Science.gov

Sample records for high-resolution x-ray computed

  1. Mechanisms of Porphyroblast Crystallization: Results from High-Resolution Computed X-ray Tomography.

    PubMed

    Carlson, W D; Denison, C

    1992-08-28

    Quantitative three-dimensional analysis of rock textures is now possible with the use of high-resolution computed x-ray tomography. When applied to metamorphic rocks, this technique provides data on the sizes and positions of minerals that allow mechanisms of porphyroblast crystallization to be identified. Statistical analysis of the sizes and spatial disposition of thousands of garnet crystals in three regionally metamorphosed rocks with diverse mineralogies, in conjunction with simple numerical models for crystallization, reveals in all cases the dominance of crystallization mechanisms whose kinetics are governed by rates of intergranular diffusion of nutrients. PMID:17742755

  2. High-resolution x-ray computed tomography to understand ruminant phylogeny

    NASA Astrophysics Data System (ADS)

    Costeur, Loic; Schulz, Georg; Müller, Bert

    2014-09-01

    High-resolution X-ray computed tomography has become a vital technique to study fossils down to the true micrometer level. Paleontological research requires the non-destructive analysis of internal structures of fossil specimens. We show how X-ray computed tomography enables us to visualize the inner ear of extinct and extant ruminants without skull destruction. The inner ear, a sensory organ for hearing and balance has a rather complex three-dimensional morphology and thus provides relevant phylogenetical information what has been to date essentially shown in primates. We made visible the inner ears of a set of living and fossil ruminants using the phoenix x-ray nanotom®m (GE Sensing and Inspection Technologies GmbH). Because of the high absorbing objects a tungsten target was used and the experiments were performed with maximum accelerating voltage of 180 kV and a beam current of 30 μA. Possible stem ruminants of the living families are known in the fossil record but extreme morphological convergences in external structures such as teeth is a strong limitation to our understanding of the evolutionary history of this economically important group of animals. We thus investigate the inner ear to assess its phylogenetical potential for ruminants and our first results show strong family-level morphological differences.

  3. Computed tomography part 3: Volumetric, high-resolution x-ray analysis of fatigue crack closure

    NASA Astrophysics Data System (ADS)

    Stock, S. R.; Guvenilir, A.; Breunig, T. M.; Kinney, J. H.; Nichols, M. C.

    1995-01-01

    The study described illustrates how extremely high-resolution volumetric x-ray computed tomography can be applied to a materials problem. The work also gives an example of what choices must be made to tailor an experiment to the capabilities of a computed tomography system. Tomography is used to reconstruct the volume of material enclosing a fatigue crack in Al-Li2090. From the reconstructed volume, the separations of crack faces are quantified as a function of position within the sample, and, through use of a small load frame designed for use in computed tomography, the changing physical crack closure is measured as a function of applied load. In other words, the rate and amounts of physical crack closure are measured at different points of the unloading portion of a fatigue cycle.

  4. Applied x-ray computed tomography with high resolution in paleontology using laboratory and synchrotron sources

    NASA Astrophysics Data System (ADS)

    Bidola, Pidassa; Pacheco, Mirian L. A. F.; Stockmar, Marco K.; Achterhold, Klaus; Pfeiffer, Franz; Beckmann, Felix; Tafforeau, Paul; Herzen, Julia

    2014-09-01

    X-ray computed tomography (CT) has become an established technique in the biomedical imaging or materials science research. Its ability to non-destructively provide high-resolution images of samples makes it attractive for diverse fields of research especially the paleontology. Exceptionally, the Precambrian is a geological time of rocks deposition containing several fossilized early animals, which still need to be investigated in order to predict the origin and evolution of early life. Corumbella werneri is one of those fossils skeletonized in Corumbá (Brazil). Here, we present a study on selected specimens of Corumbella werneri using absorption-based contrast imaging at diverse tomographic setups. We investigated the potential of conventional laboratory-based device and synchrotron radiation sources to visualize internal structures of the fossils. The obtained results are discussed as well as the encountered limitations of those setups.

  5. Low cost, high resolution x-ray detector system for digital radiography and computed tomography

    SciTech Connect

    Smith, C.R.; Erker, J.W.

    1993-12-31

    The authors have designed and evaluated a novel design of line array x-ray detector for use with digital radiography (DR) and computed tomography (CT) systems. The Radiographic Line Scan (RLS) detector is less than half the cost of discrete multi-channel line array detectors, yet provides the potential for resolution to less than 25 {micro}m at energies of 420 kV. The RLS detector consists of a scintillator fiber-optically coupled to a thermo-electrically cooled line array CCD. Gadolinium oxysulfide screen material has been used as the scintillator, in thicknesses up to 250 {micro}m. Scintillating glass, which is formed into a fiber optic bundle, has also been used in thicknesses up to 2 mm. The large 2.5 mm by 25 {micro}m CCD cells provide high dynamic range while preserving high resolution; the 2.5 mm dimension is oriented in the x-ray absorption direction while the 25 {micro}m dimension is oriented in the resolution direction. Servo controlled thermo-electric cooling of the CCD to a fixed temperature provides reduction of dark current and stabilization of the output. Greater dynamic range is achieved by reducing the dark current, while output stabilization reduces the need for frequent calibration of the detector. Measured performance characteristics are presented along with DR and CT images produced using the RLS detector.

  6. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography

    SciTech Connect

    Brun, E.; Grandl, S.; Sztrókay-Gaul, A.; Gasilov, S.; Barbone, G.; Mittone, A.; Coan, P.; Bravin, A.

    2014-11-01

    Purpose: Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. Methods: The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure’s possible applications. Results: A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. Conclusions: The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  7. Use of High-resolution X-ray Computed Tomography for Unsaturated Fine Granular Materials

    NASA Astrophysics Data System (ADS)

    Willson, C. S.; Lu, N.

    2009-05-01

    While many unsaturated soil mechanics principles are based on fundamental concepts and theories, often one or more simplifying assumptions have to be made due to the lack of pore-level details of one or more of the following: granular material packing; pore size/shape distribution, pore network structure; and fluid distribution. Recent advances in high-resolution X-ray computed tomography now allow for non-invasive imaging of porous media systems under a variety of conditions. This technique provides micron-scale images that, when combined with quantitative analysis programs, provide details that allow for the advancement of the principles that govern unsaturated systems. In this work, a series of sand columns at varying degrees of water saturation were imaged at the Advanced Photon Source GSECARS 13-BMD tomography beamline. Once the three phases (sand, water, and air) were segmented, a suite of image analysis programs was used to determine the grain characteristics and packing structure; pore size distribution, pore network structure; and fluid phase characteristics, distribution and correlation to the pore network structure. Here, we will present the results of this analysis and provide some examples of how this level of detail allow for advancements in our ability to measure, understand and model unsaturated fine granular materials.

  8. High-resolution X-ray computed tomography scanning of primate copulatory plugs.

    PubMed

    Parga, Joyce A; Maga, Murat; Overdorff, Deborah J

    2006-04-01

    In this study, high-resolution computed tomography X-ray scanning was used to scan ring-tailed lemur (Lemur catta) copulatory plugs. This method produced accurate measures of plug volume and surface area, but was not useful for visualizing plug internal structure. Copulatory plug size was of interest because it may relate to male fertilization success. Copulatory plugs form from coagulated ejaculate, and are routinely displaced in this species by the penis of a subsequent mate during copulation (Parga [2003] Int. J. Primatol. 24:889-899). Because one potential function of these plugs may be to preclude or delay other males' successful insemination of females, we tested the hypothesis that larger plugs are more difficult for subsequent males to displace. Plugs were collected opportunistically upon displacement during data collection on L. catta mating behavior on St. Catherines Island, Georgia (USA) during two subsequent breeding seasons. Copulatory plugs exhibited a wide range of volumes: 1,758-5,013.6 mm3 (n = 9). Intraindividual differences in plug volume were sometimes greater than interindividual differences. Contrary to predictions, larger plugs were not more time-consuming for males to displace via penile intromission during copulation. Nor were plugs with longer vaginal residence times notably smaller than plugs with shorter residence times, as might be expected if plugs disintegrate while releasing sperm (Asdell [1946] Patterns of Mammalian Reproduction; Ithaca: Comstock). We found a significant inverse correlation between number of copulatory mounts leading to ejaculation and copulatory plug volume. This may indicate that if males are sufficiently sexually aroused to reach ejaculation in fewer mounts, they tend to produce ejaculates of greater volume. PMID:16345065

  9. Structural analysis of advanced polymeric foams by means of high resolution X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Nacucchi, M.; De Pascalis, F.; Scatto, M.; Capodieci, L.; Albertoni, R.

    2016-06-01

    Advanced polymeric foams with enhanced thermal insulation and mechanical properties are used in a wide range of industrial applications. The properties of a foam strongly depend upon its cell structure. Traditionally, their microstructure has been studied using 2D imaging systems based on optical or electron microscopy, with the obvious disadvantage that only the surface of the sample can be analysed. To overcome this shortcoming, the adoption of X-ray micro-tomography imaging is here suggested to allow for a complete 3D, non-destructive analysis of advanced polymeric foams. Unlike metallic foams, the resolution of the reconstructed structural features is hampered by the low contrast in the images due to weak X-ray absorption in the polymer. In this work an advanced methodology based on high-resolution and low-contrast techniques is used to perform quantitative analyses on both closed and open cells foams. Local structural features of individual cells such as equivalent diameter, sphericity, anisotropy and orientation are statistically evaluated. In addition, thickness and length of the struts are determined, underlining the key role played by the achieved resolution. In perspective, the quantitative description of these structural features will be used to evaluate the results of in situ mechanical and thermal test on foam samples.

  10. Reciprocal Grids: A Hierarchical Algorithm for Computing Solution X-ray Scattering Curves from Supramolecular Complexes at High Resolution.

    PubMed

    Ginsburg, Avi; Ben-Nun, Tal; Asor, Roi; Shemesh, Asaf; Ringel, Israel; Raviv, Uri

    2016-08-22

    In many biochemical processes large biomolecular assemblies play important roles. X-ray scattering is a label-free bulk method that can probe the structure of large self-assembled complexes in solution. As we demonstrate in this paper, solution X-ray scattering can measure complex supramolecular assemblies at high sensitivity and resolution. At high resolution, however, data analysis of larger complexes is computationally demanding. We present an efficient method to compute the scattering curves from complex structures over a wide range of scattering angles. In our computational method, structures are defined as hierarchical trees in which repeating subunits are docked into their assembly symmetries, describing the manner subunits repeat in the structure (in other words, the locations and orientations of the repeating subunits). The amplitude of the assembly is calculated by computing the amplitudes of the basic subunits on 3D reciprocal-space grids, moving up in the hierarchy, calculating the grids of larger structures, and repeating this process for all the leaves and nodes of the tree. For very large structures, we developed a hybrid method that sums grids of smaller subunits in order to avoid numerical artifacts. We developed protocols for obtaining high-resolution solution X-ray scattering data from taxol-free microtubules at a wide range of scattering angles. We then validated our method by adequately modeling these high-resolution data. The higher speed and accuracy of our method, over existing methods, is demonstrated for smaller structures: short microtubule and tobacco mosaic virus. Our algorithm may be integrated into various structure prediction computational tools, simulations, and theoretical models, and provide means for testing their predicted structural model, by calculating the expected X-ray scattering curve and comparing with experimental data. PMID:27410762

  11. High resolution solar X-ray studies

    NASA Technical Reports Server (NTRS)

    Blake, R. L.

    1974-01-01

    Two high resolution solar X-ray payloads and their launches on Aerobee rockets with pointing system are described. The payloads included 5 to 25A X-ray spectrometers, multiaperture X-ray cameras, and command box attitude control inflight by means of a television image radioed to ground. Spatial resolution ranged from five arc minutes to ten arc seconds and spectral resolution ranged from 500 to 3000. Several laboratory tasks were completed in order to achieve the desired resolution. These included (1) development of techniques to align grid collimators, (2) studies of the spectrometric properties of crystals, (3) measurements of the absorption coefficients of various materials used in X-ray spectrometers, (4) evaluation of the performance of multiaperture cameras, and (5) development of facilities.

  12. Analysis of intraindividual and intraspecific variation in semicircular canal dimensions using high-resolution x-ray computed tomography.

    PubMed

    Welker, Kelli L; Orkin, Joseph D; Ryan, Timothy M

    2009-10-01

    The semicircular canal system tracks head rotation and provides sensory input for the reflexive stabilization of gaze and posture. The purpose of this study was to investigate the intraspecific and intraindividual variation in the size of the three semicircular canals. The right and left temporal bones were extracted from 31 individuals of the short-tailed shrew (Blarina brevicauda) and scanned on a high-resolution x-ray computed tomography system. The radius of curvature was calculated for each of the three semicircular canals for each side. Paired t-tests and independent sample t-tests indicated no significant differences in canal size between the right and left canals of the same individuals or between those of males and females of the same species. Pearson product moment correlation analyses demonstrated that there was no significant correlation between canal size and body mass in this sample. PMID:19619167

  13. High-Resolution X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Brissenden, Roger J.; Davis, William; Elsner, Ronald F.; Elvis, Martin; Freeman, Mark; Gaetz, Terry; Gorenstein, Paul; Gubarev, Mikhail V.

    2010-01-01

    Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness. Programmatic issues are comparably challenging.

  14. High-resolution x-ray telescopes

    NASA Astrophysics Data System (ADS)

    O'Dell, Stephen L.; Brissenden, Roger J.; Davis, William N.; Elsner, Ronald F.; Elvis, Martin S.; Freeman, Mark D.; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhail V.; Jerius, Diab; Juda, Michael; Kolodziejczak, Jeffery J.; Murray, Stephen S.; Petre, Robert; Podgorski, William; Ramsey, Brian D.; Reid, Paul B.; Saha, Timo; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Weisskopf, Martin C.; Wilke, Rudeger H. T.; Wolk, Scott; Zhang, William W.

    2010-08-01

    High-energy astrophysics is a relatively young scientific field, made possible by space-borne telescopes. During the half-century history of x-ray astronomy, the sensitivity of focusing x-ray telescopes-through finer angular resolution and increased effective area-has improved by a factor of a 100 million. This technological advance has enabled numerous exciting discoveries and increasingly detailed study of the high-energy universe-including accreting (stellarmass and super-massive) black holes, accreting and isolated neutron stars, pulsar-wind nebulae, shocked plasma in supernova remnants, and hot thermal plasma in clusters of galaxies. As the largest structures in the universe, galaxy clusters constitute a unique laboratory for measuring the gravitational effects of dark matter and of dark energy. Here, we review the history of high-resolution x-ray telescopes and highlight some of the scientific results enabled by these telescopes. Next, we describe the planned next-generation x-ray-astronomy facility-the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility-Generation X. The scientific objectives of such a mission will require very large areas (about 10000 m2) of highly-nested lightweight grazing-incidence mirrors with exceptional (about 0.1-arcsecond) angular resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  15. Effects of polytetrafluoroethylene treatment and compression on gas diffusion layer microstructure using high-resolution X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Khajeh-Hosseini-Dalasm, Navvab; Sasabe, Takashi; Tokumasu, Takashi; Pasaogullari, Ugur

    2014-11-01

    The microstructure of a TGP-H-120 Toray paper gas diffusion layer (GDL) was investigated using high resolution X-ray computed tomography (CT) technique, with a resolution of 1.8 μm and a field of view (FOV) of ∼1.8 × 1.8 mm. The images obtained from the tomography scans were further post processed, and image thresholding and binarization methodologies are presented. The validity of Otsu's thresholding method was examined. Detailed information on bulk porosity and porosity distribution of the GDL at various Polytetrafluoroethylene (PTFE) treatments and uniform/non-uniform compression pressures was provided. A sample holder was designed to investigate the effects of non-uniform compression pressure, which enabled regulating compression pressure between 0, and 3 MPa at a gas channel/current collector rib configuration. The results show the heterogeneous and anisotropic microstructure of the GDL, non-uniform distribution of PTFE, and significant microstructural change under uniform/non-uniform compression. These findings provide useful inputs for numerical models to include the effects of microstructural changes in the study of transport phenomena within the GDL and to increase the accuracy and predictability of cell performance.

  16. High resolution cone beam X-ray computed tomography of 3D-microstructures of cast Al-alloys

    SciTech Connect

    Kastner, Johann; Harrer, Bernhard; Degischer, H. Peter

    2011-01-15

    X-ray computed tomography (XCT) has become a very important method for non-destructive 3D-characterisation of materials. XCT systems with cone beam geometry, micro- or nano-focus tubes and matrix detectors are increasingly used in research and non-destructive testing. Spatial resolutions down to 1 {mu}m can be reached with such XCT-systems for heterogeneities in metals with high absorption contrast. High resolution cone beam XCT is applied to five different Al-alloys: AlMg5Si7, AlCu4Mg1, AlZn6Mg2Cu2, AlZn8Mg2Cu2 and AlSi12Ni1. Up to four different types of inhomogeneities are segmented in one alloy using voxel sizes between (0.4 {mu}m){sup 3} and (2.3 {mu}m){sup 3}. Target metallography and elemental analysis by energy dispersive X-ray analysis are used to identify the inhomogeneities. The possibilities and restrictions of XCT applied to Al-alloys are discussed. AlMg5Si7 XCT-data with a voxel size of (0.4 {mu}m){sup 3} show inhomogeneities with brighter grey-values than the Al-matrix identified as elongated Fe-aluminides, and those with lower grey-values identified as pores and Mg{sub 2}Si-particles with a 'Chinese script-like' structure. Higher-absorbing interdendritic Al-Al{sub 2}Cu-eutectic regions appear brighter than the Al-dendrites in the CT-data of AlCu4Mg1 with (1.1 {mu}m){sup 3}/voxel, whereas pores > 4 {mu}m appear darker than the Al-matrix. The size and the 3D-structure of the {alpha}-Al dendrite arms with a diameter of 50-100 {mu}m are determined in samples from chill cast billets of AlCu4Mg1 and AlZn6Mg2Cu2 alloys. The irregular interdendritic regions containing eutectic segregations with Cu- and Zn-rich phases are > 5 {mu}m wide. Equally absorbing primary equi-axed Al{sub 3}(Sc, Zr) particles > 5 {mu}m are distinguished in the centres of the dendrites by the level of sphericity values. The distribution of Ni- and Fe-aluminides in a squeeze cast AlSi12Ni1-alloy is imaged with (0.4 {mu}m){sup 3}/voxel, but the Si-phase cannot be segmented.

  17. Precise 3D dimensional metrology using high-resolution x-ray computed tomography (μCT)

    NASA Astrophysics Data System (ADS)

    Brunke, Oliver; Santillan, Javier; Suppes, Alexander

    2010-09-01

    Over the past decade computed tomography (CT) with conventional x-ray sources has evolved from an imaging method in medicine to a well established technology for industrial applications in fields such as material science, light metals and plastics processing, microelectronics and geology. By using modern microfocus and nanofocus X-ray tubes, parts can be scanned with sub-micrometer resolutions. Currently, micro-CT is a technology increasingly used for metrology applications in the automotive industry. CT offers big advantages compared with conventional tactile or optical coordinate measuring machines (CMMs). This is of greater importance if complex parts with hidden or difficult accessible surfaces have to be measured. In these cases, CT offers the advantage of a high density of measurement points and a non-destructive and fast capturing of the sample's complete geometry. When using this growing technology the question arises how precise a μCT based CMM can measure as compared to conventional and established methods for coordinate measurements. For characterizing the metrological capabilities of a tactile or optical CMM, internationally standardized parameters like length measurement error and probing error are defined and used. To increase the acceptance of CT as a metrological method, our work seeks to clarify the definition and usage of parameters used in the field of metrology as these apply to CT. In this paper, an overview of the process chain in CT based metrology will be given and metrological characteristics will be described. For the potential user of CT as 3D metrology tool it is important to show the measurement accuracy and repeatability on realistic samples. Following a discussion of CT metrology techniques, two samples are discussed. The first compares a measured CT Data set to CAD data using CMM data as a standard for comparison of results. The second data second realistic data set will compare the results of applying both the CMM method of

  18. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    SciTech Connect

    Mertens, J.C.E. Williams, J.J. Chawla, Nikhilesh

    2014-06-01

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: • Custom built X-ray tomography system for microstructural characterization • Detector design for maximizing polychromatic X-ray detection efficiency • X-ray design offered for maximizing X-ray flux with respect to imaging resolution • Novel lab

  19. High-Resolution X-Ray Computed Tomography (HRXCT) of Diamondiferous Eclogites and the Origin of Diamonds

    NASA Astrophysics Data System (ADS)

    TAYLOR, L. A.; CARLSON, W. D.; ANAND, M.; MISRA, K. C.; SOBOLEV, N. V.

    2001-12-01

    Three-dimensional, high-resolution X-ray computed tomography (HRXCT; Rowe et al., 1997, Geotimes) of numerous diamondiferous eclogite xenoliths from Siberia has successfully imaged diamonds and their textural relationships with co-existing minerals. Spatial relationships between diamonds and their surroundings provide clues to the processes that control diamond crystallization. These relationships are determined by rotating and viewing the model at different perspectives and orientations to look for any associations or alignments. Volume visualization software makes it possible to view any aspect of the 3-D model from any perspective. It is possible to render some of the model as transparent and display only one or two mineral phases at a time. Then by rotating the model, it is possible to look for spatial relationships between different crystals of the same mineral or different minerals. These visualizations are shown as an animation of the diamonds, garnets and Cpx. As part of a comprehensive study of diamondiferous xenoliths, diamond growth, and diamond inclusions (DIs), we have conducted HRXCT studies of the 3-D textures of several eclogites from the diamond mines in Yakutia. This was followed by extensive chemical and isotopic investigations of the host eclogite, DIs, and the diamonds themselves (see abstracts by Anand et al. & Misra et al., this meeting). The diamonds in these rich eclogites (74 macro-diamonds in one 65 g eclogite) are all associated with omphacite alteration along zones with a prominent subplanar fabric of secondary mineralization~-~i.e., zones with increased permeability. However, diamond was never observed in direct contact with fresh garnet or clinopyroxene. Furthermore, sulfide minerals are not preferentially associated with diamond, although they do make up the largest number of DIs~-~i.e., there is insufficient sulfide mineralization to call upon diamond forming from an immiscible sulfide melt. The association of the diamonds with

  20. High resolution X-ray spectroscopy using microcalorimeters

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Holt, S. S.; Madejski, G. M.; Moseley, S. H.; Schoelkopf, R. J.; Szymkowiak, A. E.

    1988-01-01

    The use of microcalorimeters for high-resolution, high quantum efficiency, nondispersive X-ray spectroscopy has been demonstrated over the past few years. In this paper, the principles of X-ray calorimetry are reviewed, and the results of ongoing X-ray tests using microcalorimetry are summarized. An approach to building an X-ray calorimeter spectrometer is discussed.

  1. High Resolution X-ray Imaging

    NASA Technical Reports Server (NTRS)

    Cash, Webster

    2002-01-01

    NAG5-5020 covered a period of 7.5 years during which a great deal of progress was made in x-ray optical techniques under this grant. We survived peer review numerous times during the effort to keep the grant going. In 1994, when the grant started we were actively pursuing the application of spherical mirrors to improving x-ray telescopes. We had found that x-ray detectors were becoming rapidly more sophisticated and affordable, but that x-ray telescopes were only being improved through the intense application of money within the AXAF program. Clearly new techniques for the future were needed. We were successful in developing and testing at the HELSTF facility in New Mexico a four reflection coma-corrected telescope made from spheres. We were able to demonstrate 0.3 arcsecond resolution, almost to the diffraction limit of the system. The community as a whole was, at that time, not particularly interested in looking past AXAF (Chandra) and the effort needed to evolve. Since we had reached the diffraction limit using non-Wolter optics we then decided to see if we could build an x-ray interferometer in the laboratory. In the lab the potential for improved resolution was substantial. If synthetic aperture telescopes could be built in space, then orders of magnitude improvement would become feasible. In 1998 NASA, under the direction of Dr. Nick White of Goddard, started a study to assess the potential and feasibility of x-ray interferometry in space. My work became of central interest to the committee because it indicated that such was possible. In early 1999 we had the breakthrough that allowed us build a practical interferometer. By using flats and hooking up with the Marshall Space Flight Center facilities we were able to demonstrate fringes at 1.25keV on a one millimeter baseline. This actual laboratory demonstration provided the solid proof of concept that NASA needed.

  2. High Resolution X-ray Imaging

    NASA Technical Reports Server (NTRS)

    Cash, Webster

    2002-01-01

    NAG5-5020 covered a period of 7.5 years during which a great deal of progress was made in x-ray optical techniques under this grant. We survived peer review numerous times during the effort to keep the grant going. In 1994, when the grant started we were actively pursuing the application of spherical mirrors to improving x-ray telescopes. We had found that x-ray detectors were becoming rapidly more sophisticated and affordable, but that x-ray telescopes were only being improved through the intense application of money within the AXAF program. Clearly new techniques for the future were needed. We were successful in developing and testing at the HELSTF facility in New Mexico a four reflection coma-corrected telescope made from spheres. We were able to demonstrate 0.3 arcsecond resolution, almost to the diffraction limit of the system. The community as a whole was, at that time, not particularly interested in looking past AXAF (Chandra) and the effort needed to evolve. Since we had reached the diffraction limit using non-Wolter optics we then decided to see if we could build an x-ray interferometer in the laboratory. In the lab the potential for improved resolution was substantial. If synthetic aperture telescopes could be built in space, then orders of magnitude improvement would become feasible. In 1998 NASA, under the direction of Dr Nick White of Goddard, started a study to assess the potential and feasibility of x-ray interferometry in space. My work became of central interest to the committee because it indicated that such was possible. In early 1999 we had the breakthrough that allowed us build a practical interferometer. By using flats and hooking up with the Marshall Space Flight Center facilities we were able to demonstrate fringes at 1.25keV on a one millimeter baseline. This actual laboratory demonstration provided the solid proof of concept that NASA needed. As the year progressed the future of x-ray astronomy jelled around the Maxim program. Maxim is a

  3. High resolution x-ray microscope

    SciTech Connect

    Gary, C. K.; Park, H.; Lombardo, L. W.; Piestrup, M. A.; Cremer, J. T.; Pantell, R. H.; Dudchik, Y. I.

    2007-04-30

    The authors present x-ray images of grid meshes and biological material obtained using a microspot x-ray tube with a multilayer optic and a 92-element parabolic compound refractive lens (CRL) made of a plastic containing only hydrogen and carbon. Images obtained using this apparatus are compared with those using an area source with a spherical lens and a spherical lens with multilayer condenser. The authors found the best image quality using the multilayer condenser with a parabolic lens, compared to images with a spherical lens and without the multilayer optics. The resolution was measured using a 155-element parabolic CRL and a multilayer condenser with the microspot tube. The experiment demonstrates about 1.1 {mu}m resolution.

  4. Fabricating High-Resolution X-Ray Collimators

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  5. High-resolution X-ray Multilayers

    SciTech Connect

    Martynov, V.V.; Platonov, Yu.; Kazimirov, A.; Bilderback, D.H.

    2004-05-12

    Two new approaches are taken in multilayer fabrication to help bridge the gap in bandwidth between traditional multilayers (1 to 2%) and perfect crystals (0.01%). The first approach is based on creating many layers of low-contrast Al2O3/ B4C materials. The second approach is based on using multilayer structures with a small d-spacing using traditional W/B4C and Mo/B4C materials. With 8 keV x-rays on the Chess A2 beamline, we measured a bandwidth of 0.27% with a reflectivity of 40% and a Darwin width of 17 arc seconds from a 26 A d-spacing multilayer with 800 bi-layers of Al2O3/B4C using the low-contrast approach. On the other hand, the short period approach with a W/B4C multilayer and a 14.8 A d-spacing showed a resolution of 0.5 % and a reflectivity of 58.5%. Two more Mo/B4C samples with d-spacings of 15 A and 20 A showed energy resolutions of 0.25% and 0.52% with corresponding reflectivities of 39% and 66%. Thus we observe that both methods can produce useful x-ray optical components.

  6. The application of high resolution X-ray computed tomography on naturally deformed rock salt: Multi-scale investigations of the structural inventory

    NASA Astrophysics Data System (ADS)

    Thiemeyer, Nicolas; Habersetzer, Jörg; Peinl, Mark; Zulauf, Gernold; Hammer, Jörg

    2015-08-01

    X-ray computed tomography (CT) represents a useful technique providing new perspectives and insights for the structural investigation of naturally-deformed rock salt. Several samples of Permian rock salt from Gorleben, Asse and Teutschenthal (Germany) were investigated by exploiting the non-destructive nature of μCT and nCT techniques particularly for salt rocks. CT imaging enabled the visualization and quantification of anhydrite impurities, pore space and fluid phases located along grain-boundaries or trapped as intracrystalline inclusions. Disseminated grains and aggregates of anhydrite in rock salt of the Gorleben salt dome have been visualized and quantified by μCT for the first time in order to portray their spatial occurrence. The visualization of anhydrite aggregates and pore space shows no correlation between their spatial distributions. This independence excludes the anhydrite to be responsible for elevated porosity (0.87 ± 0.07 vol.-%). High-resolution nCT scans (≤1 μm voxel size) of single intracrystalline and grain-boundary fluid inclusions from Gorleben and Asse rock salt allowed the visualization and quantification of their various phase components. A major achievement is the detailed description of the morphology and shape of the fluid inclusions and of their phase components, which has not been conducted in rock salt research by high-resolution X-ray CT imaging before.

  7. Microbeam X-Ray Standing Wave and High Resolution Diffraction

    SciTech Connect

    Kazimirov, A.; Bilderback, D.H.; Huang, R.; Sirenko, A.

    2004-05-12

    Post-focusing collimating optics are introduced as a tool to condition X-ray microbeams for the use in high-resolution X-ray diffraction and scattering techniques. As an example, a one-bounce imaging capillary and miniature Si(004) channel-cut crystal were used to produce a microbeam with 10 {mu}m size and an ultimate angular resolution of 2.5 arc sec. This beam was used to measure the strain in semiconductor microstructures by using X-ray high resolution diffraction and standing wave techniques to {delta}d/d < 5x10-4.

  8. High Resolution X-Ray Explorer (HIREX)

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1999-01-01

    SAO has carried out a study to determine the feasibility of building an orbiting telescope capable of resolving 7 km structure on the Sun. In order to achieve the required imaging the telescope must have a resolution 0.01 arcsec. This fact challenges the state of the art of orbiting telescopes in several areas: mirror figuring; optical metrology; optical mounting; mirror figure control; system alignment; optical stability; observatory pointing; and image stability image stability. The telescope design concept is based on a 0.6m Cassegrain-style telescope with a 240 meter effective focal length. This is achieved with 2 mirrors supported at opposite ends of a 27 m space-deployable boom. The telescope mirrors are coated with multilayers designed to reflect a broad XUV passband. A third, small mirror, near the focal plane performs the function of selecting the narrow band that is finally imaged. Image stabilization to the 0.005 a,rcsec level is achieved by active control of the secondary mirror. The primary mirror is held unadjustably to the spacecraft, its pointing set by the space- craft orientation. The secondary mirror is mounted on a 6-axis stage that permits its position to be changed to align the telescope in space. The stage is intended for intermittent adjustment, both because of its speed of travel, and the TBD alignment procedure. The third mirror is called the TXI (Tuneable X-ray Imager). It is mounted on a gimbal that permits it to be tipped over a 60 degree range, selecting between the individual wavelengths in the initial bandpass. It can also rotated completely out of the way to allow the full, broadband EUV flux to strike the focal plane.

  9. Non Destructive High-Resolution 3D Investigation of Vesicle Textures in Pumice and Scoria by Synchrotron X-Ray Computed Microtomography

    NASA Astrophysics Data System (ADS)

    Polacci, M.; Baker, D.; Mancini, L.; Tromba, G.; Zanini, F.

    2005-12-01

    High resolution X-ray computed microtomography was applied to investigate the 3D structure of pyroclastic material from different active, explosive, hazardous volcanic areas. The experiments were performed at the SYRMEP beamline of the ELETTRA synchrotron radiation facility in Trieste (Italy). The 2D image slices resulting from tomography of selected pumice and scoria samples were transformed into volume renderings via specific tomographic software. The reconstructed volumes allowed us to test the applicability of this technique, novel in the field of volcanology, to volcanic specimens with different textural characteristics. The use of a third generation synchrotron radiation facility allowed optimal visualization of vesicle and crystal geometry in the reconstructed volume where conventional X-ray methods are strongly limited. The BLOB3D software package was used to accomplish quantitative descriptions of vesicle textures in terms of vesicularity, number density, volume and connectivity. The results exhibited complex patterns of the vesicle content, size, shape and distribution within the different pyroclasts and allowed us to track the degassing history of each single clast. With this preliminary study we demonstrate that computed microtomography is a feasible tool complementary to conventional microscopy methods for the full 3D textural characterization of volcanic clasts, and that it may be used to provide further constraints to models of degassing at active volcanoes.

  10. Progress in high-resolution x-ray holographic microscopy

    SciTech Connect

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  11. Broadband high resolution X-ray spectral analyzer

    DOEpatents

    Silver, Eric H.; Legros, Mark; Madden, Norm W.; Goulding, Fred; Landis, Don

    1998-01-01

    A broad bandwidth high resolution x-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces x-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available x-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for x-ray microanalysis or in research applications such as laboratory and astrophysical x-ray and particle spectroscopy.

  12. Broadband high resolution X-ray spectral analyzer

    DOEpatents

    Silver, E.H.; Legros, M.; Madden, N.W.; Goulding, F.; Landis, D.

    1998-07-07

    A broad bandwidth high resolution X-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces X-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available X-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for X-ray microanalysis or in research applications such as laboratory and astrophysical X-ray and particle spectroscopy. 6 figs.

  13. Three-Dimensional Imaging and Numerical Reconstruction of Graphite/Epoxy Composite Microstructure Based on Ultra-High Resolution X-Ray Computed Tomography

    NASA Technical Reports Server (NTRS)

    Czabaj, M. W.; Riccio, M. L.; Whitacre, W. W.

    2014-01-01

    A combined experimental and computational study aimed at high-resolution 3D imaging, visualization, and numerical reconstruction of fiber-reinforced polymer microstructures at the fiber length scale is presented. To this end, a sample of graphite/epoxy composite was imaged at sub-micron resolution using a 3D X-ray computed tomography microscope. Next, a novel segmentation algorithm was developed, based on concepts adopted from computer vision and multi-target tracking, to detect and estimate, with high accuracy, the position of individual fibers in a volume of the imaged composite. In the current implementation, the segmentation algorithm was based on Global Nearest Neighbor data-association architecture, a Kalman filter estimator, and several novel algorithms for virtualfiber stitching, smoothing, and overlap removal. The segmentation algorithm was used on a sub-volume of the imaged composite, detecting 508 individual fibers. The segmentation data were qualitatively compared to the tomographic data, demonstrating high accuracy of the numerical reconstruction. Moreover, the data were used to quantify a) the relative distribution of individual-fiber cross sections within the imaged sub-volume, and b) the local fiber misorientation relative to the global fiber axis. Finally, the segmentation data were converted using commercially available finite element (FE) software to generate a detailed FE mesh of the composite volume. The methodology described herein demonstrates the feasibility of realizing an FE-based, virtual-testing framework for graphite/fiber composites at the constituent level.

  14. Note: Design and construction of a multi-scale, high-resolution, tube-generated X-Ray computed-tomography system for three-dimensional (3D) imaging

    SciTech Connect

    Mertens, J. C. E.; Williams, J. J.; Chawla, Nikhilesh

    2014-01-15

    The design and construction of a high resolution modular x-ray computed tomography (XCT) system is described. The approach for meeting a specified set of performance goals tailored toward experimental versatility is highlighted. The instrument is unique in its detector and x-ray source configuration, both of which enable elevated optimization of spatial and temporal resolution. The process for component selection is provided. The selected components are specified, the custom component design discussed, and the integration of both into a fully functional XCT instrument is outlined. The novelty of this design is a new lab-scale detector and imaging optimization through x-ray source and detector modularity.

  15. High resolution collimator system for X-ray detector

    DOEpatents

    Eberhard, Jeffrey W.; Cain, Dallas E.

    1987-01-01

    High resolution in an X-ray computerized tomography (CT) inspection system is achieved by using a collimator/detector combination to limit the beam width of the X-ray beam incident on a detector element to the desired resolution width. In a detector such as a high pressure Xenon detector array, a narrow tapered collimator is provided above a wide detector element. The collimator slits have any desired width, as small as a few mils at the top, the slit width is easily controlled, and they are fabricated on standard machines. The slit length determines the slice thickness of the CT image.

  16. Robust phase retrieval for high resolution edge illumination x-ray phase-contrast computed tomography in non-ideal environments

    PubMed Central

    Zamir, Anna; Endrizzi, Marco; Hagen, Charlotte K.; Vittoria, Fabio A.; Urbani, Luca; De Coppi, Paolo; Olivo, Alessandro

    2016-01-01

    Edge illumination x-ray phase contrast tomography is a recently developed imaging technique which enables three-dimensional visualisation of low-absorbing materials. Dedicated phase retrieval algorithms can provide separate computed tomography (CT) maps of sample absorption, refraction and scattering properties. In this paper we propose a novel “modified local retrieval” method which is capable of accurately retrieving sample properties in a range of realistic, non-ideal imaging environments. These include system misalignment, defects in the used optical elements and system geometry variations over time due to vibrations or temperature fluctuations. System instabilities were analysed, modelled and incorporated into a simulation study. As a result, an additional modification was introduced to the retrieval procedure to account for changes in the imaging system over time, as well as local variations over the field of view. The performance of the proposed method was evaluated in comparison to a previously used “global retrieval” method by applying both approaches to experimental CT data of a rat’s heart acquired in a non-ideal environment. The use of the proposed method resulted in the removal of major artefacts, leading to a significant improvement in image quality. This method will therefore enable acquiring high-resolution, reliable CT data of large samples in realistic settings. PMID:27502296

  17. Robust phase retrieval for high resolution edge illumination x-ray phase-contrast computed tomography in non-ideal environments.

    PubMed

    Zamir, Anna; Endrizzi, Marco; Hagen, Charlotte K; Vittoria, Fabio A; Urbani, Luca; De Coppi, Paolo; Olivo, Alessandro

    2016-01-01

    Edge illumination x-ray phase contrast tomography is a recently developed imaging technique which enables three-dimensional visualisation of low-absorbing materials. Dedicated phase retrieval algorithms can provide separate computed tomography (CT) maps of sample absorption, refraction and scattering properties. In this paper we propose a novel "modified local retrieval" method which is capable of accurately retrieving sample properties in a range of realistic, non-ideal imaging environments. These include system misalignment, defects in the used optical elements and system geometry variations over time due to vibrations or temperature fluctuations. System instabilities were analysed, modelled and incorporated into a simulation study. As a result, an additional modification was introduced to the retrieval procedure to account for changes in the imaging system over time, as well as local variations over the field of view. The performance of the proposed method was evaluated in comparison to a previously used "global retrieval" method by applying both approaches to experimental CT data of a rat's heart acquired in a non-ideal environment. The use of the proposed method resulted in the removal of major artefacts, leading to a significant improvement in image quality. This method will therefore enable acquiring high-resolution, reliable CT data of large samples in realistic settings. PMID:27502296

  18. Robust phase retrieval for high resolution edge illumination x-ray phase-contrast computed tomography in non-ideal environments

    NASA Astrophysics Data System (ADS)

    Zamir, Anna; Endrizzi, Marco; Hagen, Charlotte K.; Vittoria, Fabio A.; Urbani, Luca; de Coppi, Paolo; Olivo, Alessandro

    2016-08-01

    Edge illumination x-ray phase contrast tomography is a recently developed imaging technique which enables three-dimensional visualisation of low-absorbing materials. Dedicated phase retrieval algorithms can provide separate computed tomography (CT) maps of sample absorption, refraction and scattering properties. In this paper we propose a novel “modified local retrieval” method which is capable of accurately retrieving sample properties in a range of realistic, non-ideal imaging environments. These include system misalignment, defects in the used optical elements and system geometry variations over time due to vibrations or temperature fluctuations. System instabilities were analysed, modelled and incorporated into a simulation study. As a result, an additional modification was introduced to the retrieval procedure to account for changes in the imaging system over time, as well as local variations over the field of view. The performance of the proposed method was evaluated in comparison to a previously used “global retrieval” method by applying both approaches to experimental CT data of a rat’s heart acquired in a non-ideal environment. The use of the proposed method resulted in the removal of major artefacts, leading to a significant improvement in image quality. This method will therefore enable acquiring high-resolution, reliable CT data of large samples in realistic settings.

  19. Chandra X-Ray Observatory High Resolution Mirror Assembly

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the mirrors of the High Resolution Mirror Assembly (HRMA) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being assembled in the Eastman Kodak Company in Rochester, New York. The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical 'telescope' portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  20. The Advanced X-ray Astrophysics Facility high resolution camera

    NASA Technical Reports Server (NTRS)

    Murray, Stephen S.; Chappell, Jon H.

    1986-01-01

    The HRC (High Resolution Camera) is a photon counting instrument to be flown on the Advanced X-Ray Astrophysics Facility (AXAF). It is a large field of view, high angular resolution, detector for the X-ray telescope. The HRC consists of a CsI coated microchannel plate (MCP) acting as a soft X-ray photocathode, followed by a second MCP for high electronic gain. The MCPs are readout by a crossed grid of resistively coupled wires to provide high spatial resolution along with timing and pulse height data. The instrument will be used in two modes, as a direct imaging detector with a limiting sensitivity of 10 to the -15th ergs/sq cm sec in a 10 to the 5th second exposure, and as a readout for an objective transmission grating providing spectral resolution of several hundreds to thousands.

  1. UT-CT: A National Resource for Applications of High-Resolution X-ray Computed Tomography in the Geological Sciences

    NASA Astrophysics Data System (ADS)

    Carlson, W. D.; Ketcham, R. A.; Rowe, T. B.

    2002-12-01

    An NSF-sponsored (EAR-IF) shared multi-user facility dedicated to research applications of high-resolution X-ray computed tomography (CT) in the geological sciences has been in operation since 1997 at the University of Texas at Austin. The centerpiece of the facility is an industrial CT scanner custom-designed for geological applications. Because the instrument can optimize trade-offs among penetrating ability, spatial resolution, density discrimination, imaging modes, and scan times, it can image a very broad range of geological specimens and materials, and thus offers significant advantages over medical scanners and desktop microtomographs. Two tungsten-target X-ray sources (200-kV microfocal and 420-kV) and three X-ray detectors (image-intensifier, high-sensitivity cadmium tungstate linear array, and high-resolution gadolinium-oxysulfide radiographic line scanner) can be used in various combinations to meet specific imaging goals. Further flexibility is provided by multiple imaging modes: second-generation (translate-rotate), third-generation (rotate-only; centered and variably offset), and cone-beam (volume CT). The instrument can accommodate specimens as small as about 1 mm on a side, and as large as 0.5 m in diameter and 1.5 m tall. Applications in petrology and structural geology include measuring crystal sizes and locations to identify mechanisms governing the kinetics of metamorphic reactions; visualizing relationships between alteration zones and abundant macrodiamonds in Siberian eclogites to elucidate metasomatic processes in the mantle; characterizing morphologies of spiral inclusion trails in garnet to test hypotheses of porphyroblast rotation during growth; measuring vesicle size distributions in basaltic flows for determination of elevation at the time of eruption to constrain timing and rates of continental uplift; analysis of the geometry, connectivity, and tortuosity of migmatite leucosomes to define the topology of melt flow paths, for numerical

  2. The Astro-E High Resolution X-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Kelley, Richard L.; Audley, Michael D.; Boyce, Kevin R.; Breon, Susan R.; Fujimoto, Ryuichi; Gendreau, Keith C.; Holt, Stephen S.; Ishisaki, Yoshitaka; McCammon, Dan; Mihara, Tatehiro

    1999-01-01

    The Astro-E High Resolution X-ray Spectrometer (XRS) was developed jointly by the NASA/Goddard Space Flight Center and the Institute of Space and Astronautical Science in Japan. The instrument is based on a new approach to spectroscopy, the X-ray microcalorimeter. This device senses the energies of individual X-ray photons as heat with extreme precision. A 32 channel array of microcalorimeters is being employed, each with an energy resolution of about 12 eV at 6 keV (the Fe-K region). This will provide spectral resolving power 10 times higher than any other non-dispersive X-ray spectrometer. The instrument incorporates a three stage cooling system capable of operating the array at 60 mK for about two years in orbit. The array sits at the focus of a grazing incidence conical mirror. The quantum efficiency of the microcalorimeters and the reflectivity of the X-ray mirror system combine to give high throughput over the 0.3-12 keV energy band. This new capability will enable the study of a wide range of high-energy astrophysical sources with unprecedented spectral sensitivity. This paper presents the basic design requirements and implementation of the XRS, and also describes the instrument parameters and performance.

  3. New constraints on the origin of the Skaergaard intrusion Cu-Pd-Au mineralization: Insights from high-resolution X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Godel, Bélinda; Rudashevsky, Nikolay S.; Nielsen, Troels F. D.; Barnes, Stephen J.; Rudashevsky, Vladimir N.

    2014-03-01

    This contribution presents the first detailed three-dimensional (3D) in situ analysis of samples from the Platinova Reef using high-resolution X-ray computed tomography (HRXCT) and 3D image processing and quantification coupled with microscopic and mineralogical investigations. Our HRXCT analyses reveal the complex textural relationships between Cu-rich sulfides (bulk composition close to bornite), skaergaardite (PdCu), Au-rich phases, silicates and Fe-Ti oxides and provide unequivocal textural evidences, not observed previously. The association in 3D between Cu-rich sulfide globules, PdCu alloy and ilmenite is inconsistent with a hydrothermal origin of the Cu-Pd mineralization. In contrast, our results combined with phase diagrams strongly support a primary magmatic origin for the Cu-Pd mineralization where Cu and Pd-rich, Fe-poor sulfide liquid represents a cumulus phase that forms by in-situ nucleation. These sulfide droplets and attached skaergaardite grains were trapped during the formation and crystallization of the Fe-Ti oxides. Subsequent, post-cumulus processes led to the partial to total dissolution of the sulfide not entirely enclosed by the Fe-Ti oxides (i.e., not protected from reaction) leading to the observed variability in Cu and Pd composition at the aggregate (sulfide + PdCu) scale and to the occurrence of free PdCu alloys. In contrast to the PdCu alloy, gold-bearing minerals are never observed entirely enclosed within the Fe-Ti oxide. Two hypotheses can be envisaged for the formation of the gold enriched layer in the upper part of the section. Gold may have either precipitated from high-temperature late magmatic Cl-rich fluids. Alternatively, gold may have been enriched during fractional crystallization after sulfide had been suppressed from the liquidus after the Pd layer crystallized and then deposited along redox barriers.

  4. Technical note: a landmark-based approach to the study of the ear ossicles using ultra-high-resolution X-ray computed tomography data.

    PubMed

    Schmidt, Jodi L; Cole, Theodore M; Silcox, Mary T

    2011-08-01

    Previous study of the ear ossicles in Primates has demonstrated that they vary on both functional and phylogenetic bases. Such studies have generally employed two-dimensional linear measurements rather than three-dimensional data. The availability of Ultra- high-resolution X-ray computed tomography (UhrCT) has made it possible to accurately image the ossicles so that broadly accepted methodologies for acquiring and studying morphometric data can be applied. Using UhrCT data also allows for the ossicular chain to be studied in anatomical position, so that it is possible to consider the spatial and size relationships of all three bones. One issue impeding the morphometric study of the ear ossicles is a lack of broadly recognized landmarks. Distinguishing landmarks on the ossicles is difficult in part because there are only two areas of articulation in the ossicular chain, one of which (the malleus/incus articulation) has a complex three-dimensional form. A measurement error study is presented demonstrating that a suite of 16 landmarks can be precisely located on reconstructions of the ossicles from UhrCT data. Estimates of measurement error showed that most landmarks were highly replicable, with an average CV for associated interlandmark distances of less than 3%. The positions of these landmarks are chosen to reflect not only the overall shape of the bones in the chain and their relative positions, but also functional parameters. This study should provide a basis for further examination of the smallest bones in the body in three dimensions. PMID:21732321

  5. Bright Semiconductor Scintillator for High Resolution X-Ray Imaging

    SciTech Connect

    Nagarkar, Vivek V.; Gaysinskiy, Valeriy; Ovechkina, Olena E.; Miller, Stuart; Singh, Bipin; Guo, Liang; Irving, Thomas

    2011-08-16

    We report on a novel approach to produce oxygen-doped zinc telluride (ZnTe:O), a remarkable group II-VI semiconductor scintillator, fabricated in the columnar-structured or polycrystalline forms needed to fulfill the needs of many demanding X-ray and {gamma}-ray imaging applications. ZnTe:O has one of the highest conversion efficiencies among known scintillators, emission around 680 nm (which is ideally suited for CCD sensors), high density of 6.4 g/cm{sup 3}, fast decay time of {approx}1 {micro}s with negligible afterglow, and orders of magnitude higher radiation resistance compared to commonly used scintillators. These properties allow the use of ZnTe:O in numerous applications, including X-ray imaging, nuclear medicine (particularly SPECT), room temperature radioisotope identification, and homeland security. Additionally, ZnTe:O offers distinct advantages for synchrotron-based high resolution imaging due to the absence of atomic absorption edges in the low energy range, which otherwise reduce resolution due to secondary X-ray formations. We have fabricated films of ZnTe:O using a vapor deposition technique that allows large-area structured scintillator fabrication in a time- and cost-efficient manner, and evaluated its performance for small-angle X-ray scattering (SAXS) at an Argonne National Laboratory synchrotron beamline. Details of the fabrication and characterization of the optical, scintillation and imaging properties of the ZnTe:O films are presented in this paper.

  6. High Resolution Energetic X-ray Imager (HREXI)

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  7. Demonstration of ultra high resolution soft x-ray tomography

    NASA Astrophysics Data System (ADS)

    Haddad, W. S.; McNulty, I.; Trebes, J. E.; Anderson, E. H.; Yang, L.; Brase, J. M.

    1995-05-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows which were separated by ˜ 5μm. Depth resolution comparable to the transverse resolution was achieved by recording nine 2-D images of the object at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image using an algebraic reconstruction technique (ART) algorithm. We observed a transverse resolution of ˜1000 Å. Artifacts in the reconstruction limited the overall depth resolution to ˜6000 Å, however some features were clearly reconstructed with a depth resolution of ˜1000 Å.

  8. High Resolution X-Ray Spectroscopy Using Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.

    1997-01-01

    During the past 13 years high resolution X ray spectrometers have been developed that use cryogenically cooled microcalorimeters. These devices have inherently high signal-to-noise by operating at temperatures below 0.1 K and can achieve an energy resolution of < 10 eV over the 0.1-10 keV band. Existing devices use doped semiconductor thermometers and typically employ HgTe absorbers. The energy resolution depends on achieving a low heat capacity for the device. For soft X ray applications a relatively thin absorber (approximately 1 micrometer) may be used and an energy resolution of approximately 7 eV has been achieved. For applications up to approximately 10 keV an absorber thickness of approximately 10 micrometer is required and the energy resolution is typically approximately 12 eV. Improvements to the energy resolution in this energy band could be achieved if the problems of thermalizing X rays in low heat capacity superconductors can be overcome. The recent work on transition edge thermometers by Irwin et nl. looks particularly promising because of the higher sensitivity achievable from a sharp superconducting transition. The relatively low impedance of such a device permits the use of a low noise SQUID amplifier for readout. This would also significantly reduce the cryogen heat load compared with JFETs required by higher impedance semiconductor thermometers.

  9. High-resolution x-ray characterization of mosaic crystals for hard x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Ferrari, Claudio; Buffagni, Elisa; Marchini, Laura; Zappettini, Andrea

    2012-04-01

    GaAs, Cu, CdTe, and CdZnTe crystals have been studied as optical elements for lenses for hard x-ray astronomy. High-resolution x-ray diffraction at 8 keV in Bragg geometry and at synchrotron at energies up to 500 keV in Laue geometry has been used. A good agreement was found between the mosaicity evaluated in Bragg geometry at 8 keV with x-ray penetration of the order of few tens of micrometers and that derived at synchrotron in transmission Laue geometry at higher x-ray energies. Mosaicity values in a range between a few to 150 arcsec were found in all the samples but, due to the presence of crystal grains in the cm range, CdTe and CdZnTe crystals were found not suitable. Cu crystals exhibit a mosaicity of the order of several arcmin; they indeed were found to be severely affected by cutting damage which could only be removed with a very deep etching. The full width at half maximum of the diffraction peaks decreased at higher x-ray energies showing that the peak broadening is affected by crystallite size. GaAs crystals grown by Czochralski method showed a mosaic spread up to 30 arcsec and good diffraction efficiency up to energies of 500 keV. The use of thermal treatments as a possible method to increase the mosaic spread was also evaluated.

  10. A simulation study of high-resolution x-ray computed tomography imaging using irregular sampling with a photon-counting detector

    NASA Astrophysics Data System (ADS)

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2013-10-01

    The purpose of this study was to improve the spatial resolution for the x-ray computed tomography (CT) imaging with a photon-counting detector using an irregular sampling method. The geometric shift-model of detector was proposed to produce the irregular sampling pattern and increase the number of samplings in the radial direction. The conventional micro-x-ray CT system and the novel system with the geometric shift-model of detector were simulated using analytic and Monte Carlo simulations. The projections were reconstructed using filtered back-projection (FBP), algebraic reconstruction technique (ART), and total variation (TV) minimization algorithms, and the reconstructed images were compared in terms of normalized root-mean-square error (NRMSE), full-width at half-maximum (FWHM), and coefficient-of-variation (COV). The results showed that the image quality improved in the novel system with the geometric shift-model of detector, and the NRMSE, FWHM, and COV were lower for the images reconstructed using the TV minimization technique in the novel system with the geometric shift-model of detector. The irregular sampling method produced by the geometric shift-model of detector can improve the spatial resolution and reduce artifacts and noise for reconstructed images obtained from an x-ray CT system with a photon-counting detector.

  11. Ultra high resolution soft x-ray tomography

    SciTech Connect

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.

    1995-07-19

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by {approximately}5{mu}m. A series of nine 2-D images of the object were recorded at angles between {minus}50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of {approximately}1000 {Angstrom} was observed. Artifacts in the reconstruction limited the overall depth resolution to {approximately}6000 {Angstrom}, however some features were clearly reconstructed with a depth resolution of {approximately}1000 {Angstrom}. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution bringing it down to {approximately}1200 {Angstrom} overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range.

  12. High resolution X-ray spectroscopy on the Einstein Observatory

    NASA Technical Reports Server (NTRS)

    Clark, G. W.

    1979-01-01

    The X-ray spectroscope presented features both spectral and one dimensional spatial resolution. The capabilities of observing sources like supernova remnants, X-ray stars, and the halo surrounding galaxies are discussed.

  13. Johann Spectrometer for High Resolution X-ray Spectroscopy

    SciTech Connect

    Machek, Pavel; Froeba, Michael; Welter, Edmund; Caliebe, Wolfgang; Brueggmann, Ulf; Draeger, Guenter

    2007-01-19

    A newly designed vacuum Johann spectrometer with a large focusing analyzer crystal for inelastic x-ray scattering and high resolution fluorescence spectroscopy has been installed at the DORIS III storage ring. Spherically bent crystals with a maximum diameter of 125 mm, and cylindrically bent crystals are employed as dispersive optical elements. Standard radius of curvature of the crystals is 1000 mm, however, the design of the mechanical components also facilitates measurements with smaller and larger bending radii. Up to four crystals are mounted on a revolving crystal changer which enables crystal changes without breaking the vacuum. The spectrometer works at fixed Bragg angle. It is preferably designed for the measurements in non-scanning mode with a broad beam spot, and offers a large flexibility to set the sample to the optimum position inside the Rowland circle. A deep depletion CCD camera is employed as a position sensitive detector to collect the energy-analyzed photons on the circumference of the Rowland circle. The vacuum in the spectrometer tank is typically 10-6 mbar. The sample chamber is separated from the tank either by 25 {mu}m thick Kapton windows, which allows samples to be measured under ambient conditions, or by two gate valves. The spectrometer is currently installed at wiggler beamline W1 whose working range is 4-10.5 keV with typical flux at the sample of 5x1010photons/s/mm2. The capabilities of the spectrometer are illustrated by resonant inelastic experiments on 3d transition metals and rare earth compounds, and by chemical shift measurements on chromium compounds.

  14. Johann Spectrometer for High Resolution X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Machek, Pavel; Welter, Edmund; Caliebe, Wolfgang; Brüggmann, Ulf; Dräger, Günter; Fröba, Michael

    2007-01-01

    A newly designed vacuum Johann spectrometer with a large focusing analyzer crystal for inelastic x-ray scattering and high resolution fluorescence spectroscopy has been installed at the DORIS III storage ring. Spherically bent crystals with a maximum diameter of 125 mm, and cylindrically bent crystals are employed as dispersive optical elements. Standard radius of curvature of the crystals is 1000 mm, however, the design of the mechanical components also facilitates measurements with smaller and larger bending radii. Up to four crystals are mounted on a revolving crystal changer which enables crystal changes without breaking the vacuum. The spectrometer works at fixed Bragg angle. It is preferably designed for the measurements in non-scanning mode with a broad beam spot, and offers a large flexibility to set the sample to the optimum position inside the Rowland circle. A deep depletion CCD camera is employed as a position sensitive detector to collect the energy-analyzed photons on the circumference of the Rowland circle. The vacuum in the spectrometer tank is typically 10-6 mbar. The sample chamber is separated from the tank either by 25 μm thick Kapton windows, which allows samples to be measured under ambient conditions, or by two gate valves. The spectrometer is currently installed at wiggler beamline W1 whose working range is 4-10.5 keV with typical flux at the sample of 5×1010photons/s/mm2. The capabilities of the spectrometer are illustrated by resonant inelastic experiments on 3d transition metals and rare earth compounds, and by chemical shift measurements on chromium compounds.

  15. High-Resolution Detector For X-Ray Diffraction

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Withrow, William K.; Pusey, Marc L.; Yost, Vaughn H.

    1988-01-01

    Proposed x-ray-sensitive imaging detector offers superior spatial resolution, counting-rate capacity, and dynamic range. Instrument based on laser-stimulated luminescence and reusable x-ray-sensitive film. Detector scans x-ray film line by line. Extracts latent image in film and simultaneously erases film for reuse. Used primarily for protein crystallography. Principle adapted to imaging detectors for electron microscopy and fluorescence spectroscopy and general use in astronomy, engineering, and medicine.

  16. Development of high resolution imaging detectors for x ray astronomy

    NASA Technical Reports Server (NTRS)

    Murray, S. S.; Schwartz, D. A.

    1992-01-01

    This final report summarizes our past activities and discusses the work performed over the period of 1 April 1990 through 1 April 1991 on x-ray optics, soft x-ray (0.1 - 10 KeV) imaging detectors, and hard x-ray (10 - 300 KeV) imaging detectors. If microchannel plates (MCPs) can be used to focus x-rays with a high efficiency and good angular resolution, they will revolutionize the field of x-ray optics. An x-ray image of a point source through an array of square MCP pores compared favorably with our ray tracing model for the MCP. Initial analysis of this image demonstrates the feasibility of MCPs for soft x-rays. Our work continues with optimizing the performance of our soft x-ray MCP imaging detectors. This work involves readout technology that should provide improved MCP readout devices (thin film crossed grid, curved, and resistive sheets), defect removal in MCPs, and photocathode optimization. In the area of hard x-ray detector development we have developed two different techniques for producing a CsI photocathode thickness of 10 to 100 microns, such that it is thick enough to absorb the high energy x-rays and still allow the photoelectrons to escape to the top MCP of a modified soft x-ray imaging detector. The methods involve vacuum depositing a thick film of CsI on a strong back, and producing a converter device that takes the place of the photocathode.

  17. High resolution energy-sensitive digital X-ray

    DOEpatents

    Nygren, D.R.

    1995-07-18

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays from the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detector such that each one of the semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction. 5 figs.

  18. High resolution energy-sensitive digital X-ray

    DOEpatents

    Nygren, David R.

    1995-01-01

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays From the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detect or such that each one of the of semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction.

  19. High Resolution X-ray-Induced Acoustic Tomography

    NASA Astrophysics Data System (ADS)

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei

    2016-05-01

    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray.

  20. High Resolution X-ray-Induced Acoustic Tomography

    PubMed Central

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei

    2016-01-01

    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray. PMID:27189746

  1. High Resolution X-ray-Induced Acoustic Tomography.

    PubMed

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei

    2016-01-01

    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray. PMID:27189746

  2. A ROSAT high resolution x ray image of NGC 1068

    NASA Technical Reports Server (NTRS)

    Halpern, J.

    1993-01-01

    The soft x ray properties of the Seyfert 2 galaxy NGC 1068 are a crucial test of the 'hidden Seyfert 1' model. It is important to determine whether the soft x rays come from the nucleus, or from a number of other possible regions in the circumnuclear starburst disk. We present preliminary results of a ROSAT HRI observation of NGC 1068 obtained during the verification phase. The fraction of x rays that can be attributed to the nucleus is about 70 percent so the 'soft x ray problem' remains. There is also significant diffuse x ray flux on arcminute scales, which may be related to the 'diffuse ionized medium' seen in optical emission lines, and the highly ionized Fe K(alpha) emission seen by BBXRT.

  3. Broadband high-resolution X-ray frequency combs

    NASA Astrophysics Data System (ADS)

    Cavaletto, Stefano M.; Harman, Zoltán; Ott, Christian; Buth, Christian; Pfeifer, Thomas; Keitel, Christoph H.

    2014-07-01

    Optical frequency combs have had a remarkable impact on precision spectroscopy. Enabling this technology in the X-ray domain is expected to result in wide-ranging applications, such as stringent tests of astrophysical models and quantum electrodynamics, a more sensitive search for the variability of fundamental constants, and precision studies of nuclear structure. Ultraprecise X-ray atomic clocks may also be envisaged. In this work, an X-ray pulse-shaping method is proposed to generate a comb in the absorption spectrum of an ultrashort high-frequency pulse. The method employs an optical-frequency-comb laser, manipulating the system's dipole response to imprint a comb on an excited transition with a high photon energy. The described scheme provides higher comb frequencies and requires lower optical-comb peak intensities than currently explored methods, preserves the overall width of the optical comb, and may be implemented using currently available X-ray technology.

  4. Towards high-resolution ptychographic x-ray diffraction microscopy

    SciTech Connect

    Takahashi, Yukio; Suzuki, Akihiro; Yamauchi, Kazuto; Zettsu, Nobuyuki; Kohmura, Yoshiki; Ishikawa, Tetsuya; Senba, Yasunori; Ohashi, Haruhiko

    2011-06-01

    Ptychographic x-ray diffraction microscopy is a lensless imaging technique with a large field of view and high spatial resolution, which is also useful for characterizing the wavefront of an x-ray probe. The performance of this technique is degraded by positioning errors due to the drift between the sample and illumination optics. We propose an experimental approach for correcting the positioning errors and demonstrate success by two-dimensionally reconstructing both the wavefront of the focused x-ray beam and the complex transmissivity of the weakly scattering objects at the pixel resolution of better than 10 nm in the field of view larger than 5 {mu}m. This method is applicable to not only the observation of organelles inside cells or nano-mesoscale structures buried within bulk materials but also the characterization of probe for single-shot imaging with x-ray free electron lasers.

  5. Acoustically Mounted Microcystals Yield High Resolution X-ray Structures

    SciTech Connect

    Soares, A.S.; Engel, M. A.; Stearns, R.; Datwani, S.; Olechno, J.; Ellson, R.; Skinner, J. M.; Allaire, M.; Orville, A. M.

    2011-05-31

    We demonstrate a general strategy for determining structures from showers of microcrystals. It uses acoustic droplet ejection to transfer 2.5 nL droplets from the surface of microcrystal slurries, through the air, onto mounting micromesh pins. Individual microcrystals are located by raster-scanning a several-micrometer X-ray beam across the cryocooled micromeshes. X-ray diffraction data sets merged from several micrometer-sized crystals are used to determine 1.8 {angstrom} resolution crystal structures.

  6. Proceedings of the workshop on X-ray computed microtomography

    SciTech Connect

    1998-02-01

    This report consists of vugraphs from the nine presentations at the conference. Titles of the presentations are: CMT: Applications and Techniques; Computer Microtomography Using X-rays from Third Generation Synchrotron X-ray; Approaches to Soft-X-ray Nanotomography; Diffraction Enhanced Tomography; X-ray Computed Microtomography Applications at the NSLS; XCMT Applications in Forestry and Forest Products; 3DMA: Investigating Three Dimensional Pore Geometry from High Resolution Images; X-ray Computed Microtomography Studies of Volcanic Rock; and 3-D Visualization of Tomographic Volumes.

  7. High resolution, low energy avalanche photodiode X-ray detectors

    NASA Technical Reports Server (NTRS)

    Farrell, R.; Vanderpuye, K.; Entine, G.; Squillante, M. R.

    1991-01-01

    Silicon avalanche photodiodes have been fabricated, and their performance as X-ray detectors has been measured. Photon sensitivity and energy resolution were measured as a function of size and operating parameters. Noise thresholds as low as 212 eV were obtained at room temperature, and backscatter X-ray fluorescence data were obtained for aluminum and other light elements. It is concluded that the results with the X-ray detector are extremely encouraging, and the performance is challenging the best available proportional counters. While not at the performance level of either cryogenic silicon or HgI2, these device operate at room temperature and can be reproduced in large numbers and with much larger areas than typically achieved with HgI2. In addition, they are rugged and appear to be indefinitely stable.

  8. Future prospects for high resolution X-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Canizares, C. R.

    1981-01-01

    Capabilities of the X-ray spectroscopy payloads were compared. Comparison of capabilities of AXAF in the context of the science to be achieved is reported. The Einstein demonstrated the tremendous scientific power of spectroscopy to probe deeply the astrophysics of all types of celestial X-ray source. However, it has limitations in sensitivity and resolution. Each of the straw man instruments has a sensitivity that is at least an order of magnitude better than that of the Einstein FPSC. The AXAF promises powerful spectral capability.

  9. Microfabrication of High Resolution X-ray Magnetic Calorimeters

    SciTech Connect

    Hsieh, W.-T.; Stevenson, Thomas R.; Bandler, Simon R.; Kelly, Daniel P.; Porst, Jan P.; Rotzinger, Hannes; Seidel, George M.

    2009-12-16

    Metallic magnetic calorimeter (MMC) is one of the most promising x-ray detector technologies for providing the very high energy resolution needed for future astronomical x-ray imaging spectroscopy. For this purpose, we have developed micro-fabricated 5x5 arrays of MMC of which each individual pixel has excellent energy resolution as good as 3.4 eV at 6 keV x-ray. Here we report on the fabrication techniques developed to achieve good resolution and high efficiency. These include: processing of a thin insulation layer for strong magnetic coupling between the AuEr sensor film and the niobium pick-up coil; production of overhanging absorbers for enhanced efficiency of x-ray absorption; fabrication on SiN membranes to minimize the effects on energy resolution from athermal phonon loss. We have also improved the deposition of the magnetic sensor film such that the film magnetization is nearly completely that is expected from the AuEr sputter target bulk material. In addition, we have included a study of a positional sensitive design, the Hydra design, which allows thermal coupling of four absorbers to a common MMC sensor and circuit.

  10. Microfabrication of High Resolution X-ray Magnetic Calorimeters

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Ting; Bandler, Simon R.; Kelly, Daniel P.; Porst, Jan P.; Rotzinger, Hannes; Seidel, George M.; Stevenson, Thomas R.

