Science.gov

Sample records for high-speed optical quantum

  1. High speed optical quantum random number generation.

    PubMed

    Fürst, Martin; Weier, Henning; Nauerth, Sebastian; Marangon, Davide G; Kurtsiefer, Christian; Weinfurter, Harald

    2010-06-01

    We present a fully integrated, ready-for-use quantum random number generator (QRNG) whose stochastic model is based on the randomness of detecting single photons in attenuated light. We show that often annoying deadtime effects associated with photomultiplier tubes (PMT) can be utilized to avoid postprocessing for bias or correlations. The random numbers directly delivered to a PC, generated at a rate of up to 50 Mbit/s, clearly pass all tests relevant for (physical) random number generators. PMID:20588431

  2. High speed all-optical encryption and decryption using quantum dot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Li, Wenbo; Hu, Hongyu; Dutta, Niloy K.

    2013-11-01

    A scheme to realize high speed all-optical encryption and decryption using key-stream generators and an XOR gate based on quantum dot semiconductor optical amplifiers (QD-SOAs) was studied. The key used for encryption and decryption is a high speed all-optical pseudorandom bit sequence (PRBS) which is generated by a linear feedback shift register (LFSR) composed of QD-SOA-based logic XOR and AND gates. Two other kinds of more secure key-stream generators, i.e. cascaded design and parallel design, were also designed and investigated. Nonlinear dynamics including carrier heating and spectral hole-burning in the QD-SOA are taken into account together with the rate equations in order to realize all-optical logic operations. Results show that this scheme can realize all-optical encryption and decryption by using key-stream generators at high speed (~250 Gb/s).

  3. Asymmetric coupled quantum wells for high speed optical modulators at communication wavelengths

    NASA Astrophysics Data System (ADS)

    McGinnis, B. P.; Ten, Sergey; Peyghamberian, N.; Krol, Mark F.; Hayduk, Michael J.

    1994-06-01

    A novel design for electro-optic modulators operating at wavelengths compatible with fiber-based optical interconnects and networks is presented. This design uses InGaAs/InAlAs asymmetric coupled quantum wells (ACQWS) to enhance the electro-optic effect within the material and results in a low power modulator capable of high-speed operation. A device was fabricated which shows real charge transfer between the ACQW's. This device shows that without modulation doping and real charge transfer the quantum confined stark effect in InGaAs/InAlAs is insufficient to provide strong modulation at low drive voltages. Standard pump-probe techniques were also used to study the dynamics of charge transfer between the wells. Picosecond recovery times were exhibited by these devices and were found to be independent of the barrier width.

  4. High Speed Quantum Key Distribution Over Optical Fiber Network System1

    PubMed Central

    Ma, Lijun; Mink, Alan; Tang, Xiao

    2009-01-01

    The National Institute of Standards and Technology (NIST) has developed a number of complete fiber-based high-speed quantum key distribution (QKD) systems that includes an 850 nm QKD system for a local area network (LAN), a 1310 nm QKD system for a metropolitan area network (MAN), and a 3-node quantum network controlled by a network manager. This paper discusses the key techniques used to implement these systems, which include polarization recovery, noise reduction, frequency up-conversion detection based on a periodically polled lithium nitrate (PPLN) waveguide, custom high-speed data handling boards and quantum network management. Using our quantum network, a QKD secured video surveillance application has been demonstrated. Our intention is to show the feasibility and sophistication of QKD systems based on current technology.

  5. High speed optical networks

    NASA Astrophysics Data System (ADS)

    Frankel, Michael Y.; Livas, Jeff

    2005-02-01

    This overview will discuss core network technology and cost trade-offs inherent in choosing between "analog" architectures with high optical transparency, and ones heavily dependent on frequent "digital" signal regeneration. The exact balance will be related to the specific technology choices in each area outlined above, as well as the network needs such as node geographic spread, physical connectivity patterns, and demand loading. Over the course of a decade, optical networks have evolved from simple single-channel SONET regenerator-based links to multi-span multi-channel optically amplified ultra-long haul systems, fueled by high demand for bandwidth at reduced cost. In general, the cost of a well-designed high capacity system is dominated by the number of optical to electrical (OE) and electrical to optical (EO) conversions required. As the reach and channel capacity of the transport systems continued to increase, it became necessary to improve the granularity of the demand connections by introducing (optical add/drop multiplexers) OADMs. Thus, if a node requires only small demand connectivity, most of the optical channels are expressed through without regeneration (OEO). The network costs are correspondingly reduced, partially balanced by the increased cost of the OADM nodes. Lately, the industry has been aggressively pursuing a natural extension of this philosophy towards all-optical "analog" core networks, with each demand touching electrical digital circuitry only at the in/egress nodes. This is expected to produce a substantial elimination of OEO costs, increase in network capacity, and a notionally simpler operation and service turn-up. At the same time, such optical "analog" network requires a large amount of complicated hardware and software for monitoring and manipulating high bit rate optical signals. New and more complex modulation formats that provide resiliency to both optical noise and nonlinear propagation effects are important for extended

  6. Gated high speed optical detector

    NASA Technical Reports Server (NTRS)

    Green, S. I.; Carson, L. M.; Neal, G. W.

    1973-01-01

    The design, fabrication, and test of two gated, high speed optical detectors for use in high speed digital laser communication links are discussed. The optical detectors used a dynamic crossed field photomultiplier and electronics including dc bias and RF drive circuits, automatic remote synchronization circuits, automatic gain control circuits, and threshold detection circuits. The equipment is used to detect binary encoded signals from a mode locked neodynium laser.

  7. Optically controlled polarizer using a ladder transition for high speed Stokesmetric Imaging and Quantum Zeno Effect based optical logic.

    PubMed

    Krishnamurthy, Subramanian; Wang, Y; Tu, Y; Tseng, S; Shahriar, M S

    2013-10-21

    We demonstrate an optically controlled polarizer at ~1323 nm using a ladder transition in a Rb vapor cell. The lower leg of the 5S(1/2),F = 1->5P(1/2),F = 1,2->6S(1/2),F = 1,2 transitions is excited by a Ti:Sapphire laser locked to a saturated absorption signal, representing the control beam. A tunable fiber laser at ~1323 nm is used to excite the upper leg of the transitions, representing the signal beam. When the control beam is linearly polarized, it produces an excitation of the intermediate level with a particular orientation of the angular momentum. Under ideal conditions, this orientation is transparent to the signal beam if it has the same polarization as the control beam and is absorbed when it is polarized orthogonally. We also present numerical simulations of the system using a comprehensive model which incorporates all the relevant Zeeman sub-levels in the system, and identify means to improve the performance of the polarizer. A novel algorithm to compute the evolution of large scale quantum system enabled us to perform this computation, which may have been considered too cumbersome to carry out previously. We describe how such a polarizer may serve as a key component for high-speed Stokesmetric imaging. We also show how such a polarizer, combined with an optically controlled waveplate, recently demonstrated by us, can be used to realize a high speed optical logic gate by making use of the Quantum Zeno Effect. Finally, we describe how such a logic gate can be realized at an ultra-low power level using a tapered nanofiber embedded in a vapor cell. PMID:24150297

  8. High-Speed Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Marsh, T. R.

    The large surveys and sensitive instruments of modern astronomy are turning ever more examples of variable objects, many of which are extending the parameter space to testing theories of stellar evolution and accretion. Future projects such as the Laser Interferometer Space Antenna (LISA) and the Large Synoptic Survey Telescope (LSST) will only add more challenging candidates to this list. Understanding such objects often requires fast spectroscopy, but the trend for ever larger detectors makes this difficult. In this contribution I outline the science made possible by high-speed spectroscopy, and consider how a combination of the well-known progress in computer technology combined with recent advances in CCD detectors may finally enable it to become a standard tool of astrophysics.

  9. High speed all optical networks

    NASA Technical Reports Server (NTRS)

    Chlamtac, Imrich; Ganz, Aura

    1990-01-01

    An inherent problem of conventional point-to-point wide area network (WAN) architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. The first solution to wavelength division multiplexing (WDM) based WAN networks that overcomes this limitation is presented. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs. The principle of the Lightnet architecture is the construction and use of virtual topology networks, embedded in the original network in the wavelength domain. For this construction Lightnets utilize the new concept of lightpaths which constitute the links of the virtual topology. Lightpaths are all-optical, multihop, paths in the network that allow data to be switched through intermediate nodes using high throughput passive optical switches. The use of the virtual topologies and the associated switching design introduce a number of new ideas, which are discussed in detail.

  10. FEC for high-speed optical transmission

    NASA Astrophysics Data System (ADS)

    Xie, Changsong; Zhao, Yu; Xiao, Zhiyu; Chang, Deyuan; Yu, Fan

    2011-12-01

    This paper will at first explain the requirement of high speed optical transport network on forward error correction (FEC) codes in terms of code length, code rate, coding gain, burst error correction capability, error floor, latency, coding/decoding complexity. Then, a few code schemes used in current optical transport systems such as Reed-Solomon codes recommended by ITU-T G.709 and enhanced FECs listed in ITU-T, G.975.1 are introduced. Advanced codes recently developed by vendors used for 100Gbps systems and their performances are summarized. Features and special requirements on soft decoding FEC (SDFEC) especially inter-working between SDFEC and equalizer, with and without deferential coding etc. are analyzed. Some perspectives of future FEC for optical transport are also given.

  11. High-speed wireless optical LANs

    NASA Astrophysics Data System (ADS)

    Oe, Kunishige; Sato, Syuichi; Okayama, Motoyuki; Kubota, Toshihiro

    2001-11-01

    Study on high speed indoor wireless optical LAN system enabling 100Mbps signal transmission with low bit error rate (10-9) is presented. To realize the optical LAN system handling 100 Mbps signal, a directed line of sight (LOS) system is adopted as the optical receiver sensitivity for a bit error rate of 10-9 for 100 Mbps signals is fairly large. In the system, new approaches are introduced: WDM technology which enables bi-directional transmission in full duplex manner is applied using a 1.3 micrometers laser diode for down-link and 0.65 micrometers red laser diode for up-link light sources. As the wavelengths of the two lasers are quite separated from each other, this WDM technology brings an advantage that two kind of semiconductor materials can be used for detectors; GaInAs is used for down-link while Si is applied for up-link. GaInAs PD cannot detect the up-link laser light of 0.65 micrometers and Si PD or APD cannot detect the down-link laser light of 1.3micrometers . Therefore full duplex transmission can be achieved in this configuration. In the indoor wireless optical LAN system, one of the critical points is the transmitter configuration for down- link which enables to deliver optical power enough for 100 Mbps transmission to user areas as wide as possible with inexpensive prices. To realize the point, a special 1.3micrometers laser diode, a spot-size converter integrated laser (SS-LD), is introduced in company with convex lens and an object lens to deliver optical power to areas as wide as possible. As the far-field patterns of the SS-LD are fairly narrow, most of the output power of the LD could be collected to and spread wide by the object lens of 40 magnifications. Using the device, 3m diameter circle area in the plane 2m apart from the 1.3micrometers SS-LD emitting 20 mW optical power, could receive optical power above the receiver sensitivity for a bit error rate of 10-9 for 100 Mbps signals. The visible red light is convenient for not only position

  12. A high speed optical multichannel analyzer.

    PubMed

    Cole, J W; Hendler, R W; Smith, P D; Fredrickson, H A; Pohida, T J; Friauf, W S

    1997-12-01

    An optical multichannel analyzer capable of recording spectra at sampling rates up to 100 kHz is described. The instrument, designed to gather data on the kinetic reaction mechanisms of biological preparations such as cytochrome oxidase and bacteriorhodopsin, features a massively parallel approach in which each photosensing element of the detector array has a dedicated amplifier, integrator, analog to digital converter, and sample buffer. The design has 92 such elements divided in two separate arrays, each of which sits at the focal plane of a 1/4 m Ebert spectrometer. The spectrometers may be tuned to cover independent, 130 nm wide, regions of the spectrum from 350 nm to 900 nm with a dispersion of 2.8 nm per element. Each detection channel has 12-bit resolution with an electronic dark count of 1 count and may be sampled 1024 times during a single experiment with dynamically variable sampling intervals from 10 microseconds to several seconds. Time averaging of up to thousands of consecutive laser-initiated kinetic cycles allows analyses of spectral changes < 0.001 optical density units. A personal computer with custom software provides a number of features: entry of experiment parameters; transfer of data from temporary buffers to permanent files; real time display; multiple spectrum averaging; and control and synchronization of associated system hardware. Optical fibers or lenses provide coupling from a parabolic reflector Xenon arc monitoring light source, through the sample chamber, to the entry slit of the monochromator. The instrument has been used for extensive studies on the rapid kinetics and definition of reaction sequences of the energy-transducing enzymes cytochrome oxidase and bacteriorhodopsin. Some results from these studies are discussed. PMID:9470095

  13. High speed demodulation systems for fiber optic grating sensors

    NASA Technical Reports Server (NTRS)

    Udd, Eric (Inventor); Weisshaar, Andreas (Inventor)

    2002-01-01

    Fiber optic grating sensor demodulation systems are described that offer high speed and multiplexing options for both single and multiple parameter fiber optic grating sensors. To attain very high speeds for single parameter fiber grating sensors ratio techniques are used that allow a series of sensors to be placed in a single fiber while retaining high speed capability. These methods can be extended to multiparameter fiber grating sensors. Optimization of speeds can be obtained by minimizing the number of spectral peaks that must be processed and it is shown that two or three spectral peak measurements may in specific multiparameter applications offer comparable or better performance than processing four spectral peaks. Combining the ratio methods with minimization of peak measurements allows very high speed measurement of such important environmental effects as transverse strain and pressure.

  14. Optical choppers with high speed rotating elements

    NASA Astrophysics Data System (ADS)

    Duma, Virgil-Florin; Demian, Dorin; Cira, Octavian

    2014-05-01

    Choppers are optomechatronic devices used for the modulation of light: to attenuate or eliminate certain wavelength ranges or to generate series of laser impulses with different profiles. We have previously made a detailed study on choppers with rotating wheels with different configurations (with windows with linear and with non-linear margins) - and for different types of laser beams (i.e., top-hat, Gaussian and Bessel). In this paper we report a novel configuration of optical choppers with fast rotating elements (patent pending). The possible configurations of the device are discussed, and several chopper types are presented. The modulation functions of one of the types of choppers newly introduced (i.e., the functions of the transmitted flux) are deduced and studied with regard to the geometry of the device. Comparison with other types of choppers - classical and eclipse (the latter introduced by us) - are being made. Aspects like chop frequency, attenuation coefficient, and profile of the light impulses transmitted by the device are taken into account.

  15. Magneto-optical system for high speed real time imaging

    NASA Astrophysics Data System (ADS)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  16. Magneto-optical system for high speed real time imaging.

    PubMed

    Baziljevich, M; Barness, D; Sinvani, M; Perel, E; Shaulov, A; Yeshurun, Y

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated. PMID:22938303

  17. Vertical emitting, ring geometry, ultra-low threshold and ultra-high speed quantum well lasers for optical interconnect. Final report Jul 88-Dec 90

    SciTech Connect

    Mittelstein, M.; Bar-Chaim, N.

    1991-01-01

    The main emphasis for this contract was placed on the efforts as highlighted in the chapter captions: (1) Introduction to optical interconnects, (2) Conventional laser, (3) Design of laser structures, (4) Achieving buried ring structures, (5) Buried ring quantum well structure, (6) Buried lasers: Champion results and reproducibility, (7) Ridge wave guide laser fabrication, (8) Grating fabrication, (9) Grating fabrication facility, (10) Test station, and (11) Material investigation.

  18. Review of High-Speed Fiber Optic Grating Sensors Systems

    SciTech Connect

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  19. High speed all-optical data processing in fast semiconductor and optical fiber based devices

    NASA Astrophysics Data System (ADS)

    Sun, Hongzhi

    Future generations of communication systems demand ultra high speed data processing and switching components. Conventional electrical parts have reached their bottleneck both speed-wise and efficiency-wise. The idea of manipulating high speed data in optical domain is gaining more popularity. In this PhD thesis work, we proposed and demonstrated various schemes of all-optical Boolean logic gate at data rate as high as 80Gb/s by using semiconductor optical amplifier (SOA), SOA Mach-Zehnder interferometer (SOA-MZI), highly nonlinear fiber (HNLF) and optical fiber based components. With the invention of quantum dot (QD) based semiconductor devices, speed limit of all optical data processing has a chance to boost up to 250Gb/s. We proposed and simulated QD-SOA based Boolean functions, and their application such as shift register and pseudorandom bit sequence generation (PRBS). Clock and data recovery of high speed data signals has been simulated and demonstrated by injection lock and phase lock loop techniques in a fiber and SOA ring and an optical-electrical (OE) feedback loop.

  20. Ultra-high-speed optical and electronic distributed devices

    SciTech Connect

    Hietala, V.M.; Plut, T.A.; Kravitz, S.H.; Vawter, G.A.; Wendt, J.R.; Armendariz, M.G.

    1995-08-01

    This report summarizes work on the development of ultra-high-speed semiconductor optical and electronic devices. High-speed operation is achieved by velocity matching the input stimulus to the output signal along the device`s length. Electronic devices such as field-effect transistors (FET`s), should experience significant speed increases by velocity matching the electrical input and output signals along the device. Likewise, optical devices, which are typically large, can obtain significant bandwidths by velocity matching the light being generated, detected or modulated with the electrical signal on the device`s electrodes. The devices discussed in this report utilize truly distributed electrical design based on slow-wave propagation to achieve velocity matching.

  1. Bufferless Ultra-High Speed All-Optical Packet Routing

    NASA Astrophysics Data System (ADS)

    Muttagi, Shrihari; Prince, Shanthi

    2011-10-01

    All-Optical network is still in adolescence to cope up with steep rise in data traffic at the backbone network. Routing of packets in optical network depends on the processing speed of the All-Optical routers, thus there is a need to enhance optical processing to curb the delay in packet forwarding unit. In the proposed scheme, the header processing takes place on fly, therefore processing delay is at its lower limit. The objective is to propose a framework which establishes high data rate transmission with least latency in data routing from source to destination. The Routing table and optical header pulses are converted into Pulse Position (PP) format, thus reducing the complexity and in turn the processing delay. Optical pulse matching is exercised which results in multi-output transmission. This results in ultra-high speed packet forwarding unit. In addition, this proposed scheme includes dispersion compensation unit, which makes the data reliable.

  2. Multiplexed communication over a high-speed quantum channel

    NASA Astrophysics Data System (ADS)

    Heurs, M.; Webb, J. G.; Dunlop, A. E.; Harb, C. C.; Ralph, T. C.; Huntington, E. H.

    2010-03-01

    In quantum information systems it is of particular interest to consider the best way in which to use the nonclassical resources consumed by that system. Quantum communication protocols are integral to quantum information systems and are among the most promising near-term applications of quantum information science. Here we show that a multiplexed, digital quantum communications system supported by a comb of vacuum squeezing has a greater channel capacity per photon than a source of broadband squeezing with the same analog band width. We report on the time-resolved, simultaneous observation of the first dozen teeth in a 2.4-GHz comb of vacuum squeezing produced by a subthreshold optical parametric oscillator, as required for such a quantum communications channel. We also demonstrate multiplexed communication on that channel.

  3. Multiplexed communication over a high-speed quantum channel

    SciTech Connect

    Heurs, M.; Webb, J. G.; Dunlop, A. E.; Harb, C. C.; Huntington, E. H.; Ralph, T. C.

    2010-03-15

    In quantum information systems it is of particular interest to consider the best way in which to use the nonclassical resources consumed by that system. Quantum communication protocols are integral to quantum information systems and are among the most promising near-term applications of quantum information science. Here we show that a multiplexed, digital quantum communications system supported by a comb of vacuum squeezing has a greater channel capacity per photon than a source of broadband squeezing with the same analog band width. We report on the time-resolved, simultaneous observation of the first dozen teeth in a 2.4-GHz comb of vacuum squeezing produced by a subthreshold optical parametric oscillator, as required for such a quantum communications channel. We also demonstrate multiplexed communication on that channel.

  4. High-speed optical coherence tomography: basics and applications.

    PubMed

    Wojtkowski, Maciej

    2010-06-01

    In the past decade we have observed a rapid development of ultrahigh-speed optical coherence tomography (OCT) instruments, which currently enable performing cross-sectional in vivo imaging of biological samples with speeds of more than 100,000 A-scans/s. This progress in OCT technology has been achieved by the development of Fourier-domain detection techniques. Introduction of high-speed imaging capabilities lifts the primary limitation of early OCT technology by giving access to in vivo three-dimensional volumetric reconstructions on large scales within reasonable time constraints. As result, novel tools can be created that add new perspective for existing OCT applications and open new fields of research in biomedical imaging. Especially promising is the capability of performing functional imaging, which shows a potential to enable the differentiation of tissue pathologies via metabolic properties or functional responses. In this contribution the fundamental limitations and advantages of time-domain and Fourier-domain interferometric detection methods are discussed. Additionally the progress of high-speed OCT instruments and their impact on imaging applications is reviewed. Finally new perspectives on functional imaging with the use of state-of-the-art high-speed OCT technology are demonstrated. PMID:20517358

  5. Analysis of optical route in a micro high-speed magneto-optic switch

    NASA Astrophysics Data System (ADS)

    Weng, Zihua; Yang, Guoguang; Huang, Yuanqing; Chen, Zhimin; Zhu, Yun; Wu, Jinming; Lin, Shufen; Mo, Weiping

    2005-02-01

    A novel micro high-speed 2x2 magneto-optic switch and its optical route, which is used in high-speed all-optical communication network, is designed and analyzed in this paper. The study of micro high-speed magneto-optic switch mainly involves the optical route and high-speed control technique design. The optical route design covers optical route design of polarization in optical switch, the performance analysis and material selection of magneto-optic crystal and magnetic path design in Faraday rotator. The research of high-speed control technique involves the study of nanosecond pulse generator, high-speed magnetic field and its control technique etc. High-speed current transients from nanosecond pulse generator are used to switch the magnetization of the magneto-optic crystal, which propagates a 1550nm optical beam. The optical route design schemes and electronic circuits of high-speed control technique are both simulated on computer and test by the experiments respectively. The experiment results state that the nanosecond pulse generator can output the pulse with rising edge time 3~35ns, voltage amplitude 10~90V and pulse width 10~100ns. Under the control of CPU singlechip, the optical beam can be stably switched and the switching time is less than 1μs currently.

