrons

    SciTech Connect

    Kumari, Sudesh; Roudjane, Mourad; Hewage, Dilrukshi; Yang Dongsheng; Liu Yang

    2013-04-28

    Cerium, praseodymium, and neodymium complexes of 1,3,5,7-cyclooctatetraene (COT) complexes were produced in a laser-vaporization metal cluster source and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and quantum chemical calculations. The computations included the second-order Moller-Plesset perturbation theory, the coupled cluster method with single, double, and perturbative triple excitations, and the state-average complete active space self-consistent field method. The spectrum of each complex exhibits multiple band systems and is assigned to ionization of several low-energy electronic states of the neutral complex. This observation is different from previous studies of M(COT) (M = Sc, Y, La, and Gd), for which a single band system was observed. The presence of the multiple low-energy electronic states is caused by the splitting of the partially filled lanthanide 4f orbitals in the ligand field, and the number of the low-energy states increases rapidly with increasing number of the metal 4f electrons. On the other hand, the 4f electrons have a small effect on the geometries and vibrational frequencies of these lanthanide complexes.

  16. High-resolution inverse Raman spectroscopy of the ν1 band of 28SiH 4

    NASA Astrophysics Data System (ADS)

    Owyoung, Adelbert; Esherick, Peter; Robiette, Alan G.; McDowell, Robin S.

    1981-03-01

    A near-Doppler-limited isotropic Raman spectrum of the symmetric stretching fundamental ν1 of 28SiH 4 has been recorded between 2182.8 and 2187.0 cm -1 using high-sensitivity "quasi-cw" inverse Raman spectroscopy. The band exhibits compact, nonoverlapping J manifolds, which were measured from Q(0) through Q(13), plus a portion of Q(14). Since ν1 is in resonance with the nearby infrared-active stretch ν3, these two bands were analyzed simultaneously using the infrared frequencies of ν3 reported by Cabana, Gray, Robiette, and Pierre. The results confirm their analysis, in which several perturbation-allowed ν1 transitions were identified in the infrared, but the molecular constants for the v1 = 1 state are much better determined with the inclusion of the Raman data. At higher J, ν1 exhibits significant intensity perturbations due to a breakdown of the selection rule Δ N = 0; these have been quantitatively accounted for.

  17. High-resolution spectroscopy of HoFe3(BO3)4 crystal: a study of phase transitions

    NASA Astrophysics Data System (ADS)

    Erofeev, D. A.; Chukalina, E. P.; Bezmaternykh, L. N.; Gudim, I. A.; Popova, M. N.

    2016-04-01

    The transmission spectra of HoFe3(BO3) multiferroic single crystals are studied by optical Fourier-transform spectroscopy at temperatures of 1.7-423 K in polarized light in the spectral range 500-10 000 cm-1 with a resolution up to 0.1 cm-1. A new first-order structural phase transition close to the second-order transition is recorded at T c = 360 K by the appearance of a new phonon mode at 976 cm-1. The reasons for considerable differences in T c for different samples of holmium ferroborate are discussed. By temperature variations in the spectra of the f-f transitions in the Ho3+ ion, we studied two magnetic phase transitions, namely, magnetic ordering into an easy-plane structure as a second-order phase transition at T N = 39 K and spin reorientation from the ab plane to the c axis as a first-order phase transition at T SR = 4.7 ± 0.2 K. It is shown that erbium impurity in a concentration of 1 at % decreases the spin-reorientation transition temperature to T SR = 4.0 K.

  18. High-resolution molybdenum K-edge X-ray absorption spectroscopy analyzed with time-dependent density functional theory.

    PubMed

    Lima, Frederico A; Bjornsson, Ragnar; Weyhermüller, Thomas; Chandrasekaran, Perumalreddy; Glatzel, Pieter; Neese, Frank; DeBeer, Serena

    2013-12-28

    X-ray absorption spectroscopy (XAS) is a widely used experimental technique capable of selectively probing the local structure around an absorbing atomic species in molecules and materials. When applied to heavy elements, however, the quantitative interpretation can be challenging due to the intrinsic spectral broadening arising from the decrease in the core-hole lifetime. In this work we have used high-energy resolution fluorescence detected XAS (HERFD-XAS) to investigate a series of molybdenum complexes. The sharper spectral features obtained by HERFD-XAS measurements enable a clear assignment of the features present in the pre-edge region. Time-dependent density functional theory (TDDFT) has been previously shown to predict K-pre-edge XAS spectra of first row transition metal compounds with a reasonable degree of accuracy. Here we extend this approach to molybdenum K-edge HERFD-XAS and present the necessary calibration. Modern pure and hybrid functionals are utilized and relativistic effects are accounted for using either the Zeroth Order Regular Approximation (ZORA) or the second order Douglas-Kroll-Hess (DKH2) scalar relativistic approximations. We have found that both the predicted energies and intensities are in excellent agreement with experiment, independent of the functional used. The model chosen to account for relativistic effects also has little impact on the calculated spectra. This study provides an important calibration set for future applications of molybdenum HERFD-XAS to complex catalytic systems. PMID:24197060

  19. High resolution spectroscopy of jet cooled phenyl radical: The ν1 and ν2 a1 symmetry C-H stretching modes

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hsuan; Nesbitt, David J.