    2009-12-01

    Metallic magnetic calorimeter (MMC) is one of the most promising x-ray detector technologies for providing the very high energy resolution needed for future astronomical x-ray imaging spectroscopy. For this purpose, we have developed micro-fabricated 5×5 arrays of MMC of which each individual pixel has excellent energy resolution as good as 3.4 eV at 6 keV x-ray. Here we report on the fabrication techniques developed to achieve good resolution and high efficiency. These include: processing of a thin insulation layer for strong magnetic coupling between the AuEr sensor film and the niobium pick-up coil; production of overhanging absorbers for enhanced efficiency of x-ray absorption; fabrication on SiN membranes to minimize the effects on energy resolution from athermal phonon loss. We have also improved the deposition of the magnetic sensor film such that the film magnetization is nearly completely that is expected from the AuEr sputter target bulk material. In addition, we have included a study of a positional sensitive design, the Hydra design, which allows thermal coupling of four absorbers to a common MMC sensor and circuit.

  11. High energy, high resolution X-ray optics

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Joy, Marshall; Kahn, Steven

    1990-01-01

    The scientific goals of X-ray astronomy are considered to evaluate the relative advantages of using classical Wolter-1 optics or using a different approach. The portion of the X-ray band over 10 keV is unexploited in the present X-ray optics technology, and focussing in this portion of the band is crucial because nonfocussed experiments are background limited. The basic design of 'hard' X-ray optics is described theoretically emphasizing the very small angles of incidence in the grazing-incidence optics. Optimization of the signal-to-noise ratio is found to occur at a finite angular resolution. In real applications, the effective area reduced by the efficiency of the two reflections is 80 percent at energies up to 40 keV, and the quality of the reflecting surface can be monitored to minimize scattering. Focussing optics are found to offer improvements in signal-to-noise as well as more effective scientific return because microelectronic focal-plane technology is employed.

  12. Bendable X-ray Optics for High Resolution Imaging

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Kilaru, K.; Atkins, C.; Broadway, D.

    2014-01-01

    Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments.

  13. Cryogenic, high-resolution x-ray detector with high count rate capability

    DOEpatents

    Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Hiller, Larry J.; Barfknecht, Andrew T.

    2003-03-04

    A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.

  14. High Resolution X-Ray Spectroscopy with a Microcalorimeter

    SciTech Connect

    Norrell, J.; Anderson, I.

    2005-01-01

    Energy-dispersive spectrometry (EDS) is often the preferred choice for X-ray microanalysis, but there are still many disadvantages associated with EDS, the most significant of which is the relatively poor energy resolution, which limits detection sensitivity and the ability to distinguish among closely spaced spectral features, limiting even qualitative analysis. A new type of EDS detector that operates on the principle of microcalorimetry has the potential to eliminate this shortcoming, reaching resolutions an order of magnitude better. The detector consists of an absorber in thermal contact with a transition edge sensor (TES). An X-ray from the specimen hits the absorber and manifests itself as a change in temperature. Because the system is kept at 80 mK, the heat capacity is low and the temperature spike is observable. The TES responds to the increase in temperature by transitioning from its superconducting to its normal conducting state, thus sharply raising the overall resistance of the circuit. The circuit is kept at a constant voltage, so the increase in resistance is manifested as a decrease in current flow. This decrease in current is measured by a superconducting quantum interference device (SQUID), and by integrating the current over time, the energy of the incident X-ray is determined. The prototype microcalorimeter was developed by NIST, and this technology is now available commercially through a partnership between Vericold Technologies and EDAX International. ORNL has received the first of these commercial microcalorimeters in the United States. The absorber in this detector is gold, and the TES consists of a gold-iridium bilayer. It is designed to offer spectral resolution of 10-15 eV at a count rate of ~150 s-1. The goal of this project was to analyze and document the performance of the detector, with particular attention given to the effects of an X-ray optic used to improve collection efficiency, the multiple window system and any other sources

  15. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    DOEpatents

    Smither, Robert K.

    2008-12-23

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  16. Simulation of high-resolution x-ray zone plates.

    PubMed

    Kurokhtin, Alexei N; Popov, Alexei V

    2002-02-01

    A full-wave approach to quantitative characterization of x-ray zone plate lenses is proposed. Distributed focusing efficiency eta(z) of a multifocus optical element is defined as the energy flux through the Airy disk of a reference perfect lens with variable focal length z. Maxima of this function characterize diffraction efficiencies and spatial resolution of the zone plate foci. The parabolic wave equation is used to take into account diffraction effects inside the optical element. Rough and fuzzy interface models are introduced to describe realistic zone profiles. Numerical simulation reveals the limited capability of zone width reduction to improve the zone plate imaging performance. The possibilities of second-order focus enhancement by optimization of the zone plate thickness, line-to-space ratio, and zone tilt are studied numerically. PMID:11822594

  17. High resolution X-ray spectroscopy of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    1990-01-01

    After a brief review of the principal problems of AGN research, selected potential high-resolution observations are discussed with a view toward assessing their scientific value and the degree of resolution they will require. Two classes of observations pertaining directly to AGNs are discussed. Fe K-alpha spectroscopy relevant to the dynamical and thermal character of the emission line zones; and measurement of resonance line absorption by highly-ionized species in BL Lac objects, which should provide information about entrainment of interstellar material by relativistic jets. A third class of potentially important observations uses AGNs as background light sources in order to directly measure the distance to clusters of galaxies.

  18. High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation

    NASA Technical Reports Server (NTRS)

    Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.

  19. Very high resolution UV and X-ray spectroscopy and imagery of solar active regions

    NASA Technical Reports Server (NTRS)

    Bruner, M.; Brown, W. A.; Haisch, B. M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.

  20. A compact high-resolution X-ray powder diffractometer.

    PubMed

    Fewster, Paul F; Trout, David R D

    2013-12-01

    A new powder diffractometer operating in transmission mode is described. It can work as a rapid very compact instrument or as a high-resolution instrument, and the sample preparation is simplified. The incident beam optics create pure Cu Kα1 radiation, giving rise to peak widths of ∼0.1° in 2θ in compact form with a sample-to-detector minimum radius of 55 mm, reducing to peak widths of <0.05° in high-resolution mode by increasing the detector radius to 240 mm. The resolution of the diffractometer is shown to be governed by a complex mixture of angular divergence, sample size, diffraction effects and the dimensions of the detector pixels. The data can be collected instantaneously, which combined with trivial sample preparation and no sample alignment, makes it a suitable method for very rapid phase identification. As the detector is moved further from the sample, the angular step from the pixel dimension is reduced and the resolution improves significantly for very detailed studies, including structure determination and analysis of the microstructure. The advantage of this geometry is that the resolution of the diffractometer can be calculated precisely and the instrumental artefacts can be analysed easily without a sample present. The performance is demonstrated with LaB6 and paracetamol, and a critical appraisal of the uncertainties in the measurements is presented. The instantaneous data collection offers possibilities in dynamic experiments. PMID:24282331

  1. High resolution, high rate X-ray spectrometer

    DOEpatents

    Goulding, Frederick S.; Landis, Donald A.

    1987-01-01

    A pulse processing system (10) for use in an X-ray spectrometer in which a ain channel pulse shaper (12) and a fast channel pulse shaper (13) each produce a substantially symmetrical triangular pulse (f, p) for each event detected by the spectrometer, with the pulse width of the pulses being substantially independent of the magnitude of the detected event and with the pulse width of the fast pulses (p) being substantially shorter than the pulse width of the main channel pulses (f). A pile-up rejector circuit (19) allows output pulses to be generated, with amplitudes linearly related to the magnitude of the detected events, whenever the peak of a main channel pulse (f) is not affected by a preceding or succeeding main channel pulse, while inhibiting output pulses wherein peak magnitudes of main channel pulses are affected by adjacent pulses. The substantially symmetrical triangular main channel pulses (f) are generated by the weighted addition (27-31) of successive RC integrations (24, 25, 26) of an RC differentiated step wave (23). The substantially symmetrical triangular fast channel pulses (p) are generated by the RC integration ( 43) of a bipolar pulse (o) in which the amplitude of the second half is 1/e that of the first half, with the RC time constant of integration being equal to one-half the width of the bipolar pulse.

  2. Ultraprecision motion control technique for high-resolution x-ray instrumentation

    SciTech Connect

    Shu, D.; Toellner, T. S.; Alp, E. E.

    2000-07-17

    With the availability of third-generation hard x-ray synchrotron radiation sources, such as the Advanced Photon Source (APS) at Argonne National Laboratory, x-ray inelastic scattering and x-ray nuclear resonant scattering provide powerful means for investigating the vibrational dynamics of a variety of materials and condensed matter systems. Novel high-resolution hard x-ray optics with meV energy resolution requires a compact positioning mechanism with 20--50-nrad angular resolution and stability. In this paper, the authors technical approach to this design challenge is presented. Sensitivity and stability test results are also discussed.

  3. An advanced high resolution x-ray imager for laser-plasma interaction observation

    NASA Astrophysics Data System (ADS)

    Dennetiere, D.; Troussel, Ph.; Courtois, C.; Wrobel, R.; Audebert, P.

    2013-11-01

    We present here the latest results obtained with our high resolution broadband X-ray microscope. These results, both spatial and spectral, were obtained in several facilities such as Berlin's synchrotron Bessy II and LULI's laser ELFIE 100TW. The results show clearly the opportunity in high resolution microscopy that offer mirror based diagnostics.

  4. High Resolution Temporal and Spectral Monitoring of Eta Carinae's X-Ray Emission the June Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Hamaguchi, K.; Henley, D.; Pittard, J. M.; Gull, T. R.; Davidson, K.; Swank, J. H.; Petre, R.; Ishibashi, K.

    2004-01-01

    The supermassive and luminous star Eta Carinae undergoes strong X-ray variations every 5.5 years when its 2-10 keV X-ray emission brightens rapidly with wild fluctuations before dropping by a factor of 100 to a minimum lasting 3 months. The most recent X-ray "eclipse" began in June 2003 and during this time Eta Carinae was intensely observed throughout the electromagnetic spectrum. Here we report the first results of frequent monitoring of the 2-10 keV band X-ray emission by the Rossi X-ray Timing Explorer along wit high resolution X-ray spectra obtained with the transmission gratings on the Chandra X-ray Observatory. We compare these observations to those results obtained during the previous X-ray eclipse in 1998, and interpret the variations in the X-ray brightness, in the amount of absorption, in the X-ray emission measure and in the K-shell emission lines in terms of a colliding wind binary model.

  5. High-resolution ab initio Three-dimensional X-ray Diffraction Microscopy

    SciTech Connect

    Chapman, H N; Barty, A; Marchesini, S; Noy, A; Cui, C; Howells, M R; Rosen, R; He, H; Spence, J H; Weierstall, U; Beetz, T; Jacobsen, C; Shapiro, D

    2005-08-19

    Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a non-periodic object. We also construct 2D images of thick objects with infinite depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution using X-ray undulator radiation, and establishes the techniques to be used in atomic-resolution ultrafast imaging at X-ray free-electron laser sources.

  6. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    SciTech Connect

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C. H.; Weierstall, Uwe; Beetz, Tobias; Jacobsen, Chris; Shapiro, David

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.

  7. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE PAGESBeta

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C. H.; et al

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore » resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  8. High resolution X- and gamma-ray spectroscopy of cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1983-01-01

    A high resolution X-ray spectrometer and large area phoswich detector were designed and co-aligned in a common elevation mounting in order to measure solar and cosmic X-ray and gamma ray emission in the 13 to 600 KeV energy range from a balloon. The instrument is described and results obtained for the Crab Nebula, the supernova remnant Cas A, and the Sun are discussed and analyzed.

  9. Experimental demonstration of high resolution three-dimensional x-ray holography

    SciTech Connect

    McNulty, I. ); Trebes, J.E.; Brase, J.M.; Yorkey, T.J.; Levesque, R.; Szoke, H. ); Anderson, E.H. ); Jacobsen, C. . Dept. of Physics); Kern, D. (IBM T.J. Watson Research Laboratory, Yorktown Heights, NY (Unit

    1992-01-01

    Tomographic x-ray holography may make possible the imaging of biological objects at high resolution in three dimensions. We performed a demonstration experiment with soft x-rays to explore the feasibility of this technique. Coherent 3.2-nm undulator radiation was used to record Fourier transform holograms of a microfabricated test object from various illumination angles. The holograms were numerically reconstructed according to the principles of diffraction tomography, yielding images of the object that are well resolved in three dimensions.

  10. Experimental demonstration of high resolution three-dimensional x-ray holography

    SciTech Connect

    McNulty, I.; Trebes, J.E.; Brase, J.M.; Yorkey, T.J.; Levesque, R.; Szoke, H.; Anderson, E.H.; Jacobsen, C.; Kern, D.

    1992-12-01

    Tomographic x-ray holography may make possible the imaging of biological objects at high resolution in three dimensions. We performed a demonstration experiment with soft x-rays to explore the feasibility of this technique. Coherent 3.2-nm undulator radiation was used to record Fourier transform holograms of a microfabricated test object from various illumination angles. The holograms were numerically reconstructed according to the principles of diffraction tomography, yielding images of the object that are well resolved in three dimensions.

  11. High resolution x-ray CMT: Reconstruction methods

    SciTech Connect

    Brown, J.K.

    1997-02-01

    This paper qualitatively discusses the primary characteristics of methods for reconstructing tomographic images from a set of projections. These reconstruction methods can be categorized as either {open_quotes}analytic{close_quotes} or {open_quotes}iterative{close_quotes} techniques. Analytic algorithms are derived from the formal inversion of equations describing the imaging process, while iterative algorithms incorporate a model of the imaging process and provide a mechanism to iteratively improve image estimates. Analytic reconstruction algorithms are typically computationally more efficient than iterative methods; however, analytic algorithms are available for a relatively limited set of imaging geometries and situations. Thus, the framework of iterative reconstruction methods is better suited for high accuracy, tomographic reconstruction codes.

  12. High-speed X-ray microscopy by use of high-resolution zone plates and synchrotron radiation.

    PubMed

    Hou, Qiyue; Wang, Zhili; Gao, Kun; Pan, Zhiyun; Wang, Dajiang; Ge, Xin; Zhang, Kai; Hong, Youli; Zhu, Peiping; Wu, Ziyu

    2012-09-01

    X-ray microscopy based on synchrotron radiation has become a fundamental tool in biology and life sciences to visualize the morphology of a specimen. These studies have particular requirements in terms of radiation damage and the image exposure time, which directly determines the total acquisition speed. To monitor and improve these key parameters, we present a novel X-ray microscopy method using a high-resolution zone plate as the objective and the matching condenser. Numerical simulations based on the scalar wave field theory validate the feasibility of the method and also indicate the performance of X-ray microscopy is optimized most with sub-10-nm-resolution zone plates. The proposed method is compatible with conventional X-ray microscopy techniques, such as computed tomography, and will find wide applications in time-resolved and/or dose-sensitive studies such as living cell imaging. PMID:22763718

  13. AXAF-1 High Resolution Assembly Image Model and Comparison with X-Ray Ground Test Image

    NASA Technical Reports Server (NTRS)

    Zissa, David E.

    1999-01-01

    The x-ray ground test of the AXAF-I High Resolution Mirror Assembly was completed in 1997 at the X-ray Calibration Facility at Marshall Space Flight Center. Mirror surface measurements by HDOS, alignment results from Kodak, and predicted gravity distortion in the horizontal test configuration are being used to model the x-ray test image. The Marshall Space Flight Center (MSFC) image modeling serves as a cross check with Smithsonian Astrophysical observatory modeling. The MSFC image prediction software has evolved from the MSFC model of the x-ray test of the largest AXAF-I mirror pair in 1991. The MSFC image modeling software development is being assisted by the University of Alabama in Huntsville. The modeling process, modeling software, and image prediction will be discussed. The image prediction will be compared with the x-ray test results.

  14. High-resolution X-ray imaging by polycapillary optics and lithium fluoride detectors combination

    NASA Astrophysics Data System (ADS)

    Hampai, D.; Dabagov, S. B.; Della Ventura, G.; Bellatreccia, F.; Magi, M.; Bonfigli, F.; Montereali, R. M.

    2011-12-01

    Novel results on high-resolution X-ray imaging by a table-top laboratory system based on lithium fluoride (LiF) imaging radiation detectors and a X-ray tube combined with polycapillary optics are reported for the first time. In this paper, imaging experiments of reference objects, as well as thick geological samples, show some of the potentialities of this approach for the development of a compact laboratory X-ray microscopy apparatus. The high spatial resolution and dynamic range of versatile LiF imaging detectors, based on optical reading of photoluminescence from X-ray-induced color centers in LiF crystals and films, allow us to use very simple contact imaging techniques. Promising applications can be foreseen in the fields of bio-medical imaging diagnostics, characterization of X-ray sources and optical elements, material science and photonics.

  15. Calibration of a high resolution grating soft x-ray spectrometer

    SciTech Connect

    Magee, E. W.; Dunn, J.; Brown, G. V.; Beiersdorfer, P.; Cone, K. V.; Park, J.; Porter, F. S.; Kilbourne, C. A.; Kelley, R. L.

    2010-10-15

    The calibration of the soft x-ray spectral response of a large radius of curvature, high resolution grating spectrometer (HRGS) with a back-illuminated charge-coupled device detector is reported. The instrument is cross-calibrated for the 10-50 A waveband at the Lawrence Livermore National Laboratory electron beam ion trap (EBIT) x-ray source with the EBIT calorimeter spectrometer. The HRGS instrument is designed for laser-produced plasma experiments and is important for making high dynamic range measurements of line intensities, line shapes, and x-ray sources.

  16. Calibration of a high resolution grating soft x-ray spectrometer.

    PubMed

    Magee, E W; Dunn, J; Brown, G V; Cone, K V; Park, J; Porter, F S; Kilbourne, C A; Kelley, R L; Beiersdorfer, P

    2010-10-01

    The calibration of the soft x-ray spectral response of a large radius of curvature, high resolution grating spectrometer (HRGS) with a back-illuminated charge-coupled device detector is reported. The instrument is cross-calibrated for the 10-50 Å waveband at the Lawrence Livermore National Laboratory electron beam ion trap (EBIT) x-ray source with the EBIT calorimeter spectrometer. The HRGS instrument is designed for laser-produced plasma experiments and is important for making high dynamic range measurements of line intensities, line shapes, and x-ray sources. PMID:21034013

  17. High-resolution projection image reconstruction of thick objects by hard x-ray diffraction microscopy

    SciTech Connect

    Takahashi, Yukio; Nishino, Yoshinori; Tsutsumi, Ryosuke; Zettsu, Nobuyuki; Matsubara, Eiichiro; Yamauchi, Kazuto; Ishikawa, Tetsuya

    2010-12-01

    Hard x-ray diffraction microscopy enables us to observe thick objects at high spatial resolution. The resolution of this method is limited, in principle, by only the x-ray wavelength and the largest scattering angle recorded. As the resolution approaches the wavelength, the thickness effect of objects plays a significant role in x-ray diffraction microscopy. In this paper, we report high-resolution hard x-ray diffraction microscopy for thick objects. We used highly focused coherent x rays with a wavelength of {approx}0.1 nm as an incident beam and measured the diffraction patterns of a {approx}150-nm-thick silver nanocube at the scattering angle of {approx}3 deg. We observed a characteristic contrast of the coherent diffraction pattern due to only the thickness effect and collected the diffraction patterns at nine incident angles so as to obtain information on a cross section of Fourier space. We reconstructed a pure projection image by the iterative phasing method from the patched diffraction pattern. The edge resolution of the reconstructed image was {approx}2 nm, which was the highest resolution so far achieved by x-ray microscopy. The present study provides us with a method for quantitatively observing thick samples at high resolution by hard x-ray diffraction microscopy.

  18. Digital Signal Processors for Cryogenic High-Resolution X-Ray Detector Readout

    SciTech Connect

    Friedrich, S; Drury, O; Bechstein, S; Henning, W; Momayezi, M

    2003-01-01

    The authors are developing fast digital signal processors (DSPs) to read out superconducting high-resolution X-ray detectors with on-line pulse processing. For superconducting tunnel junction (STJ) detector read-out, the DSPs offer on-line filtering, rise time discrimination and pile-up rejection. Compared to analog pulse processing, DSP readout somewhat degrades the detector resolution, but improves the spectral purity of the detector response. They discuss DSP performance with the 9-channel STJ array for synchrotron-based high-resolution X-ray spectroscopy.

  19. High Resolution X-Ray Micro-CT of Ultra-Thin Wall Space Components

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, R. W.; Bowman, Randy R.; Bonacuse, Peter; Martin, Richard E.; Locci, I. E.; Kelley, M.

    2012-01-01

    A high resolution micro-CT system has been assembled and is being used to provide optimal characterization for ultra-thin wall space components. The Glenn Research Center NDE Sciences Team, using this CT system, has assumed the role of inspection vendor for the Advanced Stirling Convertor (ASC) project at NASA. This article will discuss many aspects of the development of the CT scanning for this type of component, including CT system overview; inspection requirements; process development, software utilized and developed to visualize, process, and analyze results; calibration sample development; results on actual samples; correlation with optical/SEM characterization; CT modeling; and development of automatic flaw recognition software. Keywords: Nondestructive Evaluation, NDE, Computed Tomography, Imaging, X-ray, Metallic Components, Thin Wall Inspection

  20. High Resolution Higher Energy X-ray Microscope for Mesoscopic Materials

    NASA Astrophysics Data System (ADS)

    Snigireva, I.; Snigirev, A.

    2013-10-01

    We developed a novel X-ray microscopy technique to study mesoscopically structured materials, employing compound refractive lenses. The easily seen advantage of lens-based methodology is the possibility to retrieve high resolution diffraction pattern and real-space images in the same experimental setup. Methodologically the proposed approach is similar to the studies of crystals by high resolution transmission electron microscopy. The proposed microscope was applied for studying of mesoscopic materials such as natural and synthetic opals, inverted photonic crystals.

  1. Stellar Coronae Viewed with High-Resolution X-Rays: The Impact of the International X-Ray Observatory

    NASA Astrophysics Data System (ADS)

    Drake, Stephen Alan; Osten, R. A.; Huenemoerder, D. P.; Gagne, M.

    2009-01-01

    The vast majority of stars (those with masses less than 1.7 solar masses) have X-ray emitting coronae for all but their red giant and later stages of their evolution. Such coronae are believed to be powered by a magnetic dynamo mechanism that results from an interplay between the convective and rotational flows in their outer envelopes, although the details, e.g., whether coronae are predominantly energized by flares, waves, currents, etc., are still actively debated. As stars age, they lose angular momentum through their stellar wind, and their coronae become less powerful, e.g., the present solar corona's X-ray luminosity is only 10-7 of its total luminosity, and cooler, e.g., the bulk of the solar corona is cooler than 3 MK. Because of sensitivity limitations, essentially all operating and previous X-ray observatories with high spectral resolution capabilities have studied primarily the exceptional X-ray luminous coronal stars, such as active binaries and stars much younger than the Sun, i.e., the `tip of the iceberg' of the stellar coronal population. The high-resolution instruments on the International X-Ray Observatory (IXO) will enable us to study the complex, line-rich spectra of a wide range of stellar coronae in unprecedented detail, e.g., with an E/Delta E of 3000 implying a velocity resolution of 100 km/s. We discuss sample programs that IXO could conduct on various classes of stellar coronal sources, and the information that these would yield on coronal abundances, temperatures, electron densities, etc., and potentially on the underlying coronal heating mechanism(s).

  2. Interstellar dust grain composition from high-resolution X-ray absorption edge structure

    NASA Astrophysics Data System (ADS)

    Corrales, Lia

    2016-06-01

    X-ray light is sufficient to excite electrons from n=1 (K-shell) and n=2 (L-shell) energy levels of neutral interstellar metals, causing a sharp increase in the absorption cross-section. Near the ionization energy, the shape of the photoelectric absorption edge depends strongly on whether the atom is isolated or bound in molecules or minerals (dust). With high resolution X-ray spectroscopy, we can directly measure the state of metals and the mineral composition of dust in the interstellar medium. In addition, the scattering contribution to the X-ray extinction cross-section can be used to gauge grain size, shape, and filling factor. In order to fully take advantage of major advances in high resolution X-ray spectroscopy, lab measurements of X-ray absorption fine structure (XAFS) from suspected interstellar minerals are required. Optical constants derived from the absorption measurements can be used with Mie scattering or anomalous diffraction theory in order to model the full extinction cross-sections from the interstellar medium. Much like quasar spectra are used to probe other intergalactic gas, absorption spectroscopy of Galactic X-ray binaries and bright stars will yield key insights to the mineralogy and evolution of dust grains in the Milky Way.

  3. A normal incidence, high resolution X-ray telescope for solar coronal observations

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1984-01-01

    A Normal Incidence high resolution X-ray Telescope is reported. The design of a telescope assembly which, after fabrication, will be integrated with the mirror fabrication process is described. The assembly is engineered to fit into the Black Brant rocket skin to survive sounding rocket launch conditions. A flight ready camera is modified and tested.

  4. The effects of dust scattering on high-resolution X-ray absorption edge structure

    NASA Astrophysics Data System (ADS)

    Corrales, Lia; Garcia, Javier; Wilms, Joern; Baganoff, Frederick K.

    2016-04-01

    In high resolution X-ray spectroscopy, dust scattering significantly enhances the total extinction optical depth and alters the shape of photoelectric absorption edges. This effect is modulated by the dust grain size distribution, spatial location along the line of sight, and the imaging resolution of the X-ray telescope. We focus in particular on the Fe L-edge at 0.7 keV, fitting a template for the total extinction to the high resolution spectrum of three X-ray binaries from the Chandra archive: GX 9+9, XTE J1817-330, and Cyg X-1. In cases where dust is intrinsic to the source, a covering factor based on the angular extent of the dusty material must be applied to the extinction curve, regardless of imaging resolution. We discuss the various astrophysical cases in which scattering effects need to be taken into account.

  5. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE PAGESBeta

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stephano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore » freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less

  6. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    SciTech Connect

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stephano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.

  7. Development of spatially resolved high resolution x-ray spectroscopy for fusion and light-source research

    NASA Astrophysics Data System (ADS)

    Lu, J.; Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Pablant, N. A.; Efthimion, P.; Beiersdorfer, P.; Chen, H.; Widmann, K.; Sanchez del Rio, M.

    2014-09-01

    One dimensional spatially resolved high resolution x-ray spectroscopy with spherically bent crystals and 2D pixelated detectors is an established technique on magnetic confinement fusion (MCF) experiments world wide for Doppler measurements of spatial profiles of plasma ion temperature and flow velocity. This technique is being further developed for diagnosis of High Energy Density Physics (HEDP) plasmas at laser-plasma facilities and synchrotron/x-ray free electron laser (XFEL) facilities. Useful spatial resolution (micron scale) of such small-scale plasma sources requires magnification, because of the finite pixel size of x-ray CCD detectors (13.5 μm). A von-Hamos like spectrometer using spherical crystals is capable of magnification, as well as uniform sagittal focusing across the full x-ray spectrum, and is being tested in laboratory experiments using a tungsten-target microfocus (5-10 μm) x-ray tube and 13-μm pixel x-ray CCD. A spatial resolution better than 10 μm has been demonstrated. Good spectral resolution is indicated by small differences (0.02 - 0.1 eV) of measured line widths with best available published natural line widths. Progress and status of HEDP measurements and the physics basis for these diagnostics are presented. A new type of x-ray crystal spectrometer with a convex spherically bent crystal is also reported. The status of testing of a 2D imaging microscope using matched pairs of spherical crystals with x rays will also be presented. The use of computational x-ray optics codes in development of these instrumental concepts is addressed.

  8. High Resolution Triple Axis X-Ray Diffraction Analysis of II-VI Semiconductor Crystals

    NASA Technical Reports Server (NTRS)

    Volz, H. M.; Matyi, R. J.

    1999-01-01

    The objective of this research program is to develop methods of structural analysis based on high resolution triple axis X-ray diffractometry (HRTXD) and to carry out detailed studies of defect distributions in crystals grown in both microgravity and ground-based environments. HRTXD represents a modification of the widely used double axis X-ray rocking curve method for the characterization of grown-in defects in nearly perfect crystals. In a double axis rocking curve experiment, the sample is illuminated by a monochromatic X-ray beam and the diffracted intensity is recorded by a fixed, wide-open detector. The intensity diffracted by the sample is then monitored as the sample is rotated through the Bragg reflection condition. The breadth of the peak, which is often reported as the full angular width at half the maximum intensity (FWHM), is used as an indicator of the amount of defects in the sample. This work has shown that high resolution triple axis X-ray diffraction is an effective tool for characterizing the defect structure in semiconductor crystals, particularly at high defect densities. Additionally, the technique is complimentary to X-ray topography for defect characterization in crystals.

  9. High-Resolution Structure of the Photosynthetic Mn4Ca Catalyst from X-ray Spectroscopy

    SciTech Connect

    Yachandra, Vittal; Yano, Junko; Kern, Jan; Pushkar, Yulia; Sauer, Kenneth; Glatzel, Pieter; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.

    2007-08-01

    The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, are described. Issues of X-ray damage especially at the metal sites in the Mn4Ca cluster are discussed. The structure of the Mn4Ca catalyst at high-resolution which has so far eluded attempts of determination by X-ray diffraction, EXAFS and other spectroscopic techniques has been addressed using polarized EXAFS techniques applied to oriented PS II membrane preparations and PS II single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and K? emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.

  10. Spatially resolved high resolution x-ray spectroscopy for magnetically confined fusion plasmas (invited)

    SciTech Connect

    Ince-Cushman, A.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Marmar, E. S.; Bitter, M.; Hill, K. W.; Scott, S.; Gu, M. F.; Eikenberry, E.; Broennimann, Ch.; Lee, S. G.

    2008-10-15

    The use of high resolution x-ray crystal spectrometers to diagnose fusion plasmas has been limited by the poor spatial localization associated with chord integrated measurements. Taking advantage of a new x-ray imaging spectrometer concept [M. Bitter et al., Rev. Sci. Instrum. 75, 3660 (2004)], and improvements in x-ray detector technology [Ch. Broennimann et al., J. Synchrotron Radiat. 13, 120 (2006)], a spatially resolving high resolution x-ray spectrometer has been built and installed on the Alcator C-Mod tokamak. This instrument utilizes a spherically bent quartz crystal and a set of two dimensional x-ray detectors arranged in the Johann configuration [H. H. Johann, Z. Phys. 69, 185 (1931)] to image the entire plasma cross section with a spatial resolution of about 1 cm. The spectrometer was designed to measure line emission from H-like and He-like argon in the wavelength range 3.7 and 4.0 A with a resolving power of approximately 10 000 at frame rates up to 200 Hz. Using spectral tomographic techniques [I. Condrea, Phys. Plasmas 11, 2427 (2004)] the line integrated spectra can be inverted to infer profiles of impurity emissivity, velocity, and temperature. From these quantities it is then possible to calculate impurity density and electron temperature profiles. An overview of the instrument, analysis techniques, and example profiles are presented.

  11. High Resolution X-Ray Absorption Spectroscopy: Distribution of Matter in and around Galaxies

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert; MIT/CAT Team

    2015-10-01

    The chemical evolution of the Universe embraces aspects that reachdeep into modern astrophysics and cosmology. We want to know how present and past matter is affected by various levels and types of nucleo-synthesis and stellar evolution. Three major categories were be identified: 1. The study of pre-mordial star formation including periods of super-massive black hole formation, 2. The embedded evolution of the intergalactic medium IGM, 3. The status and evolution of stars and the interstellar medium ISM in galaxies. Today a fourth category relates to our understanding of dark matter in relationwith these three categories. The X-ray band is particularly sensitive to K- and L-shell absorption and scattering from high abundant elements like C, N, O, Ne, Mg, Si, S,Ar, Ca, Fe, and Ni. Like the Lyman alpha forest in the optical band, absorbers in the IGM produce an X-ray line forest along the line of sight in the X-rayspectrum of a background quasar. Similary bright X-ray sources within galaxies and the Milky Way produce a continuum, which is being absorbed by elements invarious phases of the ISM. High resolution X-ray absorption surveys are possible with technologies ready for flight within decade. == high efficiency X-ray optics with optical performance 3== high resolution X-ray gratings with R 3000 for E 1.5 keV== X-ray micro-calorimeters with R 2000 for E 1.5 keV. The vision for the next decade needs to lead to means and strategies which allows us to perform such absorption surveys as effectively as surveys are now or in very near future quite common in astronomy pursued in other wave length bands such as optical, IR, and sub-mm.

  12. High-Resolution Kaonic-Atom X-ray Spectroscopy with Transition-Edge-Sensor Microcalorimeters

    NASA Astrophysics Data System (ADS)

    Okada, S.; Bennett, D. A.; Doriese, W. B.; Fowler, J. W.; Irwin, K. D.; Ishimoto, S.; Sato, M.; Schmidt, D. R.; Swetz, D. S.; Tatsuno, H.; Ullom, J. N.; Yamada, S.

    2014-09-01

    We are preparing for an ultra-high resolution X-ray spectroscopy of kaonic atoms using an X-ray spectrometer based on an array of superconducting transition-edge-sensor microcalorimeters developed by NIST. The instrument has excellent energy resolutions of 2-3 eV (FWHM) at 6 keV and a large collecting area of about 20 mm. This will open new door to investigate kaon-nucleus strong interaction and provide new accurate charged-kaon mass value.

  13. Laboratory simulation of cometary x rays using a high-resolution microcalorimeter

    SciTech Connect

    Beiersdorfer, P; Chen, H; Boyce, K R; Brown, G V; Kelley, R L; Kilbourne, C A; Porter, F S; Kahn, S M

    2004-08-13

    X-ray emission following charge exchange has been studied on the University of California Lawrence Livermore National Laboratory electron beam ion traps EBIT-I and EBIT-II using a high-resolution microcalorimeter. The measured spectra include the K-shell emission from hydrogen-like and helium-like C, N, O, and Ne needed for simulations of cometary x-ray emission. A comparison of the spectra produced in the interaction of O{sup 8+} with N{sub 2} and CH{sub 4} is presented that illustrates the dependence of the observed spectrum on the interaction gas.

  14. X-ray characterization of CMOS imaging detector with high resolution for fluoroscopic imaging application

    NASA Astrophysics Data System (ADS)

    Cha, Bo Kyung; Kim, Cho Rong; Jeon, Seongchae; Kim, Ryun Kyung; Seo, Chang-Woo; Yang, Keedong; Heo, Duchang; Lee, Tae-Bum; Shin, Min-Seok; Kim, Jong-Boo; Kwon, Oh-Kyung

    2013-12-01

    This paper introduces complementary metal-oxide semiconductor (CMOS) active pixel sensor (APS)-based X-ray imaging detectors with high spatial resolution for medical imaging application. In this study, our proposed X-ray CMOS imaging sensor has been fabricated by using a 0.35 μm 1 Poly 4 Metal CMOS process. The pixel size is 100 μm×100 μm and the pixel array format is 24×96 pixels, which provide a field-of-view (FOV) of 9.6 mm×2.4 mm. The 14.3-bit extend counting analog-to digital converter (ADC) with built-in binning mode was used to reduce the area and simultaneously improve the image resolution. Both thallium-doped CsI (CsI:Tl) and Gd2O2S:Tb scintillator screens were used as converters for incident X-rays to visible light photons. The optical property and X-ray imaging characterization such as X-ray to light response as a function of incident X-ray exposure dose, spatial resolution and X-ray images of objects were measured under different X-ray energy conditions. The measured results suggest that our developed CMOS-based X-ray imaging detector has the potential for fluoroscopic imaging and cone-beam computed tomography (CBCT) imaging applications.

  15. Site-selective high-resolution X-ray absorption spectroscopy and high-resolution X-ray emission spectroscopy of cobalt nanoparticles.

    PubMed

    Kühn, Timna-Josua; Hormes, Josef; Matoussevitch, Nina; Bönnemann, Helmut; Glatzel, Pieter

    2014-08-18

    The special (macroscopic) properties of nanoparticles are mainly due to their large surface-to-volume ratio. Thus, the separate characterization of geometric and electronic properties of surface and bulk would be favorable for a better understanding of the properties of nanoparticles. Because of the chemical sensitivity of X-ray fluorescence lines, in particular those involving higher lying electronic states, high-resolution fluorescence-detected X-ray absorption spectra (HRFD-XAS) offer these opportunities. In this study, three types of wet-chemically synthesized Co nanoparticles, ∼6 nm in diameter with varying thicknesses of a protective shell, were investigated at the ID26 beamline of the European Synchrotron Radiation Facility. HRFD-XAS spectra at the Co K-edge, that is, X-ray absorption near-edge structure (HRFD-XANES) and extended X-ray absorption fine structure (HRFD-EXAFS) spectra, were recorded via detection of the Kβ1,3 fluorescence at specific energies. As these spectra are only partly site-selective due to a strong overlap of the emission lines, a numerical procedure was applied based on a least-squares fitting procedure, realized by singular value decomposition. The detailed analysis of the obtained site-selective spectra, regarding chemical composition and crystallographic phase, using measured and simulated FEFF9-based reference spectra, showed that the metallic core had mainly hexagonal close-packed structure with lattice constants matching bulk Co; the spectra for the shell could be satisfactorily fitted by a mixture of CoO and CoCO3; however, with an obvious need for at least a third compound. To obtain additional information about ligands attached to Co, valence-to-core X-ray emission spectra (VTC-XES) using the Kβ2,5 and the satellite structure Kβ″ and VTC-XANES spectra thereof were also recorded, by which the former results are confirmed. Further on, FEFF simulations indicate that a Co-N compound is a very likely candidate for the third

  16. Simulation of high-resolution X-ray microscopic images for improved alignment

    NASA Astrophysics Data System (ADS)

    Song, Xiangxia; Zhang, Xiaobo; Liu, Gang; Cheng, Xianchao; Li, Wenjie; Guan, Yong; Liu, Ying; Xiong, Ying; Tian, Yangchao

    2011-12-01

    The introduction of precision optical elements to X-ray microscopes necessitates fine realignment to achieve optimal high-resolution imaging. In this paper, we demonstrate a numerical method for simulating image formation that facilitates alignment of the source, condenser, objective lens, and CCD camera. This algorithm, based on ray-tracing and Rayleigh-Sommerfeld diffraction theory, is applied to simulate the X-ray microscope beamline U7A of National Synchrotron Radiation Laboratory (NSRL). The simulations and imaging experiments show that the algorithm is useful for guiding experimental adjustments. Our alignment simulation method is an essential tool for the transmission X-ray microscope (TXM) with optical elements and may also be useful for the alignment of optical components in other modes of microscopy.

  17. Phase contrast enhanced high resolution X-ray imaging and tomography of soft tissue

    NASA Astrophysics Data System (ADS)

    Jakubek, Jan; Granja, Carlos; Dammer, Jiri; Hanus, Robert; Holy, Tomas; Pospisil, Stanislav; Tykva, Richard; Uher, Josef; Vykydal, Zdenek

    2007-02-01

    A tabletop system for digital high resolution and high sensitivity X-ray micro-radiography has been developed for small-animal and soft-tissue imaging. The system is based on a micro-focus X-ray tube and the semiconductor hybrid position sensitive Medipix2 pixel detector. Transmission radiography imaging, conventionally based only on absorption, is enhanced by exploiting phase-shift effects induced in the X-ray beam traversing the sample. Phase contrast imaging is realized by object edge enhancement. DAQ is done by a novel fully integrated USB-based readout with online image generation. Improved signal reconstruction techniques make use of advanced statistical data analysis, enhanced beam hardening correction and direct thickness calibration of individual pixels. 2D and 3D micro-tomography images of several biological samples demonstrate the applicability of the system for biological and medical purposes including in-vivo and time dependent physiological studies in the life sciences.

  18. Superconducting Detector System for High-Resolution Energy-Dispersive Soft X-Ray Spectroscopy

    SciTech Connect

    Friedrich, S; Niedermayr, T; Drury, O; Funk, T; Frank, M; Labov, S E; Cramer, S

    2001-02-21

    Synchrotron-based soft x-ray spectroscopy is often limited by detector performance. Grating spectrometers have the resolution, but lack the efficiency for the analysis of dilute samples. Semiconducting Si(Li) or Ge detectors are efficient, but often lack the resolution to separate weak signals from strong nearby lines in multi-element samples. Superconducting tunnel junctions (STJs) operated at temperatures below 1 K can be used as high-resolution high-efficiency x-ray detectors. They combine high energy resolution around 10 eV FWHM with the broad band efficiency of energy-dispersive detectors. We have designed a two-stage adiabatic demagnetization refrigerator (ADR) to operate STJ detectors in x-ray fluorescence measurements at beam line 4 of the ALS. We demonstrate the capabilities of such a detector system for fluorescence analysis of dilute metal sites in proteins and inorganic model compounds.

  19. Submicron-diameter phase-separated scintillator fibers for high-resolution X-ray imaging

    NASA Astrophysics Data System (ADS)

    Ohashi, Yoshihiro; Yasui, Nobuhiro; Yokota, Yuui; Yoshikawa, Akira; Den, Toru

    2013-02-01

    We demonstrated micrometer-scale resolution X-ray imaging by using phase-separated scintillator fibers. Hexagonally well-aligned 680-nm-diameter GdAlO3(GAP):Ce3+ scintillator fibers surrounded with α-Al2O3 were fabricated from directionally solidified eutectics. The GAP:Ce3+ fibers convert X-rays to lights and emitted lights are confined and transported along the fiber direction by a total reflection mode. High-resolution X-ray image of a gold grating phantom with a 4 μm aperture, corresponding to a bundle of 12 fibers, was achieved even with a 150 -μm-thick scintillator. These scintillator fibers overcome resolution reduction caused by light scattering and almost reach the resolution limit of the material nature itself.

  20. Research relative to high resolution camera on the advanced X-ray astrophysics facility

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The HRC (High Resolution Camera) is a photon counting instrument to be flown on the Advanced X-Ray Astrophysics Facility (AXAF). It is a large field of view, high angular resolution, detector for the x-ray telescope. The HRC consists of a CsI coated microchannel plate (MCP) acting as a soft x-ray photocathode, followed by a second MCP for high electronic gain. The MCPs are readout by a crossed grid of resistively coupled wires to provide high spatial resolution along with timing and pulse height data. The instrument will be used in two modes, as a direct imaging detector with a limiting sensitivity of 10 to the -15 ergs sq cm sec in a 10 to the 5th second exposure, and as a readout for an objective transmission grating providing spectral resolution of several hundreds to thousands.

  1. A high resolution x-ray fluorescence spectrometer for near edge absorption studies

    SciTech Connect

    Stojanoff, V.; Hamalainen, K.; Siddons, D.P.; Hastings, J.B.; Berman, L.E.; Cramer, S.; Smith, G.

    1991-01-01

    A high resolution fluorescence spectrometer using a Johann geometry in a back scattering arrangement was developed. The spectrometer, with a resolution of 0.3 eV at 6.5 keV, combined with an incident beam, with a resolution of 0.7 eV, form the basis of a high resolution instrument for measuring x-ray absorption spectra. The advantages of the instrument are illustrated with the near edge absorption spectrum of dysprosium nitrate. 10 refs., 4 figs.

  2. A high resolution x-ray fluorescence spectrometer for near edge absorption studies

    SciTech Connect

    Stojanoff, V.; Hamalainen, K.; Siddons, D.P.; Hastings, J.B.; Berman, L.E.; Cramer, S.; Smith, G.

    1991-12-31

    A high resolution fluorescence spectrometer using a Johann geometry in a back scattering arrangement was developed. The spectrometer, with a resolution of 0.3 eV at 6.5 keV, combined with an incident beam, with a resolution of 0.7 eV, form the basis of a high resolution instrument for measuring x-ray absorption spectra. The advantages of the instrument are illustrated with the near edge absorption spectrum of dysprosium nitrate. 10 refs., 4 figs.

  3. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    SciTech Connect

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

  4. High resolution x-ray microtomography of biological samples: Requirements and strategies for satisfying them

    SciTech Connect

    Loo, B.W. Jr. ||; Rothman, S.S. |

    1997-02-01

    High resolution x-ray microscopy has been made possible in recent years primarily by two new technologies: microfabricated diffractive lenses for soft x-rays with about 30-50 nm resolution, and high brightness synchrotron x-ray sources. X-ray microscopy occupies a special niche in the array of biological microscopic imaging methods. It extends the capabilities of existing techniques mainly in two areas: a previously unachievable combination of sub-visible resolution and multi-micrometer sample size, and new contrast mechanisms. Because of the soft x-ray wavelengths used in biological imaging (about 1-4 nm), XM is intermediate in resolution between visible light and electron microscopies. Similarly, the penetration depth of soft x-rays in biological materials is such that the ideal sample thickness for XM falls in the range of 0.25 - 10 {mu}m, between that of VLM and EM. XM is therefore valuable for imaging of intermediate level ultrastructure, requiring sub-visible resolutions, in intact cells and subcellular organelles, without artifacts produced by thin sectioning. Many of the contrast producing and sample preparation techniques developed for VLM and EM also work well with XM. These include, for example, molecule specific staining by antibodies with heavy metal or fluorescent labels attached, and sectioning of both frozen and plastic embedded tissue. However, there is also a contrast mechanism unique to XM that exists naturally because a number of elemental absorption edges lie in the wavelength range used. In particular, between the oxygen and carbon absorption edges (2.3 and 4.4 nm wavelength), organic molecules absorb photons much more strongly than does water, permitting element-specific imaging of cellular structure in aqueous media, with no artifically introduced contrast agents. For three-dimensional imaging applications requiring the capabilities of XM, an obvious extension of the technique would therefore be computerized x-ray microtomography (XMT).

  5. The Astro-H Mission and High Resolution X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kelley, Richard L.; Mitsuda, K.; Awaki, H.; Fujimoto, R.; den Herder, J. W.; Ishida, M.; Kilbourne, C. A.; Kunieda, H.; Maeda, Y.; McCammon, D.; Ohashi, T.; Okajima, T.; Porter, F.; Serlemitsos, P.; Soong, Y.; Szymkowiak, A. E.; Takahashi, T.; Takei, Y.; Tashiro, M.; Tawara, Y.; Yamasaki, N. Y.; Astro-H Collaboration

    2010-03-01

    The Japan Aerospace Exploration Agency's Institute of Space and Aeronautical Science (JAXA/ISAS) is developing a major new high-energy astrophysics observatory. Astro-H will provide broadband, high-resolution spectroscopy and imaging over the 0.3-600 keV band using four co-aligned instruments operated simultaneously. The mission will have major US participation supported by NASA as well as contributions from Europe and Canada. For high-resolution x-ray spectroscopy, the soft x-ray spectrometer (SXS) will feature an x-ray calorimeter spectrometer and x-ray mirror. The instrument will cover the energy range 0.3-12 keV and is expected to have an energy resolution better than 5 eV (FWHM) with a collecting area of over 200 cm2 at 6 keV. The cooling system will have both cryogenic and mechanical coolers for up to five years of operation. The SXS is a joint collaboration between NASA/GSFC, ISAS/JAXA and SRON, and the NASA participation was selected as an Explorers Mission of Opportunity in June 2008. As part of this investigation, a fully supported US guest observer program was also proposed and is under review by NASA. Other instruments on Astro-H include a soft x-ray imager (SXI) consisting of a large area CCD camera with 35 arcmin field-of-view and a hard x-ray imager (HXI) that uses focusing x-ray optics combined with both double-sided silicon strip detectors and CdTe array. The 12-m focal length optical system will provide an effective area of 300 cm2 at 30 keV, and high sensitivity from 10-80 keV using multilayer x-ray mirrors with 2-4 arcmin imaging. The soft gamma detector (SGD) is a non-focusing instrument based on a new, narrow-field-of-view Compton telescope with an energy range of 10-600 keV and sensitivity at 300 keV that is more than 10 times higher than Suzaku. Astro-H is planned for launch in 2014 aboard a JAXA HII-A rocket.

  6. Microscopic x-ray luminescence computed tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhu, Dianwen; Zhang, Kun; Li, Changqing

    2015-03-01

    X-ray luminescence computed tomography (XLCT) was emerged as a new hybrid imaging modality, in which the x-rays are used to excite phosphors emitting optical photons to be measured for imaging. In this paper, we reported a microscopic x-ray luminescence computed tomography (microXLCT) with a spatial resolution up to hundreds of micrometers for deep targets. We use a superfine x-ray pencil beam to scan the phosphor targets. The superfine x-ray pencil beam is generated by a small collimator mounted in front of a powerful x-ray tube (93212, Oxford Instrument). A CT detector is used to image the x-ray beam. We have generated an x-ray beam with a diameter of 192 micrometers with a collimator of 100 micrometers in diameter. The emitted optical photons on the top surface of phantom are reflected by a mirror and acquired by an electron multiplier charge-coupled device (EMCCD) camera (C9100-13, Hamamatsu Photonics). The microXLCT imaging system is built inside an x-ray shielding and light tight cabinet. The EMCCD camera is placed in a lead box. All the imaging components are controlled by a VC++ program. The optical photon propagation is modeled with the diffusion equation solved by the finite element method. We have applied different regularization methods including L2 and L1 in the microXLCT reconstruction algorithms. Numerical simulations and phantom experiments are used to validate the microXLCT imaging system.

  7. Very High Resolution Solar X-ray Imaging Using Diffractive Optics

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Skinner, G. K.; Li, M. J.; Shih, A. Y.

    2012-01-01

    This paper describes the development of X-ray diffractive optics for imaging solar flares with better than 0.1 arcsec angular resolution. X-ray images with this resolution of the greater than or equal to 10 MK plasma in solar active regions and solar flares would allow the cross-sectional area of magnetic loops to be resolved and the coronal flare energy release region itself to be probed. The objective of this work is to obtain X-ray images in the iron-line complex at 6.7 keV observed during solar flares with an angular resolution as fine as 0.1 arcsec - over an order of magnitude finer than is now possible. This line emission is from highly ionized iron atoms, primarily Fe xxv, in the hottest flare plasma at temperatures in excess of approximately equal to 10 MK. It provides information on the flare morphology, the iron abundance, and the distribution of the hot plasma. Studying how this plasma is heated to such high temperatures in such short times during solar flares is of critical importance in understanding these powerful transient events, one of the major objectives of solar physics.We describe the design, fabrication, and testing of phase zone plate X-ray lenses with focal lengths of approximately equal to 100 m at these energies that would be capable of achieving these objectives. We show how such lenses could be included on a two-spacecraft formation-flying mission with the lenses on the spacecraft closest to the Sun and an X-ray imaging array on the second spacecraft in the focal plane approximately equal to 100 m away. High resolution X-ray images could be obtained when the two spacecraft are aligned with the region of interest on the Sun. Requirements and constraints for the control of the two spacecraft are discussed together with the overall feasibility of such a formation-flying mission.

  8. Radiation damage and its influence on source requirements for high resolution x-ray holography

    SciTech Connect

    London, R.A.

    1989-01-01

    Soft x-ray holography offers the possibility of obtaining high resolution, 3-D images of living cells and organelles therein. To achieve a specified resolution, a certain number of photons must be scattered by the smallest features of interest within the sample. This requires a certain irradiating fluence, the magnitude of which depends on the wavelength of the x rays and the scattering cross- sections of the features. Unfortunately, irradiation of the sample will be accompanied by the absorption of x rays. If the dose is large, the sample will be damaged, possibly compromising the quality of the image. A theoretical study of the scattering and absorption of x rays during the creation of a hologram is described. Using a new prescription for scattering by condensed biological materials (e.g., protein and/or DNA) within the aqueous environment of a cell, we estimate the irradiating fluence required for a certain resolution and the associated sample dose. The relative merits of different x-ray wavelengths are discussed. A wavelength of about 44{angstrom}, just outside the water window'' (23.2--43.7{angstrom}), appears to be optimal in that the required fluence and dose are minimized, while reasonable x-ray penetrability is maintained. Estimates are given for the minimum source energy required and the maximum duration of an exposure to capture an image before blurring due heat induce motion. The use of colloidal gold tagging can enhance image contrast and reduce the required irradiating fluence and sample damage. 6 refs., 5 figs.

  9. The effects of dust scattering on high-resolution X-ray absorption edge structure

    NASA Astrophysics Data System (ADS)

    Corrales, L.; García, J.; Wilms, J.; Baganoff, F.

    2016-06-01

    High energy studies of astrophysical dust complement observations of dusty interstellar gas at other wavelengths. With high resolution X-ray spectroscopy, dust scattering significantly enhances the total extinction optical depth and alters the shape of photoelectric absorption edges. This effect is modulated by the dust grain size distribution, spatial location along the line of sight, and the imaging resolution of the X-ray telescope. At soft energies, the spectrum of scattered light is likely to have significant features at the 0.3 keV (C-K), 0.5 keV (O-K), and 0.7 keV (Fe-L) photoelectric absorption edges. This direct probe of ISM dust grain elements will be important for (i) understanding the relative abundances of graphitic grains or PAHs versus silicates, and (ii) measuring the depletion of gas phase elements into solid form. We focus in particular on the Fe-L edge, fitting a template for the total extinction to the high resolution spectrum of three X-ray binaries from the Chandra archive: GX 9+9, XTE J1817-330, and Cyg X-1. We discuss ways in which spectroscopy with XMM can yield insight into dust obscured objects such as stars, binaries, AGN, and foreground quasar absorption line systems.

  10. Astro-H: New Spectral Features Seen in High-Resolution X-rays

    NASA Astrophysics Data System (ADS)

    Smith, Randall K.; Odaka, Hirokazu; Astro-H Science Working Group

    2015-01-01

    The Soft X-ray Spectrometer (SXS) microcalorimeter on Astro-H will provide the first high-resolution X-ray spectra of diffuse astrophysical sources. One key new type of science will be charge exchange spectroscopy, wherein highly-ionized metals interact with neutral hydrogen, helium, or other material. This has been detected with modest resolution in comets and planets, and is thought to be the origin of at least some of the 1/4 keV soft X-ray background. We will report on the predicted emission that the Astro-H SXS may detector from all of these sources using the recently released AtomdB Charge Exchange spectral model acx, and comment on possible other sources such as starburst galaxies. The SXS will also observe complex high-resolution spectra from other diffuse sources such as overionized supernova remnants and galaxy clusters. We will discuss these in the context of advanced spectral models using the recently released AtomDB v3.0 data and non-equilibrium models.

  11. High resolution x-ray lensless imaging by differential holographic encoding

    SciTech Connect

    Zhu, D.; Guizar-Sicairos, M.; Wu, B.; Scherz, A.; Acremann, Y.; Tylisczcak, T.; Fischer, P.; Friedenberger, N.; Ollefs, K.; Farle, M.; Fienup, J. R.; Stohr, J.

    2009-11-02

    X-ray free electron lasers (X-FEL{sub s}) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by splitand-delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with stateof- the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  12. Multiphase Flow Characterization Using Simultaneous High Resolution Neutron and X-Ray Imaging

    NASA Astrophysics Data System (ADS)

    LaManna, J.; Anovitz, L. M.; Hussey, D. S.; Jacobson, D. L.

    2015-12-01

    Multiphase flow in geologic materials is an important area of research for hydrology and oil recovery. A valuable tool for determining how liquid water and/or hydrocarbons transport through soils and rocks is neutron tomography due to its high sensitivity to hydrogen. This technique allows for the 3D reconstruction of the liquid phase in the sample. In order to resolve the solid phase structure of the sample it is necessary to perform x-ray tomography which often must be conducted at a separate facility from the neutron imaging. When imaging deformable samples or stochastic flow this delay in imaging modes ruins the analysis as the sample is no longer in an identical state. To address this issue and bring a unique capability to NIST, an instrument has been commissioned for the simultaneous imaging with neutrons and x-rays. The new system orients a micro-focus 90 kV x-ray beam 90° to the neutron beam which facilitates rapid dual-mode tomography of samples. Current highest spatial resolutions are 20 μm and 10 μm for the neutron and x-ray detectors, respectively, with upcoming improvements. This presentation will focus on introducing the new system and demonstrating its ability with several cases. Examples of high resolution water uptake and high speed imaging of uptake dynamics will be given.

  13. High resolution X-ray spectroscopy of SN 1987 A: monitoring with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Sturm, R.; Haberl, F.; Aschenbach, B.; Hasinger, G.

    2010-06-01

    Context. The ongoing propagation of the supernova blast wave of SN 1987 A through its inner circumstellar ring has caused a drastic increase in X-ray luminosity in the past few years, which has allowed detailed high resolution X-ray spectroscopy to be performed with the Reflection Grating Spectrometer. Aims: We report the results of our XMM-Newton monitoring of SN 1987 A, which may be used to follow the detailed evolution of the arising supernova remnant. Methods: The fluxes and broadening of the numerous emission lines measured in the dispersed spectra provide information about the evolution of the X-ray emitting plasma and its dynamics. These were analyzed in combination with the EPIC-pn spectra, which allow a precise determination of the higher temperature plasma. We modeled individual emission lines and fitted plasma emission models. Results: For observations between 2003 and 2007 in particular, we detect significant evolution in the plasma parameters and a deceleration of the radial velocity in the lower temperature plasma regions. We detected (at 3σ-level) an iron K feature in the coadded EPIC-pn spectra. Conclusions: By comparing with Chandra grating observations in 2004, we observe a clear temporal coherence of the spectral evolution and the sudden deceleration of the expansion velocity detectable in X-ray images ~6100 days after the explosion.

  14. Past, Present and Future Prospects of High Resolution X-ray Spectroscopy of Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Kaastra, J.

    2006-08-01

    The first high resolution X-ray spectra of clusters of galaxies have revolutionised the study of cooling flows. These excellent data have been obtained with an instrument (the RGS of XMM-Newton) that has not been optimised for spectroscopy of extended sources. I will present a few recent examples of what can be achieved further with the RGS in combination with the imaging EPIC cameras for the study of chemical enrichment of clusters. The new generation of high spectral resolution imaging TES arrays that is currently being studied for a variety of possible future X-ray observatories (such as XEUS, Constellation-X, DIOS, Estremo and NEW) offer exciting new opportunities to study the physics of clusters of galaxies. I will present examples of how these new instruments will achieve this.

  15. Highly efficient beamline and spectrometer for inelastic soft X-ray scattering at high resolution.

    PubMed

    Lai, C H; Fung, H S; Wu, W B; Huang, H Y; Fu, H W; Lin, S W; Huang, S W; Chiu, C C; Wang, D J; Huang, L J; Tseng, T C; Chung, S C; Chen, C T; Huang, D J

    2014-03-01

    The design, construction and commissioning of a beamline and spectrometer for inelastic soft X-ray scattering at high resolution in a highly efficient system are presented. Based on the energy-compensation principle of grating dispersion, the design of the monochromator-spectrometer system greatly enhances the efficiency of measurement of inelastic soft X-rays scattering. Comprising two bendable gratings, the set-up effectively diminishes the defocus and coma aberrations. At commissioning, this system showed results of spin-flip, d-d and charge-transfer excitations of NiO. These results are consistent with published results but exhibit improved spectral resolution and increased efficiency of measurement. The best energy resolution of the set-up in terms of full width at half-maximum is 108 meV at an incident photon energy tuned about the Ni L3-edge. PMID:24562553

  16. Hiresmon: A Fast High Resolution Beam Position Monitor for Medium Hard and Hard X-Rays

    SciTech Connect

    Menk, Ralf Hendrik; Giuressi, Dario; Arfelli, Fulvia; Rigon, Luigi

    2007-01-19

    The high-resolution x-ray beam position monitor (XBPM) is based on the principle of a segmented longitudinal ionization chamber with integrated readout and USB2 link. In contrast to traditional transversal ionization chambers here the incident x-rays are parallel to the collecting field which allows absolute intensity measurements with a precision better than 0.3 %. Simultaneously the beam position in vertical and horizontal direction can be measured with a frame rate of one kHz. The precision of position encoding depends only on the SNR of the synchrotron radiation and is in the order of micro meters at one kHz frame rate and 108 photon /sec at 9 KeV.

  17. An Elliptical Crystal Spectrometer Suitable for EXAFS Studies of Laser Compressed Materials and for High Resolution X-Ray Spectroscopy.

    PubMed

    Ridgeley, A; Goodman, D; Hall, T A

    1995-01-01

    Using an x-ray spectrometer with an elliptically curved crystal it is possible to study absorption spectra from a target placed at one focus of the ellipse using a backlighting source placed at the other focus. This principle has been used to develop a spectrometer for EXAFS studies of laser compressed materials. The backlighting source is placed at one focus of the ellipse and the laser compressed EXAFS sample at the other. Using this technique a small area of the EXAFS target can be probed, thereby minimizing any spatial variations in the compressed plasma due to nonuniformities in the laser beams. Also, the dispersive nature of the crystal ensures that it acts as a bandpass filter, so that the EXAFS sample is not probed by other x-ray wavelengths which may cause unwanted heating. Another advantage is that compressed and uncompressed EXAFS spectra can be compared on a single shot. The optical properties of the spectrometer are discussed analytically and using a computer ray-tracing program. The development and alignment of the elliptical spectrometer are discussed, and its performance using both x-ray film and a CCD detector is evaluated. The use of the elliptical spectrometer as a high-resolution x-ray instrument is presented. PMID:21307480

  18. High-Resolution Spectroscopy with the Chandra X-ray Observatory

    ScienceCinema

    Canizares, Claude R. [MIT, Cambridge, Massachusetts, United States

    2010-01-08

    The capabilities of the Chandra X-ray Observatory and XMM-Newton for high-resolution spectroscopy have brought tradition plasma diagnostic techniques to the study of cosmic plasma. Observations have probed nearly every class of astronomical object, from young proto-starts through massive O starts and black hole binaries, supernova remnants, active galactic nuclei, and the intergalactic medium. Many of these sources show remarkable rich spectra that reveal new physical information, such as emission measure distributions, elemental abundances, accretion disk and wind signatures, and time variability. This talk will present an overview of the Chandra instrumentaton and selected examples of spectral observations of astrophysical and cosmological importance.

  19. Coordinated Observations of X-ray and High-resolution EUV Active Region Dynamics

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2013-01-01

    The recently-launched High-resolution Coronal imager (Hi-C) sounding rocket provided the highest resolution images of coronal loops and other small-scale structures in the 193 Angstrom passband to date. With just 5 minutes of observations, the instrument recorded a variety of dynamic coronal events -- including even a small B-class flare. We will present our results comparing these extreme-ultraviolet (EUV) observations with X-ray imaging from Hinode/XRT as well as EUV AIA data to identify sources of hot plasma rooted in the photosphere and track their affect on the overall topology and dynamics of the active region.

  20. Coordinated Observations of X-ray and High-Resolution EUV Active Region Dynamics

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina; Cirtain, Jonathan; Winebarger, Amy; Kobayashi, Ken; Golub, Leon; Korreck, Kelly

    2013-01-01

    The recently-launched High-resolution Coronal imager (Hi-C) sounding rocket provided the highest resolution images of coronal loops and other small-scale structures in the 193 Angstrom passband to date. With just 5 minutes of observations, the instrument recorded a variety of dynamic coronal events -- including even a small B-class flare. We will present our results comparing these extreme-ultraviolet (EUV) observations with X-ray imaging from Hinode/XRT as well as EUV AIA data to identify sources of hot plasma rooted in the photosphere and track their affect on the overall topology and dynamics of the active region.

  1. High resolution X-ray diffraction imaging of lead tin telluride

    NASA Technical Reports Server (NTRS)

    Steiner, Bruce; Dobbyn, Ronald C.; Black, David; Burdette, Harold; Kuriyama, Masao; Spal, Richard; Simchick, Richard; Fripp, Archibald

    1991-01-01

    High resolution X-ray diffraction images of two directly comparable crystals of lead tin telluride, one Bridgman-grown on Space Shuttle STS 61A and the other terrestrially Bridgman-grown under similar conditions from identical material, present different subgrain structure. In the terrestrial, sample 1 the appearance of an elaborate array of subgrains is closely associated with the intrusion of regions that are out of diffraction in all of the various images. The formation of this elaborate subgrain structure is inhibited by growth in microgravity.

  2. High resolution hard X-ray spectra of solar and cosmic sources. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.

    1984-01-01

    High resolution hard X-ray observations of a large solar flare and the Crab Nebula were obtained during balloon flights using an array of cooled germanium planar detectors. In addition, high time resolution high sensitivity measurements were obtained with a 300 square cm NaI/CsI phoswich scintillator. The Crab spectrum from both flights was searched without finding evidence of line emission below 200 keV. In particular, for the 73 keV line previously reported a 3 sigma upper limit for a narrow (1 keV FWHM) line .0019 and .0014 ph square cm/sec for the 1979 and 1980 flights, respectively was obtained.

  3. Conception of broadband stigmatic high-resolution spectrometers for the soft X-ray range

    NASA Astrophysics Data System (ADS)

    Vishnyakov, E. A.; Shatokhin, A. N.; Ragozin, E. N.

    2015-04-01

    We formulate an approach to the development of stigmatic high-resolution spectral instruments for the soft X-ray range (λ <= 300 Å), which is based on the combined operation of normalincidence multilayer mirrors (including broadband aperiodic ones) and grazing-incidence reflection gratings with nonequidistant grooves (so-called VLS gratings). A concave multilayer mirror serves to produce a slightly astigmatic image of the radiation source (for instance, an entrance slit), and the diffraction grating produces a set of its dispersed stigmatic spectral images. The width of the operating spectral region is determined by the aperiodic structure of the multilayer mirror and may range up to an octave in wavelength.

  4. Chandra X-Ray Observatory Computer Rendering

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This is a computer rendering of the fully developed Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  5. High-Resolution X-Ray Spectra of the Symbiotic Star SS73 17

    NASA Technical Reports Server (NTRS)

    Eze, R. N. C.; Luna, G. J. M.; Smith, R. K.

    2010-01-01

    SS73 17 was an innocuous Mira-type symbiotic star until the International Gamma-Ray Astrophysics Laboratory and Swift discovered its bright hard X-ray emission, adding it to the small class of "hard X-ray emitting symbiotics." Suzaku observations in 2006 then showed it emits three bright iron lines as well, with little to no emission in the 0.3-2.0 keV bandpass. We present here follow-up observations with the Chandra High Energy Transmission Grating and Suzaku that confirm the earlier detection of strong emission lines of Fe K(alpha) fluorescence, Fe XXV and Fe XXVI but also show significantly more soft X-ray emission. The high-resolution spectrum also shows emission lines of other highly ionized ions as Si xiv and possibly S XVI. In addition, a re-analysis of the 2006 Suzaku data using the latest calibration shows that the hard (15-50 keV) X-ray emission is brighter than previously thought and remains constant in both the 2006 and 2008 data. The G ratio calculated from the Fe xxv lines shows that these lines are thermal, not photoionized, in origin.With the exception of the hard X-ray emission, the spectra from both epochs can be fit using thermal radiation assuming a differential emission measure based on a cooling-flow model combined with a full and partial absorber. We show that acceptable fits can be obtained for all the data in the 1-10 keV band varying only the partial absorber. Based on the temperature and accretion rate, the thermal emission appears to be arising from the boundary layer between the accreting white dwarf and the accretion disk.

  6. High-Resolution X-ray Spectra of the Symbiotic Star SS73 17

    NASA Astrophysics Data System (ADS)

    Eze, R. N. C.; Luna, G. J. M.; Smith, R. K.

    2010-02-01

    SS73 17 was an innocuous Mira-type symbiotic star until the International Gamma-Ray Astrophysics Laboratory and Swift discovered its bright hard X-ray emission, adding it to the small class of "hard X-ray emitting symbiotics." Suzaku observations in 2006 then showed it emits three bright iron lines as well, with little to no emission in the 0.3-2.0 keV bandpass. We present here follow-up observations with the Chandra High Energy Transmission Grating and Suzaku that confirm the earlier detection of strong emission lines of Fe Kα fluorescence, Fe XXV and Fe XXVI but also show significantly more soft X-ray emission. The high-resolution spectrum also shows emission lines of other highly ionized ions as Si XIV and possibly S XVI. In addition, a re-analysis of the 2006 Suzaku data using the latest calibration shows that the hard (15-50 keV) X-ray emission is brighter than previously thought and remains constant in both the 2006 and 2008 data. The G ratio calculated from the Fe XXV lines shows that these lines are thermal, not photoionized, in origin. With the exception of the hard X-ray emission, the spectra from both epochs can be fit using thermal radiation assuming a differential emission measure based on a cooling-flow model combined with a full and partial absorber. We show that acceptable fits can be obtained for all the data in the 1-10 keV band varying only the partial absorber. Based on the temperature and accretion rate, the thermal emission appears to be arising from the boundary layer between the accreting white dwarf and the accretion disk.