  6. High speed optical links between LLNL and Berkeley

    SciTech Connect

    Lennon, W.J.; Thombley, R.L.

    1994-08-08

    The Advanced Telecommunications Program at Lawrence Livermore National Laboratory, in collaboration with Pacific Bell, is developing an experimental high speed, four wavelength, protocol independent optical link for evaluating wide area networking interconnection schemes and the use of fiber amplifiers. Lawrence Livermore National Laboratory, as a super-user, supercomputer, and super-application site, is anticipating the future bandwidth and protocol requirements to connect to other such sites as well as to connect to remote sited control centers and experiments. In this paper we discuss our vision of the future of Wide Area Networking and describe the plans for the wavelength division multiplexed link between Livermore and the University of California at Berkeley.

  7. High-speed digital fiber optic links for satellite traffic

    NASA Technical Reports Server (NTRS)

    Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.

    1989-01-01

    Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.

  8. The BioCD: High-Speed Interferometric Optical Biosensor

    NASA Astrophysics Data System (ADS)

    Nolte, David D.; Zhao, Ming; Wang, Xuefeng

    The bio-optical compact disc (BioCD) is an optical biochip that uses common-path interferometry on a disc spinning at high speed to detect captured proteins. High-speed scanning moves the detection frequency far from 1/f noise, providing high sensitivity and enabling rapid measurement of high-throughput multiplexed assays. The common-path configuration makes it ultra stable with surface height precision down to 20 pm within the focused probe area. This chapter reviews the state of the art in interferometric detection of proteins using spinning-disc interferometry. There are several common-path configurations that achieve phase quadrature for sensitive detection of surface-immobilized proteins. We have implemented differential phase contrast, in-line, microdiffraction, and adaptive optical approaches. Protein patterning provides spatial frequencies for Fourier-domain detection and spatial multiplexing on the BioCD surface. The detection limits of protein are set by a scaling surface mass density, with a metrology limit below 1 pg/mm. Specific immunoassay applications are described for prostate-specific antigen and haptoglobin. A highly multiplexed platform like the BioCD may enable a Moore's Law of protein detection as the scaling capabilities of protein patterning coevolve with proteomics to explore increasingly complex protein interaction networks.

  9. High-speed optical frequency-domain imaging

    PubMed Central

    Yun, S. H.; Tearney, G. J.; de Boer, J. F.; Iftimia, N.; Bouma, B. E.

    2009-01-01

    We demonstrate high-speed, high-sensitivity, high-resolution optical imaging based on optical frequency-domain interferometry using a rapidly-tuned wavelength-swept laser. We derive and show experimentally that frequency-domain ranging provides a superior signal-to-noise ratio compared with conventional time-domain ranging as used in optical coherence tomography. A high sensitivity of −110 dB was obtained with a 6 mW source at an axial resolution of 13.5 µm and an A-line rate of 15.7 kHz, representing more than an order-of-magnitude improvement compared with previous OCT and interferometric imaging methods. PMID:19471415

  10. Submonolayer Quantum Dots for High Speed Surface Emitting Lasers

    PubMed Central

    2007-01-01

    We report on progress in growth and applications of submonolayer (SML) quantum dots (QDs) in high-speed vertical-cavity surface-emitting lasers (VCSELs). SML deposition enables controlled formation of high density QD arrays with good size and shape uniformity. Further increase in excitonic absorption and gain is possible with vertical stacking of SML QDs using ultrathin spacer layers. Vertically correlated, tilted or anticorrelated arrangements of the SML islands are realized and allow QD strain and wavefunction engineering. Respectively, both TE and TM polarizations of the luminescence can be achieved in the edge-emission using the same constituting materials. SML QDs provide ultrahigh modal gain, reduced temperature depletion and gain saturation effects when used in active media in laser diodes. Temperature robustness up to 100 °C for 0.98 μm range vertical-cavity surface-emitting lasers (VCSELs) is realized in the continuous wave regime. An open eye 20 Gb/s operation with bit error rates better than 10−12has been achieved in a temperature range 25–85 °Cwithout current adjustment. Relaxation oscillations up to ∼30 GHz have been realized indicating feasibility of 40 Gb/s signal transmission. PMID:21794188

  11. Digital High Speed Interconnects: A Study Of The Optical Alternative

    NASA Astrophysics Data System (ADS)

    Hartman, Davis H.

    1986-10-01

    The use of optics as an alternative method for achieving very high speed (10 Gb/s > bit rate > 500 Mb/s) electrical interconnects is the subject of this paper. Optical interconnect media considered include plastic channel waveguides, glass waveguides, fibers, and free-space interconnects. Typical interconnection distances considered are inches or less. The problems of cou-pling and interconnecting and their overall effect on system power budgets are also discussed. As a means of quantifying the results, link budgets for a 565 Mb/s, a 2.3 Gb/s, and a 4.6 Gb/s interconnect scenario are made. Multipoint as well as single-point-to-single-point situations are considered.

  12. Development of microlens arrays for high-speed optical communication

    NASA Astrophysics Data System (ADS)

    Ko, Chih-Hsiang; Lin, Chun-Hsu; Tsai, Bor-Chen; Shih, His-Hsin; Wu, Chien-Tsung; Chao, Yu-Lin; Chou, Yu-Kon; Chu, Chun-Hsun; Chiou, Yii-Tay; Chen, Rax

    2004-09-01

    In this study, polymeric microlens arrays, well suited for high-volume and low-cost production, were developed for efficiently coupling the light from vertical-cavity surface emitting lasers (VCSELs) to multi-mode fiber ribbon. They were fabricated by microinjection molding with Ni-electroplated mold insert. Modified LIGA processes and the Ni-electroplating are used to make the master and the metallic mold insert, respectively. In this study, microinjection molding with metallocene based cyclic olefin copolymer (mCOC) was chosen to replicate microlenses. Good surface profile and high dimensional accuracy are achieved. Coupling efficiency of 55 +/- 3 % with a working distance of 400 +/- 60 micrometer is obtained. To verify its applications on high-speed interconnections, we also designed the evaluated board and set up an opto-electronic measurement platform. The high-speed measurement shows that the electrical-to-optical conversion 3dB-bandwidth is above 1.8 GHz, and the eye diagram at 2.488 Gbps is acceptable for the SONET OC-48 eye mask.

  13. High Speed Video Measurements of a Magneto-optical Trap

    NASA Astrophysics Data System (ADS)

    Horstman, Luke; Graber, Curtis; Erickson, Seth; Slattery, Anna; Hoyt, Chad

    2016-05-01

    We present a video method to observe the mechanical properties of a lithium magneto-optical trap. A sinusoidally amplitude-modulated laser beam perturbed a collection of trapped ce7 Li atoms and the oscillatory response was recorded with a NAC Memrecam GX-8 high speed camera at 10,000 frames per second. We characterized the trap by modeling the oscillating cold atoms as a damped, driven, harmonic oscillator. Matlab scripts tracked the atomic cloud movement and relative phase directly from the captured high speed video frames. The trap spring constant, with magnetic field gradient bz = 36 G/cm, was measured to be 4 . 5 +/- . 5 ×10-19 N/m, which implies a trap resonant frequency of 988 +/- 55 Hz. Additionally, at bz = 27 G/cm the spring constant was measured to be 2 . 3 +/- . 2 ×10-19 N/m, which corresponds to a resonant frequency of 707 +/- 30 Hz. These properties at bz = 18 G/cm were found to be 8 . 8 +/- . 5 ×10-20 N/m, and 438 +/- 13 Hz. NSF #1245573.

  14. Prototype high speed optical delay line for stellar interferometry

    NASA Technical Reports Server (NTRS)

    Colavita, M. M.; Hines, B. E.; Shao, M.; Klose, G. J.; Gibson, B. V.

    1991-01-01

    The long baselines of the next-generation ground-based optical stellar interferometers require optical delay lines which can maintain nm-level path-length accuracy while moving at high speeds. NASA-JPL is currently designing delay lines to meet these requirements. The design is an enhanced version of the Mark III delay line, with the following key features: hardened, large diameter wheels, rather than recirculating ball bearings, to reduce mechanical noise; a friction-drive cart which bears the cable-dragging forces, and drives the optics cart through a force connection only; a balanced PZT assembly to enable high-bandwidth path-length control; and a precision aligned flexural suspension for the optics assembly to minimize bearing noise feedthrough. The delay line is fully programmable in position and velocity, and the system is controlled with four cascaded software feedback loops. Preliminary performance is a jitter in any 5 ms window of less than 10 nm rms for delay rates of up to 28 mm/s; total jitter is less than 10 nm rms for delay rates up to 20 mm/s.

  15. Corneal Pachymetry Mapping with High-speed Optical Coherence Tomography

    PubMed Central

    Li, Yan; Shekhar, Raj; Huang, David

    2006-01-01

    Objective To map corneal thickness before and after LASIK with optical coherence tomography (OCT). Design Cross-sectional observational study. Participants Forty-two eyes of 21 normal subjects undergoing LASIK. Methods A high-speed (2000 axial scans/second) 1.3-μm-wavelength corneal and anterior segment OCT prototype was used for corneal scanning. The scan pattern consisted of 10-mm radial lines on 8 meridians centered on the vertex reflection. The entire scan pattern of 1024 a-scans was acquired in 0.5 seconds. We developed automated computer processing for 3-dimensional corneal reconstruction and measurement. Corneal thickness was measured normal to the anterior surface and presented as color pachymetry maps and zonal statistics. The maps were divided into a central zone (<2 mm) and 3 annular areas (pericentral, 2–5 mm; transitional, 5–7 mm; peripheral, 7–10 mm), which were further divided into quadrantal zones. The average, minimum, and maximum corneal thicknesses were computed for zones within the 7-mm diameter. Optical coherence tomography and ultrasound pachymetry were measured 3 times at the preoperative and 3-month postoperative visits. Reproducibility was assessed by the pooled standard deviations (SDs) of the repeated measurements. Main Outcome Measures Optical coherence tomography pachymetric map and zonal statistic, and ultrasound pachymetry. Results Before LASIK, central corneal thicknesses (CCTs) were 546.9±29.4 μm (mean ± SD) for OCT and 553.3±33.0 μm for ultrasound. After LASIK, CCTs were 513.7±44.5 μm for OCT and 498±46.6 μm for ultrasound. Optical coherence tomography and ultrasound CCT were highly correlated (Pearson correlation r = 0.97 before LASIK and 0.98 afterwards). Optical coherence tomography CCT was slightly less than ultrasound CCT before surgery (mean difference, −6.4 μm; 95% limits of agreement, −23.2 to 10.4 μm) but slightly greater after LASIK (15.7 μm; −1.6 to 33 μm). These differences were statistically

  16. High speed semiconductor optical amplifiers and their performance in pseudo-random bit-stream generation

    NASA Astrophysics Data System (ADS)

    Dutta, N. K.; Ma, S.; Chen, Z.

    2009-06-01

    Semiconductor optical amplifiers are important for wide range of applications including optical networks, optical tomography and optical logic systems. For many of these applications particularly for optical networks and optical logic high speed performance of the SOA is important. The speed of operation of SOA is limited by the gain and phase recovery times in the SOA. We have demonstrated higher speed operation (i) for SOAs with a carrier reservoir layer, (ii) for SOAs with a multi-quantum well modulation doped active region, and, (iii) for SOAs with a quantum dot (QD) active region. The multi-quantum well SOA has been integrated with InGaAsP/InP based waveguides to build Mach- Zehnder interferometers (MZI). XOR optical logic has been demonstrated at 80 Gb/s using these SOA-MZI structures. XOR operation has been analyzed by solving the rate equation of the SOA, for SOAs with both regular and QD active region. Mach-Zehnder interferometers fabricated using SOA with quantum dot active region (QD-SOA) can be used for XOR operation at 250 Gb/s. Pseudo random bit stream (PRBS) generation using both regular and QD-SOA have been studied and their performance modeled. The model shows QD-SOA based devices can be used to produce PRBS generators that operate near 250 Gb/s.

  17. High Speed Measurements using Fiber-optic Bragg Grating Sensors

    SciTech Connect

    Benterou, J J; May, C A; Udd, E; Mihailov, S J; Lu, P

    2011-03-26

    Fiber grating sensors may be used to monitor high-speed events that include catastrophic failure of structures, ultrasonic testing and detonations. This paper provides insights into the utility of fiber grating sensors to measure structural changes under extreme conditions. An emphasis is placed on situations where there is a structural discontinuity. Embedded chirped fiber Bragg grating (CFBG) sensors can track the very high-speed progress of detonation waves (6-9 km/sec) inside energetic materials. This paper discusses diagnostic instrumentation and analysis techniques used to measure these high-speed events.

  18. Atomic thermal motion effect on efficiency of a high-speed quantum memory

    NASA Astrophysics Data System (ADS)

    Tikhonov, Kirill; Golubeva, Tania; Golubev, Yuri

    2015-11-01

    We discuss the influence of atomic thermal motion on the efficiency of multimode quantum memory in two configurations: over the free expand of atoms cooled beforehand in a magneto-optical trap, and over complete mixing of atoms in a closed cell at room temperature. We consider the high-speed quantum memory, and assume that writing and retrieval are short enough, and the displacements of atoms during these stages are negligibly small. At the same time we take in account thermal motion during the storage time, which, as well known, must be much longer than durations of all the other memory processes for successful application of memory cell in communication and computation. We will analyze this influence in terms of eigenmodes of the full memory cycle and show that distortion of the eigenmodes, caused by thermal motion, leads to the efficiency reduction. We will demonstrate, that in the multimode memory this interconnection has complicated character.

  19. Research in high speed fiber optics local area networks

    NASA Astrophysics Data System (ADS)

    Tobagi, F. A.

    1986-02-01

    The design of high speed local area networks (HSLAN) for communication among distributed devices requires solving problems in three areas: the network medium and its topology, the medium access control, and the network interface. Considerable progress was already made in the first two areas. Accomplishments are divided into two groups according to their theoretical or experimental nature. A brief summary is given.

  20. High-speed quantum-random number generation by continuous measurement of arrival time of photons

    SciTech Connect

    Yan, Qiurong; Zhao, Baosheng; Hua, Zhang; Liao, Qinghong; Yang, Hao

    2015-07-15

    We demonstrate a novel high speed and multi-bit optical quantum random number generator by continuously measuring arrival time of photons with a common starting point. To obtain the unbiased and post-processing free random bits, the measured photon arrival time is converted into the sum of integral multiple of a fixed period and a phase time. Theoretical and experimental results show that the phase time is an independent and uniform random variable. A random bit extraction method by encoding the phase time is proposed. An experimental setup has been built and the unbiased random bit generation rate could reach 128 Mb/s, with random bit generation efficiency of 8 bits per detected photon. The random numbers passed all tests in the statistical test suite.

  1. High-speed quantum-random number generation by continuous measurement of arrival time of photons.

    PubMed

    Yan, Qiurong; Zhao, Baosheng; Hua, Zhang; Liao, Qinghong; Yang, Hao

    2015-07-01

    We demonstrate a novel high speed and multi-bit optical quantum random number generator by continuously measuring arrival time of photons with a common starting point. To obtain the unbiased and post-processing free random bits, the measured photon arrival time is converted into the sum of integral multiple of a fixed period and a phase time. Theoretical and experimental results show that the phase time is an independent and uniform random variable. A random bit extraction method by encoding the phase time is proposed. An experimental setup has been built and the unbiased random bit generation rate could reach 128 Mb/s, with random bit generation efficiency of 8 bits per detected photon. The random numbers passed all tests in the statistical test suite. PMID:26233362

  2. High speed fiber optics local area networks: Design and implementation

    NASA Astrophysics Data System (ADS)

    Tobagi, Fouad A.

    1988-09-01

    The design of high speed local area networks (HSLAN) for communication among distributed devices requires solving problems in three areas: (1) the network medium and its topology; (2) the medium access control; and (3) the network interface. Considerable progress has been made in all areas. Accomplishments are divided into two groups according to their theoretical or experimental nature. A brief summary is given in Section 2, including references to papers which appeared in the literature, as well as to Ph.D. dissertations and technical reports published at Stanford University.

  3. High-Speed Characterizatin of Optical Telecommunication Signals

    SciTech Connect

    Dorrer, C.

    2007-05-17

    Optical telecommunication systems constantly evolve toward higher bit rates, requiring the modulation and detection of higher-bandwidth optical waves. Commercial systems operating at 40 Gb/s are now available and research and development efforts are targeting higher bit rates for which optical pulses with picosecond-range duration are used. Chromatic dispersion, nonlinearities and amplified spontaneous emission from optical amplifiers are sources of transmission impairments that must be characterized and mitigated. Advanced modulation formats rely on the modulation of not only the amplitude of an optical wave (e.g., on/off keying), but also its phase (e.g., phase-shift keying) in order to optimize the transmission capabilities. The importance of the characterization of the properties of optical sources and components and the specificities of the optical telecommunication environment with respect to ultrafast optics are emphasized. Various diagnostics measuring the electric field of optical sources in the telecommunication environment are described. Sampling diagnostics capable of measuring eye diagrams and constellation diagrams of high-bit-rate, data-encoded sources are presented. Various optical pulse characterization techniques that meet the sensitivity requirements imposed by the telecommunication environment are also described.

  4. High-speed adaptive optics for imaging of the living human eye

    PubMed Central

    Yu, Yongxin; Zhang, Tianjiao; Meadway, Alexander; Wang, Xiaolin; Zhang, Yuhua

    2015-01-01

    The discovery of high frequency temporal fluctuation of human ocular wave aberration dictates the necessity of high speed adaptive optics (AO) correction for high resolution retinal imaging. We present a high speed AO system for an experimental adaptive optics scanning laser ophthalmoscope (AOSLO). We developed a custom high speed Shack-Hartmann wavefront sensor and maximized the wavefront detection speed based upon a trade-off among the wavefront spatial sampling density, the dynamic range, and the measurement sensitivity. We examined the temporal dynamic property of the ocular wavefront under the AOSLO imaging condition and improved the dual-thread AO control strategy. The high speed AO can be operated with a closed-loop frequency up to 110 Hz. Experiment results demonstrated that the high speed AO system can provide improved compensation for the wave aberration up to 30 Hz in the living human eye. PMID:26368408

  5. A high-speed GaAs MESFET optical controller

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.; Richard, M.; Bendett, M.; Gustafson, G.

    1989-01-01

    Optical interconnects are being considered for control signal distribution in phased array antennas. A packaged hybrid GaAs optical controller with a 1:16 demultiplexed output that is suitable for this application is described. The controller, which was fabricated using enhancement/depletion mode MESFET technology, operates at demultiplexer-limited input data rates up to 305 Mb/s and requires less than 200 microW optical input power.

  6. High-speed image matching with coaxial holographic optical correlator

    NASA Astrophysics Data System (ADS)

    Ikeda, Kanami; Watanabe, Eriko

    2016-09-01

    A computation speed of more than 100 Gbps is experimentally demonstrated using our developed ultrahigh-speed optical correlator. To verify this high computation speed practically, the computation speeds of our optical correlator and conventional digital image matching are quantitatively compared. We use a population count function that achieves the fastest calculation speed when calculating binary matching by a central processing unit (CPU). The calculation speed of the optical correlator is dramatically faster than that using a CPU (2.40 GHz × 4) and 16 GB of random access memory, especially when the calculation data are large-scale.

  7. Optical Peaking Enhancement in High-Speed Ring Modulators

    PubMed Central

    Müller, J.; Merget, F.; Azadeh, S. Sharif; Hauck, J.; García, S. Romero; Shen, B.; Witzens, J.

    2014-01-01

    Ring resonator modulators (RRM) combine extreme compactness, low power consumption and wavelength division multiplexing functionality, making them a frontrunner for addressing the scalability requirements of short distance optical links. To extend data rates beyond the classically assumed bandwidth capability, we derive and experimentally verify closed form equations of the electro-optic response and asymmetric side band generation resulting from inherent transient time dynamics and leverage these to significantly improve device performance. An equivalent circuit description with a commonly used peaking amplifier model allows straightforward assessment of the effect on existing communication system architectures. A small signal analytical expression of peaking in the electro-optic response of RRMs is derived and used to extend the electro-optic bandwidth of the device above 40 GHz as well as to open eye diagrams penalized by intersymbol interference at 32, 40 and 44 Gbps. Predicted peaking and asymmetric side band generation are in excellent agreement with experiments. PMID:25209255

  8. High speed optical object recognition processor with massive holographic memory

    NASA Technical Reports Server (NTRS)

    Chao, T.; Zhou, H.; Reyes, G.

    2002-01-01

    Real-time object recognition using a compact grayscale optical correlator will be introduced. A holographic memory module for storing a large bank of optimum correlation filters, to accommodate the large data throughput rate needed for many real-world applications, has also been developed. System architecture of the optical processor and the holographic memory will be presented. Application examples of this object recognition technology will also be demonstrated.

  9. Free-space optics for high-speed reconfigurable card-to-card optical interconnects

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Nirmalathas, Ampalavanpillai; Lim, Christina; Skafidas, Efstratios; Alameh, Kamal

    2013-09-01

    High-speed card-to-card optical interconnects are highly demanded in high-performance computing and data centers. Compared with other solutions, free-space optical interconnects have the capability of providing both reconfigurability and flexibility. In this paper we propose and experimentally demonstrate a free-space based reconfigurable optical interconnect architecture and it is capable of connecting cards located both inside the same rack as well as in different racks. Results show that 3×10 Gb/s data transmission is achieved with a worst-case receiver sensitivity better than -9.38 dBm.