    2016-07-01

    A series of CH stretch modes in phenyl radical (C6H5) has been investigated via high resolution infrared spectroscopy at sub-Doppler resolution (˜60 MHz) in a supersonic discharge slit jet expansion. Two fundamental vibrations of a1 symmetry, ν1 and ν2, are observed and rotationally analyzed for the first time, corresponding to in-phase and out-of-phase symmetric CH stretch excitation at the ortho/meta/para and ortho/para C atoms with respect to the radical center. The ν1 and ν2 band origins are determined to be 3073.968 50(8) cm-1 and 3062.264 80(7) cm-1, respectively, which both agree within 5 cm-1 with theoretical anharmonic scaling predictions based on density functional B3LYP/6-311g++(3df,3dp) calculations. Integrated band strengths for each of the CH stretch bands are analyzed, with the relative intensities agreeing remarkably well with theoretical predictions. Frequency comparison with previous low resolution Ar-matrix spectroscopy [A. V. Friderichsen et al., J. Am. Chem. Soc. 123, 1977 (2001)] reveals a nearly uniform Δν ≈ + 10-12 cm-1 blue shift between gas phase and Ar matrix values for ν1 and ν2. This differs substantially from the much smaller red shift (Δν ≈ - 1 cm-1) reported for the ν19 mode, and suggests a simple physical model in terms of vibrational mode symmetry and crowding due to the matrix environment. Finally, the infrared phenyl spectra are well described by a simple asymmetric rigid rotor Hamiltonian and show no evidence for spectral congestion due to intramolecular vibrational coupling, which bodes well for high resolution studies of other ring radicals and polycyclic aromatic hydrocarbons. In summary, the combination of slit jet discharge methods with high resolution infrared lasers enables spectroscopic investigation of even highly reactive combustion and interstellar radical intermediates under gas phase, jet-cooled (Trot ≈ 11 K) conditions.

  20. High resolution spectroscopy of jet cooled phenyl radical: The ν1 and ν2 a1 symmetry C-H stretching modes.

    PubMed

    Chang, Chih-Hsuan; Nesbitt, David J

    2016-07-28

    A series of CH stretch modes in phenyl radical (C6H5) has been investigated via high resolution infrared spectroscopy at sub-Doppler resolution (∼60 MHz) in a supersonic discharge slit jet expansion. Two fundamental vibrations of a1 symmetry, ν1 and ν2, are observed and rotationally analyzed for the first time, corresponding to in-phase and out-of-phase symmetric CH stretch excitation at the ortho/meta/para and ortho/para C atoms with respect to the radical center. The ν1 and ν2 band origins are determined to be 3073.968 50(8) cm(-1) and 3062.264 80(7) cm(-1), respectively, which both agree within 5 cm(-1) with theoretical anharmonic scaling predictions based on density functional B3LYP/6-311g++(3df,3dp) calculations. Integrated band strengths for each of the CH stretch bands are analyzed, with the relative intensities agreeing remarkably well with theoretical predictions. Frequency comparison with previous low resolution Ar-matrix spectroscopy [A. V. Friderichsen et al., J. Am. Chem. Soc. 123, 1977 (2001)] reveals a nearly uniform Δν ≈ + 10-12 cm(-1) blue shift between gas phase and Ar matrix values for ν1 and ν2. This differs substantially from the much smaller red shift (Δν ≈ - 1 cm(-1)) reported for the ν19 mode, and suggests a simple physical model in terms of vibrational mode symmetry and crowding due to the matrix environment. Finally, the infrared phenyl spectra are well described by a simple asymmetric rigid rotor Hamiltonian and show no evidence for spectral congestion due to intramolecular vibrational coupling, which bodes well for high resolution studies of other ring radicals and polycyclic aromatic hydrocarbons. In summary, the combination of slit jet discharge methods with high resolution infrared lasers enables spectroscopic investigation of even highly reactive combustion and interstellar radical intermediates under gas phase, jet-cooled (Trot ≈ 11 K) conditions. PMID:27475358