  7. Interlaced X-ray diffraction computed tomography

    PubMed Central

    Vamvakeros, Antonios; Jacques, Simon D. M.; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J.; Beale, Andrew M.

    2016-01-01

    An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy. PMID:27047305

  8. High resolution X-ray spectroscopy of astrophysical sources: current and future

    NASA Astrophysics Data System (ADS)

    Paerels, Frits

    High resolution spectroscopy of cosmic X-ray sources has become a well-established technique over the last decade, with the wide variety of investigations performed with the diffraction grating spectrometers on Chandra and XMM-Newton. I will review some of the common themes that have emerged from these studies, which comprises observations of "sources" as varied as the intergalactic medium and the atmospheres of hot neutron stars. With the microcalorimeter spectrometer array on Astro-H, we will be making two more big steps: true imaging spectroscopy, and extension of the high resolution to the Fe K band. I will outline some of the issues we will encounter, against the background of possible discoveries we may make.

  9. High Resolution, Non-Dispersive X-Ray Calorimeter Spectrometers on EBITs and Orbiting Observatories

    NASA Technical Reports Server (NTRS)

    Porter, Frederick S.

    2010-01-01

    X-ray spectroscopy is the primary tool for performing atomic physics with Electron beam ion trap (EBITs). X-ray instruments have generally fallen into two general categories, 1) dispersive instruments with very high spectral resolving powers but limited spectral range, limited count rates, and require an entrance slit, generally, for EBITs, defined by the electron beam itself, and 2) non-dispersive solid-state detectors with much lower spectral resolving powers but that have a broad dynamic range, high count rate ability and do not require a slit. Both of these approaches have compromises that limit the type and efficiency of measurements that can be performed. In 1984 NASA initiated a program to produce a non-dispersive instrument with high spectral resolving power for x-ray astrophysics based on the cryogenic x-ray calorimeter. This program produced the XRS non-dispersive spectrometers on the Astro-E, Astro-E2 (Suzaku) orbiting observatories, the SXS instrument on the Astro-H observatory, and the planned XMS instrument on the International X-ray Observatory. Complimenting these spaceflight programs, a permanent high-resolution x-ray calorimeter spectrometer, the XRS/EBIT, was installed on the LLNL EBIT in 2000. This unique instrument was upgraded to a spectral resolving power of 1000 at 6 keV in 2003 and replaced by a nearly autonomous production-class spectrometer, the EBIT Calorimeter Spectrometer (ECS), in 2007. The ECS spectrometer has a simultaneous bandpass from 0.07 to over 100 keV with a spectral resolving power of 1300 at 6 keV with unit quantum efficiency, and 1900 at 60 keV with a quantum efficiency of 30%. X-ray calorimeters are event based, single photon spectrometers with event time tagging to better than 10 us. We are currently developing a follow-on instrument based on a newer generation of x-ray calorimeters with a spectral resolving power of 3000 at 6 keV, and improved timing and measurement cadence. The unique capabilities of the x-ray

  10. PREFACE: XTOP 2004 -- 7th Biennial Conference on High Resolution X-Ray Diffraction and Imaging

    NASA Astrophysics Data System (ADS)

    Holý, Vaclav

    2005-05-01

    The 7th Biennial Conference on High Resolution X-Ray Diffraction and Imaging (XTOP 2004) was held in the Prague suburb of Pruhonice, Czech Republic, during 7-10 September 2004. It was organized by the Czech and Slovak Crystallographic Association in cooperation with the Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Masaryk University, Brno, and Charles University, Prague. XTOP 2004 took place just after EPDIC IX (European Powder Diffraction Conference) organised in Prague by the same Association during 2-5 September 2004. The Organizing Committee was supported by an International Programme Committee including about 20 prominent scientists from several European and overseas countries, whose helpful suggestions for speakers are acknowledged. The conference was sponsored by the International Union of Crystallography and by several industrial sponsors; this sponsorship allowed us to support about 20 students and young scientists. In total, 147 official delegates and 8 accompanying persons from 16 countries of three continents attended our conference. The scientific programme of the conference was divided into 11 half-day sessions and 2 poster sessions. The participants presented 147 accepted contributions; of these 9 were 45-minute long invited talks, 34 were 20-minute oral presentations and 104 were posters. All posters were displayed for the whole meeting to ensure maximum exposure and interaction between delegates. We followed the very good experience from the previous conference, XTOP 2002, and also organized pre-conference tutorial lectures presented by experts in the field: `Imaging with hard synchrotron radiation' (J Härtwig, Grenoble), `High-resolution x-ray diffractometry: determination of strain and composition' (J Stangl, Linz), `X-ray grazing-incidence scattering from surfaces and nanostructures' (U Pietsch, Potsdam) and `Hard x-ray optics' (J Hrdý, Prague). According to the recommendation of the International Program Committee

  11. Narrow Line X-Ray Calibration Source for High Resolution Microcalorimeters

    NASA Astrophysics Data System (ADS)

    Hokin, M. S.; McCammon, D.; Morgan, K. M.; Bandler, S. R.; Lee, S. J.; Moseley, S. H.; Smith, S. J.

    2014-08-01

    We are developing a narrow line calibration source for use with X-ray microcalorimeters. At energies below 300 eV fluorescent lines are intrinsically broad, making calibration of high resolution detectors difficult. This source consists of a 405 nm (3 eV) laser diode coupled to an optical fiber. The diode is pulsed to create approximately one hundred photons in a few microseconds. If the pulses are short compared to the rise time of the detector, they will be detected as single events with a total energy in the soft X-ray range. Poisson fluctuations in photon number per pulse create a comb of X-ray lines with 3 eV spacing, so detectors with energy resolution better than 2 eV are required to resolve the individual lines. Our currently unstabilized diode has a multimode width less than 1 nm, giving a 300 eV event a FWHM less than 0.1 eV. By varying the driving voltage, or pulse width, the source can produce a comb centered on a wide range of energies. The calibration events are produced at precisely known times. This allows continuous calibration of a flight mission without contaminating the observed spectrum and with minimal deadtime.

  12. Design of High Resolution Soft X-Ray Microcalorimeters Using Magnetic Penetration Thermometers

    NASA Technical Reports Server (NTRS)

    Busch. Sarah; Balvin, Manuel; Bandler, Simon; Denis, Kevin; Finkbeiner, Fred; Porst, Jan-Patrick; Sadlier, Jack; Smith, Stephen; Stevenson, Thomas

    2012-01-01

    We have designed high-resolution soft x-ray microcalorimeters using magnetic penetration thermometers (MPTs) in an array of pixels covering a total of 2 square centimeters to have a resolving power of 300 at energies around 300 eV. This performance is desirable for studying the soft x-ray background from the warm hot intergalactic medium. MPT devices have small sensor heat capacity and high responsivities, which makes them excellent detector technology for attempting to attain sub-eV resolution. We are investigating the feasibility of pixels with absorbers that are 625 x 625 square micrometers, up to 1 x 1 square millimeters in area and 0.35 micrometer thick and thinner. Our tests have shown that suspended gold absorbers 0.35 micrometers thick (RRR = 6.7) are feasible to fabricate. We modeled the thermal diffusion from such thin gold over the size of a 625 x 625 square micrometer absorber, and conclude that the effect of the thermalization on the resolution of a 300 eV photon is an additional approximately 0.2 eV FWHM of broadening. We discuss the thermal effects of small absorber attachment sterns on solid substrate, as well as considerations for multiplexed readout. We will present the progress we have made towards building and testing this soft x-ray detector.

  13. Narrow Line X-Ray Calibration Source for High Resolution Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Hokin, M.S.; McCammon, D.; Morgan, K.M.; Bandler, Simon Richard; Lee, S.J.; Moseley, S.H.; Smith, S.J.

    2013-01-01

    We are developing a narrow line calibration source for use with X-ray microcalorimeters. At energies below 300 electronvolts fluorescent lines are intrinsically broad, making calibration of high resolution detectors difficult. This source consists of a 405 nanometers (3 electronvolts) laser diode coupled to an optical fiber. The diode is pulsed to create approximately one hundred photons in a few microseconds. If the pulses are short compared to the rise time of the detector, they will be detected as single events with a total energy in the soft X-ray range. Poisson fluctuations in photon number per pulse create a comb of X-ray lines with 3 electronvolts spacing, so detectors with energy resolution better than 2 electronvolts are required to resolve the individual lines. Our currently unstabilized diode has a multimode width less than 1 nanometer, giving a 300 electronvolt event a Full width at half maximum (FWHM) less than 0.1 electronvolts. By varying the driving voltage, or pulse width, the source can produce a comb centered on a wide range of energies. The calibration events are produced at precisely known times. This allows continuous calibration of a flight mission without contaminating the observed spectrum and with minimal deadtime.

  14. A High Resolution Full Field Transmission X-ray Microscope at SSRL

    SciTech Connect

    Luening, Katharina; Pianetta, Piero; Yun Wenbing; Almeida, Eduardo; Meulen, Marjolein van der

    2007-01-19

    The Stanford Synchrotron Radiation Laboratory (SSRL) in collaboration with Xradia Inc., the NASA Ames Research Center and Cornell University is implementing a commercial hard x-ray full field imaging microscope based on zone plate optics on a wiggler beam line on SPEAR3. This facility will provide unprecedented analytical capabilities for a broad range of scientific areas and will enable research on nanoscale phenomena and structures in biology as well as materials science and environmental science. This instrument will provide high resolution x-ray microscopy, tomography, and spectromicroscopy capabilities in a photon energy range between 5-14 keV. The spatial resolution of the TXM microscope is specified as 20 nm exploiting imaging in third diffraction order. This imaging facility will optimally combine the latest imaging technology developed by Xradia Inc. with the wiggler source characteristics at beam line 6-2 at SSRL. This will result in an instrument capable of high speed and high resolution imaging with spectral tunability for spectromicroscopy, element specific and Zernike phase contrast imaging. Furthermore, a scanning microprobe capability will be integral to the system thus allowing elemental mapping and fluorescence yield XANES to be performed with a spatial resolution of about 1 {mu}m without introducing any changes to the optical configuration of the instrument.

  15. A High Resolution Full Field Transmission X-ray Microscope at SSRL

    NASA Astrophysics Data System (ADS)

    Lüning, Katharina; Pianetta, Piero; Yun, Wenbing; Almeida, Eduardo; van der Meulen, Marjolein

    2007-01-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) in collaboration with Xradia Inc., the NASA Ames Research Center and Cornell University is implementing a commercial hard x-ray full field imaging microscope based on zone plate optics on a wiggler beam line on SPEAR3. This facility will provide unprecedented analytical capabilities for a broad range of scientific areas and will enable research on nanoscale phenomena and structures in biology as well as materials science and environmental science. This instrument will provide high resolution x-ray microscopy, tomography, and spectromicroscopy capabilities in a photon energy range between 5-14 keV. The spatial resolution of the TXM microscope is specified as 20 nm exploiting imaging in third diffraction order. This imaging facility will optimally combine the latest imaging technology developed by Xradia Inc. with the wiggler source characteristics at beam line 6-2 at SSRL. This will result in an instrument capable of high speed and high resolution imaging with spectral tunability for spectromicroscopy, element specific and Zernike phase contrast imaging. Furthermore, a scanning microprobe capability will be integral to the system thus allowing elemental mapping and fluorescence yield XANES to be performed with a spatial resolution of about 1 μm without introducing any changes to the optical configuration of the instrument.

  16. Focal spot deblurring for high resolution direct conversion x-ray detectors

    NASA Astrophysics Data System (ADS)

    Setlur Nagesh, S. V.; Rana, R.; Russ, M.; Ionita, Ciprian N.; Bednarek, D. R.; Rudin, S.

    2016-03-01

    Small pixel high resolution direct x-ray detectors have the advantage of higher spatial sampling and decreased blurring characteristic. The limiting factors for such systems becomes the degradation due to the focal spot size. One solution is a smaller focal spot; however, this can limit the output of the x-ray tube. Here a software solution of deconvolving with an estimated focal spot blur is presented. To simulate images from a direct detector affected with focal-spot blur, first a set of high-resolution stent images (FRED from Microvention, Inc., Tustin, CA) were acquired using a 75μm pixel size Dexela-Perkin-Elmer detector and frame averaged to reduce quantum noise. Then the averaged image was blurred with a known Gaussian blur. To add noise to the blurred image a flat-field image was multiplied with the blurred image. Both the ideal and the noisy-blurred images were then deconvolved with the known Gaussian function using either threshold-based inverse filtering or Weiner deconvolution. The blur in the ideal image was removed and the details were recovered successfully. However, the inverse filtering deconvolution process is extremely susceptible to noise. The Weiner deconvolution process was able to recover more of the details of the stent from the noisy-blurred image, but for noisier images, stent details are still lost in the recovery process.

  17. In situ high-resolution X-ray photoelectron spectroscopy - Fundamental insights in surface reactions

    NASA Astrophysics Data System (ADS)

    Papp, Christian; Steinrück, Hans-Peter

    2013-11-01

    Since the advent of third generation synchrotron light sources optimized for providing soft X-rays up to 2 keV, X-ray photoelectron spectroscopy (XPS) has been developed to be an outstanding tool to study surface properties and surface reactions at an unprecedented level. The high resolution allows identifying various surface species, and for small molecules even the vibrational fine structure can be resolved in the XP spectra. The high photon flux reduces the required measuring time per spectrum to the domain of a few seconds or even less, which enables to follow surface processes in situ. Moreover, it also provides access to very small coverages down to below 0.1% of a monolayer, enabling the investigation of minority species or processes at defect sites. The photon energy can be adjusted according to the requirement of a particular experiment, i.e., to maximize or minimize the surface sensitivity or the photoionization cross-section of the substrate or the adsorbate. For a few instruments worldwide, a next step forward was taken by combining in situ high-resolution spectrometers with supersonic molecular beams. These beams allow to control and vary the kinetic and internal energies of the incident molecules and provide a local pressure of up to ~10-5 mbar, which can be switched on and off in a controllable way, thus offering a well-defined time structure to study adsorption or reaction processes.

  18. High-resolution X-ray spectroscopy of four active galaxies - Probing the intercloud medium

    NASA Technical Reports Server (NTRS)

    Lum, Kenneth S. K.; Canizares, Claude R.; Markert, Thomas H.; Arnaud, Keith A.

    1990-01-01

    The focal plane crystal spectrometer (FPCS) on the Einstein Observatory has been used to perform a high-resolution spectroscopic search for oxygen X-ray line emission from four active galaxies: Fairall 9, Mrk 421, Mrk 501, and PKS 0548 - 322. Specifically, O VIII Ly-alpha and Ly-beta, whose unredshifted energies are 653 and 775 eV, respectively, were sought. No narrow-line emission was detected within the energy bands searched. Upper limits are calculated on the line flux from these sources of 30 eV equivalent width and use a photoionization model to place corresponding upper limits on the densities of diffuse gas surrounding the active nuclei. The upper limits on gas density range from about 0.02-50/cu cm and probe various radial distances from the central source. This is the first time high-resolution X-ray spectroscopy has been used to place constraints on the intercloud medium in active galaxies.

  19. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  20. The superconducting high-resolution soft X-ray spectrometer at the advanced biological and environmental X-ray facility

    NASA Astrophysics Data System (ADS)

    Friedrich, S.; Drury, O. B.; George, S. J.; Cramer, S. P.

    2007-11-01

    We have built a 36-pixel superconducting tunnel junction X-ray spectrometer for chemical analysis of dilute samples in the soft X-ray band. It offers an energy resolution of ˜10-20 eV FWHM below 1 keV, a solid angle coverage of ˜10 -3, and can be operated at total rates of up to ˜10 6 counts/s. Here, we describe the spectrometer performance in speciation measurements by fluorescence-detected X-ray absorption spectroscopy at the Advanced Biological and Environmental X-ray facility at the ALS synchrotron.

  1. High-efficiency blazed transmission gratings for high-resolution soft x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alexander R.; Schattenburg, Mark L.

    2015-09-01

    High-resolution spectroscopy of astrophysical sources is the key to gaining a quantitative understanding of the history, dynamics, and current conditions of the cosmos. A large-area (> 1,000 cm2), high resolving power (R = λ/Δλ> 3000) soft x-ray grating spectrometer (XGS) that covers the lines of C, N, O, Ne and Fe ions is the ideal tool to address a number of high-priority science questions from the 2010 Decadal Survey, such as the connection between super-massive black holes and large-scale structure via cosmic feedback, the evolution of large- scale structure, the behavior of matter at high densities, and the conditions close to black holes. While no grating missions or instruments are currently approved, an XGS aboard a potential future X-ray Surveyor could easily surpass the above performance metrics. To improve the chances for future soft x-ray grating spectroscopy missions or instruments, grating technology has to progress and advance to higher Technology Readiness Levels (TRLs). To that end we have developed Critical-Angle Transmission (CAT) gratings that combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, high transparency at higher energies). A CAT grating-based spectrometer can provide performance 1-2 orders of magnitude better than current grating instruments on Chandra and Newton-XMM with minimal resource requirements. At present we have fabricated large-area freestanding CAT gratings with narrow integrated support structures from silicon-on- insulator wafers using advanced lithography and a combination of deep reactive-ion and wet etching. Our latest x-ray test results show record high absolute diffraction efficiencies in blazed orders in excess of 30% with room for improvement.

  2. High-efficiency blazed transmission gratings for high-resolution soft x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alexander R.; Schattenburg, Mark L.

    2015-01-01

    High-resolution spectroscopy of astrophysical sources is the key to gaining a quantitative understanding of the history, dynamics, and current conditions of the cosmos. A large-area (> 1,000 cm2), high resolving power (R = λ/Δλ > 3,000) soft x-ray spectrometer that covers the lines of C, N, O, Ne and Fe ions is the ideal tool to address a number of high-priority sciences questions from the 2010 Decadal Survey, such as the connection between super-massive black holes and large-scale structure via cosmic feedback, the evolution of large-scale structure, the behavior of matter at high densities, and the conditions close to black holes. Numerous mission concepts that meet these requirements have been studied and proposed over the last few years, including grating instruments for the International X-ray Observatory. Nevertheless, no grating missions are currently approved. To improve the chances for future soft x-ray grating spectroscopy missions, grating technology has to progress and be advanced to higher TRLs. We have developed Critical-Angle Transmission (CAT) gratings that combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, transparent at higher energies). A CAT grating-based spectrometer can provide performance 1-2 orders of magnitude better than current grating instruments on Chandra and Newton-XMM with minimal resource requirements. We have fabricated large-area free-standing CAT gratings with minimal integrated support structures from silicon-on-insulator wafers using advanced lithography and a combination of deep reactive-ion and wet etching, and will present our latest x-ray test results showing record high diffraction efficiencies in blazed orders.

  3. Laboratory Astrophysics in Support of High-Resolution X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, Peter

    2016-06-01

    X-ray astronomy entered a new era with the advent of high-spectral resolution grating spectrometers aboard the Chandra and XMM-Newton X-ray observatories and, very recently, with the launch of the high-resolution calorimeter (SXS) aboard the Hitomi mission. The ability to perform spectrally resolved observations has necessitated increasing accuracies in the spectral models used to analyze astrophysical data. Our laboratory measurements have responded to that need by assessing the fidelity of the atomic data used in the models and by calibrating specific spectral diagnostics. Our spectroscopy measurements are mostly carried out at the electron beam ion trap facility at Livermore, which produces the relevant ions in a density and temperature environment similar to those of astrophysical plasmas. Recent measurements include the identification of lines seen with Chandra's LETGS in astrophysical spectra but missing in the models; wavelength determinations of K-shell transitions in L-shell ions and of L-shell transitions in M-shell ions needed for the interpretation of absorption line features; and the calibration of the line emission of key spectroscopic diagnostics, such as the L-shell lines of Fe XVII. Observations with Hitomi's SXS will be sensitive to X-ray line formation by charge exchange, which has already been associated with the X-ray emission from comets and which has been suggested as an alternative explanation of the 3.55 keV line, both so far only observed with CCD resolution. Line formation by charge exchange has been another area of our laboratory astrophysics work, and we have recently uncovered that a large fraction of double charge exchange events decay unexpectedly by double X-ray emission. Moreover, we have shown that electron rearrangement following double charge exchange can lead to X-ray energies well in excess of those predicted by current charge exchange models.This work was performed under the auspices of the U.S. Department of Energy by LLNL

  4. High-resolution Bent-crystal Spectrometer for the Ultra-soft X-ray Region

    DOE R&D Accomplishments Database

    Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K. W.; Hulse, R. A.; Walling, R. S.

    1988-10-01

    A multichannel vacuum Brag-crystal spectrometer has been developed for high-resolution measurements of the line emission from tokamak plasmas in the wavelength region between 4 and 25 angstrom. The spectrometer employs a bent crystal in Johann geometry and a microchannel-plate intensified photodiode array. The instrument is capable of measuring high-resolution spectra (lambda/..delta..lambda approx. 3000) with fast time resolution (4 msec per spectrum) and good spatial resolution (3 cm). The spectral bandwidth is ..delta..lambda/lambda{sub 0} = 8 angstrom. A simple tilt mechanism allows access to different wavelength intervals. In order to illustrate the utility of the new spectrometer, time- and space-resolved measurements of the n = 3 to n = 2 spectrum of selenium from the Princeton Large Torus tokamak plasmas are presented. The data are used to determine the plasma transport parameters and to infer the radial distribution of fluorinelike, neonlike, and sodiumlike ions of selenium in the plasma. The new ultra-soft x-ray spectrometer has thus enabled us to demonstrate the utility of high-resolution L-shell spectroscopy of neonlike ions as a fusion diagnostic.

  5. High-resolution bent-crystal spectrometer for the ultra-soft x-ray region

    SciTech Connect

    Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K.W.; Hulse, R.A.; Walling, R.S.

    1988-10-01

    A multichannel vacuum Brag-crystal spectrometer has been developed for high-resolution measurements of the line emission from tokamak plasmas in the wavelength region between 4 and 25 /angstrom/. The spectrometer employs a bent crystal in Johann geometry and a microchannel-plate intensified photodiode array. The instrument is capable of measuring high-resolution spectra (lambda/..delta..lambda approx. 3000) with fast time resolution (4 msec per spectrum) and good spatial resolution (3 cm). The spectral bandwidth is ..delta..lambda/lambda/sub 0/ = 8/angstrom/. A simple tilt mechanism allows access to different wavelength intervals. In order to illustrate the utility of the new spectrometer, time- and space-resolved measurements of the n = 3 to n = 2 spectrum of selenium from the Princeton Large Torus tokamak plasmas are presented. The data are used to determine the plasma transport parameters and to infer the radial distribution of fluorinelike, neonlike, and sodiumlike ions of selenium in the plasma. The new ultra-soft x-ray spectrometer has thus enabled us to demonstrate the utility of high-resolution L-shell spectroscopy of neonlike ions as a fusion diagnostic. 43 refs., 23 figs.

  6. Characterization of an Yb:LuVO 4 single crystal using X-ray topography, high-resolution X-ray diffraction, and X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Paszkowicz, W.; Romanowski, P.; Bąk-Misiuk, J.; Wierzchowski, W.; Wieteska, K.; Graeff, W.; Iwanowski, R. J.; Heinonen, M. H.; Ermakova, O.; Dąbkowska, H.

    2011-10-01

    Knowledge on the defect and electronic structure allows for improved modeling of material properties. A short literature review has shown that the information on defect structure of rare earth orthovanadate single crystals is limited. In this paper, defect and electronic structure of a needle-shaped Yb:LuVO 4 single crystal grown by the slow cooling method have been studied by means of X-ray diffraction topography employing white synchrotron beam, high-resolution diffraction (HRD) and photoelectron spectroscopy (XPS) techniques. Topographic investigations show that the crystal is composed of two blocks disoriented by about 1.5° and separated by a narrow deformed region. Some contrasts observed within the crystal volume may be attributed to glide bands and sector boundaries. The contrasts appearing in the vicinity of the surface may be interpreted as due to the presence of small inclusions. The HRD study indicates, in particular, that among point defects, the vacancy type defects dominate and that the density of other defects is small in comparison. The XPS measurements enabled, despite highly insulating properties of the studied crystal, an analysis of its bulk electronic structure, including the main core-levels (O 1 s, V 2 p, Lu 4 f) as well as the valence band range.

  7. Direct and quantitative comparison of pixelated density profiles to high resolution X-ray reflectivity data.

    SciTech Connect

    Fenter, Paul; Lee, S. S.; Skelton, A A; Cummings, Peter T

    2011-01-01

    A method for comparing pixelated density profiles (e.g. obtained from molecular dynamics or other computational techniques) with experimental X-ray reflectivity data both directly and quantitatively is described. The conditions under which such a comparison can be made quantitatively (e.g. with errors <1%) are determined theoretically by comparing calculated structure factors for an intrinsic continuous density profile with those obtained from density profiles that have been binned into regular spatial increments. The accuracy of the X-ray reflectivity calculations for binned density profiles is defined in terms of the inter-relationships between resolution of the X-ray reflectivity data (i.e. its range in momentum transfer), the chosen bin size and the width of the intrinsic density profile. These factors play a similar role in the application of any structure-factor calculations that involve the use of pixelated density profiles, such as those obtained from iterative phasing algorithms for inverting structures from X-ray reflectivity and coherent diffraction imaging data. Finally, it is shown how simulations of a quartz water interface can be embedded into an exact description of the bulk phases (including the substrate crystal and the fluid water, below and above the actual interface) to quantitatively reproduce the experimental reflectivity data of a solid liquid interface.

  8. Phase transition sequence in sodium bismuth titanate observed using high-resolution x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Aksel, Elena; Forrester, Jennifer S.; Kowalski, Benjamin; Jones, Jacob L.; Thomas, Pam A.

    2011-11-01

    High resolution powder x-ray diffraction patterns of Na0.5Bi0.5TiO3 at selected temperatures were examined to compare structural changes with observed piezoelectric thermal depoling temperatures. The depoling temperatures do not correlate with discrete phase transition temperatures, and therefore, a structural transition is not the origin of thermal depoling. Rather, a correlation is made with an increase in volume fraction of material which does not obey the long-range Cc space group. The origin of the thermal depoling behavior may be the loss of long-range ferroelectric order by a decreasing proportion of the Cc phase or the associated percolation of disordered nano-scale platelets.

  9. Observation of thermomagnetically recorded domains with high-resolution magnetic soft x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Tsunashima, S.; Takagi, Nayuki; Yamaguchi, Atushi; Kume, Minoru; Fischer, P.; Kumazawa, M.

    2003-04-01

    Magnetic domains were thermomagnetically recorded on TbFeCo films using laser pulsed magnetic field modulation (LP-MFM) and light intensity modulation (LIM). The domains were observed with high resolution magnetic transmission X-ray microscopy (M-TXM) before and after the heat treatment in order to clarify the recording characteristics and the thermal stability of recorded domains. From the results of M-TXM images, it was found that isolated single marks whose lengths are much smaller than 100 nm can be recorded by LP-MFM but their mark lengths become often longer than designed. It was further confirmed that the heat treatment at 120 degree C for 50 hours does not influence significantly the crescent-shaped magnetic domains of 100 nm in width recorded using LP-MFM method and circular domains of 150 nm in diameter recorded using LIM method.

  10. Characterisation of LSO:Tb scintillator films for high resolution X-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Cecilia, A.; Rack, A.; Douissard, P.-A.; Martin, T.; Dos Santos Rolo, T.; Vagovič, P.; Pelliccia, D.; Couchaud, M.; Dupré, K.; Baumbach, T.

    2011-05-01

    Within the framework of an FP6 project (SCINTAX)1The Project SCINTAX is funded by the European Community (STRP 033 427), . we developed a new thin film single crystal scintillator for high resolution X-ray imaging based on a layer of modified LSO (Lu2SiO5) grown by liquid phase epitaxy (LPE) on a dedicated substrate. In this work we present the characterisation of the scintillating LSO films in terms of optical and scintillation properties as well as spatial resolution performances. The obtained results are discussed and compared with the performances of the thin scintillating films commonly used in synchrotron-based micro-imaging applications.

  11. EMCCD-Based High Resolution Dynamic X-Ray Detector for Neurovascular Interventions

    PubMed Central

    Sharma, P.; Vasan, S.N. Swetadri; Jain, A.; Panse, A.; Titus, A.H.; Cartwright, A. N.; Bednarek, D. R; Rudin, S.

    2012-01-01

    We have designed and developed from the discrete component level a high resolution dynamic detector for neurovascular interventions. The heart of the detector is a 1024 × 1024 pixel electron multiplying charge coupled device (EMCCD) with a pixel size of 13 × 13 μm2, bonded to a fiber optic plate (FOP), and optically coupled to a 350 μm micro-columnar CsI(TI) scintillator via a 3.3:1 fiber optic taper (FOT). The detector provides x-ray images of 9 cycles/mm resolution at 15 frames/sec and real time live video at 30 frames/sec with binning at a lower resolution, both independent of gain applied to EMCCD, as needed for region-of-interest (ROI) image guidance during neurovascular interventions. PMID:22256144

  12. Very high resolution soft x-ray spectrometer for an electron beam ion trap

    SciTech Connect

    Beiersdorfer, P.; Crespo Lopez-Urrutia, J.R.; Foerster, E.; Mahiri, J. |; Widmann, K.

    1997-01-01

    A very high resolution vacuum flat-crystal spectrometer was constructed for analyzing soft x rays emitted by an electron beam ion trap. The spectrometer was designed to operate at large Bragg angles ({theta}{le}85{degree}) in order to maximize the spectral dispersion and thus the resolving power. Using a quartz (100) crystal at a Bragg angle of 82{degree}, a measurement of the 2p{sub 1/2}, 2p{sub 3/2}{r_arrow}1s{sub 1/2} transitions in hydrogenic Mg{sup 11+} situated near 8.42 {Angstrom} was made. The nominal resolving power of the instrument was better than 30000 allowing us to infer the ion temperature (246{plus_minus}20 eV) from the observed line widths. A comparison with an existing flat-crystal spectrometer demonstrates the great improvement in resolving power achieved. {copyright} {ital 1997 American Institute of Physics.}

  13. High resolution x-ray diffraction analysis of InGaAs/InP superlattices

    SciTech Connect

    Cornet, D. M.; LaPierre, R. R.; Comedi, D.; Pusep, Y. A.

    2006-08-15

    The interfacial properties of lattice-matched InGaAs/InP superlattice (SL) structures grown by gas source molecular beam epitaxy were investigated by high resolution x-ray diffraction (HRXRD). SLs with various periods were grown to determine the contributions of the interface layers to the structural properties of the SLs. The HRXRD curves exhibited a number of features indicative of interfacial layers, including weak even-order satellite peaks, and a zero-order diffraction peak that shifted toward lower diffraction angles with decreasing SL period. A detailed structural model is proposed to explain these observations, consisting of strained InAsP and InGaAsP monolayers due to the group-V gas switching and atomic exchange at the SL interfaces.

  14. Phase transition sequence in sodium bismuth titanate observed using high-resolution x-ray diffraction

    SciTech Connect

    Aksel, Elena; Forrester, Jennifer S.; Kowalski, Benjamin; Jones, Jacob L.; Thomas, Pam A.

    2012-02-06

    High resolution powder x-ray diffraction patterns of Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} at selected temperatures were examined to compare structural changes with observed piezoelectric thermal depoling temperatures. The depoling temperatures do not correlate with discrete phase transition temperatures, and therefore, a structural transition is not the origin of thermal depoling. Rather, a correlation is made with an increase in volume fraction of material which does not obey the long-range Cc space group. The origin of the thermal depoling behavior may be the loss of long-range ferroelectric order by a decreasing proportion of the Cc phase or the associated percolation of disordered nano-scale platelets.

  15. A High-Resolution X-ray Atlas of Supernova Remnants in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Williams, R. M.; Chu, Y.-H.; Dickel, J. R.; Petre, R.; Smith, R. C.; Tavarez, M.

    1998-12-01

    The Large Magellanic Cloud (LMC) presents a unique opportunity to study a large and varied sample of supernova remnants (SNRs), at a common distance ( ~ 50 kpc) and with little interstellar obscuration. These factors allow us to avoid the uncertainties in distances and absorptions that plague the study of Galactic SNRs. Reasonable resolutions can be achieved for LMC SNRs with current instruments in the X-ray, optical, and radio regimes; thus, they can be studied at a level of detail unrivaled by most extragalactic remnants. LMC remnants cover the range of evolutionary stages, from the newly forming SNR of SN 1987A, to the largest remnant yet known (SNR 0450-709, 104x75 pc). They arise from both Type I and Type II progenitors, and expand into environments ranging from a stellar-wind bubble to an HII complex. This extensive sample allows us to examine SNRs both individually and as a group. We can study specific processes such as the collision of two SNRs (DEML316), SNR breakouts (N11L, N86), the expansion of an SNR in a cloudy medium (N63A), Crab-type SNRs (N158A, N157B), and unusual SNR structures (Honeycomb SNR). More importantly, we can identify common features between SNRs and correlate these with their evolutionary states and environments. In this poster we present a high-resolution atlas of the X-ray emission from LMC SNRs, and use the X-ray morphologies to examine SNR conditions and structures. We find five types of SNRs in the LMC. While the Peaked Emission SNRs are dominated by a pulsar-powered nebula, and the Irregular SNRs by the details of their environments, the remaining three categories (Shell, Diffuse Face, and Centrally Peaked) seem to represent an evolutionary trend, as shown by their correlation with remnant sizes. We will discuss the intriguing implications of our findings for SNR development and interactions with the interstellar medium.

  16. A high resolution spectrum of the diffuse soft X-ray background

    NASA Astrophysics Data System (ADS)

    Crowder, S. Gwynne

    Galactic contributions to the diffuse X-ray background were believed to largely come from thermal emission of hot gas and models of the Galactic neighborhood within ˜ 100 pc reflected this belief. However, recent observations led to the realization that emission from charge exchange within the Solar System might produce comparable intensities to that of thermal emission. A high resolution spectrum of the diffuse X-ray background from 0.1 to 1 keV was obtained for a ˜ 1 sr region of the sky centered at l = 90°, b = +60° in May 2008 using a 36 pixel array of microcalorimeters flown on a sounding rocket. With an energy resolution of 11 eV FWHM below 1 keV, the spectrum can be used to separate charge exchange contributions originating within the heliosphere from thermal emission of hot gas in the interstellar medium. The X-ray sensitivity below 1 keV was reduced about a factor of four by contamination that occurred early in the flight, limiting the significance of the results. The observed ratio of helium-like O VII forbidden plus intercombination to resonance lines is 1.2 +/- 1.2 at 90% confidence. This indicates that at least 67% of the emission is thermal. On the other hand, the observed ratio of C VI Lygamma to Lyalpha is 0.3+0.3-0.2 , requiring at least a 33% contribution from charge exchange. In addition to these astrophysical results, I present experimental improvements from the addition of a gold coating to the detector array substrate which greatly reduces extraneous signals and from the use of silicon support meshes which improves blocking filter robustness. I also detail a new optimal filtering analysis technique that preserves spectral resolution and live time in the presence of pulse overlap.

  17. Ultra-high Resolution Optics for EUV and Soft X-ray Inelastic Scattering

    SciTech Connect

    Voronov, Dmitry L.; Cambie, Rossana; Ahn, Minseung; Anderson, Erik H.; Chang, Chih-Hao; Gullikson, Eric M.; Heilmann, Ralf K.; Salmassi, Farhad; Schattenburg, Mark L.; Yashchuk, Valeriy V.; Padmore, Howard A.

    2009-09-16

    We describe a revolutionary new approach to high spectral resolution soft x-ray optics. Conventionally in the soft x-ray energy range, high spectral resolution is obtained by use of a relatively low line density grating operated in 1st order with small slits. This severely limits throughput. This limitation can be removed by use of a grating either in very high order, or with very high line density, if one can maintain high diffraction efficiency. We have developed a new technology for achieving both of these goals which should allow high throughput spectroscopy, at resolving powers of up to 106 at 1 keV. Such optics should provide a revolutionary advance for high resolution lifetime free spectroscopy, such as RIXS, and for pulse compression of chirped beams. We report recent developmental fabrication and characterization of a prototype grating optimized for 14.2 nm EUV light. The prototype grating with a 200 nm period of the blazed grating substrate coated with 20 Mo/Si bilayers with a period of 7.1 nm demonstrates good dispersion in the third order (effective groove density of 15,000 lines per mm) with a diffraction efficiency of more than 33percent.

  18. New results in high-resolution X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Žitnik, Matjaž; Kavčič, Matjaž; Bučar, Klemen; Mihelič, Andrej; Bohinc, Rok

    2014-04-01

    We present some recent results dealing with resonant inelastic X-ray scattering (RIXS) on atomic targets in the 3-5 keV enegy region. In this so-called tender spectral region, the K-shell fluorescence branching ratios become reasonably large, but a full vacuum enclosure is still preferable to avoid detection efficiency loss due to the sizeable arms of high resolution crystal spectrometers. By squeezing energy resolution in the fluorescence decay channel, one may improve the spectral resolution of photoabsorption, enable separation of multielectron excitation and relaxation channels, and completely eliminate the need to scan across the selected energy range of the photon probe in order to acquire the photoabsorption spectrum. On the other hand, the spectra may be untrivially modified by effects such as interference of absorption-emission paths or structured relaxation modes, and a more elaborated modelling is needed to understand the emitted signal. We illustrate these aspects by presenting four cases: the reconstruction of Ar KM and Ar KL absorption edges from a series of highly resolved emission spectra recorded at different probe energies, the reconstruction of the Xe L3 edge from a single X-ray emission spectrum, and the analysis of the radiative Ar K-MM Auger decay preceeded by the resonant or nonresonant photon absorption.

  19. Determination of plutonium in spent nuclear fuel using high resolution X-ray

    DOE PAGESBeta

    McIntosh, Kathryn G.; Reilly, Sean D.; Havrilla, George J.

    2015-05-30

    Characterization of Pu is an essential aspect of safeguards operations at nuclear fuel reprocessing facilities. A novel analysis technique called hiRX (high resolution X-ray) has been developed for the direct measurement of Pu in spent nuclear fuel dissolver solutions. hiRX is based on monochromatic wavelength dispersive X-ray fluorescence (MWDXRF), which provides enhanced sensitivity and specificity compared with conventional XRF techniques. A breadboard setup of the hiRX instrument was calibrated using spiked surrogate spent fuel (SSF) standards prepared as dried residues. Samples of actual spent fuel were utilized to evaluate the performance of the hiRX. The direct detection of just 39more » ng of Pu is demonstrated. Initial quantitative results, with error of 4–27% and precision of 2% relative standard deviation (RSD), were obtained for spent fuel samples. The limit of detection for Pu (100 s) within an excitation spot of 200 μm diameter was 375 pg. This study demonstrates the potential for the hiRX technique to be utilized for the rapid, accurate, and precise determination of Pu. Moreover, the results highlight the analytical capability of hiRX for other applications requiring sensitive and selective nondestructive analyses.« less

  20. Design and performance of AERHA, a high acceptance high resolution soft x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Chiuzbǎian, Sorin G.; Hague, Coryn F.; Avila, Antoine; Delaunay, Renaud; Jaouen, Nicolas; Sacchi, Maurizio; Polack, François; Thomasset, Muriel; Lagarde, Bruno; Nicolaou, Alessandro; Brignolo, Stefania; Baumier, Cédric; Lüning, Jan; Mariot, Jean-Michel

    2014-04-01

    A soft x-ray spectrometer based on the use of an elliptical focusing mirror and a plane varied line spacing grating is described. It achieves both high resolution and high overall efficiency while remaining relatively compact. The instrument is dedicated to resonant inelastic x-ray scattering studies. We set out how this optical arrangement was judged best able to guarantee performance for the 50 - 1000 eV range within achievable fabrication targets. The AERHA (adjustable energy resolution high acceptance) spectrometer operates with an effective angular acceptance between 100 and 250 μsr (energy dependent) and a resolving power well in excess of 5000 according to the Rayleigh criterion. The high angular acceptance is obtained by means of a collecting pre-mirror. Three scattering geometries are available to enable momentum dependent measurements with 135°, 90°, and 50° scattering angles. The instrument operates on the Synchrotron SOLEIL SEXTANTS beamline which serves as a high photon flux 2 × 200 μm2 focal spot source with full polarization control.

  1. Design and performance of AERHA, a high acceptance high resolution soft x-ray spectrometer

    SciTech Connect

    Chiuzbăian, Sorin G. Hague, Coryn F.; Brignolo, Stefania; Baumier, Cédric; Lüning, Jan; Avila, Antoine; Delaunay, Renaud; Mariot, Jean-Michel; Jaouen, Nicolas; Polack, François; Thomasset, Muriel; Lagarde, Bruno; Nicolaou, Alessandro; Sacchi, Maurizio

    2014-04-15

    A soft x-ray spectrometer based on the use of an elliptical focusing mirror and a plane varied line spacing grating is described. It achieves both high resolution and high overall efficiency while remaining relatively compact. The instrument is dedicated to resonant inelastic x-ray scattering studies. We set out how this optical arrangement was judged best able to guarantee performance for the 50 − 1000 eV range within achievable fabrication targets. The AERHA (adjustable energy resolution high acceptance) spectrometer operates with an effective angular acceptance between 100 and 250 μsr (energy dependent) and a resolving power well in excess of 5000 according to the Rayleigh criterion. The high angular acceptance is obtained by means of a collecting pre-mirror. Three scattering geometries are available to enable momentum dependent measurements with 135°, 90°, and 50° scattering angles. The instrument operates on the Synchrotron SOLEIL SEXTANTS beamline which serves as a high photon flux 2 × 200 μm{sup 2} focal spot source with full polarization control.

  2. Determination of plutonium in spent nuclear fuel using high resolution X-ray

    SciTech Connect

    McIntosh, Kathryn G.; Reilly, Sean D.; Havrilla, George J.

    2015-05-30

    Characterization of Pu is an essential aspect of safeguards operations at nuclear fuel reprocessing facilities. A novel analysis technique called hiRX (high resolution X-ray) has been developed for the direct measurement of Pu in spent nuclear fuel dissolver solutions. hiRX is based on monochromatic wavelength dispersive X-ray fluorescence (MWDXRF), which provides enhanced sensitivity and specificity compared with conventional XRF techniques. A breadboard setup of the hiRX instrument was calibrated using spiked surrogate spent fuel (SSF) standards prepared as dried residues. Samples of actual spent fuel were utilized to evaluate the performance of the hiRX. The direct detection of just 39 ng of Pu is demonstrated. Initial quantitative results, with error of 4–27% and precision of 2% relative standard deviation (RSD), were obtained for spent fuel samples. The limit of detection for Pu (100 s) within an excitation spot of 200 μm diameter was 375 pg. This study demonstrates the potential for the hiRX technique to be utilized for the rapid, accurate, and precise determination of Pu. Moreover, the results highlight the analytical capability of hiRX for other applications requiring sensitive and selective nondestructive analyses.

  3. ISIS: An Interactive Spectral Interpretation System for High Resolution X-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Houck, J. C.; Denicola, L. A.

    The Interactive Spectral Interpretation System (ISIS) is designed to facilitate the interpretation and analysis of high resolution X-ray spectra like those obtained using the grating spectrographs on Chandra and XMM and the microcalorimeter on Astro-E. It is being developed as an interactive tool for studying the physics of X-ray spectrum formation, supporting measurement and identification of spectral features, and interaction with a database of atomic structure parameters and plasma emission models. The current version uses the atomic data and collisional ionization equilibrium models in the Astrophysical Plasma Emission Database (APED) of Brickhouse et.al., and also provides access to earlier plasma emission models including Raymond-Smith and MEKAL. Although the current version focuses on collisional ionization equilibrium plasmas, the system is designed to allow use of other databases to provide better support for studies of non-equilibrium and photoionized plasmas. To maximize portability between Unix operating systems, ISIS is being written entirely in ANSI C using free-software components (CFITSIO, PGPLOT and S-Lang).

  4. High-resolution x-ray absorption spectroscopy studies of metal compounds in neurodegenerative brain tissue

    SciTech Connect

    Collingwood, J.F.; Mikhaylova, A.; Davidson, M.R.; Batich, C.; Streit, W.J.; Eskin, T.; Terry, J.; Barrea, R.; Underhill, R.S.; Dobson, J.

    2008-06-16

    Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (< 5 microns). Recent progress in developing the technique is reviewed. Synchrotron X-rays are used to map tissue sections for metals of interest, and XANES and XAFS are used to characterize anomalous concentrations of the metals in-situ so that they can be correlated with tissue structures and disease pathology. Iron anomalies associated with biogenic magnetite, ferritin and haemoglobin are located and identified in an avian tissue model with a pixel resolution {approx} 5 microns. Subsequent studies include brain tissue sections from transgenic Huntington's mice, and the first high-resolution mapping and identification of iron biominerals in human Alzheimer's and control autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.

  5. High Resolution, High Throughput X-Ray Observatory with Adjustable Optics

    NASA Astrophysics Data System (ADS)

    Vikhlinin, Alexey; Brissenden, R.; Bookbinder, J.; Cotroneo, J.; Davis, W.; Forman, W. R.; Freeman, M.; Murray, S. S.; O'Dell, S.; Ramsey, B.; Romaine, S.; Schwartz, D.; Tananbaum, H.; Trolier-McKinstry, S.; Wilke, R. H. T.

    2011-09-01

    An X-ray telescope with sub-arcsec angular resolution and >104 cm2 effective area will trigger another revolution in high energy astrophysics. We are developing technologies which would make such a telescope possible: adjustable grazing incidence bimorph mirrors composed of thin glass or metal segments with a few micrometer layer of piezoelectric material deposited on the back surface. The piezo cells are used to correct mirror figure errors due to fabrication, mounting, gravity release, and thermal deformations. Supporting analytical studies show the feasibility of mirror control, and laboratory demonstrations have shown that displacements of sufficient amplitude can be produced to achieve the required correction. The science topics for a high-resolution, large area X-ray telescope range from neutron star binary populations in the Milky Way and nearby galaxies to studies of diffuse baryons in the biggest objects in the Universe and in the warm-hot intergalactic medium. There will be a significant time span relative to the Chandra baseline for detailed observations of the expanding SNRs, reflection of the past activity of Sgr A* from surrounding molecular clouds, cooling of isolated neutron stars, etc. An exciting new frontier is observations of co-evolution of the supermassive black holes and their host galaxies across the peak in the cosmic star formation at z 3 and into the end of Dark Ages at z=6-10.

  6. High-resolution and large-volume tomography reconstruction for x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Chang-Chieh; Hwu, Yeukuang; Ching, Yu-Tai

    2016-03-01

    This paper presents a method of X-ray image acquisition for the high-resolution tomography reconstruction that uses a light source of synchrotron radiation to reconstruct a three-dimensional tomographic volume dataset for a nanoscale object. For large objects, because of the limited field-of-view, a projection image of an object should to be taken by several shots from different locations, and using an image stitching method to combine these image blocks together. In this study, the overlap of image blocks should be small because our light source is the synchrotron radiation and the X-ray dosage should be minimized as possible. We use the properties of synchrotron radiation to enable the image stitching and alignment success when the overlaps between adjacent image blocks are small. In this study, the size of overlaps can reach to 15% of the size of each image block. During the reconstruction, the mechanical stability should be considered because it leads the misalignment problem in tomography. We adopt the feature-based alignment

  7. High-resolution X-ray spectroscopy: the coming-of-age

    NASA Astrophysics Data System (ADS)

    Kaastra, J.

    2016-06-01

    Since the launch of Chandra and XMM-Newton, high-resolution X-ray spectra of cosmic sources of all kinds have become available. These spectra have resulted in major scientific breakthroughs. However, due to the techniques used, in general high-quality spectra can only be obtained for the brightest few sources of each class. Moreover, except for the most compact extended sources, like cool core clusters, grating spectra are limited to point sources. ASTRO-H makes another major step forward, in yielding for the first time high-quality spectra of extended sources, and improved spectral sensitivity in the Fe-K band. With the launch of Athena, X-ray spectroscopy will become mature. It allows us to extend the investigations from the few handful of brightest sources of each category to a large number of sources far away in space and time, or to get high time-resolution, high-spectral resolution spectra of bright time variable sources.

  8. Crystal structure determination of thymoquinone by high-resolution X-ray powder diffraction.

    PubMed

    Pagola, S; Benavente, A; Raschi, A; Romano, E; Molina, M A A; Stephens, P W

    2004-01-01

    The crystal structure of 2-isopropyl-5-methyl-1,4-benzoquinone (thymoquinone) and its thermal behavior--as necessary physical and chemical properties--were determined in order to enhance the current understanding of thymoquinone chemical action by using high resolution x-ray powder diffraction, Fourier transform infrared spectroscopy (FTIR), and 3 thermo-analytical techniques thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential scanning calorimetry (DSC). The findings obtained with high-resolution x-ray powder diffraction and molecular location methods based on a simulated annealing algorithm after Rietveld refinement showed that the triclinic unit cell was a = 6.73728(8) A, b = 6.91560(8) A, c = 10.4988(2) A, alpha = 88.864(2) degrees, beta = 82.449(1) degrees, gamma = 77.0299(9) degrees; cell volume = 472.52(1) A3, Z = 2, and space group P1. In addition, FTIR spectrum revealed absorption bands corresponding to the carbonyl and C-H stretching of aliphatic and vinylic groups characteristically observed in such p-benzoquinones. Also, a chemical decomposition process starting at 65 degrees C and ending at 213 degrees C was noted when TGA was used. DSC allowed for the determination of onset at 43.55 degrees C and a melting enthalpy value of DeltaH(m) = 110.6 J/g. The low value obtained for the fusion point displayed a van der Waals pattern for molecular binding, and the thermograms performed evidence that thymoquinone can only be found in crystalline triclinic form, as determined by DRX methods. PMID:15760086

  9. X-ray Computed Tomography.

    ERIC Educational Resources Information Center

    Michael, Greg

    2001-01-01

    Describes computed tomography (CT), a medical imaging technique that produces images of transaxial planes through the human body. A CT image is reconstructed mathematically from a large number of one-dimensional projections of a plane. The technique is used in radiological examinations and radiotherapy treatment planning. (Author/MM)

  10. So Many Rockets - The Road to High Resolution Imaging in X-rays

    NASA Astrophysics Data System (ADS)

    Murray, Stephen S.

    2013-01-01

    When I first begin to work on new imaging detectors for X-ray Astronomy I was at AS&E and I worked with Leon Van Speybroeck and Ed Kellogg on a sounding rocket project. We starting by using a microchannel plate image intensifier to detect X-ray photons and convert them to flashes of light that were recorded on 35 mm film frames. Simultaneously there was a 16 mm star camera taking frames so we could tell where the X-rays were coming from. I spent about 6 years working on this payload, eventually becoming the PI and evolving the detector from a film readout to an electronic readout (the crossed grid charge detector) that was the basis for the Einstein, ROSAT and Chandra High Resolution Imagers and Cameras. We had a series of about 6 or so rocket flights culminating in the 1978 flight that actually worked. We detected three photons from Sco X1, and background data from that flight allowed us to set the detector front bias voltage to minimize non-X-ray background for the Einstein HRI. Just about everything that could go wrong on those rockets did go wrong, from a switch not closing to a rocket misfire, to pointing 180 degrees off target. But we learned something each flight and kept coming back to try again. The worse thing for me was having to stay up all night at White Sands in a small darkroom where I could avoid the night crawlers and scorpions that frightened me to death. Not to mention the daredevil helicopter pilots who flew us to the recovery site hugging the ground at top speed all the way there! None-the-less, in the end we succeeded in our goals, and there is nothing so exciting as watching your payload being launched at night (even it did mean sneaking out from the bunker to do it!). Thanks to NASA and the US Navy's White Sands USS Desert Ship (LLS-1; Land Locked Ship - 1) for all the support.

  11. Benchmarking membrane protein detergent stability for improving throughput of high-resolution X-ray structures.

    PubMed

    Sonoda, Yo; Newstead, Simon; Hu, Nien-Jen; Alguel, Yilmaz; Nji, Emmanuel; Beis, Konstantinos; Yashiro, Shoko; Lee, Chiara; Leung, James; Cameron, Alexander D; Byrne, Bernadette; Iwata, So; Drew, David

    2011-01-12

    Obtaining well-ordered crystals is a major hurdle to X-ray structure determination of membrane proteins. To facilitate crystal optimization, we investigated the detergent stability of 24 eukaryotic and prokaryotic membrane proteins, predominantly transporters, using a fluorescent-based unfolding assay. We have benchmarked the stability required for crystallization in small micelle detergents, as they are statistically more likely to lead to high-resolution structures. Using this information, we have been able to obtain well-diffracting crystals for a number of sodium and proton-dependent transporters. By including in the analysis seven membrane proteins for which structures are already known, AmtB, GlpG, Mhp1, GlpT, EmrD, NhaA, and LacY, it was further possible to demonstrate an overall trend between protein stability and structural resolution. We suggest that by monitoring membrane protein stability with reference to the benchmarks described here, greater efforts can be placed on constructs and conditions more likely to yield high-resolution structures. PMID:21220112

  12. High-resolution synchrotron X-ray analysis of bioglass-enriched hydrogels.

    PubMed

    Gorodzha, Svetlana; Douglas, Timothy E L; Samal, Sangram K; Detsch, Rainer; Cholewa-Kowalska, Katarzyna; Braeckmans, Kevin; Boccaccini, Aldo R; Skirtach, Andre G; Weinhardt, Venera; Baumbach, Tilo; Surmeneva, Maria A; Surmenev, Roman A

    2016-05-01

    Enrichment of hydrogels with inorganic particles improves their suitability for bone regeneration by enhancing their mechanical properties, mineralizability, and bioactivity as well as adhesion, proliferation, and differentiation of bone-forming cells, while maintaining injectability. Low aggregation and homogeneous distribution maximize particle surface area, promoting mineralization, cell-particle interactions, and homogenous tissue regeneration. Hence, determination of the size and distribution of particles/particle agglomerates in the hydrogel is desirable. Commonly used techniques have drawbacks. High-resolution techniques (e.g., SEM) require drying. Distribution in the dry state is not representative of the wet state. Techniques in the wet state (histology, µCT) are of lower resolution. Here, self-gelling, injectable composites of Gellan Gum (GG) hydrogel and two different types of sol-gel-derived bioactive glass (bioglass) particles were analyzed in the wet state using Synchrotron X-ray radiation, enabling high-resolution determination of particle size and spatial distribution. The lower detection limit volume was 9 × 10(-5) mm(3) . Bioglass particle suspensions were also studied using zeta potential measurements and Coulter analysis. Aggregation of bioglass particles in the GG hydrogels occurred and aggregate distribution was inhomogeneous. Bioglass promoted attachment of rat mesenchymal stem cells (rMSC) and mineralization. PMID:26749323

  13. Construction of hydrodynamic bead models from high-resolution X-ray crystallographic or nuclear magnetic resonance data.

    PubMed Central

    Byron, O

    1997-01-01

    Computer software such as HYDRO, based upon a comprehensive body of theoretical work, permits the hydrodynamic modeling of macromolecules in solution, which are represented to the computer interface as an assembly of spheres. The uniqueness of any satisfactory resultant model is optimized by incorporating into the modeling procedure the maximal possible number of criteria to which the bead model must conform. An algorithm (AtoB, for atoms to beads) that permits the direct construction of bead models from high resolution x-ray crystallographic or nuclear magnetic resonance data has now been formulated and tested. Models so generated then act as informed starting estimates for the subsequent iterative modeling procedure, thereby hastening the convergence to reasonable representations of solution conformation. Successful application of this algorithm to several proteins shows that predictions of hydrodynamic parameters, including those concerning solvation, can be confirmed. PMID:8994627

  14. Real-time, high-resolution x-ray diffraction measurements on shocked crystals at a synchrotron facility

    NASA Astrophysics Data System (ADS)

    Gupta, Y. M.; Turneaure, Stefan J.; Perkins, K.; Zimmerman, K.; Arganbright, N.; Shen, G.; Chow, P.

    2012-12-01

    The Advanced Photon Source (APS) at Argonne National Laboratory was used to obtain real-time, high-resolution x-ray diffraction measurements to determine the microscopic response of shock-compressed single crystals. Disk shaped samples were subjected to plane shock wave compression by impacting them with half-inch diameter, flat-faced projectiles. The projectiles were accelerated to velocities ranging between 300 and 1200 m/s using a compact powder gun designed specifically for use at a synchrotron facility. The experiments were designed to keep the sample probed volume under uniaxial strain and constant stress for a duration longer than the 153.4 ns spacing between x-ray bunches. X-rays from a single pulse (<100 ps duration) out of the periodic x-ray pulses emitted by the synchrotron were used for the diffraction measurements. A synchronization and x-ray detection technique was developed to ensure that the measured signal was obtained unambiguously from the desired x-ray pulse incident on the sample while the sample was in a constant uniaxial strain state. The synchronization and x-ray detection techniques described can be used for a variety of x-ray measurements on shock compressed solids and liquids at the APS. Detailed procedures for applying the Bragg-Brentano parafocusing approach to single crystals at the APS are presented. Analytic developments to determine the effects of crystal substructure and non-ideal geometry on the diffraction pattern position and shape are presented. Representative real-time x-ray diffraction data, indicating shock-induced microstructural changes, are presented for a shock-compressed Al(111) sample. The experimental developments presented here provided, in part, the impetus for the Dynamic Compression Sector (DCS) currently under development at the APS. Both the synchronization/x-ray detection methods and the analysis equations for high-resolution single crystal x-ray diffraction can be used at the DCS.

  15. Ab initio simulation of diffractometer instrumental function for high-resolution X-ray diffraction1

    PubMed Central

    Mikhalychev, Alexander; Benediktovitch, Andrei; Ulyanenkova, Tatjana; Ulyanenkov, Alex

    2015-01-01

    Modeling of the X-ray diffractometer instrumental function for a given optics configuration is important both for planning experiments and for the analysis of measured data. A fast and universal method for instrumental function simulation, suitable for fully automated computer realization and describing both coplanar and noncoplanar measurement geometries for any combination of X-ray optical elements, is proposed. The method can be identified as semi-analytical backward ray tracing and is based on the calculation of a detected signal as an integral of X-ray intensities for all the rays reaching the detector. The high speed of calculation is provided by the expressions for analytical integration over the spatial coordinates that describe the detection point. Consideration of the three-dimensional propagation of rays without restriction to the diffraction plane provides the applicability of the method for noncoplanar geometry and the accuracy for characterization of the signal from a two-dimensional detector. The correctness of the simulation algorithm is checked in the following two ways: by verifying the consistency of the calculated data with the patterns expected for certain simple limiting cases and by comparing measured reciprocal-space maps with the corresponding maps simulated by the proposed method for the same diffractometer configurations. Both kinds of tests demonstrate the agreement of the simulated instrumental function shape with the measured data. PMID:26089760

  16. Bragg Magnifier: High-efficiency, High-resolution X-ray Detector

    SciTech Connect

    Stampanoni, Marco; Groso, Amela; Abela, Rafael; Borchert, Gunther

    2007-01-19

    X-ray computer microtomography is a powerful tool for non-destructive examinations in medicine, biology, and material sciences. The resolution of the presently used detector systems is restricted by scintillator properties, optical light transfer, and charge-coupled-device (CCD) granularity, which impose a practical limit of about one micrometer spatial resolution at detector efficiencies of a few percent. A recently developed detector, called Bragg Magnifier, achieves a breakthrough in this respect, satisfying the research requirements of an efficient advance towards the submicron range. The Bragg Magnifier uses the properties of asymmetric Bragg diffraction to increase the cross section of the diffracted X-ray beam. Magnifications up to 100x100 can be achieved even at hard X-rays energies (>20 keV). In this way the influence of the detector resolution can be reduced accordingly and the efficiency increased. Such a device has been developed and successfully integrated into the Tomography Station of the Materials Science Beamline of the Swiss Light Source (SLS). The device can be operated at energies ranging from 17.5 keV up to 22.75 keV, reaching theoretical pixel sizes of 140 nm.

  17. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements.

    PubMed

    Seidler, G T; Mortensen, D R; Remesnik, A J; Pacold, J I; Ball, N A; Barry, N; Styczinski, M; Hoidn, O R

    2014-11-01

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10(6)-10(7) photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species. PMID:25430123

  18. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    SciTech Connect

    Seidler, G. T. Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R.

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  19. Chandra X-ray Observatory high-resolution x-ray spectroscopy of stars: Modeling and interpretation

    NASA Astrophysics Data System (ADS)

    Huenemoerder, David P.

    2004-05-01

    The Chandra X-ray Observatory grating spectrometers allow study of stellar spectra at resolutions on the order of 1000. Prior x-ray observatories' low resolution data have shown that nearly all classes of stars emit x rays. Chandra reveals details of line and continuum contributions to the spectra which can be interpreted through application of plasma models based on atomic databases. For cool stars with hot coronas interpreted in the solar paradigm, assumption of collisional ionization equilibrium allows derivation of temperature distributions and elemental abundances. Densities can be derived from He-like ion's metastable transition lines. Abundance trends are unlike the Sun, as are the very hot temperature distributions. For young stars, there is evidence of accretion driven x-ray emission, rather than magnetically confined plasma emission. For some hot stars, the expected emission mechanism of shocked winds has been challenged; there is now evidence for magnetically confined thermal plasmas. The helium-like line emission in hot stars is susceptible to photoexcitation, which can also be exploited to derive wind structure.

  20. High-resolution dichroic imaging of magnetic flux distributions in superconductors with scanning x-ray microscopy

    SciTech Connect

    Ruoß, S. Stahl, C.; Weigand, M.; Schütz, G.; Albrecht, J.

    2015-01-12

    The penetration of magnetic flux into high-temperature superconductors has been observed using a high-resolution technique based on x-ray magnetic circular dichroism. Superconductors coated with thin soft-magnetic layers are observed in a scanning x-ray microscope under the influence of external magnetic fields. Resulting electric currents in the superconductor create an inhomogeneous magnetic field distribution above the superconductor and lead to a local reorientation of the ferromagnetic layer. Measuring the local magnetization of the ferromagnet by x-ray absorption microscopy with circular-polarized radiation allows the analysis of the magnetic flux distribution in the superconductor with a spatial resolution on the nanoscale.

  1. High-resolution X-ray spectra of solar flares. VII - A long-duration X-ray flare associated with a coronal mass ejection

    NASA Technical Reports Server (NTRS)

    Kreplin, R. W.; Doschek, G. A.; Feldman, U.; Sheeley, N. R., Jr.; Seely, J. F.

    1985-01-01

    It has been recognized that very long duration X-ray events (lasting several hours) are frequently associated with coronal mass ejection. Thus, Sheeley et al. (1983) found that the probability of the occurrence of a coronal mass ejection (CME) increases monotonically with the X-ray event duration time. It is pointed out that the association of long-duration, or long-decay, X-ray events (LDEs) with CMEs was first recognized from analysis of solar images obtained by the X-ray telescopes on Skylab and the Naval Research Laboratory (NRL) slitless spectroheliograph. Recently high-resolution Bragg crystal X-ray spectrometers have been flown on three spacecraft, including the Department of Defense P78-1 spacecraft, the NASA Solar Maximum Mission (SMM), and the Japanese Hinotori spacecraft. In the present paper, P78-1 X-ray spectra of an LDE which had its origin behind the solar west limb on November 14, 1980 is presented. The obtained data make it possible to estimate temperatures of the hottest portion of the magnetic loops in which the emission arises.

  2. High resolution X-ray fluorescence imaging for a microbeam radiation therapy treatment planning system

    NASA Astrophysics Data System (ADS)

    Chtcheprov, Pavel; Inscoe, Christina; Burk, Laurel; Ger, Rachel; Yuan, Hong; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-03-01

    Microbeam radiation therapy (MRT) uses an array of high-dose, narrow (~100 μm) beams separated by a fraction of a millimeter to treat various radio-resistant, deep-seated tumors. MRT has been shown to spare normal tissue up to 1000 Gy of entrance dose while still being highly tumoricidal. Current methods of tumor localization for our MRT treatments require MRI and X-ray imaging with subject motion and image registration that contribute to the measurement error. The purpose of this study is to develop a novel form of imaging to quickly and accurately assist in high resolution target positioning for MRT treatments using X-ray fluorescence (XRF). The key to this method is using the microbeam to both treat and image. High Z contrast media is injected into the phantom or blood pool of the subject prior to imaging. Using a collimated spectrum analyzer, the region of interest is scanned through the MRT beam and the fluorescence signal is recorded for each slice. The signal can be processed to show vascular differences in the tissue and isolate tumor regions. Using the radiation therapy source as the imaging source, repositioning and registration errors are eliminated. A phantom study showed that a spatial resolution of a fraction of microbeam width can be achieved by precision translation of the mouse stage. Preliminary results from an animal study showed accurate iodine profusion, confirmed by CT. The proposed image guidance method, using XRF to locate and ablate tumors, can be used as a fast and accurate MRT treatment planning system.

  3. High-Resolution X-Ray and Light Beam Induced Current (LBIC) Measurements of Multcrystalline Silicon Solar Cells

    SciTech Connect

    Jellison Jr, Gerald Earle; Budai, John D; Bennett, Charlee J C; Tischler, Jonathan Zachary; Duty, Chad E; Yelundur, V.; Rohatgi, A.

    2010-01-01

    High-resolution, spatially-resolved x-ray Laue patterns and high-resolution light beam induced current (LBIC) measurements are combined to study two multicrystalline solar cells made from the Heat Exchanger Method (HEM) and the Sting Ribbon Growth technique. The LBIC measurements were made at 4 different wavelengths (488, 633, 780, and 980 nm), resulting in penetration depths ranging from <1 {mu}m to >100 {mu}m. There is a strong correlation between the x-ray and LBIC measurements, showing that some twins and grain boundaries are effective in the reduction of local quantum efficiency, while others are benign.

  4. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments

    SciTech Connect

    Hill, K. W. Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A.; Lu, J.; Beiersdorfer, P.; Chen, H.; Magee, E.

    2014-11-15

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/ΔE of order 10 000 and spatial resolution better than 10 μm. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  5. High resolution transmission soft X-ray microscopy of deterioration products developed in large concrete dams

    PubMed

    Kurtis; Monteiro; Brown; Meyer-Ilse

    1999-12-01

    In concrete structures, the reaction of certain siliceous aggregates with the highly alkaline concrete pore solution produces an alkali-silicate gel that can absorb water and expand. This reaction can lead to expansion, cracking, increased permeability, and decreased strength of the concrete. Massive concrete structures, such as dams, are particularly susceptible to the damage caused by the alkali-silica reaction because of the availability of water and because massive gravity dams usually do not contain steel reinforcement to restrain the expansion. Both the cement hydration products and alkali-silica reaction products are extremely sensitive to humidity. Consequently, characterization techniques that require high vacuum or drying, as many existing techniques do, are not particularly appropriate for the study of the alkali-silica reaction because artefacts are introduced. Environmental scanning electron micrographs and scanning electron micrographs with energy dispersive X-ray analysis results demonstrate the effect of drying on the morphology and chemical composition of the alkali-silicate reaction gel. Thus, the impetus for this research was the need to observe and characterize the alkali-silica reaction and its gel product on a microscopic level in a wet environment (i.e. without introducing artefacts due to drying). Only soft X-ray transmission microscopy provides the required high spatial resolution needed to observe the reaction process in situ. The alkali-silica reaction can be observed over time, in a wet condition, and at normal pressures, features unavailable with most other high resolution techniques. Soft X-rays also reveal information on the internal structure of the sample. The purpose of this paper is to present research, obtained using transmission soft X-ray microscopy, on the effect of concrete pore solution cations, namely sodium and calcium, on the product formed as a result of alkali attack. Alkali-silicate reaction (ASR) gel was obtained from

  6. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, Victor; Goodman, Claude A.