  10. High-speed optical switch fabrics with large port count.

    PubMed

    Yeo, Yong-Kee; Xu, Zhaowen; Wang, Dawei; Liu, Jianguo; Wang, Yixin; Cheng, Tee-Hiang

    2009-06-22

    We report a novel architecture that can be used to construct optical switch fabrics with very high port count and nanoseconds switching speed. It is well known that optical switch fabrics with very fast switching time and high port count are challenging to realize. Currently, one of the most promising solutions is based on a combination of wavelength-tunable lasers and the arrayed waveguide grating router (AWGR). To scale up the number of ports in such switches, a direct method is to use AWGRs with a high channel count. However, such AWGRs introduce very large crosstalk noise due to the close wavelength channel spacing. In this paper, we propose an architecture for realizing a high-port count optical switch fabric using a combination of low-port count AWGRs, optical ON-OFF gates and WDM couplers. Using this new methodology, we constructed a proof-of concept experiment to demonstrate the feasibility of a 256 x 256 optical switch fabric. To our knowledge, this port count is the highest ever reported for switch fabrics of this type. PMID:19550498

  11. Fiber Optics For High Speed Computer Input/Output Channels

    NASA Astrophysics Data System (ADS)

    Crow, J. D.; Comerford, L. D.; Johnson, M.; Lynch, R. T.; Rogers, D. L.; Widmer, A. X.

    1982-10-01

    In a mainframe computing system, the transfer of data between the processor/memory and the input/output/storage subsystems is done on the I/O channel links. With the demands for computing power increasing at above 40% per year, there is an ever increasing demand for more channel links and more performance on the link. Recent enhancements of the channel protocols make it possible to push the data transfer rate to the hardware limit due to the skew of bits on the parallel lines of the current link. The serialization of the interface with a fiber optic implementation would offer the potential of even more performance from the I/O Channel. For fiber optics to be attractive, the components must offer performance in the hundreds of Mbits/sec, with high reliability (less than 10-12 BER), low power consumption, small packaging profile, and low cost. To date, such components are not commercially available. At IBM Research, a 200 Mbit/sec, 1 km prototype serial subsystem has been built with emphasis on the development of attractive electro-optic components. Laser packaging was done using a Si chip as the substrate for both laser and fiber. A single chip, high sensitivity receiver was built with a digital IBM logic gate array chip. A monolithic dual laser chip and package were developed to enhance the availability of the transmitter. This talk will discuss the features of these developments and the possibilities for fiber optics in a large computer system.

  12. Multiserver switch scheduling for high speed optical switches

    NASA Astrophysics Data System (ADS)

    Golla, Prasad; Blanton, John; Damm, Gerard

    2003-10-01

    A switch matrix implemented as an optical crossbar using semiconductor optical amplifiers is able to accommodate extreme concentrations of data traffic. Due to the need to reduce optical guard band overhead it is beneficial to switch fixed size bursts of data cells on a time slot basis. The high capacity of the optical matrix supports multiple optical ports per burst card, and the implementation of multiple queue servers per burst card helps make better use of the multiplicity of ports. Problems associated with arbitrating multiple ports and multiple servers per burst card have been resolved by extending the operation of existing iterative, single server scheduling algorithms. The multiserver arbitration time will be in proportion to the number of servers -- corresponding to the channels of DWDM link -- unless a reconciliation stage is used after each iteration when an arbiter per server is used. The reconciliation stage sets the problem of broken data dependencies between server arbitrations in this case. Further, to address the time limitations for computing the scheduling solution, parallel arbiter implementations have been developed and tested against single arbiter designs. Again, the broken dependencies between iterations of an arbitration are addressed through the use of a grant reconciliation stage. The use of multiple queue servers per burst card also resolves some of the data loss problems related to polarized traffic. Simulations of the multiple server and parallel arbiter implementations have demonstrated their efficiency compared to previous implementations. Compounded to this problem is maintaining high throughput of the switch matrix while observing data transit time limits. This involves balancing two contradictory requirements; switch or line card efficiency and data transit times. To improve efficiency it is desirable to transmit only full packets. However, to prevent loss of data due to timeout it will be necessary to transmit some incomplete

  13. Vertical-emitting, ring-geometry, ultra-low threshold and ultra-high-speed quantum-well lasers for optical interconnect. Status report No. 6, Jun-Sep 90

    SciTech Connect

    Mittelstein, M.; Bar-Chaim, N.

    1990-09-01

    Emphasis was placed on the following efforts: design and implementation of a test station for vertical emitting lasers; ridge waveguide structure and ring configiuration lasers; refinement of grating fabrication for repeatability; and single quantum well material investigation, Keywords: Ring lasers; Optical waveguides; Lasers (R.H.)

  14. Radiation-hard/high-speed data transmission using optical links

    NASA Astrophysics Data System (ADS)

    Gan, K. K.; Abi, B.; Fernando, W.; Kagan, H. P.; Kass, R. D.; Lebbai, M. R. M.; Moore, J. R.; Rizatdinova, F.; Skubic, P. L.; Smith, D. S.

    2009-12-01

    The silicon trackers of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN (Geneva) use optical links for data transmission. An upgrade of the trackers is planned for the Super LHC (SLHC), an upgraded LHC with ten times higher luminosity. We investigate the radiation-hardness of various components for possible application in the data transmission upgrade. We study the radiation-hardness of VCSELs (Vertical-Cavity Surface-Emitting Laser) and GaAs and silicon PINs from various sources using 24 GeV/c protons at CERN. The optical power of VCSEL arrays decreases significantly after the irradiation but can be partially annealed with high drive currents. The responsivities of the PIN diodes also decrease significantly after irradiation, especially for the GaAs devices. We have designed the ASICs for the opto-link applications and find that the degradation with radiation is acceptable.

  15. High speed infrared optical wireless for home access networks

    NASA Astrophysics Data System (ADS)

    O'Brien, Dominic C.

    2013-12-01

    The availability of high-bandwidth internet connections to home gateways will place increasing demands on the home access network that provides connections to computers and other devices. In this paper the use of infrared optical wireless to provide connections to user appliances and terminals is discussed. The design and implementation of two demonstration systems operating at hundreds of Mbit/s and above are detailed. Future challenges are also discussed.

  16. High-speed waveguide electro-optic polarization modulator.

    PubMed

    Alferness, R C; Buhl, L L

    1982-10-01

    By careful electrode design we have achieved a 1.7-GHz modulation bandwidth for a Ti:LiNbO(3) integrated-optic TE ? TM mode-converter modulator. Because of the wavelength selectivity of this modulator, it is an attractive device for simultaneously providing multiplexing and signal encoding in future wavelength-multiplexed single-mode light-wave systems. PMID:19714070

  17. Optic flow asymmetries bias high-speed steering along roads.

    PubMed

    Kountouriotis, Georgios K; Shire, Katy A; Mole, Callum D; Gardner, Peter H; Merat, Natasha; Wilkie, Richard M

    2013-01-01

    How do animals and insects use visual information to move through the world successfully? Optic flow, the pattern of motion at the eye, is a powerful source of information about self-motion. Insects and humans are sensitive to the global pattern of optic flow and try to maintain flow symmetry when flying or walking. The environments humans encounter, however, often contain demarcated paths that constrain future trajectories (e.g., roads), and steering has been successfully modeled using only road edge information. Here we examine whether flow asymmetries from a textured ground plane influences humans steering along demarcated paths. Using a virtual reality simulator we observed that different textures on either side of the path caused predictable biases to steering trajectories, consistent with participants reducing flow asymmetries. We also generated conditions where one textured region had no flow (either the texture was removed or the textured region was static). Despite the presence of visible path information, participants were biased toward the no-flow region consistent with reducing flow asymmetries. We conclude that optic flow asymmetries can lead to biased locomotor steering even when traveling along demarcated paths. PMID:23988389

  18. High speed OFDM-CDMA optical access network.

    PubMed

    Guo, X; Wang, Q; Zhou, L; Fang, L; Wonfor, A; Penty, R V; White, I H

    2016-04-15

    We demonstrate the feasibility of a 16×3.75  Gb/s (60 Gb/s aggregate) Orthogonal frequency division multiplexing-code division multiple access passive optical network for next-generation access applications. 3.75 Gb/s PON channel transmission over 25 km single-mode fiber shows 0.1 dB dispersion and 0.9 dB crosstalk penalties. Advantages of the system include high capacity, enhanced spectral efficiency, coding gain, and networking functions such as increased security and single-wavelength operation. PMID:27082351

  19. High Speed Flexible Optical Disk with Cylindrically Concaved Stabilizer

    NASA Astrophysics Data System (ADS)

    Aman, Yasutomo; Onagi, Nobuaki; Murata, Shozo; Sugimoto, Yasunori; Koide, Daiichi; Tokumaru, Haruki

    2007-06-01

    We developed a brand-new stabilizer with a cylindrically concaved active surface for a flexible optical disk system. The unique design enabled extremely stable driving of the flexible disk at rotational speeds over 10,000 rpm. We actually demonstrated the driving at rotational speeds of up to 15,000 rpm, the spindle motor limit of our optical disk tester. This highest rotational speed promises a maximum data transfer rate of more than 600 Mbps for the recording density of a Blu-ray Disc. This stable state was achieved using a simple control that just adjusts the relative axial position of the stabilizer against the flexible disk. Once the adjustment was made, high stability was maintained over a wide rotational speed, ranging from 4,000 to 15,000 rpm. In this stable state, the axial runout on the pickup scanning line was suppressed to less than 10 μm at all rotational speeds. By achieving this high performance with simplified stabilizer control, we have come close to putting our system into practical use.

  20. High-speed 32×32 MEMS optical phased array

    NASA Astrophysics Data System (ADS)

    Megens, Mischa; Yoo, Byung-Wook; Chan, Trevor; Yang, Weijian; Sun, Tianbo; Chang-Hasnain, Connie J.; Wu, Ming C.; Horsley, David A.

    2014-03-01

    Optical phased arrays (OPAs) with fast response time are of great interest for various applications such as displays, free space optical communications, and lidar. Existing liquid crystal OPAs have millisecond response time and small beam steering angle. Here, we report on a novel 32×32 MEMS OPA with fast response time (<4 microseconds), large field of view (+/-2°), and narrow beam divergence (0.1°). The OPA is composed of high-contrast grating (HCG) mirrors which function as phase shifters. Relative to beam steering systems based on a single rotating MEMS mirror, which are typically limited to bandwidths below 50 kHz, the MEMS OPA described here has the advantage of greatly reduced mass and therefore achieves a bandwidth over 500 kHz. The OPA is fabricated using deep UV lithography to create submicron mechanical springs and electrical interconnects, enabling a high (85%) fill-factor. Each HCG mirror is composed of only a single layer of polysilicon and achieves >99% reflectivity through the use of a subwavelength grating patterned into the mirror's polysilicon surface. Conventional metal-coated MEMS mirrors must be thick (1- 50 μm) to prevent warpage arising from thermal and residual stress. The single material construction used here results in a high degree of flatness even in a thin 400 nm HCG mirror. Beam steering is demonstrated using binary phase patterns and is accomplished with the help of a closed-loop phase control system based on a phase-shifting interferometer that provides in-situ measurement of the phase shift of each mirror in the array.

  1. Absorption Filter Based Optical Diagnostics in High Speed Flows

    NASA Technical Reports Server (NTRS)

    Samimy, Mo; Elliott, Gregory; Arnette, Stephen

    1996-01-01

    Two major regimes where laser light scattered by molecules or particles in a flow contains significant information about the flow are Mie scattering and Rayleigh scattering. Mie scattering is used to obtain only velocity information, while Rayleigh scattering can be used to measure both the velocity and the thermodynamic properties of the flow. Now, recently introduced (1990, 1991) absorption filter based diagnostic techniques have started a new era in flow visualization, simultaneous velocity and thermodynamic measurements, and planar velocity measurements. Using a filtered planar velocimetry (FPV) technique, we have modified the optically thick iodine filter profile of Miles, et al., and used it in the pressure-broaden regime which accommodates measurements in a wide range of velocity applications. Measuring velocity and thermodynamic properties simultaneously, using absorption filtered based Rayleigh scattering, involves not only the measurement of the Doppler shift, but also the spectral profile of the Rayleigh scattering signal. Using multiple observation angles, simultaneous measurement of one component velocity and thermodynamic properties in a supersonic jet were measured. Presently, the technique is being extended for simultaneous measurements of all three components of velocity and thermodynamic properties.

  2. Nanocomposites for high-speed optical modulators and plasmonic thermal mid-infrared emitters

    NASA Astrophysics Data System (ADS)

    Demir, Veysi

    Demand for high-speed optical modulators and narrow-bandwidth infrared thermal emitters for numerous applications continues to rise and new optical devices are needed to deal with massive data flows, processing powers, and fabrication costs. Conventional techniques are usually hindered by material limitations or electronic interconnects and advances in organic nanocomposite materials and their integration into photonic integrated circuits (PICs) have been acknowledged as a promising alternative to single crystal techniques. The work presented in this thesis uses plasmonic and magneto-optic effects towards the development of novel optical devices for harnessing light and generating high bandwidth signals (>40GHz) at room and cryogenic temperatures (4.2°K). Several publications have resulted from these efforts and are listed at the end of the abstract. In our first published research we developed a narrow-bandwidth mid-infrared thermal emitter using an Ag/dielectric/Ag thin film structure arranged in hexagonal planar lattice structures. PECVD produced nanoamorphous carbon (NAC) is used as a dielectric layer. Spectrally tunable (>2 mum) and narrow bandwidth (<0.5 mum) emission peaks in the range of 4-7 mum were demonstrated by decreasing the resistivity of NAC from 1012 and 109 O.cm with an MoSi2 dopant and increasing the emitter lattice constant from 4 to 7 mum. This technique offers excellent flexibility for developing cost-effective mid-IR sources as compared to costly fiber and quantum cascade lasers (QCLs). Next, the effect of temperature on the Verdet constant for cobalt-ferrite polymer nanocomposites was measured for a series of temperatures ranging from 40 to 200°K with a Faraday rotation polarimeter. No visual change was observed in the films during thermal cycling, and ˜4x improvement was achieved at 40°K. The results are promising and further analysis is merited at 4.2°K to assess the performance of this material for cryogenic magneto-optic modulators

  3. Measurements of speed of response of high-speed visible and IR optical detectors

    NASA Technical Reports Server (NTRS)

    Rowe, H. E.; Osmundson, J. S.

    1972-01-01

    A technique for measuring speed of response of high speed visible and IR optical detectors to mode-locked Nd:YAG laser pulses is described. Results of measurements of response times of four detectors are presented. Three detectors that can be used as receivers in a 500-MHz optical communication system are tested.

  4. High-speed optical packet processing technologies based on novel optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Takenouchi, Hirokazu; Takahashi, Ryo; Takahata, Kiyoto; Nakahara, Tatsushi; Suzuki, Hiroyuki

    2004-10-01

    To cope with the explosive growth of IP traffic, we must increase both the link capacity between nodes and the node throughput. These requirements have stimulated research on photonic networks that use optical technologies. Optical packet switching (OPS) is an attractive solution because it maximizes the use of the network bandwidth. The key functions in achieving such networks include synchronization, label processing, compression/decompression, regeneration, and buffering for high-speed asynchronous optical packets. However, it is impractical to implement such functions by using all-optical approaches. We have proposed a new optoelectronic system composed of a packet-by-packet optical clock-pulse generator (OCG), an all-optical serial-to-parallel converter (SPC), a photonic parallel-to-serial converter (PSC), and CMOS circuitry. The OCG provides a single optical pulse synchronized with the incoming packet, and the SPC carries out a parallel conversion of the incoming packet. The parallel converted data are processed in the smart CMOS circuit, and reconstructed into an optical packet by the photonic PSC. Our system makes it possible to carry out various functions for high-speed asynchronous optical packets. This paper reviews our recent work on high-speed optical packet processing technologies such as buffering, packet compression/decompression, and label swapping, which are key technologies for constructing future OPS networks.

  5. High Speed All Optical Nyquist Signal Generation and Full-band Coherent Detection

    PubMed Central

    Zhang, Junwen; Yu, Jianjun; Fang, Yuan; Chi, Nan

    2014-01-01

    Spectrum efficient data transmission is of key interest for high capacity optical communication systems considering the limited available bandwidth. Transmission of the high speed signal with higher-order modulation formats within the Nyquist bandwidth using coherent detection brings attractive performance advantages. However, high speed Nyquist signal generation with high order modulation formats is challenging. Electrical Nyquist pulse generation is restricted by the limited sampling rate and processor capacities of digital-to-analog convertor devices, while the optical Nyquist signals can provide a much higher symbol rate using time domain multiplexing method. However, most optical Nyquist signals are based on direct detection with simple modulation formats. Here we report the first experimental demonstration of high speed all optical Nyquist signal generation based on Sinc-shaped pulse generation and time-division multiplexing with high level modulation format and full-band coherent detection. Our experiments demonstrate a highly flexible and compatible all optical high speed Nyquist signal generation and detection scheme for future fiber communication systems. PMID:25142269

  6. Nonlinearity mitigation for high-speed optical OFDM transmitters using digital pre-distortion.

    PubMed

    Bao, Yuan; Li, Zhaohui; Li, Jianping; Feng, Xinhuan; Guan, Bai-ou; Li, Guifang

    2013-03-25

    Optical orthogonal frequency-division multiplexing (OOFDM) signal is sensitive to nonlinear distortions induced by optical modulators. We propose and experimentally demonstrate a digital pre-distortion (DPD) algorithm to linearize the optical modulators including electro-absorption modulated lasers (EML) and Mach-Zehnder modulators (MZM) used in high-speed OOFDM transmitters. By using an adaptive DPD algorithm with a learning structure, the inverse transfer function of a modulator, which is based on a polynomial model, has been obtained. In the experiment, the performance improvements with and without considering the memory effects of the DPD model are illustrated. The two typical kinds of high-speed OOFDM signals with a bit rate up to 30-Gb/s have been implemented experimentally. The results show that the nonlinear distortion induced by optical modulators can be compensated by using the DPD algorithm to substantially improve the optical modulation index. PMID:23546119

  7. Nonlinear optical signal processing for high-speed, spectrally efficient fiber optic systems and networks

    NASA Astrophysics Data System (ADS)

    Zhang, Bo

    The past decade has witnessed astounding boom in telecommunication network traffic. With the emergence of multimedia over Internet, the high-capacity optical transport systems have started to shift focus from the core network towards the end users. This trend leads to diverse optical networks with transparency and reconfigurability requirement. As single channel data rate continues to increase and channel spacing continues to shrink for high capacity, high spectral efficiency, the workload on conventional electronic signal processing elements in the router nodes continues to build up. Performing signal processing functions in the optical domain can potentially alleviate the speed bottleneck if the unique optical properties are efficiently leveraged to assist electronic processing methodologies. Ultra-high bandwidth capability along with the promise for multi-channel and format-transparent operation make optical signal processing an attractive technology which is expected to have great impact on future optical networks. For optical signal processing applications in fiber-optic network and systems, a laudable goal would be to explore the unique nonlinear optical processes in novel photonic devices. This dissertation investigates novel optical signal processing techniques through simulations and experimental demonstrations, analyzes limitations of these nonlinear processing elements and proposes techniques to enhance the system performance or designs for functional photonic modules. Two key signal-processing building blocks for future optical networks, namely slow-light-based tunable optical delay lines and SOA-based high-speed wavelength converters, are presented in the first part of the dissertation. Phase preserving and spectrally efficient slow light are experimentally demonstrated using advanced modulation formats. Functional and novel photonic modules, such as multi-channel synchronizer and variable-bit-rate optical time division multiplexer are designed and

  8. InGaAs self-assembly quantum dot for high-speed 1300 nm electroabsorption modulator

    NASA Astrophysics Data System (ADS)

    Lin, Chuan-Han; Wu, Jui-pin; Kuo, Yu-zheng; Chiu, Yi-jen; Tzeng, T. E.; Lay, T. S.

    2011-05-01

    In this paper, a new type of high-speed electroabsorption modulator (EAM) based on quantum dot (QD) p-i-n heterostructure is demonstrated. The QD layers sandwiched by p-AlGaAs and n-AlGaAs are grown by multilayer InGaAs self-assembled QD with luminance wavelength of 1300 nm, serving as the active region of EAM. The photocurrent spectrum measurement exhibits a red shift of 15 nm in QD transition energy levels on biasing from 0 to 6 V. A quadratic relation of energy shift against the reversed bias is extracted, confirming the quantum-confined Stark effect (QCSE) in QD. On fabricating a 300 μm long EAM, as high as DC 5 dB extinction ratio by 6 V voltage swing at 1310 nm is observed. As compared with well-developed quantum well (QW) EAM (well thickness ∼10 nm) of the same length, the lower density of states still shows the same order of magnitude in extinction ratio, suggesting strong QCSE in such 3-dimensional confined QD. An electrical-to-optical conversion with -3 dB bandwidth of 3.3 GHz is also attained in such QD EAM, where the speed is mainly limited by the parasitic capacitance on substrate. It implies that through optimization of QD and device structures, the advantages of QD properties are quite promising to be used in high-speed optoelectronic fields.

  9. Design of spectrometer for high-speed line field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kamal, Mohammad; Narayanswamy, Sivakumar; Packirisamy, Muthukumaran

    2011-08-01

    The quality of the spectrometer affects the sensitivity fall-off, axial resolution, and depth scan range, therefore overall performance of the spectral domain optical coherence tomography (SD-OCT) imaging. Chromatic aberration, optical resolution, and detector array resolution are the key design consideration for high-quality OCT spectrometer. Traditionally refractive optics spectrometer is used in SD-OCT. In the present work, the optical design of the reflective optics spectrometer and of the refractive optics spectrometers is reported for high-speed line field optical coherence tomography imaging. The performance of the spectrometers was compared by using the ZEMAX optical design software. The ZEMAX optical modeling analysis shows that the reflective optics spectrometer provides better performance by comparison with the refractive optics spectrometer.

  10. High-speed analog fiber-optic link for electromagnetic interference suppression in infrared power measurement

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Strauch, Stefanie; Horton, Robert; Evans, Russell; Hwang, David

    2011-08-01

    Electromagnetic interference (EMI) is a common problem in a high-power pulsed infrared laser measurement. In order to eliminate susceptibility to radiated EMI, we developed, tested and implemented an infrared power measurement system using a high-speed analog fiber-optic link. Key components are commercially available parts designed for high-speed digital data transmission, but can be operated in analog mode. We successfully utilized the system for time-resolved measurements of high-power transversely-excited atmospheric-pressure CO2 lasers in amplifier and oscillator configurations. This paper presents experimental setup, testing results, and the details of the laser power measurements results.