  1. Electroreflectance Spectroscopy of Emersed Gold Electrodes in the Vacuum Ultraviolet.

    NASA Astrophysics Data System (ADS)

    Berg, Steven Lawrence

    Electroreflectance spectra of emersed polycrystalline gold films were measured in the vacuum ultraviolet spectral region from 6eV to 11eV. The measurements were performed using synchrotron radia- tion under high vacuum conditions. Large reflectance differences were observed for an emersion potential difference of 0.8V. The electroreflectance spectra are thought to be due primarily to electrolyte effects, with smaller contributions from the gold. Surface state optical adsorption from the predominantly (111) surface has been speculated to be one contribution. Although these measure- ments are insufficient to draw definite conclusions, they show that electroreflectance spectroscopy on emersed metal electrodes must. be considered as a possible future tool for the study of the metal-electrolyte interface. *DOE Report IS-T-1195. This work was performed under contract No. W-7405-Eng-82 with the U.S. Department of Energy.

  2. High-resolution Fourier transform synchrotron spectroscopy of the C-S stretching band of methyl mercaptan, CH332SH

    NASA Astrophysics Data System (ADS)

    Lees, R. M.; Xu, Li-Hong; Billinghurst, B. E.

    2016-01-01

    The C-S stretching fundamental band of 12CH332SH, the principal isotopologue of methyl mercaptan, has been investigated by Fourier transform infrared spectroscopy on the Far-Infrared beamline at the Canadian Light Source synchrotron. The band is centered around 710 cm-1 and shows well-resolved a-type parallel structure. Most of the A and E spectral sub-bands have been assigned up to K = 12 for the vt = 0 torsional state and K = 9 for the vt = 1 state, along with a smaller variety of sub-bands for vt = 2. C-S stretching energy term values have been determined employing known ground-state energies, and have been fitted to series expansions in powers of J(J + 1) to determine the substate origins. The origins have in turn been fitted to a Fourier model to characterize the oscillatory torsional energy structure of the C-S stretching state. The amplitude of oscillation of the vt = 0 torsional curves is significantly larger for the C-S stretch state compared to the ground state. A strategy devised to relate this amplitude to an effective torsional barrier height indicates a decrease of about 7% in the effective V3 for the C-S stretch. The vibrational frequency determined for the stretching fundamental from the Fourier fit is 710.3 cm-1. The C-S stretching manifold is crossed by excited vt = 4 torsional levels of the ground state, and strong torsion-vibrational resonant coupling is observed via perturbations in the spectrum together with forbidden sub-bands induced by mixing and intensity borrowing.

  3. Recombinant proteins incorporating short non-native extensions may display increased aggregation propensity as detected by high resolution NMR spectroscopy

    SciTech Connect

    Zanzoni, Serena; D'Onofrio, Mariapina; Molinari, Henriette; Assfalg, Michael

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Bile acid binding proteins from different constructs retain structural integrity. Black-Right-Pointing-Pointer NMR {sup 15}N-T{sub 1} relaxation data of BABPs show differences if LVPR extension is present. Black-Right-Pointing-Pointer Deviations from a {sup 15}N-T{sub 1}/molecular-weight calibration curve indicate aggregation. -- Abstract: The use of a recombinant protein to investigate the function of the native molecule requires that the former be obtained with the same amino acid sequence as the template. However, in many cases few additional residues are artificially introduced for cloning or purification purposes, possibly resulting in altered physico-chemical properties that may escape routine characterization. For example, increased aggregation propensity without visible protein precipitation is hardly detected by most analytical techniques but its investigation may be of great importance for optimizing the yield of recombinant protein production in biotechnological and structural biology applications. In this work we show that bile acid binding proteins incorporating the common C-terminal LeuValProArg extension display different hydrodynamic properties from those of the corresponding molecules without such additional amino acids. The proteins were produced enriched in nitrogen-15 for analysis via heteronuclear NMR spectroscopy. Residue-specific spin relaxation rates were measured and related to rotational tumbling time and molecular size. While the native-like recombinant proteins show spin-relaxation rates in agreement with those expected for monomeric globular proteins of their mass, our data indicate the presence of larger adducts for samples of proteins with very short amino acid extensions. The used approach is proposed as a further screening method for the quality assessment of biotechnological protein products.