    1996-01-01

    Apparatus for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels.

  7. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, V.; Goodman, C.A.

    1996-08-20

    Apparatus is disclosed for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels. 12 figs.

  8. X-ray rocking curve measurements of bent crystals. [used in High Resolution Spectrometer in Advanced X-ray Astrophysics Facility

    NASA Technical Reports Server (NTRS)

    Hakim, M. B.; Muney, W. S.; Fowler, W. B.; Woodgate, B. E.

    1988-01-01

    A three-crystal laboratory X-ray spectrometer is used to measure the Bragg reflection from concave cylindrically curved crystals to be used in the high-resolution X-ray spectrometer of the NASA Advanced X-ray Astrophysics Facility (AXAF). The first two crystals, in the dispersive (1.1) arrangement, select a narrow collimated monochromatic beam in the Cu K-alpha(1) line at 1.5 A (8.1 keV), which illuminates the test crystal. The angular centroids of rocking curves measured along the surface provide a measure of the conformity of the crystal to the desired radius of curvature. Individual and combined rocking-curve widths and areas provide a measure of the resolution and efficiency at 1.54 A. The crystals analyzed included LiF(200), PET, and acid phthalates such as TAP.

  9. A normal incidence, high resolution X-ray telescope for solar coronal observations

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1984-01-01

    Efforts directed toward the completion of an X-ray telescope assembly design, the procurement of major components, and the coordination of optical fabrication and X-ray multilayer testing are reported.

  10. High resolution simulation of beam dynamics in electron linacs for x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Qiang, J.; Ryne, R. D.; Venturini, M.; Zholents, A. A.; Pogorelov, I. V.

    2009-10-01

    In this paper we report on large-scale high resolution simulations of beam dynamics in electron linacs for the next-generation x-ray free electron lasers (FELs). We describe key features of a parallel macroparticle simulation code including three-dimensional (3D) space-charge effects, short-range structure wakefields, coherent synchrotron radiation (CSR) wakefields, and treatment of radio-frequency (rf) accelerating cavities using maps obtained from axial field profiles. We present a study of the microbunching instability causing severe electron beam fragmentation in the longitudinal phase space which is a critical issue for future FELs. Using parameters for a proposed FEL linac at Lawrence Berkeley National Laboratory (LBNL), we show that a large number of macroparticles (beyond 100 million) is generally needed to control the numerical macroparticle shot noise and avoid overestimating the microbunching instability. We explore the effect of the longitudinal grid on simulation results. We also study the effect of initial uncorrelated energy spread on the final uncorrelated energy spread of the beam for the FEL linac.

  11. Ultra-high resolution water window x ray microscope optics design and analysis

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Wang, C.

    1993-01-01

    This project has been focused on the design and analysis of an ultra-high resolution water window soft-x-ray microscope. These activities have been accomplished by completing two tasks contained in the statement of work of this contract. The new results from this work confirm: (1) that in order to achieve resolutions greater than three times the wavelength of the incident radiation, it will be necessary to use spherical mirror surfaces and to use graded multilayer coatings on the secondary in order to accommodate the large variations of the angle of incidence over the secondary when operating the microscope at numerical apertures of 0.35 or greater; (2) that surface contour errors will have a significant effect on the optical performance of the microscope and must be controlled to a peak-to-valley variation of 50-100 A and a frequency of 8 periods over the surface of a mirror; and (3) that tolerance analysis of the spherical Schwarzschild microscope has been shown that the water window operations will require 2-3 times tighter tolerances to achieve a similar performance of operations with 130 A radiation. These results have been included in a manuscript included in the appendix.

  12. Virtual histology by means of high-resolution X-ray CT.

    PubMed

    Cnudde, V; Masschaele, B; De Cock, H E V; Olstad, K; Vlaminck, L; Vlassenbroeck, J; Dierick, M; Witte, Y D; Van Hoorebeke, L; Jacobs, P

    2008-12-01

    Micro-CT is a non-destructive technique for 3D tomographic investigation of an object. A 3D representation of the internal structure is calculated based on a series of X-ray radiographs taken from different angles. The spatial resolution of current laboratory-used micro-CT systems has come down over the last years from a few tens of microns to a few microns. This opens the possibility to perform histological investigations in 3D on a virtual representation of a sample, referred to as virtual 3D histology. The advantage of micro-CT based virtual histology is the immediate and automated 3D visualization of the sample without prior slicing, sample preparation like decalcification, photographing and aligning. This not only permits a drastic reduction in preparation time but also offers the possibility to easily investigate objects that are difficult to slice. This article presents results that were obtained on punch biopsies of horse skin, (dental) alveolus of ponies and chondro-osseous samples from the tarsus of foals studied with the new high resolution micro-CT set-up (HRXCT) at the Ghent University (Belgium) (http://www.ugct.ugent.be). This state-of-the-art set-up provides a 1 micron resolution and is therefore ideally suited for a direct comparison with standard light microscopy-based histology. PMID:19094024

  13. A high resolution large x-ray mission based on thin glass: optomechanical design

    NASA Astrophysics Data System (ADS)

    Basso, Stefano; Buratti, Enrico; Civitani, Marta; Pareschi, Giovanni; Salmaso, Bianca; Spiga, Daniele; Ghigo, Mauro; Tagliaferri, Gianpiero; Eder, Josef

    2014-07-01

    The technology of X-ray optics based on very thin glass sheets curved on mandrels figured to an optical quality have been quickly developed in these last years, as the on flight NUSTAR or the glass solutions for the IXO mission have demonstrated. Different possibilities to freeze the correct shape can be chosen and the constrains to the glass can widely affect the response in term of strength and quality. This study shows the opto-mechanical performances of the design based on the hot slumped glass sheets stiffed with reinforcing ribs. With this concept a glass stack can be integrated into a mechanical structure in order to form a module that can be assembled in a large structure. The considered input data and requirements are those specified for the proposed Athena mission. Different types of materials are considered following the latest progress in the slumping and the availability of alternative tougher glass. Static and dynamic FE analyses coupled with ray-tracing are performed in order to reach a high resolution (less than 5 arcsec). Also an optimization of the ribs distribution is implemented in function of the radius of curvature.

  14. 3D, high-resolution deep x-ray absorber mask

    NASA Astrophysics Data System (ADS)

    Dumbravescu, Niculae; Grigore, Luminita

    2000-08-01

    Although, by using gray-tone lithography and common technologies in standard IC fabrication it's easy to obtain an arbitrarily 3-D shaping of positive thick resists, there are some limitations too. E-beam writing implies a maximum of only 200 gray-levels on the project retilce, and the limited focus depth of the projection objective gives a poor lateral resolution. That's why we applied a new approach to enhance the 3-D resolution of gray-tone lithography. By combining gray-tone lithography with binary masking technique, it was possible to obtain a high resolution (vertical and horizontal directions) into thick resist. Considering it as a primary mold, a metallic variable absorber mask for deep X-ray lithography may be processed. Previously, it's necessary to transform the resist surface into a conductive layer as follows: conditioning, nucleation and electroless plating, respectively. After that, a metallic deposit is obtained by electroplating at a desired thickness, resulting in a complementary shape of the mold resist. The original design and fabrication method for the gray-tone test reticle were supported by preliminary experiments showing the main advantage of this new technology: the 3-D structuring of thick resists in a single exposure step and also a very promising aspect ratio obtained of over 9:1.

  15. FRONT-END ASIC FOR HIGH RESOLUTION X-RAY SPECTROMETERS.

    SciTech Connect

    DE GERONIMO,G.; CHEN, W.; FRIED, J.; LI, Z.; PINELLI, D.A.; REHAK, P.; VERNON, E.; GASKIN, J.A.; RAMSEY, B.D.; ANELLI, G.

    2007-10-27

    We present an application specific integrated circuit (ASIC) for high-resolution x-ray spectrometers. The ASIC is designed to read out signals from a pixelated silicon drift detector (SDD). Each hexagonal pixel has an area of 15 mmz and an anode capacitance of less than 100 fF. There is no integrated Field Effect transistor (FET) in the pixel, rather, the readout is done by wirebonding the anodes to the inputs of the ASIC. The ASIC provides 14 channels of low-noise charge amplification, high-order shaping with baseline stabilization, and peak detection with analog memory. The readout is sparse and based on low voltage differential signaling. An interposer provides all the interconnections required to bias and operate the system. The channel dissipates 1.6 mW. The complete 14-pixel unit covers an area of 210 mm{sup 2}, dissipates 12 mW cm{sup -2}, and can be tiled to cover an arbitrarily large detection area. We measured a preliminary resolution of 172 eV at -35 C on the 6 keV peak of a {sup 55}Fe source.

  16. A versatile high-resolution x-ray imager (HRXI) for laser-plasma experiments on OMEGA

    SciTech Connect

    Bourgade, J. L.; Troussel, P.; Casner, A.; Huser, G.; Fariaud, J.; Remond, C.; Gontier, D.; Chollet, C.; Zuber, C.; Reverdin, C.; Richard, A.; Maroni, R.; Aubard, F.; Angelier, B.

    2008-10-15

    A high-resolution x-ray imager (HRXI) devoted to laser-plasma experiments combines two state-of-the-art technologies developed in France: a high-resolution x-ray microscope and a high-speed x-ray streak camera. The resulting streaked imager achieves spatial and temporal resolutions of {approx}5 {mu}m and {approx}10 ps, respectively. The HXRI has recorded enhanced spatial and temporal resolution radiographs of indirectly driven targets on OMEGA. This paper describes the main features of the instrument and details the activation process on OMEGA (particularly the alignment). Recent results obtained on joint CEA/LLE radiographic OMEGA experiments will also be presented.

  17. Experimental analysis of high-resolution soft x-ray microscopy

    SciTech Connect

    Chao, Weilun; Anderson, Erik H.; Denbeaux, Gregory; Harteneck, Bruce; Pearson, Angelic L.; Olynick, Deirdre; Schneider, Gerd; Attwood, David

    2001-09-06

    The soft x-ray, full-field microscope XM-1 at Lawrence Berkeley National Laboratory's (LBNL) Advanced Light Source has already demonstrated its capability to resolve 25-nm features. This was accomplished using a micro zone plate (MZP) with an outer zone width of 25 nm. Limited by the aspect ratio of the resist used in the fabrication, the gold-plating thickness of that zone plate is around 40 nm. However, some applications, in particular, biological imaging, prefer improved efficiency, which can be achieved by high-aspect-ratio zone plates. We accomplish this by using a bilayer-resist process in the zone plate fabrication. As our first attempt, a 40-nm-outer-zone-width MZP with a nickel-plating thickness of 150 nm (aspect ratio of 4:1) was successfully fabricated. Relative to the 25-nm MZP, this zone plate is ten times more efficient. Using this high-efficiency MZP, a line test pattern with half period of 30 nm is resolved by the microscope at photon energy of 500 eV. Furthermore, with a new multilayer mirror, the XM-1 can now perform imaging up to 1.8 keV. An image of a line test pattern with half period of 40 nm has a measured modulation of 90%. The image was taken at 1.77 keV with the high-efficiency MZP with an outer zone width of 35 nm and a nickel-plating thickness of 180 nm (aspect ratio of 5:1). XM-1 provides a gateway to high-resolution imaging at high energy. To measure frequency response of the XM-1, a partially annealed gold ''island'' pattern was chosen as a test object. After comparison with the SEM image of the pattern, the microscope has the measured cutoff of 19 nm, close to the theoretical one of 17 nm. The normalized frequency response, which is the ratio of the power density of the soft x-ray image to that of the SEM image, is shown in this paper.

  18. Design and performance of a soft-x-ray interferometer for ultra-high-resolution fourier transform spectroscopy

    SciTech Connect

    Moler, E.J.; Hussain, Z.; Duarte, R.M.; Howells, M.R.

    1997-04-01

    A Fourier Transform Soft X-ray spectrometer (FT-SX) has been designed and is under construction for the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory as a branch of beamline 9.3.2. The spectrometer is a novel soft x-ray interferometer designed for ultra-high resolution (theoretical resolving power E/{delta}E{approximately}10{sup 6}) spectroscopy in the photon energy region of 60-120 eV. This instrument is expected to provide experimental results which sensitively test models of correlated electron processes in atomic and molecular physics. The design criteria and consequent technical challenges posed by the short wavelengths of x-rays and desired resolving power are discussed. The fundamental and practical aspects of soft x-ray interferometry are also explored.

  19. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  20. Empirical electro-optical and x-ray performance evaluation of CMOS active pixels sensor for low dose, high resolution x-ray medical imaging.

    PubMed

    Arvanitis, C D; Bohndiek, S E; Royle, G; Blue, A; Liang, H X; Clark, A; Prydderch, M; Turchetta, R; Speller, R

    2007-12-01

    Monolithic complementary metal oxide semiconductor (CMOS) active pixel sensors with high performance have gained attention in the last few years in many scientific and space applications. In order to evaluate the increasing capabilities of this technology, in particular where low dose high resolution x-ray medical imaging is required, critical electro-optical and physical x-ray performance evaluation was determined. The electro-optical performance includes read noise, full well capacity, interacting quantum efficiency, and pixels cross talk. The x-ray performance, including x-ray sensitivity, modulation transfer function, noise power spectrum, and detection quantum efficiency, has been evaluated in the mammographic energy range. The sensor is a 525 x 525 standard three transistor CMOS active pixel sensor array with more than 75% fill factor and 25 x 25 microm pixel pitch. Reading at 10 f/s, it is found that the sensor has 114 electrons total additive noise, 10(5) electrons full well capacity with shot noise limited operation, and 34% interacting quantum efficiency at 530 nm. Two different structured CsI:Tl phosphors with thickness 95 and 115 microm, respectively, have been optically coupled via a fiber optic plate to the array resulting in two different system configurations. The sensitivity of the two different system configurations was 43 and 47 electrons per x-ray incident on the sensor. The MTF at 10% of the two different system configurations was 9.5 and 9 cycles/mm with detective quantum efficiency of 0.45 and 0.48, respectively, close to zero frequency at approximately 0.44 microC/kg (1.72 mR) detector entrance exposure. The detector was quantum limited at low spatial frequencies and its performance was comparable with high resolution a: Si and charge coupled device based x-ray imagers. The detector also demonstrates almost an order of magnitude lower noise than active matrix flat panel imagers. The results suggest that CMOS active pixel sensors when coupled

  1. Empirical electro-optical and x-ray performance evaluation of CMOS active pixels sensor for low dose, high resolution x-ray medical imaging

    SciTech Connect

    Arvanitis, C. D.; Bohndiek, S. E.; Royle, G.; Blue, A.; Liang, H. X.; Clark, A.; Prydderch, M.; Turchetta, R.; Speller, R.

    2007-12-15

    Monolithic complementary metal oxide semiconductor (CMOS) active pixel sensors with high performance have gained attention in the last few years in many scientific and space applications. In order to evaluate the increasing capabilities of this technology, in particular where low dose high resolution x-ray medical imaging is required, critical electro-optical and physical x-ray performance evaluation was determined. The electro-optical performance includes read noise, full well capacity, interacting quantum efficiency, and pixels cross talk. The x-ray performance, including x-ray sensitivity, modulation transfer function, noise power spectrum, and detection quantum efficiency, has been evaluated in the mammographic energy range. The sensor is a 525x525 standard three transistor CMOS active pixel sensor array with more than 75% fill factor and 25x25 {mu}m pixel pitch. Reading at 10 f/s, it is found that the sensor has 114 electrons total additive noise, 10{sup 5} electrons full well capacity with shot noise limited operation, and 34% interacting quantum efficiency at 530 nm. Two different structured CsI:Tl phosphors with thickness 95 and 115 {mu}m, respectively, have been optically coupled via a fiber optic plate to the array resulting in two different system configurations. The sensitivity of the two different system configurations was 43 and 47 electrons per x-ray incident on the sensor. The MTF at 10% of the two different system configurations was 9.5 and 9 cycles/mm with detective quantum efficiency of 0.45 and 0.48, respectively, close to zero frequency at {approx}0.44 {mu}C/kg (1.72 mR) detector entrance exposure. The detector was quantum limited at low spatial frequencies and its performance was comparable with high resolution a:Si and charge coupled device based x-ray imagers. The detector also demonstrates almost an order of magnitude lower noise than active matrix flat panel imagers. The results suggest that CMOS active pixel sensors when coupled to

  2. Photon-counting imaging camera for high-resolution X-ray and γ-ray applications

    NASA Astrophysics Data System (ADS)

    Hall, D. J.; Holland, A.

    2011-01-01

    Standard X-ray imaging techniques using CCDs require the integration of thousands of X-ray photons into a single image frame. Through the addition of a scintillating layer to the CCD it is possible to greatly increase the X-ray detection efficiency at high energies. Using standard imaging techniques with the inclusion of the scintillating layer does, however, leave serious limitations on the spatial resolution achievable due to the spreading of the light generated in the scintillator. The Electron-Multiplying CCD (EM-CCD) shares much of the common architecture of the standard CCD but for the inclusion of a supplementary readout register. This additional high-voltage register allows the signal electrons to be `multiplied' before reaching the readout node of the CCD, increasing the signal before any significant noise is introduced. The increase in the signal-to-noise ratio allows very low signals to be extracted above the noise floor, leading to the common use of EM-CCDs in night-vision and security applications. Through the coupling of a scintillator to an EM-CCD it is possible to resolve individual X-ray photon interactions in the scintillator above the noise floor. Without this extra gain these low signals would be lost beneath the noise floor. Using various centroiding techniques it is possible to locate the interaction position of the incident X-ray photon in the scintillator to the sub-pixel level, with measurements here at 59.5 keV giving an initial FWHM of the line spread function of 31μm. This high-resolution, hard X-ray imager has many potential applications in medical and biological imaging, where energy discrimination at a high resolution is desired. Further applications include synchrotron-based research, an area in which high-resolution imaging is essential.

  3. High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential.

    PubMed

    Uhlig, J; Doriese, W B; Fowler, J W; Swetz, D S; Jaye, C; Fischer, D A; Reintsema, C D; Bennett, D A; Vale, L R; Mandal, U; O'Neil, G C; Miaja-Avila, L; Joe, Y I; El Nahhas, A; Fullagar, W; Gustafsson, F Parnefjord; Sundström, V; Kurunthu, D; Hilton, G C; Schmidt, D R; Ullom, J N

    2015-05-01

    X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edge sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies. PMID:25931095

  4. High-resolution x-ray imaging of a globular cluster core: compact binaries in 47Tuc.

    PubMed

    Grindlay, J E; Heinke, C; Edmonds, P D; Murray, S S

    2001-06-22

    We have obtained high-resolution (approximately 1") deep x-ray images of the globular cluster 47Tucanae (NGC 104) with the Chandra X-ray Observatory to study the population of compact binaries in the high stellar density core. A 70-kilosecond exposure of the cluster reveals a centrally concentrated population of faint (Lx approximately 10(30-33) ergs per second) x-ray sources, with at least 108 located within the central 2' x 2.5' and greater, similar half with Lx approximately 10(30.5) ergs per second. All 15 millisecond pulsars (MSPs) recently located precisely by radio observations are identified, though 2 are unresolved by Chandra. The x-ray spectral and temporal characteristics, as well as initial optical identifications with the Hubble Space Telescope, suggest that greater, similar50 percent are MSPs, about 30 percent are accreting white dwarfs, about 15 percent are main-sequence binaries in flare outbursts, and only two to three are quiescent low-mass x-ray binaries containing neutron stars, the conventional progenitors of MSPs. An upper limit of about 470 times the mass of the sun is derived for the mass of an accreting central black hole in the cluster. These observations provide the first x-ray "color-magnitude" diagram for a globular cluster and census of its compact object and binary population. PMID:11358997

  5. Superconducting High-Resolution X-Ray Spectrometers for Chemical State Analysis of Dilute Samples

    SciTech Connect

    Friedrich, S; Drury, O B; Funk, T; Sherrell, D; Yachandra, V K; Labov, S E; Cramer, S P

    2003-09-02

    Cryogenic X-ray spectrometers operating at temperatures below 1 K combine high energy resolution with broadband efficiency for X-ray energies up to 10 keV. They offer advantages for chemical state analysis of dilute samples by fluorescence-detected X-ray absorption spectroscopy (XAS) in cases where conventional Ge or Si(Li) detectors lack energy resolution and grating spectrometers lack detection efficiency. We are developing soft X-ray spectrometers based on superconducting Nb-Al-AlOx-Al-Nb tunnel junction (STJ) technology. X-rays absorbed in one of the superconducting electrodes generate excess charge carriers in proportion to their energy, thereby producing a measurable temporary increase in tunneling current. For STJ operation at the synchrotron, we have designed a two-stage adiabatic demagnetization refrigerator (ADR) with a cold finger that holds a 3 x 3 array of STJs inside the UHV sample chamber at a temperature of {approx}0.1 K within {approx}15 mm of a room temperature sample. Our STJ spectrometer can have an energy resolution below 10 eV FWHM for X-ray energies up to 1 keV, and has total count rate capabilities above 100,000 counts/s. We will describe detector performance in synchrotron-based X-ray fluorescence experiments and demonstrate its use for XAS on a dilute metal site in a metalloprotein.

  6. HIGH RESOLUTION X-RAY SPECTROSCOPY OF THE LOCAL HOT GAS ALONG THE 3C 273 SIGHTLINE

    SciTech Connect

    Fang, Taotao; Jiang, Xiaochuan

    2014-04-20

    X-ray observations of highly ionized metal absorption lines at z = 0 provide critical information on the hot gas distribution in and around the Milky Way. We present a study of more than 10 yr of Chandra and XMM-Newton observations of 3C 273, one of the brightest extragalactic X-ray sources. Compared with previous works, we obtain much tighter constraints on the physical properties of the X-ray absorber. We also find a large, non-thermal velocity at ∼100-150 km s{sup –1}, the main reason for the higher line equivalent width when compared with other sightlines. Using joint analysis with X-ray emission and ultraviolet observations, we derive a size of 5-15 kpc and a temperature of (1.5-1.8) × 10{sup 6} K for the X-ray absorber. The 3C 273 sightline passes through a number of Galactic structures, including radio loops I and IV, the North Polar Spur, and the neighborhood of the newly discovered ''Fermi bubbles''. We argue that the X-ray absorber is unlikely to be associated with the nearby radio loops I and IV; however, the non-thermal velocity can be naturally explained as the result of the expansion of the ''Fermi bubbles''. Our data imply a shock-expansion velocity of 200-300 km s{sup –1}. Our study indicates a likely complex environment for the production of the Galactic X-ray absorbers along different sightlines, and highlights the significance of probing galactic feedback with high resolution X-ray spectroscopy.

  7. High-resolution X-ray spectroscopy of rare events: a different look at local structure and chemistry

    PubMed Central

    Glatzel, Pieter; Robblee, John H.; Messinger, Johannes; Fernandez, Carmen; Cinco, Roehl; Visser, Henk; McFarlane, Karen; Bellacchio, Emanuele; Pizarro, Shelly; Sauer, Kenneth; Yachandra, Vittal K.; Klein, Melvin P.; Cox, Billie L.; Nealson, Kenneth H.; Cramer, Stephen P.

    2014-01-01

    The combination of large-acceptance high-resolution X-ray optics with bright synchrotron sources permits quantitative analysis of rare events such as X-ray fluorescence from very dilute systems, weak fluorescence transitions or X-ray Raman scattering. Transition-metal Kβ fluorescence contains information about spin and oxidation state; examples of the characterization of the Mn oxidation states in the oxygen-evolving complex of photosystem II and Mn-consuming spores from the marine bacillus SG-1 are presented. Weaker features of the Kβ spectrum resulting from valence-level and ‘interatomic’ ligand to metal transitions contain detailed information on the ligand-atom type, distance and orientation. Applications of this spectral region to characterize the local structure of model compounds are presented. X-ray Raman scattering (XRS) is an extremely rare event, but also represents a unique technique to obtain bulk-sensitive low-energy (<600 eV) X-ray absorption fine structure (XAFS) spectra using hard (~10 keV) X-rays. A photon is inelastically scattered, losing part of its energy to promote an electron into an unoccupied level. In many cases, the cross section is proportional to that of the corresponding absorption process yielding the same X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) features. XRS finds application for systems that defy XAFS analysis at low energies, e.g. liquids or highly concentrated complex systems, reactive compounds and samples under extreme conditions (pressure, temperature). Recent results are discussed. PMID:11512725

  8. Plant Tissues in 3D via X-Ray Tomography: Simple Contrasting Methods Allow High Resolution Imaging

    PubMed Central

    Staedler, Yannick M.; Masson, David; Schönenberger, Jürg

    2013-01-01

    Computed tomography remains strongly underused in plant sciences despite its high potential in delivering detailed 3D phenotypical information because of the low X-ray absorption of most plant tissues. Existing protocols to study soft tissues display poor performance, especially when compared to those used on animals. More efficient protocols to study plant material are therefore needed. Flowers of Arabidopsis thaliana and Marcgravia caudata were immersed in a selection of contrasting agents used to treat samples for transmission electron microscopy. Grayscale values for floral tissues and background were measured as a function of time. Contrast was quantified via a contrast index. The thick buds of Marcgravia were scanned to determine which contrasting agents best penetrate thick tissues. The highest contrast increase with cytoplasm-rich tissues was obtained with phosphotungstate, whereas osmium tetroxide and bismuth tatrate displayed the highest contrast increase with vacuolated tissues. Phosphotungstate also displayed the best sample penetration. Furthermore, infiltration with phosphotungstate allowed imaging of all plants parts at a high resolution of 3 µm, which approaches the maximum resolution of our equipment: 1.5 µm. The high affinity of phosphotungstate for vasculature, cytoplasm-rich tissue, and pollen causes these tissues to absorb more X-rays than the surrounding tissues, which, in turn, makes these tissues appear brighter on the scan data. Tissues with different brightness can then be virtually dissected from each other by selecting the bracket of grayscale to be visualized. Promising directions for the future include in silico phenotyping and developmental studies of plant inner parts (e.g., ovules, vasculature, pollen, and cell nuclei) via virtual dissection as well as correlations of quantitative phenotypes with omics datasets. Therefore, this work represents a crucial improvement of previous methods, allowing new directions of research to be

  9. Plant tissues in 3D via X-ray tomography: simple contrasting methods allow high resolution imaging.

    PubMed

    Staedler, Yannick M; Masson, David; Schönenberger, Jürg

    2013-01-01

    Computed tomography remains strongly underused in plant sciences despite its high potential in delivering detailed 3D phenotypical information because of the low X-ray absorption of most plant tissues. Existing protocols to study soft tissues display poor performance, especially when compared to those used on animals. More efficient protocols to study plant material are therefore needed. Flowers of Arabidopsis thaliana and Marcgravia caudata were immersed in a selection of contrasting agents used to treat samples for transmission electron microscopy. Grayscale values for floral tissues and background were measured as a function of time. Contrast was quantified via a contrast index. The thick buds of Marcgravia were scanned to determine which contrasting agents best penetrate thick tissues. The highest contrast increase with cytoplasm-rich tissues was obtained with phosphotungstate, whereas osmium tetroxide and bismuth tatrate displayed the highest contrast increase with vacuolated tissues. Phosphotungstate also displayed the best sample penetration. Furthermore, infiltration with phosphotungstate allowed imaging of all plants parts at a high resolution of 3 µm, which approaches the maximum resolution of our equipment: 1.5 µm. The high affinity of phosphotungstate for vasculature, cytoplasm-rich tissue, and pollen causes these tissues to absorb more X-rays than the surrounding tissues, which, in turn, makes these tissues appear brighter on the scan data. Tissues with different brightness can then be virtually dissected from each other by selecting the bracket of grayscale to be visualized. Promising directions for the future include in silico phenotyping and developmental studies of plant inner parts (e.g., ovules, vasculature, pollen, and cell nuclei) via virtual dissection as well as correlations of quantitative phenotypes with omics datasets. Therefore, this work represents a crucial improvement of previous methods, allowing new directions of research to be

  10. Scintillator avalanche photoconductor with high resolution emitter readout for low dose x-ray imaging: Lag

    PubMed Central

    Li, Dan; Zhao, Wei; Nanba, Masakazu; Egami, Norifomi

    2009-01-01

    Purpose: A new concept of indirect conversion flat-panel imager with avalanche gain and field emitter array (FEA) readout is being investigated. It is referred to as scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The present work investigates the temporal performance, i.e., lag, of SAPHIRE. Methods: Since the temporal performance of the x-ray detection materials, i.e., the structured scintillator and avalanche amorphous selenium (a-Se) photoconductor, has been studied previously, the investigation is focused on lag due to the FEA readout method. The principle of FEA readout is similar to that of scanning electron beam readout used in camera tubes, where the dominant source of lag is the energy spread of electrons. Since the principles of emission and beam focusing methods for FEA are different from thermionic emission used in camera tubes, its electron beam energy spread and hence lag is expected to be different. In the present work, the energy spread of the electrons emitted from a FEA was investigated theoretically by analyzing different contributing factors due to the FEA design and operations: The inherent energy spread of field emission, the FEA driving pulse delay, and the angular distribution of emitted electrons. The electron energy spread determined the beam acceptance characteristic curve of the photoconductive target, i.e., the accepted beam current (Ia) as a function of target potential (Vt), from which lag could be calculated numerically. Lag calculation was performed using FEA parameters of two prototype HARP-FEA image sensors, and the results were compared with experimental measurements. Strategies for reducing lag in SAPHIRE were proposed and analyzed. Results: The theoretical analysis shows that the dominant factor for lag is the angular distribution of electrons emitted from the FEA. The first frame lags for two prototype sensors with 4 and 25 μm HARP layer thicknesses were 62.1% and 9.1%, respectively. A

  11. Investigation of Exploding Wire Plasmas Using High Resolution Point Projection X-ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Knapp, Patrick

    2011-10-01

    We have determined the properties of plasma around and between two exploding wires using high-resolution x-ray absorption spectroscopy. Plasma densities and temperatures ranging from 1020 cm-3 and a few eV to 1017 cm-3 and 30 eV have been measured in experiments at Cornell University with two 25 μm aluminum (Al) wires spaced 1 mm apart driven by ~ 100 kA peak current pulses with 50 - 100 ns rise time. The wire plasma was backlit by the 1 . 4 - 1 . 6 keV continuum radiation produced by a Mo wire X-pinch. The spectrometer employed two spherically bent quartz crystals to record the absorption and backlighter spectra simultaneously. The transition between the dense Al wire core and the coronal plasma is seen as a transition from cold K-edge absorption to Mg-, Na- and finally Ne-like absorption at the boundary. In the plasma that accumulates between the wires, ionization states up to Be-Like Al have been seen. The spectrometer geometry and ~ 2 μm X-pinch source size provide 0 . 3 eV spectral resolution and 20 μm spatial resolution, enabling us to see 1 --> 2 satellite transitions as separate lines as well as O-, F- and N-like 1 --> 3 transitions that have not been seen before. A step wedge was used to calibrate the transmission, enabling density to be measured within 50 % and temperature to be measured within 25 % . A genetic algorithm was developed to fit synthetic spectra calculated using the collisional-radiative code SCRAM to the experimental spectra. In order to obtain agreement it was necessary to assume 3 plasma regions with variable thicknesses, thereby allowing the inferred plasma conditions to vary along the absorption path. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the National Nuclear Security Administration under DE-AC04-94AL85000 This research was carried out at Cornell University sponsored by the NNSA Stewardship Science Academic Alliances program under DOE agreement DE-FC03-02NA00057.

  12. Structure and interactions of fluid phospholipid bilayers measured by high-resolution X-ray scattering

    NASA Astrophysics Data System (ADS)

    Petrache, Horia Iosif

    The topic of this work is the biologically relevant fluid phase of phosphatidylcholine lipid bilayers. A first goal is the determination of the average bilayer structure using low-angle X-ray scattering from multilamellar lipid vesicles (MLVs). The MLVs are smectic liquid crystals, for which interbilayer correlations decay algebraically. Consequently, the smectic Bragg peaks have power low tails, with the exponent related to the bilayer fluctuations. The analysis of such peaks requires good instrumental resolution and a sophisticated (and equally good) scattering theory. The high resolution is achieved at the F3 station at CHESS. The scattering theory is an improved version of the modified Caillé theory being developed in our laboratory. Data fitting gives the three pieces of information carried by the scattering peaks: position, amplitude, and power-law exponent. The position and the amplitude (form factor) are used to determine the bilayer structure. The power-law exponent is converted into mean square fluctuations in the interbilayer water spacing. This opens a new window on interbilayer interactions which is the second goal of this work. The fundamental issue of interbilayer interactions is addressed both experimentally and theoretically. We obtain the interbilayer water spacing fluctuation σ, as well as the traditional osmotic pressure P, both as functions of the lamellar repeat spacing D and the aqueous separation a. We show theoretically how to obtain the functional form of the fluctuational free energy from the a data, which is then determined to within a factor that depends upon the bending modulus, Kc. The resulting functional form determined from experimental data has an exponential decay rather than the power law decay that applies for hard confinement in the large a regime, thereby showing that a theory of soft confinement is necessary. The existing theory of soft confinement predicts an exponential decay, but with a smaller decay length λfl than we

  13. Ultra high throughput four-reflection x-ray telescope for high resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Tawara, Yuzuru; Mitsuishi, Ikuyuki; Babazaki, Yasunori; Nakamichi, Ren; Bandai, Ayako

    2015-09-01

    The first application of four-times reflection X-ray optics is planned for the DIOS mission, in which very soft X-ray observation is expected. On the other hand, effective area of the telescope for higher X-ray energy (E < 10 keV) including iron K emission lines has been so far limited to about 1000 cm2 for assumed several meter focal length. However, if we introduce four-reflection optics to this energy range, we can get several times large effective area for single telescope with same several meter focal length. To prove this possibility, we performed ray tracing simulation for four-reflection telescope with 6 m focal length and found that effective area of 3100 cm2 at 6 keV can be obtained for single telescope. In this paper, we will discuss about other telescope performances, mechanical properties and application to fine spectroscopic mission using X-ray micro-calorimeter.

  14. A fast and high resolution x-ray imaging sensor for tape substrate inspection

    NASA Astrophysics Data System (ADS)

    Yeom, Jung-Yeol; Roh, Young-Jun; Jung, Chang-Ook; Jeong, Dae-Hwa

    2008-11-01

    In automated Tape substrate (TS) inspection, machine vision is widely adopted for their high throughput and cost advantages. However, conventional methods are overly sensitive to foreign particles or have limitations in detecting three dimensional defects such as top over-etching. In an attempt to complement vision inspection systems, we proposed utilizing x-ray inspection. To implement x-ray inspection in TS application, we developed a prototype fast and high spatial resolution x-ray imaging sensor which functions at frame rate in excess of 30 fps and has a spatial resolution of 20 µm. In this paper, the development of the sensor and its performance is addressed and the efficiency of the x-ray inspection in detecting top over-etching defects will be shown with experimental studies.

  15. High resolution double-sided diffractive optics for hard X-ray microscopy.

    PubMed

    Mohacsi, Istvan; Vartiainen, Ismo; Guizar-Sicairos, Manuel; Karvinen, Petri; Guzenko, Vitaliy A; Müller, Elisabeth; Färm, Elina; Ritala, Mikko; Kewish, Cameron M; Somogyi, Andrea; David, Christian

    2015-01-26

    The fabrication of high aspect ratio metallic nanostructures is crucial for the production of efficient diffractive X-ray optics in the hard X-ray range. We present a novel method to increase their structure height via the double-sided patterning of the support membrane. In transmission, the two Fresnel zone plates on the two sides of the substrate will act as a single zone plate with added structure height. The presented double-sided zone plates with 30 nm smallest zone width offer up to 9.9% focusing efficiency at 9 keV, that results in a factor of two improvement over their previously demonstrated single-sided counterparts. The increase in efficiency paves the way to speed up X-ray microscopy measurements and allows the more efficient utilization of the flux in full-field X-ray microscopy. PMID:25835837

  16. Development of High Resolution Hard X-Ray Telescope with Multilayer Coatings

    NASA Technical Reports Server (NTRS)

    Brinton, John C. (Technical Monitor); Gorenstein, Paul

    2004-01-01

    The major objective of this program is the development of a focusing hard X-ray telescope with moderately high angular resolution, i .e. comparable to the telescopes of XMM-Newton. The key ingredients of the telescope are a depth graded multilayer coatings and electroformed nickel substrates that are considerably lighter weight than those of previous missions such as XMM-Newton, which have had conventional single metal layer reflective coatings and have operated at much lower energy X-rays. The ultimate target mission for this technology is the Hard X-Ray Telescope (HXT) of the Constellation X-Ray Mission. However, it is applicable to potential SMEX and MIDEX programs as well.

  17. Next Generation X-Ray Optics: High-Resolution, Light-Weight, and Low-Cost

    NASA Technical Reports Server (NTRS)

    Zhang, William W.

    2012-01-01

    X-ray telescopes are essential to the future of x-ray astronomy. In this talk I will describe a comprehensive program to advance the technology for x-ray telescopes well beyond the state of the art represented by the three currently operating missions: Chandra, XMM-Newton, and Suzaku. This program will address the three key issues in making an x-ray telescope: (1) angular resolution, (2) effective area per unit mass, and (3) cost per unit effective area. The objectives of this technology program are (1) in the near term, to enable Explorer-class x-ray missions and an IXO-type mission, and (2) in the long term, to enable a flagship x-ray mission with sub-arcsecond angular resolution and multi-square-meter effective area, at an affordable cost. We pursue two approaches concurrently, emphasizing the first approach in the near term (2-5 years) and the second in the long term (4-10 years). The first approach is precision slumping of borosilicate glass sheets. By design and choice at the outset, this technique makes lightweight and low-cost mirrors. The development program will continue to improve angular resolution, to enable the production of 5-arcsecond x-ray telescopes, to support Explorer-class missions and one or more missions to supersede the original IXO mission. The second approach is precision polishing and light-weighting of single-crystal silicon mirrors. This approach benefits from two recent commercial developments: (1) the inexpensive and abundant availability of large blocks of monocrystalline silicon, and (2) revolutionary advances in deterministic, precision polishing of mirrors. By design and choice at the outset, this technique is capable of producing lightweight mirrors with sub-arcsecond angular resolution. The development program will increase the efficiency and reduce the cost of the polishing and the light-weighting processes, to enable the production of lightweight sub-arcsecond x-ray telescopes. Concurrent with the fabrication of lightweight

  18. Next Generation X-Ray Optics: High-Resolution, Light-Weight, and Low-Cost

    NASA Technical Reports Server (NTRS)

    Zhang, William W.

    2011-01-01

    X-ray telescopes are essential to the future of x-ray astronomy. This paper describes a comprehensive program to advance the technology for x-ray telescopes well beyond the state of the art represented by the three currently operating missions: Chandra, XMM-Newton , and Suzaku . This program will address the three key issues in making an x-ray telescope: (I) angular resolution, (2) effective area per unit mass, and (3) cost per unit effective area. The objectives of this technology program are (1) in the near term, to enable Explorer-class x-ray missions and an IXO type mission, and (2) in the long term, to enable a flagship x-ray mission with sub-arcsecond angular resolution and multi-square-meter effective area, at an affordable cost. We pursue two approaches concurrently, emphasizing the first approach in the near term (2-5 years) and the second in the long term (4-10 years). The first approach is precision slumping of borosilicate glass sheets. By design and choice at the outset, this technique makes lightweight and low-cost mirrors. The development program will continue to improve angular resolution, to enable the production of 5-arcsecond x-ray telescopes, to support Explorer-class missions and one or more missions to supersede the original IXO mission. The second approach is precision polishing and light-weighting of single-crystal silicon mirrors. This approach benefits from two recent commercial developments: (1) the inexpensive and abundant availability of large blocks of mono crystalline silicon, and (2) revolutionary advances in deterministic, precision polishing of mirrors. By design and choice at the outset, this technique is capable of producing lightweight mirrors with sub-arcsecond angular resolution. The development program will increase the efficiency and reduce the cost of the polishing and the lightweighting processes, to enable the production of lightweight sub-arcsecond x-ray telescopes. Concurrent with the fabrication of lightweight mirror

  19. Acoustically Mounted Microcrystals Yield High-Resolution X-ray Structures

    SciTech Connect

    Soares, Alexei S.; Engel, Matthew A.; Stearns, Richard; Datwani, Sammy; Olechno, Joe; Ellson, Richard; Skinner, John M.; Allaire, Marc; Orville, Allen M.

    2012-10-25

    We demonstrate a general strategy for determining structures from showers of microcrystals. It uses acoustic droplet ejection to transfer 2.5 nL droplets from the surface of microcrystal slurries, through the air, onto mounting micromesh pins. Individual microcrystals are located by raster-scanning a several-micrometer X-ray beam across the cryocooled micromeshes. X-ray diffraction data sets merged from several micrometer-sized crystals are used to determine 1.8 {angstrom} resolution crystal structures.

  20. Integration of flat panel X-ray detector for high resolution diagnostic medical imaging

    NASA Astrophysics Data System (ADS)

    Kim, Min-Woo; Yun, Min-Seok; Kim, Yoon-Suk; Oh, Kyung-Min; Shin, Jung-Wook; Nam, Kyung-Tae; Nam, Sang-Hee

    2011-05-01

    In these days, flat panel X-ray image detectors have shown their potential for replacing traditional screen-film systems. To detect the X-ray photon energy, there are two main methods known as a direct method and an indirect method. The X-rays are converted immediately into electrical signal with the direct method. The indirect method has two conversion steps: the scintillator absorbs the X-rays and converts them to visible light. And then the visible light is converted to electrical signal (e.g. by photodiodes). In this work, the flat panel digital X-ray image detector based on direct method with a high atomic number material was designed and evaluated. The high atomic number material for X-ray conversion is deposited by a rubbing method with about 300 μm. The rubbing method is similar to the screen printing method. It consists of two elements: the screen and the squeegee. The method uses a proper stiff bar stretched tightly over a frame made of wood or metal. Proper tension is essential for proper laminated structure. The detector prototype has 139 μm pixel pitch, total 1280×1536 pixels and 86% fill factor. Twelve readout ICs are installed on digital X-ray detector and simultaneously operated to reach short readout time. The electronics integrated: the preamplifier to amplify generated signal, the Analog to Digital converter and the source of bias voltage (1 V/μm). The system board and interface use an NI-camera program. Finally, we achieved images from this flat panel X-ray image detector.

  1. Competing orbital ordering in RVO{sub 3} compounds: High-resolution x-ray diffraction and thermal expansion

    SciTech Connect

    Sage, M. H.; Blake, G. R.; Palstra, T. T. M.; Marquina, C.

    2007-11-15

    We report evidence for the phase coexistence of orbital orderings of different symmetry in RVO{sub 3} compounds with intermediate-size rare earths. Through a study by high-resolution x-ray powder diffraction and thermal expansion, we show that the competing orbital orderings are associated with the magnitude of the VO{sub 6} octahedral tilting and magnetic exchange striction in these compounds and that the phase-separated state is stabilized by lattice strains.

  2. Coordination defects in bismuth-modified arsenic selenide glasses: High-resolution x-ray photoelectron spectroscopy measurements

    SciTech Connect

    Golovchak, Roman; Shpotyuk, Oleh

    2008-05-01

    The possibility of coordination defects formation in Bi-modified chalcogenide glasses is examined by high-resolution x-ray photoelectron spectroscopy. The results provide evidence for the formation of positively charged fourfold coordinated defects on As and Bi sites in glasses with low Bi concentration. At high Bi concentration, mixed As{sub 2}Se{sub 3}-Bi{sub 2}Se{sub 3} nanocrystallites are formed in the investigated Se-rich As-Se glasses.

  3. Package for Interactive Analysis of Line Emission (Analysis of UV-X-Ray High-Resolution Emission Spectra)

    NASA Technical Reports Server (NTRS)

    Hunter, Paul (Technical Monitor); Kashyap, Vinay

    2004-01-01

    The Package for Interactive Analysis of Line Emission (PINTofALE) is a suite of IDL routines designed to carry out spectroscopic analysis of high-resolution X-ray spectra. The current version is 1.5, and will shortly be upgraded to v2. A detailed description of the package, together with detailed documentation, example walk-throughs, science threads, and downloadable tar files, are available on-line.

  4. Superconducting tunnel junction x-ray detectors for high resolution spectroscopy

    SciTech Connect

    Labov, S., LLNL

    1998-06-01

    We are developing low-tcmpaature detectors for optical, ultraviolet, X-ray, and gamma-ray spectroscopy, and for biomolecular mass spectrometry. We present here a some of our recent work in developing these detectors and some of the first results in applying these detectors to X-ray fluorescence analysis. We have measured thin-film Nb/Al/Al{sub 2}O{sub 3}/Al/Nb superconducting tunnel junction (STJ) X-ray detectors in the 0 2 to 1 keV band with a range of different junction sizes and aluminum film thicknesses. In one case, we have achieved the statistical limit to the energy resolution in this band. We have measured the performance of these STJ detectors as a function of count rate. and demonstrated a resolution of 13 eV FWHM at 271 eV with an output count rate of 20,600 cts/s Using X rays from SSRL to study compos- ite materials, we have demonstrated that we can resolve the L lines of transition metals from the nearby K lines of light elements We describe the first use of a low-temperature X-ray detector to measure X-ray fluoresccncc from the dilute metal component in a protein.

  5. Future high-resolution x-ray telescope technologies: prototype fabrication methods and finite element analysis

    NASA Astrophysics Data System (ADS)

    Atkins, Carolyn; Wang, Hongchang; Doel, Peter; Brooks, David; Thompson, Samantha; Feldman, Charlotte; Willingale, Richard; Button, Tim; Rodriguez Sanmartin, Daniel; Zhang, Dou; James, Ady; Theobald, Craig

    2008-07-01

    The Smart X-ray Optics (SXO) project is a UK based consortium consisting of several institutions investigating the application of active/adaptive optics to both large and small scale grazing incidence x-ray optics. University College London presents work relating to the large scale x-ray optics that is geared towards the next generation of x-ray space telescopes. It is proposed that through the addition of piezoelectric actuators, an active x-ray telescope with a resolution better than that currently achieved (e.g. Chandra 0.5") could be realised. An immediate aim of the SXO project is to produce an operational active ellipsoidal segment prototype, with point-to- point focusing and with the intention of being tested at the University of Leicester's x-ray beam source. Work relating to the fabrication of the prototype will be presented, including shell replication via a nickel sulphamate electroforming process, piezoelectric actuators and prototype assembly and operation. Results from finite element analysis modelling will be discussed; these relate primarily to gravitational distortion effects and the plating tank electrostatics.

  6. High-resolution spectroscopy and high-density monitoring in X-rays of novae

    NASA Astrophysics Data System (ADS)

    Ness, J. U.

    2012-09-01

    The 21st century X-ray observatories XMM-Newton, Chandra, and Swift gave us completely new insights into the X-ray behaviour of nova outbursts. These new-generation X-ray observatories provide particularly high spectral resolution and high density in monitoring campaigns, simultaneously in X-rays and UV/optical. The entire evolution of several nova outbursts has been observed with the Swift XRT and UVOT instruments, allowing studies of the gradual shift of the peak of the SED from UV to X-rays, time scales to the onset and duration of the X-ray brightest supersoft source (SSS) phase, and pre- and post-SSS X-ray emission. In addition, XMM-Newton and Chandra observations can efficiently be scheduled, allowing deeper studies of strategically chosen evolutionary stages. Before Swift joined in 2005, Chandra and XMM-Newton blind shots in search of SSS emission unavoidably led to some underexposed observations taken before and/or after the SSS phase. More systematic Swift studies reduced this number while increasing the number of novae. Pre- and post-SSS spectra at low and high spectral resolution were successfully modelled with collisional plasma models. Pre-SSS emission arises in shocks and post-SSS emission in radiatively cooling thin ejecta. In contrast, the grating spectra taken during the SSS phase are a lot more complex than expected and have not yet been successfully modeled. Available hot white dwarf (WD) radiation transport models give only approximate reproduction of the observations, and make some critical assumptions that are only valid in isolated WDs. More grating spectra would be important to search for systematic trends between SSS spectra and system parameters. Summary of well-established discoveries with Swift, XMM-Newton, and Chandra: - About 50% of novae display faint X-ray emission before the start of the SSS phase - The start of the SSS phase is not a smooth process. High-amplitude variations during the early SSS phase were seen that disappear close

  7. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers.

    PubMed

    Chubar, Oleg; Geloni, Gianluca; Kocharyan, Vitali; Madsen, Anders; Saldin, Evgeni; Serkez, Svitozar; Shvyd'ko, Yuri; Sutter, John

    2016-03-01

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm(-1) spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm(-1) are required to close the gap in energy-momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 10(12) photons s(-1) in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS. PMID:26917127

  8. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    PubMed Central

    Chubar, Oleg; Geloni, Gianluca; Kocharyan, Vitali; Madsen, Anders; Saldin, Evgeni; Serkez, Svitozar; Shvyd’ko, Yuri; Sutter, John

    2016-01-01

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm−1 spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm−1 are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 1012 photons s−1 in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS. PMID:26917127

  9. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    DOE PAGESBeta

    Chubar, Oleg; Geloni, Gianluca; Kocharyan, Vitali; Madsen, Anders; Saldin, Evgeni; Serkez, Svitozar; Shvyd'ko, Yuri; Sutter, John

    2016-02-12

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm₋1spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm₋1are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seedingmore » and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 1012 photons s₋1in a 90 µeV bandwidth can be achieved on the sample. Ultimately, this will provide unique new possibilities for dynamics studies by IXS.« less

  10. High-resolution x-ray characterization of mosaic crystals for hard x-and gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Ferrari, Claudio; Buffagni, Elisa; Marchini, Laura; Zappettini, Andrea

    2011-09-01

    We have analyzed GaAs, Cu, CdTe, and CdZnTe crystals as possible optical elements for hard x-ray lenses for x-ray astronomy. We used high resolution x-ray diffraction at 8keV in Bragg geometry and Laue transmission diffraction at synchrotron at energies up to 500 keV. A good agreement was found between the mosaicity evaluated in Bragg diffraction geometry with x-ray penetration of the order of few tens micrometers and in Laue transmission geometry at synchrotron. All the analyzed crystals showed mosaicity values in a range between a few to 150 arcseconds and suitable for the application. Nevertheless -CdTe and CdZnTe crystals exhibit non-uniformity due to the presence of low angle grain boundaries; -Cu crystals exhibit mosaicity of the order of several arcminutes; they indeed suffer by a severe cutting damage that had to be removed with a very deep etching. The FWHM was also rapidly decreasing with the x-ray energy showing that the mosaic spread is not the only origin of peak broadening; -GaAs crystals grown by Czochralski method show mosaicity up to 30 arcseconds and good diffraction efficiency up to energies of 500 keV. The use of thermal treatments as a possible method to increase the mosaic spread is also evaluated.

  11. Bismuth Passivation Technique for High-Resolution X-Ray Detectors

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Hess, Larry

    2013-01-01

    The Athena-plus team requires X-ray sensors with energy resolution of better than one part in 3,000 at 6 keV X-rays. While bismuth is an excellent material for high X-ray stopping power and low heat capacity (for large signal when an X-ray is stopped by the absorber), oxidation of the bismuth surface can lead to electron traps and other effects that degrade the energy resolution. Bismuth oxide reduction and nitride passivation techniques analogous to those used in indium passivation are being applied in a new technique. The technique will enable improved energy resolution and resistance to aging in bismuth-absorber-coupled X-ray sensors. Elemental bismuth is lithographically integrated into X-ray detector circuits. It encounters several steps where the Bi oxidizes. The technology discussed here will remove oxide from the surface of the Bi and replace it with nitridized surface. Removal of the native oxide and passivating to prevent the growth of the oxide will improve detector performance and insulate the detector against future degradation from oxide growth. Placing the Bi coated sensor in a vacuum system, a reduction chemistry in a plasma (nitrogen/hydrogen (N2/H2) + argon) is used to remove the oxide and promote nitridization of the cleaned Bi surface. Once passivated, the Bi will perform as a better X-ray thermalizer since energy will not be trapped in the bismuth oxides on the surface. A simple additional step, which can be added at various stages of the current fabrication process, can then be applied to encapsulate the Bi film. After plasma passivation, the Bi can be capped with a non-diffusive layer of metal or dielectric. A non-superconducting layer is required such as tungsten or tungsten nitride (WNx).

  12. X ray computed tomography for failure analysis

    NASA Astrophysics Data System (ADS)

    Bossi, Richard H.; Crews, Alan R.; Georgeson, Gary E.

    1992-08-01

    Under a preliminary testing task assignment of the Advanced Development of X-Ray Computed Tomography Application program, computed tomography (CT) has been studied for its potential as a tool to assist in failure analysis investigations. CT provides three-dimensional spatial distribution of material that can be used to assess internal configurations and material conditions nondestructively. This capability has been used in failure analysis studies to determine the position of internal components and their operation. CT is particularly advantageous on complex systems, composite failure studies, and testing under operational or environmental conditions. CT plays an important role in reducing the time and effort of a failure analysis investigation. Aircraft manufacturing or logistical facilities perform failure analysis operations routinely and could be expected to reduce schedules, reduce costs and/or improve evaluation on about 10 to 30 percent of the problems they investigate by using CT.

  13. Introduction to high-resolution accelerator alignment using x-ray optics.

    SciTech Connect

    Yang, B. X.; Friedsam, H.

    2006-01-01

    A novel alignment technique utilizing the x-ray beam of a dedicated alignment undulator in conjunction with pinholes and position-sensitive detectors for positioning accelerator components in an x-ray free-electron laser will be presented. In this concept two retractable pinholes at each end of the main undulator line define a stable and reproducible x-ray beam axis (XBA). Targets are precisely positioned on the XBA using a pinhole camera technique. Position-sensitive detectors responding to both x-ray and electron beams enable the direct transfer of the position setting from the XBA to the electron beam. This system has the potential to deliver superior alignment accuracy in the micron range for target pinholes in the transverse directions over long distances. It defines the beam axis for the electron-beam-based alignment with high reproducibility. This concept complements the electron-beam-based alignment and the existing survey methods advancing the alignment accuracy of long accelerators to an unprecedented level. Further improvements of the transverse accuracy using x-ray zone plates and a concurrent measurement scheme during accelerator operation, providing real-time feedback for transverse position corrections, will be discussed.

  14. High Resolution X-ray Microscopy For Nano-Resolution Imaging

    NASA Astrophysics Data System (ADS)

    Kashyap, Y. S.; Agrawal, A.; Sarkar, P. S.; Shukla, Mayank; Roy, T.; Sinha, Amar

    2010-12-01

    If an object is illuminated with coherent electromagnetic radiation, e.g. by visible laser light or highly brilliant X-rays, a diffraction pattern is formed in the Fraunhofer far field that is related via a Fourier transform to the optical transmission function of the object. The aim of X-ray diffractive imaging or so-called lensless imaging, is to directly reconstruct the original optical transmission function of the specimen from its measured diffraction pattern. In principle, it allows one to obtain a resolution that is ultimately limited only by the wavelength of the radiation used and not by the quality of optical lenses. In X-ray microscopy, for instance, the resolution is presently limited to several tens of nanometers because of difficulties in manufacturing efficient high-quality nano-structured X-ray optical elements. Since this technique allows the resolution to be increased beyond these limits, they are among the most promising techniques for X-ray imaging applications in life and materials sciences on the nanometer scale.

  15. Soft x-ray spectrometer (SXS): the high-resolution cryogenic spectrometer onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Mitsuda, Kazuhisa; Kelley, Richard L.; Akamatsu, Hiroki; Bialas, Thomas; Boyce, Kevin R.; Brown, Gregory V.; Canavan, Edgar; Chiao, Meng; Costantini, Elisa; den Herder, Jan-Willem; de Vries, Cor; DiPirro, Michael J.; Eckart, Megan E.; Ezoe, Yuichiro; Fujimoto, Ryuichi; Haas, Daniel; Hoshino, Akio; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iyomoto, Naoko; Kilbourne, Caroline A.; Kimball, Mark; Kitamoto, Shunji; Konami, Saori; Leutenegger, Maurice A.; McCammon, Dan; Miko, Joseph; Mitsuishi, Ikuyuki; Murakami, Hiroshi; Murakami, Masahide; Noda, Hirofumi; Ogawa, Mina; Ohashi, Takaya; Okamoto, Atsushi; Ota, Naomi; Paltani, Stéphane; Porter, F. Scott; Sato, Kosuke; Sato, Yoichi; Sawada, Makoto; Seta, Hiromi; Shinozaki, Keisuke; Shirron, Peter J.; Sneiderman, Gary A.; Sugita, Hiroyuki; Szymkowiak, Andrew; Takei, Yoh; Tamagawa, Toru; Tashiro, Makoto S.; Terada, Yukikatsu; Tsujimoto, Masahiro; Yamada, Shinya; Yamasaki, Noriko Y.

    2014-07-01

    We present the development status of the Soft X-ray Spectrometer (SXS) onboard the ASTRO-H mission. The SXS provides the capability of high energy-resolution X-ray spectroscopy of a FWHM energy resolution of < 7eV in the energy range of 0.3 - 10 keV. It utilizes an X-ray micorcalorimeter array operated at 50 mK. The SXS microcalorimeter subsystem is being developed in an EM-FM approach. The EM SXS cryostat was developed and fully tested and, although the design was generally confirmed, several anomalies and problems were found. Among them is the interference of the detector with the micro-vibrations from the mechanical coolers, which is the most difficult one to solve. We have pursued three different countermeasures and two of them seem to be effective. So far we have obtained energy resolutions satisfying the requirement with the FM cryostat.

  16. High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography.

    PubMed

    Pfeiffer, F; Bunk, O; David, C; Bech, M; Le Duc, G; Bravin, A; Cloetens, P

    2007-12-01

    We report on significant advances and new results concerning a recently developed method for grating-based hard x-ray phase tomography. We demonstrate how the soft tissue sensitivity of the technique is increased and show in vitro tomographic images of a tumor bearing rat brain sample, without use of contrast agents. In particular, we observe that the brain tumor and the white and gray brain matter structure in a rat's cerebellum are clearly resolved. The results are potentially interesting from a clinical point of view, since a similar approach using three transmission gratings can be implemented with more readily available x-ray sources, such as standard x-ray tubes. Moreover, the results open the way to in vivo experiments in the near future. PMID:18029984

  17. Development of a High-Resolution, Single-Photon X-Ray Detector

    NASA Technical Reports Server (NTRS)

    Seidel, George M.

    1996-01-01

    Research on the development of a low-temperature, magnetic bolometer for x-ray detection is reported. The principal accomplishments during the first phase of this research are as follows. (1) We have constructed SQUID magnetometers and detected both 122 keV and 6 keV x-rays in relatively larger metallic samples with high quantum efficiency. (2) The magnetic properties of a metal sample with localized paramagnetic spins have been measured and found to agree with theoretical expectations. (3) The size of the magnetic response of the sample to x-rays is in agreement with predictions based on the properties of the sample and sensitivity of the magnetometer, supporting the prediction that a resolution of 1 eV at 10 keV should be achievable.

  18. Affordable and lightweight high-resolution x-ray optics for astronomical missions

    NASA Astrophysics Data System (ADS)

    Zhang, W. W.; Biskach, M. P.; Bly, V. T.; Carter, J. M.; Chan, K. W.; Gaskin, J. A.; Hong, M.; Hohl, B. R.; Jones, W. D.; Kolodziejczak, J. J.; Kolos, L. D.; Mazzarella, J. R.; McClelland, R. S.; McKeon, K. P.; Miller, T. M.; O'Dell, S. L.; Riveros, R. E.; Saha, T. T.; Schofield, M. J.; Sharpe, M. V.; Smith, H. C.

    2014-07-01

    Future x-ray astronomical missions require x-ray mirror assemblies that provide both high angular resolution and large photon collecting area. In addition, as x-ray astronomy undertakes more sensitive sky surveys, a large field of view is becoming increasingly important as well. Since implementation of these requirements must be carried out in broad political and economical contexts, any technology that meets these performance requirements must also be financially affordable and can be implemented on a reasonable schedule. In this paper we report on progress of an x-ray optics development program that has been designed to address all of these requirements. The program adopts the segmented optical design, thereby is capable of making both small and large mirror assemblies for missions of any size. This program has five technical elements: (1) fabrication of mirror substrates, (2) coating, (3) alignment, (4) bonding, and (5) mirror module systems engineering and testing. In the past year we have made progress in each of these five areas, advancing the angular resolution of mirror modules from 10.8 arc-seconds half-power diameter reported (HPD) a year ago to 8.3 arc-seconds now. These mirror modules have been subjected to and passed all environmental tests, including vibration, acoustic, and thermal vacuum. As such this technology is ready for implementing a mission that requires a 10-arc-second mirror assembly. Further development in the next two years would make it ready for a mission requiring a 5-arc-second mirror assembly. We expect that, by the end of this decade, this technology would enable the x-ray astrophysical community to compete effectively for a major x-ray mission in the 2020s that would require one or more 1-arc-second mirror assemblies for imaging, spectroscopic, timing, and survey studies.

  19. Affordable and Lightweight High-Resolution X-ray Optics for Astronomical Missions

    NASA Technical Reports Server (NTRS)

    Zhang, W. W.; Biskach, M. P.; Bly, V. T.; Carter, J. M.; Chan, K. W.; Gaskin, J. A.; Hong, M.; Hohl, B. R.; Jones, W. D.; Kolodziejczak, J. J.

    2014-01-01

    Future x-ray astronomical missions require x-ray mirror assemblies that provide both high angular resolution and large photon collecting area. In addition, as x-ray astronomy undertakes more sensitive sky surveys, a large field of view is becoming increasingly important as well. Since implementation of these requirements must be carried out in broad political and economical contexts, any technology that meets these performance requirements must also be financially affordable and can be implemented on a reasonable schedule. In this paper we report on progress of an x-ray optics development program that has been designed to address all of these requirements. The program adopts the segmented optical design, thereby is capable of making both small and large mirror assemblies for missions of any size. This program has five technical elements: (1) fabrication of mirror substrates, (2) coating, (3) alignment, (4) bonding, and (5) mirror module systems engineering and testing. In the past year we have made progress in each of these five areas, advancing the angular resolution of mirror modules from 10.8 arc-seconds half-power diameter reported (HPD) a year ago to 8.3 arc-seconds now. These mirror modules have been subjected to and passed all environmental tests, including vibration, acoustic, and thermal vacuum. As such this technology is ready for implementing a mission that requires a 10-arc-second mirror assembly. Further development in the next two years would make it ready for a mission requiring a 5-arc-second mirror assembly. We expect that, by the end of this decade, this technology would enable the x-ray astrophysical community to compete effectively for a major x-ray mission in the 2020s that would require one or more 1-arc-second mirror assemblies for imaging, spectroscopic, timing, and survey studies.

  20. Energy calibration of a high-resolution inelastic x-ray scattering spectrometer.

    PubMed

    Verbeni, Roberto; D'Astuto, Matteo; Krisch, Michael; Lorenzen, Maren; Mermet, Alain; Monaco, Giulio; Requardt, Herwig; Sette, Francesco

    2008-08-01

    The energy scale of a triple-axis x-ray spectrometer with meV energy resolution based on perfect silicon crystal optics is calibrated, utilizing the most recent determination of the silicon lattice parameter and its thermal expansion coefficient and recording the dispersion of longitudinal acoustic and optical phonons in a diamond single crystal and the molecular vibration mode in liquid nitrogen. Comparison of the x-ray results with previous inelastic neutron and Raman scattering results as well as with ab initio phonon dispersion calculations yields an overall agreement better than 2%. PMID:19044359

  1. Energy calibration of a high-resolution inelastic x-ray scattering spectrometer

    SciTech Connect

    Verbeni, Roberto; D'Astuto, Matteo; Krisch, Michael; Lorenzen, Maren; Mermet, Alain; Monaco, Giulio; Requardt, Herwig; Sette, Francesco

    2008-08-15

    The energy scale of a triple-axis x-ray spectrometer with meV energy resolution based on perfect silicon crystal optics is calibrated, utilizing the most recent determination of the silicon lattice parameter and its thermal expansion coefficient and recording the dispersion of longitudinal acoustic and optical phonons in a diamond single crystal and the molecular vibration mode in liquid nitrogen. Comparison of the x-ray results with previous inelastic neutron and Raman scattering results as well as with ab initio phonon dispersion calculations yields an overall agreement better than 2%.

  2. Development of High Resolution Hard X-Ray Telescope with Multilayer Coatings

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul; Brinton, John C. (Technical Monitor)

    2003-01-01

    The activities that occurred during the first year of the grant were: a) completed construction of the large multilayer deposition facility; b) Coated a large number of flat substrates and the interiors of cylindrical X-ray telescope shell substrates with uniform period and depth graded periods of tungsten-silicon (W/Is) bi-layers and other coatings; c) studied the influence of various factors affecting the quality of the multilayer coatings by measuring their reflection efficiency at 8 keV and higher energy X-rays.

  3. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array

    SciTech Connect

    Qian Xin; Tucker, Andrew; Gidcumb, Emily; Shan Jing; Yang Guang; Calderon-Colon, Xiomara; Sultana, Shabana; Lu Jianping; Zhou, Otto; Spronk, Derrek; Sprenger, Frank; Zhang Yiheng; Kennedy, Don; Farbizio, Tom; Jing Zhenxue

    2012-04-15

    Purpose: The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. Methods: A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. Results: The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 x 2 detector binning

  4. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array

    PubMed Central

    Qian, Xin; Tucker, Andrew; Gidcumb, Emily; Shan, Jing; Yang, Guang; Calderon-Colon, Xiomara; Sultana, Shabana; Lu, Jianping; Zhou, Otto; Spronk, Derrek; Sprenger, Frank; Zhang, Yiheng; Kennedy, Don; Farbizio, Tom; Jing, Zhenxue

    2012-01-01

    Purpose: The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. Methods: A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. Results: The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector

  5. High resolution hard x-ray microscope on a second generation synchrotron source

    SciTech Connect

    Tian Yangchao; Li Wenjie; Chen Jie; Liu Longhua; Liu Gang; Tian Jinping; Xiong Ying; Tkachuk, Andrei; Gelb, Jeff; Hsu, George; Yun Wenbing

    2008-10-15

    A full-field, transmission x-ray microscope (TXM) operating in the energy range of 7-11 keV has been installed at the U7A beamline at the National Synchrotron Radiation Laboratory, a second generation synchrotron source operating at 0.8 GeV. Although the photon flux at sample position in the operating energy range is significantly low due to its relatively large emittance, the TXM can get high quality x-ray images with a spatial resolution down to 50 nm with acceptable exposure time. This TXM operates in either absorption or Zernike phase contrast mode with similar resolution. This TXM is a powerful analytical tool for a wide range of scientific areas, especially studies on nanoscale phenomena and structural imaging in biology, materials science, and environmental science. We present here the property of the x-ray source, beamline design, and the operation and key optical components of the x-ray TXM. Plans to improve the throughput of the TXM will be discussed.