  11. An optical system for detecting 3D high-speed oscillation of a single ultrasound microbubble

    PubMed Central

    Liu, Yuan; Yuan, Baohong

    2013-01-01

    As contrast agents, microbubbles have been playing significant roles in ultrasound imaging. Investigation of microbubble oscillation is crucial for microbubble characterization and detection. Unfortunately, 3-dimensional (3D) observation of microbubble oscillation is challenging and costly because of the bubble size—a few microns in diameter—and the high-speed dynamics under MHz ultrasound pressure waves. In this study, a cost-efficient optical confocal microscopic system combined with a gated and intensified charge-coupled device (ICCD) camera were developed to detect 3D microbubble oscillation. The capability of imaging microbubble high-speed oscillation with much lower costs than with an ultra-fast framing or streak camera system was demonstrated. In addition, microbubble oscillations along both lateral (x and y) and axial (z) directions were demonstrated. Accordingly, this system is an excellent alternative for 3D investigation of microbubble high-speed oscillation, especially when budgets are limited. PMID:24049677

  12. Rad-Tolerant, Thermally Stable, High-Speed Fiber-Optic Network for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Leftwich, Matt; Hull, Tony; Leary, Michael; Leftwich, Marcus

    2013-01-01

    Future NASA destinations will be challenging to get to, have extreme environmental conditions, and may present difficulty in retrieving a spacecraft or its data. Space Photonics is developing a radiation-tolerant (rad-tolerant), high-speed, multi-channel fiber-optic transceiver, associated reconfigurable intelligent node communications architecture, and supporting hardware for intravehicular and ground-based optical networking applications. Data rates approaching 3.2 Gbps per channel will be achieved.

  13. Quantum witness of high-speed low-noise single-photon detection.

    PubMed

    Zhao, Lin; Huang, Kun; Liang, Yan; Chen, Jie; Shi, Xueshun; Wu, E; Zeng, Heping

    2015-12-14

    We demonstrate high-speed and low-noise near-infrared single-photon detection by using a capacitance balancing circuit to achieve a high spike noise suppression for an InGaAs/InP avalanche photodiode. The single-photon detector could operate at a tunable gate repetition rate from 10 to 60 MHz. A peak detection efficiency of 34% has been achieved with a dark count rate of 9 × 10⁻³ per gate when the detection window was set to 1 ns. Additionally, quantum detector tomography has also been performed at 60 MHz of repetition rate and for the detection window of 1 ns, enabling to witness the quantum features of the detector with the help of a negative Wigner function. By varying the bias voltage of the detector, we further demonstrated a transition from the full-quantum to semi-classical regime. PMID:26698977

  14. High speed all-optical PRBS generation using binary phase shift keyed signal based on QD-SOA

    NASA Astrophysics Data System (ADS)

    Li, Wenbo; Hu, Hongyu; Dutta, Niloy K.

    2014-09-01

    A scheme to generate return-to-zero on-off keying (RZ-OOK) high speed all-optical pseudo random bit sequence (PRBS) using binary phase shift keyed (BPSK) signal based on quantum-dot semiconductor optical amplifiers (QD-SOA) has been designed and studied. The PRBS is generated by a linear feedback shift register (LFSR) composed of all-optical logic XOR and AND gates. The XOR gate is composed of a pair of QD SOA Mach-Zehnder interferometers, which can generate BSPK signal to realize all-optical logic XOR gate. Results show that this scheme can mitigate the patterning effects and increase the operation speed to ~250Gb/s.

  15. High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.

    2016-03-01

    Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.

  16. Fiber Fabry-Perot tunable filter for high-speed optical packet switching

    SciTech Connect

    Taranenko, N.L.; Tenbrink, S.C.; Hsu, K.; Miller, C.M.

    1997-01-01

    Tunable optical filters are important building blocks for All-Optical systems and networks. Fast optical tuning in several microseconds is necessary to perform high-speed optical packet switching. Multi- Gigabit/sec packet-switching will provide flexibility and higher network throughput when large numbers of users communicate simultaneously. One approach to achieve fast wavelength tuning is to use high-speed piezoelectrically-driven Fiber Fabry-Perot tunable filters (FFP-TFs). The requirement for tuning in microseconds raises a whole new set of challenges, such as ringing, thermostability and mechanical inertia control. It was shown that correlation between the mechanical resonance and optical response of the filter is important for the filter`s speed and for mounting hardware and control circuitry optimization. These features together with the FFP-TF`s high capacitance (approximately 0.25-0.5 microfarad) are being folded into building a special controller to substantially improve the shape of the driving signal and the response of the filter. The resultant controller enables tuning the high-speed FFP-TF three-orders-of- magnitude faster than that possible with standard commercial FFP-TFS. The fastest switching time achieved is 2.5 microseconds. As the result, a new packet-switched media access control protocol is being designed to minimize the searching time. The filter scans only once through the entire optical region and then tunes to all the required channels one after another in a few microseconds. It can help update Rainbow-2 Broadcast-and-Select High-Speed Wavelength Division Multiplexing All-Optical network that currently has a circuit- switched protocol using standard FFP-TFS.

  17. High-speed, room-temperature quantum cascade detectors at 4.3 μm

    NASA Astrophysics Data System (ADS)

    Zhou, Yuhong; Zhai, Shenqiang; Wang, Fengjiao; Liu, Junqi; Liu, Fengqi; Liu, Shuman; Zhang, Jinchuan; Zhuo, Ning; Wang, Lijun; Wang, ZhanGuo

    2016-03-01

    We present high-speed, room-temperature operated 4.3 μm quantum cascade detectors. The devices are processed as square mesas with 50 Ω coplanar access line and air-bridge connector. The high frequency features are explored using microwave rectification technique and a RLC circuit model. The -3 dB cutoff frequency is experimentally 9 GHz and 4 GHz for 20×20 μm2 and 50×50 μm2 detectors, respectively. The equivalent circuit analysis shows that a second order filter feature governs the devices. Higher cutoff frequency can be achieved by eliminate the parasitics further.

  18. High-speed dual-wavelength optical polarimetry for glucose sensing

    NASA Astrophysics Data System (ADS)

    Grunden, Daniel T.; Pirnstill, Casey W.; Coté, Gerard L.

    2014-02-01

    Optical polarimetry in the anterior chamber of the eye has emerged as a potential technique to non-invasively measure glucose levels for diabetes. Time varying corneal birefringence due to eye motion artifact confounds the optical signal ultimately limiting the polarimetric technique from accurately predicting glucose concentrations. In this study, a high speed dual-wavelength optical polarimetric approach was developed and in vitro phantom studies were performed with and without motion. The glucose concentrations ranged from 0-600 mg/dL at 100 mg/dL increments. The polarimeter produced glucose measurements with less than a 10 msec stabilization time and yielding standard errors of less than 10 mg/dL without motion and standard errors less than 26 mg/dL with motion. The results indicate a high speed dual-wavelength polarimetric approach has the potential to be used for non-invasive glucose measurements.

  19. Thermal/structural/optical integrated design for optical window of a high-speed aerial optical camera

    NASA Astrophysics Data System (ADS)

    Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Shi, Kui; Wu, Dengshan; Qiao, Mingrui

    2015-10-01

    In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 149.6 nm, which is under PV <=1 4λ .The simulation result meets the requirements of optical design very well. The above study can be used as an important reference for other optical window designs.

  20. Optical performance monitoring in high-speed optical fiber communication systems

    NASA Astrophysics Data System (ADS)

    Yu, Changyuan; Yang, Jing; Hu, Junhao; Zhang, Banghong

    2011-11-01

    Optical performance monitoring (OPM) becomes an attractive topic as the rapid growth of data rate in optical communication networks. It provides improved operation of the high capacity optical transmission systems. Among the various impairments, chromatic dispersion (CD) is one of major factors limiting the transmission distance in high-speed communication systems. Polarization-mode dispersion (PMD) also becomes a degrading effect in the system with data rate larger than 40 Gbit/s. In this paper, we summarize several CD and PMD monitoring methods based on RF spectrum analysis and delay-tap sampling. By using a narrow band fiber Bragg grating (FBG) notch filter, centered at 10 GHz away from the optical carrier, 10-GHz RF power can be used as a CD-insensitive PMD monitoring signal. By taking the 10-GHz RF power ratio of non-filtered and filtered signal, PMD-insensitive CD monitoring can be achieved. If the FBG notch filter is placed at optical carrier, the RF clock power ratio between non-filtered and filtered signal is also a PMDinsensitive CD monitoring parameter, which has larger RF power dynamic range and better measurement resolution. Both simulation and experiment results show that the proposed methods are efficient on measuring CD and PMD values in 57-Gbit/s D8PSK systems. Delay-tap sampling is another efficient method of measuring residual CD. Amplitude ratio of asynchronous delay-tap sampling plot decreases with CD monotonously, and the amplitude ratio can be obtained by using low bandwidth balanced receiver. The simulated results show that our method is efficient on residual CD measurement in 50-Gbit/s 50% RZ DQPSK systems with a 12-GHz balanced receiver. Since no modification on the transmitter or receiver is required, the proposed scheme is simple and cost effective.

  1. High-speed Light Peak optical link for high energy applications

    NASA Astrophysics Data System (ADS)

    Chang, F. X.; Chiang, F.; Deng, B.; Hou, J.; Hou, S.; Liu, C.; Liu, T.; Teng, P. K.; Wang, C. H.; Xu, T.; Ye, J.

    2014-11-01

    Optical links provide high speed data transmission with low mass fibers favorable for applications in high energy experiments. We report investigation of a compact Light Peak optical engine designed for data transmission at 4.8 Gbps. The module is assembled with bare die VCSEL, PIN diodes and a control IC aligned within a prism receptacle for light coupling to fiber ferrule. Radiation damage in the receptacle was examined with 60Co gamma ray. Radiation induced single event effects in the optical engine were studied with protons, neutrons and X-ray tests.

  2. System and method that suppresses intensity fluctuations for free space high-speed optical communication

    DOEpatents

    Berman, Gennady P.; Bishop, Alan R.; Nguyen, Dinh C.; Chernobrod, Boris M.; Gorshkov, Vacheslav N.

    2009-10-13

    A high-speed (Gbps), free space optical communication system is based on spectral encoding of radiation from a wide band light source, such as a laser. By using partially coherent laser beams in combination with a relatively slow photosensor, scintillations can be suppressed by orders of magnitude for distances of more than 10 km. To suppress the intensity fluctuations due to atmospheric turbulence, a source with partial transverse coherence in combination with slow response time photodetector is used. Information is encoded in the spectral domain of a wideband optical source by modulation of spectral amplitudes. A non-coherent light source with wide spectrum (an LED, for example) may be used for high-speed communication over short (less than about a mile) distances.

  3. Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Götzinger, Erich; Pircher, Michael; Baumann, Bernhard; Schmoll, Tilman; Sattmann, Harald; Leitgeb, Rainer A.; Hitzenberger, Christoph K.

    2011-07-01

    We present a high speed polarization sensitive spectral domain optical coherence tomography system based on polarization maintaining fibers and two high speed CMOS line scan cameras capable of retinal imaging with up to 128 k A-lines/s. This high imaging speed strongly reduces motion artifacts and therefore averaging of several B-scans is possible, which strongly reduces speckle noise and improves image quality. We present several methods for averaging retardation and optic axis orientation, the best one providing a 5 fold noise reduction. Furthermore, a novel scheme of calculating images of degree of polarization uniformity is presented. We quantitatively compare the noise reduction depending on the number of averaged frames and discuss the limits of frame numbers that can usefully be averaged.

  4. Design and implementation of interface units for high speed fiber optics local area networks and broadband integrated services digital networks

    NASA Technical Reports Server (NTRS)

    Tobagi, Fouad A.; Dalgic, Ismail; Pang, Joseph

    1990-01-01

    The design and implementation of interface units for high speed Fiber Optic Local Area Networks and Broadband Integrated Services Digital Networks are discussed. During the last years, a number of network adapters that are designed to support high speed communications have emerged. This approach to the design of a high speed network interface unit was to implement package processing functions in hardware, using VLSI technology. The VLSI hardware implementation of a buffer management unit, which is required in such architectures, is described.

  5. Optical knife-edge displacement sensor for high-speed atomic force microscopy

    SciTech Connect

    Braunsmann, Christoph; Schäffer, Tilman E.; Prucker, Veronika

    2014-03-10

    We show that an optical knife-edge technique can be used to detect the parallel shift of an object with sub-nanometer resolution over a wide bandwidth. This allows to design simple, contact-free, and high-speed displacement sensors that can be implemented in high-speed atomic force microscope scanners. In an experimental setup, we achieved a root-mean-square sensor noise of 0.8 nm within a bandwidth from 1 Hz to 1.1 MHz. We used this sensor to detect and correct the nonlinear z-piezo displacement during force curves acquired with rates of up to 5 kHz. We discuss the fundamental resolution limit and the linearity of the sensor.

  6. Large motion high cycle high speed optical fibers for space based applications.

    SciTech Connect

    Stromberg, Peter G.; Tandon, Rajan; Gibson, Cory S; Reedlunn, Benjamin; Rasberry, Roger David; Rohr, Garth David

    2014-10-01

    Future remote sensing applications will require higher resolution and therefore higher data rates (up to perhaps 100 gigabits per second) while achieving lower mass and cost. A current limitation to the design space is high speed high bandwidth data does not cross movable gimbals because of cabling issues. This requires the detectors to be off gimbal. The ability to get data across the gimbal would open up efficiencies in designs where the detectors and the electronics can be placed anywhere on the system. Fiber optic cables provide light weight high speed high bandwidth connections. Current options are limited to 20,000 cycles as opposed to the 1,000,000 cycles needed for future space based applications. To extend this to the million+ regime, requires a thorough understanding of the failure mechanisms and the materials, proper selection of materials (e.g., glass and jacket material) allowable geometry changes to the cable, radiation hardness, etc.

  7. Perfect Optical Compensator With 1:1 Shutter Ratio Used For High Speed Camera

    NASA Astrophysics Data System (ADS)

    Zhihong, Rong

    1983-03-01

    An optical compensator used for high speed camera is described. The method of compensation, the analysis of the imaging quality and the result of experiment are introduced. The compensator consists of pairs of parallel mirrors. It can perform perfect compensation even at 1:1 shutter ratio. Using this compensator a high speed camera can be operated with no shutter and can obtain the same image sharpness as that of the intermittent camera. The advantages of this compensator are summarized as follows: . While compensating, the aberration correction of the objective would not be damaged. . There is no displacement and defocussing between the scanning image and the film in frame center during compensation. Increasing the exposure angle doesn't reduce the resolving power. . The compensator can also be used in the projector in place of the intermittent mechanism to practise continuous (non-intermittent) projection without shutter.

  8. High-speed integrated optical logic based on the protein bacteriorhodopsin.

    PubMed

    Mathesz, Anna; Fábián, László; Valkai, Sándor; Alexandre, Daniel; Marques, Paulo V S; Ormos, Pál; Wolff, Elmar K; Dér, András

    2013-08-15

    The principle of all-optical logical operations utilizing the unique nonlinear optical properties of a protein was demonstrated by a logic gate constructed from an integrated optical Mach-Zehnder interferometer as a passive structure, covered by a bacteriorhodopsin (bR) adlayer as the active element. Logical operations were based on a reversible change of the refractive index of the bR adlayer over one or both arms of the interferometer. Depending on the operating point of the interferometer, we demonstrated binary and ternary logical modes of operation. Using an ultrafast transition of the bR photocycle (BR-K), we achieved high-speed (nanosecond) logical switching. This is the fastest operation of a protein-based integrated optical logic gate that has been demonstrated so far. The results are expected to have important implications for finding novel, alternative solutions in all-optical data processing research. PMID:23500476

  9. Three-dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography

    PubMed Central

    Wojtkowski, Maciej; Srinivasan, Vivek; Fujimoto, James G.; Ko, Tony; Schuman, Joel S.; Kowalczyk, Andrzej; Duker, Jay S.

    2007-01-01

    Purpose To demonstrate high-speed, ultrahigh-resolution, 3-dimensional optical coherence tomography (3D OCT) and new protocols for retinal imaging. Methods Ultrahigh-resolution OCT using broadband light sources achieves axial image resolutions of ~2 μm compared with standard 10-μm-resolution OCT current commercial instruments. High-speed OCT using spectral/Fourier domain detection enables dramatic increases in imaging speeds. Three-dimensional OCT retinal imaging is performed in normal human subjects using high-speed ultrahigh-resolution OCT. Three-dimensional OCT data of the macula and optic disc are acquired using a dense raster scan pattern. New processing and display methods for generating virtual OCT fundus images; cross-sectional OCT images with arbitrary orientations; quantitative maps of retinal, nerve fiber layer, and other intraretinal layer thicknesses; and optic nerve head topographic parameters are demonstrated. Results Three-dimensional OCT imaging enables new imaging protocols that improve visualization and mapping of retinal microstructure. An OCT fundus image can be generated directly from the 3D OCT data, which enables precise and repeatable registration of cross-sectional OCT images and thickness maps with fundus features. Optical coherence tomography images with arbitrary orientations, such as circumpapillary scans, can be generated from 3D OCT data. Mapping of total retinal thickness and thicknesses of the nerve fiber layer, photoreceptor layer, and other intraretinal layers is demonstrated. Measurement of optic nerve head topography and disc parameters is also possible. Three-dimensional OCT enables measurements that are similar to those of standard instruments, including the StratusOCT, GDx, HRT, and RTA. Conclusion Three-dimensional OCT imaging can be performed using high-speed ultrahigh-resolution OCT. Three-dimensional OCT provides comprehensive visualization and mapping of retinal microstructures. The high data acquisition speeds enable

  10. Computed optical interferometric tomography for high-speed volumetric cellular imaging.

    PubMed

    Liu, Yuan-Zhi; Shemonski, Nathan D; Adie, Steven G; Ahmad, Adeel; Bower, Andrew J; Carney, P Scott; Boppart, Stephen A

    2014-09-01

    Three-dimensional high-resolution imaging methods are important for cellular-level research. Optical coherence microscopy (OCM) is a low-coherence-based interferometry technology for cellular imaging with both high axial and lateral resolution. Using a high-numerical-aperture objective, OCM normally has a shallow depth of field and requires scanning the focus through the entire region of interest to perform volumetric imaging. With a higher-numerical-aperture objective, the image quality of OCM is affected by and more sensitive to aberrations. Interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO) are computed imaging techniques that overcome the depth-of-field limitation and the effect of optical aberrations in optical coherence tomography (OCT), respectively. In this work we combine OCM with ISAM and CAO to achieve high-speed volumetric cellular imaging. Experimental imaging results of ex vivo human breast tissue, ex vivo mouse brain tissue, in vitro fibroblast cells in 3D scaffolds, and in vivo human skin demonstrate the significant potential of this technique for high-speed volumetric cellular imaging. PMID:25401012

  11. Computed optical interferometric tomography for high-speed volumetric cellular imaging

    PubMed Central

    Liu, Yuan-Zhi; Shemonski, Nathan D.; Adie, Steven G.; Ahmad, Adeel; Bower, Andrew J.; Carney, P. Scott; Boppart, Stephen A.

    2014-01-01

    Three-dimensional high-resolution imaging methods are important for cellular-level research. Optical coherence microscopy (OCM) is a low-coherence-based interferometry technology for cellular imaging with both high axial and lateral resolution. Using a high-numerical-aperture objective, OCM normally has a shallow depth of field and requires scanning the focus through the entire region of interest to perform volumetric imaging. With a higher-numerical-aperture objective, the image quality of OCM is affected by and more sensitive to aberrations. Interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO) are computed imaging techniques that overcome the depth-of-field limitation and the effect of optical aberrations in optical coherence tomography (OCT), respectively. In this work we combine OCM with ISAM and CAO to achieve high-speed volumetric cellular imaging. Experimental imaging results of ex vivo human breast tissue, ex vivo mouse brain tissue, in vitro fibroblast cells in 3D scaffolds, and in vivo human skin demonstrate the significant potential of this technique for high-speed volumetric cellular imaging. PMID:25401012

  12. A hybrid high-speed atomic force-optical microscope for visualizing single membrane proteins on eukaryotic cells

    NASA Astrophysics Data System (ADS)

    Colom, Adai; Casuso, Ignacio; Rico, Felix; Scheuring, Simon

    2013-07-01

    High-speed atomic force microscopy is a powerful tool for studying structure and dynamics of proteins. So far, however, high-speed atomic force microscopy was restricted to well-controlled molecular systems of purified proteins. Here we integrate an optical microscopy path into high-speed atomic force microscopy, allowing bright field and fluorescence microscopy, without loss of high-speed atomic force microscopy performance. This hybrid high-speed atomic force microscopy/optical microscopy setup allows positioning of the high-speed atomic force microscopy tip with high spatial precision on an optically identified zone of interest on cells. We present movies at 960 ms per frame displaying aquaporin-0 array and single molecule dynamics in the plasma membrane of intact eye lens cells. This hybrid setup allows high-speed atomic force microscopy imaging on cells about 1,000 times faster than conventional atomic force microscopy/optical microscopy setups, and allows first time visualization of unlabelled membrane proteins on a eukaryotic cell under physiological conditions. This development advances high-speed atomic force microscopy from molecular to cell biology to analyse cellular processes at the membrane such as signalling, infection, transport and diffusion.

  13. Hard plastic cladding fiber (HPCF) based optical components for high speed short reach optical communications

    NASA Astrophysics Data System (ADS)

    Kim, Jun Ki; Kim, Dong Uk; Kim, Tae Young; Park, Chang Soo; Oh, Kyunghwan

    2006-09-01

    We developed the primary components applicable to HPCF links for short reach (SR) and very short reach (VSR) data communication systems. We fabricated 4x4 HPCF fused taper splitter, HPCF pigtailed VCSEL and PIN photodiode for high speed short reach communications and characterized back to back transmission performance of the link composed of these components by measuring eye diagrams and jitters. Adapting the fusion-tapering technique for glass optical fiber, we successfully fabricated a 4x4 HPCF fused taper coupler. The HPCF with a core diameter of 200μm and an outer diameter of 230μm had step refractive index of 1.45 and 1.40 for the core and the clad. The optimized fusion length and tapering waist which make minimum insertion loss of about 7dB and uniform output power splitting ratio with less than 0.5dB are 13mm and 150µm, respectively. As a light source for VSR networks, we chose a vertical cavity surface emitting laser (VCSEL) and developed a package with a HPCF pigtail. After positioning VCSEL and HPCF that made a minimum coupling loss, we glued the HPCF inside ceramic ferrule housing. In HPCF-PIN PD packaging, we added a micro polymer lens tip onto the HPCF ends to match the mode field area to the sensitive area of GaAs or InGaAs PIN PD. Coupling between a PIN PD chip and the lensed HPCF was optimized with the radius of curvature of 156µm with a low coupling loss of 0.3dB, which is compatible to conventional MMF-PD packaging. For 1.25 Gbps data rate, the eyes adequate to eye mask in gigabit Ethernet were wide open after all HPCF transmission link and no significant power penalty was observed.