  4. High resolution study of the. nu. sub 1 vibration of CH sub 3 by coherent Raman photofragment spectroscopy

    SciTech Connect

    Triggs, N.E.; Zahedi, M.; Nibler, J.W. ); DeBarber, P.; Valentini, J.J. )

    1992-02-01

    Coherent anti-Stokes Raman spectroscopy (CARS) was used to measure the vibrational--rotational {ital Q}-branch structure of the {nu}{sub 1} symmetric stretch of methyl radicals produced by 266 nm laser photolysis of methyl iodide. Spectra were recorded in both flow cells and free jet expansions at instrumental resolutions ranging from 0.25 to 0.005 cm{sup {minus}1}. Due to the high recoil velocity of the CH{sub 3} fragment, Doppler and collisional broadening of the transitions is appreciable. Even at the highest resolution such broadening of the transitions leads to interference effects among the closely spaced Raman transitions that influence both the line positions and intensities in the observed CARS spectra. The molecular parameters (cm{sup {minus}1}) obtained from the analysis are {nu}{sub 1}=3004.42(4), {alpha}{sub {ital B}1}=0.0851(8), {alpha}{sub {ital C}1}=0.0475(7), {ital D}{sub {ital N}1}{minus}{ital D}{sub {ital N}0}={minus}0.000 046(8), {ital D}{sub {ital NK}1}{minus}{ital D}{sub {ital NK}0}=0.000 083(20), and, with assumptions, {ital D}{sub {ital K}1}{minus}{ital D}{sub {ital K}0}={minus}0.000 039. These results and infrared data in the literature yield a CH bond length of 1.08378(5) A for the (1000) state and, with some assumptions, an equilibrium bond length {ital R}{sub {ital e}} of 1.076 A for this prototypic case of {ital sp}{sup 2} bonding.

  5. High resolution photofragment translational spectroscopy of the near UV photolysis of indole: dissociation via the 1pi sigma* state.

    PubMed

    Nix, M G D; Devine, A L; Cronin, B; Ashfold, M N R

    2006-06-14

    The fragmentation dynamics of indole molecules following excitation at 193.3 nm, and at a number of different wavelengths in the range 240 < or = lambda(phot) < or = 286 nm, have been investigated by H Rydberg atom photofragment translational spectroscopy. The longer wavelength measurements have been complemented by measurements of excitation spectra for forming parent and fragment ions by two (or more) photon ionisation processes. Analysis identifies at least three distinct contributions to the observed H atom yield, two of which are attributable to dissociation of indole following radiationless transfer from the 1pi pi* excited states (traditionally labelled 1L(b) and 1L(a)) prepared by UV single photon absorption. The structured channel evident in total kinetic energy release (TKER) spectra recorded at lambda(phot) < or = 263 nm is rationalised in terms of N-H bond fission following initial pi* <-- pi excitation and subsequent coupling to the 1pi sigma* potential energy surface via a conical intersection between the respective surfaces--thereby validating recent theoretical predictions regarding the importance of this process (Sobolewski et al., Phys. Chem. Chem. Phys., 2002, 4, 1093). Analysis provides an upper limit for the N-H bond strength in indole: D0(H-indolyl) < or = 31,900 cm(-1). Unimolecular decay of highly vibrationally excited ground state molecules formed by internal conversion from the initially prepared 1pi pi* states is a source of (slow) H atoms but their contribution to the TKER spectra measured in the present work is dwarfed by that from H atoms generated by one or more (unintended but unavoidable) multiphoton processes. PMID:16738714

  6. Comparison of high-resolution ultrasonic resonator technology and Raman spectroscopy as novel process analytical tools for drug quantification in self-emulsifying drug delivery systems.

    PubMed

    Stillhart, Cordula; Kuentz, Martin

    2012-02-01

    Self-emulsifying drug delivery systems (SEDDS) are complex mixtures in which drug quantification can become a challenging task. Thus, a general need exists for novel analytical methods and a particular interest lies in techniques with the potential for process monitoring. This article compares Raman spectroscopy with high-resolution ultrasonic resonator technology (URT) for drug quantification in SEDDS. The model drugs fenofibrate, indomethacin, and probucol were quantitatively assayed in different self-emulsifying formulations. We measured ultrasound velocity and attenuation in the bulk formulation containing drug at different concentrations. The formulations were also studied by Raman spectroscopy. We used both, an in-line immersion probe for the bulk formulation and a multi-fiber sensor for measuring through hard-gelatin capsules that were filled with SEDDS. Each method was assessed by calculating the relative standard error of prediction (RSEP) as well as the limit of quantification (LOQ) and the mean recovery. Raman spectroscopy led to excellent calibration models for the bulk formulation as well as the capsules. The RSEP depended on the SEDDS type with values of 1.5-3.8%, while LOQ was between 0.04 and 0.35% (w/w) for drug quantification in the bulk. Similarly, the analysis of the capsules led to RSEP of 1.9-6.5% and LOQ of 0.01-0.41% (w/w). On the other hand, ultrasound attenuation resulted in RSEP of 2.3-4.4% and LOQ of 0.1-0.6% (w/w). Moreover, ultrasound velocity provided an interesting analytical response in cases where the drug strongly affected the density or compressibility of the SEDDS. We conclude that ultrasonic resonator technology and Raman spectroscopy constitute suitable methods for drug quantification in SEDDS, which is promising for their use as process analytical technologies. PMID:22079118