  6. High resolution hard x-ray microscope on a second generation synchrotron source.

    PubMed

    Tian, Yangchao; Li, Wenjie; Chen, Jie; Liu, Longhua; Liu, Gang; Tkachuk, Andrei; Tian, Jinping; Xiong, Ying; Gelb, Jeff; Hsu, George; Yun, Wenbing

    2008-10-01

    A full-field, transmission x-ray microscope (TXM) operating in the energy range of 7-11 keV has been installed at the U7A beamline at the National Synchrotron Radiation Laboratory, a second generation synchrotron source operating at 0.8 GeV. Although the photon flux at sample position in the operating energy range is significantly low due to its relatively large emittance, the TXM can get high quality x-ray images with a spatial resolution down to 50 nm with acceptable exposure time. This TXM operates in either absorption or Zernike phase contrast mode with similar resolution. This TXM is a powerful analytical tool for a wide range of scientific areas, especially studies on nanoscale phenomena and structural imaging in biology, materials science, and environmental science. We present here the property of the x-ray source, beamline design, and the operation and key optical components of the x-ray TXM. Plans to improve the throughput of the TXM will be discussed. PMID:19044720

  7. High resolution hard x-ray microscope on a second generation synchrotron source

    NASA Astrophysics Data System (ADS)

    Tian, Yangchao; Li, Wenjie; Chen, Jie; Liu, Longhua; Liu, Gang; Tkachuk, Andrei; Tian, Jinping; Xiong, Ying; Gelb, Jeff; Hsu, George; Yun, Wenbing

    2008-10-01

    A full-field, transmission x-ray microscope (TXM) operating in the energy range of 7-11 keV has been installed at the U7A beamline at the National Synchrotron Radiation Laboratory, a second generation synchrotron source operating at 0.8 GeV. Although the photon flux at sample position in the operating energy range is significantly low due to its relatively large emittance, the TXM can get high quality x-ray images with a spatial resolution down to 50 nm with acceptable exposure time. This TXM operates in either absorption or Zernike phase contrast mode with similar resolution. This TXM is a powerful analytical tool for a wide range of scientific areas, especially studies on nanoscale phenomena and structural imaging in biology, materials science, and environmental science. We present here the property of the x-ray source, beamline design, and the operation and key optical components of the x-ray TXM. Plans to improve the throughput of the TXM will be discussed.

  8. Fabrication of high resolution and lightweight monocrystalline silicon x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Riveros, Raul E.; Kolos, Linette D.; Mazzarella, James R.; McKeon, Kevin P.; Zhang, William W.

    2015-09-01

    Monocrystalline silicon as an x-ray mirror substrate material promises significant improvements over the x- ray mirror technologies used to date, since it is mechanically stiff, stress-free, highly thermally conductive, and widely commercially available. Producing highly accurate and lightweight x-ray mirrors from monocrystalline silicon requires a unique and specialized manufacturing process capable of producing mirrors quickly and cost effectively. The identification, development, and testing of this process is the focus of the work described in this proceeding. Monocrystalline silicon blocks were obtained, and a variety of processes (wire electro-discharge machining, etching, polishing) were applied to generate an accurate and stress-free cylindrical or Wolter-I mirror surface. The mirror surface is then sliced off at a thickness of <1 mm and further processed to yield a mirror segment with <1 arcsecond RMS slope errors. Furthermore, our experiments suggest that this mirror production process requires ~2 days to produce a mirror segment and is easily integrated into a cost-reducing parallel processing scheme. Presently, there is strong evidence that the mirror production process described in this paper will meet the stringent requirements of future x-ray missions.

  9. The High-Resolution X-Ray Microcalorimeter Spectrometer, SXS, on Astro-H

    NASA Technical Reports Server (NTRS)

    Mitsuda, Kazuhisa; Kelley, Richard L.; Boyce, Kevin R.; Brown, Gregory V.; Costantini, Elisa; DiPirro, Michael J.; Ezoe, Yuichiro; Fujimoto, Ryuichi; Gendreau, Keith C.; denHerder, Jan-Willem; Hoshino, Akio; Ishisaki, Yoshitaka; Kilbourne, Caroline A.; Kitamoto, Shunji; McCammon, Dan; Murakami, Masahide; Murakami, Hiroshi; Ogawa, Mina; Ohashi, Takaya; Okamoto, Atsushi; Paltani, Stephane; Pohl, Martin; Porter, F. Scott; Sato, Yoichi; Shinozaki, Keisuke

    2012-01-01

    The science and an overview of the Soft X-ray Spectrometer onboard the STRO-H mission are presented. The SXS consists of X-ray focusing mirrors and a microcalorimeter array and is developed by international collaboration lead by JAXA and NASA with European participation. The detector is a 6 x 6 format microcalorimeter array operated at a cryogenic temperature of 50 mK and covers a 3' x 3' field of view of the X-ray telescope of 5.6 m focal length. We expect an energy resolution better than 7 eV (FWHM, requirement) with a goal of 4 eV. The effective area of the instrument will be 225 square centimeters at 7 keV; by a factor of about two larger than that of the X-ray microcalorimeter on board Suzaku. One of the main scientific objectives of the SXS is to investigate turbulent and/or macroscopic motions of hot gas in clusters of galaxies.

  10. High-resolution multiwire proportional soft x-ray diagnostic measurements on TCV

    NASA Astrophysics Data System (ADS)

    Sushkov, A.; Andreev, V.; Camenen, Y.; Pochelon, A.; Klimanov, I.; Scarabosio, A.; Weisen, H.

    2008-02-01

    A multiwire proportional x-ray (MPX) detector is used on the TCV tokamak (Tokamak à configuration variable) as a high spatial and temporal resolution soft x-ray emissivity imaging diagnostic. The MPX system consists of 64 vertically viewing channels and has been designed to complement the existing TCV soft x-ray tomography system by enhancing the spatial resolution. The MPX detector is suitable for the measurement of fast and localized phenomena and can be used, for instance, for the observation of magnetohydrodynamic activity, for the characterization of transport barriers or for an improved determination of the electron cyclotron heating power deposition profile. The MPX detector operates in continuous-current mode and measures the plasma soft x-ray emission in the 3-30keV range with a radial resolution of about 5mm—1% of plasma diameter—and a frequency bandwidth of 50kHz. A detailed description of the MPX detector construction and the principle of its operation are given. The properties of the detector in photon-counting and continuous-current operation modes are studied. The implementation of the system on TCV and experimental results illustrating the potential of the diagnostic are also presented.

  11. High-resolution and ultrafast imaging using betatron x-rays from laser wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Najmudin, Zulfikar

    2015-11-01

    Laser wakefield accelerators now routinely produce ~GeV energy gain in ~cm plasmas. and are simultaneously capable of producing high brightness and spatially coherent hard x-ray beams. This unique light-source has been used for medical applications, and also for ultrafast imaging in high energy density science. The experiments were performed with the Astra Gemini laser producing 10 J pulses with duration ~ 40 fs focussed to produce a spot of 25 μ m (fwhm) in a gas-cell of variable length to produce a low divergence beam of x-rays. The length of the gas cell was optimised to produce high contrast x-ray images of radiographed test objects. This source was used for full tomographic imaging of a human trabecular bone sample, with resolution exceeding the ~ 100 μ m level required for CT applications. Phase-contrast imaging of human prostate and mouse neonates at the micron level was also demonstrated. These studies indicate the usefulness of these sources in research and clinical applications. The ultrafast nature of the source was also demonstrated by performing time resolved imaging of a laser driven shock. The ultrashort duration of the x-ray source essentially freeze the motion of these fast moving transient phenomena.

  12. The High-Resolution X-Ray Microcalorimeter Spectrometer, SXS, on Astro-H

    NASA Astrophysics Data System (ADS)

    Mitsuda, Kazuhisa; Kelley, Richard L.; Boyce, Kevin R.; Brown, Gregory V.; Costantini, Elisa; DiPirro, Michael J.; Ezoe, Yuichiro; Fujimoto, Ryuichi; Gendreau, Keith C.; den Herder, Jan-Willem; Hoshino, Akio; Ishisaki, Yoshitaka; Kilbourne, Caroline A.; Kitamoto, Shunji; McCammon, Dan; Murakami, Masahide; Murakami, Hiroshi; Ogawa, Mina; Ohashi, Takaya; Okamoto, Atsushi; Paltani, Stéphane; Pohl, Martin; Porter, F. Scott; Sato, Yoichi; Shinozaki, Keisuke; Shirron, Peter J.; Sneiderman, Gary A.; Sugita, Hiroyuki; Szymkowiak, Andrew; Takei, Yoh; Tamagawa, Toru; Tashiro, Makoto; Terada, Yukikatsu; Tsujimoto, Masahiro; de Vries, Cor; Yamasaki, Noriko Y.

    2012-06-01

    The science and an overview of the Soft X-ray Spectrometer onboard the STRO-H mission are presented. The SXS consists of X-ray focusing mirrors and a microcalorimeter array and is developed by international collaboration lead by JAXA and NASA with European participation. The detector is a 6×6 format microcalorimeter array operated at a cryogenic temperature of 50 mK and covers a 3'×3' field of view of the X-ray telescope of 5.6 m focal length. We expect an energy resolution better than 7 eV (FWHM, requirement) with a goal of 4 eV. The effective area of the instrument will be 225 cm2 at 7 keV; by a factor of about two larger than that of the X-ray microcalorimeter on board Suzaku. One of the main scientific objectives of the SXS is to investigate turbulent and/or macroscopic motions of hot gas in clusters of galaxies.

  13. AEGIS: An Astrophysics Experiment for Grating and Imaging Spectroscopy---a Soft X-ray, High-resolution Spectrometer

    NASA Astrophysics Data System (ADS)

    Huenemoerder, David; Bautz, M. W.; Davis, J. E.; Heilmann, R. K.; Houck, J. C.; Marshall, H. L.; Neilsen, J.; Nicastro, F.; Nowak, M. A.; Schattenburg, M. L.; Schulz, N. S.; Smith, R. K.; Wolk, S.; AEGIS Team

    2012-01-01

    AEGIS is a concept for a high-resolution soft X-ray spectroscopic observatory developed in response to NASA's request for definitions of the next X-ray astronomy mission. At a small fraction of the cost of the once-planned International X-ray Observatory (IXO), AEGIS has capabilities that surpass IXO grating spectrometer requirements, and which are far superior to those of existing soft X-ray spectrometers. AEGIS incorporates innovative technology in X-ray optics, diffraction gratings and detectors. The mirror uses high area-to-mass ratio segmented glass architecture developed for IXO, but with smaller aperture and larger graze angles optimized for high-throughput grating spectroscopy with low mass and cost. The unique Critical Angle Transmission gratings combine low mass and relaxed figure and alignment tolerances of Chandra transmission gratings but with high diffraction efficiency and resolving power of blazed reflection gratings. With more than an order of magnitude better performance over Chandra and XMM grating spectrometers, AEGIS can obtain high quality spectra of bright AGN in a few hours rather than 10 days. Such high resolving power allows detailed kinematic studies of galactic outflows, hot gas in galactic haloes, and stellar accretion flows. Absorption line spectroscopy will be used to study large scale structure, cosmic feedback, and growth of black holes in thousands of sources to great distances. AEGIS will enable powerful multi-wavelength investigations, for example with Hubble/COS in the UV to characterize the intergalactic medium. AEGIS will be the first observatory with sufficient resolution below 1 keV to resolve thermally-broadened lines in hot ( 10 MK) plasmas. Here we describe key science investigations enable by Aegis, its scientific payload and mission plan. Acknowledgements: Support was provided in part by: NASA SAO contract SV3-73016 to MIT for the Chandra X-ray Center and Science Instruments; NASA grant NNX08AI62G; and the MKI

  14. Development of High Resolution Hard X-Ray Telescope with Multi-Layer Coatings

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul; Brinton, John C. (Technical Monitor)

    2005-01-01

    This is the annual report for the third year of a three-year program. Previous annual reports have described progress achieved in the first and second years. The major objective of this program is the development of a focusing hard X-ray telescope with moderately high angular resolution, i.e. comparable to the telescopes of XMM-Newton. The key ingredients of the telescope are a depth graded multilayer coatings and electroformed nickel substrates that are considerably lighter weight than those of previous missions such as XMM-Newton, which have had conventional single metal layer reflective coatings and have operated at much lower energy X-rays. The ultimate target mission for this technology is the Hard X-Ray Telescope (HXT) of the Constellation X-Ray Mission. However, it is applicable to potential SMEX and MIDEX programs as well. We are building upon technology that has proven to be successful in the XMM-Newton and SWIFT missions. The improvements that we are adding are a significant reduction in mass without much loss of angular resolution and an order of magnitude extension of the bandwidth through the use of multilayer coatings. The distinctive feature of this approach compared to those of other hard X-ray telescope programs is that we expect the angular resolution to be superior than telescopes made by other methods thanks to the structural integrity of the substrates. They are thin walled complete cylinders of revolution with a Wolter Type 1 figure; the front half is a parabola, the rear half a hyperbola.

  15. High resolution chemical mapping via scanning transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Fleckenstein, Holger

    Scanning transmission x-ray microscopy (STXM) combines imaging at sub-50 nanometer spatial resolution in the soft x-ray region with x-ray absorption spectroscopy at an energy resolution of 0.1 eV and better. The sensitivity to light elements and their chemical bonding states in the near-edge x-ray absorption region together with 2D microscopy allow to map out the chemical composition of microscopic samples. Over the past decades STXM has been used by scientists from various fields such as material sciences, biology, earth and environmental sciences. This thesis describes the upgrade of the STXM microscopes at the National Synchrotron Light Source in Brookhaven National Laboratory. The now 5 th generation was a retrofit of the existing microscopes with a three axes laser interferometer system for improved relative sample positioning. Included in the same project were a hardware change towards faster scan positioning and data acquisition electronics as well as a new software concept allowing for remote control of the microscopes. We also present the use of non-negative matrix factorization to analyze spectromicroscopic data sets. Since in many specimens of interest in biology or related fields a number of spectral signatures may be unknown, thickness maps of the chemical composition of a sample cannot be calculated directly. A previous method used principal component analysis to orthogonalize and noise filter spectromicroscopy data, followed by cluster analysis as a form of unsupervised pattern recognition to determine pixels with spectroscopic similarity. We tried a non-negative matrix factorization algorithm to find a parts-based representation of the same data. The non-negativity constraint allows for a physical interpretation of component spectra and thickness maps. The STXM technique was utilized to investigate the composition of human sperm samples. We describe why the analysis of human sperm via x-ray spectromicroscopy can provide valuable information and what

  16. HIGH-RESOLUTION X-RAY SPECTROSCOPY OF THE BURSTING PULSAR GRO J1744-28

    SciTech Connect

    Degenaar, N.; Miller, J. M.; Harrison, F. A.; Kennea, J. A.; Kouveliotou, C.; Younes, G.

    2014-11-20

    The bursting pulsar GRO J1744-28 is a Galactic low-mass X-ray binary that distinguishes itself by displaying type-II X-ray bursts: brief, bright flashes of X-ray emission that likely arise from spasmodic accretion. Combined with its coherent 2.1 Hz X-ray pulsations and relatively high estimated magnetic field, it is a particularly interesting source to study the physics of accretion flows around neutron stars. Here we report on Chandra/High Energy Transmission Grating observations obtained near the peak of its bright 2014 accretion outburst. Spectral analysis suggests the presence of a broad iron emission line centered at E {sub l} ≅ 6.7 keV. Fits with a disk reflection model yield an inclination angle of i ≅ 52° and an inner disk radius of R {sub in} ≅ 85 GM/c {sup 2}, which is much further out than typically found for neutron star low-mass X-ray binaries. Assuming that the disk is truncated at the magnetospheric radius of the neutron star, we estimate a magnetic field strength of B ≅ (2-6) × 10{sup 10} G. Furthermore, we identify an absorption feature near ≅ 6.85 keV that could correspond to blue-shifted Fe XXV and point to a fast disk wind with an outflow velocity of v {sub out} ≅ (7.5-8.2) × 10{sup 3} km s{sup –1} (≅ 0.025c-0.027c). If the covering fraction and filling factor are large, this wind could be energetically important and perhaps account for the fact that the companion star lost significant mass while the magnetic field of the neutron star remained strong.

  17. High-resolution, low-dose phase contrast X-ray tomography for 3D diagnosis of human breast cancers.

    PubMed

    Zhao, Yunzhe; Brun, Emmanuel; Coan, Paola; Huang, Zhifeng; Sztrókay, Aniko; Diemoz, Paul Claude; Liebhardt, Susanne; Mittone, Alberto; Gasilov, Sergei; Miao, Jianwei; Bravin, Alberto

    2012-11-01

    Mammography is the primary imaging tool for screening and diagnosis of human breast cancers, but ~10-20% of palpable tumors are not detectable on mammograms and only about 40% of biopsied lesions are malignant. Here we report a high-resolution, low-dose phase contrast X-ray tomographic method for 3D diagnosis of human breast cancers. By combining phase contrast X-ray imaging with an image reconstruction method known as equally sloped tomography, we imaged a human breast in three dimensions and identified a malignant cancer with a pixel size of 92 μm and a radiation dose less than that of dual-view mammography. According to a blind evaluation by five independent radiologists, our method can reduce the radiation dose and acquisition time by ~74% relative to conventional phase contrast X-ray tomography, while maintaining high image resolution and image contrast. These results demonstrate that high-resolution 3D diagnostic imaging of human breast cancers can, in principle, be performed at clinical compatible doses. PMID:23091003

  18. Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography

    PubMed Central

    Zappala, Susan; Helliwell, Jonathan R.; Tracy, Saoirse R.; Mairhofer, Stefan; Sturrock, Craig J.; Pridmore, Tony; Bennett, Malcolm; Mooney, Sacha J.

    2013-01-01

    X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored. PMID:23840640

  19. Single-crystal sapphire microstructure for high-resolution synchrotron X-ray monochromators

    DOE PAGESBeta

    Asadchikov, Victor E.; Butashin, Andrey V.; Buzmakov, Alexey V.; Deryabin, Alexander N.; Kanevsky, Vladimir M.; Prokhorov, Igor A.; Roshchin, Boris S.; Volkov, Yuri O.; Zolotov, Dennis A.; Jafari, Atefeh; et al

    2016-03-22

    We report on the growth and characterization of several sapphire single crystals for the purpose of x-ray optics applications. Structural defects were studied by means of laboratory double-crystal X-ray diffractometry and white beam synchrotron-radiation topography. The investigations confirmed that the main defect types are dislocations. The best quality crystal was grown using the Kyropoulos technique with a dislocation density of 102-103 cm-2 and a small area with approximately 2*2 mm2 did not show dislocation contrast in many reflections and has suitable quality for application as a backscattering monochromator. As a result, a clear correlation between growth rate and dislocation densitymore » is observed, though growth rate is not the only parameter impacting the quality.« less

  20. A high resolution gas scintillation proportional counter for studying low energy cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Hamilton, T. T.; Hailey, C. J.; Ku, W. H.-M.; Novick, R.

    1980-01-01

    In recent years much effort has been devoted to the development of large area gas scintillation proportional counters (GSPCs) suitable for use in X-ray astronomy. The paper deals with a low-energy GSPC for use in detecting sub-keV X-rays from cosmic sources. This instrument has a measured energy resolution of 85 eV (FWHM) at 149 eV over a sensitive area of 5 sq cm. The development of imaging capability for this instrument is discussed. Tests are performed on the feasibility of using an arrangement of several phototubes placed adjacent to one another to determine event locations in a large flat counter. A simple prototype has been constructed and successfully operated.

  1. Measuring Curved Crystal Performance for a High Resolution, Imaging X-ray Spectrometer

    SciTech Connect

    Michael Haugh and Richard Stewart

    2010-06-07

    This paper describes the design, crystal selection, and crystal testing for a vertical Johann spectrometer operating in the 13 keV range to measure ion Doppler broadening in inertial confinement plasmas. The spectrometer is designed to use thin, curved, mica crystals to achieve a resolving power of E/ΔE>2000. A number of natural mica crystals were screened for flatness and X-ray diffraction width to find samples of sufficient perfection for use in the instrument. Procedures to select and mount high quality mica samples are discussed. A diode-type X-ray source coupled to a dual goniometer arrangement was used to measure the crystal reflectivity curve. A procedure was developed for evaluating the goniometer performance using a set of diffraction grade Si crystals. This goniometer system was invaluable for identifying the best original crystals for further use and developing the techniques to select satisfactory curved crystals for the spectrometer.

  2. Depth Probing Soft X-ray Microprobe (DPSXRM) for High Resolution Probing of Earth's Microstructural Samples

    NASA Astrophysics Data System (ADS)

    Dikedi, P. N.

    2015-12-01

    The Cambrian explosion; occurrence of landslides in very dry weather conditions; rockslides; dead, shriveled-up and crumbled leaves possessing fossil records with the semblance of well preserved, flat leaves; abundance of trilobite tracks in lower and higher rock layers; and sailing stones are enigmas demanding demystifications. These enigmas could be elucidated when data on soil structure, texture and strength are provided by some device with submicrometre accuracy; for these and other reasons, the design of a Depth Probing Soft X-ray Microprobe (DPSXRM), is being proposed; it is expected to deliver soft X-rays, at spatial resolution, ϛ≥600nm and to probe at the depth of 0.5m in 17s. The microprobe is portable compared to a synchrotron radiation facility (Diamond Light Source has land size of 43,300m2); spatial resolution,ϛ , of the DPSXRM surpasses those of the X-ray Fluorescence microanalysis (10µm), electron microprobe (1-3µm) and ion microprobe (5->30µm); the DPSXRM has allowance for multiple targets. Vanadium and Manganese membranes are proposed owing to respective 4.952KeV VKα1 and 5.899KeV MnKα1 X-rays emitted, which best suits micro-probing of Earth's microstructural samples. Compound systems like the Kirk-Patrick and Baez and Wolter optics, aspheric mirrors like elliptical and parabolic optics, small apertures and Abbe sine condition are employed to reduce or remove astigmatism, obliquity, comatic and spherical aberrations—leading to good image quality. Results show that 5.899KeV MnKα1 and 4.952KeV VKα1 soft X-rays will travel a distance of 2.75mm to form circular patches of radii 2.2mm and 2.95mm respectively. Zone plate with nth zone radius of 1.5mm must be positioned 1.5mm and 2mm from the electron gun if circular patches must be formed from 4.952KeV VKα1 and 5.899KeV MnKα1 soft X-rays respectively. The focal lengths of 0.25μm≤ƒ≤1.50μm and 0.04μm≤ƒ≤0.2μm covered by 4.952KeV VKα1 and 5.899KeV Mn Kα1 soft X-Rays, will

  3. Microcalorimeters for High Resolution X-Ray Spectroscopy of Laboratory and Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Silver, E.; Flowers, Bobby J. (Technical Monitor)

    2003-01-01

    The proposal has three major objectives. The first focuses on advanced neutron-transmutation-doped (NTD)-based microcalorimeter development. Our goal is to develop an array of microcalorimeters with sub- 5 eV energy resolution that can operate with pile-up-free throughput of at least 100 Hz per pixel. The second objective is to establish our microcalorimeter as an essential x-ray diagnostic for laboratory astrophysics studies. We propose to develop a dedicated microcalorimeter spectrometer for the EBIT (electron beam ion trap). This instrument will incorporate the latest detector and cryogenic technology that we have available. The third objective is to investigate innovative ideas related to possible flight opportunities. These include compact, long lived cryo-systems, ultra-low temperature cold stages, low mass and low power electronics, and novel assemblies of thin windows with high x-ray transmission.

  4. Acoustic phonons in chrysotile asbestos probed by high-resolution inelastic x-ray scattering

    SciTech Connect

    Mamontov, Eugene; Vakhrushev, S. B.; Kumzerov, Yu. A,; Alatas, A.

    2009-01-01

    Acoustic phonons in an individual, oriented fiber of chrysotile asbestos (chemical formula Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}) were observed at room temperature in the inelastic x-ray measurement with a very high (meV) resolution. The x-ray scattering vector was aligned along [1 0 0] direction of the reciprocal lattice, nearly parallel to the long axis of the fiber. The latter coincides with [1 0 0] direction of the direct lattice and the axes of the nano-channels. The data were analyzed using a damped harmonic oscillator model. Analysis of the phonon dispersion in the first Brillouin zone yielded the longitudinal sound velocity of (9200 {+-} 600) m/s.

  5. High-Resolution X-Ray Spectroscopy of the Galactic Supernova Remnant Puppis A with the XMM-Newton RGS

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shinya; Akamatsu, Hiroki; Konami, Saori; Tamagawa, Toru

    2012-01-01

    We present high-resolution X-ray spectra of cloud-shock interaction regions in the eastern and northern rims of the Galactic supernova remnant Puppis A, using the Reflection Grating Spectrometer onboard the XMM-Newton satellite. A number of emission lines including K(alpha) triplets of He-like N, O , and Ne are clearly resolved for the first time. Intensity ratios of forbidden to resonance lines in the triplets are found to be higher than predictions by thermal emission models having plausible plasma parameters. The anomalous line ratios cannot be reproduced by effects of resonance scattering, recombination, or inner-shell ionization processes, but could be explained by charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. Our observations thus provide observational support for charge-exchange X-ray emission in supernova remnants.

  6. LPE grown LSO:Tb scintillator films for high-resolution X-ray imaging applications at synchrotron light sources

    NASA Astrophysics Data System (ADS)

    Cecilia, A.; Rack, A.; Douissard, P.-A.; Martin, T.; Dos Santos Rolo, T.; Vagovič, P.; Hamann, E.; van de Kamp, T.; Riedel, A.; Fiederle, M.; Baumbach, T.

    2011-08-01

    Within the project ScinTAX of the 6th framework program (FP6) of the European Commission (SCINTAX—STRP 033 427) we have developed a new thin single crystal scintillator for high-resolution X-ray imaging. The scintillator is based on a Tb-doped Lu2SiO5 (LSO) film epitaxially grown on an adapted substrate. The high density, effective atomic number and light yield of the scintillating LSO significantly improves the efficiency of the X-ray imaging detectors currently used in synchrotron micro-imaging applications. In this work we present the characterization of the scintillating LSO films in terms of their spatial resolution performance and we provide two examples of high spatial and high temporal resolution applications.

  7. High resolution imaging with multilayer soft X-ray, EUV and FUV telescopes of modest aperture and cost

    NASA Technical Reports Server (NTRS)

    Walker, Arthur B. C., Jr.; Lindblom, Joakim F.; Timothy, J. G.; Hoover, Richard B.; Barbee, Troy W., Jr.; Baker, Phillip C.; Powell, Forbes R.

    1991-01-01

    The development of multilayer reflective coatings now permits soft X-ray, EUV and FUV radiation to be efficiently imaged by conventional normal incidence optical configurations. Telescopes with quite modest apertures can, in principle, achieve images with resolutions which would require apertures of 1.25 meters or more at visible wavelengths. The progress is reviewed which has been made in developing compact telescopes for ultra-high resolution imaging of the sun at soft X-ray, EUV and FUV wavelengths, including laboratory test results and astronomical images obtained with rocket-borne multilayer telescopes. The factors are discussed which limit the resolution which has been achieved so far, and the problems which must be addressed to attain, and surpass the 0.1 arc-second level. The application of these technologies to the development of solar telescopes for future space missions is also described.

  8. High-resolution X-ray spectroscopy of the Crab Nebula and the oxygen abundance of the interstellar medium

    NASA Technical Reports Server (NTRS)

    Schattenburg, M. L.; Canizares, C. R.

    1986-01-01

    The measurement and analysis of a high-resolution soft X-ray spectrum of the Crab Nebula obtained with the Focal Plane Crystal Spectrometer on the Einstein Observatory are reported. A hydrogen column density of 3.45 + or - 0.42 x 10 to the 21st/sq cm and an oxygen column density of 2.78 + or - 0.55 x 10 to the 18th/sq cm, corresponding to an oxygen abundance of 1.1 + or - 0.3 times solar, were obtained. The absence of any evident oxygen depletion effects suggests that most interstellar grains are reasonably transparent to soft X-rays, implying sizes of less than 0.4 micron. The detailed spectrum in the vicinity of the oxygen edge gives marginal evidence for a resonant absorption line and suggests an edge from singly ionized oxygen.

  9. Ultra-precise characterization of LCLS hard X-ray focusing mirrors by high resolution slope measuring deflectometry.

    PubMed

    Siewert, Frank; Buchheim, Jana; Boutet, Sébastien; Williams, Garth J; Montanez, Paul A; Krzywinski, Jacek; Signorato, Riccardo

    2012-02-13

    We present recent results on the inspection of a first diffraction-limited hard X-ray Kirkpatrick-Baez (KB) mirror pair for the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). The full KB system - mirrors and holders - was under inspection by use of high resolution slope measuring deflectometry. The tests confirmed that KB mirrors of 350mm aperture length characterized by an outstanding residual figure error of <1 nm rms has been realized. This corresponds to the residual figure slope error of about 0.05µrad rms, unprecedented on such long elliptical mirrors. Additional measurements show the clamping of the mirrors to be a critical step for the final - shape preserving installation of such outstanding optics. PMID:22418212

  10. The MIT high resolution X-ray spectroscopy instruments on AXAF

    NASA Technical Reports Server (NTRS)

    Canizares, C. R.; Dewey, D.; Galton, E. B.; Markert, T. H.; Smith, Henry I.; Schattenburg, M. L.; Woodgate, B. E.; Jordan, S.

    1992-01-01

    The general design and performance characteristics of MIT's two dispersive spectrometers, the Bragg Crystal Spectrometer (BCS) and the High Energy Transmission Grating Spectrometer (HETG), now being developed for the Advanced X-ray Astrophysics Facility (AXAF), are described. Particular attention is given to the development of the critical technologies incorporated into these instruments, including BCS diffractors, imaging gas flow proportional counters, and grating elements for the HETG. The principal stages and the current status of the developments are reviewed.

  11. The High Resolution X-ray Spectrometer, SXS, on the Astro-H mission

    NASA Astrophysics Data System (ADS)

    Mitsuda, K.

    2009-09-01

    We will present the science and an overview of the the Soft X-ray Spectrometer onboard the Astro-H mission (formerly known as NeXT). The SXS consists of X-ray focussing mirrors and a microcalorimeter array and is developed by international collaboration lead by JAXA and NASA. The effective area of the instrument will be 290 cm^2 at 6 keV; by a factor of about two larger than that of the X-ray microcalorimeter on board Suzaku. The baseline detector is a 6x6 format array which covers a 2.8 x 2.8 arcmin^2 filed of view, while a larger format array of 8x8 format is being developed. We expect an energy resolution of 6 eV (FWHM) or better at 6 keV. One of the main scientific objectives of the SXS is to determine turbulent and/or macroscopic velocities in the hot gas of clusters of galaxies up to z ~ 1.

  12. Chandra High Resolution Spectroscopy of the Be X-Ray binary A0535+262

    NASA Astrophysics Data System (ADS)

    Reynolds, Mark

    2008-09-01

    We propose to observe the Be X-ray pulsar binary 1A 0535+262 with Chandra HETGS for 20 ks. This observations will allow us to investigate: 1) High M_dot accretion onto a NS: These observations will allow us to probe accretion at a high fraction of the Eddington luminosity onto a neutron star with an accurately constrained B-field (4e12 -- Cyclotron lines) and spin period (X-ray pulsations). 2) Disk winds from accreting compact objects: Miller et al. (2008) have previously obtained HETGS spectra of the black hole transient GRO J1655-40; while Ueda et al. (2004) have obtained HETGS spectra of the Z-source GX13+1. In both cases numerous wind absorption lines are observed. 3) Relativistic accretion disk emission lines: Cackett et al. (2009) have observed relativistic Fe emission from a sample of accreting neutron star LMXBs (Z, Atoll, MSP) providing constraints on the radius of the neutron star. This will be the definitive Chandra observation of a Be X-ray binary.

  13. Testing of High-Resolution SI and GE Analyzers for X-Ray Raman Scattering and X-Ray Emission Spectroscopy

    SciTech Connect

    Reynolds, K.W.; Bergmann, U.

    2005-01-01

    A project at Stanford Linear Accelerator Center (SLAC) is currently underway for the building of a new multi-crystal x-ray spectrometer that will be used to probe the fundamental structures of light elements, including water, as well as 3d transition metals, such as metalloproteins, in dilute systems. Experimentation for determining the focal lengths for the prospective high-resolution, spherically-curved silicon (Si) and germanium (Ge) analyzers for the instrument and the energy resolutions at their respective focal points is described. The focal lengths of the Si and Ge analyzers being sampled were found by minimizing the focal size made from a diffused helium-neon (HeNe) gas laser operating at 632 nm (0.95 meV). Afterwards, the energy resolutions were determined by using synchrotron radiation (SR), in the range from 6-16 keV energies. The experiments were performed at Beamline 10-2 at the Stanford Synchrotron Radiation Laboratory (SSRL), a division of SLAC. This data, along with the energies of the incident beams, was used to determine which samples are most effective at focusing x-rays to the highest spatial and energy resolution. Sample Si (440)A, with a focal length of 1015.2 mm, had the best energy resolution. Furthermore, a new multi-crystal goniometer was tested and commissioned. As part of this work, the device was prealigned into Rowland geometry, in order to facilitate the process of finding a single high-energy resolution x-ray focus for all 7 analyzers.

  14. High-resolution X-ray imaging—a powerful nondestructive technique for applications in semiconductor industry

    NASA Astrophysics Data System (ADS)

    Zschech, Ehrenfried; Yun, Wenbing; Schneider, Gerd

    2008-08-01

    The availability of high-brilliance X-ray sources, high-precision X-ray focusing optics and very efficient CCD area detectors has contributed essentially to the development of transmission X-ray microscopy (TXM) and X-ray computed tomography (XCT) with sub-50 nm resolution. Particularly, the fabrication of high aspect ratio Fresnel zone plates with zone widths approaching 15 nm has contributed to the enormous improvement in spatial resolution during the previous years. Currently, Fresnel zone plates give the ability to reach spatial resolutions of 15 to 20 nm in the soft and of about 30 to 50 nm in the hard X-ray energy range. X-ray microscopes with rotating anode X-ray sources that can be installed in an analytical lab next to a semiconductor fab have been developed recently. These unique TXM/XCT systems provide an important new capability of nondestructive 3D imaging of internal circuit structures without destructive sample preparation such as cross sectioning. These lab systems can be used for failure localization in micro- and nanoelectronic structures and devices, e.g., to visualize voids and residuals in on-chip metal interconnects without physical modification of the chip. Synchrotron radiation experiments have been used to study new processes and materials that have to be introduced into the semiconductor industry. The potential of TXM using synchrotron radiation in the soft X-ray energy range is shown for the nondestructive in situ imaging of void evolution in embedded on-chip copper interconnect structures during electromigration and for the imaging of different types of insulating thin films between the on-chip interconnects (spectromicroscopy).

  15. Critical-angle transmission grating spectrometer for high-resolution soft x-ray spectroscopy on the International X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Davis, John E.; Dewey, Daniel; Bautz, Mark W.; Foster, Rick; Bruccoleri, Alex; Mukherjee, Pran; Robinson, David; Huenemoerder, David P.; Marshall, Herman L.; Schattenburg, Mark L.; Schulz, Norbert S.; Guo, L. Jay; Kaplan, Alex F.; Schweikart, Russell B.

    2010-07-01

    High-resolution spectroscopy at energies below 1 keV covers the lines of C, N, O, Ne and Fe ions, and is central to studies of the Interstellar Medium, the Warm Hot Intergalactic Medium, warm absorption and outflows in Active Galactic Nuclei, coronal emission from stars, etc. The large collecting area, long focal length, and 5 arcsecond half power diameter telescope point-spread function of the International X-ray Observatory will present unprecedented opportunity for a grating spectrometer to address these areas at the forefront of astronomy and astrophysics. We present the current status of a transmission grating spectrometer based on recently developed high-efficiency critical-angle transmission (CAT) gratings that combine the traditional advantages of blazed reflection and transmission gratings. The optical design places light-weight grating arrays close to the telescope mirrors, which maximizes dispersion distance and thus spectral resolution and minimizes demands on mirror performance. It merges features from the Chandra High Energy Transmission Grating Spectrometer and the XMM-Newton Reflection Grating Spectrometer, and provides resolving power R = E/ΔE = 3000 - 5000 (full width half max) and effective area >1000 cm2 in the soft x-ray band. We discuss recent results on ray-tracing and optimization of the optical design, instrument configuration studies, and grating fabrication.

  16. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies

    PubMed Central

    Strocov, V. N.; Schmitt, T.; Flechsig, U.; Schmidt, T.; Imhof, A.; Chen, Q.; Raabe, J.; Betemps, R.; Zimoch, D.; Krempasky, J.; Wang, X.; Grioni, M.; Piazzalunga, A.; Patthey, L.

    2010-01-01

    The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0–180° rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/ΔE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 × 1013 photons s−1 (0.01% BW)−1 at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 µm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/ΔE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given. PMID:20724785

  17. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies.

    PubMed

    Strocov, V N; Schmitt, T; Flechsig, U; Schmidt, T; Imhof, A; Chen, Q; Raabe, J; Betemps, R; Zimoch, D; Krempasky, J; Wang, X; Grioni, M; Piazzalunga, A; Patthey, L

    2010-09-01

    The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0-180 degrees rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/DeltaE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 x 10(13) photons s(-1) (0.01% BW)(-1) at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 microm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/DeltaE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given. PMID:20724785

  18. Goals for the application of high-resolution X-ray spectroscopy to the diagnosis of stellar coronal plasmas

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.

    Examples are provided of how high-resolution X-ray spectra may be used to determine the temperature and emission measure distributions, electron densities, steady and transient flow velocities, and location of active regions in stellar coronas. For each type of measurement, the minimum spectral resolution required to resolve the most useful spectral features is estimated. In general, high sensitivity is required to obtain sufficient signal-to-noise to exploit the high spectral resolution. Although difficult, each measurement should be achievable with the instrumentation proposed for AXAF.

  19. Goals for the application of high-resolution X-ray spectroscopy to the diagnosis of stellar coronal plasmas

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.

    1990-01-01

    Examples are provided of how high-resolution X-ray spectra may be used to determine the temperature and emission measure distributions, electron densities, steady and transient flow velocities, and location of active regions in stellar coronas. For each type of measurement, the minimum spectral resolution required to resolve the most useful spectral features is estimated. In general, high sensitivity is required to obtain sufficient signal-to-noise to exploit the high spectral resolution. Although difficult, each measurement should be achievable with the instrumentation proposed for AXAF.

  20. Objectives and Layout of a High-Resolution X-ray Imaging Crystal Spectrometer for the Large Helical Device (LHD)

    SciTech Connect

    Bitter, M; Gates, D; Monticello, D; Neilson, H; Reiman, A; Roquemore, A L; Morita, S; Goto, M; Yamada, H

    2010-07-29

    A high-resolution X-ray imaging crystal spectrometer, whose concept was tested on NSTX and Alcator C-Mod, is being designed for LHD. This instrument will record spatially resolved spectra of helium-like Ar16+ and provide ion temperature profiles with spatial and temporal resolutions of < 2 cm and ≥ 10 ms. The stellarator equilibrium reconstruction codes, STELLOPT and PIES, will be used for the tomographic inversion of the spectral data. The spectrometer layout and instrumental features are largely determined by the magnetic field structure of LHD.

  1. Objectives and layout of a high-resolution x-ray imaging crystal spectrometer for the large helical device

    SciTech Connect

    Bitter, M.; Hill, K.; Gates, D.; Monticello, D.; Neilson, H.; Reiman, A.; Roquemore, A. L.; Morita, S.; Goto, M.; Yamada, H.; Rice, J. E.

    2010-10-15

    A high-resolution x-ray imaging crystal spectrometer, whose concept was tested on NSTX and Alcator C-Mod, is being designed for the large helical device (LHD). This instrument will record spatially resolved spectra of helium-like Ar{sup 16+} and will provide ion temperature profiles with spatial and temporal resolutions of <2 cm and {>=}10 ms, respectively. The spectrometer layout and instrumental features are largely determined by the magnetic field structure of LHD. The stellarator equilibrium reconstruction codes, STELLOPT and PIES, will be used for the tomographic inversion of the spectral data.

  2. A high resolution small animal radiation research platform (SARRP) with x-ray tomographic guidance capabilities

    PubMed Central

    Wong, John; Armour, Elwood; Kazanzides, Peter; Iordachita, Iulian; Tryggestad, Erik; Deng, Hua; Matinfar, Mohammad; Kennedy, Christopher; Liu, Zejian; Chan, Timothy; Gray, Owen; Verhaegen, Frank; McNutt, Todd; Ford, Eric; DeWeese, Theodore L.

    2008-01-01

    Purpose To demonstrate the CT imaging, conformal irradiation and treatment planning capabilities of a small animal radiation research platform (SARRP). Methods The SARRP employs a dual-focal spot, constant voltage x-ray source mounted on a gantry with a source-to-isocenter distance of 35 cm. Gantry rotation is limited to 120° from vertical. Eighty to 100 kVp x-rays from the smaller 0.4 mm focal spot are used for imaging. Both 0.4 mm and 3.0 mm focal spots operate at 225 kVp for irradiation. Robotic translate/rotate stages are used to position the animal. Cone-beam (CB) CT imaging is achieved by rotating the horizontal animal between the stationary x-ray source and a flat-panel detector. Radiation beams range from 0.5 mm in diameter to (60 × 60) mm2. Dosimetry is measured with radio-chromic films. Monte Carlo dose calculations are employed for treatment planning. The combination of gantry and robotic stage motions facilitate conformal irradiation. Results The SARRP spans 3 ft × 4 ft × 6 ft (WxLxH). Depending on filtration, the isocenter dose outputs at 1 cm depth in water range from 22 to 375 cGy/min from the smallest to the largest radiation fields. The 20% to 80% dose fall-off spans 0.16 mm. CBCT with (0.6 × 0.6 × 0.6) mm3 voxel resolution is acquired with less than 1 cGy. Treatment planning is performed at sub-mm resolution. Conclusions The capability of the SARRP to deliver highly focal beams to multiple animal model systems provides new research opportunities that more realistically bridge laboratory research and clinical translation. PMID:18640502

  3. Direct Polishing of Full-Shell, High-Resolution X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Roche, Jacqueline M.; Gubarev, Mikhail V.; Smith, W. Scott; O'Dell, Stephen L.; Kolodziejczak, Jeffrey J.; Weisskopf, Martin C.; Ramsey, Brian D.; Elsner, Ronald F.

    2014-01-01

    Future x-ray telescopes will likely require lightweight mirrors to attain the large collecting areas needed to accomplish the science objectives. Understanding and demonstrating processes now is critical to achieving sub-arcsecond performance in the future. Consequently, designs not only of the mirrors but of fixtures for supporting them during fabrication, metrology, handling, assembly, and testing must be adequately modeled and verified. To this end, MSFC is using finite-element modeling to study the effects of mounting on thin, full-shell grazing-incidence mirrors, during all processes leading to a flight.

  4. Combinatorial Screening of Advanced Scintillators for High Resolution X-ray Detectors

    SciTech Connect

    Cheng, Shifan; Tao, Dejie; Lynch, Michael; Yuan, Xianglong; Li, Yiqun

    2008-05-12

    The lack of efficient scintillators is a major problem for developing powerful x-ray detectors that are widely used in homeland security, industrial and scientific research. Intematix has developed and applied a high throughput screening process and corresponding crystal growth technology to significantly speed up the discovery process for new efficient scintillators. As a result, Intematix has invented and fabricated three new scintillators both in powder and bulk forms, which possess promising properties such as better radiation hardness and better matching for silicon diode.

  5. Development of an ultra-high resolution diffraction grating forsoft x-rays

    SciTech Connect

    Voronov, Dmitriy L.; Cambie, Rossana; Feshchenko, Ruslan M.; Gullikson, Eric M.; Padmore, Howard A.; Vinogradov, Alexander V.; Yashchuk, Valeriy V.

    2007-08-21

    Resonant Inelastic X-ray Scattering (RIXS) is the one of themost powerful methods for investigation of the electronic structure ofmaterials, specifically of excitations in correlated electron systems.However the potential of the RIXS technique has not been fully exploitedbecause conventional grating spectrometers have not been capable ofachieving the extreme resolving powers that RIXS can utilize. State ofthe art spectrometers in the soft x-ray energy range achieve ~;0.25 eVresolution, compared to the energy scales of soft excitations andsuperconducting gap openings down to a few meV. Development ofdiffraction gratings with super high resolving power is necessary tosolve this problem. In this paper we study the possibilities offabrication of gratings of resolving power of up to 106 for the 0.5 1.5KeV energy range. This energy range corresponds to all or most of theuseful dipole transitions for elements of interest in most correlatedelectronic systems, i.e., oxygen K-edge of relevance to all oxides, thetransition metal L2,3 edges, and the M4,5 edges of the rare earths.Various approaches based on different kinds of diffraction gratings suchas deep-etched multilayer gratings, and multilayer coated echelettes arediscussed. We also present simulations of diffraction efficiency for suchgratings, and investigate the necessary fabricationtolerances.

  6. The High Resolution Microcalorimeter Soft X-ray Spectrometer for the Astro-H Mission

    NASA Astrophysics Data System (ADS)

    Kelley, Richard L.; Mitsuda, K.; International SXS Team

    2013-04-01

    We are developing the Soft X-Ray Spectrometer (SXS) for the JAXA Astro-H mission. The instrument is based on a 36-pixel array of semiconductor micro calorimeters that provides high spectral resolution over the 0.3-12 keV energy band at the focus of a high throughput, grazing-incidence x-ray mirror, giving a 3 x 3 arcmin field of view and more than 200 cm2 of collecting area at 6 keV. The instrument is a collaboration between the JAXA Institute of Space and Astronautical Science and their partners in Japan, the NASA/Goddard Space Flight Center, the University of Wisconsin, the Space Research Organization of the Netherlands, and Geneva University. The principal components of the spectrometer are the microcalorimeter detector system, low-temperature anticoincidence detector, 3-stage ADR and dewar. The dewar is a long-life, hybrid design with a superfluid helium cryostat, Joule-Thomson cooler, and Stirling coolers. The instrument is capable of achieving 4-5 eV resolution across the array and is designed to operate for at least three years in orbit, and can operate either without liquid helium or the cooling power of the Joule-Thomson cooler. In this presentation we describe the design and status of the Astro-H/SXS instrument.

  7. Arcus: an ISS-attached high-resolution x-ray grating spectrometer

    NASA Astrophysics Data System (ADS)

    Smith, R. K.; Ackermann, M.; Allured, R.; Bautz, M. W.; Bregman, J.; Bookbinder, J.; Burrows, D.; Brenneman, L.; Brickhouse, N.; Cheimets, P.; Carrier, A.; Freeman, M.; Kaastra, J.; McEntaffer, R.; Miller, J.; Ptak, A.; Petre, R.; Vacanti, G.

    2014-07-01

    We present the design and scientific motivation for Arcus, an X-ray grating spectrometer mission to be deployed on the International Space Station. This mission will observe structure formation at and beyond the edges of clusters and galaxies, feedback from supermassive black holes, the structure of the interstellar medium and the formation and evolution of stars. The mission requirements will be R>2500 and >600 cm2 of effective area at the crucial O VII and O VIII lines, values similar to the goals of the IXO X-ray Grating Spectrometer. The full bandpass will range from 8-52Å (0.25-1.5 keV), with an overall minimum resolution of 1300 and effective area >150 cm2. We will use the silicon pore optics developed at cosine Research and proposed for ESA's Athena mission, paired with off-plane gratings being developed at the University of Iowa and combined with MIT/Lincoln Labs CCDs. This mission achieves key science goals of the New Worlds, New Horizons Decadal survey while making effective use of the International Space Station (ISS).

  8. High-Resolution X-ray Spectroscopy with a Grating Spectrometer Explorer on the ISS

    NASA Astrophysics Data System (ADS)

    Smith, Randall

    We present the design and scientific motivation for a X-ray grating spectrometer mission to be deployed on the International Space Station. This mission would observe the Warm-Hot Intergalactic Medium, feedback from supermassive black holes, and the structure of the interstellar medium and halo of the Milky Way, amongst other goals. The mission requirements are similar to those of the IXO X-ray Grating Spectrometer of R=3000 and 1000 cm(2) \\ of effective area at 0.5 keV, with a full bandpass covering at least between 0.3-1 keV. Our initial design baselines the silicon pore optics proposed for ESA's Athena mission with a 4.3 m focal length, paired with off-plane gratings being developed at the University of Iowa combined with MIT/Lincoln Labs CCDs. This mission would achieve core science described in the 2010 New Worlds, New Horizons Decadal survey performed by the US National Research Council while effectively using the ISS and at low cost and low risk.

  9. Hard x-ray backlighters for high resolution Compton radiography of Inertial Confinement Fusion targets

    NASA Astrophysics Data System (ADS)

    Tommasini, R.; Macphee, A.; Hey, D.; Ma, T.; Chen, C.; Izumi, N.; MacKinnon, A.; Hatchett, S. P.; Koch, J. A.; Springer, P.; Landen, O. L.

    2008-11-01

    Radiographs of the final stages of imploding DT fuel in inertial confinement fusion experiments will be extremely valuable for checking the convergence, areal density and areal density uniformity of the fuel. For x-rays with energies between 30 and 200 keV, the main opacity will be due to Compton scattering. Here we present the demonstration of 75-200 keV point backlighter sources generated by gold targets irradiated by picosecond laser pulses. In experiments performed at the Titan laser facility at Lawrence Livermore National Laboratory, we measured the source size and the Bremsstrahlung spectrum, as a function of laser intensity and pulse length, from by 5e17-5e18 W/cm^2 using 2-40 ps pulses. We achieved 1D and 2D source sizes of 10 μm, and conversion efficiencies exceeding 1e-3 J/J into x-ray photons with energies in the 100-200 keV spectral range. These sources meet the requirements for radiographing the fuel in inertial confinement fusion implosions at both OMEGA and the National Ignition Facility (NIF) whose experimental designs will also be discussed.

  10. Performance of a high-resolution x-ray microprobe at the Advanced Photon Source.

    SciTech Connect

    Cai, Z.; Lai, B.; Yun, W.; McNulty, I.; Khounsary, A.; Maser, J.; Ilinski, P.; Legnini, D.; Trakhtenberg, E.; Xu, S.; Tieman, B.; Wiemerslage, G.; Gluskin, E.

    1999-12-20

    The authors have developed a x-ray microprobe in the energy region from 6 to 20 keV using undulator radiation and zone-plate optics for microfocusing-based techniques and applications at a beamline at the Advanced Photon Source (APS). The performance of the beamline was shown to meet the design objectives, including preservation of the source brilliance and coherence, selectable transverse coherence length and energy bandwidth, high angular stability, and harmonic suppression of the beam. These objectives were achieved by careful thermal management and use of a novel mirror and crystal monochromator cooling geometry. All beamline optical components are water cooled, and the x-ray beam in the experiment station is stable in beam intensity, energy, and position over many days with no active feedback. Using a double-crystal Si(111) monochromator, they have obtained a focal spot size (FWHM) of 0.15 {micro}m (v) x 1.0 {micro}m (h), and a photon flux of 4 x 10{sup 9} photons/sec at the focal spot, and thus a photon flux density gain of 15,000. A circular beam spot of 0.15 {micro}m in diameter can be achieved by reducing the horizontal source size using a white beam slit located 43.5 meters upstream of the zone plate, with an order of magnitude less flux in the focal spot.

  11. High-Resolution and Quantitative X-Ray Phase-Contrast Tomography for Mouse Brain Research

    PubMed Central

    Xi, Yan; Lin, Xiaojie; Yuan, Falei; Yang, Guo-Yuan; Zhao, Jun

    2015-01-01

    Imaging techniques for visualizing cerebral vasculature and distinguishing functional areas are essential and critical to the study of various brain diseases. In this paper, with the X-ray phase-contrast imaging technique, we proposed an experiment scheme for the ex vivo mouse brain study, achieving both high spatial resolution and improved soft-tissue contrast. This scheme includes two steps: sample preparation and volume reconstruction. In the first step, we use heparinized saline to displace the blood inside cerebral vessels and then replace it with air making air-filled mouse brain. After sample preparation, X-ray phase-contrast tomography is performed to collect the data for volume reconstruction. Here, we adopt a phase-retrieval combined filtered backprojection method to reconstruct its three-dimensional structure and redesigned the reconstruction kernel. To evaluate its performance, we carried out experiments at Shanghai Synchrotron Radiation Facility. The results show that the air-tissue structured cerebral vasculatures are highly visible with propagation-based phase-contrast imaging and can be clearly resolved in reconstructed cross-images. Besides, functional areas, such as the corpus callosum, corpus striatum, and nuclei, are also clearly resolved. The proposed method is comparable with hematoxylin and eosin staining method but represents the studied mouse brain in three dimensions, offering a potential powerful tool for the research of brain disorders. PMID:26576198

  12. Three-Dimensional High-Resolution Optical/X-Ray Stereoscopic Tracking Velocimetry

    NASA Technical Reports Server (NTRS)

    Cha, Soyoung S.; Ramachandran, Narayanan

    2004-01-01

    Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in a variety of research and industrial applications for understanding materials processing, fluid physics, and strain/displacement measurements. The 3-D experiments in these fields most likely inhibit the use of conventional techniques, which are based only on planar and optically-transparent-field observation. Here, we briefly review the current status of 3-D diagnostics for motion/velocity detection, for both optical and x-ray systems. As an initial step for providing 3-D capabilities, we nave developed stereoscopic tracking velocimetry (STV) to measure 3-D flow/deformation through optical observation. The STV is advantageous in system simplicity, for continually observing 3- D phenomena in near real-time. In an effort to enhance the data processing through automation and to avoid the confusion in tracking numerous markers or particles, artificial neural networks are employed to incorporate human intelligence. Our initial optical investigations have proven the STV to be a very viable candidate for reliably measuring 3-D flow motions. With previous activities are focused on improving the processing efficiency, overall accuracy, and automation based on the optical system, the current efforts is directed to the concurrent expansion to the x-ray system for broader experimental applications.

  13. Three-Dimensional High-Resolution Optical/X-Ray Stereoscopic Tracking Velocimetry

    NASA Technical Reports Server (NTRS)

    Cha, Soyoung S.; Ramachandran, Naryanan

    2005-01-01

    Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in a variety of research and industrial applications for understanding materials processing, fluid physics, and strain/displacement measurements. The 3-D experiments in these fields most likely inhibit the use of conventional techniques, which are based only on planar and optically-transparent-field observation. Here, we briefly review the current status of 3-D diagnostics for motion/velocity detection, for both optical and x-ray systems. As an initial step for providing 3-D capabilities, we have developed stereoscopic tracking velocimetry (STV) to measure 3-D flow/deformation through optical observation. The STV is advantageous in system simplicity, for continually observing 3-D phenomena in near real-time. In an effort to enhance the data processing through automation and to avoid the confusion in tracking numerous markers or particles, artificial neural networks are employed to incorporate human intelligence. Our initial optical investigations have proven the STV to be a very viable candidate for reliably measuring 3-D flow motions. With previous activities focused on improving the processing efficiency, overall accuracy, and automation based on the optical system, the current efforts is directed to the concurrent expansion to the x-ray system for broader experimental applications.

  14. Astrophysical Observations of Oxygen Lines Using High-Resolution X-ray Spectra

    NASA Astrophysics Data System (ADS)

    Garcia, Javier

    2016-05-01

    Oxygen has importance in astrophysics as the most cosmically abundant element with Z > 2 . In the interstellar medium (the material between the stars in the galaxy; ISM), it is predominately found in atomic form, mostly in its neutral stage (90 %) , with some fraction being singly-ionized (10 %) and doubly-ionized (< 1 %) . This atomic oxygen produces significant absorption in the X-ray band, particularly in the form of the K-edge and the K-alpha absorption resonances of O I, O II, and O III in the 21-24 A spectral region. We have carried out a systematic study of the oxygen absorption features in the local ISM by analyzing all the high statistical quality data available from the grating instruments on the Chandra and XMM-Newton X-ray observatories. We find a clear discrepancy in the centroid wavelengths of the absorption features observed in the astrophysical data when compared with the latest laboratory measurements. In this talk, we present our current efforts to assess the absolute wavelength calibration of the instruments onboard Chandra. We discuss the need for accuracy in the atomic data for inner-shell transitions, and how accurate models for atomic absorption can contribute to understanding the ISM. Efrain Gatuzz, Timothy Kallman, Claudio Mendoza, Thomas Gorczyca.

  15. Wide-band, high-resolution soft x-ray spectrometer for the Electron Beam Ion Trap

    SciTech Connect

    Brown, G.V.; Beiersdorfer, P.; Widmann, K.

    1999-01-01

    We have constructed two wide-band, high-resolution vacuum flat crystal spectrometers and implemented them on the Electron Beam Ion Trap located at the Lawrence Livermore National Laboratory. Working in unison, these spectrometers can measure an x-ray bandwidth {le}9 {Angstrom} in the soft x-ray region below 21 {Angstrom}. In order to achieve this large bandwidth each spectrometer houses either two 125 mm {times} 13 mm {times} 2 mm RAP (rubidium acid phthalate, 2d=26.121 {Angstrom}), two 114 mm {times} 13 mm {times} 2 mm TlAP (thallium acid phthalate, 2d=25.75 {Angstrom}) crystals, or some combination thereof, for dispersion and two position sensitive proportional counters for detection of x rays. The spectrometers are used to measure wavelengths and relative intensities of the L-shell line emission from FethinspXVII{endash}XXIV for comparison with spectra obtained from astrophysical and laboratory plasmas. The wide wavelength coverage attainable by these spectrometers makes it possible to measure all the L-shell emission from a given iron ion species simultaneously. {copyright} {ital 1999 American Institute of Physics.}

  16. Resonant x-ray emission spectroscopy of liquid water: novel instrumentation, high resolution, and the"map" approach

    SciTech Connect

    Weinhardt, L.; Fuchs, O.; Blum, M.; Bär, M.; Weigand, M.; Denlinger, J.D.; Zubavichus, Y.; Zharnikov, M.; Grunze, M.; Heske, C.; Umbach, E.

    2008-06-17

    Techniques to study the electronic structure of liquids are rare. Most recently, resonant x-ray emission spectroscopy (XES) has been shown to be an extremely versatile spectroscopy to study both occupied and unoccupied electronic states for liquids in thermodynamic equilibrium. However, XES requires high-brilliance soft x-ray synchrotron radiation and poses significant technical challenges to maintain a liquid sample in an ultra-high vacuum environment. Our group has therefore developed and constructed a novel experimental setup for the study of liquids, with the long-term goal of investigating the electronic structure of biological systems in aqueous environments. We have developed a flow-through liquid cell in which the liquid is separated from vacuum by a thin Si3N4 or SiC window and which allows a precise control of temperature. This approach has significant advantages compared to static liquids cells used in the past. Furthermore, we have designed a dedicated high-transmission, high-resolution soft x-ray spectrometer. The high transmission makes it possible to measure complete resonant XES"maps" in less than an hour, giving unprecedented detailed insight into the electronic structure of the investigated sample. Using this new equipment we have investigated the electronic structure of liquid water. Furthermore, our XES spectra and maps give information about ultra-fast dissociation on the timescale of the O 1s core hole lifetime, which is strongly affected by the initial state hydrogen bonding configuration.

  17. Wide-band, high-resolution soft x-ray spectrometer for the Electron Beam Ion Trap

    NASA Astrophysics Data System (ADS)

    Brown, G. V.; Beiersdorfer, P.; Widmann, K.

    1999-01-01

    We have constructed two wide-band, high-resolution vacuum flat crystal spectrometers and implemented them on the Electron Beam Ion Trap located at the Lawrence Livermore National Laboratory. Working in unison, these spectrometers can measure an x-ray bandwidth ⩽9 Å in the soft x-ray region below 21 Å. In order to achieve this large bandwidth each spectrometer houses either two 125 mm × 13 mm × 2 mm RAP (rubidium acid phthalate, 2d=26.121 Å), two 114 mm × 13 mm × 2 mm TlAP (thallium acid phthalate, 2d=25.75 Å) crystals, or some combination thereof, for dispersion and two position sensitive proportional counters for detection of x rays. The spectrometers are used to measure wavelengths and relative intensities of the L-shell line emission from Fe XVII-XXIV for comparison with spectra obtained from astrophysical and laboratory plasmas. The wide wavelength coverage attainable by these spectrometers makes it possible to measure all the L-shell emission from a given iron ion species simultaneously.

  18. Warm Absorbers in X-rays (WAX), a comprehensive high resolution grating spectral study of a sample of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Laha, S.; Guainazzi, M.; Dewangan, G.; Chakravorty, S.; Kembhavi, A.

    2014-07-01

    We present results from a homogeneous analysis of the broadband 0.3-10 keV CCD resolution as well as of soft X-ray high-resolution grating spectra of a hard X-ray flux-limited sample of 26 Seyfert galaxies observed with XMM-Newton. We could put a strict lower limit on the detection fraction of 50%. We find a gap in the distribution of the ionisation parameter in the range 0.5X-rays. The WA parameters show no correlation among themselves, except for one case. The shallow slope of the logξ versus logv_{out} linear regression (0.12± 0.03) is inconsistent with the scaling laws predicted by radiation or magneto-hydrodynamic-driven winds. Our results suggest also that WA and Ultra Fast Outflows (UFOs) do not represent extreme manifestation of the same astrophysical system.

  19. High-resolution spectroscopic diagnostics of very high-temperature plasmas in the hard x-ray regime

    SciTech Connect

    Widmann, K

    1999-12-06

    Motivated by the need for establishing a reliable database useful for the application of x-ray spectroscopic tools for the diagnostic of very high temperature plasmas, high-resolution crystal spectrometer measurements have been performed investigating the characteristic K-shell radiation of highly charged krypton and xenon. The measurements, which have been performed at the Electron-Beam-Ion-Trap (EBIT) facility of the Lawrence Livermore National Laboratory, include the investigation of the n = 2 {yields} 1 transitions in heliumlike krypton (Kr{sup 34+}) and innershell excited lithiumlike krypton (Kr{sup 33+}) utilizing a conventional reflection-type crystal spectrometer of von Hamos geometry. The electron-excitation-energy selective measurements map the contribution of the dielectronic recombination lines providing the means of accurate interpretation of the line profiles of the characteristic K{alpha} x-ray emission of plasmas. The high-resolution measurements of the n = 2 {yields} 1 transitions in heliumlike xenon (Xe{sup 52+}) and hydrogenlike xenon (Xe{sup 53+}) were based on a new transmission-type crystal spectrometer of DuMond geometry. The resolving power of the developed spectrometer was sufficient for charge state specific observation allowing the determination of the electron-impact excitation cross section for the hydrogen- and heliumlike K{alpha} transitions. The disagreement with theoretically predicted values is a measure of the magnitude of the Breit interaction for the highly charged high-Z ions.

  20. Determination of lattice parameters, strain state and composition in semipolar III-nitrides using high resolution X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Frentrup, Martin; Hatui, Nirupam; Wernicke, Tim; Stellmach, Joachim; Bhattacharya, Arnab; Kneissl, Michael

    2013-12-01

    In group-III-nitride heterostructures with semipolar or nonpolar crystal orientation, anisotropic lattice and thermal mismatch with the buffer or substrate lead to a complex distortion of the unit cells, e.g., by shearing of the lattice. This makes an accurate determination of lattice parameters, composition, and strain state under assumption of the hexagonal symmetry impossible. In this work, we present a procedure to accurately determine the lattice constants, strain state, and composition of semipolar heterostructures using high resolution X-ray diffraction. An analysis of the unit cell distortion shows that four independent lattice parameters are sufficient to describe this distortion. Assuming only small deviations from an ideal hexagonal structure, a linear expression for the interplanar distances dhkl is derived. It is used to determine the lattice parameters from high resolution X-ray diffraction 2ϑ-ω-scans of multiple on- and off-axis reflections via a weighted least-square fit. The strain and composition of ternary alloys are then evaluated by transforming the elastic parameters (using Hooke's law) from the natural crystal-fixed coordinate system to a layer-based system, given by the in-plane directions and the growth direction. We illustrate our procedure taking an example of (112¯2) AlκGa1-κN epilayers with Al-contents over the entire composition range. We separately identify the in-plane and out-of-plane strains and discuss origins for the observed anisotropy.

  1. To get the most out of high resolution X-ray tomography: A review of the post-reconstruction analysis

    NASA Astrophysics Data System (ADS)

    Liu, Yijin; Kiss, Andrew M.; Larsson, Daniel H.; Yang, Feifei; Pianetta, Piero

    2016-03-01

    X-ray microscopy has been well-recognized as one of the most important techniques for research in a wide range of scientific disciplines including materials science, geoscience, and bio-medical science. Advances in X-ray sources, optics, detectors, and imaging methodologies have made significant improvements to non-destructive reconstructions of the three dimensional (3D) structure of specimens over a wide range of length scales with different contrast mechanisms. A strength of 3D imaging is a "seeing is believing" way of reporting and analyzing data to better understand the structure/function characteristics of a sample. In addition to the excellent visualization capability, X-ray computed tomography has a lot more to offer. In this article, we review some of the experimental and analytical methods that enrich and extract scientifically relevant information from tomographic data. Several scientific cases are discussed along with how they enhance the tomographic dataset.

  2. Integrated reflectivity measurements of hydrogen phthalate crystals for high-resolution soft x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Zastrau, U.; Förster, E.

    2014-09-01

    The integrated x-ray reflectivity of Potassium Hydrogen Phthalate (KAP) and Rubidium Hydrogen Phthalate (RAP) crystals is studied at a photon energy of (1740±14) eV using a double-crystal setup. The absolute measured reflectivities are in < 5% agreement with the values predicted by the dynamic diffraction theory for perfect crystals when absorption is included. Within 4% experimental error margins, specimen that were exposed to ambient conditions over many years show identical reflectivity as specimen that were cleaved just before the measurement. No differences are observed between cleaving off a 10 μm surface layer and splitting the entire crystal bulk of 2 mm thickness. We conclude that at 1.7 keV photon energy the penetration depth of ~ 1 μm is large compared to a potentially deteriorated surface layer of a few 10 nm.

  3. Arcus: The next generation of high-resolution X-ray grating spectra

    NASA Astrophysics Data System (ADS)

    Smith, Randall

    2014-11-01

    We present the design and scientific motivation for Arcus, an X-ray grating spectrometer mission to be deployed on the International Space Station. This mission will observe structure formation at and beyond the edges of clusters and galaxies, feedback from supermassive black holes, the structure of the interstellar medium and the formation and evolution of stars. Key mission requirements will be R>2500 and >600 cm^2 of effective area at the crucial O VII and O VIII lines, with the full bandpass going from 8-52Å, with an overall minimum resolution of 1300 and effective area >150 cm^2. We will use the silicon pore optics proposed for ESA's Athena mission, paired with off-plane gratings being developed at the University of Iowa and combined with MIT/Lincoln Labs CCDs.

  4. High Resolution X-Ray Microangiography of 4T1 Tumor in Mouse Using Synchrotron Radiation

    SciTech Connect

    Sun Jianqi; Liu Ping; Gu Xiang; Liu Xiaoxia; Zhao Jun; Xiao Tiqiao; Xu, Lisa X.

    2010-07-23

    Angiogenesis is very important in tumor growth and metastasis. But in clinic, only vessels lager than 200 {mu}m in diameter, can be observed using conventional medical imaging. Synchrotron radiation (SR) phase contrast imaging, whose spatial resolution can reach as high as 1 {mu}m, has great advantages in imaging soft tissue structures, such as blood vessels and tumor tissues. In this paper, the morphology of newly formed micro-vessels in the mouse 4T1 tumor samples was firstly studied with contrast agent. Then, the angiogenesis in nude mice tumor window model was observed without contrast agent using the SR phase contrast imaging at the beamline for X-ray imaging and biomedical applications, Shanghai Synchrotron Radiation Facility (SSRF). The images of tumors showed dense, irregular and tortuous tumor micro-vessels with the smallest size of 20-30 {mu}m in diameter.

  5. High-resolution detectors for imaging and spectroscopy at ultraviolet and soft X-ray wavelengths

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Morgan, J. S.; Slater, D. C.

    1988-01-01

    The Multi-Anode Microchannel Arrays (MAMAs) are a family of pulse-counting imaging array detectors designed specifically for astrophysical investigations in space. The MAMAs have a number of unique performance characteristics which make them particularly suitable for imaging and spectroscopy at ultraviolet and soft X-ray wavelengths. First, they employ 'solar blind' photocathodes eliminating the 'red leak' problem associated with solid state arrays such as the CCDs. Second, they operate with zero readout noise, yielding photon-statistics limited signals. Third, they utilize a random readout technique and can determine both the location of a detected photon and also its arrival time to an accuracy of the order of 100 ns. This paper gives an overview of the construction, mode of operation, and performance characteristics of the MAMA detectors and describes the current status of the development program.