  14. Optical signal processing for enabling high-speed, highly spectrally efficient and high capacity optical systems

    NASA Astrophysics Data System (ADS)

    Fazal, Muhammad Irfan

    may be possible. Recently, interest has increased in exploring the spatial dimension of light to increase capacity, both in fiber as well as free-space communication channels. The orbital angular momentum (OAM) of light, carried by Laguerre-Gaussian (LG) beams have the interesting property that, in theory, an infinite number of OAMs can be transmitted; which due to its inherent orthogonality will not affect each other. Thus, in theory, one can increase the channel capacity arbitrarily. However, in practice, the device dimensions will reduce the number of OAMs used. In addition to advanced modulation formats, it is expected that optical signal processing may play a role in the future development of more efficient optical transmission systems. The hope is that performing signal processing in the optical domain may reduce optical-to-electronic conversion inefficiencies, eliminate bottlenecks and take advantage of the ultrahigh bandwidth inherent in optics. While 40 to 50 Gbit/s electronic components are the peak of commercial technology and 100 Gbit/s capable RF components are still in their infancy, optical signal processing of these high-speed data signals may provide a potential solution. Furthermore, any optical processing system or sub-system must be capable of handling the wide array of data formats and data rates that networks may employ. The work presented in this Ph.D. dissertation attempts at addressing the issue of optical processing for advanced optical modulation formats, and particularly explores the state of the art in increasing the capacity of an optical link by a combination of wavelength/phase/polarization/OAM dimensions of light. Spatial multiplexing and demultiplexing of both coherently and directly detected signals at the 100 Gbit/s Ethernet standard is addressed. The application of a continuously tunable all-optical delay for all-optical functionality like time-slot interchange at high data-rates is presented. Moreover the interplay of chirp

  15. Performance improvement in high-speed random accessibility of Brillouin optical correlation domain analysis

    NASA Astrophysics Data System (ADS)

    Kohno, Yuta; Kishi, Masato; Hotate, Kazuo

    2016-05-01

    Brillouin Optical Correlation Domain Analysis (BOCDA) offers high speed random accessibility along a sensing fiber, because it can localize stimulated Brillouin scattering at an arbitrary fiber position. By using this function, simultaneous dynamic strain measurement at arbitrary selected multiple points along the fiber was achieved. However, measurement accuracy was restricted due to performance limitation of lock-in-amplifier in the system. This paper reports a new system which uses I/Q demodulator instead of the lock-in-amplifier. Measurement accuracy was improved.

  16. Laboratory test results of the high speed optical tracking system for the Spaceborne Geodynamic Ranging System

    NASA Astrophysics Data System (ADS)

    Zagwodzki, Thomas W.; White, David L.

    1987-02-01

    The high speed, high resolution optical tracking system for the Spaceborne Geodynamic Ranging System employs a two-axis gimbaled pointing device that can operate from a Space Shuttle platform and can track multiple retroreflector ground targets with arcsec accuracy. Laboratory tests of the stepping characteristics of the pointing system for various step sizes and directions has shown arcsec repeatability with little wasted motion, overshoot, or ringing. The worst rms tracking jitter was 1 and 2 arcsec in the roll and pitch axes, respectively, at the maximum tracking rate of 2 deg/sec.

  17. Optical fiber imaging for high speed plasma motion diagnostics: applied to low voltage circuit breakers.

    PubMed

    McBride, J W; Balestrero, A; Ghezzi, L; Tribulato, G; Cross, K J

    2010-05-01

    An integrated portable measurement system is described for the study of high speed and high temperature unsteady plasma flows such as those found in the vicinity of high current switching arcs. An array of optical fibers allows the formation of low spatial resolution images, with a maximum capture rate of 1 x 10(6) images per second (1 MHz), with 8 bit intensity resolution. Novel software techniques are reported to allow imaging of the arc; and to measure arc trajectories. Results are presented on high current (2 kA) discharge events in a model test fixture and on the application to a commercial low voltage circuit breaker. PMID:20515174

  18. Laboratory test results of the high speed optical tracking system for the Spaceborne Geodynamic Ranging System

    NASA Technical Reports Server (NTRS)

    Zagwodzki, Thomas W.; White, David L.

    1987-01-01

    The high speed, high resolution optical tracking system for the Spaceborne Geodynamic Ranging System employs a two-axis gimbaled pointing device that can operate from a Space Shuttle platform and can track multiple retroreflector ground targets with arcsec accuracy. Laboratory tests of the stepping characteristics of the pointing system for various step sizes and directions has shown arcsec repeatability with little wasted motion, overshoot, or ringing. The worst rms tracking jitter was 1 and 2 arcsec in the roll and pitch axes, respectively, at the maximum tracking rate of 2 deg/sec.

  19. FOCEX: A fiber-optic extender for a high speed parallel RS485 data cable

    NASA Astrophysics Data System (ADS)

    Meadows, J. T.; Anderson, J. T.; Cooper, P. S.; Engelfried, J.; Franzen, J. W.; Forster, B. G.; Levinson, F.; Rawls, J.; Haber, S.

    1995-05-01

    For longer-distant, high speed data links, optical fiber becomes most cost-effective than copper or other hard wire cable systems. Fermilab supplied to Finisar Corp. of Menlo Park, CA, a set of specifications for card functions, sizes and interconnector pin assignments. Finisar designed and assembled a set of fiber optical P.C. cards using 100 megabyte/sec commercial optoelectronics and a serialization and deserialization HOT-ROD chipset designed by GAZELLE Microcircuits, Inc. (A Tri Quint Semiconductors company). The cooperative effort between Fermilab and Finisar has allowed Fermilab to created a reliable 50 Megabytes/sec (40 bit parallel RS485 DART data bus) cable to cable extender using a virtually invisible Fiber Channel point-to-point(FC-0) fiber optical single-simplex system. The system is easily capable of sustaining a 50 megabytes/sec of data, control and status line throughput at distances of 1625 feet (500 meters) using standard multi-mode fiber.

  20. High speed QPPM direct detection optical communication receivers for FSDD intersatellite links

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli

    1993-01-01

    This final report consists of four separate reports, one for each project involved in this contract. The first report is entitled '325 Mbps QPPM (quaternary pulse position modulation) Direct Detection Free Space Optical Communication Encoder and Receiver,' which was our primary work. The second report is entitled 'Test Results of the 325 Mbps QPPM High Speed Data Transmission GaAs ASICs,' which describes our work in connection with Galaxy Microsystems, Inc. who produced these ASICs for NASA. The third report, 'Receiver Performance Analysis of BPPM Optical Communication Systems Using 1.3 micron Wavelength Transmitter and InGaAs PIN Photodiodes,' was prepared at the request of the NASA/Photonics Branch for their efforts in upgrading the 1773 optical fiber data bus. The fourth report, 'Photomultiplier Tubes for Use at 1.064 micron Wavelength,' was also prepared at the request of the NASA/Photonics Branch as a research project.

  1. Experimental demonstration of high-speed free-space reconfigurable card-to-card optical interconnects.

    PubMed

    Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios; Alameh, Kamal

    2013-02-11

    In this paper, we experimentally demonstrate a high-speed free-space reconfigurable card-to-card optical interconnect architecture employing MEMS-based steering mirror arrays for simple and efficient link selection. A printed-circuit-board (PCB) based interconnect module is developed and 3 × 10 Gb/s reconfigurable card-to-card optical interconnect with a bit-error-rate (BER) of ~10(-6) for up to 30 cm is realized using a 250 μm pitch-size micro-lens array. In addition, due to the usage of MEMS steering-mirrors, larger lenses can be employed at the receiver side for collecting stronger optical signal power to increase the achievable interconnect range or to improve the BER performance. Experimental results show that with 1-mm diameter lenses the interconnect distance can exceed 80 cm. PMID:23481743

  2. FOCEX: A fiber-optic extender for a high speed parallel RS485 data cable

    SciTech Connect

    Meadows, J.T.; Anderson, J.T.; Cooper, P.S.; Engelfried, J.; Franzen, J.W.; Forster, B.G.; Levinson, F.; Rawls, J.; Haber, S.

    1995-05-01

    For longer-distant, high speed data links, optical fibre becomes most cost-effective than copper or other hard wire cable systems. Fermilab supplied to Finisar Corp. of Menlo Park, CA., a set of specifications for card functions, sizes and interconnector pin assignments. Finisar designed and assembled a set of fiber optical P.C. cards using 100 megabyte/sec commercial optoelectronics and a serialization and deserialization HOT-ROD chipset designed by GAZELLE Microcircuits, Inc. (A Tri Quint Semiconductors company). The cooperative effort between Fermilab and Finisar has allowed Fermilab to created a reliable 50 Megabytes/sec (40 bit parallel RS485 DART data bus) cable to cable extender using a virtually invisible Fiber Channel point-to-point(FC-0) fiber optical single-simplex system. The system is easily capable of sustaining a 50 megabytes/sec of data, control and status line throughput at distances of 1625 feet (500 meters) using standard multi-mode fiber.

  3. A frequency and sensitivity tunable microresonator array for high-speed quantum processor readout

    NASA Astrophysics Data System (ADS)

    Whittaker, J. D.; Swenson, L. J.; Volkmann, M. H.; Spear, P.; Altomare, F.; Berkley, A. J.; Bumble, B.; Bunyk, P.; Day, P. K.; Eom, B. H.; Harris, R.; Hilton, J. P.; Hoskinson, E.; Johnson, M. W.; Kleinsasser, A.; Ladizinsky, E.; Lanting, T.; Oh, T.; Perminov, I.; Tolkacheva, E.; Yao, J.

    2016-01-01

    Superconducting microresonators have been successfully utilized as detection elements for a wide variety of applications. With multiplexing factors exceeding 1000 detectors per transmission line, they are the most scalable low-temperature detector technology demonstrated to date. For high-throughput applications, fewer detectors can be coupled to a single wire but utilize a larger per-detector bandwidth. For all existing designs, fluctuations in fabrication tolerances result in a non-uniform shift in resonance frequency and sensitivity, which ultimately limits the efficiency of bandwidth utilization. Here, we present the design, implementation, and initial characterization of a superconducting microresonator readout integrating two tunable inductances per detector. We demonstrate that these tuning elements provide independent control of both the detector frequency and sensitivity, allowing us to maximize the transmission line bandwidth utilization. Finally, we discuss the integration of these detectors in a multilayer fabrication stack for high-speed readout of the D-Wave quantum processor, highlighting the use of control and routing circuitry composed of single-flux-quantum loops to minimize the number of control wires at the lowest temperature stage.

  4. High-speed polarization-sensitive optical coherence tomography for the investigation of tissue birefringence

    NASA Astrophysics Data System (ADS)

    Gulsen, Gultekin; Nalcioglu, Orhan

    2005-04-01

    Polarization-sensitive optical coherence tomography (PSOCT) is an optical imaging modality that is sensitive to the birefringence properties of tissues. Birefringence is related to various biological components and therefore, polarization can provide novel contrast mechanisms for imaging. In this work, we will describe the design of a high-speed polarization sensitive optical coherence tomography system. A broadband source centered at 1310nm with 35nm bandwidth was utilized as the light source. The output power of the source and the resolution of the system were around 20mW and ~20 micrometers, respectively. To achieve high-speed scan, a rapid scan optical delay line (RSOD) was utilized in the reference arm. It provided depth scanning up to 1000 A-scan/s and controlled the carrier frequency of the interference of fridge pattern. Two galvo-mounted mirrors were used for lateral scanning of the beam. The polarization state of the incident light was altered between horizontal and vertical states by using a fast polarization rotator. The combined light from the reference and the sample arms was split into two orthogonal polarization components by a polarizing beam splitter and coupled into two single-mode optical fibers that are connected to the photodiodes. The roundtrip Jones matrix of the sample arm was measured and used to calibrate the measurements of polarization properties of the sample. The elements of the Jones matrix of the sample were calculated by the using the output Jones vectors for the incident polarization states. The performance of the system was evaluated with standard samples such as a quarter-wave plate. The animal studies are currently undertaken to assess the performance of the system in-vivo.

  5. High-Power, High-Speed Electro-Optic Pockels Cell Modulator

    NASA Technical Reports Server (NTRS)

    Hawthorne, Justin; Battle, Philip

    2013-01-01

    Electro-optic modulators rely on a change in the index of refraction for the optical wave as a function of an applied voltage. The corresponding change in index acts to delay the wavefront in the waveguide. The goal of this work was to develop a high-speed, high-power waveguide- based modulator (phase and amplitude) and investigate its use as a pulse slicer. The key innovation in this effort is the use of potassium titanyl phosphate (KTP) waveguides, making the highpower, polarization-based waveguide amplitude modulator possible. Furthermore, because it is fabricated in KTP, the waveguide component will withstand high optical power and have a significantly higher RF modulation figure of merit (FOM) relative to lithium niobate. KTP waveguides support high-power TE and TM modes - a necessary requirement for polarization-based modulation as with a Pockels cell. High-power fiber laser development has greatly outpaced fiber-based modulators in terms of its maturity and specifications. The demand for high-performance nonlinear optical (NLO) devices in terms of power handling, efficiency, bandwidth, and useful wavelength range has driven the development of bulk NLO options, which are limited in their bandwidth, as well as waveguide based LN modulators, which are limited by their low optical damage threshold. Today, commercially available lithium niobate (LN) modulators are used for laser formatting; however, because of photorefractive damage that can reduce transmission and increase requirements on bias control, LN modulators cannot be used with powers over several mW, dependent on wavelength. The high-power, high-speed modulators proposed for development under this effort will enable advancements in several exciting fields including lidarbased remote sensing, atomic interferometry, free-space laser communications, and others.

  6. High speed miniature motorized endoscopic probe for 3D optical frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Li, Jianan; Feroldi, Fabio; Mo, Jianhua; Helderman, Frank; de Groot, Mattijs; de Boer, Johannes F.

    2013-03-01

    We present a miniature motorized endoscopic probe for Optical Frequency Domain Imaging with an outer diameter of 1.65 mm and a rotation speed of 3,000 - 12,500 rpm. This is the smallest motorized high speed OCT probe to our knowledge. The probe has a motorized distal end which provides a significant advantage over proximally driven probes since it does not require a drive shaft to transfer the rotational torque to the distal end of the probe and functions without a fiber rotary junction. The probe has a focal Full Width at Half Maximum of 9.6 μm and a working distance of 0.47 mm. We analyzed the non-uniform rotation distortion and found a location fluctuation of only 1.87° in repeated measurements of the same object. The probe was integrated in a high-speed Optical Frequency Domain Imaging setup at 1310 nm We demonstrated its performance with imaging ex vivo pig bronchial and in vivo goat lung.

  7. Molecular-Based Optical Measurement Techniques for Transition and Turbulence in High-Speed Flow

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Cutler, Andrew D.

    2013-01-01

    photogrammetry (for model attitude and deformation measurement) are excluded to limit the scope of this report. Other physical probes such as heat flux gauges, total temperature probes are also excluded. We further exclude measurement techniques that require particle seeding though particle based methods may still be useful in many high speed flow applications. This manuscript details some of the more widely used molecular-based measurement techniques for studying transition and turbulence: laser-induced fluorescence (LIF), Rayleigh and Raman Scattering and coherent anti-Stokes Raman scattering (CARS). These techniques are emphasized, in part, because of the prior experience of the authors. Additional molecular based techniques are described, albeit in less detail. Where possible, an effort is made to compare the relative advantages and disadvantages of the various measurement techniques, although these comparisons can be subjective views of the authors. Finally, the manuscript concludes by evaluating the different measurement techniques in view of the precision requirements described in this chapter. Additional requirements and considerations are discussed to assist with choosing an optical measurement technique for a given application.

  8. In-plane deeply-etched optical MEMS notch filter with high-speed tunability

    NASA Astrophysics Data System (ADS)

    Sabry, Yasser M.; Eltagoury, Yomna M.; Shebl, Ahmed; Soliman, Mostafa; Sadek, Mohamed; Khalil, Diaa

    2015-12-01

    Notch filters are used in spectroscopy, multi-photon microscopy, fluorescence instrumentation, optical sensors and other life science applications. One type of notch filter is based on a fiber-coupled Fabry-Pérot cavity, which is formed by a reflector (external mirror) facing a dielectric-coated end of an optical fiber. Tailoring this kind of optical filter for different applications is possible because the external mirror has fewer mechanical and optical constraints. In this paper we present optical modeling and implementation of a fiber-coupled Fabry-Pérot filter based on dielectric-coated optical fiber inserted into a micromachined fiber groove facing a metallized micromirror, which is driven by a high-speed MEMS actuator. The optical MEMS chip is fabricated using deep reactive ion etching (DRIE) technology on a silicon on insulator wafer, where the optical axis is parallel to the substrate (in-plane) and the optical/mechanical components are self-aligned by the photolithographic process. The DRIE etching depth is 150 μm, chosen to increase the micromirror optical throughput and improving the out-of-plane stiffness of the MEMS actuator. The MEMS actuator type is closing-gap, while its quality factor is almost doubled by slotting the fixed plate. A low-finesse Fabry-Pérot interferometer is formed by the metallized surface of the micromirror and a cleaved end of a standard single-mode fiber, for characterization of the MEMS actuator stroke and resonance frequency. The actuator achieves a travel distance of 800 nm at a resonance frequency of 89.9 kHz. The notch filter characteristics were measured using an optical spectrum analyzer, and the filter exhibits a free spectral range up to 100 nm and a notch rejection ratio up to 20 dB around a wavelength of 1300 nm. The presented device provides batch processing and low-cost production of the filter.

  9. Fiber-coupled high-speed asynchronous optical sampling with sub-50 fs time resolution.

    PubMed

    Krauss, N; Nast, A; Heinecke, D C; Kölbl, C; Barros, H G; Dekorsy, T

    2015-02-01

    We present a fiber-coupled pump-probe system with a sub-50 fs time resolution and a nanosecond time window, based on high-speed asynchronous optical sampling. By use of a transmission grism pulse compressor, we achieve pump pulses with a pulse duration of 42 fs, an average power of 300 mW and a peak power exceeding 5 kW at a pulse repetition rate of 1 GHz after 6 m of optical fiber. With this system we demonstrate thickness mapping of soft X-ray mirrors at a sub-nm thickness resolution on a cm(2) scan area. In addition, terahertz field generation with resolved spectral components of up to 3.5 THz at a GHz frequency resolution is demonstrated. PMID:25836085

  10. High-speed and low-power electro-optical DSP coprocessor.

    PubMed

    Tamir, Dan E; Shaked, Natan T; Wilson, Peter J; Dolev, Shlomi

    2009-08-01

    A fast, power-efficient electro-optical vector-by-matrix multiplier (VMM) architecture is presented. Careful design of an electrical unit supporting high-speed data transfer enables this architecture to overcome bottlenecks encountered by previous VMM architectures. Based on the proposed architecture, we present an electro-optical digital signal processing (DSP) coprocessor that can achieve a significant speedup of 2-3 orders of magnitude over existing DSP technologies and execute more than 16 teraflops. We show that it is feasible to implement the system using off-the-shelf components, analyze the performance of the architecture with respect to primitive DSP operations, and detail the use of the new architecture for several DSP applications. PMID:19649106

  11. High speed 3D endoscopic optical frequency domain imaging probe for lung cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Jianan; Feroldi, Fabio; Mo, Jianhua; Helderman, Frank; de Groot, Mattijs; de Boer, Johannes F.

    2013-06-01

    We present a miniature motorized endoscopic probe for Optical Frequency Domain Imaging with an outer diameter of 1.65 mm and a rotation speed of 3,000 - 12,500 rpm. The probe has a motorized distal end which provides a significant advantage over proximally driven probes since it does not require a drive shaft to transfer the rotational torque to the distal end of the probe and functions without a fiber rotary junction. The probe has a focal Full Width at Half Maximum of 9.6 μm and a working distance of 0.47 mm. We analyzed the non-uniform rotation distortion and found a location fluctuation of only 1.87° in repeated measurements of the same object. The probe was integrated in a high-speed Optical Frequency Domain Imaging setup at 1310 nm. We demonstrated its performance with imaging ex vivo pig bronchial and in vivo goat lung.

  12. Multi-color quantum dot tracking using a high-speed hyperspectral line-scanning microscope.

    PubMed

    Cutler, Patrick J; Malik, Michael D; Liu, Sheng; Byars, Jason M; Lidke, Diane S; Lidke, Keith A

    2013-01-01

    Many cellular signaling processes are initiated by dimerization or oligomerization of membrane proteins. However, since the spatial scale of these interactions is below the diffraction limit of the light microscope, the dynamics of these interactions have been difficult to study on living cells. We have developed a novel high-speed hyperspectral microscope (HSM) to perform single particle tracking of up to 8 spectrally distinct species of quantum dots (QDs) at 27 frames per second. The distinct emission spectra of the QDs allows localization with ∼10 nm precision even when the probes are clustered at spatial scales below the diffraction limit. The capabilities of the HSM are demonstrated here by application of multi-color single particle tracking to observe membrane protein behavior, including: 1) dynamic formation and dissociation of Epidermal Growth Factor Receptor dimers; 2) resolving antigen induced aggregation of the high affinity IgE receptor, FcεR1; 3) four color QD tracking while simultaneously visualizing GFP-actin; and 4) high-density tracking for fast diffusion mapping. PMID:23717596

  13. Multi-Color Quantum Dot Tracking Using a High-Speed Hyperspectral Line-Scanning Microscope

    PubMed Central

    Liu, Sheng; Byars, Jason M.; Lidke, Diane S.; Lidke, Keith A.