  7. Visible and ultraviolet spectroscopy of gas phase rhodamine 575 cations.

    PubMed

    Daly, Steven; Kulesza, Alexander; Knight, Geoffrey; MacAleese, Luke; Antoine, Rodolphe; Dugourd, Philippe

    2015-06-01

    The visible and ultraviolet spectroscopy of gas phase rhodamine 575 cations has been studied experimentally by action-spectroscopy in a modified linear ion trap between 220 and 590 nm and by time-dependent density functional theory (TDDFT) calculations. Three bands are observed that can be assigned to the electronic transitions S0 → S1, S0 → S3, and S0 → (S8,S9) according to the theoretical prediction. While the agreement between theory and experiment is excellent for the S3 and S8/S9 transitions, a large shift in the value of the calculated S1 transition energy is observed. A theoretical analysis of thermochromism, potential vibronic effects, and-qualitatively-electron correlation revealed it is mainly the latter that is responsible for the failure of TDDFT to accurately reproduce the S1 transition energy, and that a significant thermochromic shift is also present. Finally, we investigated the nature of the excited states by analyzing the excitations and discussed their different fragmentation behavior. We hypothesize that different contributions of local versus charge transfer excitations are responsible for 1-photon versus 2-photon fragmentation observed experimentally. PMID:25961329

  8. Validation of a rotational coherent anti-Stokes Raman spectroscopy model for carbon dioxide using high-resolution detection in the temperature range 294-1143 K

    NASA Astrophysics Data System (ADS)

    Vestin, Fredrik; Nilsson, Kristin; Bengtsson, Per-Erik

    2008-04-01

    Experiments were performed in the temperature range of 294-1143 K in pure CO2 using high-resolution rotational coherent anti-Stokes Raman spectroscopy (CARS), in the dual-broadband approach. Experimental single-shot spectra were recorded with high spectral resolution using a single-mode Nd:YAG laser and a relay imaging lens system on the exit of a 1 m spectrometer. A theoretical rotational CARS model for CO2 was developed for evaluation of the experimental spectra. The evaluated mean temperatures of the recorded single-shot dual-broadband rotational coherent anti-Stokes Raman spectroscopy (DB-RCARS) spectra using this model showed good agreement with thermocouple temperatures, and the relative standard deviation of evaluated single-shot temperatures was generally 2-3%. Simultaneous thermometry and relative CO2/N2-concentration measurements were demonstrated in the product gas of premixed laminar CO/air flames at atmospheric pressure. Although the model proved to be accurate for thermometry up to 1143 K, limitations were observed at flame temperatures where temperatures were overestimated and relative CO2/N2 concentrations were underestimated. Potential sources for these discrepancies are discussed.

  9. Application of high-resolution photoelectron spectroscopy: Vibrational resolved C 1s and O 1s spectra of CO adsorbed on Ni(100)

    SciTech Connect

    Foehlisch, A.; Nilsson, A.; Martensson, N.

    1997-04-01

    There are various effects which determine the line shape of a core-level electron spectrum. These are due to the finite life-time of the core hole, inelastic scattering of the outgoing photoelectron, electronic shake-up and shake-off processes and vibrational excitations. For free atoms and molecules the different contributions to the observed line shapes can often be well separated. For solids, surfaces and adsorbates the line shapes are in general much broader and it has in the past been assumed that no separation of the various contributions can be made. In the present report the authors will show that this is indeed not the case. Surprisingly, the vibrational fine structure of CO adsorbed on Ni(100) can be resolved in the C 1s and O 1s electron spectra. This was achieved by the combination of highly monochromatized soft X-rays from B18.0 with a high resolution Scienta 200 mm photoelectron spectrometer. X-ray photoelectron spectroscopy (XPS) with tunable excitation energy yields as a core level spectroscopy atomic and site-specific information. The presented measurements allow for a determination of internuclear distances and potential energy curves in corehole ionized adsorbed molecules. The authors analysis of the c(2x2) phase CO/Ni(100) on {open_quotes}top{close_quotes} yielded a vibrational splitting of 217 +/- 2 meV for C 1s ionization. For O 1s ionization a splitting of 173 +/- 8 meV was found.