  6. Optimizing Transition Edge Sensors for High-Resolution X-ray Spectroscopy

    SciTech Connect

    Saab, Tarek; Bandler, Simon R.; Boyce, Kevin; Chervenak, James A.; Figueroa-Feliciano, Enectali; Iyomoto, Naoko; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, John E

    2006-09-07

    Transition Edge Sensors (TES) have found applications as astronomical detectors ranging from the microwave to the gamma ray energy bands. Each energy band, however, imposes a different set of requirements on the TES such as energy and timing resolution, focal plane coverage, and the mechanisms by which the signal is coupled to the detector. This paper focuses on the development of TESs optimized for the 0.1-10 keV energy range at the NASA Goddard Space Flight Center. Such detectors are suitable candidates for some of the upcoming X-ray observatories such as NeXT and Constellation-X. Ongoing efforts at producing, characterizing, and modeling such devices, as well as the latest results, are discussed.

  7. X-ray optics. II - A technique for high resolution spectroscopy

    NASA Technical Reports Server (NTRS)

    Cash, Webster C., Jr.

    1991-01-01

    A novel combination of optical elements and properties is combined to achieve high-spectral resolution using grazing incidence optics of modest quality. Analysis and ray tracing of examples show that using radial groove gratings at high blaze angles in the manner of an echelle spectrograph can provide high spectral resolution. This arrangement is compared to the conventional in-plane designs to show that the off-plane is superior in nearly every respect. Cross dispersion can be provided by the energy resolution of a CCD detector. Additional resolution can be squeezed from the system by strategic placement of gratings to take advantage of the azimuthal response of a Wolter X-ray optic.

  8. Beam collimation with polycapillary x-ray optics for high contrast high resolution monochromatic imaging

    SciTech Connect

    Sugiro, Francisca R.; Li Danhong; MacDonald, C.A.

    2004-12-01

    Monochromatic imaging can provide better contrast and resolution than conventional broadband radiography. In broadband systems, low energy photons do not contribute to the image, but are merely absorbed, while high energy photons produce scattering that degrades the image. By tuning to the optimal energy, one can eliminate undesirable lower and higher energies. Monochromatization is achieved by diffraction from a single crystal. A crystal oriented to diffract at a particular energy, in this case the characteristic line energy, diffracts only those photons within a narrow range of angles. The resultant beam from a divergent source is nearly parallel, but not very intense. To increase the intensity, collimation was performed with polycapillary x-ray optics, which can collect radiation from a divergent source and redirect it into a quasi parallel beam. Contrast and resolution measurements were performed with diffracting crystals with both high and low angular acceptance. Testing was first done at 8 keV with an intense copper rotating anode x-ray source, then 17.5 keV measurements were made with a low power molybdenum source. At 8 keV, subject contrast was a factor of five higher than for the polychromatic case. At 17.5 keV, monochromatic contrast was two times greater than the conventional polychromatic contrast. The subject contrasts measured at both energies were in good agreement with theory. An additional factor of two increase in contrast, for a total gain of four, is expected at 17.5 keV from the removal of scatter. Scatter might be simply removed using an air gap, which does not degrade resolution with a parallel beam.

  9. Imaging of pore networks and related interfaces in soil systems by using high resolution X-ray micro-CT

    NASA Astrophysics Data System (ADS)

    Zacher, Gerhard; Eickhorst, Thilo; Schmidt, Hannes; Halisch, Matthias

    2016-04-01

    Today's high-resolution X-ray CT with its powerful tubes and great detail detectability lends itself naturally to geological and pedological applications. Those include the non-destructive interior examination and textural analysis of rock and soil samples and their permeability and porosity - to name only a few. Especially spatial distribution and geometry of pores, mineral phases and fractures are important for the evaluation of hydrologic and aeration properties in soils as well as for root development in the soil matrix. The possibility to visualize a whole soil aggregate or root tissue in a non-destructive way is undoubtedly the most valuable feature of this type of analysis and is a new area for routine application of high resolution X-ray micro-CT. The paper outlines recent developments in hard- and software requirements for high resolution CT. It highlights several pedological applications which were performed with the phoenix nanotom m, the first 180 kV nanofocus CT system tailored specifically for extremely high-resolution scans of variable sized samples with voxel-resolutions down to < 300 nm. In addition very good contrast resolution can be obtained as well which is necessary to distinguish biogenic material in soil aggregates amongst others. We will address visualization and quantification of porous networks in 3D in different environmental samples ranging from clastic sedimentary rock to soil cores and individual soil aggregates. As several processes and habitat functions are related to various pore sizes imaging of the intact soil matrix will be presented on different scales of interest - from the mm-scale representing the connectivity of macro-pores down to the micro-scale representing the space of microbial habitats. Therefore, soils were impregnated with resin and scanned via X-ray CT. Scans at higher resolution were obtained from sub-volumes cut from the entire resin impregnated block and from crop roots surrounded by rhizosphere soil. Within the

  10. High-resolution high-efficiency multilayer Fresnel zone plates for soft and hard x-rays

    NASA Astrophysics Data System (ADS)

    Sanli, Umut T.; Keskinbora, Kahraman; Gregorczyk, Keith; Leister, Jonas; Teeny, Nicolas; Grévent, Corinne; Knez, Mato; Schütz, Gisela

    2015-09-01

    X-ray microscopy enables high spatial resolutions, high penetration depths and characterization of a broad range of materials. Calculations show that nanometer range resolution is achievable in the hard X-ray regime by using Fresnel zone plates (FZPs) if certain conditions are satisfied. However, this requires, among other things, aspect ratios of several thousands. The multilayer (ML) type FZPs, having virtually unlimited aspect ratios, are strong candidates to achieve single nanometer resolutions. Our research is focused on the fabrication of ML-FZPs which encompasses deposition of multilayers over a glass fiber via the atomic layer deposition (ALD), which is subsequently sliced in the optimum thickness for the X-ray energy by a focused ion beam (FIB). We recently achieved aberration free imaging by resolving 21 nm features with an efficiency of up to 12.5 %, the highest imaging resolution achieved by an ML-FZP. We also showed efficient focusing of 7.9 keV X-rays down to 30 nm focal spot size (FWHM). For resolutions below ~10 nm, efficiencies would decrease significantly due to wave coupling effects. To compensate this effect high efficiency, low stress materials have to be researched, as lower intrinsic stresses will allow fabrication of larger FZPs with higher number of zones, leading to high light intensity at the focus. As a first step we fabricated an ML-FZP with a diameter of 62 μm, an outermost zone width of 12 nm and 452 active zones. Further strategies for fabrication of high resolution high efficiency multilayer FZPs will also be discussed.

  11. High Resolution X-ray Characterization Of Mosaic Crystals For Hard X- And Gamma-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Marchini, L.; Ferrari, C.; Buffagni, E.; Zappettini, A.

    2011-09-01

    For hard X-ray astronomy in the 70-1000 keV energy range Laue lenses have been proposed where the focusing elements are made of single mosaic crystals, in order to increase the diffraction efficiency with respect to perfect crystals. Suitable crystals to be used for such application should have a sufficient density to increase the diffraction efficiency and a mosaicity ranging between 30 arcsec and 1-2 arcmin, depending on the lens focusing distance and resolution. In the past germanium and copper crystals, often employed as monochromators for neutrons, have been considered. In this work we propose several crystalline materials of different degree of crystal perfection such as GaAs, Cu, CdTe, and CdZnTe as possible mosaic crystals for hard X-ray astronomy. They were analyzed by high resolution X-ray diffraction at 8 keV and by diffraction at energies up to 700 keV at synchrotron. It was found that: CdTe and CdZnTe crystals exhibit low angle grain boundaries preventing the formation of a single diffracted X-ray beam; Cu crystals exhibit mosaicity of the order of several arcmin, however a deep etching is needed to remove the cutting damage; GaAs crystals grown by LEC method show mosaicity between 15 and 30 arcsec and good diffraction efficiency up to energies of 700 keV. Annealing and surface damage were considered as possible methods to increase the GaAs crystal mosaicity.

  12. Dose in x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Kalender, Willi A.

    2014-02-01

    Radiation dose in x-ray computed tomography (CT) has become a topic of high interest due to the increasing numbers of CT examinations performed worldwide. This review aims to present an overview of current concepts for both scanner output metrics and for patient dosimetry and will comment on their strengths and weaknesses. Controversial issues such as the appropriateness of the CT dose index (CTDI) are discussed in detail. A review of approaches to patient dose assessment presently in practice, of the dose levels encountered and options for further dose optimization are also given and discussed. Patient dose assessment remains a topic for further improvement and for international consensus. All approaches presently in use are based on Monte Carlo (MC) simulations. Estimates for effective dose are established, but they are crude and not patient-specific; organ dose estimates are rarely available. Patient- and organ-specific dose estimates can be provided with adequate accuracy and independent of CTDI phantom measurements by fast MC simulations. Such information, in particular on 3D dose distributions, is important and helpful in optimization efforts. Dose optimization has been performed very successfully in recent years and even resulted in applications with effective dose values of below 1 mSv. In general, a trend towards lower dose values based on technical innovations has to be acknowledged. Effective dose values are down to clearly below 10 mSv on average, and there are a number of applications such as cardiac and pediatric CT which are performed routinely below 1 mSv on modern equipment.

  13. Dose in x-ray computed tomography.

    PubMed

    Kalender, Willi A

    2014-02-01

    Radiation dose in x-ray computed tomography (CT) has become a topic of high interest due to the increasing numbers of CT examinations performed worldwide. This review aims to present an overview of current concepts for both scanner output metrics and for patient dosimetry and will comment on their strengths and weaknesses. Controversial issues such as the appropriateness of the CT dose index (CTDI) are discussed in detail. A review of approaches to patient dose assessment presently in practice, of the dose levels encountered and options for further dose optimization are also given and discussed. Patient dose assessment remains a topic for further improvement and for international consensus. All approaches presently in use are based on Monte Carlo (MC) simulations. Estimates for effective dose are established, but they are crude and not patient-specific; organ dose estimates are rarely available. Patient- and organ-specific dose estimates can be provided with adequate accuracy and independent of CTDI phantom measurements by fast MC simulations. Such information, in particular on 3D dose distributions, is important and helpful in optimization efforts. Dose optimization has been performed very successfully in recent years and even resulted in applications with effective dose values of below 1 mSv. In general, a trend towards lower dose values based on technical innovations has to be acknowledged. Effective dose values are down to clearly below 10 mSv on average, and there are a number of applications such as cardiac and pediatric CT which are performed routinely below 1 mSv on modern equipment. PMID:24434792

  14. High resolution X-ray micro-CT of ultra-thin wall space components

    NASA Astrophysics Data System (ADS)

    Roth, D. J.; Rauser, R. W.; Bowman, R. R.; Bonacuse, P. J.; Martin, R. E.; Locci, I. E.; Kelley, M.

    2013-01-01

    A high resolution micro-CT system has been assembled and is being used to provide optimal characterization for ultra-thin wall space components. The Glenn Research Center NDE Sciences Team, using this CT system, has assumed the role of inspection vendor for the Advanced Stirling Convertor (ASC) project at NASA. This article will discuss many aspects of the development of the CT scanning for this type of component, including CT system overview; inspection requirements; process development, software utilized and developed to visualize, process, and analyze results; calibration sample development; results on actual samples; correlation with optical/SEM characterization; CT modeling; and development of automatic flaw recognition software.

  15. SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) for low dose x-ray imaging: Spatial resolution

    PubMed Central

    Li, Dan; Zhao, Wei

    2008-01-01

    An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator∕HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve the low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 μm. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 μm×50 μm pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 μm. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity. PMID:18697540

  16. SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) for low dose x-ray imaging: Spatial resolution

    SciTech Connect

    Li Dan; Zhao Wei

    2008-07-15

    An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve the low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 {mu}m. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 {mu}mx50 {mu}m pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 {mu}m. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.

  17. Unambiguous determination of H-atom positions: comparing results from neutron and high-resolution X-ray crystallography

    SciTech Connect

    Gardberg, Anna S.; Del Castillo, Alexis R.; Weiss, Kevin L.; Meilleur, Flora; Blakeley, Matthew P.; Myles, Dean A.A.

    2010-11-19

    The locations of H atoms in biological structures can be difficult to determine using X-ray diffraction methods. Neutron diffraction offers a relatively greater scattering magnitude from H and D atoms. Here, 1.65 {angstrom} resolution neutron diffraction studies of fully perdeuterated and selectively CH{sub 3}-protonated perdeuterated crystals of Pyrococcus furiosus rubredoxin (D-rubredoxin and HD-rubredoxin, respectively) at room temperature (RT) are described, as well as 1.1 {angstrom} resolution X-ray diffraction studies of the same protein at both RT and 100 K. The two techniques are quantitatively compared in terms of their power to directly provide atomic positions for D atoms and analyze the role played by atomic thermal motion by computing the {sigma} level at the D-atom coordinate in simulated-annealing composite D-OMIT maps. It is shown that 1.65 {angstrom} resolution RT neutron data for perdeuterated rubredoxin are {approx}8 times more likely overall to provide high-confidence positions for D atoms than 1.1 {angstrom} resolution X-ray data at 100 K or RT. At or above the 1.0{sigma} level, the joint X-ray/neutron (XN) structures define 342/378 (90%) and 291/365 (80%) of the D-atom positions for D-rubredoxin and HD-rubredoxin, respectively. The X-ray-only 1.1 {angstrom} resolution 100 K structures determine only 19/388 (5%) and 8/388 (2%) of the D-atom positions above the 1.0{sigma} level for D-rubredoxin and HD-rubredoxin, respectively. Furthermore, the improved model obtained from joint XN refinement yielded improved electron-density maps, permitting the location of more D atoms than electron-density maps from models refined against X-ray data only.

  18. High Resolution X-Ray Spectroscopy and Imaging of Supernova Remnant N132D

    NASA Technical Reports Server (NTRS)

    Behar, Ehud; Rasmussen, Andrew; Griffiths, R. Gareth; Dennerl, Konrad; Audard, Marc; Aschenbach, Bernd

    2000-01-01

    The observation of the supernova remnant N132D by the scientific instruments on board the XMM-Newton satellite is presented. The X-rays from N132D are dispersed into a detailed line-rich spectrum using the Reflection Grating Spectrometers. Spectral lines of C, N, O, Ne, Mg, Si, S, and Fe are identified. Images of the remnant, in narrow wavelength bands, produced by the European Photon Imaging Cameras reveal a complex spatial structure of the ionic distribution. While K - shell Fe seems to originate near the centre, all of the other ions are observed along the shell. An emission excess of O(6+) over O(7+) is detected on the northeastern edge of the remnant. This can be a sign of hot ionising conditions, or it can reflect a relatively cool region. Spectral fitting of the CCD spectrum suggests high temperatures in this region, but a detailed analysis of the atomic processes involved in producing the O(6+) spectral lines leads to the conclusion that the intensities of these lines alone cannot provide a conclusive distinction between the two scenarios.

  19. HIGH RESOLUTION X-RAY FLUORESCENCE MICRO-TOMOGRAPHY ON SINGLE SEDIMENT PARTICLES.

    SciTech Connect

    VINCZE,L.; VEKEMANS,B.; SZALOKI,I.; JANSSENS,K.; VAN GRIEKEN,R.; FENG,H.; JONES,K.W.; ADAMS,F.

    2002-07-29

    This work focuses on the investigation of the distribution of contaminants in individual sediment particles from the New York/New Jersey Harbor. Knowledge of the spatial distribution of the contaminants within the particles is needed to enable (1) more sophisticated approaches to the understanding of the fate and transport of the contaminants in the environment and (2) more refined methods for cleaning the sediments. The size of the investigated particles ranges from 30-80 microns. Due to the low concentration of the elements of interest and the microscopic size of the environmental particles in these measurements, the small size and high intensity of the analyzing X-ray beam was critical. The high photon flux at the ESRF Microfocus beam line (ID13) was used as the basis for fluorescence tomography to investigate whether the inorganic compounds are taken upon the surface organic coating or whether they are distributed through the volume of the grains being analyzed. The experiments were done using a 13 keV monochromatic beam of approximately 2 {micro}m in size having an intensity of 10{sup 10} ph/s, allowing absolute detection limits on the 0.04-1 fg level for Ti, Cr, Mn, Fe, Ni, and Zn.

  20. Crystal Dynamics of (delta) fcc Pu-Ga by High Resolution Inelastic X-Ray Scattering

    SciTech Connect

    Wong, J; Krisch, M; Farber, D; Occelli, F; Xu, R; Chiang, T C; Clatterbuck, D; Schwartz, A J; Wall, M; Boro, C

    2004-09-28

    We have used a microbeam on large grain sample concept to carry out an inelastic x-ray scattering experiment to map the full phonon dispersion curves of an fcc {delta}-phase Pu-Ga alloy. This approach obviates experimental difficulties with conventional inelastic neutron scattering due to the high absorption cross section of the common {sup 239}Pu isotope and the non-availability of large (mm size) single crystal materials for Pu and its alloys. A classical Born von-Karman force constant model was used to model the experimental results, and no less than 4th nearest neighbor interactions had to be included to account for the observation. Several unusual features including, a large elastic anisotropy, a small shear elastic modulus, (C{sub 11}-C{sub 12})/2, a Kohn-like anomaly in the T{sub 1}[011] branch, and a pronounced softening of the T[111] branch towards the L point in the Brillouin are found. These features can be related to the phase transitions of plutonium and to strong coupling between the crystal structure and the 5f valence instabilities. Our results represent the first full phonon dispersions ever obtained for any Pu-bearing material, thus ending a 40-year quest for this fundamental data. The phonon data also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for {delta}-plutonium.

  1. A High Resolution Study of the X-Ray Emission From 3C400.2

    NASA Technical Reports Server (NTRS)

    Plucinsky, Paul

    2001-01-01

    The ROSAT HRI observation of 3C400.2 was conducted and the data have been received by the PI. The data have been processed using the Extended Source Analysis SW (ESAS) developed by Steve Snowden for the analysis of extended objects with ROSAT. The ESAS SW models and subtracts the particle background of the ROSAT HRI which is the dominant contributor to the non-cosmic background in the HRI. The background-subtracted image was smoothed with an adaptive-smoothing algorithm in order to enhance faint structure but also to maintain the superb angular resolution of the HRI where a sufficient number of counts were available. We have also used the ESAS SW to analyze the existing archival PSPC data. We have generated background-subtracted and merged images from the multiple PSPC observations. In the future, we will conduct a detailed comparison between the HRI and PSPC images. In addition, we plan to use the existing archival ASCA data to better determine the spectrum as a function of position in the remnant. The PI has not been able to finish the analysis and write the paper due to his demands on his time supporting operations of the Chandra X-ray Observatory. The PI will have more time in the coming year and hopes to finish the analysis.

  2. High resolution X-ray spectroscopy of supernova remnants with ASTRO-H

    NASA Astrophysics Data System (ADS)

    Hughes, John

    The high spectral resolution and sensitivity of the Soft X-ray Spectrometer (SXS) on the upcoming ASTRO-H mission will open a new window of discovery for the study of supernova remnants. In this presentation, I will offer some illustrative examples of the types of science that the ASTRO-H team hopes to pursue. In young, ejecta-dominated remnants, abundance measurements based on emission line diagnostics will allow for a closer link to the different types of supernova progenitor models. Line widths probe ion temperatures and turbulent gas velocities on small scales, while offsets in observed line centroids characterize the bulk expansion motion of a remnant. For older remnants, much of the line-rich thermal plasma arises from shocks in the ambient, interstellar material. SXS observations will address a number of existing concerns with the intepretation of low resolution CCD spectra, including for example the issue of low inferred abundances at the rims of the Cygnus Loop, Puppis A, and others; and the physical origin of recombination-dominated plasmas.

  3. High-Resolution X-Ray Spectroscopy of the Seyfert 2 Galaxy Circinus with Chandra

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita M.; Netzer, Hagai; Kaspi, Shai; Brandt, W. N.; Chartas, G.; Garmire, G. P.; Nousek, John A.; Weaver, K. A.

    2000-01-01

    Results from a 60 ks Chandra High Energy Transmission Grating Spectrometer (HETGS) observation of the nearby Seyfert 2 Circinus are presented. The spectrum shows a wealth of emission lines at both soft and hard X-rays, including lines of Ne, Mg, Si, S, Ar, Ca, and Fe, and a prominent Fe K(alpha) line at 6.4 keV. We identify several of the He-like components and measure several of the Lyman lines of the N-like ions. The lines' profiles are unresolved at the limited signal-to-noise ratio of the data. Our analysis of the zeroth-order image in a companion paper constrains the size of the emission region to be 20-60 pc, suggesting that emission within this volume is almost entirely due to the reprocessing of the obscured central source. Here we show that a model containing two distinct components can reproduce almost all the observed properties of this gas. The ionized component can explain the observed intensities of the ionized species, assuming twice-solar composition and an N is proportional r(exp -1.5) density distribution. The neutral component is highly concentrated, well within the 0.8" point source, and is responsible for almost all of the observed K(alpha) (6.4 keV) emission. Circinus seems to be different than Mkn 3 in terms of its gas distribution.

  4. Study of stent deployment mechanics using a high-resolution x-ray imaging detector

    NASA Astrophysics Data System (ADS)

    Wang, Weiyuan; Ionita, Ciprian N.; Bednarek, Daniel R.; Rudin, Stephen

    2011-03-01

    To treat or prevent some of the 795,000 annual strokes in the U.S., self-expanding endo-vascular stents deployed under fluoroscopic image guidance are often used. Neuro-interventionalists need to know the deployment behavior of each stent in order to place them in the correct position. Using the Micro-Angiographic Fluoroscope (MAF) which has about 3 times higher resolution than commercially available flat panel detectors (FPD) we studied the deployment mechanics of two of the most important commercially available nitinol stents: the Pipeline embolization device (EV3), and the Enterprise stent (Codman). The Pipeline stent's length extends to about 3 times that of its deployed length when it is contained inside a catheter. From the high-resolution images with the MAF we found that upon the sudden release of the distal end of the Pipeline from a helical wire cap, the stent expands radially but retracts to about 30% (larger than for patient deployments) of its length. When released from the catheter proximally, it retracts additionally about 50% contributing to large uncertainty in the final deployed location. In contrast, the MAF images clearly show that the Enterprise stent self expands with minimal length retraction during deployment from its catheter and can be retrieved and repositioned until the proximal markers are released from clasping structures on its guide-wire thus enabling more accurate placement at the center of an aneurysm or stenosis. The high-resolution imaging demonstrated in this study should help neurointerventionalists understand and control endovascular stent deployment mechanisms and hence perform more precise treatments.

  5. High-resolution x-ray spectroscopy with the EBIT Calorimeter Spectrometer

    SciTech Connect

    Porter, F S; Adams, J S; Beiersdorfer, P; Brown, G V; Clementson, J; Frankel, M; Kahn, S M; Kelley, R L; Kilbourne, C A

    2009-10-01

    The EBIT Calorimeter Spectrometer (ECS) is a production-class 36 pixel x-ray calorimeter spectrometer that has been continuously operating at the Electron Beam Ion Trap (EBIT) facility at Lawrence Livermore National Laboratory for almost 2 years. The ECS was designed to be a long-lifetime, turn-key spectrometer that couples high performance with ease of operation and minimal operator intervention. To this end, a variant of the Suzaku/XRS spaceflight detector system has been coupled to a low-maintenance cryogenic system consisting of a long-lifetime liquid He cryostat, and a closed cycle, {sup 3}He pre-cooled adiabatic demagnetization refrigerator. The ECS operates for almost 3 weeks between cryogenic servicing and the ADR operates at 0.05 K for more than 60 hours between automatic recycles under software control. Half of the ECS semiconductor detector array is populated with mid-band pixels that have a resolution of 4.5 eV FWHM, a bandpass from 0.05-12 keV, and a quantum efficiency of 95% at 6 keV. The other half of the array has thick HgTe absorbers that have a bandpass from 0.3 to over 100 keV, an energy resolution of 33 eV FWHM, and a quantum efficiency of 32% at 60 keV. In addition, the ECS uses a real-time, autonomous, data collection and analysis system developed for the Suzaku/XRS instrument and implemented in off-the-shelf hardware for the ECS. Here we will discuss the performance of the ECS instrument and its implementation as a turnkey cryogenic detector system.

  6. High-resolution x-ray spectroscopy with the EBIT Calorimeter Spectrometer

    NASA Astrophysics Data System (ADS)

    Porter, F. Scott; Adams, Joseph S.; Beiersdorfer, Peter; Brown, Gregory V.; Clementson, Joel; Frankel, Miriam; Kahn, Steven M.; Kelley, Richard L.; Kilbourne, Caroline A.

    2009-12-01

    The EBIT Calorimeter Spectrometer (ECS) is a production-class 36 pixel x-ray calorimeter spectrometer that has been continuously operating at the Electron Beam Ion Trap (EBIT) facility at Lawrence Livermore National Laboratory for almost 2 years. The ECS was designed to be a long-lifetime, turn-key spectrometer that couples high performance with ease of operation and minimal operator intervention. To this end, a variant of the Suzaku/XRS spaceflight detector system has been coupled to a low-maintenance cryogenic system consisting of a long-lifetime liquid He cryostat, and a closed cycle, 3He pre-cooled adiabatic demagnetization refrigerator. The ECS operates for almost 3 weeks between cryogenic servicing and the ADR operates at 0.05 K for more than 60 hours between automatic recycles under software control. Half of the ECS semiconductor detector array is populated with mid-band pixels that have a resolution of 4.5 eV FWHM, a bandpass from 0.05-12 keV, and a quantum efficiency of 95% at 6 keV. The other half of the array has thick HgTe absorbers that have a bandpass from 0.3 to over 100 keV, an energy resolution of 33 eV FWHM, and a quantum efficiency of 32% at 60 keV. In addition, the ECS uses a real-time, autonomous, data collection and analysis system developed for the Suzaku/XRS instrument and implemented in off-the-shelf hardware for the ECS. Here we will discuss the performance of the ECS instrument and its implementation as a turnkey cryogenic detector system.

  7. Phase identification of microfeatures using EPMA methods, especially high-resolution X-ray spectroscopy

    PubMed

    Love; Scott

    2001-02-01

    Methods of electron-probe microanalysis (EPMA), with some input from scanning and transmission electron microscopy (SEM/TEM), are applied for the identification of micro-scale constituents in a solid matrix. The subject of the study is a magnesium alloy composite, which contains silicon carbide-based fibres made by a liquid metal infiltration process. Backscattered electron imaging of the composite in the SEM showed that during composite manufacture, fibres were chemically attacked by the metal, many of the fibres exhibiting three distinct grey levels, indicative of different reaction zones, and others appearing uniformly black. EPMA measurements showed that each region contained approximately 12wt.% oxygen and that penetration of the fibre by magnesium was accompanied by a reduction in the concentration of silicon and carbon. From studying the position and shape of specific X-ray lines it was shown that magnesium penetration involved a chemical reaction with silicon oxycarbide, established in earlier EPMA studies as one of the fibre constituents. Also, in the outermost region, aluminium in the alloy reacted with free carbon in the fibre to form aluminium carbide and with magnesium to produce a Mg-Al intermetallic. The composition of black fibres was quite different from the grey ones, with negligible silicon and only a small amount of aluminium. Oxygen levels in black fibres were consistent with complete oxidation, indicating these fibres were subjected, locally, to severe oxidising conditions during composite manufacture. In the metal matrix itself, particles of a mixed magnesium/aluminium oxide, silicon carbide and magnesium silicide were observed, the latter two phases forming as silicon and carbon were ejected from fibres. PMID:10936455

  8. X-ray High-resolution Spectroscopy for Laser-produced Plasma

    NASA Astrophysics Data System (ADS)

    Barbato, F.; Scarpellini, D.; Malizia, A.; Gaudio, P.; Richetta, M.; Antonelli, L.

    The study of the emission spectrum gives information about the material generating the spectrum itself and the condition in which this is generated. The wavelength spectra lines are linked to the specific element and plasma conditions (electron temperature, density), while their shape is influenced by several physical effects like Stark and Doppler ones. In this work we study the X-ray emission spectra of a copper laser-produced plasma by using a spherical bent crystal spectrometer to measure the electron temperature. The facility used is the laser TVLPS, at the Tor Vergata University in Rome. It consists of a Nd:Glass source (in first harmonic - 1064 nm) whose pulse parameters are: 8 J in energy, time duration of 15 ns and a focal spot diameter of 200 μm. The adopted spectrometer is based on a spherical bent crystal of muscovite. The device combines the focusing property of a spherical mirror with the Bragg's law. This allows to obtain a great power resolution but a limited range of analysis. In our case the resolution is on average 80 eV. As it is well-known, the position of the detector on the Rowland's circle is linked to the specific spectral range which has been studied. To select the area to be investigated, we acquired spectra by means of a flat spectrometer. The selected area is centered on 8.88 Å. To calibrate the spectrum we wrote a ray-tracing MATLAB code, which calculates the detector alignment parameters and calibration curve. We used the method of line ratio to measure the electron temperature. This is possible because we assumed the plasma to be in LTE condition. The temperature value was obtained comparing the experimental one, given by the line ratio, with the theoretical one, preceded by FLYCHK simulations.

  9. Perspectives on heterococcolith geochemical proxies based on high-resolution X-ray fluorescence mapping.

    PubMed

    Suchéras-Marx, B; Giraud, F; Simionovici, A; Daniel, I; Tucoulou, R

    2016-07-01

    Heterococcoliths are micron-scale calcite platelets produced by coccolithophores. They have been the most abundant and continuous fossil record over the last 215 million years (Myr), offering great potential for geochemical studies, although the heterococcolith fossil record remains underutilised in this domain. We have mapped heterococcoliths' composition using X-ray fluorescence (XRF) with a 100-nm resolution beam to decipher element distributions in heterococcoliths and to investigate the potential development of geochemical proxies for palaeoceanography. The study presents two Middle Jurassic Watznaueria britannica heterococcoliths from Cabo Mondego, Portugal. XRF analysis was performed with a 17 keV incident energy beam at the European Synchrotron Radiation Facility ID22NI beamline to study elements from Sr down to S. Ca, Sr and Mn are distributed following the heterococcolith crystalline arrangement. Cl, Br and S display an homogeneous distribution, whereas K, Fe, Cu, Zn and Rb are concentrated at the edges and in the central area of the heterococcoliths. Distributions of K, Fe, Ti, Fe, Cu, Zn, Rb and to a lesser extent V and Cr are highly influenced by clay contamination and peripheral diagenetic overgrowth. Mn is related to diagenetic Mn-rich CaCO3 overgrowth on top of or between heterococcoliths shields. Cl and Br are likely to be present in heterococcoliths inside interstitial nano-domains. We assume that the cytoplasm [Cl(-) ] and [Br(-) ] are mediated and constant during heterococcolithogenesis. Assuming a linear correlation between cytoplasm [Cl(-) ] and sea water [Cl(-) ], heterococcolith Cl may have potential as a salinity proxy. As S is incorporated into heterococcoliths by sulphated polysaccharides, our study suggests a role for such polysaccharides in heterococcolithogenesis for at least 170 Myr. The low Sr/Ca in the W. britannica specimens studied here may either highlight an unusual cellular physiology of Mesozoic coccolithophores or result

  10. High-resolution CT by diffraction-enhanced x-ray imaging: mapping of breast tissue samples and comparison with their histo-pathology.

    PubMed

    Bravin, Alberto; Keyriläinen, Jani; Fernández, Manuel; Fiedler, Stefan; Nemoz, Christian; Karjalainen-Lindsberg, Marja-Liisa; Tenhunen, Mikko; Virkkunen, Pekka; Leidenius, Marjut; von Smitten, Karl; Sipilä, Petri; Suortti, Pekka

    2007-04-21

    The aim of this study was to introduce high-resolution computed tomography (CT) of breast tumours using the diffraction-enhanced x-ray imaging (DEI) technique and to compare results with radiological and histo-pathological examinations. X-ray CT images of tumour-bearing breast tissue samples were acquired by monochromatic synchrotron radiation (SR). Due to the narrow beam and a large sample-to-detector distance scattering is rejected in the absorption contrast images (SR-CT). Large contrast enhancement is achieved by the use of the DEI-CT method, where the effects of refraction and scatter rejection are analysed by crystal optics. Clinical mammograms and CT images were recorded as reference material for a radiological examination. Three malignant and benign samples were studied in detail. Their radiographs were compared with optical images of stained histological sections. The DEI-CT images map accurately the morphology of the samples, including collagen strands and micro-calcifications of dimensions less than 0.1 mm. Histo-pathological examination and reading of the radiographs were done independently, and the conclusions were in general agreement. High-resolution DEI-CT images show strong contrast and permit visualization of details invisible in clinical radiographs. The radiation dose may be reduced by an order of magnitude without compromising image quality, which would make possible clinical in vivo DEI-CT with future compact SR sources. PMID:17404464

  11. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    SciTech Connect

    Chen, Dongmei; Zhu, Shouping Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin

    2014-11-10

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging.

  12. Extracting the Redox Orbitals in Li Battery Materials with High-Resolution X-Ray Compton Scattering Spectroscopy

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Barbiellini, B.; Orikasa, Y.; Go, N.; Sakurai, H.; Kaprzyk, S.; Itou, M.; Yamamoto, K.; Uchimoto, Y.; Wang, Yung Jui; Hafiz, H.; Bansil, A.; Sakurai, Y.

    2015-02-01

    We present an incisive spectroscopic technique for directly probing redox orbitals based on bulk electron momentum density measurements via high-resolution x-ray Compton scattering. Application of our method to spinel LixMn2O4 , a lithium ion battery cathode material, is discussed. The orbital involved in the lithium insertion and extraction process is shown to mainly be the oxygen 2 p orbital. Moreover, the manganese 3 d states are shown to experience spatial delocalization involving 0.16 ±0.05 electrons per Mn site during the battery operation. Our analysis provides a clear understanding of the fundamental redox process involved in the working of a lithium ion battery.

  13. Extracting the Redox Orbitals in Li Battery Materials with High-Resolution X-Ray Compton Scattering Spectroscopy

    NASA Astrophysics Data System (ADS)

    Barbiellini, B.; Suzuki, K.; Orikasa, Y.; Go, N.; Sakurai, H.; Kaprzyk, S.; Itou, M.; Yamamoto, K.; Uchimoto, Y.; Wang, Yung Jui; Hafiz, H.; Bansil, A.; Sakurai, Y.

    2015-03-01

    We present an incisive spectroscopic technique for directly probing redox orbitals based on bulk electron momentum density measurements via high-resolution X-ray Compton scattering. Application of our method to spinel LixMn2O4 (a lithium ion battery cathode material) is discussed. The orbital involved in lithium insertion and extraction process is mainly the oxygen 2p orbital. Moreover, the manganese 3d states are shown to experience spatial delocalization involving 0.16 electrons per Mn site during the battery operation. Our analysis provides a clear understanding of the fundamental redox process involved in the working of the lithium ion battery. Work supported in part by the US DOE.

  14. New room temperature high resolution solid-state detector (CdZnTe) for hard x rays and gamma rays

    NASA Technical Reports Server (NTRS)

    Stewart, Amyelizabeth C.; Desai, Upendra D.

    1993-01-01

    The new CdZnTe high 'Z' material represents a significant improvement in detectors for high energy photons. With the thicknesses available, photons up to 100 keV can be efficiently detected. This material has a wide band gap of 1.5 - 2.2 eV which allows it to operate at room temperature while providing high spectral resolution. Results of resolution evaluations are presented. This detector can be used for high resolution spectral measurements of photons in x-ray and gamma-ray astronomy, offering a significant reduction in the weight, power, and volume of the detector system compared to more conventional detector types such as scintillation counters. In addition, the detector will have the simplicity and reliability of solid-state construction. The CdZnTe detector, as a new development, has not yet been evaluated in space. The Get Away Special program can provide this opportunity.

  15. Vibronic fine structure in high-resolution x-ray absorption spectra from ion-bombarded boron nitride nanotubes

    SciTech Connect

    Petravic, Mladen; Peter, Robert; Varasanec, Marijana; Li Luhua; Chen Ying; Cowie, Bruce C. C.

    2013-05-15

    The authors have applied high-resolution near-edge x-ray absorption fine structure measurements around the nitrogen K-edge to study the effects of ion-bombardment on near-surface properties of boron nitride nanotubes. A notable difference has been observed between surface sensitive partial electron yield (PEY) and bulk sensitive total electron yield (TEY) fine-structure measurements. The authors assign the PEY fine structure to the coupling of excited molecular vibrational modes to electronic transitions in NO molecules trapped just below the surface. Oxidation resistance of the boron nitride nanotubes is significantly reduced by low energy ion bombardment, as broken B-N bonds are replaced by N-O bonds involving oxygen present in the surface region. In contrast to the PEY spectra, the bulk sensitive TEY measurements on as-grown samples do not exhibit any fine structure while the ion-bombarded samples show a clear vibronic signature of molecular nitrogen.

  16. Development of High Resolution Mirrors and Cd-Zn-Te Detectors for Hard X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Speegle, Chet O.; Gaskin, Jessica; Sharma, Dharma; Engelhaupt, Darell; Six, N. Frank (Technical Monitor)

    2002-01-01

    We describe the fabrication and implementation of a high-resolution conical, grazing- incidence, hard X-ray (20-70 keV) telescope. When flown aboard stratospheric balloons, these mirrors are used to image cosmic sources such as supernovae, neutron stars, and quasars. The fabrication process involves generating super-polished mandrels, mirror shell electroforming, and mirror testing. The cylindrical mandrels consist of two conical segments; each segment is approximately 305 mm long. These mandrels are first, precision ground to within approx. 1.0 micron straightness along each conical segment and then lapped and polished to less than 0.5 micron straightness. Each mandrel segment is the super-polished to an average surface roughness of approx. 3.25 angstrom rms. By mirror shell replication, this combination of good figure and low surface roughness has enabled us to achieve 15 arcsec, confirmed by X-ray measurements in the Marshall Space Flight Center 102 meter test facility. To image the focused X-rays requires a focal plane detector with appropriate spatial resolution. For 15 arcsec optics of 6 meter focal length, this resolution must be around 200 microns. In addition, the detector must have a high efficiency, relatively high energy resolution, and low background. We are currently developing Cadmium-Zinc-Telluride fine-pixel detectors for this purpose. The detectors under study consist of a 16x16 pixel array with a pixel pitch of 300 microns and are 1 mm and 2 mm thick. At 60 keV, the measured energy resolution is around 2%.

  17. High-resolution analysis of Zn2+ coordination in the alkaline phosphatase superfamily by EXAFS and x-ray crystallography

    PubMed Central

    Bobyr, Elena; Lassila, Jonathan K.; Wiersma-Koch, Helen I.; Fenn, Timothy D.; Lee, Jason J.; Nikolic-Hughes, Ivana; Hodgson, Keith O.; Rees, Douglas C.; Hedman, Britt; Herschlag, Daniel

    2011-01-01

    Comparisons among evolutionarily related enzymes offer opportunities to reveal how structural differences produce different catalytic activities. Two structurally-related enzymes, E. coli alkaline phosphatase (AP) and X. axonopodis nucleotide pyrophosphatase/phosphodiesterase (NPP) have nearly identical binuclear Zn2+ catalytic centers, but show tremendous differential specificity for hydrolysis of phosphate monoesters or phosphate diesters. To determine if there are differences in Zn2+ coordination in the two enzymes that might contribute to catalytic specificity, we analyzed both x-ray absorption spectroscopic and x-ray crystallographic data. We report a 1.29 Å crystal structure of alkaline phosphatase with bound phosphate, allowing evaluation of interactions at the AP metal site with high resolution. To make systematic comparisons between AP and NPP, we measured zinc extended x-ray absorption fine structure (EXAFS) for AP and NPP in the free enzyme forms, with AMP and inorganic phosphate ground-state analogs, and with vanadate transition state analogs. These studies yielded average zinc-ligand distances in AP and NPP free-enzyme forms and ground-state analog forms that were identical within error, suggesting little difference in metal ion coordination among these forms. Upon binding of vanadate to both enzymes, small increases in average metal-ligand distances were observed, consistent with an increased coordination number. Slightly longer increases were observed in NPP relative to AP, which could arise from subtle rearrangements of the active site or differences in the geometry of the bound vanadyl species. Overall, the results suggest that the binuclear Zn2+ catalytic site remains very similar between AP and NPP during the course of a reaction cycle. PMID:22056344

  18. High-resolution analysis of Zn(2+) coordination in the alkaline phosphatase superfamily by EXAFS and x-ray crystallography.

    PubMed

    Bobyr, Elena; Lassila, Jonathan K; Wiersma-Koch, Helen I; Fenn, Timothy D; Lee, Jason J; Nikolic-Hughes, Ivana; Hodgson, Keith O; Rees, Douglas C; Hedman, Britt; Herschlag, Daniel

    2012-01-01

    Comparisons among evolutionarily related enzymes offer opportunities to reveal how structural differences produce different catalytic activities. Two structurally related enzymes, Escherichia coli alkaline phosphatase (AP) and Xanthomonas axonopodis nucleotide pyrophosphatase/phosphodiesterase (NPP), have nearly identical binuclear Zn(2+) catalytic centers but show tremendous differential specificity for hydrolysis of phosphate monoesters or phosphate diesters. To determine if there are differences in Zn(2+) coordination in the two enzymes that might contribute to catalytic specificity, we analyzed both x-ray absorption spectroscopic and x-ray crystallographic data. We report a 1.29-Å crystal structure of AP with bound phosphate, allowing evaluation of interactions at the AP metal site with high resolution. To make systematic comparisons between AP and NPP, we measured zinc extended x-ray absorption fine structure for AP and NPP in the free-enzyme forms, with AMP and inorganic phosphate ground-state analogs and with vanadate transition-state analogs. These studies yielded average zinc-ligand distances in AP and NPP free-enzyme forms and ground-state analog forms that were identical within error, suggesting little difference in metal ion coordination among these forms. Upon binding of vanadate to both enzymes, small increases in average metal-ligand distances were observed, consistent with an increased coordination number. Slightly longer increases were observed in NPP relative to AP, which could arise from subtle rearrangements of the active site or differences in the geometry of the bound vanadyl species. Overall, the results suggest that the binuclear Zn(2+) catalytic site remains very similar between AP and NPP during the course of a reaction cycle. PMID:22056344

  19. Visualisation by high resolution synchrotron X-ray phase contrast micro-tomography of gas films on submerged superhydrophobic leaves.

    PubMed

    Lauridsen, Torsten; Glavina, Kyriaki; Colmer, Timothy David; Winkel, Anders; Irvine, Sarah; Lefmann, Kim; Feidenhans'l, Robert; Pedersen, Ole

    2014-10-01

    Floods can completely submerge terrestrial plants but some wetland species can sustain O2 and CO2 exchange with the environment via gas films forming on superhydrophobic leaf surfaces. We used high resolution synchrotron X-ray phase contrast micro-tomography in a novel approach to visualise gas films on submerged leaves of common cordgrass (Spartina anglica). 3D tomograms enabled a hitherto unmatched level of detail regarding the micro-topography of leaf gas films. Gas films formed only on the superhydrophobic adaxial leaf side (water droplet contact angle, Φ=162°) but not on the abaxial side (Φ=135°). The adaxial side of the leaves of common cordgrass is plicate with a longitudinal system of parallel grooves and ridges and the vast majority of the gas film volume was found in large ∼180μm deep elongated triangular volumes in the grooves and these volumes were connected to each neighbouring groove via a fine network of gas tubules (∼1.7μm diameter) across the ridges. In addition to the gas film retained on the leaf exterior, the X-ray phase contrast micro-tomography also successfully distinguished gas spaces internally in the leaf tissues, and the tissue porosity (gas volume per unit tissue volume) ranged from 6.3% to 20.3% in tip and base leaf segments, respectively. We conclude that X-ray phase contrast micro-tomography is a powerful tool to obtain quantitative data of exterior gas features on biological samples because of the significant difference in electron density between air, biological tissues and water. PMID:25175398

  20. A high-resolution view of the 2015 outburst of the black hole X-ray binary V404 Cygni

    NASA Astrophysics Data System (ADS)

    Miller-Jones, James; Sivakoff, Gregory; Tetarenko, Alexandra

    2016-07-01

    The 2015 outburst of the black hole X-ray binary V404 Cygni was the brightest such outburst in over a decade, providing an unparalleled opportunity to study the accretion and ejection processes around an accreting stellar-mass black hole. The exceptionally bright fluxes across the electromagnetic spectrum stimulated intensive observing campaigns at all wavelengths, from the radio to the gamma-ray regime. In this talk I will present the results of our high-cadence radio monitoring with the Very Long Baseline Array, detailing the real-time evolution of the jets on timescales as short as minutes. I will show how the jet behaviour evolves through the different phases of the outburst, from the initial rapid flaring to the bright ejection event at the peak of the outburst and the re-establishment and fading of the compact jet. Since V404 Cygni is one of the few X-ray binaries with a known distance from geometric parallax, we can directly convert measured proper motions into accurate physical parameters, such as jet speeds and Lorentz factors, to determine the energetics of the ejection events. Finally, with such intensive coverage at multiple wavelengths, we can seek to compare the ejection times derived from high-resolution imaging with the contemporaneous behaviour of the accretion disk to determine the events leading to jet ejection.

  1. High-resolution X-ray spectra of solar flares. IV - General spectral properties of M type flares

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Kreplin, R. W.; Mariska, J. T.

    1980-01-01

    The spectral characteristics in selected narrow regions of the X-ray spectrum of class M solar flares are analyzed. High-resolution spectra in the ranges 1.82-1.97, 2.98-3.07, 3.14-3.24 and 8.26-8.53 A, which contain lines important for the determination of electron temperature and departure from ionization equilibrium, were recorded by spaceborne Bragg crystal spectrometers. Temperatures of up to 20,000,000 K are obtained from line ratios during flare rise phases in M as well as X flares, while in the decay phase the calcium temperature can be as low as 8,000,000 K, which is significantly lower than in X flares. Large nonthermal motions (on the order of 130 km/sec at most) are also observed in M as well as X flares, which are largest during the soft X-ray rise phase. Finally, it is shown that the method proposed by Gabriel and Phillips (1979) for detecting departures of electrons from Maxwellian velocity distributions is not sufficiently sensitive to give reliable results for the present data.

  2. Semi-transparent central stop in high-resolution X-ray ptychography using Kirkpatrick–Baez focusing

    SciTech Connect

    Wilke, R. N. Vassholz, M.; Salditt, T.

    2013-09-01

    A semi-transparent central stop has been used for ptychographic coherent diffractive imaging to increase the effective dynamic range in the recording of the far-field diffraction patterns. In this way, the high flux density provided by nano-focusing Kirkpatrick–Baez mirrors can be fully exploited for high resolution and quantitative phase reconstructions. A ptychographic coherent X-ray diffractive imaging (PCDI) experiment has been carried out using 7.9 keV X-rays and Kirkpatrick–Baez focusing mirrors. By introducing a semi-transparent central stop in front of the detector the dynamic range on the detector is increased by about four orders of magnitude. The feasibility of this experimental scheme is demonstrated for PCDI applications with a resolution below 10 nm. The results are compared with reference data and an increase of resolution by a factor of two is obtained, while the deviation of the reconstructed phase map from the reference is below 1%.

  3. High resolution imaging of the ultrastructure of living algal cells using soft x-ray contact microscopy

    SciTech Connect

    Ford, T.W.; Cotton, R.A.; Page, A.M.; Tomie, T.; Majima, T.; Stead, A.D.

    1995-12-31

    Soft x-ray contact microscopy provides the biologist with a technique for examining the ultrastructure of living cells at a much higher resolution than that possible by various forms of light microscopy. Readout of the developed photoresist using atomic force microscopy (AFM) produces a detailed map of the carbon densities generated in the resist following exposure of the specimen to water-window soft x-rays (2--4nm) produced by impact of a high energy laser onto a suitable target. The established high resolution imaging method of transmission electron microscopy (TEM) has inherent problems in the chemical pre-treatment required for producing the ultrathin sections necessary for this technique. Using the unicellular green alga Chlamydomonas the ultrastructural appearance of the cells following SXCM and TEM has been compared. While SXCM confirms the basic structural organization of the cell as seen by TEM (e.g., the organization of the thylakoid membranes within the chloroplast; flagellar insertion into the cytoplasm), there are important differences. These are in the appearance of the cell covering and the presence of carbon-dense spherical cellular inclusions.

  4. Neutron and high-resolution room-temperature X-ray data collection from crystallized lytic polysaccharide monooxygenase.

    PubMed

    Bacik, John Paul; Mekasha, Sophanit; Forsberg, Zarah; Kovalevsky, Andrey; Nix, Jay C; Cuneo, Matthew J; Coates, Leighton; Vaaje-Kolstad, Gustav; Chen, Julian C H; Eijsink, Vincent G H; Unkefer, Clifford J

    2015-11-01

    Bacteria and fungi express lytic polysaccharide monooxgyenase (LPMO) enzymes that act in conjunction with canonical hydrolytic sugar-processing enzymes to rapidly convert polysaccharides such as chitin, cellulose and starch to single monosaccharide products. In order to gain a better understanding of the structure and oxidative mechanism of these enzymes, large crystals (1-3 mm(3)) of a chitin-processing LPMO from the Gram-positive soil bacterium Jonesia denitrificans were grown and screened for their ability to diffract neutrons. In addition to the collection of neutron diffraction data, which were processed to 2.1 Å resolution, a high-resolution room-temperature X-ray diffraction data set was collected and processed to 1.1 Å resolution in space group P212121. To our knowledge, this work marks the first successful neutron crystallographic experiment on an LPMO. Joint X-ray/neutron refinement of the resulting data will reveal new details of the structure and mechanism of this recently discovered class of enzymes. PMID:26527275

  5. High Resolution X-Ray Spectroscopy of zeta Puppis with the XMM-Newton Reflection Grating Spectrometer

    NASA Technical Reports Server (NTRS)

    Kahn, S. M.; Leutenegger, M. A.; Cottam, J.; Rauw, G.; Vreux, J.-M.; denBoggende, A. J. F.; Mewe, R.; Guedel, M.

    2000-01-01

    We present the first high resolution X-ray spectrum of the bright O4Ief supergiant star Puppis, obtained with the Reflection Grating Spectrometer on- board XMM-Newton. The spectrum exhibits bright emission lines of hydrogen-like and helium-like ions of nitrogen, oxygen, neon, magnesium, and silicon, as well as neon-like ions of iron. The lines are all significantly resolved, with characteristic velocity widths of order 1000 - 1500 km/ s. The nitrogen lines are especially strong, and indicate that the shocked gas in the wind is mixed with CNO-burned material, as has been previously inferred for the atmosphere of this star from ultraviolet spectra. We find that the forbidden to intercombination line ratios within the helium-like triplets are anomalously low for N VI, O VII, and Ne IX. While this is sometimes indicative of high electron density, we show that in this case, it is instead caused by the intense ultraviolet radiation field of the star. We use this interpretation to derive constraints on the location of the X-ray emitting shocks within the wind that agree remarkably well with current theoretical models for this system.

  6. High-resolution non-invasive 3D imaging of paint microstructure by synchrotron-based X-ray laminography

    NASA Astrophysics Data System (ADS)

    Reischig, Péter; Helfen, Lukas; Wallert, Arie; Baumbach, Tilo; Dik, Joris

    2013-06-01

    The characterisation of the microstructure and micromechanical behaviour of paint is key to a range of problems related to the conservation or technical art history of paintings. Synchrotron-based X-ray laminography is demonstrated in this paper to image the local sub-surface microstructure in paintings in a non-invasive and non-destructive way. Based on absorption and phase contrast, the method can provide high-resolution 3D maps of the paint stratigraphy, including the substrate, and visualise small features, such as pigment particles, voids, cracks, wood cells, canvas fibres etc. Reconstructions may be indicative of local density or chemical composition due to increased attenuation of X-rays by elements of higher atomic number. The paint layers and their interfaces can be distinguished via variations in morphology or composition. Results of feasibility tests on a painting mockup (oak panel, chalk ground, vermilion and lead white paint) are shown, where lateral and depth resolution of up to a few micrometres is demonstrated. The method is well adapted to study the temporal evolution of the stratigraphy in test specimens and offers an alternative to destructive sampling of original works of art.

  7. Bulk crystal growth, and high-resolution x-ray diffraction results of LiZnP semiconductor material

    NASA Astrophysics Data System (ADS)

    Montag, Benjamin W.; Reichenberger, Michael A.; Sunder, Madhana; Ugorowski, Philip B.; Nelson, Kyle A.; McGregor, Douglas S.

    2015-06-01

    Nowotny-Juza compounds continue to be explored as a candidate for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled 3He and 10BF3 detectors. The 6Li(n,t)4He reaction yields a total Q-value of 4.78 MeV, larger than 10B, an energy easily identified above background radiations. Hence, devices fabricated from semiconducting compounds containing either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) may provide a semiconductor material for compact high efficiency neutron detectors. Starting material was synthesized by preparing equimolar portions of Li, Zn, and P sealed under vacuum (10-6 Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace [1]. The synthesized material showed signs of high impurity levels from material and electrical property characterizations. A static vacuum sublimation in quartz was performed to help purify the synthesized material [2]. Bulk crystalline samples were grown from the purified material. An ingot 9.6 mm in diameter and 4.0 mm in length was harvested. Individual samples were characterized for crystallinity on a Bruker AXS Inc. D2 CRYSO, energy dispersive x-ray diffractometer, and a Bruker AXS D8 DISCOVER, high-resolution x-ray diffractometer with a 0.004° beam divergence. The (220) orientation was characterized as the main orientation with the D2 CRYSO, and confirmed with the D8 DISCOVER. An out-of-plane high-resolution rocking curve yielded a 0.417° full width at half maximum (FWHM) for the (220) LiZnP. In-plane ordering was confirmed by observation of the (311) orientation, where a rocking curve was collected with a FWHM of 0.294°.

  8. TU-A-9A-07: X-Ray Acoustic Computed Tomography (XACT): 100% Sensitivity to X-Ray Absorption

    SciTech Connect

    Xiang, L; Ahmad, M; Nikoozadeh, A; Pratx, G; Khuri-Yakub, B; Xing, L

    2014-06-15

    Purpose: To assess whether X-ray acoustic computed tomography (XACT) is more sensitive to X-ray absorption than that of the conventional X-ray imaging. Methods: First, a theoretical model was built to analyze the X-ray absorption sensitivity of XACT imaging and conventional X-ray imaging. Second, an XACT imaging system was developed to evaluate the X-ray induced acoustic signal generation as well as the sensitivity improvement over transmission x-ray imaging. Ultra-short x-ray pulses (60-nanosecond) were generated from an X-ray source operated at the energy of 150 kVp with a 10-Hz repetition rate. The X-ray pulse was synchronized with the acoustic detection via a x-ray scintillation triggering to acquire the X-ray induced acoustic signal. Results: Theoretical analysis shows that X-ray induced acoustic signal is sensitive only to the X-ray absorption, while completely insensitive to out the X-ray scattering and fluorescence. XACT has reduced background and increased contrast-to-noise ratio, and therefore has increased sensitivity compared to transmission x-ray imaging. For a 50-μm size, gadolinium insertion in tissue exposed to 40 keV X-rays; the sensitivity of XACT imaging is about 28.9 times higher than that of conventional X-ray imaging. Conclusion: X-ray acoustic computer tomography (XACT) as a new imaging modality combines X-ray absorption contrast and high ultrasonic resolution in a single modality. It is feasible to improve the imaging sensitivity with XACT imaging compared with conventional X-ray imaging. Taking advantage of the high ultrasonic resolution, it is possible to perform 3-D imaging with a single x-ray pulse with arrays of transducers without any mechanical motion of the imaging system. This single-shot capability offers the potential of reducing radiation dose by a factor of 1000, and imaging 100 times faster when compared to the conventional X-ray CT, and thus revolutionizing x-ray imaging applications in medicine and biology. The authors

  9. A detailed analysis of the high-resolution X-ray spectra of NGC 3516: variability of the ionized absorbers

    SciTech Connect

    Huerta, E. M.; Krongold, Y.; Jimenez-Bailon, E.; Nicastro, F.; Mathur, S.; Longinotti, A. L.

    2014-09-20

    The 1.5 Seyfert galaxy NGC 3516 presents a strong time variability in X-rays. We re-analyzed the nine observations performed in 2006 October by XMM-Newton and Chandra in the 0.3 to 10 keV energy band. An acceptable model was found for the XMM-Newton data fitting the EPIC-PN and RGS spectra simultaneously; later, this model was successfully applied to the contemporary Chandra high-resolution data. The model consists of a continuum emission component (power law + blackbody) absorbed by four ionized components (warm absorbers), and 10 narrow emission lines. Three absorbing components are warm, producing features only in the soft X-ray band. The fourth ionization component produces Fe XXV and Fe XXVI in the hard-energy band. We study the time response of the absorbing components to the well-detected changes in the X-ray luminosity of this source and find that the two components with the lower ionization state show clear opacity changes consistent with gas close to photoionization equilibrium. These changes are supported by the models and by differences in the spectral features among the nine observations. On the other hand, the two components with higher ionization state do not seem to respond to continuum variations. The response time of the ionized absorbers allows us to constrain their electron density and location. We find that one component (with intermediate ionization) must be located within the obscuring torus at a distance 2.7 × 10{sup 17} cm from the central engine. This outflowing component likely originated in the accretion disk. The three remaining components are at distances larger than 10{sup 16}-10{sup 17} cm. Two of the absorbing components in the soft X-rays have similar outflow velocities and locations. These components may be in pressure equilibrium, forming a multi-phase medium, if the gas has metallicity larger than the solar one (≳ 5 Z {sub ☉}). We also search for variations in the covering factor of the ionized absorbers (although partial

  10. Double conical crystal x-ray spectrometer for high resolution ultrafast x-ray absorption near-edge spectroscopy of Al K edge

    NASA Astrophysics Data System (ADS)

    Levy, A.; Dorchies, F.; Fourment, C.; Harmand, M.; Hulin, S.; Santos, J. J.; Descamps, D.; Petit, S.; Bouillaud, R.

    2010-06-01

    An x-ray spectrometer devoted to dynamical studies of transient systems using the x-ray absorption fine spectroscopy technique is presented in this article. Using an ultrafast laser-induced x-ray source, this optical device based on a set of two potassium acid phthalate conical crystals allows the extraction of x-ray absorption near-edge spectroscopy structures following the Al absorption K edge. The proposed experimental protocol leads to a measurement of the absorption spectra free from any crystal reflectivity defaults and shot-to-shot x-ray spectral fluctuation. According to the detailed analysis of the experimental results, a spectral resolution of 0.7 eV rms and relative fluctuation lower than 1% rms are achieved, demonstrated to be limited by the statistics of photon counting on the x-ray detector.

  11. Modeling and characterization of X-ray yield in a polychromatic, lab-scale, X-ray computed tomography system

    NASA Astrophysics Data System (ADS)

    Mertens, J. C. E.; Chawla, Nikhilesh

    2015-05-01

    A modular X-ray computed micro-tomography (μXCT) system is characterized in terms of X-ray yield resulting both from the generated X-ray spectrum and from X-ray detection with an energy-sensitive detector. The X-ray computed tomography system is composed of a commercially available cone-beam microfocus X-ray source and a modular optically-coupled-CCD-scintillator X-ray detector. The X-ray yield is measured and reported in units independent from exposure time, X-ray tube beam target current, and cone-beam-to-detector geometry. The polychromatic X-ray source is modeled as a broad Bremsstrahlung X-ray spectrum in order to understand the effect of the controllable parameters, that is, X-ray tube accelerating voltage and X-ray beam filtering. An approach is adopted which expresses the absolute number of emitted X-rays. The response of the energy-sensitive detector to the modeled spectrum is modeled as a function of scintillator composition and thickness. The detection efficiency model for the polychromatic X-ray detector considers the response of the light collection system and the electronic imaging array in order to predict absolute count yield under the studied conditions. The modeling approach is applied to the specific hardware implemented in the current μXCT system. The model's predictions for absolute detection rate are in reasonable agreement with measured values under a range of conditions applied to the system for X-ray microtomography imaging, particularly for the LuAG:Ce scintillator material.

  12. Fast prototyping of high-aspect ratio, high-resolution x-ray masks by gas-assisted focused ion beam

    NASA Technical Reports Server (NTRS)

    Hartley, F.; Malek, C.; Neogi, J.

    2001-01-01

    The capacity of chemically-assisted focused ion beam (fib) etching systems to undertake direct and highly anisotropic erosion of thin and thick gold (or other high atomic number [Z])coatings on x-ray mask membranes/substrates provides new levels of precision, flexibility, simplification and rapidity in the manufacture of mask absorber patterns, allowing the fast prototyping of high aspect ratio, high-resolution masks for deep x-ray lithography.

  13. The Relationship Between Solar Coronal X-Ray Brightness and Active Region Magnetic Fields: A Study Using High-Resolution Hinode Observations

    NASA Astrophysics Data System (ADS)

    Hazra, Soumitra; Nandy, Dibyendu; Ravindra, B.

    2015-03-01

    By using high-resolution observations of nearly co-temporal and co-spatial Solar Optical Telescope spectropolarimeter and X-Ray Telescope coronal X-ray data onboard Hinode, we revisit the problematic relationship between global magnetic quantities and coronal X-ray brightness. Co-aligned vector magnetogram and X-ray data were used for this study. The total X-ray brightness over active regions is well correlated with integrated magnetic quantities such as the total unsigned magnetic flux, the total unsigned vertical current, and the area-integrated square of the vertical and horizontal magnetic fields. On accounting for the inter-dependence of the magnetic quantities, we inferred that the total magnetic flux is the primary determinant of the observed integrated X-ray brightness. Our observations indicate that a stronger coronal X-ray flux is not related to a higher non-potentiality of active-region magnetic fields. The data even suggest a slightly negative correlation between X-ray brightness and a proxy of active-region non-potentiality. Although there are small numerical differences in the established correlations, the main conclusions are qualitatively consistent over two different X-ray filters, the Al-poly and Ti-poly filters, which confirms the strength of our conclusions and validate and extend earlier studies that used low-resolution data. We discuss the implications of our results and the constraints they set on theories of solar coronal heating.

  14. A Seeman-Bohlin geometry for high-resolution nanosecond x-ray diffraction measurements from shocked polycrystalline and amorphous materials

    NASA Astrophysics Data System (ADS)

    Milathianaki, D.; Hawreliak, J.; McNaney, J. M.; El-Dasher, B. S.; Saculla, M. D.; Swift, D. C.; Lorenzana, H. E.; Ditmire, T.

    2009-09-01

    We report on a focusing x-ray diffraction geometry capable of high-resolution in situ lattice probing from dynamically loaded polycrystalline and amorphous materials. The Seeman-Bohlin-type camera presented here is ideally suited for time-resolved x-ray diffraction measurements performed on high energy multibeam laser platforms. Diffraction from several lattice planes of ablatively shock-loaded 25 μm thick Cu foils was recorded on a focusing circle of diameter D =100 mm with exceptional angular resolution limited only by the spectral broadening of the x-ray source. Excellent agreement was found between the density measured using x-ray diffraction and that inferred from Doppler velocimetry and the known shock Hugoniot of Cu. In addition, x-ray diffraction signal was captured from an amorphous material under static conditions.

  15. A Seeman-Bohlin geometry for high-resolution nanosecond x-ray diffraction measurements from shocked polycrystalline and amorphous materials.

    PubMed

    Milathianaki, D; Hawreliak, J; McNaney, J M; El-Dasher, B S; Saculla, M D; Swift, D C; Lorenzana, H E; Ditmire, T

    2009-09-01

    We report on a focusing x-ray diffraction geometry capable of high-resolution in situ lattice probing from dynamically loaded polycrystalline and amorphous materials. The Seeman-Bohlin-type camera presented here is ideally suited for time-resolved x-ray diffraction measurements performed on high energy multibeam laser platforms. Diffraction from several lattice planes of ablatively shock-loaded 25 mum thick Cu foils was recorded on a focusing circle of diameter D=100 mm with exceptional angular resolution limited only by the spectral broadening of the x-ray source. Excellent agreement was found between the density measured using x-ray diffraction and that inferred from Doppler velocimetry and the known shock Hugoniot of Cu. In addition, x-ray diffraction signal was captured from an amorphous material under static conditions. PMID:19791950

  16. A Seeman-Bohlin geometry for high-resolution nanosecond x-ray diffraction measurements from shocked polycrystalline and amorphous materials

    SciTech Connect

    Milathianaki, D.; Hawreliak, J.; McNaney, J. M.; El-Dasher, B. S.; Saculla, M. D.; Swift, D. C.; Lorenzana, H. E.; Ditmire, T.

    2009-09-15

    We report on a focusing x-ray diffraction geometry capable of high-resolution in situ lattice probing from dynamically loaded polycrystalline and amorphous materials. The Seeman-Bohlin-type camera presented here is ideally suited for time-resolved x-ray diffraction measurements performed on high energy multibeam laser platforms. Diffraction from several lattice planes of ablatively shock-loaded 25 {mu}m thick Cu foils was recorded on a focusing circle of diameter D=100 mm with exceptional angular resolution limited only by the spectral broadening of the x-ray source. Excellent agreement was found between the density measured using x-ray diffraction and that inferred from Doppler velocimetry and the known shock Hugoniot of Cu. In addition, x-ray diffraction signal was captured from an amorphous material under static conditions.

  17. Computer synthesis of high resolution electron micrographs

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1976-01-01

    Specimen damage, spherical aberration, low contrast and noisy sensors combine to prevent direct atomic viewing in a conventional electron microscope. The paper describes two methods for obtaining ultra-high resolution in biological specimens under the electron microscope. The first method assumes the physical limits of the electron objective lens and uses a series of dark field images of biological crystals to obtain direct information on the phases of the Fourier diffraction maxima; this information is used in an appropriate computer to synthesize a large aperture lens for a 1-A resolution. The second method assumes there is sufficient amplitude scatter from images recorded in focus which can be utilized with a sensitive densitometer and computer contrast stretching to yield fine structure image details. Cancer virus characterization is discussed as an illustrative example. Numerous photographs supplement the text.

  18. High-Resolution Soft X-Ray Spectral Analysis in the CK Region of Titanium Carbide (TiC) using the DV-X alpha Molecular Orbital Method

    SciTech Connect

    Shimomura, Kenta; Muramatsu, Yasuji; Denlinger, Jonathan D.; Gullikson, Eric M.

    2008-10-31

    We used the DV-X alpha method to analyze the high-resolution soft X-ray emission and absorption spectra in the CK region of titanium carbide (TiC). The spectral profiles of the X-ray emission and absorption can be ssuscfucelly reproduced by the occupied and unoccupied density of states (DOS ), respectively, in the C2p orbitals of the center carbon atoms in a Ti62C63 cluster model, suggesting that the center carbon atom in a large cluster model expanded to the cubic-structured 53 (= 125) atoms provides sufficient DOS for the X-ray spectral analysis of rock-salt structured metal carbides.

  19. Overcoming x-ray tube small focal spot output limitations for high resolution region of interest imaging

    NASA Astrophysics Data System (ADS)

    Gupta, Sandesh K.; Jain, Amit; Bednarek, Daniel R.; Rudin, Stephen

    2012-03-01

    We investigate methods to increase x-ray tube output to enable improved quantum image quality with a higher generalized-NEQ (GNEQ) while maintaining a small focal-spot size for the new high-resolution Micro-angiographic Fluoroscope (MAF) Region of Interest (ROI) imaging system. Rather than using a larger focal spot to increase tubeloading capacity with degraded resolution, we evaluated separately or in combination three methods to increase tube output: 1) reducing the anode angle and lengthening the filament to maintain a constant effective small focal-spot size, 2) using the standard medium focal spot viewed from a direction on the anode side of the field and 3) increasing the frame rate (frames/second) in combination with temporal filter. The GNEQ was compared for the MAF for the small focal-spot at the central axis, and for the medium focal-spot with a higher output on the anode side as well as for the small focal spot with different temporal recursive filtering weights. A net output increase of about 4.0 times could be achieved with a 2-degree anode angle (without the added filtration) and a 4 times longer filament compared to that of the standard 8-degree target. The GNEQ was also increased for the medium focal-spot due to its higher output capacity and for the temporally filtered higher frame rate. Thus higher tube output, while maintaining a small effective focal-spot, should be achievable using one or more of the three methods described with only small modifications of standard x-ray tube geometry.