    2013-01-01

    Many cellular signaling processes are initiated by dimerization or oligomerization of membrane proteins. However, since the spatial scale of these interactions is below the diffraction limit of the light microscope, the dynamics of these interactions have been difficult to study on living cells. We have developed a novel high-speed hyperspectral microscope (HSM) to perform single particle tracking of up to 8 spectrally distinct species of quantum dots (QDs) at 27 frames per second. The distinct emission spectra of the QDs allows localization with ∼10 nm precision even when the probes are clustered at spatial scales below the diffraction limit. The capabilities of the HSM are demonstrated here by application of multi-color single particle tracking to observe membrane protein behavior, including: 1) dynamic formation and dissociation of Epidermal Growth Factor Receptor dimers; 2) resolving antigen induced aggregation of the high affinity IgE receptor, FcεR1; 3) four color QD tracking while simultaneously visualizing GFP-actin; and 4) high-density tracking for fast diffusion mapping. PMID:23717596

  14. Secure Communications in High Speed Fiber Optical Networks Using Code Division Multiple Access (CDMA) Transmission

    SciTech Connect

    Han, I; Bond, S; Welty, R; Du, Y; Yoo, S; Reinhardt, C; Behymer, E; Sperry, V; Kobayashi, N

    2004-02-12

    This project is focused on the development of advanced components and system technologies for secure data transmission on high-speed fiber optic data systems. This work capitalizes on (1) a strong relationship with outstanding faculty at the University of California-Davis who are experts in high speed fiber-optic networks, (2) the realization that code division multiple access (CDMA) is emerging as a bandwidth enhancing technique for fiber optic networks, (3) the realization that CDMA of sufficient complexity forms the basis for almost unbreakable one-time key transmissions, (4) our concepts for superior components for implementing CDMA, (5) our expertise in semiconductor device processing and (6) our Center for Nano and Microtechnology, which is where the majority of the experimental work was done. Here we present a novel device concept, which will push the limits of current technology, and will simultaneously solve system implementation issues by investigating new state-of-the-art fiber technologies. This will enable the development of secure communication systems for the transmission and reception of messages on deployed commercial fiber optic networks, through the CDMA phase encoding of broad bandwidth pulses. CDMA technology has been developed as a multiplexing technology, much like wavelength division multiplexing (WDM) or time division multiplexing (TDM), to increase the potential number of users on a given communication link. A novel application of the techniques created for CDMA is to generate secure communication through physical layer encoding. Physical layer encoding devices are developed which utilize semiconductor waveguides with fast carrier response times to phase encode spectral components of a secure signal. Current commercial technology, most commonly a spatial light modulator, allows phase codes to be changed at rates of only 10's of Hertz ({approx}25ms response). The use of fast (picosecond to nanosecond) carrier dynamics of semiconductors, as

  15. Safety analysis and realization of safe information transmission optical LAN on high-speed railway

    NASA Astrophysics Data System (ADS)

    Tao, Ying; Wu, Chongqing; Li, Zuoyi

    2001-10-01

    High-speed railway that has been progressing very quickly is one of the greatest techniques in present time because of its high speed, economy, comfort, environment benefits and other advantages. And among all of these, safe is the backbone and lifeline, so the chief task in developing high-speed railway is to establish safety guarantee system. Also in this safety guarantee system, train control is one of the key techniques to guarantee safe train operation and to advance ability of transportation, so operation safe is located in the hardcore position. That is to say, it is imperative to set up a safe, real-time and reliable automatic train control system. And we can easily find out that this kind of system is now developed and applied in many countries. Important information related to train control, such as the received and transmitted information of track-sided equipment, is called safe information, because it deals with train operation's safe, reliability, and even directly with people's life and wealth. It is so important that if there were some kind of fault with its making, transmission, or processing, fatal accident would occur. So to some degree, it is impossible to transmit and process this information through present railway communication network because of the former's extreme importance and the latter's no safe capability. Therefore, a specific communication network that mainly considers about safe transmission and management should be established in order to realize the specific function for this specific information. High-speed railway safe information transmission optical LAN, which adopts optical fiber as transmission media and transmits safe information, is a kind of LAN designed for the request for safe, real-time and highly reliable automatic train control system in the process of our country's high-speed railway construction and commonly train speed. In this paper, after analyzing the characteristics of automatic train control system and the

  16. Modeling and characteristic of the SMT Board Plug connector in high speed optical communication system

    NASA Astrophysics Data System (ADS)

    Wu, Haoran; Dong, Zhenzhen; Wang, Tanglin; Zhao, Heng; Feng, Junbo; Cui, Naidi; Teng, Jie; Guo, Jin

    2015-04-01

    Modeling and characteristic of the SMT Board Plug connector, which is used to connect micro optical transceiver to the main board, are proposed and analyzed in this paper. When the high speed signal transfers from the PCB of transceiver to main board through SMT Board Plug connector, the structure and material discontinuity of the connector causes insertion losses and impedance mismatches. This makes the performance of high speed digital system exacerbated. So it is essential to analyze the signal transfer characteristics of the connector and find out what factors affected the signal quality at the design stage of the digital system. To solve this problem, Ansoft's High Frequency Structure Simulator (HFSS), based on the finite element method, was employed to build accurate 3D models, analyze the effects of various structure parameters, and obtain the full-wave characteristics of the SMT Board Plug connectors in this paper. Then an equivalent circuit model was developed. The circuit parameters were extracted precisely in the frequency range of interests by using the curve fitting method in ADS software, and the result was in good agreement with HFSS simulations up to 8GHz with different structure parameters. At last, the measurement results of S-parameter and eye diagram were given and the S-parameters showed good coincidence between the measurement and HFSS simulation up to 4GHz.

  17. Invited Article: Polarization diversity and modulation for high-speed optical communications: architectures and capacity

    NASA Astrophysics Data System (ADS)

    Shieh, William; Khodakarami, Hamid; Che, Di

    2016-07-01

    Polarization is one of the fundamental properties of optical waves. To cope with the exponential growth of the Internet traffic, optical communications has advanced by leaps and bounds within the last decade. For the first time, the polarization domain has been extensively explored for high-speed optical communications. In this paper, we discuss the general principle of polarization modulation in both Jones and Stokes spaces. We show that there is no linear optical device capable of transforming an arbitrary input polarization into one that is orthogonal to itself. This excludes the receiver self-polarization diversity architecture by splitting the signal into two branches, and then transferring one of the branches into orthogonal polarization. We next propose a novel Stokes vector (SV) detection architecture using four single-ended photodiodes (PD) that can recover a full set of SV. We then derive a closed-form expression for the information capacity of different SV detection architectures and compare the capacity of our proposed architectures with that of intensity-modulated directly-detected (IM/DD) method. We next study the 3-PD SV detection architecture where a subset of SV is detected, and devise a novel modulation algorithm that can achieve 2-dimensional modulation with the 3-PD detection. By using cost-effective SV receivers, polarization modulation and multiplexing offers a powerful solution for short-reach optical networks where the wavelength domain is quickly exhausted.

  18. IP over WDM-based high-speed switched optical network

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Zhang, Lulin; Ji, Yuefeng

    2004-04-01

    With the Internet Protocol (IP) being the dominant protocol for new optical network services, there is increasing pressure to optimize the network infrastructure and protocols for IP traffic. This paper presents a technology for constructing a novel architecture for IP over photonic systems. WDM network has been launched by the concept of wavelength routing. The principle is that high-speed data flows, which consist of many time-division multiplexed channels, are associated with specific optical wavelengths. Thus, they are routed through the optical network by means of their wavelengths. Thus, wavelength routing consents the realization of OXCs working in an efficient way. However, MPLS-based forwarding is still an electronic solution. Therefore, even though MPLS needs to establish a closed domain to utilize a new lower-layer technology, it is still useful to incorporate optical technology herein to further increase throughputs for large-scale Internet networks. Moreover, provisioning wavelength capabilities based on MPLS has emerged, that is , multi-protocol lambda switching (MPλS). This system tries to merge the functionalities of the wavelength switching, SONET mux/demux, and IP routing into one layer, and is sometimes known as the concept of optical MPLS and MPLambdaS. Its extension Generalized-MPLS(GMPLS) is also discussed.

  19. High-speed upper-airway imaging using full-range optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jing, Joseph; Zhang, Jun; Loy, Anthony Chin; Wong, Brian J. F.; Chen, Zhongping

    2012-11-01

    Obstruction in the upper airway can often cause reductions in breathing or gas exchange efficiency and lead to rest disorders such as sleep apnea. Imaging diagnosis of the obstruction region has been accomplished using computed tomography (CT) and magnetic resonance imaging (MRI). However CT requires the use of ionizing radiation, and MRI typically requires sedation of the patient to prevent motion artifacts. Long-range optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images with high resolution and without the use of ionizing radiation. In this paper, we present work on the development of a long-range OCT endoscopic probe with 1.2 mm OD and 20 mm working distance used in conjunction with a modified Fourier domain swept source OCT system to acquire structural and anatomical datasets of the human airway. Imaging from the bottom of the larynx to the end of the nasal cavity is completed within 40 s.

  20. High Speed Optical Photometry of V1055 Orionis (=4U 0614+091)

    NASA Astrophysics Data System (ADS)

    Lopez, Isaac; Mason, P. A.; Robinson, E. L.

    2013-01-01

    V1055 Orionis (=4U 0614+091) is thought to be an ultra-compact binary containing a neutron star primary with a white dwarf companion. High-speed (10s) broad-band optical observations using the McDonald Observatory, 2.1m, Otto Struve Telescope were obtained on 13 nights in 2010, 2011, and 2012. The nightly mean brightness remained quite stable over the dataset. The light curve is dominated by complex oscillatory behavior reminiscent of the beating of hidden frequencies. A variety of photometric periods have been previously reported and none are found to be coherent periods in our dataset. Rather, a given night exhibits short lived quasi-periodic variations covering a variety of timescales, especially 10-40 min and even as long as two hours. This short period variability combined with recent spectroscopic abundance studies suggests that the likely donor in this binary is a white dwarf.

  1. High-speed optical coherence imaging: towards the structure and the physiology of living tissue

    NASA Astrophysics Data System (ADS)

    Wojtkowski, Maciej; Grulkowski, Ireneusz; Szkulmowska, Anna; Szkulmowski, Maciej; Kowalczyk, Andrzej

    2010-08-01

    Recently rapid development of ultrahigh speed optical coherence tomography (OCT) instruments have been observed. This imaging modality enables performing cross-sectional in vivo imaging of biological samples with speeds of more than 100,000,000 axial scans per second. This progress has been achieved by the introduction of Fourier domain detection techniques to OCT instruments. High-speed imaging capabilities lifts the primary limitation of early OCT technology by giving access to in vivo 3-D volumetric reconstructions in large scales within reasonable time constraints. New perspectives for existing OCT applications has been added by creating new instrumentation including the functional imaging. The latter shows a potential to differentiate tissue pathologies via metabolic properties or functional responses.

  2. Large-scale IP router using a high-speed optical switch element [Invited

    NASA Astrophysics Data System (ADS)

    McDermott, Tom; Brewer, Tony

    2003-07-01

    The system design and architectural considerations for a large, high-performance IP packet router that uses a nonblocking optical switching fabric are presented. The objective of the router is to provide fully network-compatible routing of IP, multiprotocol label switching (MPLS), and Ethernet packets in a router with a very large number of high speed ports while maintaining the low-delay, low-jitter, low-packet-loss, and line-rate throughput characteristics of today's small port-count routers over a large scale. Such a large router is useful for the core of a packetized transport network capable of supporting various classes of real-time and best-effort service in a reliable and efficient manner.

  3. High speed optical wireless data transmission system for particle sensors in high energy physics

    NASA Astrophysics Data System (ADS)

    Ali, W.; Corsini, R.; Ciaramella, E.; Dell'Orso, R.; Messineo, A.; Palla, F.

    2015-08-01

    High speed optical fiber or copper wire communication systems are frequently deployed for readout data links used in particle physics detectors. Future detector upgrades will need more bandwidth for data transfer, but routing requirements for new cables or optical fiber will be challenging due to space limitations. Optical wireless communication (OWC) can provide high bandwidth connectivity with an advantage of reduced material budget and complexity of cable installation and management. In a collaborative effort, Scuola Superiore Sant'Anna and INFN Pisa are pursuing the development of a free-space optical link that could be installed in a future particle physics detector or upgrade. We describe initial studies of an OWC link using the inner tracker of the Compact Muon Solenoid (CMS) detector as a reference architecture. The results of two experiments are described: the first to verify that the laser source transmission wavelength of 1550 nm will not introduce fake signals in silicon strip sensors while the second was to study the source beam diameter and its tolerance to misalignment. For data rates of 2.5 Gb/s and 10 Gb/s over a 10 cm working distance it was observed that a tolerance limit of ±0.25 mm to ±0.8 mm can be obtained for misaligned systems with source beam diameters of 0.38 mm to 3.5 mm, respectively.

  4. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing

    PubMed Central

    Yun, S.H.; Vakoc, B.J.; Shishkov, M.; Desjardins, A.E.; Park, B.H.; de Boer, J.F.; Tearney, G.J.; Bouma, B.E.

    2009-01-01

    Polarization sensitive optical coherence tomography (PS-OCT) provides a cross-sectional image of birefringence in biological samples that is complementary in many applications to the standard reflectance-based image. Recent ex vivo studies have demonstrated that birefringence mapping enables the characterization of collagen and smooth muscle concentration and distribution in vascular tissues. Instruments capable of applying these measurements percutaneously in vivo may provide new insights into coronary atherosclerosis and acute myocardial infarction. We have developed a polarization sensitive optical frequency domain imaging (PS-OFDI) system that enables high-speed intravascular birefringence imaging through a fiber-optic catheter. The novel design of this system utilizes frequency multiplexing to simultaneously measure reflectance of two incident polarization states, overcoming concerns regarding temporal variations of the catheter fiber birefringence and spatial variations in the birefringence of the sample. We demonstrate circular cross-sectional birefringence imaging of a human coronary artery ex vivo through a flexible fiber-optic catheter with an A-line rate of 62 kHz and a ranging depth of 6.2 mm. PMID:18542183

  5. Unconventional optical imaging using a high-speed neural network based smart sensor

    NASA Astrophysics Data System (ADS)

    Arrasmith, William W.

    2006-05-01

    The advancement of neural network methods and technologies is finding applications in many fields and disciplines of interest to the defense, intelligence, and homeland security communities. Rapidly reconfigurable sensors for real or near-real time signal or image processing can be used for multi-functional purposes such as image compression, target tracking, image fusion, edge detection, thresholding, pattern recognition, and atmospheric turbulence compensation to name a few. A neural network based smart sensor is described that can accomplish these tasks individually or in combination, in real-time or near real-time. As a computationally intensive example, the case of optical imaging through volume turbulence is addressed. For imaging systems in the visible and near infrared part of the electromagnetic spectrum, the atmosphere is often the dominant factor in reducing the imaging system's resolution and image quality. The neural network approach described in this paper is shown to present a viable means for implementing turbulence compensation techniques for near-field and distributed turbulence scenarios. Representative high-speed neural network hardware is presented. Existing 2-D cellular neural network (CNN) hardware is capable of 3 trillion operations per second with peta-operations per second possible using current 3-D manufacturing processes. This hardware can be used for high-speed applications that require fast convolutions and de-convolutions. Existing 3-D artificial neural network technology is capable of peta-operations per second and can be used for fast array processing operations. Methods for optical imaging through distributed turbulence are discussed, simulation results are presented and computational and performance assessments are provided.

  6. High-speed, cascaded optical logic operations using programmable optical logic gate arrays

    SciTech Connect

    Lu, B.; Lu, Y.C.; Cheng, J.; Hafich, M.J.; Klem, J.; Zolper, J.C.

    1996-01-01

    Programmable optical logic operations are demonstrated using arrays of nonlatching binary optical switches consisting of vertical-cavity surface-emitting lasers, p-i-n photodetectors and heterojunction bipolar transistors. Individual arrays can perform Boolean optical logic functions at 100 Mb/s using both optical and electrical logic inputs, while the routing and fan-out of the optical logic outputs can be controlled at the gate level. Cascaded optical logic operation is demonstrated using two programmable logic gate arrays.

  7. Triggering of high-speed neurite outgrowth using an optical microheater

    PubMed Central

    Oyama, Kotaro; Zeeb, Vadim; Kawamura, Yuki; Arai, Tomomi; Gotoh, Mizuho; Itoh, Hideki; Itabashi, Takeshi; Suzuki, Madoka; Ishiwata, Shin’ichi

    2015-01-01

    Optical microheating is a powerful non-invasive method for manipulating biological functions such as gene expression, muscle contraction, and cell excitation. Here, we demonstrate its potential usage for regulating neurite outgrowth. We found that optical microheating with a water-absorbable 1,455-nm laser beam triggers directional and explosive neurite outgrowth and branching in rat hippocampal neurons. The focused laser beam under a microscope rapidly increases the local temperature from 36 °C to 41 °C (stabilized within 2 s), resulting in the elongation of neurites by more than 10 μm within 1 min. This high-speed, persistent elongation of neurites was suppressed by inhibitors of both microtubule and actin polymerization, indicating that the thermosensitive dynamics of these cytoskeletons play crucial roles in this heat-induced neurite outgrowth. Furthermore, we showed that microheating induced the regrowth of injured neurites and the interconnection of neurites. These results demonstrate the efficacy of optical microheating methods for the construction of arbitrary neural networks. PMID:26568288

  8. High-speed optical shutter coupled to fast-readout CCD camera

    NASA Astrophysics Data System (ADS)

    Yates, George J.; Pena, Claudine R.; McDonald, Thomas E., Jr.; Gallegos, Robert A.; Numkena, Dustin M.; Turko, Bojan T.; Ziska, George; Millaud, Jacques E.; Diaz, Rick; Buckley, John; Anthony, Glen; Araki, Takae; Larson, Eric D.

    1999-04-01

    A high frame rate optically shuttered CCD camera for radiometric imaging of transient optical phenomena has been designed and several prototypes fabricated, which are now in evaluation phase. the camera design incorporates stripline geometry image intensifiers for ultra fast image shutters capable of 200ps exposures. The intensifiers are fiber optically coupled to a multiport CCD capable of 75 MHz pixel clocking to achieve 4KHz frame rate for 512 X 512 pixels from simultaneous readout of 16 individual segments of the CCD array. The intensifier, Philips XX1412MH/E03 is generically a Generation II proximity-focused micro channel plate intensifier (MCPII) redesigned for high speed gating by Los Alamos National Laboratory and manufactured by Philips Components. The CCD is a Reticon HSO512 split storage with bi-direcitonal vertical readout architecture. The camera main frame is designed utilizing a multilayer motherboard for transporting CCD video signals and clocks via imbedded stripline buses designed for 100MHz operation. The MCPII gate duration and gain variables are controlled and measured in real time and up-dated for data logging each frame, with 10-bit resolution, selectable either locally or by computer. The camera provides both analog and 10-bit digital video. The camera's architecture, salient design characteristics, and current test data depicting resolution, dynamic range, shutter sequences, and image reconstruction will be presented and discussed.

  9. An FPGA-based High Speed Parallel Signal Processing System for Adaptive Optics Testbed

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choi, Y.; Yang, Y.

    In this paper a state-of-the-art FPGA (Field Programmable Gate Array) based high speed parallel signal processing system (SPS) for adaptive optics (AO) testbed with 1 kHz wavefront error (WFE) correction frequency is reported. The AO system consists of Shack-Hartmann sensor (SHS) and deformable mirror (DM), tip-tilt sensor (TTS), tip-tilt mirror (TTM) and an FPGA-based high performance SPS to correct wavefront aberrations. The SHS is composed of 400 subapertures and the DM 277 actuators with Fried geometry, requiring high speed parallel computing capability SPS. In this study, the target WFE correction speed is 1 kHz; therefore, it requires massive parallel computing capabilities as well as strict hard real time constraints on measurements from sensors, matrix computation latency for correction algorithms, and output of control signals for actuators. In order to meet them, an FPGA based real-time SPS with parallel computing capabilities is proposed. In particular, the SPS is made up of a National Instrument's (NI's) real time computer and five FPGA boards based on state-of-the-art Xilinx Kintex 7 FPGA. Programming is done with NI's LabView environment, providing flexibility when applying different algorithms for WFE correction. It also facilitates faster programming and debugging environment as compared to conventional ones. One of the five FPGA's is assigned to measure TTS and calculate control signals for TTM, while the rest four are used to receive SHS signal, calculate slops for each subaperture and correction signal for DM. With this parallel processing capabilities of the SPS the overall closed-loop WFE correction speed of 1 kHz has been achieved. System requirements, architecture and implementation issues are described; furthermore, experimental results are also given.

  10. Investigations of high-speed optical transmission systems employing Absolute Added Correlative Coding (AACC)

    NASA Astrophysics Data System (ADS)

    Dong-Nhat, Nguyen; Elsherif, Mohamed A.; Malekmohammadi, Amin

    2016-07-01

    A novel multilevel modulation format based on partial-response signaling called Absolute Added Correlative Coding (AACC) is proposed and numerically demonstrated for high-speed fiber-optic communication systems. A bit error rate (BER) estimation model for the proposed multilevel format has also been developed. The performance of AACC is examined and compared against other prevailing On-Off-Keying and multilevel modulation formats e.g. non-return-to-zero (NRZ), 50% return-to-zero (RZ), 67% carrier-suppressed return-to-zero (CS-RZ), duobinary and four-level pulse-amplitude modulation (4-PAM) in terms of receiver sensitivity, spectral efficiency and dispersion tolerance. Calculated receiver sensitivity at a BER of 10-9 and chromatic dispersion tolerance of the proposed system are ∼-28.3 dBm and ∼336 ps/nm, respectively. The performance of AACC is delineated to be improved by 7.8 dB in terms of receiver sensitivity compared to 4-PAM in back-to-back scenario. The comparison results also show a clear advantage of AACC in achieving longer fiber transmission distance due to the higher dispersion tolerance in optical access networks.

  11. High-Speed Microscale Optical Tracking Using Digital Frequency-Domain Multiplexing

    PubMed Central

    MacLachlan, Robert A.; Riviere, Cameron N.