  10. 6 x 6-cm fully depleted pn-junction CCD for high-resolution spectroscopy in the 0.1- to 15-keV photon energy range

    NASA Astrophysics Data System (ADS)

    von Zanthier, Christoph; Holl, Peter; Kemmer, Josef; Lechner, Peter; Maier, B.; Soltau, Heike; Stoetter, R.; Braeuninger, Heinrich W.; Dennerl, Konrad; Haberl, Frank; Hartmann, R.; Hartner, Gisela D.; Hippmann, H.; Kastelic, E.; Kink, W.; Krause, N.; Meidinger, Norbert; Metzner, G.; Pfeffermann, Elmar; Popp, M.; Reppin, Claus; Stoetter, Diana; Strueder, Lothar; Truemper, Joachim; Weber, U.; Carathanassis, D.; Engelhard, S.; Gebhart, Th.; Hauff, D.; Lutz, G.; Richter, R. H.; Seitz, H.; Solc, P.; Bihler, Edgar; Boettcher, H.; Kendziorra, Eckhard; Kraemer, J.; Pflueger, Bernhard; Staubert, Ruediger

    1998-04-01

    The concept and performance of the fully depleted pn- junction CCD system, developed for the European XMM- and the German ABRIXAS-satellite missions for soft x-ray imaging and spectroscopy in the 0.1 keV to 15 keV photon range, is presented. The 58 mm X 60 mm large pn-CCD array uses pn- junctions for registers and for the backside instead of MOS registers. This concept naturally allows to fully deplete the detector volume to make it an efficient detector to photons with energies up to 15 keV. For high detection efficiency in the soft x-ray region down to 100 eV, an ultrathin pn-CCD backside deadlayer has been realized. Each pn-CCD-channel is equipped with an on-chip JFET amplifier which, in combination with the CAMEX-amplifier and multiplexing chip, facilitates parallel readout with a pixel read rate of 3 MHz and an electronic noise floor of ENC < e-. With the complete parallel readout, very fast pn-CCD readout modi can be implemented in the system which allow for high resolution photon spectroscopy of even the brightest x-ray sources in the sky.

  11. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies

    PubMed Central

    Strocov, V. N.; Schmitt, T.; Flechsig, U.; Schmidt, T.; Imhof, A.; Chen, Q.; Raabe, J.; Betemps, R.; Zimoch, D.; Krempasky, J.; Wang, X.; Grioni, M.; Piazzalunga, A.; Patthey, L.

    2010-01-01

    The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0–180° rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/ΔE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 × 1013 photons s−1 (0.01% BW)−1 at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 µm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/ΔE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given. PMID:20724785

  12. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies.

    PubMed

    Strocov, V N; Schmitt, T; Flechsig, U; Schmidt, T; Imhof, A; Chen, Q; Raabe, J; Betemps, R; Zimoch, D; Krempasky, J; Wang, X; Grioni, M; Piazzalunga, A; Patthey, L

    2010-09-01

    The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0-180 degrees rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/DeltaE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 x 10(13) photons s(-1) (0.01% BW)(-1) at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 microm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/DeltaE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given. PMID:20724785

  13. The eclipse of Epsilon Aurigae visible spectroscopy and ultraviolet activity

    NASA Technical Reports Server (NTRS)

    Ferluga, S.; Hack, M.

    1985-01-01

    The preliminary results of the study of several high resolution spectrograms (lambda 3500 - lambda 7000 A), obtained at the Haute Provence Observatory (OHP) in France, at different epochs before, during and after the eclipse are reported. Some of these spectrograms are compared with corresponding IUE high resolution observations, in order to study the effects of the intrinsic UV activity, towards the longer wavelengths.

  14. DESIRS: a state-of-the-art VUV beamline featuring high resolution and variable polarization for spectroscopy and dichroism at SOLEIL.