  20. Metal-ligand Covalency of Iron Complexes from High-Resolution Resonant Inelastic X-ray Scattering

    PubMed Central

    Lundberg, Marcus; Kroll, Thomas; DeBeer, Serena; Bergmann, Uwe; Wilson, Samuel A.; Glatzel, Pieter; Nordlund, Dennis; Hedman, Britt; Hodgson, Keith O.; Solomon, Edward I.

    2013-01-01

    Data from Kα resonant inelastic X-ray scattering (RIXS) have been used to extract electronic structure information, i.e., the covalency of metal-ligand bonds, for four iron complexes using an experimentally based theoretical model. Kα RIXS involves resonant 1s → 3d excitation and detection of the 2p → 1s (Kα) emission. This two-photon process reaches similar final states as single-photon L-edge (2p → 3d) X-ray absorption spectroscopy (XAS), but involves only hard X-rays and can therefore be used to get high-resolution L-edge-like spectra for metal proteins, solution catalysts and their intermediates. To analyze the information content of Kα RIXS spectra, data have been collected for four characteristic σ-donor and π-backdonation complexes; ferrous tacn [FeII(tacn)2]Br2, ferrocyanide [FeII(CN)6]K4, ferric tacn [FeIII(tacn)2]Br3 and ferricyanide [FeIII(CN)6]K3. From these spectra metal-ligand covalencies can be extracted using a charge-transfer multiplet model, without previous information from the L-edge XAS experiment. A direct comparison of L-edge XAS and Kα RIXS spectra show that the latter reaches additional final states, e.g., when exciting into the eg (σ*) orbitals, and the splitting between final states of different symmetry provides an extra dimension that makes Kα RIXS a more sensitive probe of σ-bonding. Another key difference between L-edge XAS and Kα RIXS is the π-backbonding features in ferro- and ferricyanide that are significantly more intense in L-edge XAS compared to Kα RIXS. This shows that two methods are complimentary in assigning electronic structure. The Kα RIXS approach can thus be used as a stand-alone method, in combination with L-edge XAS for strongly covalent systems that are difficult to probe by UV/Vis spectroscopy, or as an extension to conventional absorption spectroscopy for a wide range of transition metal enzymes and catalysts. PMID:24131028

  1. Multiple pinhole collimator based X-ray luminescence computed tomography

    PubMed Central

    Zhang, Wei; Zhu, Dianwen; Lun, Michael; Li, Changqing

    2016-01-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality, which is able to improve the spatial resolution of optical imaging to hundreds of micrometers for deep targets by using superfine X-ray pencil beams. However, due to the low X-ray photon utilization efficiency in a single pinhole collimator based XLCT, it takes a long time to acquire measurement data. Herein, we propose a multiple pinhole collimator based XLCT, in which multiple X-ray beams are generated to scan a sample at multiple positions simultaneously. Compared with the single pinhole based XLCT, the multiple X-ray beam scanning method requires much less measurement time. Numerical simulations and phantom experiments have been performed to demonstrate the feasibility of the multiple X-ray beam scanning method. In one numerical simulation, we used four X-ray beams to scan a cylindrical object with 6 deeply embedded targets. With measurements from 6 angular projections, all 6 targets have been reconstructed successfully. In the phantom experiment, we generated two X-ray pencil beams with a collimator manufactured in-house. Two capillary targets with 0.6 mm edge-to-edge distance embedded in a cylindrical phantom have been reconstructed successfully. With the two beam scanning, we reduced the data acquisition time by 50%. From the reconstructed XLCT images, we found that the Dice similarity of targets is 85.11% and the distance error between two targets is less than 3%. We have measured the radiation dose during XLCT scan and found that the radiation dose, 1.475 mSv, is in the range of a typical CT scan. We have measured the changes of the collimated X-ray beam size and intensity at different distances from the collimator. We have also studied the effects of beam size and intensity in the reconstruction of XLCT. PMID:27446686

  2. Multiple pinhole collimator based X-ray luminescence computed tomography.

    PubMed

    Zhang, Wei; Zhu, Dianwen; Lun, Michael; Li, Changqing

    2016-07-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality, which is able to improve the spatial resolution of optical imaging to hundreds of micrometers for deep targets by using superfine X-ray pencil beams. However, due to the low X-ray photon utilization efficiency in a single pinhole collimator based XLCT, it takes a long time to acquire measurement data. Herein, we propose a multiple pinhole collimator based XLCT, in which multiple X-ray beams are generated to scan a sample at multiple positions simultaneously. Compared with the single pinhole based XLCT, the multiple X-ray beam scanning method requires much less measurement time. Numerical simulations and phantom experiments have been performed to demonstrate the feasibility of the multiple X-ray beam scanning method. In one numerical simulation, we used four X-ray beams to scan a cylindrical object with 6 deeply embedded targets. With measurements from 6 angular projections, all 6 targets have been reconstructed successfully. In the phantom experiment, we generated two X-ray pencil beams with a collimator manufactured in-house. Two capillary targets with 0.6 mm edge-to-edge distance embedded in a cylindrical phantom have been reconstructed successfully. With the two beam scanning, we reduced the data acquisition time by 50%. From the reconstructed XLCT images, we found that the Dice similarity of targets is 85.11% and the distance error between two targets is less than 3%. We have measured the radiation dose during XLCT scan and found that the radiation dose, 1.475 mSv, is in the range of a typical CT scan. We have measured the changes of the collimated X-ray beam size and intensity at different distances from the collimator. We have also studied the effects of beam size and intensity in the reconstruction of XLCT. PMID:27446686

  3. Proceedings of the workshop on high resolution computed microtomography (CMT)

    SciTech Connect

    1997-02-01

    The purpose of the workshop was to determine the status of the field, to define instrumental and computational requirements, and to establish minimum specifications required by possible users. The most important message sent by implementers was the remainder that CMT is a tool. It solves a wide spectrum of scientific problems and is complementary to other microscopy techniques, with certain important advantages that the other methods do not have. High-resolution CMT can be used non-invasively and non-destructively to study a variety of hierarchical three-dimensional microstructures, which in turn control body function. X-ray computed microtomography can also be used at the frontiers of physics, in the study of granular systems, for example. With high-resolution CMT, for example, three-dimensional pore geometries and topologies of soils and rocks can be obtained readily and implemented directly in transport models. In turn, these geometries can be used to calculate fundamental physical properties, such as permeability and electrical conductivity, from first principles. Clearly, use of the high-resolution CMT technique will contribute tremendously to the advancement of current R and D technologies in the production, transport, storage, and utilization of oil and natural gas. It can also be applied to problems related to environmental pollution, particularly to spilling and seepage of hazardous chemicals into the Earth's subsurface. Applications to energy and environmental problems will be far-ranging and may soon extend to disciplines such as materials science--where the method can be used in the manufacture of porous ceramics, filament-resin composites, and microelectronics components--and to biomedicine, where it could be used to design biocompatible materials such as artificial bones, contact lenses, or medication-releasing implants. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  4. Opportunities for X-ray Science in Future Computing Architectures

    SciTech Connect

    Foster, Ian

    2011-02-09

    The world of computing continues to evolve rapidly. In just the past 10 years, we have seen the emergence of petascale supercomputing, cloud computing that provides on-demand computing and storage with considerable economies of scale, software-as-a-service methods that permit outsourcing of complex processes, and grid computing that enables federation of resources across institutional boundaries. These trends show no sign of slowing down. The next 10 years will surely see exascale, new cloud offerings, and other terabit networks. This talk reviews various of these developments and discusses their potential implications for x-ray science and x-ray facilities.

  5. X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution

    PubMed Central

    Holler, M.; Diaz, A.; Guizar-Sicairos, M.; Karvinen, P.; Färm, Elina; Härkönen, Emma; Ritala, Mikko; Menzel, A.; Raabe, J.; Bunk, O.

    2014-01-01

    X-ray ptychography is a scanning variant of coherent diffractive imaging with the ability to image large fields of view at high resolution. It further allows imaging of non-isolated specimens and can produce quantitative mapping of the electron density distribution in 3D when combined with computed tomography. The method does not require imaging lenses, which makes it dose efficient and suitable to multi-keV X-rays, where efficient photon counting, pixelated detectors are available. Here we present the first highly resolved quantitative X-ray ptychographic tomography of an extended object yielding 16 nm isotropic 3D resolution recorded at 2 Å wavelength. This first-of-its-kind demonstration paves the way for ptychographic X-ray tomography to become a promising method for X-ray imaging of representative sample volumes at unmatched resolution, opening tremendous potential for characterizing samples in materials science and biology by filling the resolution gap between electron microscopy and other X-ray imaging techniques. PMID:24457289

  6. High-resolution diffraction microscopy using the plane-wave field of a nearly diffraction limited focused x-ray beam

    SciTech Connect

    Takahashi, Yukio; Nishino, Yoshinori; Ishikawa, Tetsuya; Tsutsumi, Ryosuke; Kubo, Hideto; Furukawa, Hayato; Mimura, Hidekazu; Matsuyama, Satoshi; Zettsu, Nobuyuki; Matsubara, Eiichiro; Yamauchi, Kazuto

    2009-08-01

    X-ray waves in the center of the beam waist of nearly diffraction limited focused x-ray beams can be considered to have amplitude and phase that are both almost uniform, i.e., they are x-ray plane waves. Here we report the results of an experimental demonstration of high-resolution diffraction microscopy using the x-ray plane wave of the synchrotron x-ray beam focused using Kirkpatrik-Baez mirrors. A silver nanocube with an edge length of {approx}100 nm is illuminated with the x-ray beam focused to a {approx}1 {mu}m spot at 12 keV. A high-contrast symmetric diffraction pattern of the nanocube is observed in the forward far field. An image of the nanocube is successfully reconstructed by an iterative phasing method and its half-period resolution is 3.0 nm. This method does not only dramatically improve the spatial resolution of x-ray microscopy but also is a key technology for realizing single-pulse diffractive imaging using x-ray free-electron lasers.

  7. Study of Explosive Electron Emission from a Pin Cathode Using High Resolution Point-Projection X-Ray Radiography

    NASA Astrophysics Data System (ADS)

    Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Parkevich, E. V.; Tilikin, I. N.; Mingaleev, A. R.; Agafonov, A. V.

    2015-11-01

    Most studies of Explosive Electron Emission (EEE) are based on the idea of cathode flares developing after explosion of metal whiskers (micron scale pins) on the cathode surface. The physical state of the pin material, the spatial structure of the explosion and its origin are still a matter of conjecture. In this work we used high-resolution point projection x-ray radiography to observe micron scale pin explosion in a high-current diode. Pin cathodes made from 10-25 micron Cu or Mo wires were placed in gaps in return current circuits of hybrid X-pinches on the XP and BIN pulsers. Pin lengths were varied over a range 1-4 mm and pin-anode gaps within 0.05-3 mm. The diode current and voltage were measured. In experiments with small pin-anode gap (0.1 - 1 mm) development of an expanded dense core of the pin was observed except the pin tip with length 100-200 microns indicating significant energy deposition in the wire material. In experiments with bigger gaps there was no visible wire core expansion within the spatial resolution of the experimental technique. Work at Cornell was supported by the National Nuclear Security Administration Stewardship Sciences Academic Programs under Department of Energy Cooperative Agreement No. DE-NA0001836 and at the Lebedev Institute by the RSF grant 142200273.

  8. High-resolution x-ray diffraction study of the heavy-fermion compound YbBiPt

    NASA Astrophysics Data System (ADS)

    Ueland, B. G.; Saunders, S. M.; Bud'ko, S. L.; Schmiedeshoff, G. M.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.

    2015-11-01

    YbBiPt is a heavy-fermion compound possessing significant short-range antiferromagnetic correlations below a temperature of T*=0.7 K , fragile antiferromagnetic order below TN=0.4 K , a Kondo temperature of TK≈1 K , and crystalline-electric-field splitting on the order of E /kB=1 -10 K . Whereas the compound has a face-centered-cubic lattice at ambient temperature, certain experimental data, particularly those from studies aimed at determining its crystalline-electric-field scheme, suggest that the lattice distorts at lower temperature. Here, we present results from high-resolution, high-energy x-ray diffraction experiments which show that, within our experimental resolution of ≈6 -10 ×10-5Å , no structural phase transition occurs between T =1.5 and 50 K . In combination with results from dilatometry measurements, we further show that the compound's thermal expansion has a minimum at ≈18 K and a region of negative thermal expansion for 9 ≲T ≲18 K . Despite diffraction patterns taken at 1.6 K which indicate that the lattice is face-centered cubic and that the Yb resides on a crystallographic site with cubic point symmetry, we demonstrate that the linear thermal expansion may be modeled using crystalline-electric-field level schemes appropriate for Yb3 + residing on a site with either cubic or less than cubic point symmetry.

  9. XRD (x-ray diffraction) and HREM (high resolution electron microscopy) studies of nanocrystalline Cu and Pd

    SciTech Connect

    Nieman, G.W.; Weertman, J.R. . Dept. of Materials Science and Engineering); Siegel, R.W. )

    1990-12-01

    Consolidated powders of nanocrystalline Cu and Pd have been studied by x-ray diffraction (XRD) and high resolution electron microscopy (HREM) as part of an investigation of the mechanical behavior of nanocrystalline pure metals. XRD line broadening measurements were made to estimate grain size, qualitative grain size distribution and average long range strains in a number of samples. Mean grain sizes range from 4--60 nm and have qualitatively narrow grain size distributions. Long range lattice strains are of the order of 0.2--3% in consolidated samples. These strains apparently persist and even increase in Cu samples after annealing at 0.35 Tm (498K) for 2h, accompanied by an apparent increase in grain size of {ge}2x. Grain size, grain size distribution width and internal strains vary somewhat among samples produced under apparently identical processing conditions. HREM studies show that twins, stacking faults and low-index facets are abundant in as-consolidated nanocrystalline Cu samples. Methodology, results, and analysis of XRD and HREM experiments are presented. 17 refs., 2 figs., 2 tabs.

  10. Triosmium clusters on a support: determination of structure by X-ray absorption spectroscopy and high-resolution microscopy.

    PubMed

    Mehraeen, Shareghe; Kulkarni, Apoorva; Chi, Miaofang; Reed, Bryan W; Okamoto, Norihiko L; Browning, Nigel D; Gates, Bruce C

    2011-01-17

    The structures of small, robust metal clusters on a solid support were determined by a combination of spectroscopic and microscopic methods: extended X-ray absorption fine structure (EXAFS) spectroscopy, scanning transmission electron microscopy (STEM), and aberration-corrected STEM. The samples were synthesized from [Os(3) (CO)(12) ] on MgO powder to provide supported clusters intended to be triosmium. The results demonstrate that the supported clusters are robust in the absence of oxidants. Conventional high-angle annular dark-field (HAADF) STEM images demonstrate a high degree of uniformity of the clusters, with root-mean-square (rms) radii of 2.03±0.06 Å. The EXAFS OsOs coordination number of 2.1±0.4 confirms the presence of triosmium clusters on average and correspondingly determines an average rms cluster radius of 2.02±0.04 Å. The high-resolution STEM images show the individual Os atoms in the clusters, confirming the triangular structures of their frames and determining OsOs distances of 2.80±0.14 Å, matching the EXAFS value of 2.89±0.06 Å. IR and EXAFS spectra demonstrate the presence of CO ligands on the clusters. This set of techniques is recommended as optimal for detailed and reliable structural characterization of supported clusters. PMID:21226118

  11. Triosmium Clusters on a Support: Determination of Structure by X-Ray Absorption Spectroscopy and High-Resolution Microscopy

    SciTech Connect

    Shareghe, Mehraeen; Chi, Miaofang; Browning, Nigel D.

    2011-01-01

    The structures of small, robust metal clusters on a solid support were determined by a combination of spectroscopic and microscopic methods: extended X-ray absorption fine structure (EXAFS) spectroscopy, scanning transmission electron microscopy (STEM), and aberration-corrected STEM. The samples were synthesized from [Os{sub 3}(CO){sub 12}] on MgO powder to provide supported clusters intended to be triosmium. The results demonstrate that the supported clusters are robust in the absence of oxidants. Conventional high-angle annular dark-field (HAADF) STEM images demonstrate a high degree of uniformity of the clusters, with root-mean-square (rms) radii of 2.03 {+-} 0.06 {angstrom}. The EXAFS OsOs coordination number of 2.1 {+-} 0.4 confirms the presence of triosmium clusters on average and correspondingly determines an average rms cluster radius of 2.02 {+-} 0.04 {angstrom}. The high-resolution STEM images show the individual Os atoms in the clusters, confirming the triangular structures of their frames and determining OsOs distances of 2.80 {+-} 0.14 {angstrom}, matching the EXAFS value of 2.89 {+-} 0.06 {angstrom}. IR and EXAFS spectra demonstrate the presence of CO ligands on the clusters. This set of techniques is recommended as optimal for detailed and reliable structural characterization of supported clusters.

  12. The effect of substrate topology on smectic liquid crystal alignment: A high-resolution x-ray diffraction study

    SciTech Connect

    Smela, E.

    1992-01-01

    Surface topography is theoretically predicted to affect liquid crystal alignment through mechanical interactions: elastic deformations of the director are energetically unfavorable, causing the molecules to realign to minimize the distortion energy. Octylcyanobiphenyl (8CB), a bilayer smecticA liquid crystal at room temperature, was deposited on gratings, grids, and flat surfaces, and was studied using high resolution x-ray diffraction at shallow angles of incidence. One surface of the film was in contact with air and the other was in contact with a treated glass or silicon substrate. At the air interface, surface tension forces caused the liquid crystal molecules to align perpendicularly with respect to the plane of the substrate. Competing with the LC-air interface, which is a strong aligner, a grating at the LC-substrate interface produced distortions in the smectic layering which resulted in excess elastic energy and favored alignment parallel to the substrate and the grooves. The results show that in films less than approximately 30 [mu]m thick, the homeotropic orientation was maintained throughout the film due to the constraint of perpendicular alignment at the air interface. However, for thicker films on gratings, Bragg scattering from molecules lying parallel to the grooves was observed. The free air surface was thus the strongest aligning force, followed by the surface topology, while surface anchoring was not found to play a role.

  13. High-resolution KMM radiative Auger x-ray emission spectra of calcium induced by synchrotron radiation

    SciTech Connect

    Cao, W.; Dousse, J.-Cl.; Berset, M.; Fennane, K.; Hoszowska, J.; Maillard, Y.-P.; Szlachetko, M.; Kavcic, M.; Bucar, K.; Budnar, M.; Zitnik, M.; Szlachetko, J.

    2011-04-15

    The KMM radiative Auger (RA) x-ray spectra of solid Ca were induced by monochromatic synchrotron radiation and measured with a high-resolution von Hamos bent crystal spectrometer. Two excitation energies were employed, one in the near K threshold region and the second well above the K absorption edge. The KMM RA spectral structure and relative intensity with respect to the diagram K{beta}{sub 1,3} (K-M{sub 3,2}) line are found to be independent of the excitation energy. The overall RA structure resembles the density of unoccupied s, p, and d states. Due to solid-state effects, however, spectral features resulting from the major discrete shake-up transitions could not be resolved. For the total KMM RA to K{beta}{sub 1,3} yield ratio, a value of 0.053(3) is obtained. The latter is compared to theoretical predictions and available experimental data obtained by various types of target excitation.

  14. A comparison of fine structures in high-resolution x-ray-absorption spectra of various condensed organic molecules.

    PubMed

    Schoell, A; Zou, Y; Huebner, D; Urquhart, S G; Schmidt, Th; Fink, R; Umbach, E

    2005-07-22

    We report on a high-resolution C-K and O-K near-edge x-ray-absorption fine-structure (NEXAFS) study of large aromatic molecules in condensed thin films, namely, anhydrides 1,4,5,8-naphthalene-tetracarboxylic acid dianhydride, 3,4,9,10-perylene-tetracarboxylic acid dianhydride, benzoperylene-(1,2)-dicarboxylic acid anhydride, and 1,8-naphthalene-dicarboxylic acid anhydride and the quinoic acenaphthenequinone. Due to the high-energy resolution of the third-generation synchrotron source BESSY II we observe large differences in the NEXAFS fine structures even for very similar molecules, resulting in a wealth of new information. The rich fine structure can unambiguously be assigned to the coupling of electronic transitions to vibronic excitations. Backed by ab initio calculations we present a detailed analysis of the spectra that allows the complete interpretation of the near-edge features. It also yields information on the vibronic properties in the electronically excited state as well as on the response of the electronic system upon core excitation. The strong differences in the electron-vibron coupling for different molecules are discussed. PMID:16095371

  15. Line shapes and satellites in high-resolution x-ray photoelectron spectra of large pi-conjugated organic molecules.

    PubMed

    Schöll, A; Zou, Y; Jung, M; Schmidt, Th; Fink, R; Umbach, E

    2004-11-22

    We present a high-resolution C1s and O1 s x-ray photoemission (XPS) study for condensed films of pi-conjugated organic molecules, namely, of the anhydrides 3,4,9,10-perylene-tetracarboxylic acid dianhydride, 1,4,5,8-naphthalene-tetracarboxylic acid dianhydride, 1,8-naphthalene dicarboxylic acid anhydride, and benzoperylene-(1,8)-dicarboxylic acid anhydride as well as the quinoic acenaphthenequinone. Although the functional groups are identical for the anhydrides, the molecules show very different photoemission fine structure thus providing a detailed fingerprint. A simultaneous peak fit analysis of the XPS spectra of all molecules allows to consistently determine the ionization potentials of all chemically different carbon and oxygen atoms. Additional structures in the C1s and O1s spectra are interpreted as shakeup satellites and assigned with the help of singles and doubles configuration interaction calculations. These satellites provide further information on multielectron excitations and must be taken into account for quantitative investigations. PMID:15549902

  16. Structure of Se-rich As-Se glasses by high-resolution x-ray photoelectron spectroscopy

    SciTech Connect

    Golovchak, R.; Kovalskiy, A.; Miller, A. C.; Jain, H.; Shpotyuk, O.

    2007-09-15

    To establish the validity of various proposed structural models, we have investigated the structure of the binary As{sub x}Se{sub 100-x} chalcogenide glass family (x{<=}40) by high-resolution x-ray photoelectron spectroscopy. From the composition dependence of the valence band, the contributions to the density of states from the 4p lone pair electrons of Se and the 4p bonding states and 4s electrons of Se and As are identified in the top part of the band. The analysis of Se 3d and As 3d core-level spectra supports the so-called chain crossing model for the atomic structure of Se-rich As{sub x}Se{sub 100-x} bulk glasses. The results also indicate small deviations ({approx}3-8%) from this model, especially for glass compositions with short Se chains (25

  17. [Build and Demonstrate a X-Ray Interferometer and Build and Fly a High Resolution Telescope on a Sounding Rocket}

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report is written with eight months still go on the 36 month period of the grant. This grant, as originally proposed three years ago, was two pronged - to build and demonstrate a practical x-ray interferometer, and to build and fly a high resolution telescope on a sounding rocket. As we started into these projects, we received community feedback that led to our giving priority to the interferometer., The rocket would achieve O.2-arcsecond resolution that, while better, than that of Chandra, would, because of the limited signal of a sub-orbital flight, not be of substantially greater scientific use. The interferometry, on the other hand, shows the potential for many orders of magnitude improvement. For this reason we gave priority to the lab interferometry, and the building of the telescope lagged behind. With our new understanding (and practical demonstration) of how to build an interferometer, we changed the telescope design from spherical surfaces in the Kirkpatrick-Baez configuration, to an interferometer with resolution between .005 and .05 arcseconds.

  18. Cation sorption on the muscovite (0 0 1) surface in chloride solutions using high-resolution X-ray reflectivity

    NASA Astrophysics Data System (ADS)

    Schlegel, Michel L.; Nagy, Kathryn. L.; Fenter, Paul; Cheng, Likwan; Sturchio, Neil C.; Jacobsen, Steven D.

    2006-07-01

    The structure and mechanism of cation sorption at the (0 0 1) muscovite-water interface were investigated in 0.01 and 0.5 m KCl, CsCl, and CaCl 2 and 0.01 m BaCl 2 solutions at slightly acidic pH by high-resolution X-ray reflectivity. Structural relaxations of atom positions in the 2 M1 muscovite were small (⩽0.07 Å) and occurred over a distance of 30 to 40 Å perpendicular to the interface. Cations in all solutions were sorbed dominantly in the first and second solution layers adjacent to the mineral surface. The derived heights of the first solution layer in KCl and CsCl solutions, 1.67(6)-1.77(7) and 2.15(9)-2.16(2) Å, respectively, differ in magnitude by the approximate difference in crystallographic radii between K and Cs, and correspond closely to the interlayer cation positions in bulk K- and Cs-mica structures. The first solution layer heights in CaCl 2 and BaCl 2 solutions, 2.46(5)-2.56(11) and 2.02(5) Å, respectively, differ in a sense opposite to that expected based on crystallographic or hydrated radii of the divalent cations. The derived ion heights in all solutions imply that there is no intercalated water layer between the first solution layer and the muscovite surface. Molecular compositions were assigned to the first two solution layers in the electron density profiles using models that constrain the number density of sorbed cations, water molecules, and anions by considering the permanent negative charge of the muscovite and average solution density. The models result in partial charge balance (at least 50%) by cations sorbed in the first two layers in the 0.01 m solutions and approximately full charge balance in the 0.5 m solutions. Damped oscillations of model water density away from the first two solution layers agree with previous X-ray reflectivity results on the muscovite (0 0 1) surface in pure water.

  19. Phases and phase transitions of polymeric liquid crystals: A high resolution x ray diffraction and light scattering study

    NASA Astrophysics Data System (ADS)

    Nachaliel, Ehud

    1991-03-01

    Liquid crystal polymers (LCP) were compared with monomeric liquid crystals (MLC) by means of high-resolution x-ray (HIREX) and light scattering (LIS). Both HIREX and LIS were used to study the nematic-smectic(sub a) phase transition of P4.1 polysiloxane; the following critical exponents were determined: nu(sub parallel) = 0.77 +/-0.05; nu(sub normal) = 0.57 +/-0.08; gamma = 1.3 +/-0.10. The bare correlation lengths were found to be: xi(sup 0)(sub parallel) = 3.27 +/-0.08; xi(sup 0)(sub normal)q(sub 0) = 1.09 +/-0.14 which are unusually large in comparison with MLC. LIS experiments confirmed these values and indicated 'cross over' of nu(sub parallel) from 0.77 to 0.53. These results are typical of a system near to a tricritical point. HIREX was used to study the nematic-smectic(sub c) phase transition in C6-polysiloxane; the results were a good fit to Chen and Lubensky's mean field theory but the correlation lengths saturated near the transition to the nematic phase. A study of the smectic(sub a) phase of PA6 polyacrylate, near the transition to the nematic phase, showed that, except very close to the transition, the first and second harmonics of the x-ray structure factor were found to be consistent with the harmonic theory of de Gennes and Caille. This is thought to indicate the importance of anharmonic corrections near the phase transition. Fits to the experimental data yielded the compressibility constant, B and the splay elastic constant, K(sub s). B was found to obey a power law: B varies as t(sup phi) in which phi = 0.82 +/-0.08. In good agreement with theoretical predictions using exponents from the literature, but in disagreement with previous experimental results on MLC's. The splay elastic constant K(sub s) has roughly the same magnitude as in MLC's but tends to decrease by approximately 50% upon approaching the transition from below. This temperature dependence might give further evidence for the importance of anharmonicity in the system. Finally, the

  20. High Resolution Spectroscopy of X-ray Quasars: Searching for the X-ray Absorption from the Warm-Hot Intergalactic Medium

    NASA Technical Reports Server (NTRS)

    Fang, Taotao; Canizares, Claude R.; Marshall, Herman L.

    2004-01-01

    We present a survey of six low to moderate redshift quasars with Chandra and XMM-Newton. The primary goal is to search for the narrow X-ray absorption lines produced by highly ionized metals in the Warm-Hot Intergalactic Medium. All the X-ray spectra can be well fitted by a power law with neutral hydrogen absorption. Only one feature is detected at above 3-sigma level in all the spectra, which is consistent with statistic fluctuation. We discuss the implications in our understanding of the baryon content of the universe. We also discuss the implication of the non-detection of the local (z approx. 0) X-ray absorption.

  1. X-ray clusters from a high-resolution hydrodynamic PPM simulation of the cold dark matter universe

    NASA Technical Reports Server (NTRS)

    Bryan, Greg L.; Cen, Renyue; Norman, Michael L.; Ostriker, Jermemiah P.; Stone, James M.

    1994-01-01

    A new three-dimensional hydrodynamic code based on the piecewise parabolic method (PPM) is utilized to compute the distribution of hot gas in the standard Cosmic Background Explorer (COBE)-normalized cold dark matter (CDM) universe. Utilizing periodic boundary conditions, a box with size 85 h(exp-1) Mpc, having cell size 0.31 h(exp-1) Mpc, is followed in a simulation with 270(exp 3)=10(exp 7.3) cells. Adopting standard parameters determined from COBE and light-element nucleosynthesis, Sigma(sub 8)=1.05, Omega(sub b)=0.06, we find the X-ray-emitting clusters, compute the luminosity function at several wavelengths, the temperature distribution, and estimated sizes, as well as the evolution of these quantities with redshift. The results, which are compared with those obtained in the preceding paper (Kang et al. 1994a), may be used in conjuction with ROSAT and other observational data sets. Overall, the results of the two computations are qualitatively very similar with regard to the trends of cluster properties, i.e., how the number density, radius, and temeprature depend on luminosity and redshift. The total luminosity from clusters is approximately a factor of 2 higher using the PPM code (as compared to the 'total variation diminishing' (TVD) code used in the previous paper) with the number of bright clusters higher by a similar factor. The primary conclusions of the prior paper, with regard to the power spectrum of the primeval density perturbations, are strengthened: the standard CDM model, normalized to the COBE microwave detection, predicts too many bright X-ray emitting clusters, by a factor probably in excess of 5. The comparison between observations and theoretical predictions for the evolution of cluster properties, luminosity functions, and size and temperature distributions should provide an important discriminator among competing scenarios for the development of structure in the universe.

  2. A high-resolution gamma-ray and hard X-ray spectrometer for solar flare observations in Max 1991

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Curtis, D. W.; Harvey, P.; Hurley, K.; Primbsch, J. H.; Smith, D. M.; Pelling, R. M.; Duttweiler, F.

    1988-01-01

    A long duration balloon flight instrument for Max 1991 designed to study the acceleration of greater than 10 MeV ions and greater than 15 keV electrons in solar flares through high resolution spectroscopy of the gamma ray lines and hard X-ray and gamma ray continuum is described. The instrument, HIREGS, consists of an array of high-purity, n-type coaxial germanium detectors (HPGe) cooled to less than 90 K and surrounded by a bismuth germanate (BGO) anticoincidence shield. It will cover the energy range 15 keV to 20 MeV with keV spectral resolution, sufficient for accurate measurement of all parameters of the expected gamma ray lines with the exception of the neutron capture deuterium line. Electrical segmentation of the HPGe detector into a thin front segment and a thick rear segment, together with pulse-shape discrimination, provides optimal dynamic range and signal-to-background characteristics for flare measurements. Neutrons and gamma rays up to approximately 0.1 to 1 GeV can be detected and identified with the combination of the HPGe detectors and rear BGO shield. The HIREGS is planned for long duration balloon flights (LDBF) for solar flare studies during Max 1991. The two exploratory LDBFs carried out at mid-latitudes in 1987 to 1988 are described, and the LDBFs in Antarctica, which could in principle provide 24 hour/day solar coverage and very long flight durations (20 to 30 days) because of minimal ballast requirements are discussed.

  3. High-resolution x-ray diffraction study of the heavy-fermion compound YbBiPt

    DOE PAGESBeta

    Ueland, B. G.; Iowa State Univ., Ames, IA; Saunders, S. M.; Iowa State Univ., Ames, IA; Bud'ko, S. L.; Iowa State Univ., Ames, IA; Schmiedeshoff, G. M.; Canfield, P. C.; Iowa State Univ., Ames, IA; Kreyssig, A.; et al

    2015-11-30

    In this study, YbBiPt is a heavy-fermion compound possessing significant short-range antiferromagnetic correlations below a temperature of T*=0.7K, fragile antiferromagnetic order below TN = 0.4K, a Kondo temperature of TK ≈ 1K, and crystalline-electric-field splitting on the order of E/kB = 1 – 10K. Whereas the compound has a face-centered-cubic lattice at ambient temperature, certain experimental data, particularly those from studies aimed at determining its crystalline-electric-field scheme, suggest that the lattice distorts at lower temperature. Here, we present results from high-resolution, high-energy x-ray diffraction experiments which show that, within our experimental resolution of ≈ 6 – 10 × 10–5 Å,more » no structural phase transition occurs between T = 1.5 and 50 K. In combination with results from dilatometry measurements, we further show that the compound's thermal expansion has a minimum at ≈ 18 K and a region of negative thermal expansion for 9 ≲ T ≲ 18 K. Despite diffraction patterns taken at 1.6 K which indicate that the lattice is face-centered cubic and that the Yb resides on a crystallographic site with cubic point symmetry, we demonstrate that the linear thermal expansion may be modeled using crystalline-electric-field level schemes appropriate for Yb3+ residing on a site with either cubic or less than cubic point symmetry.« less

  4. High-resolution x-ray diffraction study of the heavy-fermion compound YbBiPt

    SciTech Connect

    Ueland, B. G.; Saunders, S. M.; Bud'ko, S. L.; Schmiedeshoff, G. M.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.

    2015-11-30

    In this study, YbBiPt is a heavy-fermion compound possessing significant short-range antiferromagnetic correlations below a temperature of T*=0.7K, fragile antiferromagnetic order below TN = 0.4K, a Kondo temperature of TK ≈ 1K, and crystalline-electric-field splitting on the order of E/kB = 1 – 10K. Whereas the compound has a face-centered-cubic lattice at ambient temperature, certain experimental data, particularly those from studies aimed at determining its crystalline-electric-field scheme, suggest that the lattice distorts at lower temperature. Here, we present results from high-resolution, high-energy x-ray diffraction experiments which show that, within our experimental resolution of ≈ 6 – 10 × 10–5 Å, no structural phase transition occurs between T = 1.5 and 50 K. In combination with results from dilatometry measurements, we further show that the compound's thermal expansion has a minimum at ≈ 18 K and a region of negative thermal expansion for 9 ≲ T ≲ 18 K. Despite diffraction patterns taken at 1.6 K which indicate that the lattice is face-centered cubic and that the Yb resides on a crystallographic site with cubic point symmetry, we demonstrate that the linear thermal expansion may be modeled using crystalline-electric-field level schemes appropriate for Yb3+ residing on a site with either cubic or less than cubic point symmetry.

  5. 3D tissue-engineered construct analysis via conventional high-resolution microcomputed tomography without X-ray contrast.

    PubMed

    Voronov, Roman S; VanGordon, Samuel B; Shambaugh, Robert L; Papavassiliou, Dimitrios V; Sikavitsas, Vassilios I

    2013-05-01

    As the field of tissue engineering develops, researchers are faced with a large number of degrees of freedom regarding the choice of material, architecture, seeding, and culturing. To evaluate the effectiveness of a tissue-engineered strategy, histology is typically done by physically slicing and staining a construct (crude, time-consuming, and unreliable). However, due to recent advances in high-resolution biomedical imaging, microcomputed tomography (μCT) has arisen as a quick and effective way to evaluate samples, while preserving their structure in the original state. However, a major barrier for using μCT to do histology has been its inability to differentiate between materials with similar X-ray attenuation. Various contrasting strategies (hardware and chemical staining agents) have been proposed to address this problem, but at a cost of additional complexity and limited access. Instead, here we suggest a strategy for how virtual 3D histology in silico can be conducted using conventional μCT, and we provide an illustrative example from bone tissue engineering. The key to our methodology is an implementation of scaffold surface architecture that is ordered in relation to cells and tissue, in concert with straightforward image-processing techniques, to minimize the reliance on contrasting for material segmentation. In the case study reported, μCT was used to image and segment porous poly(lactic acid) nonwoven fiber mesh scaffolds that were seeded dynamically with mesenchymal stem cells and cultured to produce soft tissue and mineralized tissue in a flow perfusion bioreactor using an osteogenic medium. The methodology presented herein paves a new way for tissue engineers to identify and distinguish components of cell/tissue/scaffold constructs to easily and effectively evaluate the tissue-engineering strategies that generate them. PMID:23020551

  6. High resolution three-dimensional visualization and characterization of coronary atherosclerosis in vitro by synchrotron radiation x-ray microtomography and highly localized x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Jin, Hua; Ham, Kyungmin; Chan, Julia Y.; Butler, Leslie G.; Kurtz, Richard L.; Thiam, Serigne; Robinson, James W.; Agbaria, Rezik A.; Warner, Isiah M.; Tracy, Richard E.

    2002-12-01

    Human atherosclerotic plaques in both native and bypass arteries have been visualized using microtomography to provide additional information on the nature of coronary artery disease. Plaques contained within arteries removed from three white males aged 51, 55 and 70 are imaged in three-dimensions with monochromatic synchrotron x-ray radiation. Fields of view are 658 × 658 × 517 voxels, with cubic voxels ranging from 12 to 13 µm on a side. X-ray energies range from 11 to 15 keV (bandpass approximately 10 eV). At lower energies, high local absorption tends to generate reconstruction artefacts, while at higher energies the arterial wall is scarcely visible. At all energies, calcifications are clearly visible and differences are observed between plaques in native arteries (lifetime accumulations) versus bypass arteries (plaques developing in the interval between the heart bypass operation and the autopsy). In order to characterize coronary calcification, a micro-focused, 50 µm2, 25 keV x-ray beam was used to acquire powder diffraction data from selected calcifications. Also, large calcifications were removed from the native arteries and imaged with 25 keV x-ray energy. Calcifications are composed of hydroxyapatite crystallites and an amorphous phase. In summary, native calcifications are larger and have a higher fraction of hydroxyapatite than calcifications from the bypass arteries.

  7. Computer assisted analysis of medical x-ray images

    NASA Astrophysics Data System (ADS)

    Bengtsson, Ewert

    1996-01-01

    X-rays were originally used to expose film. The early computers did not have enough capacity to handle images with useful resolution. The rapid development of computer technology over the last few decades has, however, led to the introduction of computers into radiology. In this overview paper, the various possible roles of computers in radiology are examined. The state of the art is briefly presented, and some predictions about the future are made.

  8. High Resolution X-ray CMT Imaging of Supercritical CO2 in Porous Media: Experimental Challenges, Solutions, and Results

    NASA Astrophysics Data System (ADS)

    Herring, A. L.; Andersson, L.; Newell, D. L.; Carey, J. W.; Wildenschild, D.

    2013-12-01

    Geologic carbon dioxide (CO2) sequestration has been proposed as a climate change mitigation strategy to limit emissions of CO2 to the atmosphere from large fossil-fuel burning CO2 point sources; however, there are concerns associated with the long-term stability of a mobile subsurface CO2 plume. Capillary trapping of supercritical CO2 (scCO2), wherein the CO2 is held within the pore structure of the geologic matrix by capillary forces, is a more secure form of subsurface storage than structural trapping, which relies on an impermeable caprock to contain the buoyant CO2 plume. To understand the multiphase physics of CO2 transport, and to subsequently produce quantitative estimates of potential CO2 capillary trapping, it is necessary to study field, core, and pore-scale processes. X-ray computed microtomography (x-ray CMT) allows for three-dimensional (3D) in-situ visualization of fluid phases within and the physical structure of a porous medium at the pore-scale. We have designed and built a mobile experimental set-up capable of running at pressures up to 2000 PSI and temperatures up to 50°C, made with materials that are compatible with corrosive fluids. Our experimental procedure includes pressurizing, mixing, and separating fluids; and subsequently running immiscible drainage and imbibition flow experiments with brine and supercritical CO2. With this set-up and procedure, we successfully conducted a brine-scCO2 drainage experiment in Bentheimer sandstone at 1200 PSI and 36°C, and confirmed and quantified CO2 flow in the sandstone core via synchrotron-based x-ray CMT with a resolution of 4.65 μm at the Advanced Photon Source at Argonne National Laboratory. We have proven that we can observe, on a pore-scale basis, the movement of supercritical CO2 within a porous media. The properties of supercritical CO2 (e.g. viscosity, density, interfacial tension and solubility in brine) vary significantly with changes in pressure and temperature; consequently, precise

  9. X-ray Crystallographic Computations Using a Programmable Calculator.

    ERIC Educational Resources Information Center

    Attard, Alfred E.; Lee, Henry C.

    1979-01-01

    Describes six crystallographic programs which have been developed to illustrate the range of usefulness of programmable calculators in providing computational assistance in chemical analysis. These programs are suitable for the analysis of x-ray diffraction data in the laboratory by students. (HM)

  10. Data fusion in neutron and X-ray computed tomography

    SciTech Connect

    Schrapp, Michael J.; Goldammer, Matthias; Schulz, Michael; Issani, Siraj; Bhamidipati, Suryanarayana; Böni, Peter

    2014-10-28

    We present a fusion methodology between neutron and X-ray computed tomography (CT). On the one hand, the inspection by X-ray CT of a wide class of multimaterials in non-destructive testing applications suffers from limited information of object features. On the other hand, neutron imaging can provide complementary data in such a way that the combination of both data sets fully characterizes the object. In this contribution, a novel data fusion procedure, called Fusion Regularized Simultaneous Algebraic Reconstruction Technique, is developed where the X-ray reconstruction is modified to fulfill the available data from the imaging with neutrons. The experiments, which were obtained from an aluminum profile containing a steel screw, and attached carbon fiber plates demonstrate that the image quality in CT can be significantly improved when the proposed fusion method is used.

  11. 21 CFR 892.1750 - Computed tomography x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Computed tomography x-ray system. 892.1750 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1750 Computed tomography x-ray system. (a) Identification. A computed tomography x-ray system is a diagnostic x-ray system intended...

  12. High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device

    DOEpatents

    Atac, M.; McKay, T.A.

    1998-04-21

    An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD. 13 figs.

  13. High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device

    DOEpatents

    Atac, Muzaffer; McKay, Timothy A.

    1998-01-01

    An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD.

  14. Spatially resolved high-resolution x-ray spectroscopy of high-current plasma-focus discharges

    SciTech Connect

    ZajaPc, S.; Rzadkiewicz, J.; Scholz, M.; Paduch, M.; Zielinska, E.; Rosmej, O.; Yongtao, Zhao; Gojska, A.

    2010-10-15

    Soft x-ray emission from a Mather-type plasma-focus device (PF-1000) operated at {approx}400 kJ was measured. The high density and temperature plasma were generated by the discharge in the deuterium-argon gas mixture in the modified (high-current) plasma-focus configuration. A spherically bent mica crystal spectrograph viewing the axial output of the pinch region was used to measure the x-ray spectra. Spatially resolved spectra including the characteristic x-ray lines of highly ionized Ar and continua were recorded by means of an x-ray film. The x-ray emission of PF-1000 device was studied at different areas of the pinch.

  15. High-resolution application of YAG:Ce and LuAG:Ce imaging detectors with a CCD X-ray camera

    NASA Astrophysics Data System (ADS)

    Touš, Jan; Horváth, Martin; Pína, Ladislav; Blažek, Karel; Sopko, Bruno

    2008-06-01

    A high-resolution CCD X-ray camera based on YAG:Ce or LuAG:Ce thin scintillators is presented. High-resolution in low-energy X-ray radiation is proved with several objects. The spatial resolution achieved in the images is about 1 μm. The high-resolution imaging system is a combination of a high-sensitivity digital CCD camera and an optical system with a thin scintillator-imaging screen. The screen can consist of YAG:Ce or LuAG:Ce inorganic scintillator [J.A. Mares, Radiat. Meas. 38 (2004) 353]. These materials have the advantages of mechanical and chemical stability and non-hygroscopicity. The high-resolution imaging system can be used with different types of radiation (X-ray, electrons, UV, and VUV [M. Nikl, Meas. Sci. Technol. 17 (2006) R37]). The objects used for the imaging tests are grids and small animals with features of several microns in size. The resolution capabilities were tested using different types of CCD cameras and scintillation imaging screens.

  16. Helical x-ray differential phase contrast computed tomography

    NASA Astrophysics Data System (ADS)

    Qi, Zhihua; Thériault-Lauzier, Pascal; Bevins, Nicholas; Zambelli, Joseph; Li, Ke; Chen, Guang-Hong

    2011-03-01

    Helical computed tomography revolutionized the field of x-ray computed tomography two decades ago. The simultaneous translation of an image object with a standard computed tomography acquisition allows for fast volumetric scan for long image objects. X-ray phase sensitive imaging methods have been studied over the past few decades to provide new contrast mechanisms for imaging an object. A Talbot-Lau grating interferometer based differential phase contrast imaging method has recently demonstrated its potential for implementation in clinical and industrial applications. In this work, the principles of helical computed tomography are extended to differential phase contrast imaging to produce volumetric reconstructions based on fan-beam data. The method demonstrates the potential for helical differential phase contrast CT to scan long objects with relatively small detector coverage in the axial direction.

  17. X-Ray Computed Tomography Monitors Damage in Composites

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1997-01-01

    The NASA Lewis Research Center recently codeveloped a state-of-the-art x-ray CT facility (designated SMS SMARTSCAN model 100-112 CITA by Scientific Measurement Systems, Inc., Austin, Texas). This multipurpose, modularized, digital x-ray facility includes an imaging system for digital radiography, CT, and computed laminography. The system consists of a 160-kV microfocus x-ray source, a solid-state charge-coupled device (CCD) area detector, a five-axis object-positioning subassembly, and a Sun SPARCstation-based computer system that controls data acquisition and image processing. The x-ray source provides a beam spot size down to 3 microns. The area detector system consists of a 50- by 50- by 3-mm-thick terbium-doped glass fiber-optic scintillation screen, a right-angle mirror, and a scientific-grade, digital CCD camera with a resolution of 1000 by 1018 pixels and 10-bit digitization at ambient cooling. The digital output is recorded with a high-speed, 16-bit frame grabber that allows data to be binned. The detector can be configured to provide a small field-of-view, approximately 45 by 45 mm in cross section, or a larger field-of-view, approximately 60 by 60 mm in cross section. Whenever the highest spatial resolution is desired, the small field-of-view is used, and for larger samples with some reduction in spatial resolution, the larger field-of-view is used.

  18. High-resolution thermal imaging with a combination of nano-focus X-ray diffraction and ultra-fast chip calorimetry.

    PubMed

    Rosenthal, Martin; Doblas, David; Hernandez, Jaime J; Odarchenko, Yaroslav I; Burghammer, Manfred; Di Cola, Emanuela; Spitzer, Denis; Antipov, A E; Aldoshin, L S; Ivanov, Dimitri A

    2014-01-01

    A microelectromechanical-systems-based calorimeter designed for use on a synchrotron nano-focused X-ray beamline is described. This instrument allows quantitative DC and AC calorimetric measurements over a broad range of heating/cooling rates (≤100000 K s(-1)) and temperature modulation frequencies (≤1 kHz). The calorimeter was used for high-resolution thermal imaging of nanogram-sized samples subjected to X-ray-induced heating. For a 46 ng indium particle, the measured temperature rise reaches ∼0.2 K, and is directly correlated to the X-ray absorption. Thermal imaging can be useful for studies of heterogeneous materials exhibiting physical and/or chemical transformations. Moreover, the technique can be extended to three-dimensional thermal nanotomography. PMID:24365940

  19. High Resolution X-ray Diffraction Characterization of III-Nitride Semiconductors: Bulk Crystals and Thin Films

    NASA Astrophysics Data System (ADS)

    Bobea, Milena Rebeca

    As III-nitrides continue to evolve into a homoepitaxial growth scenario, the development of non-traditional metrologies for the proper study of III-nitride single crystals and homoepitaxial thin films becomes critical. To this purpose, the work presented in this dissertation has focused on the development and application of suitable high resolution X-ray diffraction (HRXRD) methods, desirable for their sensitivity, accuracy and non-destructive nature. HRXRD techniques were explored and developed for the identification of polishing-induced damage in processed III-nitride single crystals, the structural analysis of non-polar AlN homoepitaxial films grown on AlN single crystals and the assessment of alloy film characteristics of AlxGa1-xN epilayers deposited on AlN substrates. AlN and GaN substrates were treated to various degrees of mechanical polishing and chemical mechanical polishing (CMP). Gross damage created from aggressive polishing was readily quantified using X-ray rocking curve (XRC) peak broadening and diffuse scatter intensity. However, once the wafers were exposed to CMP treatment, it was found that the use of line scanning methods was unable to distinguish the effects of CMP time exposure on the crystal surface. Alternatively, the analysis of surface-related diffraction features recorded from on- and off-axis high-resolution reciprocal space maps (RSMs) allowed the classification of remnant damage in CMP-treated substrates as a function of CMP exposure time. By comparing the crystal truncation rod intensity and the pole diffuse scatter magnitude, differences at the near-surface regions of CMP-processed wafers were qualitatively and quantitatively measured. For AlN, the mapping of the (101¯3) reflection, observable under grazing incidence conditions, was introduced as an effective HRXRD method to analyze the crystal surface of AlN substrates using a laboratory source. HRXRD methods were employed on high-quality non-polar homoepitaxial AlN films grown on

  20. High-resolution multi-MeV x-ray radiography using relativistic laser-solid interaction

    SciTech Connect

    Courtois, C.; Compant La Fontaine, A.; Barbotin, M.; Bazzoli, S.; Brebion, D.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Le Dain, L.; Lefebvre, E.; Pichoff, N.; Edwards, R.; Aedy, C.; Biddle, L.; Drew, D.; Gardner, M.; Ramsay, M.; Simons, A.; Sircombe, N.

    2011-02-15

    When high intensity ({>=}10{sup 19} W cm{sup -2}) laser light interacts with matter, multi-MeV electrons are produced. These electrons can be utilized to generate a MeV bremsstrahlung x-ray emission spectrum as they propagate into a high-Z solid target positioned behind the interaction area. The short duration (<10 ps) and the small diameter (<500 {mu}m) of the x-ray pulse combined with the MeV x-ray spectrum offers an interesting alternative to conventional bremsstrahlung x-ray sources based on an electron accelerator used to radiograph dense, rapidly moving objects. In experiments at the Omega EP laser, a multi-MeV x-ray source is characterized consistently with number of independent diagnostics. An unfiltered x-ray dose of approximately 2 rad in air at 1 m and a source diameter of less than 350 {mu}m are inferred. Radiography of a complex and high area density (up to 61 g/cm{sup 2}) object is then performed with few hundred microns spatial resolution.

  1. Three steps to the CIELO: VO and high-resolution spectroscopy chase the origin of soft X-rays in obscured AGN

    NASA Astrophysics Data System (ADS)

    Guainazzi, M.; Bianchi, S.

    The origin of the soft X-ray emission in obscured Active Galactic Nuclei AGN is still largely unknown despite important progress made possible by recent measurements with Chandra and XMM-Newton Our understanding of the evolution of accretion onto supermassive black holes and of its interaction with gas and stars in the dense nuclear environment would receive a dramatic burst by the solution of this mystery In this paper we will a show why high-resolution X-ray spectroscopy is crucial to the solution of this issue b present CIELO the first catalogue of soft X-ray emission lines in obscured AGN 80 sources built from observations of the Reflection Grating Spectrometer RGS on-board XMM-Newton c discuss the implementation of the IVOA Line Data Model in VO tools such as the SED builder VOSpec and its application to CIELO The combination of the unprecedented RGS sensitivity in the soft X-ray regime and of the VO protocols power leads us to be closer than ever to unveiling the nature of soft X-ray emission in obscured AGN

  2. Hot gas in the cold dark matter scenario: X-ray clusters from a high-resolution numerical simulation

    NASA Technical Reports Server (NTRS)

    Kang, Hyesung; Cen, Renyue; Ostriker, Jeremiah P.; Ryu, Dongsu

    1994-01-01

    A new, three-dimensional, shock-capturing hydrodynamic code is utilized to determine the distribution of hot gas in a standard cold dark matter (CDM) model of the universe. Periodic boundary conditions are assumed: a box with size 85 h(exp -1) Mpc having cell size 0.31 h(exp -1) Mpc is followed in a simulation with 270(exp 3) = 10(exp 7.3) cells. Adopting standard parameters determined from COBE and light-element nucleosynthesis, sigma(sub 8) = 1.05, omega(sub b) = 0.06, and assuming h = 0.5, we find the X-ray-emitting clusters and compute the luminosity function at several wavelengths, the temperature distribution, and estimated sizes, as well as the evolution of these quantities with redshift. We find that most of the total X-ray emissivity in our box originates in a relatively small number of identifiable clusters which occupy approximately 10(exp -3) of the box volume. This standard CDM model, normalized to COBE, produces approximately 5 times too much emission from clusters having L(sub x) is greater than 10(exp 43) ergs/s, a not-unexpected result. If all other parameters were unchanged, we would expect adequate agreement for sigma(sub 8) = 0.6. This provides a new and independent argument for lower small-scale power than standard CDM at the 8 h(exp -1) Mpc scale. The background radiation field at 1 keV due to clusters in this model is approximately one-third of the observed background, which, after correction for numerical effects, again indicates approximately 5 times too much emission and the appropriateness of sigma(sub 8) = 0.6. If we have used the observed ratio of gas to total mass in clusters, rather than basing the mean density on light-element nucleosynthesis, then the computed luminosity of each cluster would have increased still further, by a factor of approximately 10. The number density of clusters increases to z approximately 1, but the luminosity per typical cluster decreases, with the result that evolution in the number density of bright

  3. X-ray Computed Tomographic Investigation of the Porosity and Morphology of Plasma Electrolytic Oxidation Coatings.

    PubMed

    Zhang, Xun; Aliasghari, Sepideh; Němcová, Aneta; Burnett, Timothy L; Kuběna, Ivo; Šmíd, Miroslav; Thompson, George E; Skeldon, Peter; Withers, Philip J

    2016-04-01

    Plasma electrolytic oxidation (PEO) is of increasing interest for the formation of ceramic coatings on metals for applications that require diverse coating properties, such as wear and corrosion resistance, low thermal conductivity, and biocompatibility. Porosity in the coatings can have an important impact on the coating performance. However, the quantification of the porosity in coatings can be difficult due to the wide range of pore sizes and the complexity of the coating morphology. In this work, a PEO coating formed on titanium is examined using high resolution X-ray computed tomography (X-ray CT). The observations are validated by comparisons of surface views and cross-sectional views of specific coating features obtained using X-ray CT and scanning electron microscopy. The X-ray CT technique is shown to be capable of resolving pores with volumes of at least 6 μm(3). Furthermore, the shapes of large pores are revealed and a correlation is demonstrated between the locations of the pores, nodules on the coating surface, and depressions in the titanium substrate. The locations and morphologies of the pores, which constitute 5.7% of the coating volume, indicate that they are generated by release of oxygen gas from the molten coating. PMID:26974706

  4. Simultaneous High-Resolution 2-Dimensional Spatial and 1-Dimensional Picosecond Streaked X-ray Pinhole Imaging

    SciTech Connect

    Steel, A B; Nagel, S R; Dunn, J; Baldis, H A

    2012-05-03

    A Kentech x-ray streak camera was run at the LLNL Compact Multipulse Terawatt (COMET) laser to record simultaneous space- and time-resolved measurements of picosecond laser-produced plasmas. Four different x-ray energy channels were monitored using broad-band filters to record the time history of Cu targets heated at irradiances of 10{sup 16} - 10{sup 19} W/cm{sup 2}. Through the Cu filter channel, a time-resolution below 3ps was obtained. Additionally, an array of 10 {micro}m diameter pinholes was placed in front of the camera to produce multiple time-resolved x-ray images on the photocathode and time-integrated images on the phosphor with 10 and 15 times magnification, respectively, with spatial resolution of <13 {micro}m.

  5. Optimizing the operation of a high resolution vertical Johann spectrometer using a high energy fluorescer x-ray source

    SciTech Connect

    Haugh, Michael; Stewart, Richard

    2010-10-15

    This paper describes the operation and testing for a vertical Johann spectrometer (VJS) operating in the 13 keV range. The spectrometer is designed to use thin curved mica crystals or thick germanium crystals. The VJS must have a resolution of E/{Delta}E=3000 or better to measure the Doppler broadening of highly ionized krypton and operate at a small x-ray angle in order to be used as a diagnostic in a laser plasma target chamber. The VJS was aligned, tested, and optimized using a fluorescer type high energy x-ray (HEX) source located at National Security Technologies (NSTec), LLC, in Livermore, CA. The HEX uses a 160 kV x-ray tube to excite fluorescence from various targets. Both rubidium and bismuth fluorescers were used for this effort. This presentation describes the NSTec HEX system and the methods used to optimize and characterize the VJS performance.

  6. Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime.

    PubMed

    Vila-Comamala, Joan; Gorelick, Sergey; Färm, Elina; Kewish, Cameron M; Diaz, Ana; Barrett, Ray; Guzenko, Vitaliy A; Ritala, Mikko; David, Christian

    2011-01-01

    X-ray microscopy based on Fresnel zone plates is a powerful technique for sub-100 nm resolution imaging of biological and inorganic materials. Here, we report on the modeling, fabrication and characterization of zone-doubled Fresnel zone plates for the multi-keV regime (4-12 keV). We demonstrate unprecedented spatial resolution by resolving 15 nm lines and spaces in scanning transmission X-ray microscopy, and focusing diffraction efficiencies of 7.5% at 6.2 keV photon energy. These developments represent a significant step towards 10 nm spatial resolution for hard X-ray energies of up to 12 keV. PMID:21263555

  7. Porosity characterization of fiber-reinforced ceramic matrix composite using synchrotron X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Zou, C.; Marrow, T. J.; Reinhard, C.; Li, B.; Zhang, C.; Wang, S.

    2016-03-01

    The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a "node-bond" geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1~ 9.3% closed micropores.

  8. Zone-doubled Fresnel zone plates for high-resolution hard X-ray full-field transmission microscopy

    PubMed Central

    Vila-Comamala, Joan; Pan, Yongsheng; Lombardo, Jeffrey J.; Harris, William M.; Chiu, Wilson K. S.; David, Christian; Wang, Yuxin

    2012-01-01

    Full-field transmission X-ray microscopy is a unique non-destructive technique for three-dimensional imaging of specimens at the nanometer scale. Here, the use of zone-doubled Fresnel zone plates to achieve a spatial resolution better than 20 nm in the hard X-ray regime (8–10 keV) is reported. By obtaining a tomographic reconstruction of a Ni/YSZ solid-oxide fuel cell, the feasibility of performing three-dimensional imaging of scientifically relevant samples using such high-spatial-resolution Fresnel zone plates is demonstrated. PMID:22898949

  9. Semi-transparent central stop in high-resolution X-ray ptychography using Kirkpatrick–Baez focusing

    PubMed Central

    Wilke, R. N.; Vassholz, M.; Salditt, T.

    2013-01-01

    A ptychographic coherent X-ray diffractive imaging (PCDI) experiment has been carried out using 7.9 keV X-rays and Kirkpatrick–Baez focusing mirrors. By introducing a semi-transparent central stop in front of the detector the dynamic range on the detector is increased by about four orders of magnitude. The feasibility of this experimental scheme is demonstrated for PCDI applications with a resolution below 10 nm. The results are compared with reference data and an increase of resolution by a factor of two is obtained, while the deviation of the reconstructed phase map from the reference is below 1%.

  10. Scintillating optical fiber array for high-resolution X-ray imaging over 5 keV

    NASA Astrophysics Data System (ADS)

    Bigler, E.; Polack, F.

    1985-04-01

    An X-ray image detector having a 10-5-micron resolution for 5-keV X-rays in high flux conditions is described. It consists of an array of optical fibers, the core of which has been replaced by a high-index fluorescent material. Preliminary realizations and experiments are reported, which give hope that good efficiencies will be obtained by matching a scintillating fiber array to an image intensifier. Such detectors should find useful applications, for example, to synchrotron radiation experiments.

  11. L-subshell Coster-Kronig yields of palladium determined via synchrotron-radiation-based high-resolution x-ray spectroscopy

    SciTech Connect

    Cao, W.; Hoszowska, J.; Dousse, J.-Cl.; Kayser, Y.; Kavcic, M.; Zitnik, M.; Bucar, K.; Mihelic, A.; Szlachetko, J.; Slabkowska, K.

    2009-07-15

    We report on the experimental determination of the palladium L-subshell Coster-Kronig (CK) transition yields via high-resolution measurements of the L{alpha}{sub 1,2} (L{sub 3}-M{sub 4,5}) and L{beta}{sub 1} (L{sub 2}-M{sub 4}) x-ray emission lines. The L x-ray spectra were recorded by means of curved crystal spectrometers employing energy-tunable synchrotron radiation for fluorescence production. The CK yields were derived from the relative L x-ray intensity jumps at the L edges by fitting the fluorescence intensities as a function of the photon energy to the photoionization cross sections. The L x-ray intensities were corrected for solid-state effects which were estimated from the comparison of the measured and theoretical Pd L-edge x-ray-absorption spectra. Thanks to high resolution, the partial CK yield f{sub 13}{sup L{sub 1}}{sup L{sub 3}}{sup M} could be extracted from the intensities of the resolved L{alpha}M satellite transitions. For f{sub 23}, f{sub 12}, and f{sub 13} CK rates, values of 0.164{+-}0.033, 0.047{+-}0.001, and 0.730{+-}0.039 were found, respectively. For the partial CK yields f{sub 13}{sup L{sub 1}}{sup L{sub 3}}{sup M} and f{sub 13}{sup L{sub 1}}{sup L{sub 3}}{sup N}, results of 0.406{+-}0.023 and 0.324{+-}0.032, respectively, were obtained.

  12. Ultrafast three-dimensional x-ray computed tomography

    SciTech Connect

    Bieberle, Martina; Barthel, Frank; Hampel, Uwe; Menz, Hans-Juergen; Mayer, Hans-Georg

    2011-01-17

    X-ray computed tomography (CT) is a well established visualization technique in medicine and nondestructive testing. However, since CT scanning requires sampling of radiographic projections from different viewing angles, common CT systems with mechanically moving parts are too slow for dynamic imaging, for instance of multiphase flows or live animals. Here, we introduce an ultrafast three-dimensional x-ray CT method based on electron beam scanning, which achieves volume rates of 500 s{sup -1}. Primary experiments revealed the capability of this method to recover the structure of phase boundaries in gas-solid and gas-liquid two-phase flows, which undergo three-dimensional structural changes in the millisecond scale.

  13. Ultrafast three-dimensional x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Bieberle, Martina; Barthel, Frank; Menz, Hans-Jürgen; Mayer, Hans-Georg; Hampel, Uwe

    2011-01-01

    X-ray computed tomography (CT) is a well established visualization technique in medicine and nondestructive testing. However, since CT scanning requires sampling of radiographic projections from different viewing angles, common CT systems with mechanically moving parts are too slow for dynamic imaging, for instance of multiphase flows or live animals. Here, we introduce an ultrafast three-dimensional x-ray CT method based on electron beam scanning, which achieves volume rates of 500 s-1. Primary experiments revealed the capability of this method to recover the structure of phase boundaries in gas-solid and gas-liquid two-phase flows, which undergo three-dimensional structural changes in the millisecond scale.

  14. Helical differential X-ray phase-contrast computed tomography.

    PubMed

    Fu, Jian; Willner, Marian; Chen, Liyuan; Tan, Renbo; Achterhold, Klaus; Bech, Martin; Herzen, Julia; Kunka, Danays; Mohr, Juergen; Pfeiffer, Franz

    2014-05-01

    We report on the first experimental results of helical differential phase-contrast computed tomography (helical DPC-CT) with a laboratory X-ray tube source and a Talbot-Lau grating interferometer. The results experimentally verify the feasibility of helical data acquisition and reconstruction in phase-contrast imaging, in analogy to its use in clinical CT systems. This allows fast and continuous volumetric scans for long objects with lengths exceeding the dimension of the detector. Since helical CT revolutionized the field of medical CT several years ago, we anticipate that this method will bring the same significant impact on the future medical and industrial applications of X-ray DPC-CT. PMID:24518822

  15. High-Resolution X-ray Microprobe Using a Spatial Filter and Its Application to Micro-XAFS Measurements

    SciTech Connect

    Terada, Y.; Tanida, H.; Uruga, T.; Takeuchi, A.; Suzuki, Y.; Goto, S.

    2011-09-09

    An x-ray microprobe system with total-reflection mirror optics for trace element analysis has been developed at beamline 37XU of SPring-8. To achieve sub-microprobe, a spatial filter has been installed downstream of a monochromator. Focusing tests have been performed in the x-ray energy range of 6-14 keV. A focused beam size of 0.83 {mu}m(V)x1.35 {mu}m(H) has been obtained at an x-ray energy of 10 keV, and using a spatial filter in the horizontal direction, the beam size is down to 0.84 {mu}m. Micro-x-ray absorption fine structure (XAFS) spectroscopy of submicrometer particles has been done by utilizing the total-reflection mirror optics. It was clearly observed from the nickel K-edge XAFS spectra that the oxidation state of nickel was a mixture of metal and oxide even in the single submicrometer particle.

  16. The high-resolution x-ray microcalorimeter spectrometer system for the SXS on ASTRO-H

    NASA Astrophysics Data System (ADS)

    Mitsuda, Kazuhisa; Kelley, Richard L.; Boyce, Kevin R.; Brown, Gregory V.; Costantini, Elisa; Dipirro, Michael J.; Ezoe, Yuichiro; Fujimoto, Ryuichi; Gendreau, Keith C.; den Herder, Jan-Willem; Hoshino, Akio; Ishisaki, Yoshitaka; Kilbourne, Caroline A.; Kitamoto, Shunji; McCammon, Dan; Murakami, Masahide; Murakami, Hiroshi; Ogawa, Mina; Ohashi, Takaya; Okamoto, Atsushi; Paltani, Stéphane; Pohl, Martin; Porter, F. Scott; Sato, Yoichi; Shinozaki, Keisuke; Shirron, Peter J.; Sneiderman, Gary A.; Sugita, Hiroyuki; Szymkowiak, Andrew; Takei, Yoh; Tamagawa, Toru; Tashiro, Makoto; Terada, Yukikatsu; Tsujimoto, Masahiro; de Vries, Cor; Yamaguchi, Hiroya; Yamasaki, Noriko Y.

    2010-07-01

    We present the science and an overview of the Soft X-ray Spectrometer onboard the ASTRO-H mission with emphasis on the detector system. The SXS consists of X-ray focusing mirrors and a microcalorimeter array and is developed by international collaboration lead by JAXA and NASA with European participation. The detector is a 6×6 format microcalorimeter array operated at a cryogenic temperature of 50 mK and covers a 3' ×3' field of view of the X-ray telescope of 5.6 m focal length. We expect an energy resolution better than 7 eV (FWHM, requirement) with a goal of 4 eV. The effective area of the instrument will be 225 cm2 at 7 keV; by a factor of about two larger than that of the X-ray microcalorimeter on board Suzaku. One of the main scientific objectives of the SXS is to investigate turbulent and/or macroscopic motions of hot gas in clusters of galaxies.