    2010-01-01

    Position-sensitive detectors (PSDs), or lateral-effect photodiodes, are commonly used for high-speed, high-resolution optical position measurement. This paper describes the instrument design for multidimensional position and orientation measurement based on the simultaneous position measurement of multiple modulated sources using frequency-domain-multiplexed (FDM) PSDs. The important advantages of this optical configuration in comparison with laser/mirror combinations are that it has a large angular measurement range and allows the use of a probe that is small in comparison with the measurement volume. We review PSD characteristics and quantitative resolution limits, consider the lock-in amplifier measurement system as a communication link, discuss the application of FDM to PSDs, and make comparisons with time-domain techniques. We consider the phase-sensitive detector as a multirate DSP problem, explore parallels with Fourier spectral estimation and filter banks, discuss how to choose the modulation frequencies and sample rates that maximize channel isolation under design constraints, and describe efficient digital implementation. We also discuss hardware design considerations, sensor calibration, probe construction and calibration, and 3-D measurement by triangulation using two sensors. As an example, we characterize the resolution, speed, and accuracy of an instrument that measures the position and orientation of a 10 mm × 5 mm probe in 5 degrees of freedom (DOF) over a 30-mm cube with 4-μm peak-to-peak resolution at 1-kHz sampling. PMID:20428484

  12. High-Speed Microscale Optical Tracking Using Digital Frequency-Domain Multiplexing.

    PubMed

    Maclachlan, Robert A; Riviere, Cameron N

    2009-06-01

    Position-sensitive detectors (PSDs), or lateral-effect photodiodes, are commonly used for high-speed, high-resolution optical position measurement. This paper describes the instrument design for multidimensional position and orientation measurement based on the simultaneous position measurement of multiple modulated sources using frequency-domain-multiplexed (FDM) PSDs. The important advantages of this optical configuration in comparison with laser/mirror combinations are that it has a large angular measurement range and allows the use of a probe that is small in comparison with the measurement volume. We review PSD characteristics and quantitative resolution limits, consider the lock-in amplifier measurement system as a communication link, discuss the application of FDM to PSDs, and make comparisons with time-domain techniques. We consider the phase-sensitive detector as a multirate DSP problem, explore parallels with Fourier spectral estimation and filter banks, discuss how to choose the modulation frequencies and sample rates that maximize channel isolation under design constraints, and describe efficient digital implementation. We also discuss hardware design considerations, sensor calibration, probe construction and calibration, and 3-D measurement by triangulation using two sensors. As an example, we characterize the resolution, speed, and accuracy of an instrument that measures the position and orientation of a 10 mm × 5 mm probe in 5 degrees of freedom (DOF) over a 30-mm cube with 4-μm peak-to-peak resolution at 1-kHz sampling. PMID:20428484

  13. Spread function of acousto-optic filter with high-speed spectral image analysis

    NASA Astrophysics Data System (ADS)

    Zadorin, Anatoly S.; Nemtchenko, Andrei S.

    1998-08-01

    The contradictory requirements are presented to acousto- optic tunable filters (AOF) of spectral image analysis. On the one hand AOF should have high speed. On the other hand it should have good spectral resolution and wide angular aperture. Thus when AOF is fastly tuned with chirp transients, the diffracted wave intensity at different moments of transient process can considerably diverge form its quasistatic level. It means that spread function (SF) depends on the velocity of frequency tuning, i.e., it is described by 2D function with variables - wave length and velocity of frequency tuning. In Cartesian frame this dependence is presented by some surface being dynamic SF (DSF). It characterizes speed and selectivity properties of AOF. In this work DCF mathematical model was constructed and basic properties of spectral image analysis AOF were investigated. It has been established that the greatest distortions of DSF occur if velocity of frequency tuning has exceeded some critical value connected with acousto-optic interaction geometry and aperture sizes of beams. In this case the side lobes of SF will make 'false' maxima which begin to prevail over the basic. In addition under the conditions of phase mismatch DSF loses the symmetry to position of the main maximum. These effects reduce the accuracy of spectral measurements when tuning velocity is high.

  14. Optically assisted high-speed, high resolution analog-to-digital conversion (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Zmuda, Henry; Hanna, Shane; Bussjager, R. J.; Fanto, M. L.; Hayduk, M. J.; Johns, S. T.; Malowicki, J. E.; Repak, P. L.

    2005-05-01

    An approach that modifies an analog fiber optic link with a recirculating optical loop as a means to realize a high-speed, high-resolution Analog-to-Digital Converted (ADC) is presented. The loops stores a time-limited microwave signal so that it may be digitized by using a slower, conventional electronic ADC. Detailed analytical analysis of the dynamic range and noise figure shows that under appropriate conditions the microwave signal degradation is sufficiently small so as to allow the digitization of a multi-gigahertz signal with a resolution greater than 10 effective bits. Experimental data is presented which shows that a periodic extension of the input signal can be sustained for well over one hundred periods that in turn suggests an electronic ADC speed-up factor of over 100. The data also shows that polarization effects must be carefully managed to inhibit the loops tendency to lase even though the loop itself contains no frequency-selective elements.

  15. High-speed polarization sensitive optical coherence tomography for retinal diagnostics

    NASA Astrophysics Data System (ADS)

    Yin, Biwei; Wang, Bingqing; Vemishetty, Kalyanramu; Nagle, Jim; Liu, Shuang; Wang, Tianyi; Rylander, Henry G., III; Milner, Thomas E.

    2012-01-01

    We report design and construction of an FPGA-based high-speed swept-source polarization-sensitive optical coherence tomography (SS-PS-OCT) system for clinical retinal imaging. Clinical application of the SS-PS-OCT system is accurate measurement and display of thickness, phase retardation and birefringence maps of the retinal nerve fiber layer (RNFL) in human subjects for early detection of glaucoma. The FPGA-based SS-PS-OCT system provides three incident polarization states on the eye and uses a bulk-optic polarization sensitive balanced detection module to record two orthogonal interference fringe signals. Interference fringe signals and relative phase retardation between two orthogonal polarization states are used to obtain Stokes vectors of light returning from each RNFL depth. We implement a Levenberg-Marquardt algorithm on a Field Programmable Gate Array (FPGA) to compute accurate phase retardation and birefringence maps. For each retinal scan, a three-state Levenberg-Marquardt nonlinear algorithm is applied to 360 clusters each consisting of 100 A-scans to determine accurate maps of phase retardation and birefringence in less than 1 second after patient measurement allowing real-time clinical imaging-a speedup of more than 300 times over previous implementations. We report application of the FPGA-based SS-PS-OCT system for real-time clinical imaging of patients enrolled in a clinical study at the Eye Institute of Austin and Duke Eye Center.

  16. Simulink models for performance analysis of high speed DQPSK modulated optical link

    NASA Astrophysics Data System (ADS)

    Sharan, Lucky; Rupanshi, Chaubey, V. K.

    2016-03-01

    This paper attempts to present the design approach for development of simulation models to study and analyze the transmission of 10 Gbps DQPSK signal over a single channel Peer to Peer link using Matlab Simulink. The simulation model considers the different optical components used in link design with their behavior represented initially by theoretical interpretation, including the transmitter topology, Mach Zehnder Modulator(MZM) module and, the propagation model for optical fibers etc. thus allowing scope for direct realization in experimental configurations. It provides the flexibility to incorporate the various photonic components as either user-defined or fixed and, can also be enhanced or removed from the model as per the design requirements. We describe the detailed operation and need of every component model and its representation in Simulink blocksets. Moreover the developed model can be extended in future to support Dense Wavelength Division Multiplexing (DWDM) system, thereby allowing high speed transmission with N × 40 Gbps systems. The various compensation techniques and their influence on system performance can be easily investigated by using such models.

  17. Investigations of high-speed optical transmission systems employing Absolute Added Correlative Coding (AACC)

    NASA Astrophysics Data System (ADS)

    Dong-Nhat, Nguyen; Elsherif, Mohamed A.; Malekmohammadi, Amin

    2016-07-01

    A novel multilevel modulation format based on partial-response signaling called Absolute Added Correlative Coding (AACC) is proposed and numerically demonstrated for high-speed fiber-optic communication systems. A bit error rate (BER) estimation model for the proposed multilevel format has also been developed. The performance of AACC is examined and compared against other prevailing On-Off-Keying and multilevel modulation formats e.g. non-return-to-zero (NRZ), 50% return-to-zero (RZ), 67% carrier-suppressed return-to-zero (CS-RZ), duobinary and four-level pulse-amplitude modulation (4-PAM) in terms of receiver sensitivity, spectral efficiency and dispersion tolerance. Calculated receiver sensitivity at a BER of 10-9 and chromatic dispersion tolerance of the proposed system are ˜-28.3 dBm and ˜336 ps/nm, respectively. The performance of AACC is delineated to be improved by 7.8 dB in terms of receiver sensitivity compared to 4-PAM in back-to-back scenario. The comparison results also show a clear advantage of AACC in achieving longer fiber transmission distance due to the higher dispersion tolerance in optical access networks.

  18. Proven high-reliability assembly methods applied to avionics fiber-optics high-speed transceivers

    NASA Astrophysics Data System (ADS)

    Lauzon, Jocelyn; Leduc, Lorrain; Bessette, Daniel; Bélanger, Nicolas; Larose, Robert; Dion, Bruno

    2012-06-01

    Harsh environment avionics applications require operating temperature ranges that can extend to, and exceed -50 to 115°C. For obvious maintenance, management and cost arguments, product lifetimes as long as 20 years are also sought. This leads to mandatory long-term hermeticity that cannot be obtained with epoxy or silicone sealing; but only with glass seal or metal solder or brazing. A hermetic design can indirectly result in the required RF shielding of the component. For fiber-optics products, these specifications need to be compatible with the smallest possible size, weight and power consumption. The products also need to offer the best possible high-speed performances added to the known EMI immunity in the transmission lines. Fiber-optics transceivers with data rates per fiber channel up to 10Gbps are now starting to be offered on the market for avionics applications. Some of them are being developed by companies involved in the "normal environment" telecommunications market that are trying to ruggedize their products packaging in order to diversify their customer base. Another approach, for which we will present detailed results, is to go back to the drawing boards and design a new product that is adapted to proven MIL-PRF-38534 high-reliability packaging assembly methods. These methods will lead to the introduction of additional requirements at the components level; such as long-term high-temperature resistance for the fiber-optic cables. We will compare both approaches and demonstrate the latter, associated with the redesign, is the preferable one. The performance of the fiber-optic transceiver we have developed, in terms of qualification tests such as temperature cycling, constant acceleration, hermeticity, residual gaz analysis, operation under random vibration and mechanical shocks and accelerated lifetime tests will be presented. The tests are still under way, but so far, we have observed no performance degradation of such a product after more than

  19. A reciprocating optical in situ tribometer with high-speed data acquisition

    NASA Astrophysics Data System (ADS)

    Becker, S.; Popp, U.; Greiner, C.

    2016-08-01

    Tribology is the science of interacting surfaces in relative motion. Processes like the transition from static to dynamic friction are fast and complex, especially as the contacting interface is buried. A direct view at the interface, in order to gain a deeper understanding of the interaction between the materials, is therefore of great interest. The reciprocating optical in situ tribometer introduced here observes the interface of two contacting materials (one of them being optical transparent) with a high-speed camera, taking up to 230 000 frames per second. The camera is attached to an optical microscope with a magnification of up to 2500 times. Friction forces are measured by an analog laser detection setup, with a maximum sampling rate of 500 kHz. The sliding motion of the materials is realized by two displacement units. A linear positioning stage allows velocities between 500 nm/s and 100 mm/s for a maximum distance of 200 mm. For smaller velocities, and to exclude breakaway torque, a piezo actuator can be used. The maximum displacement distance of the piezo actuator is 120 μm. The smallest applicable normal load on the samples is 0.5 N which is applied by the dead weights. Tribological experiments to investigate the transition from static to dynamic friction have been performed with morphologically textured brass hemispheres in contact with the sapphire discs. Sapphire was chosen for its high hardness and optical transparency. These experiments revealed, due to the high data acquisition possible with the new setup, a so far unobserved effect during the transition from static to dynamic friction.

  20. A reciprocating optical in situ tribometer with high-speed data acquisition.

    PubMed

    Becker, S; Popp, U; Greiner, C

    2016-08-01

    Tribology is the science of interacting surfaces in relative motion. Processes like the transition from static to dynamic friction are fast and complex, especially as the contacting interface is buried. A direct view at the interface, in order to gain a deeper understanding of the interaction between the materials, is therefore of great interest. The reciprocating optical in situ tribometer introduced here observes the interface of two contacting materials (one of them being optical transparent) with a high-speed camera, taking up to 230 000 frames per second. The camera is attached to an optical microscope with a magnification of up to 2500 times. Friction forces are measured by an analog laser detection setup, with a maximum sampling rate of 500 kHz. The sliding motion of the materials is realized by two displacement units. A linear positioning stage allows velocities between 500 nm/s and 100 mm/s for a maximum distance of 200 mm. For smaller velocities, and to exclude breakaway torque, a piezo actuator can be used. The maximum displacement distance of the piezo actuator is 120 μm. The smallest applicable normal load on the samples is 0.5 N which is applied by the dead weights. Tribological experiments to investigate the transition from static to dynamic friction have been performed with morphologically textured brass hemispheres in contact with the sapphire discs. Sapphire was chosen for its high hardness and optical transparency. These experiments revealed, due to the high data acquisition possible with the new setup, a so far unobserved effect during the transition from static to dynamic friction. PMID:27587154

  1. Single-detector polarization-sensitive optical frequency domain imaging using high-speed intra A-line polarization modulation

    PubMed Central

    Oh, W. Y.; Vakoc, B. J.; Yun, S. H.; Tearney, G. J.; Bouma, B. E.

    2009-01-01

    We demonstrate a novel high-speed polarization-sensitive optical frequency domain imaging system employing high-speed polarization modulation. Rapid and continuous polarization modulation of light prior to illumination of the sample is accomplished by shifting the frequency of one polarization eigenstate by an amount equal to one quarter of the digitization sampling frequency. This approach enables polarization-sensitive imaging with a single detection channel and overcomes artifacts that may arise from temporal variations of the birefringence in fiber-optic imaging probes and spatial variation of birefringence in the sample. PMID:18552948

  2. Monolithic, High-Speed Fiber-Optic Switching Array for Lidar

    NASA Technical Reports Server (NTRS)

    Suckow, Will; Roberts, Tony; Switzer, Gregg; Terwilliger, Chelle

    2011-01-01

    Current fiber switch technologies use mechanical means to redirect light beams, resulting in slow switch time, as well as poor reliability due to moving parts wearing out quickly at high speeds. A non-mechanical ability to switch laser output into one of multiple fibers within a fiber array can provide significant power, weight, and costs savings to an all-fiber system. This invention uses an array of crystals that act as miniature prisms to redirect light as an electric voltage changes the prism s properties. At the heart of the electro-optic fiber-optic switch is an electro- optic crystal patterned with tiny prisms that can deflect the beam from the input fiber into any one of the receiving fibers arranged in a linear array when a voltage is applied across the crystal. Prism boundaries are defined by a net dipole moment in the crystal lattice that has been poled opposite to the surrounding lattice fabricated using patterned, removable microelectrodes. When a voltage is applied across the crystal, the resulting electric field changes the index of refraction within the prism boundaries relative to the surrounding substrate, causing light to deflect slightly according to Snell s Law. There are several materials that can host the necessary monolithic poled pattern (including, but not limited to, SLT, KTP, LiNbO3, and Mg:LiNbO3). Be cause this is a solid-state system without moving parts, it is very fast, and does not wear down easily. This invention is applicable to all fiber networks, as well as industries that use such networks. The unit comes in a compact package, can handle both low and high voltages, and has a high reliability (100,000 hours without maintenance).

  3. High-Speed GPU-Based Fully Three-Dimensional Diffuse Optical Tomographic System

    PubMed Central

    Saikia, Manob Jyoti; Kanhirodan, Rajan; Mohan Vasu, Ram

    2014-01-01

    We have developed a graphics processor unit (GPU-) based high-speed fully 3D system for diffuse optical tomography (DOT). The reduction in execution time of 3D DOT algorithm, a severely ill-posed problem, is made possible through the use of (1) an algorithmic improvement that uses Broyden approach for updating the Jacobian matrix and thereby updating the parameter matrix and (2) the multinode multithreaded GPU and CUDA (Compute Unified Device Architecture) software architecture. Two different GPU implementations of DOT programs are developed in this study: (1) conventional C language program augmented by GPU CUDA and CULA routines (C GPU), (2) MATLAB program supported by MATLAB parallel computing toolkit for GPU (MATLAB GPU). The computation time of the algorithm on host CPU and the GPU system is presented for C and Matlab implementations. The forward computation uses finite element method (FEM) and the problem domain is discretized into 14610, 30823, and 66514 tetrahedral elements. The reconstruction time, so achieved for one iteration of the DOT reconstruction for 14610 elements, is 0.52 seconds for a C based GPU program for 2-plane measurements. The corresponding MATLAB based GPU program took 0.86 seconds. The maximum number of reconstructed frames so achieved is 2 frames per second. PMID:24891848

  4. High-speed upper-airway imaging using full-range optical coherence tomography

    PubMed Central

    Jing, Joseph; Loy, Anthony Chin; Wong, Brian J. F.

    2012-01-01

    Abstract. Obstruction in the upper airway can often cause reductions in breathing or gas exchange efficiency and lead to rest disorders such as sleep apnea. Imaging diagnosis of the obstruction region has been accomplished using computed tomography (CT) and magnetic resonance imaging (MRI). However CT requires the use of ionizing radiation, and MRI typically requires sedation of the patient to prevent motion artifacts. Long-range optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images with high resolution and without the use of ionizing radiation. In this paper, we present work on the development of a long-range OCT endoscopic probe with 1.2 mm OD and 20 mm working distance used in conjunction with a modified Fourier domain swept source OCT system to acquire structural and anatomical datasets of the human airway. Imaging from the bottom of the larynx to the end of the nasal cavity is completed within 40 s. PMID:23214170

  5. A high-speed pnCCD detector system for optical applications

    NASA Astrophysics Data System (ADS)

    Hartmann, R.; Buttler, W.; Gorke, H.; Herrmann, S.; Holl, P.; Meidinger, N.; Soltau, H.; Strüder, L.

    2006-11-01

    Measurements of a frame-store pnCCD detector system, optimized for high-speed applications in the optical and near infrared (NIR) region, will be presented. The device with an image area of 13.5 mm by 13.5 mm and a pixelsize of 51 μm by 51 μm exhibits a readout time faster than 1100 frames per second with an overall electronic noise contribution of less than three electrons. Variable operation modes of the detector system allow for even higher readout speeds by a pixel binning in transfer direction or, at slightly slower readout speeds, a further improvement in noise performance. We will also present the concept of a data acquisition system being able to handle pixel rates of more than 75 megapixel per second. The application of an anti-reflective coating on the ultra-thin entrance window of the back illuminated detector together with the large sensitive volume ensures a high and uniform detection efficiency from the ultra violet to the NIR.

  6. Dynamical hologram generation for high speed optical trapping of smart droplet microtools.

    PubMed

    Lanigan, P M P; Munro, I; Grace, E J; Casey, D R; Phillips, J; Klug, D R; Ces, O; Neil, M A A

    2012-07-01

    This paper demonstrates spatially selective sampling of the plasma membrane by the implementation of time-multiplexed holographic optical tweezers for Smart Droplet Microtools (SDMs). High speed (>1000fps) dynamical hologram generation was computed on the graphics processing unit of a standard display card and controlled by a user friendly LabView interface. Time multiplexed binary holograms were displayed in real time and mirrored to a ferroelectric Spatial Light Modulator. SDMs were manufactured with both liquid cores (as previously described) and solid cores, which confer significant advantages in terms of stability, polydispersity and ease of use. These were coated with a number of detergents, the most successful based upon lipids doped with transfection reagents. In order to validate these, trapped SDMs were maneuvered up to the plasma membrane of giant vesicles containing Nile Red and human biliary epithelial (BE) colon cancer cells with green fluorescent labeled protein (GFP)-labeled CAAX (a motif belonging to the Ras protein). Bright field and fluorescence images showed that successful trapping and manipulation of multiple SDMs in x, y, z was achieved with success rates of 30-50% and that subsequent membrane-SDM interactions led to the uptake of Nile Red or GFP-CAAX into the SDM. PMID:22808432

  7. Assessing trophic linkages in and around offshore wind farms using two high-speed optical sensors

    NASA Astrophysics Data System (ADS)

    Dudeck, Tim; Hufnagl, Marc; Auch, Dominik; Eckhardt, André; Möller, Klas-Ove; van Beusekom, Justus; Walter, Bettina; Möllmann, Christian; Floeter, Jens

    2016-04-01

    In search for clean, renewable energy sources European countries have built and planned numerous Offshore Wind Farms (OWF) in the North Sea region. While some research has been carried out on their influence on marine mammals and bottom-dwelling organisms, less is known about fish and lower trophic levels in these areas. Yet, marine mammals purposely seek these structures and there are indications that there are higher chances of fish encounters. However, the local bottom-up effects probably driving these aggregations of higher trophic level organisms are poorly understood. In this study we show preliminary results of primary and secondary production in and around German OWFs in the North Sea using a Laser Optical Particle Counter and a Video Plankton Recorder. With the two sensors working simultaneously on the TRIAXUS system at high speed, we were able to investigate and ground-truth size-spectrum changes on a very high spatial resolution making it possible to detect OWF effects from local to larger scales. Our results show new possibilities in OWF research and the necessity to collect highly resolved field data for meaningful results in these dynamic environments. Furthermore, the use of size spectra simplifies the integration of energy flow through low and medium trophic levels into biogeochemical models by using only a single automatically measurable variable such as size.

  8. High-Speed Imaging Optical Pyrometry for Study of Boron Nitride Nanotube Generation

    NASA Technical Reports Server (NTRS)

    Inman, Jennifer A.; Danehy, Paul M.; Jones, Stephen B.; Lee, Joseph W.

    2014-01-01

    A high-speed imaging optical pyrometry system is designed for making in-situ measurements of boron temperature during the boron nitride nanotube synthesis process. Spectrometer measurements show molten boron emission to be essentially graybody in nature, lacking spectral emission fine structure over the visible range of the electromagnetic spectrum. Camera calibration experiments are performed and compared with theoretical calculations to quantitatively establish the relationship between observed signal intensity and temperature. The one-color pyrometry technique described herein involves measuring temperature based upon the absolute signal intensity observed through a narrowband spectral filter, while the two-color technique uses the ratio of the signals through two spectrally separated filters. The present study calibrated both the one- and two-color techniques at temperatures between 1,173 K and 1,591 K using a pco.dimax HD CMOS-based camera along with three such filters having transmission peaks near 550 nm, 632.8 nm, and 800 nm.