    PubMed

    Nahon, Laurent; de Oliveira, Nelson; Garcia, Gustavo A; Gil, Jean-François; Pilette, Bertrand; Marcouillé, Olivier; Lagarde, Bruno; Polack, François

    2012-07-01

    DESIRS is a new undulator-based VUV beamline on the 2.75 GeV storage ring SOLEIL (France) optimized for gas-phase studies of molecular and electronic structures, reactivity and polarization-dependent photodynamics on model or actual systems encountered in the universe, atmosphere and biosphere. It is equipped with two dedicated endstations: a VUV Fourier-transform spectrometer (FTS) for ultra-high-resolution absorption spectroscopy (resolving power up to 10(6)) and an electron/ion imaging coincidence spectrometer. The photon characteristics necessary to fulfill its scientific mission are: high flux in the 5-40 eV range, high spectral purity, high resolution, and variable and well calibrated polarizations. The photon source is a 10 m-long pure electromagnetic variable-polarization undulator producing light from the very near UV up to 40 eV on the fundamental emission with tailored elliptical polarization allowing fully calibrated quasi-perfect horizontal, vertical and circular polarizations, as measured with an in situ VUV polarimeter with absolute polarization rates close to unity, to be obtained at the sample location. The optical design includes a beam waist allowing the implementation of a gas filter to suppress the undulator high harmonics. This harmonic-free radiation can be steered toward the FTS for absorption experiments, or go through a highly efficient pre-focusing optical system, based on a toroidal mirror and a reflective corrector plate similar to a Schmidt plate. The synchrotron radiation then enters a 6.65 m Eagle off-plane normal-incidence monochromator equipped with four gratings with different groove densities, from 200 to 4300 lines mm(-1), allowing the flux-to-resolution trade-off to be smoothly adjusted. The measured ultimate instrumental resolving powers are 124000 (174 µeV) around 21 eV and 250000 (54 µeV) around 13 eV, while the typical measured flux is in the 10(10)-10(11) photons s(-1) range in a 1

  15. 6000-g/mm holographic flight gratings for the high-resolution Far Ultraviolet Spectroscopic Explorer: efficiency, resolution, and stray light measurements

    NASA Astrophysics Data System (ADS)

    Grange, Robert; Dauer, Veronique; Saisse, Michel; Neviere, Michel; Flamand, Jean; Bonnemason, Francis

    1998-09-01

    In the context of the NASA Far Ultraviolet Spectroscopic Explorer (FUSE) mission, the Laboratoire d'Astronomie Spatiale (LAS) has been in charge of designing and testing the six flight gratings of the spectrograph. The FUSE experiment is dedicated to the spectroscopic study of the 900 - 1200 angstroms range with a 100 cm2 equivalent surface and a resolution power of 30,000. These requirements yielded to especially challenging gratings with both very high groove density (6000 g/mm) and large size (300*300 mm2). The aberrations have been corrected using a new recording geometry proposed by LAS. After recalling this new recording setup, we will describe the optical performances (resolution, efficiency, stray light) of the six flight gratings manufactured by Jobin-Yvon company. In particular, we will show that the groove efficiency has reached a value of 38% at 1048 angstroms that is 80% of the theoretical value. Efficiency improvement is still possible using ion- etching technique to modify the groove profile.

  16. Ultraviolet spectroscopy of comet ISON (2012 S1)

    NASA Astrophysics Data System (ADS)

    Weaver, H.; A'Hearn, M.; Feldman, P.; Bodewits, D.; Combi, M.; Dello Russo, N.; McCandliss, S.

    2014-07-01

    We performed ultraviolet (UV) spectroscopy of Comet ISON (C/2012 S1) with the Hubble Space Telescope (HST) to monitor the evolution of CO production with heliocentric distance, search for compositional changes associated with the intense heating episode near perihelion, and measure the D/H ratio. We observed C/ISON with Hubble at four different epochs: May 2.5 (r=3.8 au, Δ=4.3 au), Oct 8.8 (r=1.5 au, Δ= 1.9 au), Oct 21.9 (r=1.23 au, Δ = 1.53 au), and Nov 1.5 (r=1.0 au, Δ =1.2 au). No molecular or atomic emissions were detected in May, but a stringent upper limit on the CO production rate was obtained (Q[CO] ≤ 1.0 × 10^{27} molecules s^{-1}, 3 σ). OH emission was detected during all the later observations and showed strong temporal variations on Nov 1. CO was clearly detected on Oct 21.9 and Nov 1.5, from which we derive CO/H_{2}O ˜0.015. Both atomic carbon and sulfur emissions were detected on Nov 1. No atomic deuterium emission was detected during the attempts to measure it on Nov 1, as the comet's gas production rates were significantly smaller than some early predictions suggested. A lightcurve derived from HST optical imaging observations on Nov 1, contemporaneous with the UV spectroscopy, suggests a nucleus rotational period of ˜10.4 hr, but the range of plausible values is fairly broad.

  17. Ultraviolet photodissociation action spectroscopy of the N-pyridinium cation

    SciTech Connect

    Hansen, Christopher S. Trevitt, Adam J.; Blanksby, Stephen J.; Chalyavi, Nahid; Bieske, Evan J.; Reimers, Jeffrey R.