  17. High-Resolution X-Ray Spectroscopy of SNR 1987A: Chandra Letg and HETG Observations in 2007

    NASA Astrophysics Data System (ADS)

    Zhekov, Svetozar A.; McCray, Richard; Dewey, Daniel; Canizares, Claude R.; Borkowski, Kazimierz J.; Burrows, David N.; Park, Sangwook

    2009-02-01

    We present an extended analysis of the deep Chandra LETG and HETG observations of the supernova remnant 1987A (SNR 1987A) carried out in 2007. The global fits to the grating spectra show that the temperature of the X-ray emitting plasma in the slower shocks in this system has remained stable for the last three years, while that in the faster shocks has decreased. This temperature evolution is confirmed by the first light curves of strong X-ray emission lines and their ratios. On the other hand, bulk gas velocities inferred from the X-ray line profiles are too low to account for the postshock plasma temperatures inferred from spectral fits. This suggests that the X-ray emission comes from gas that has been shocked twice, first by the blast wave and again by shocks reflected from the inner ring of SNR 1987A. A new model that takes these considerations into account gives support to this physical picture.

  18. Efficient high-resolution hard x-ray imaging with transparent Lu2O3:Eu scintillator thin films

    NASA Astrophysics Data System (ADS)

    Marton, Zsolt; Miller, Stuart R.; Brecher, Charles; Kenesei, Peter; Moore, Matthew D.; Woods, Russell; Almer, Jonathan D.; Miceli, Antonino; Nagarkar, Vivek V.

    2015-09-01

    We have developed microstructured Lu2O3:Eu scintillator films that provide spatial resolution on the order of micrometers for hard X-ray imaging. In addition to their outstanding resolution, Lu2O3:Eu films also exhibits both high absorption efficiency for 20 to 100 keV X-rays, and bright 610 nm emission whose intensity rivals that of the brightest known scintillators. At present, high spatial resolution of such a magnitude is achieved using ultra-thin scintillators measuring only about 1 to 5 μm in thickness, which limits absorption efficiency to ~3% for 12 keV X-rays and less than 0.1% for 20 to 100 keV X-rays; this results in excessive measurement time and exposure to the specimen. But the absorption efficiency of Lu2O3:Eu (99.9% @12 keV and 30% @ 70 keV) is much greater, significantly decreasing measurement time and radiation exposure. Our Lu2O3:Eu scintillator material, fabricated by our electron-beam physical vapor deposition (EB-PVD) process, combines superior density of 9.5 g/cm3, a microcolumnar structure for higher spatial resolution, and a bright emission (48000 photons/MeV) whose wavelength is an ideal match for the underlying CCD detector array. We grew thin films of this material on a variety of matching substrates, measuring some 5-10μm in thickness and covering areas up to 1 x 1 cm2, which can be a suitable basis for microtomography, digital radiography as well as CT and hard X-ray Micro-Tomography (XMT). The microstructure and optical transparency of such screens was optimized, and their imaging performance was evaluated in the Argonne National Laboratory's Advanced Photon Source. Spatial resolution and efficiency were also characterized.

  19. Development of a high-efficiency high-resolution particle-induced x-ray emission system for chemical state analysis of environmental samples

    NASA Astrophysics Data System (ADS)

    Hasegawa, J.; Tada, T.; Oguri, Y.; Hayashi, M.; Toriyama, T.; Kawabata, T.; Masai, K.

    2007-07-01

    We have developed a high-efficiency high-resolution particle-induced x-ray emission (PIXE) system employing a von Hamos-type crystal spectrometer for a chemical state identification of trace elements in environmental samples. The energy resolution of the system was determined to be about 0.05% through the observation of SiKα1,2 x rays (1.74keV ) from elemental silicon. The throughput efficiency of the system was also evaluated quasitheoretically to be 1.6×10-7 counts/incident proton for SiKα1,2 emission. To demonstrate a chemical state analysis using the high-resolution PIXE system, SiKα1,2 and Kβ x-ray spectra for SiC, Si3N4, and SiO2 were measured and compared. The observed chemical shifts of the SiKα1,2 peaks for SiC, Si3N4, and SiO2 relative to elemental silicon were 0.20, 0.40, and 0.55eV, respectively. The tendency of these shifts were well explained by the effective charges of the silicon atoms calculated by a molecular orbital method.

  20. Utilization of high resolution computed tomography to visualize the three dimensional structure and function of plant vasculature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D). HRCT imaging is based on the same principles as medi...

  1. Multi-Mounted X-Ray Computed Tomography

    PubMed Central

    Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng

    2016-01-01

    Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT. PMID:27073911

  2. Multi-Mounted X-Ray Computed Tomography.

    PubMed

    Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng

    2016-01-01

    Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT. PMID:27073911

  3. A Computational Algorithm to Produce Virtual X-ray and Electron Diffraction Patterns from Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Coleman, Shawn P.; Sichani, Mehrdad M.; Spearot, Douglas E.

    2014-03-01

    Electron and x-ray diffraction are well-established experimental methods used to explore the atomic scale structure of materials. In this work, a computational algorithm is developed to produce virtual electron and x-ray diffraction patterns directly from atomistic simulations. This algorithm advances beyond previous virtual diffraction methods by using a high-resolution mesh of reciprocal space that eliminates the need for a priori knowledge of the crystal structure being modeled or other assumptions concerning the diffraction conditions. At each point on the reciprocal space mesh, the diffraction intensity is computed via explicit computation of the structure factor equation. To construct virtual selected-area electron diffraction patterns, a hemispherical slice of the reciprocal lattice mesh lying on the surface of the Ewald sphere is isolated and viewed along a specified zone axis. X-ray diffraction line profiles are created by binning the intensity of each reciprocal lattice point by its associated scattering angle, effectively mimicking powder diffraction conditions. The virtual diffraction algorithm is sufficiently generic to be applied to atomistic simulations of any atomic species. In this article, the capability and versatility of the virtual diffraction algorithm is exhibited by presenting findings from atomistic simulations of <100> symmetric tilt Ni grain boundaries, nanocrystalline Cu models, and a heterogeneous interface formed between α-Al2O3 (0001) and γ-Al2O3 (111).

  4. Incorporation of Mn in AlxGa1 -xN probed by x-ray absorption and emission spectroscopy, high-resolution microscopy, x-ray diffraction, and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Rovezzi, Mauro; Schlögelhofer, Wolfgang; Devillers, Thibaut; Szwacki, Nevill Gonzalez; Li, Tian; Adhikari, Rajdeep; Glatzel, Pieter; Bonanni, Alberta

    2015-09-01

    Synchrotron radiation x-ray absorption and emission spectroscopy techniques, complemented by high-resolution transmission electron microscopy methods and density functional theory calculations, are employed to investigate the effect of Mn in AlxGa1 -xN :Mn samples with an Al content up to 100%. The atomic and electronic structure of Mn is established together with its local environment and valence state. A dilute alloy without precipitation is obtained for AlxGa1 -xN :Mn with Al concentrations up to 82%, and the surfactant role of Mn in the epitaxial process is confirmed.

  5. Development of Small-Pixel CZT Detectors for Future High-Resolution Hard X-ray Missions

    NASA Astrophysics Data System (ADS)

    Beilicke, Matthias

    Owing to recent breakthroughs in grazing incidence mirror technology, next-generation hard X-ray telescopes will achieve angular resolutions of between 5 and 10 arc seconds - about an order of magnitude better than that of the NuSTAR hard X-ray telescope. As a consequence, the next generation of hard X-ray telescopes will require pixelated hard X- ray detectors with pixels on a grid with a lattice constant of between 120 and 240 um. Additional detector requirements include a low energy threshold of less than 5 keV and an energy resolution of less than 1 keV. The science drivers for a high angular-resolution hard X-ray mission include studies and measurements of black hole spins, the cosmic evolution of super-massive black holes, AGN feedback, and the behavior of matter at very high densities. We propose a R&D research program to develop, optimize and study the performance of 100-200 um pixel pitch CdTe and Cadmium Zinc Telluride (CZT) detectors of 1-2 mm thickness. Our program aims at a comparison of the performance achieved with CdTe and CZT detectors, and the optimization of the pixel, steering grid, and guard ring anode patterns. Although these studies will use existing ASICs (Application Specific Integrated Circuits), our program also includes modest funds for the development of an ultra-low noise ASIC with a 2-D grid of readout pads that can be directly bonded to the 100-200 um pixel pitch CdTe and CZT detectors. The team includes the Washington University group (Prof. M. Beilicke and Co-I Prof. H.S.W. Krawczynski et al.), and co-investigator G. De Geronimo at Brookhaven National Laboratory (BNL). The Washington University group has a 10 year track record of innovative CZT detector R&D sponsored by the NASA Astronomy and Physics Research and Analysis (APRA) program. The accomplishments to date include the development of CZT detectors with pixel pitches between 350 um and 2.5 mm for the ProtoExist, EXIST, and X-Calibur hard X-ray missions with some of the best

  6. High-resolution, high-transmission soft x-ray spectrometer for the study of biological samples

    SciTech Connect

    Fuchs, Oliver; Weinhardt, L.; Blum, M.; Weigand, M.; Umbach, E.; Bar, M.; Heske, Clemens; Denlinger, Jonathan; Chuang, Y.-D.; McKinney, Wayne; Hussain, Zahid; Gullikson, Eric; Jones, M.; Batson, Phil; Nelles, B.; Follath, R.

    2009-03-09

    We present a variable line-space grating spectrometer for soft x-rays that covers the photon energy range between 130 and 650 eV. The optical design is based on the Hettrick-Underwood principle and tailored to synchrotron-based studies of radiation-sensitive biological samples. The spectrometer is able to record the entire spectral range in one shot, i.e., without any mechanical motion, at a resolving power of 1200 or better. Despite its slitless design, such a resolving power can be achieved for a source spot as large as 30x3000 mu m2, which is important for keeping beam damage effects in radiation-sensitive samples low. The high spectrometer efficiency allows recording of comprehensive two-dimensional resonant inelastic soft x-ray scattering (RIXS) maps with good statistics within several minutes. This is exemplarily demonstrated for a RIXS map of highly oriented pyrolytic graphite, which was taken within 10 min.

  7. Large scale telescopes for high resolution X-ray and gamma-ray astronomy. [using widely separated satellites

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Lin, R. P.

    1978-01-01

    This paper shows that angular-resolution, energy-range, and structural constraints on image-modulated X-ray telescopes are not fundamental and that the limits on angular resolution can be overcome by constructing such telescopes on a very large spatial scale. It is proposed that widely separated satellites be used for the modulating mask and detector array. Implementation of this concept is discussed in terms of a simple system consisting of a pinhole camera (i.e., a hole in an opaque mask on one subsatellite and a detector array on another). Advantages and problems of such systems are briefly discussed, and a solar X-ray telescope intended for deployment from a Shuttle orbiter is described. It is noted that such large-scale telescopes can be constructed to image gamma rays and even energetic neutrons as well.

  8. High resolution large area modular array of reflectors /LAMAR/ Wolter type I X-ray telescope for Spacelab

    NASA Technical Reports Server (NTRS)

    Catura, R. C.; Acton, L. W.; Brown, W. A.; Gilbreth, C. W.; Springer, L. A.; Vieira, J. R.; Culhane, J. L.; Mason, I. W.; Siegmund, O.; Patrick, T. J.

    1982-01-01

    The Spacelab Wolter type I X-ray telescope, which is intended for both astronomical observations and the functional verification of the future Large Area Modular Array of Reflectors (LAMAR) concept, comprises five mirrors and is designed to have a blur circle radius of 20 arcsec, with effective areas of (1) 400 sq cm at 0.25 keV, (2) 200 sq cm in the 0.5-2.0 keV range, and (3) 50 sq cm between 2 and 5 keV. A rotary interchange mechanism allows either of two imaging proportional counters to be placed at the telescope focus. The telescope's primary objective is the observational study of galactic and extragalactic X-ray sources, extending the work of the Einstein Observatory to fainter sources and higher energies. Secondarily, the costs and performance to be expected from the use of this telescope type in the LAMAR mission will be assessed.

  9. High-resolution hard x-ray spectroscopy of high-temperature plasmas using an array of quantum microcalorimeters.

    PubMed

    Thorn, Daniel B; Gu, Ming F; Brown, Greg V; Beiersdorfer, Peter; Porter, F Scott; Kilbourne, Caroline A; Kelley, Richard L

    2008-10-01

    Quantum microcalorimeters show promise in being able to fully resolve x-ray spectra from heavy highly charged ions, such as would be found in hot plasmas with temperatures in excess of 50 keV. Quantum microcalorimeter arrays are able to achieve this as they have a high-resolving power and good effective quantum efficiency for hard x-ray photons up to 60 keV. To demonstrate this, we present a measurement using an array of thin HgTe quantum microcalorimeters to measure the K-shell spectrum of hydrogenlike through carbonlike praseodymium (Z=57). With this device we are able to attain a resolving power, E/DeltaE, of 1000 at a photon energy of 37 keV. PMID:19044485

  10. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    SciTech Connect

    Makita, M.; Karvinen, P.; Zhu, D.; Juranic, P. N.; Grünert, J.; Cartier, S.; Jungmann-Smith, J. H.; Lemke, H. T.; Mozzanica, A.; Nelson, S.; Patthey, L.; Sikorski, M.; Song, S.; Feng, Y.; David, C.

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy of >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.

  11. Development of a Fast and High Resolution X-Ray Imaging Sensor for In-Line Inspection of Tape Substrate

    NASA Astrophysics Data System (ADS)

    Yeom, Jung-Yeol; Roh, Young-Jun; Jung, Chang-Ook; Jeong, Dae-Hwa

    2010-03-01

    In an automated tape substrate inspections, machine vision is widely adopted for high throughput and cost advantages. However, conventional methods are overly sensitive to foreign particles or have limitations in detecting three-dimensional defects such as top over-etched defect. Foreign particles such as dustsdo not affect the integrity of the final product and are often detected as defects during inspection. To complement vision inspection systems, a prototype fast and fine spatial resolution X-ray imaging sensor has been developed. This image sensor, based on an optoelectronic device - the microchannel plate (MCP), has a spatial resolution of 20 μm and functions at frame rate of 30 fps. X-ray imaging is appropriate as it is virtually transparent to dust particles and provides information regarding the thickness of the copper wire patterns.

  12. High rate, high resolution, two-dimensional gas proportional detectors for x-ray synchrotron radiation experiments

    SciTech Connect

    Smith, G.C.; Yu, B.; Fischer, J.; Radeka, V.; Harder, J.A.

    1992-02-01

    Two-dimensional, gas proportional detectors are being developed for use with X-ray synchrotron radiation. Two new types of interpolating cathode structures have been investigated, both of which can operate with a significantly smaller number of readout nodes along each sensing axis than previous cathodes. Lumped parameter delay lines are used as the position encoders. Timing signals from fast, low noise shaping electronics are fed to a new, dual TDC system developed for this purpose. Operating with a clock frequency of 500 MHz, the TDCs have an intrinsic differential non-linearity of 0.1%. The complete system can handle X-ray fluxes in excess of 10{sup 6} per sec without distortion of the position information. A resolution of approximately 100 {mu}m FWHM and differenfial non-linearity of {plus minus}4% have been achieved. Application of a detector with active area 10 cm {times} 10 cm using synchrotron radiation is described.

  13. High-resolution, high-transmission soft x-ray spectrometer for the study of biological samples.

    PubMed

    Fuchs, O; Weinhardt, L; Blum, M; Weigand, M; Umbach, E; Bär, M; Heske, C; Denlinger, J; Chuang, Y-D; McKinney, W; Hussain, Z; Gullikson, E; Jones, M; Batson, P; Nelles, B; Follath, R

    2009-06-01

    We present a variable line-space grating spectrometer for soft x-rays that covers the photon energy range between 130 and 650 eV. The optical design is based on the Hettrick-Underwood principle and tailored to synchrotron-based studies of radiation-sensitive biological samples. The spectrometer is able to record the entire spectral range in one shot, i.e., without any mechanical motion, at a resolving power of 1200 or better. Despite its slitless design, such a resolving power can be achieved for a source spot as large as (30 x 3000) microm2, which is important for keeping beam damage effects in radiation-sensitive samples low. The high spectrometer efficiency allows recording of comprehensive two-dimensional resonant inelastic soft x-ray scattering (RIXS) maps with good statistics within several minutes. This is exemplarily demonstrated for a RIXS map of highly oriented pyrolytic graphite, which was taken within 10 min. PMID:19566192

  14. A broadband high-resolution elliptical crystal x-ray spectrometer for high energy density physics experiments

    SciTech Connect

    Anderson, S G; Heeter, R F; Booth, R; Emig, J; Fulkerson, S; McCarville, T; Norman, D; Young, B F

    2006-03-31

    Spectroscopic investigation of high temperature laser produced plasmas in general, and x-ray opacity experiments in particular, often requires instruments with both a broad coverage of x-ray energies and high spectral, spatial, and temporal resolution. We analyze the design, model the response, and report the commissioning of a spectrometer using elliptical crystals in conjunction with a large format, gated microchannel plate detector. Measurements taken with this instrument at the JANUS laser facilities demonstrate the designed spectral range of 0.24 to 5.8 keV, and spectral resolution E/{Delta}E > 500, resulting in 2 to 3 times more spectral data than achieved by previous spectrometer designs. The observed 100 picosecond temporal resolution and 35 {micro}m spatial resolution are consistent with the requirements of high energy density opacity experiments.

  15. In situ study of the growth and degradation processes in tetragonal lysozyme crystals on a silicon substrate by high-resolution X-ray diffractometry

    NASA Astrophysics Data System (ADS)

    Kovalchuk, M. V.; Prosekov, P. A.; Marchenkova, M. A.; Blagov, A. E.; D'yakova, Yu. A.; Tereshchenko, E. Yu.; Pisarevskii, Yu. V.; Kondratev, O. A.

    2014-09-01

    The results of an in situ study of the growth of tetragonal lysozyme crystals by high-resolution X-ray diffractometry are considered. The crystals are grown by the sitting-drop method on crystalline silicon substrates of different types: both on smooth substrates and substrates with artificial surface-relief structures using graphoepitaxy. The crystals are grown in a special hermetically closed crystallization cell, which enables one to obtain images with an optical microscope and perform in situ X-ray diffraction studies in the course of crystal growth. Measurements for lysozyme crystals were carried out in different stages of the crystallization process, including crystal nucleation and growth, developed crystals, the degradation of the crystal structure, and complete destruction.

  16. High-resolution X-ray projection radiography of a pin cathode in a high-current vacuum diode using X-pinch radiation

    NASA Astrophysics Data System (ADS)

    Parkevich, E. V.; Tilikin, I. N.; Agafonov, A. V.; Shelkovenko, T. A.; Romanova, V. M.; Mingaleev, A. R.; Savinov, S. Yu.; Mesyats, G. A.; Pikuz, S. A.

    2016-03-01

    To study processes in a high-current vacuum diode with a cathode in the form of a single pin made of a metallic wire 20-30 μm in diameter, the method of high-resolution projection X-ray radiography with an X-pinch as a source has been used. A strong inhomogeneity of the energy contribution to the wire has been revealed. The smallest energy release has been observed near the end of the pin, where the electric field strength is maximal. Hard X rays, as well as the ejection of matter from the anode, have been observed, indicating the generation of an electron beam with the parameters characteristic of explosive electron emission in the diode with this configuration. The data obtained indicate complex processes occurring in the diode. Possible scenarios of their development have been considered.

  17. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas

    SciTech Connect

    Hill, K W; Broennimann, Ch; Eikenberry, E F; Ince-Cushman, A; Lee, S G; Rice, J E; Scott, S

    2008-02-27

    A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of Ti and vφ on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and nuclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER.

  18. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas

    SciTech Connect

    Hill, K W; Broennimann, Ch; Eikenberry, E F; Ince-Cushman, A; Lee, S G; Rice, J E; Scott, S

    2008-01-29

    A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1 MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of Ti and vφ on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and uclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER.

  19. High-resolution x-ray diffraction investigation of relaxation and dislocations in SiGe layers grown on (001), (011), and (111) Si substrates

    SciTech Connect

    Zhylik, A.; Benediktovich, A.; Ulyanenkov, A.; Guerault, H.; Myronov, M.; Dobbie, A.; Leadley, D. R.; Ulyanenkova, T.

    2011-06-15

    This work presents a detailed characterization, using high-resolution x-ray diffraction, of multilayered Si{sub 1-x}Ge{sub x} heterostructures grown on (001), (011), and (111) Si substrates by reduced pressure chemical vapor deposition. Reciprocal space mapping has been used to determine both the strain and Ge concentration depth profiles within each layer of the heterostructures after initially determining the crystallographic tilt of all the layers. Both symmetric and asymmetric reciprocal space maps were measured on each sample, and the evaluation was performed simultaneously for the whole data set. The ratio of misfit to threading dislocation densities has been estimated for each individual layer based on an analysis of diffuse x-ray scattering from the defects.

  20. Upgrades of imaging x-ray crystal spectrometers for high-resolution and high-temperature plasma diagnostics on EAST

    SciTech Connect

    Lyu, B. Wang, F. D.; Fu, J.; Li, Y. Y.; Pan, X. Y.; Chen, J.; Wan, B. N.; Bitter, M.; Hill, K. W.; Delgado-Aparicio, L. F.; Pablant, N.; Lee, S. G.; Shi, Y. J.; Ye, M. Y.

    2014-11-15

    Upgrade of the imaging X-ray crystal spectrometers continues in order to fulfill the high-performance diagnostics requirements on EAST. For the tangential spectrometer, a new large pixelated two-dimensional detector was deployed on tokamaks for time-resolved X-ray imaging. This vacuum-compatible detector has an area of 83.8 × 325.3 mm{sup 2}, a framing rate over 150 Hz, and water-cooling capability for long-pulse discharges. To effectively extend the temperature limit, a double-crystal assembly was designed to replace the previous single crystals for He-like argon line measurement. The tangential spectrometer employed two crystal slices attached to a common substrate and part of He- and H-like Ar spectra could be recorded on the same detector when crystals were chosen to have similar Bragg angles. This setup cannot only extend the measurable Te up to 10 keV in the core region, but also extend the spatial coverage since He-like argon ions will be present in the outer plasma region. Similarly, crystal slices for He-like iron and argon spectra were adopted on the poloidal spectrometer. Wavelength calibration for absolute rotation velocity measurement will be studied using cadmium characteristic L-shell X-ray lines excited by plasma radiation. A Cd foil is placed before the crystal and can be inserted and retracted for in situ wavelength calibration. The Geant4 code was used to estimate X-ray fluorescence yield and optimize the thickness of the foil.

  1. Electron transfer during selenium reduction by iron surfaces in aqueous solution: High resolution X-ray absorption study

    NASA Astrophysics Data System (ADS)

    Kvashnina, K. O.; Butorin, S. M.; Cui, D.; Vegelius, J.; Puranen, A.; Gens, R.; Glatzel, P.

    2009-11-01

    We present a study of selenate (SeO42-) on an iron surface in ground water solution by X-ray absorption near-edge spectroscopy. Spectral sharpening is obtained by using the high energy resolution fluorescence detection technique that also efficiently suppresses the strong fluorescence signal from the Fe surface in the highly dilute samples (Se concentration < 3 ppm). We observe fully reduced Se on polished Fe surfaces while no changes are found for Se on oxidized Fe surface.

  2. Improvement of the radiation hardness of a directly converting high resolution intra-oral X-ray imaging sensor

    NASA Astrophysics Data System (ADS)

    Spartiotis, Konstantinos; Pyyhtiä, Jouni; Schulman, Tom

    2003-11-01

    The radiation tolerance of a directly converting digital intra-oral X-ray imaging sensor reported in Spartiotis et al. [Nucl. Instr. and Meth. A 501 (2003) 594] has been tested using a typical dental X-ray beam spectrum. Radiation induced degradation in the performance of the sensor which consists of CMOS signal readout circuits bump bonded to a high resistivity silicon pixel detector was observed already before a dose (in air) of 1 krad. Both increase in the leakage current of the pixel detector manufactured by Sintef, Norway and signal leakage to ground from the gate of the pixel input MOSFETs of the readout circuit were observed and measured. The sensitive part of the CMOS circuit was identified as the protection diode of the gate of the input MOSFET. After removing the gate protection diode no signal leakage was observed up to a dose of 5 krad (air) which approximately corresponds to 125.000 typical dental X-ray exposures. The radiation hardness of the silicon pixel detector was improved by using a modified oxidation process supplied by Colibrys, Switzerland. The improved pixel detectors showed no increase in the leakage current at dental doses.

  3. In Situ Ptychography of Heterogeneous Catalysts using Hard X-Rays: High Resolution Imaging at Ambient Pressure and Elevated Temperature.

    PubMed

    Baier, Sina; Damsgaard, Christian D; Scholz, Maria; Benzi, Federico; Rochet, Amélie; Hoppe, Robert; Scherer, Torsten; Shi, Junjie; Wittstock, Arne; Weinhausen, Britta; Wagner, Jakob B; Schroer, Christian G; Grunwaldt, Jan-Dierk

    2016-02-01

    A new closed cell is presented for in situ X-ray ptychography which allows studies under gas flow and at elevated temperature. In order to gain complementary information by transmission and scanning electron microscopy, the cell makes use of a Protochips E-chipTM which contains a small, thin electron transparent window and allows heating. Two gold-based systems, 50 nm gold particles and nanoporous gold as a relevant catalyst sample, were used for studying the feasibility of the cell. Measurements showing a resolution around 40 nm have been achieved under a flow of synthetic air and during heating up to temperatures of 933 K. An elevated temperature exhibited little influence on image quality and resolution. With this study, the potential of in situ hard X-ray ptychography for investigating annealing processes of real catalyst samples is demonstrated. Furthermore, the possibility to use the same sample holder for ex situ electron microscopy before and after the in situ study underlines the unique possibilities available with this combination of electron microscopy and X-ray microscopy on the same sample. PMID:26914998

  4. Flat-field grating spectrometer for high-resolution soft x-ray and EUV measurements on an electron beam ion trap

    SciTech Connect

    Beiersdorfer, P; Magee, E; Trabert, E; Chen, H; Lepson, J K; Gu, M F; Schmidt, M

    2004-03-27

    A R = 44.3 m grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Angstrom up to 50 Angstrom. The instrument uses a grating with variable line spacing (about 2400 l/mm) for a flat field of view. Spectra are recorded with a back-illuminated charge-coupled device detector. The new instrument greatly improves upon the resolution achieved with existing grating spectrometers and complements crystal spectrometers at the shorter wavelengths both in terms of wavelength coverage and polarization independent reflectivity response.

  5. Design of the high-resolution soft X-ray imaging system on the Joint Texas Experimental Tokamak

    SciTech Connect

    Li, Jianchao; Ding, Yonghua Zhang, Xiaoqing; Xiao, Zhengyu; Zhuang, Ge

    2014-11-15

    A new soft X-ray diagnostic system has been designed on the Joint Texas Experimental Tokamak (J-TEXT) aiming to observe and survey the magnetohydrodynamic (MHD) activities. The system consists of five cameras located at the same toroidal position. Each camera has 16 photodiode elements. Three imaging cameras view the internal plasma region (r/a < 0.7) with a spatial resolution about 2 cm. By tomographic method, heat transport outside from the 1/1 mode X-point during the sawtooth collapse is found. The other two cameras with a higher spatial resolution 1 cm are designed for monitoring local MHD activities respectively in plasma core and boundary.

  6. Design of the high-resolution soft X-ray imaging system on the Joint Texas Experimental Tokamak

    NASA Astrophysics Data System (ADS)

    Li, Jianchao; Ding, Yonghua; Zhang, Xiaoqing; Xiao, Zhengyu; Zhuang, Ge

    2014-11-01

    A new soft X-ray diagnostic system has been designed on the Joint Texas Experimental Tokamak (J-TEXT) aiming to observe and survey the magnetohydrodynamic (MHD) activities. The system consists of five cameras located at the same toroidal position. Each camera has 16 photodiode elements. Three imaging cameras view the internal plasma region (r/a < 0.7) with a spatial resolution about 2 cm. By tomographic method, heat transport outside from the 1/1 mode X-point during the sawtooth collapse is found. The other two cameras with a higher spatial resolution 1 cm are designed for monitoring local MHD activities respectively in plasma core and boundary.

  7. Electronic Structure of AC-Clusters and High-Resolution X-ray Spectra of Actinides in Solids

    SciTech Connect

    Kulagin, Nicolay Alex

    2007-07-01

    Ab initio calculations using SCF approach for and analysis of results of investigation of the electronic structure of the clusters RAn+:[L]k with rare earths or actinides were carried out for the clusters in solids and liquids. Theoretical results for the electronic structure, radial integrals and energy of X- ray lines are presented for AC ions with unoccupied 5f-shell in the clusters in oxides, chlorides and fluorides environment. Possibility of collapse of nf-shell for the separate clusters and identification of electronic state of ions with unstable nuclei, are discussed, too. (author)

  8. The results of X-ray binary Cyg X-1 investigations based on the optical photometry and high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Karitskaya, Eugenia A.

    2007-04-01

    Selected results of multi-year optical photometric and high-resolution spectral observations including obtained in the frame of coordinated CIS countries campaign "Optical Monitoring of Unique Astrophysical Objects" are briefly reviewed. Comparison with ASM/RXTE X-ray data is used. Besides of orbital variations different kinds of flares, dips and so-called precession period 147/294 days were revealed. The observational evidences of instability of matter flowing from one component to another have been appeared. Cross-correlation analysis yielded the lags between the optical and X-ray (2-10 keV) long time variations with the delaying of the last ones on 7d in 1996 and 12d in 1997-1998. The very same lags were revealed between the optical and X-ray flares in these years. So the characteristic time of the matter transfer through the accretion disk was about 7 days in Summer and Autumn 1996 and about 12 days in 1997-1998 and alpha-model of accretion disc does not work. Optical spectral line profile variations were found during X-ray flare. The comparison of observed and non-LTE model profiles for HI, HeI and MgII is given taking into account tidal distortion of Cyg X-1 optical component and its illumination by X-ray emission of secondary one. We set limits on the optical component main characteristics T[eff] = 30400±500K, log g = 3.31±0.07 and overabundance of He and Mg: [He/H] = 0.43±0.06 dex, [Mg/H] = 0.75±0.15 dex by using spectra of 2003-2004. The Doppler images were reconstructed by an improved Doppler tomography method on the base of 9 HeIIλ4686Å profiles of 2003 ("soft" X-ray state) and 6 profiles of 2004 ("hard" X-ray state). It allowed putting a limitation on the black hole to supergiant mass ratio 1/4 ≤ M[X]/M[O] ≤ 1/3. The photometric and spectral variations point to the supergiant parameters changes on the time scale of tens of years. Line profile non-LTE simulations lead to the conclusion that the star radius has grown about 1-4% from 1997 to 2003

  9. Volume Visualizing High-Resolution Turbulence Computations

    NASA Astrophysics Data System (ADS)

    Clyne, John; Scheitlin, Tim; Weiss, Jeffrey B.

    Using several volume-visualization packages including a new package we developed called Volsh, we investigate a 25-Gbyte dataset from a 2563 computation of decaying quasi-geostrophic turbulence. We compare surface fitting and direct volume rendering approaches, as well as a number of techniques for producing feature-revealing spatial cues. We also study the pros and cons of using batch and interactive tools for visualizing the data and discuss the relative merits of using each approach. We find that each tool has its own advantages and disadvantages, and a combination of tools is most effective at exploring large four-dimensional scalar datasets. The resulting visualizations show several new phenomena in the dynamics of coherent vortices.

  10. X-ray computed tomography using curvelet sparse regularization

    SciTech Connect

    Wieczorek, Matthias Vogel, Jakob; Lasser, Tobias; Frikel, Jürgen; Demaret, Laurent; Eggl, Elena; Pfeiffer, Franz; Kopp, Felix; Noël, Peter B.

    2015-04-15

    Purpose: Reconstruction of x-ray computed tomography (CT) data remains a mathematically challenging problem in medical imaging. Complementing the standard analytical reconstruction methods, sparse regularization is growing in importance, as it allows inclusion of prior knowledge. The paper presents a method for sparse regularization based on the curvelet frame for the application to iterative reconstruction in x-ray computed tomography. Methods: In this work, the authors present an iterative reconstruction approach based on the alternating direction method of multipliers using curvelet sparse regularization. Results: Evaluation of the method is performed on a specifically crafted numerical phantom dataset to highlight the method’s strengths. Additional evaluation is performed on two real datasets from commercial scanners with different noise characteristics, a clinical bone sample acquired in a micro-CT and a human abdomen scanned in a diagnostic CT. The results clearly illustrate that curvelet sparse regularization has characteristic strengths. In particular, it improves the restoration and resolution of highly directional, high contrast features with smooth contrast variations. The authors also compare this approach to the popular technique of total variation and to traditional filtered backprojection. Conclusions: The authors conclude that curvelet sparse regularization is able to improve reconstruction quality by reducing noise while preserving highly directional features.

  11. High-resolution, high-transmission soft x-ray spectrometer for the study of biological samples

    SciTech Connect

    Fuchs, O.; Weinhardt, L.; Blum, M.; Weigand, M.; Umbach, E.; Baer, M.; Heske, C.; Denlinger, J.; Chuang, Y.-D.; McKinney, W.; Hussain, Z.; Gullikson, E.; Jones, M.; Batson, P.; Nelles, B.; Follath, R.

    2009-06-15

    We present a variable line-space grating spectrometer for soft x-rays that covers the photon energy range between 130 and 650 eV. The optical design is based on the Hettrick-Underwood principle and tailored to synchrotron-based studies of radiation-sensitive biological samples. The spectrometer is able to record the entire spectral range in one shot, i.e., without any mechanical motion, at a resolving power of 1200 or better. Despite its slitless design, such a resolving power can be achieved for a source spot as large as (30x3000) {mu}m{sup 2}, which is important for keeping beam damage effects in radiation-sensitive samples low. The high spectrometer efficiency allows recording of comprehensive two-dimensional resonant inelastic soft x-ray scattering (RIXS) maps with good statistics within several minutes. This is exemplarily demonstrated for a RIXS map of highly oriented pyrolytic graphite, which was taken within 10 min.

  12. Tomography of X-Ray Binary CYG X-1 Based on the High-Resolution Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Karitskaya, E. A.; Agafonov, M. I.; Bochkarev, N. G.; Sharova, O. I.

    2007-08-01

    We used the optical spectra with resolution R=13000 obtained in the course of Cyg~X-1 spectral monitoring over 2003-2004, carried out with the echelle spectrometer of the 2-m telescope of Peak Terskol Observatory (3100 m, Caucasus). The high-precision spectra show clearly the sequence of line profile variations with orbital phases. The Doppler images were reconstructed by an improved Doppler tomography method developed by Agafonov (2004) (radioastronomical approach) on the base of HeII λ4686Å profiles of 2003 ("soft" X-ray state) and of 2004 ("hard" X-ray state). The main features of the reconstruction are: de-convolution in the image space with the introduction of the synthesized beam (equivalent summarized transfer function) and the removal of the distortions on the summarized image (after back projecting) caused by the sidelobes of this beam using CLEAN algorithm. The method is developed specially for a small number of irregularly distributed observations. The Doppler images and Roche lobe model allowed putting a limitation on the black hole to supergiant mass ratio 1/4≤M[X]/M[O]≤1/3. The emission may come from the accretion disk outer regions heated by the hot supergiant emission, from the "hot line" discussed by Kuznetsov et al.(2001), or/and from the accretion stream (focused stellar wind).

  13. High-intensity x-ray holography: an approach to high-resolution snapshot imaging of biological specimens

    SciTech Connect

    Solem, J.C.

    1982-08-01

    The crucial physical and technological issues pertaining to the holographic imaging of biological structures with a short-pulse, high-intensity, high-quantum-energy laser were examined. The limitations of x-ray optics are discussed. Alternative holographic techniques were considered, and it was concluded that far-field Fresnel transform holography (Fraunhofer holography) using a photoresist recording surface is most tractable with near term technology. The hydrodynamic expansion of inhomogeneities within the specimen is discussed. It is shown that expansion is the major source of image blurring. Analytic expressions were derived for the explosion of protein concentrations in an x-ray transparent cytoplasm, compared with numerical calculations, and corrections derived to account for the competitive transport processes by which these inhomogeneities lose energy. It is concluded that for the near term Fresnel transform holography, particularly, far-field or Fraunhofer holography, is more practical than Fourier transform holography. Of the alternative fine grain recording media for use with Fresnel transform holography, a photo-resist is most attractive. For best resolution, exposure times must be limited to a few picoseconds, and this calls for investigation of mechanisms to shutter the laser or gate the recording surface. The best contrast ratio between the nitrogen-bearing polymers (protein and the nucleic acids) and water is between the K-edges of oxygen and nitrogen.

  14. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    DOE PAGESBeta

    Makita, M.; Karvinen, P.; Zhu, D.; Juranic, P. N.; Grünert, J.; Cartier, S.; Jungmann-Smith, J. H.; Lemke, H. T.; Mozzanica, A.; Nelson, S.; et al

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy ofmore » >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.« less

  15. High-intensity X-ray holography: An approach to high-resolution snapshot imaging of biological specimens

    NASA Astrophysics Data System (ADS)

    Solem, J. C.

    1982-08-01

    The crucial physical and technological issues pertaining to the holographic imaging of biological structures with a short pulse, high intensity, high quantum energy laser were examined. The limitations of X-ray optics are discussed. Alternative holographic techniques were considered, and it was concluded that far field Fresnel transform holography (Fraunhofer holography) using a photoresist recording surface is most tractable with near term technology. The hydrodynamic expansion of inhomogeneities within the specimen is discussed. It is shown that expansion is the major source of image blurring. Analytic expressions were derived for the explosion of protein concentrations in an X-ray transparent cytoplasm, compared with numerical calculations, and corrections derived to account for the competitive transport processes by which these inhomogeneities lose energy. It is concluded that for the near term Fresnel transform holography, particularly, far field or Fraunhofer holography, is more practical than Fourier transform holography. Of the altenative fine grain recording media for use with Fresnel transform holography, a photo resist is most attractive.

  16. X-ray diffraction computed tomography: a survey and description

    NASA Astrophysics Data System (ADS)

    Kleuker, Ulf

    1997-10-01

    Coherently scattered x-rays are mainly confined to a forward peaked cone, which exhibits, due to their coherence, structural information of the atomic arrangement in the sample. Coherent scattering in amorphous materials, which are of random short range order, therefore results in board diffraction ring patter, whereas crystalline substance show more confined diffraction rings or even Brag spots. X-ray diffraction computed tomography (XRDCT) reconstructs the intensities diffracted from extended objects on a square image grid and thus retrieves the local structure. A short survey is presented about what information can be extracted from diffraction experiments. Hereby a new method is proposed to use the Rietveld refinement for quantitative XRDCT. Also the possible use of XRDCT to reconstruct the spatial distribution of preferred orientation axis is suggested. An imaging system for XRDCT, consisting of a medical image intensifier tube and CCD readout system, is presented, which includes a modified beam stop for recording the intensity of the transmitted beam. Depending on the application this imaging system cam work in first generation or second generation tomography mode. Furthermore a new approach for the reconstruction of the differential coherent cross-section is proposed. It includes an absorption correction based on weighted sinograms. The introduced reconstruction strategy is elucidated by experimental result from a simple phantom. The measured data also validate the simulation program, written to study more complex phantoms under different experimental conditions. Finally possible applications in medical and material science are discussed. A design for a mammography setup using x-ray diffraction is presented.

  17. Grating-based X-ray Dark-field Computed Tomography of Living Mice.

    PubMed

    Velroyen, A; Yaroshenko, A; Hahn, D; Fehringer, A; Tapfer, A; Müller, M; Noël, P B; Pauwels, B; Sasov, A; Yildirim, A Ö; Eickelberg, O; Hellbach, K; Auweter, S D; Meinel, F G; Reiser, M F; Bech, M; Pfeiffer, F

    2015-10-01

    Changes in x-ray attenuating tissue caused by lung disorders like emphysema or fibrosis are subtle and thus only resolved by high-resolution computed tomography (CT). The structural reorganization, however, is of strong influence for lung function. Dark-field CT (DFCT), based on small-angle scattering of x-rays, reveals such structural changes even at resolutions coarser than the pulmonary network and thus provides access to their anatomical distribution. In this proof-of-concept study we present x-ray in vivo DFCTs of lungs of a healthy, an emphysematous and a fibrotic mouse. The tomographies show excellent depiction of the distribution of structural - and thus indirectly functional - changes in lung parenchyma, on single-modality slices in dark field as well as on multimodal fusion images. Therefore, we anticipate numerous applications of DFCT in diagnostic lung imaging. We introduce a scatter-based Hounsfield Unit (sHU) scale to facilitate comparability of scans. In this newly defined sHU scale, the pathophysiological changes by emphysema and fibrosis cause a shift towards lower numbers, compared to healthy lung tissue. PMID:26629545

  18. Grating-based X-ray Dark-field Computed Tomography of Living Mice

    PubMed Central

    Velroyen, A.; Yaroshenko, A.; Hahn, D.; Fehringer, A.; Tapfer, A.; Müller, M.; Noël, P.B.; Pauwels, B.; Sasov, A.; Yildirim, A.Ö.; Eickelberg, O.; Hellbach, K.; Auweter, S.D.; Meinel, F.G.; Reiser, M.F.; Bech, M.; Pfeiffer, F.

    2015-01-01

    Changes in x-ray attenuating tissue caused by lung disorders like emphysema or fibrosis are subtle and thus only resolved by high-resolution computed tomography (CT). The structural reorganization, however, is of strong influence for lung function. Dark-field CT (DFCT), based on small-angle scattering of x-rays, reveals such structural changes even at resolutions coarser than the pulmonary network and thus provides access to their anatomical distribution. In this proof-of-concept study we present x-ray in vivo DFCTs of lungs of a healthy, an emphysematous and a fibrotic mouse. The tomographies show excellent depiction of the distribution of structural – and thus indirectly functional – changes in lung parenchyma, on single-modality slices in dark field as well as on multimodal fusion images. Therefore, we anticipate numerous applications of DFCT in diagnostic lung imaging. We introduce a scatter-based Hounsfield Unit (sHU) scale to facilitate comparability of scans. In this newly defined sHU scale, the pathophysiological changes by emphysema and fibrosis cause a shift towards lower numbers, compared to healthy lung tissue. PMID:26629545

  19. Development of a portable x-ray computed tomographic imaging system for drill-site investigation of recovered core

    SciTech Connect

    Freifeld, Barry M.; Kneafsey, Timothy J.; Tomutsa, Liviu; Pruess, Jacob

    2003-05-01

    A portable x-ray computed tomography (CT) system was constructed for imaging core at drill sites. Performing drill-site-based x-ray scanning and CT analysis permits rapid evaluation of core properties (such as density, lithologic structure, and macroporosity distribution) and allows for real-time decision making for additional core-handling procedures. Because of the speed with which scanning is performed, systematic imaging and electronic cataloging of all retrieved core is feasible. Innovations (such as a novel clamshell shielding arrangement integrated with system interlocks) permit safe operation of the x-ray system in a busy core handling area. The minimization of the volume encapsulated with shielding reduces the overall system weight and facilitates instrument portability. The x-ray system as originally fabricated had a 110 kV x-ray source with a fixed 300-micron focal spot size. A 15 cm image intensifier with a cesium iodide phosphor input screen was coupled to a CCD for image capture. The CT system has since been modified with a 130 kV micro-focal x-ray source. With the x-ray system's variable focal spot size, high-resolution studies (10-micron resolution) can be performed on core plugs and coarser (100-micron resolution) images can be acquired of whole drill cores. The development of an aluminum compensator has significantly improved the dynamic range and accuracy of the system. An x-ray filter has also been incorporated, permitting rapid acquisition of multi-energy scans for more quantitative analysis of sample mineralogy. The x-ray CT system has operated reliably under extreme field conditions, which have varied from shipboard to arctic.

  20. A high-resolution transmission-type x-ray spectrometer designed for observation of the K{alpha} transitions of highly charged high-Z ions

    SciTech Connect

    Widmann, K.; Beiersdorfer, P.; Brown, G.V.; Crespo Lopez Urrutia, J.R.; Decaux, V.; Savin, D.W.

    1997-01-01

    High-resolution reflection-type crystal spectrometers have been used for x-ray energies up to 13 keV, e.g., the K-shell radiation of heliumlike Kr. In order to extend crystal spectrometer measurements to higher energy x rays from higher-Z elements, we employ the crystal in transmission. The geometry we use is known as DuMond geometry. Using such a transmission-type crystal x-ray spectrometer, we have measured the K-shell radiation of various highly charged high-Z ions. In particular, we present a measurement of the 1s2p{sup 1}P{sub 1}{r_arrow}1s{sup 2}{sup 1}S{sub 0} transition in heliumlike xenon, Xe{sup 52+}. For this transition, we measure a linewidth of 34 eV, which demonstrates that the resolving power we achieved with the new spectrometer is on the order of 1000. {copyright} {ital 1997 American Institute of Physics.}

  1. High-resolution X-ray diffraction study of laser lift-off AlGaN/GaN HEMTs grown by MOCVD method

    NASA Astrophysics Data System (ADS)

    Leung, K. K.; Chan, C. P.; Fong, W. K.; Pilkuhn, M.; Schweizer, H.; Surya, C.

    2007-01-01

    High-resolution X-ray diffraction (HRXRD) study of laser debonded AlGaN/GaN high electron mobility transistors (HEMTs), grown by metal-organic chemical vapor deposition (MOCVD), is performed. The lattice parameters as well as the in-plane and out-of-plane strains of the transistors before and after laser lift-off are determined from θ-2 θ X-ray diffraction spectra. The biaxial strains of the laser debonded HEMTs in a- and c-directions compared with the non-debonded HEMTs are extracted from the measured strain. The results clearly indicate stress relaxation in the device after laser debonding. Additionally, the full-width at half-maximum (FWHM) of the X-ray rocking curves are compared before and after laser debonding. The results do not indicate any increase in the dislocation densities in the heterojunction after laser debonding. This corroborates with the studies on the I-V characteristics of the devices, which also indicate no degradation in the electronic properties after laser debonding.

  2. High-pressure and high-temperature mineral-fluid interface cell for high-resolution x-ray reflectivity measurement

    NASA Astrophysics Data System (ADS)

    Park, Changyong; Kenney-Benson, Curtis

    2013-06-01

    Ordering of water at the mineral-fluid interface is a fundamental process governing mineral hydration, ion-adsorption, dissolution, growth, and charge transfers across the mineral surface. However, the influence of pressure and temperature on this fundamental process is still largely unknown. The experimental determination is limited due to the lack of a sample cell which can properly handle the pressure and temperature of the fluidic component and simultaneously allow measurement of the interfacial structure, e.g., by high-resolution x-ray reflectivity. We recently developed a new high-pressure and high-temperature mineral-fluid interface cell to achieve the high-resolution x-ray reflectivity measurement from single crystalline mineral surfaces under the PT conditions of fluid up to ~750 K and ~40 MPa. The interfacial structures at single crystal mineral surfaces interacting with various hydrothermal fluids will promote our understanding of the molecular aspects of hydrous alteration processes of rocks in deep Earth environments. The application can be extended to mineral surface sciences, geological carbon sequestration, and nuclear engineering. Instrumental development under auspices of Deep Carbon Observatory Deep Energy Directorate and HPCAT (CDAC, GL, LLNL, UNLV).

  3. Visualizing the mixed bonding properties of liquid boron with high-resolution x-ray Compton scattering.

    PubMed

    Okada, J T; Sit, P H-L; Watanabe, Y; Barbiellini, B; Ishikawa, T; Wang, Y J; Itou, M; Sakurai, Y; Bansil, A; Ishikawa, R; Hamaishi, M; Paradis, P-F; Kimura, K; Ishikawa, T; Nanao, S

    2015-05-01

    Bonding characteristics of liquid boron at 2500 K are studied by using high-resolution Compton scattering. An excellent agreement is found between the measurements and the corresponding Car-Parrinello molecular dynamics simulations. Covalent bond pairs are clearly shown to dominate in liquid boron along with the coexistence of diffuse pairs. Our study reveals the complex bonding pattern of liquid boron and gives insight into the unusual properties of this high-temperature liquid. PMID:25978262

  4. High-resolution, high-transmission soft x-ray spectrometer for the study of biological samples

    SciTech Connect

    Fuchs, Oliver; Weinhardt, L.; Blum, M.; Welgand, M.; Umbach, E.; Bar, M.; Heske, C.; Denlinger, J.; Chuang, Y.-D.; McKinney, W.; Hussain, Z.; Gullikson, E.; Jones, M.; Batson, P.; Nelles, B.; Follath, R.

    2009-06-11

    We present a variable line-space grating spectrometer for soft s-rays that coverst the photon energy range between 130 and 650 eV. The optical design is based on the Hettrick-Underwood principle and tailored to synchrotron-based studies of radiation-sensitive biological samples. The spectrometer is able to record the entire spectral range in one shot, i.e., without any mechanical motion, at a resolving power of 1200 or better. Despite is slitless design, such a resolving power can be achieved for a source spot as large as (30 x 3000) micrometers squared, which is important for keeping beam damage effects in radiation-sensitive samples low. The high spectrometer efficiency allows recording of comprehensive two-dimensional resonant inelastic soft x-ray scatters (RIXS) maps with good statistics within several minutes. This is exemplarily demonstrated for a RIXS map of highly oriented pyrolytic graphite, which was taken with 10 min.

  5. Design of the high-resolution soft X-ray imaging system on the Joint Texas Experimental Tokamak.

    PubMed

    Li, Jianchao; Ding, Yonghua; Zhang, Xiaoqing; Xiao, Zhengyu; Zhuang, Ge

    2014-11-01

    A new soft X-ray diagnostic system has been designed on the Joint Texas Experimental Tokamak (J-TEXT) aiming to observe and survey the magnetohydrodynamic (MHD) activities. The system consists of five cameras located at the same toroidal position. Each camera has 16 photodiode elements. Three imaging cameras view the internal plasma region (r/a < 0.7) with a spatial resolution about 2 cm. By tomographic method, heat transport outside from the 1/1 mode X-point during the sawtooth collapse is found. The other two cameras with a higher spatial resolution 1 cm are designed for monitoring local MHD activities respectively in plasma core and boundary. PMID:25430321

  6. High resolution, large spectral range, in variable- included- angle soft X-ray monochromators using a plane VLS grating

    NASA Astrophysics Data System (ADS)

    Reininger, Ruben; de Castro, A. R. B.

    2005-02-01

    We give a unified discussion of two different approaches to the design of grazing incidence monochromators with a variable line spacing (VLS) grating for soft X-ray undulator sources. Neither one uses an entrance slit and both work with a fixed position exit slit. In one approach, being constructed at LNLS and designed for the energy range 100

  7. High-resolution X-ray detectors with high-speed SQUID readout of superconducting tunnel junctions

    NASA Astrophysics Data System (ADS)

    Frank, M.; Mears, C. A.; Labov, S. E.; Azgui, F.; Lindeman, M. A.; Hiller, L. J.; Netel, H.; Barfknecht, A.

    1996-02-01

    We present our first results obtained using new high-speed SQUID systems for the readout of normal conductor/insulator/superconductor (NIS) and superconductor/insulator/superconductor (SIS) tunnel junctions. With an NIS device measured with a HYPRES SQUID we have achieved an energy resolution of 100 eV (FWHM) for 5.89 keV X-rays and an electronic noise of 40 eV at an operating temperature of 80 mK. With an SIS sensor at 200 mK and the same readout we have achieved an energy resolution of 29 eV (FWHM) at 5.89 keV and an electronic noise of 10 eV.

  8. High-resolution Schottky CdTe diode for hard X-ray and gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Paul, B.; Hirose, K.; Matsumoto, C.; Ohno, R.; Ozaki, T.; Mori, K.; Tomita, Y.

    1999-10-01

    We report a significant improvement of the spectral properties of cadmium telluride (CdTe) detectors, fabricated in the form of a Schottky CdTe diode. With the use of high quality CdTe wafer, we formed a Schottky junction by evaporating indium on the Te-face and operated the detector as a diode. This allows us to apply much higher bias voltage than was possible with the previous CdTe detectors. A /2 mm/×2 mm detector of thickness 0.5 mm, when operated at a temperature of /5°C, shows leakage current of only 0.2 and 0.4 nA for an operating voltage of 400 and 800 V, respectively. We found that, at a high-electric field of several kV cm-1, the Schottky CdTe diode has very good energy resolution and stability, suitable for astronomical applications. The broad low-energy tail, often observed in CdTe detectors due to the low mobility and short lifetime of holes, was significantly reduced by the application of a higher bias voltage which improves the charge collection efficiency. We achieved very good FWHM energy resolution of /1.1% and /0.8% at energies 122 and 511 keV, respectively, without any rise time discrimination or pulse height correction electronics. For the detection of hard X-rays and gamma-rays above 100 keV, we have improved the detection efficiency by stacking a number of thin CdTe diodes. Using individual readout electronics for each layer, we obtained high detection efficiency without sacrificing the energy resolution. In this paper, we report the performance of the new CdTe diode and discuss its proposed applications in future hard X-ray and gamma-ray astronomy missions.

  9. Fatigue History and in-situ Loading Studies of the overload Effect Using High Resolution X-ray Strain Profiling

    SciTech Connect

    Croft,M.; Jisrawi, N.; Zhong, Z.; Holtz, R.; Sadananda, K.; Skaritka, J.; Tsakalakos, T.

    2007-01-01

    High-energy synchrotron X-ray diffraction experiments are used to perform local crack plane strain profiling of 4140 steel compact tension specimens fatigued at constant amplitude, subjected to a single overload cycle, then fatigued some more at constant amplitude. X-ray strain profiling results on a series of samples employing in-situ load cycling are correlated with the crack growth rate (da/dN) providing insight into the da/dN retardation known as the 'overload effect'. Immediately after the overload, the strain under maximum load is greatly reduced but the range of strain, between zero and maximum load, remains unchanged compared to the pre-overload values. At the point of maximum retardation, it is the strain range that is greatly reduced while the maximum-load strain has begun to recover to the pre-overload value. For a sample that has recovered to approximately half of the original da/dN value following the overload, the strain at maximum load is fully recovered while the strain range, though partially recovered, is still substantially reduced. The dominance of the strain range in the overload effect is clearly indicated. Subject to some assumptions, strong quantitative support for a crack growth rate driving force of the suggested form [(K{sub max}){sup -p}({Delta}K){sup p}]{sup {gamma}} is found. A dramatic nonlinear load dependence in the spatial distribution of the strain at maximum retardation is also demonstrated: at low load the response is dominantly at the overload position; whereas at high loads it is dominantly at the crack tip position. This transfer of load response away from the crack tip to the overload position appears fundamental to the overload effect for high R-ratio fatigue as studied here.

  10. Investigation of the imaging characteristics of the Gd 2O 3:Eu nanophosphor for high-resolution digital X-ray imaging system

    NASA Astrophysics Data System (ADS)

    Kim, So-yeong; Park, Ji-koon; Kang, Sang-sik; Cha, Byung-youl; Cho, Sung-ho; Shin, Jung-wook; Son, Dae-woong; Nam, Sang-hee

    2007-06-01

    For possible applications in high-resolution medical image systems, we manufactured a Eu 3+-doped Gd 2O 3 nanophosphor using the low-temperature solution combustion method, and evaluated its performance as an image sensor. The structural and optical characteristics of the fabricated nanophosphor were investigated using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), photoluminescence spectrum (PL), and luminescence decay time measurements. From the FE-SEM and XRD results, we established that the fabricated nanophosphor was formed of spherical particles of about 30-40 nm, and confirmed that the particles agglomerated as the sintering temperature increases. From PL spectra, a strong peak appeared near 611 nm, and the luminescent intensity was seen to be affected by the doping concentration of Eu. Gd 2O 3:Eu nanophosphor particles have shown the highest luminescent efficiency at a Eu concentration of 5 wt%. In the luminescent decay time measurements, the mean decay time was about 2.3-2.6 ms, about two times longer than that of the general bulk phosphor, and affected by the of Eu-doping concentration. For the investigation of the imaging characteristics of the fabricated nanophosphor, we connected the Gd 2O 3:Eu nanophosphor film to a commercial CMOS image sensor, obtained the X-ray images and evaluated the modulation transfer function (MTF) as a function of the Eu concentration. We were able to obtain high-resolution X-ray images and found that the Eu concentration also influenced the imaging characteristics.

  11. A Density Functional Study for the Bridged Dinuclear Center Based on a High Resolution X-ray Crystal Structure of ba3 Cytochrome c Oxidase from Thermus thermophilus

    PubMed Central

    Du, Wen-Ge Han; Noodleman, Louis

    2014-01-01

    Strong electron density for a peroxide type dioxygen species bridging the Fea3 and CuB dinuclear center (DNC) was observed in the high resolution (1.8 Å) X-ray crystal structures (PDB entries: 3S8G and 3S8F) of ba3 cytochrome c oxidase (CcO) from Thermus thermophilus (Tiefenbrunn et al. PLos ONE 2011, 7, e22348). The crystals represent the as-isolated X-ray photoreduced CcO structures. The bridging peroxide was proposed to arise from the recombination of two radiation produced HO· radicals formed either very near to or even in the space between the two metals of the DNC. It is unclear whether this peroxide species is in the O22−, O2·−, HO2−, or in the H2O2 form, and what is the detailed electronic structure and binding geometry including the DNC. In order to answer what form of this dioxygen species was observed in the DNC of the 1.8 Å X-ray CcO crystal structure (3S8G), we have applied broken-symmetry density functional theory (BS-DFT) geometric and energetic calculations (using OLYP potential) on large DNC cluster models with different Fea3-CuB oxidation and spin states and with either O22−, O2·−, HO2−, or H2O2 in the bridging position. By comparing the DFT optimized geometries with the X-ray crystal structure (3S8G), we propose that the bridging peroxide is HO2−. The X-ray crystal structure is likely to represent the superposition of the Fea32+-(HO2−)-CuB1+ DNC’s in different states (Fe2+ in low-spin (LS), intermediate-spin (IS), or high-spin (HS)) with the majority species having the proton of the HO2− residing on the oxygen atom (O1) which is closer to the Fea32+ site in the Fea32+-(HO-O)−-CuB1+ conformation. Our calculations show that the sidechain of Tyr237 is likely trapped in the deprotonated Tyr237− anion form in the 3S8G X-ray crystal structure. PMID:24262070

  12. Pulmonary complications of crack cocaine use: high-resolution computed tomography of the chest.

    PubMed

    Mançano, Alexandre; Marchiori, Edson; Zanetti, Gláucia; Escuissato, Dante Luiz; Duarte, Beatriz Cunha; Apolinário, Lourenço de Araujo

    2008-05-01

    Here, we report high-resolution computed tomography (HRCT) findings in a patient who developed sudden hemoptysis, dyspnea and chest pain after smoking crack cocaine. Chest X-rays showed consolidations, primarily in the upper lobes, and HRCT scans showed ground glass attenuation opacities, consolidations and air-space nodules. A follow-up CT, after drug use discontinuation and administration of corticosteroids, showed partial resolution of pulmonary lesions and the appearance of cavitations. Clinical, imaging and laboratory findings led to a diagnosis of 'crack lung'. PMID:18545829

  13. Geoscience Applications of Synchrotron X-ray Computed Microtomography

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.

    2009-05-01

    Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution approaching one micron - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa - High speed radiography, with 100 microsecond temporal resolution - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x- ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The formation of frost flowers on Arctic sea-ice, which is important in controlling the atmospheric chemistry of mercury. - The distribution of

  14. A high resolution gamma-ray and hard X-ray spectrometer (HIREGS) for long duration balloon flights

    NASA Technical Reports Server (NTRS)

    Pelling, M.; Feffer, P. T.; Hurley, K.; Kane, S. R.; Lin, R. P.; Mcbride, S.; Primbsch, J. H.; Smith, D. M.; Youseffi, K.; Zimmer, G.

    1992-01-01

    The elements of a high resolution gamma-ray spectrometer, developed for observations of solar flares, are described. Emphasis is given to those aspects of the system that relate to its operation on a long duration balloon platform. The performance of the system observed in its first flight, launched from McMurdo Station, Antarctica on 10 January, 1992, is discussed. Background characteristics of the antarctic balloon environment are compared with those observed in conventional mid-latitude balloon flights and the general advantages of long duration ballooning are discussed.

  15. High Speed Data Acquisition System for Three-Dimensional X-Ray and Neutron Computed Tomography

    SciTech Connect

    Davis, A.W.; Claytor, T.N.; Sheats, M.J.

    1999-07-01

    Computed tomography for nondestructive evaluation applications has been limited by system cost, resolution, and time requirements for three-dimensional data sets. FlashCT (Flat panel Amorphous Silicon High-Resolution Computed Tomography) is a system developed at Los Alamos National Laboratory to address these three problems. Developed around a flat panel amorphous silicon detector array, FlashCT is suitable for low to medium energy x-ray and neutron computed tomography at 127-micron resolution. Overall system size is small, allowing rapid transportation to a variety of radiographic sources. System control software was developed in LabVIEW for Windows NT to allow multithreading of data acquisition, data correction, and staging motor control. The system control software simplifies data collection and allows fully automated control of the data acquisition process, leading toward remote or unattended operation. The first generation of the FlashCT Data Acquisition System was completed in Au gust 1998, and since that time the system has been tested using x-ray sources ranging in energy from 60 kV to 20MV. The system has also been used to collect data for thermal neutron computed tomography at Los Alamos Neutron Science Center (LANSCE). System improvements have been proposed to provide faster data collection and greater dynamic range during data collection.

  16. A method of extending the depth of focus of the high-resolution X-ray imaging system employing optical lens and scintillator: a phantom study

    PubMed Central

    2015-01-01

    Background The high-resolution X-ray imaging system employing synchrotron radiation source, thin scintillator, optical lens and advanced CCD camera can achieve a resolution in the range of tens of nanometers to sub-micrometer. Based on this advantage, it can effectively image tissues, cells and many other small samples, especially the calcification in the vascular or in the glomerulus. In general, the thickness of the scintillator should be several micrometers or even within nanometers because it has a big relationship with the resolution. However, it is difficult to make the scintillator so thin, and additionally thin scintillator may greatly reduce the efficiency of collecting photons. Methods In this paper, we propose an approach to extend the depth of focus (DOF) to solve these problems. We develop equation sets by deducing the relationship between the high-resolution image generated by the scintillator and the degraded blur image due to defect of focus first, and then we adopt projection onto convex sets (POCS) and total variation algorithm to get the solution of the equation sets and to recover the blur image. Results By using a 20 μm thick unmatching scintillator to replace the 1 μm thick matching one, we simulated a high-resolution X-ray imaging system and got a degraded blur image. Based on the algorithm proposed, we recovered the blur image and the result in the experiment showed that the proposed algorithm has good performance on the recovery of image blur caused by unmatching thickness of scintillator. Conclusions The method proposed is testified to be able to efficiently recover the degraded image due to defect of focus. But, the quality of the recovery image especially of the low contrast image depends on the noise level of the degraded blur image, so there is room for improving and the corresponding denoising algorithm is worthy for further study and discussion. PMID:25602532

  17. 3D printing of preclinical X-ray computed tomographic data sets.

    PubMed

    Doney, Evan; Krumdick, Lauren A; Diener, Justin M; Wathen, Connor A; Chapman, Sarah E; Stamile, Brian; Scott, Jeremiah E; Ravosa, Matthew J; Van Avermaete, Tony; Leevy, W Matthew

    2013-01-01

    Three-dimensional printing allows for the production of highly detailed objects through a process known as additive manufacturing. Traditional, mold-injection methods to create models or parts have several limitations, the most important of which is a difficulty in making highly complex products in a timely, cost-effective manner.(1) However, gradual improvements in three-dimensional printing technology have resulted in both high-end and economy instruments that are now available for the facile production of customized models.(2) These printers have the ability to extrude high-resolution objects with enough detail to accurately represent in vivo images generated from a preclinical X-ray CT scanner. With proper data collection, surface rendering, and stereolithographic editing, it is now possible and inexpensive to rapidly produce detailed skeletal and soft tissue structures from X-ray CT data. Even in the early stages of development, the anatomical models produced by three-dimensional printing appeal to both educators and researchers who can utilize the technology to improve visualization proficiency. (3, 4) The real benefits of this method result from the tangible experience a researcher can have with data that cannot be adequately conveyed through a computer screen. The translation of pre-clinical 3D data to a physical object that is an exact copy of the test subject is a powerful tool for visualization and communication, especially for relating imaging research to students, or those in other fields. Here, we provide a detailed method for printing plastic models of bone and organ structures derived from X-ray CT scans utilizing an Albira X-ray CT system in conjunction with PMOD, ImageJ, Meshlab, Netfabb, and ReplicatorG software packages. PMID:23542702

  18. ADVANCES IN X-RAY COMPUTED MICROTOMOGRAPHY AT THE NSLS.

    SciTech Connect

    DOWD,B.A.

    1998-08-07

    The X-Ray Computed Microtomography workstation at beamline X27A at the NSLS has been utilized by scientists from a broad range of disciplines from industrial materials processing to environmental science. The most recent applications are presented here as well as a description of the facility that has evolved to accommodate a wide variety of materials and sample sizes. One of the most exciting new developments reported here resulted from a pursuit of faster reconstruction techniques. A Fast Filtered Back Transform (FFBT) reconstruction program has been developed and implemented, that is based on a refinement of the ''gridding'' algorithm first developed for use with radio astronomical data. This program has reduced the reconstruction time to 8.5 sec for a 929 x 929 pixel{sup 2} slice on an R10,000 CPU, more than 8x reduction compared with the Filtered Back-Projection method.

  19. Advances in x-ray computed microtomography at the NSLS

    SciTech Connect

    Dowd, B.A.; Andrews, A.B.; Marr, R.B.; Siddons, D.P.; Jones, K.W.; Peskin, A.M.

    1998-08-01

    The X-Ray Computed Microtomography workstation at beamline X27A at the NSLS has been utilized by scientists from a broad range of disciplines from industrial materials processing to environmental science. The most recent applications are presented here as well as a description of the facility that has evolved to accommodate a wide variety of materials and sample sizes. One of the most exciting new developments reported here resulted from a pursuit of faster reconstruction techniques. A Fast Filtered Back Transform (FFBT) reconstruction program has been developed and implemented, that is based on a refinement of the gridding algorithm first developed for use with radio astronomical data. This program has reduced the reconstruction time to 8.5 sec for a 929 x 929 pixel{sup 2} slice on an R10,000 CPU, more than 8x reduction compared with the Filtered Back-Projection method.

  20. High-resolution elemental mapping of human placental chorionic villi using synchrotron X-ray fluorescence spectroscopy

    DOE PAGESBeta

    Punshon, Tracy; Chen, Si; Finney, Lydia; Howard, Louisa; Jackson, Brian P.; Karagas, Margaret R.; Ornvold, Kim

    2015-07-03

    The placenta is the organ that mediates transport of nutrients and waste materials between mother and fetus. Synchrotron X-ray fluorescence (SXRF) microanalysis is a tool for imaging the distribution and quantity of elements in biological tissue, which can be used to study metal transport across biological membranes. Our aims were to pilot placental biopsy specimen preparation techniques that could be integrated into an ongoing epidemiology birth cohort study without harming rates of sample acquisition. We studied the effects of fixative (formalin or glutaraldehyde) and storage duration (30 days or immediate processing) on metal distribution and abundance and investigated a thaw-fixationmore » protocol for archived specimens stored at -80° C. We measured fixative elemental composition with and without a placental biopsy via inductively coupled plasma mass spectrometry (ICP-MS) to quantify fixative-induced elemental changes. Formalin-fixed specimens showed hemolysis of erythrocytes. The glutaraldehyde-paraformaldehyde solution in HEPES buffer (GTA-HEPES) had superior anatomical preservation, avoided hemolysis, and minimized elemental loss, although some cross-linking of exogenous Zn was evident. Elemental loss from tissue stored in fixative for 1 month showed variable losses (≈ 40 % with GTA-HEPES), suggesting storage duration be controlled for. Lastly, thawing of tissue held at -80 °C in a GTA-HEPES solution provided high-quality visual images and elemental images« less