    2015-01-07

    The S{sub 1}←S{sub 0} electronic transition of the N-pyridinium ion (C{sub 5}H{sub 5}NH{sup +}) is investigated using ultraviolet photodissociation (PD) spectroscopy of the bare ion and also the N{sub 2}-tagged complex. Gas-phase N-pyridinium ions photodissociate by the loss of molecular hydrogen (H{sub 2}) in the photon energy range 37 000–45 000 cm{sup −1} with structurally diagnostic ion-molecule reactions identifying the 2-pyridinylium ion as the exclusive co-product. The photodissociation action spectra reveal vibronic details that, with the aid of electronic structure calculations, support the proposal that dissociation occurs through an intramolecular rearrangement on the ground electronic state following internal conversion. Quantum chemical calculations are used to analyze the measured spectra. Most of the vibronic features are attributed to progressions of totally symmetric ring deformation modes and out-of-plane modes active in the isomerization of the planar excited state towards the non-planar excited state global minimum.

  18. Stratospheric ozone loss, ultraviolet effects and action spectroscopy

    NASA Astrophysics Data System (ADS)

    Coohill, Thomas P.

    The major effect of stratospheric ozone loss will be an increase in the amount of ultraviolet radiation reaching the ground. This increase will be entirely contained within the UV-B (290-320nm). How this will impact life on Earth will be determined by the UV-B photobiology of exposed organisms, including humans. One of the analytical methods useful in estimating these effects is Action Spectroscopy (biological effect as a function of wavelength). Carefully constructed action spectra will allow us to partially predict the increase in bio-effect due to additional UV exposure. What effect this has on the organism and the system in which the organism resides is of paramount importance. Suitable action spectra already exist for human skin cancer, human cell mutation and killing, and for one immune response. Comprehensive and widely applicable action spectra for terrestrial and aquatic plant responses are being generated but are not yet suitable for extensive analysis. There is little data available for animals, other than those experiments completed in the laboratory as model systems for human studies. Some polychromatic action spectra have proven useful in determining the possible impact of ozone loss on biological systems. The pitfalls and limits of this approach will be addressed.

  19. Ultraviolet photodissociation action spectroscopy of the N-pyridinium cation

    NASA Astrophysics Data System (ADS)

    Hansen, Christopher S.; Blanksby, Stephen J.; Chalyavi, Nahid; Bieske, Evan J.; Reimers, Jeffrey R.; Trevitt, Adam J.

    2015-01-01

    The S1←S0 electronic transition of the N-pyridinium ion (C5H5NH+) is investigated using ultraviolet photodissociation (PD) spectroscopy of the bare ion and also the N2-tagged complex. Gas-phase N-pyridinium ions photodissociate by the loss of molecular hydrogen (H2) in the photon energy range 37 000-45 000 cm-1 with structurally diagnostic ion-molecule reactions identifying the 2-pyridinylium ion as the exclusive co-product. The photodissociation action spectra reveal vibronic details that, with the aid of electronic structure calculations, support the proposal that dissociation occurs through an intramolecular rearrangement on the ground electronic state following internal conversion. Quantum chemical calculations are used to analyze the measured spectra. Most of the vibronic features are attributed to progressions of totally symmetric ring deformation modes and out-of-plane modes active in the isomerization of the planar excited state towards the non-planar excited state global minimum.

  20. Time-Resolved Quantitative Measurement of OH HO2 and CH2O in Fuel Oxidation Reactions by High Resolution IR Absorption Spectroscopy.

    SciTech Connect

    Huang, Haifeng; Rotavera, Brandon; Taatjes, Craig A.

    2014-08-01

    Combined with a Herriott-type multi-pass slow flow reactor, high-resolution differential direct absorption spectroscopy has been used to probe, in situ and quantitatively, hydroxyl (OH), hydroperoxy (HO 2 ) and formaldehyde (CH 2 O) molecules in fuel oxidation reactions in the reactor, with a time resolution of about 1 micro-second. While OH and CH 2 O are probed in the mid-infrared (MIR) region near 2870nm and 3574nm respectively, HO 2 can be probed in both regions: near-infrared (NIR) at 1509nm and MIR at 2870nm. Typical sensitivities are on the order of 10 10 - 10 11 molecule cm -3 for OH at 2870nm, 10 11 molecule cm -3 for HO 2 at 1509nm, and 10 11 molecule cm -3 for CH 2 O at 3574nm. Measurements of multiple important intermediates (OH and HO 2 ) and product (CH 2 O) facilitate to understand and further validate chemical mechanisms of fuel oxidation chemistry.