  9. Dynamical hologram generation for high speed optical trapping of smart droplet microtools

    PubMed Central

    Lanigan, P. M. P.; Munro, I.; Grace, E. J.; Casey, D. R.; Phillips, J.; Klug, D. R.; Ces, O.; Neil, M. A. A.

    2012-01-01

    This paper demonstrates spatially selective sampling of the plasma membrane by the implementation of time-multiplexed holographic optical tweezers for Smart Droplet Microtools (SDMs). High speed (>1000fps) dynamical hologram generation was computed on the graphics processing unit of a standard display card and controlled by a user friendly LabView interface. Time multiplexed binary holograms were displayed in real time and mirrored to a ferroelectric Spatial Light Modulator. SDMs were manufactured with both liquid cores (as previously described) and solid cores, which confer significant advantages in terms of stability, polydispersity and ease of use. These were coated with a number of detergents, the most successful based upon lipids doped with transfection reagents. In order to validate these, trapped SDMs were maneuvered up to the plasma membrane of giant vesicles containing Nile Red and human biliary epithelial (BE) colon cancer cells with green fluorescent labeled protein (GFP)-labeled CAAX (a motif belonging to the Ras protein). Bright field and fluorescence images showed that successful trapping and manipulation of multiple SDMs in x, y, z was achieved with success rates of 30-50% and that subsequent membrane-SDM interactions led to the uptake of Nile Red or GFP-CAAX into the SDM. PMID:22808432

  10. Bit-rate-variable and order-switchable optical multiplexing of high-speed pseudorandom bit sequence using optical delays.

    PubMed

    Wu, Xiaoxia; Wang, Jian; Yilmaz, Omer F; Nuccio, Scott R; Bogoni, Antonella; Willner, Alan E

    2010-09-15

    We experimentally demonstrate high-speed optical pseudorandom bit sequence (PRBS) multiplexing with coarse and fine bit-rate tuning capability and a switchable order using optical delays. Data multiplexing of 80 Gbit/s and 160 Gbit/s is shown, each with a tunable rate using a conversion/dispersion-based continuously tunable optical delay and tunable PRBS order with large switchable fiber delays. A 7% bit-rate tunability, i.e., 80-85.6 Gbit/s and 160-171.2 Gbit/s, is shown for both 2(7)-1 and 2(15)-1 PRBS. The rf spectra before and after multiplexing are measured in each case and show a suppression ratio of >30 dB, exhibiting the expected PRBS spectral characteristics. PMID:20847772

  11. Access protocols and network architectures for very high-speed optical fiber local area networks

    NASA Astrophysics Data System (ADS)

    Ganti, Sudhaker N. M.

    1993-10-01

    The single mode optical fiber possesses an enormous bandwidth of more than 30 THz in the low-loss optical region of 1.3 and 1.5 microns. Through wavelength division multiplexing (WDM), the optical fiber bandwidth can be divided into a set of high-speed channels, where each channel is assigned its own unique wavelength. An M x M passive optical star coupler is a simple broadcast medium, in which light energy incident at any input is uniformly coupled (or distributed) to all the outputs. Thus, a passive star along with the WDM channels can be used to configure a local area network (LAN). In this LAN, users require tunable devices to access a complete or a partial set of the WDM channels. Due to these multiple channels, many concurrent packet transmissions corresponding to different user pairs are possible and thus the total system throughput can be much higher than the data rates of each individual channel. To fairly arbitrate the data channels among the users, media access protocols are needed. Depending upon the number of data channels and the number of users, two possible situations arise. In the first case, the number of users is much larger than the number of data channels and in the second, the number of users equals the number of channels. In both cases, data channel contention may arise if multiple users access the same given channel and must be resolved. This thesis proposes media access protocols for passive optical star networks. All the proposed protocols are slotted in nature, i.e., the time axis on each channel is divided into slots. The well known Slotted-ALOHA and Reservation ALOHA protocols are extended to the multichannel network environment. The thesis also proposes switching protocols (equal number of channels and users), contention-based reservation protocols for this network architecture. To interconnect these star networks, a multi-control channel protocol is also proposed along with two interconnecting techniques. Since there are multiple data

  12. Mapping retinal thickness and macular edema by high-speed three-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Qienyuan; Trost, Peter K.; Lo, Pak-Wai; Hitzenberger, Christoph K.

    2004-07-01

    Conventional OCT generates one or few cross-sections of the retina and requires predetermination of measurement location and geometry. Because retinal pathologies are usually irregular and 3-dimensional in nature, a retinal imaging device with both high depth resolution and high lateral resolution is desired. The lateral resolution of the conventional OCT system is limited by sampling density, which in turn is limited by the speed of the system. In this paper, we present a three-dimensional optical coherence retinal tomograph (3D-OCT) which combines the rapid transversal imaging mode of a confocal scanning laser ophthalmoscope (cSLO) with the depth resolution of optical coherence tomography (OCT) to achieve high speed 3-D imaging. In contrary to the conventional OCT which performs adjacent A-scans to form a cross-section image (B-scan) perpendicular to the retinal surface, 3D-OCT acquires section images (C-scan) parallel to the retinal surface at defined depths across the thickness of the retina. Three-dimensional distribution of light-remitting sites within the retina is recorded at a depth resolution of ~12 μm (in eye) and lateral resolution of 10μm x 20μm within 1.2 seconds. In this paper, we present the results of in vivo retinal imaging of healthy volunteers and diabetic patients, retinal thickness mapping, and macular edema detection with the 3D-OCT device. Reproducibility of retinal thickness mapping ranges from 16 μm ~ 35 μm for different study subjects. Detailed retinal thickness map allows ready identification of location and area of macular thickening. C-scan images and continuous longitudinal cross section images provide visualization of pathological changes in the retina, such as presence of cyst formation and hard exudates. The need to predetermine measurement location and geometry is eliminated in 3D-OCT, in contrast to conventional OCT.

  13. Final Report and Documentation for the Optical Backplane/Interconnect for High Speed Communication LDRD

    SciTech Connect

    ROBERTSON, PERRY J.; CHEN, HELEN Y.; BRANDT, JAMES M.; SULLIVAN, CHARLES T.; PIERSON, LYNDON G.; WITZKE, EDWARD L.; GASS, KARL

    2001-03-01

    Current copper backplane technology has reached the technical limits of clock speed and width for systems requiring multiple boards. Currently, bus technology such as VME and PCI (types of buses) will face severe limitations are the bus speed approaches 100 MHz. At this speed, the physical length limit of an unterminated bus is barely three inches. Terminating the bus enables much higher clock rates but at drastically higher power cost. Sandia has developed high bandwidth parallel optical interconnects that can provide over 40 Gbps throughput between circuit boards in a system. Based on Sandia's unique VCSEL (Vertical Cavity Surface Emitting Laser) technology, these devices are compatible with CMOS (Complementary Metal Oxide Semiconductor) chips and have single channel bandwidth in excess of 20 GHz. In this project, we are researching the use of this interconnect scheme as the physical layer of a greater ATM (Asynchronous Transfer Mode) based backplane. There are several advantages to this technology including small board space, lower power and non-contact communication. This technology is also easily expandable to meet future bandwidth requirements in excess of 160 Gbps sometimes referred to as UTOPIA 6. ATM over optical backplane will enable automatic switching of wide high-speed circuits between boards in a system. In the first year we developed integrated VCSELs and receivers, identified fiber ribbon based interconnect scheme and a high level architecture. In the second year, we implemented the physical layer in the form of a PCI computer peripheral card. A description of future work including super computer networking deployment and protocol processing is included.

  14. Role of trimer-trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy.

    PubMed

    Yamashita, Hayato; Inoue, Keiichi; Shibata, Mikihiro; Uchihashi, Takayuki; Sasaki, Jun; Kandori, Hideki; Ando, Toshio

    2013-10-01

    Bacteriorhodopsin (bR) trimers form a two-dimensional hexagonal lattice in the purple membrane of Halobacterium salinarum. However, the physiological significance of forming the lattice has long been elusive. Here, we study this issue by comparing properties of assembled and non-assembled bR trimers using directed mutagenesis, high-speed atomic force microscopy (HS-AFM), optical spectroscopy, and a proton pumping assay. First, we show that the bonds formed between W12 and F135 amino acid residues are responsible for trimer-trimer association that leads to lattice assembly; the lattice is completely disrupted in both W12I and F135I mutants. HS-AFM imaging reveals that both crystallized D96N and non-crystallized D96N/W12I mutants undergo a large conformational change (i.e., outward E-F loop displacement) upon light-activation. However, lattice disruption significantly reduces the rate of conformational change under continuous light illumination. Nevertheless, the quantum yield of M-state formation, measured by low-temperature UV-visible spectroscopy, and proton pumping efficiency are unaffected by lattice disruption. From these results, we conclude that trimer-trimer association plays essential roles in providing bound retinal with an appropriate environment to maintain its full photo-reactivity and in maintaining the natural photo-reaction pathway. PMID:23462099

  15. Development of novel high-speed en face optical coherence tomography system using KTN optical beam deflector

    NASA Astrophysics Data System (ADS)

    Ohmi, Masato; Fukuda, Akihiro; Miyazu, Jun; Ueno, Masahiro; Toyoda, Seiji; Kobayashi, Junya

    2015-02-01

    We developed a novel high-speed en face optical coherence tomography (OCT) system using a KTa1-xNbxO3 (KTN) optical beam deflector. Using the imaging system, fast scanning was performed at 200 kHz by the KTN beam deflector, while slow scanning was performed at 400 Hz by the galvanometer mirror. In a preliminary experiment, we obtained en face OCT images of a human fingerprint at 400 fps. This is the highest speed reported in time-domain en face OCT imaging and is comparable to the speed of swept-source OCT. A 3D-OCT image of a sweat gland was also obtained by our imaging system.

  16. Intrinsic imperfection of self-differencing single-photon detectors harms the security of high-speed quantum cryptography systems

    NASA Astrophysics Data System (ADS)

    Jiang, Mu-Sheng; Sun, Shi-Hai; Tang, Guang-Zhao; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2013-12-01

    Thanks to the high-speed self-differencing single-photon detector (SD-SPD), the secret key rate of quantum key distribution (QKD), which can, in principle, offer unconditionally secure private communications between two users (Alice and Bob), can exceed 1 Mbit/s. However, the SD-SPD may contain loopholes, which can be exploited by an eavesdropper (Eve) to hack into the unconditional security of the high-speed QKD systems. In this paper, we analyze the fact that the SD-SPD can be remotely controlled by Eve in order to spy on full information without being discovered, then proof-of-principle experiments are demonstrated. Here, we point out that this loophole is introduced directly by the operating principle of the SD-SPD, thus, it cannot be removed, except for the fact that some active countermeasures are applied by the legitimate parties.

  17. Proposed new approach to design all optical AND gate using plasmonic based Mach-Zehnder interferometer for high speed communication

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Singh, Lokendra

    2016-04-01

    The limitation of conventional electronics is mitigated by all optical integrated circuits which have potential of high speed computing and information processing. In this work, an all optical AND gate using optical Kerr effect and optical bistability of a plasmonic based Mach-Zehnder interferometer (MZI) is proposed. An MZI is capable for switching of light according to the intensities of optical input signal. The paper constitutes with mathematical formulation of device and its study is verified using finite difference time domain (FDTD) method.

  18. A High-Speed Optical Modem Communication System for CORK Seafloor Observatories

    NASA Astrophysics Data System (ADS)

    Farr, N.; Tivey, M.; Ware, J.; Pontbriand, C.; Pelletier, L. P.

    2014-12-01

    High-speed communications underwater is an increasing requirement for data intensive seafloor sensors. Acoustic modems provide dependable long-range communications underwater, but data rates are limited to <57Kbps. Free-water optical modems (OMs) offer high data rate, 10Mbps communications over a range of 200 m - a distance for ROVs, AUVs or wire-lowered packages to communicate without the need to directly plug-in or retrieve the instrument. Over the past 4 years, we have demonstrated the functionality and utility of OM technology using a CORK borehole observatory as a test case. A CORK represents all of the basic components required for a seafloor observatory: a stable environment for long-term continuous measurements of earth and ocean phenomena, access to a unique environment below the seafloor and a standard communication interface. The CORK-OM features a high-bandwidth, low-latency optical system based on LED emitters and PMT receivers and an acoustic command and control system. OM tests established a communication link from 20 to 200 meters range at rates of 1, 5 and 10 Mbps with no bit errors. The seafloor OM was plugged into the CORK's existing underwater wet mateable connector and provided additional power to the CORK to boost the data rate to 1 Hz from the normal 1 minute sample period. To communicate with the seafloor CORK-OM, a number of different modalities were used. One method was an OM mounted to a CTD frame on a lowered wire from a ship with an SDSL link over the conducting wire. Other methods utilized OMs mounted to both ROV Jason and submersible Alvin. We deployed OMs at two CORKs in 2012 in the northeast pacific at sites 857D and 1025C. The CORKs were visited in 2013 by a vessel of opportunity to download data and were put into sleep mode. The CORKs were revisited in 2014, woken up and successfully interrogated for data. ALVIN retrieved the CORK-OMs for corrosion, biofouling and battery performance assessment. We also performed tests of a next

  19. Optical Flow-Field Techniques Used for Measurements in High-Speed Centrifugal Compressors

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    1999-01-01

    The overall performance of a centrifugal compressor depends on the performance of the impeller and diffuser as well as on the interactions occurring between these components. Accurate measurements of the flow fields in each component are needed to develop computational models that can be used in compressor design codes. These measurements must be made simultaneously over an area that covers both components so that researchers can understand the interactions occurring between the two components. Optical measurement techniques are being used at the NASA Lewis Research Center to measure the velocity fields present in both the impeller and diffuser of a 4:1 pressure ratio centrifugal compressor operating at several conditions ranging from design flow to surge. Laser Doppler Velocimetry (LDV) was used to measure the intrablade flows present in the impeller, and the results were compared with analyses obtained from two three-dimensional viscous codes. The development of a region of low throughflow velocity fluid within this high-speed impeller was examined and compared with a similar region first observed in a large low-speed centrifugal impeller at Lewis. Particle Image Velocimetry (PIV) is a relatively new technique that has been applied to measuring the diffuser flow fields. PIV can collect data rapidly in the diffuser while avoiding the light-reflection problems that are often encountered when LDV is used. The Particle Image Velocimeter employs a sheet of pulsed laser light that is introduced into the diffuser in a quasi-radial direction through an optical probe inserted near the diffuser discharge. The light sheet is positioned such that its centerline is parallel to the hub and shroud surfaces and such that it is parallel to the diffuser vane, thereby avoiding reflections from the solid surfaces. Seed particles small enough to follow the diffuser flow are introduced into the compressor at an upstream location. A high-speed charge-coupled discharge (CCD) camera is

  20. High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography

    PubMed Central

    Kim, Sangmin; Raphael, Patrick D.; Oghalai, John S.; Applegate, Brian E.

    2016-01-01

    Swept-laser sources offer a number of advantages for Phase-sensitive Optical Coherence Tomography (PhOCT). However, inter- and intra-sweep variability leads to calibration errors that adversely affect phase sensitivity. While there are several approaches to overcoming this problem, our preferred method is to simply calibrate every sweep of the laser. This approach offers high accuracy and phase stability at the expense of a substantial processing burden. In this approach, the Hilbert phase of the interferogram from a reference interferometer provides the instantaneous wavenumber of the laser, but is computationally expensive. Fortunately, the Hilbert transform may be approximated by a Finite Impulse-Response (FIR) filter. Here we explore the use of several FIR filter based Hilbert transforms for calibration, explicitly considering the impact of filter choice on phase sensitivity and OCT image quality. Our results indicate that the complex FIR filter approach is the most robust and accurate among those considered. It provides similar image quality and slightly better phase sensitivity than the traditional FFT-IFFT based Hilbert transform while consuming fewer resources in an FPGA implementation. We also explored utilizing the Hilbert magnitude of the reference interferogram to calculate an ideal window function for spectral amplitude calibration. The ideal window function is designed to carefully control sidelobes on the axial point spread function. We found that after a simple chromatic correction, calculating the window function using the complex FIR filter and the reference interferometer gave similar results to window functions calculated using a mirror sample and the FFT-IFFT Hilbert transform. Hence, the complex FIR filter can enable accurate and high-speed calibration of the magnitude and phase of spectral interferograms. PMID:27446666

  1. High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography.

    PubMed

    Kim, Sangmin; Raphael, Patrick D; Oghalai, John S; Applegate, Brian E

    2016-04-01

    Swept-laser sources offer a number of advantages for Phase-sensitive Optical Coherence Tomography (PhOCT). However, inter- and intra-sweep variability leads to calibration errors that adversely affect phase sensitivity. While there are several approaches to overcoming this problem, our preferred method is to simply calibrate every sweep of the laser. This approach offers high accuracy and phase stability at the expense of a substantial processing burden. In this approach, the Hilbert phase of the interferogram from a reference interferometer provides the instantaneous wavenumber of the laser, but is computationally expensive. Fortunately, the Hilbert transform may be approximated by a Finite Impulse-Response (FIR) filter. Here we explore the use of several FIR filter based Hilbert transforms for calibration, explicitly considering the impact of filter choice on phase sensitivity and OCT image quality. Our results indicate that the complex FIR filter approach is the most robust and accurate among those considered. It provides similar image quality and slightly better phase sensitivity than the traditional FFT-IFFT based Hilbert transform while consuming fewer resources in an FPGA implementation. We also explored utilizing the Hilbert magnitude of the reference interferogram to calculate an ideal window function for spectral amplitude calibration. The ideal window function is designed to carefully control sidelobes on the axial point spread function. We found that after a simple chromatic correction, calculating the window function using the complex FIR filter and the reference interferometer gave similar results to window functions calculated using a mirror sample and the FFT-IFFT Hilbert transform. Hence, the complex FIR filter can enable accurate and high-speed calibration of the magnitude and phase of spectral interferograms. PMID:27446666

  2. LGSD/NGSD: high speed optical CMOS imagers for E-ELT adaptive optics

    NASA Astrophysics Data System (ADS)

    Downing, Mark; Kolb, Johann; Balard, Philippe; Dierickx, Bart; Defernez, Arnaud; Feautrier, Philippe; Finger, Gert; Fryer, Martin; Gach, Jean-Luc; Guillaume, Christian; Hubin, Norbert; Jerram, Paul; Jorden, Paul; Meyer, Manfred; Payne, Andrew; Pike, Andrew; Reyes, Javier; Simpson, Robert; Stadler, Eric; Stent, Jeremy; Swift, Nick

    2014-07-01

    The success of the next generation of instruments for ELT class telescopes will depend upon improving the image quality by exploiting sophisticated Adaptive Optics (AO) systems. One of the critical components of the AO systems for the E-ELT has been identified as the optical Laser/Natural Guide Star WFS detector. The combination of large format, 1760×1680 pixels to finely sample the wavefront and the spot elongation of laser guide stars, fast frame rate of 700 frames per second (fps), low read noise (< 3e-), and high QE (> 90%) makes the development of this device extremely challenging. Design studies concluded that a highly integrated Backside Illuminated CMOS Imager built on High Resistivity silicon as the most likely technology to succeed. Two generations of the CMOS Imager are being developed: a) the already designed and manufactured NGSD (Natural Guide Star Detector), a quarter-sized pioneering device of 880×840 pixels capable of meeting first light needs of the E-ELT; b) the LGSD (Laser Guide Star Detector), the larger full size device. The detailed design is presented including the approach of using massive parallelism (70,400 ADCs) to achieve the low read noise at high pixel rates of ~3 Gpixel/s and the 88 channel LVDS 220Mbps serial interface to get the data off-chip. To enable read noise closer to the goal of 1e- to be achieved, a split wafer run has allowed the NGSD to be manufactured in the more speculative, but much lower read noise, Ultra Low Threshold Transistors in the unit cell. The NGSD has come out of production, it has been thinned to 12μm, backside processed and packaged in a custom 370pin Ceramic PGA (Pin Grid Array). First results of tests performed both at e2v and ESO are presented.

  3. Control System for Suppressing Tracking Error Offset and Multiharmonic Disturbance in High-Speed Optical Disk Systems

    NASA Astrophysics Data System (ADS)

    Nabata, Yuta; Nakazaki, Tatsuya; Ogata, Tokoku; Ohishi, Kiyoshi; Miyazaki, Toshimasa; Sazawa, Masaki; Koide, Daiichi; Takano, Yoshimichi; Tokumaru, Haruki

    This paper proposes a control system for suppressing tracking error offset and multiharmonic disturbance in high speed optical disk systems. Residual tracking error consists of primary harmonics, high-order harmonics, and offset. Therefore, this paper proposes a tracking control system for suppressing residual tracking error, including primary harmonics, high order harmonics disturbance, and offset. The cause of the offset included in the residual tracking error is discussed. The cause is found to be the operation error in the fixed-point DSP (digital signal processor) and the phase lag of the LPF (low pass filter). Moreover, the proposed control system is designed for two types of high-speed optical disk system. The experimental results show that the proposed system enables an optical disk system to achieve a fine tracking performance.

  4. High-Speed Operation of a Single-Flux-Quantum (SFQ) Cross/Bar Switch up to 35 GHz

    NASA Astrophysics Data System (ADS)

    Kameda, Yoshio; Yorozu, Shinichi; Terai, Hirotaka; Fujimaki, Akira

    2003-04-01

    Single-flux-quantum (SFQ) technology is a novel technology where binary information is represented by a single flux. It enables us to realize high-speed, low-power SFQ logic circuits, surpassing conventional complementary metal-oxide-silicon (CMOS) technology. We proposed an SFQ packet switch to avoid the bottlenecks in broadband networks of the future. To demonstrate high-speed operation of an SFQ logic circuit and its application to our switch architecture, we designed a cross/bar switch. It consists of 13 logic gates and 581 Josephson junctions were used in the layout. We confirmed correct operations up to 33 GHz in simulation. We placed the switch circuit in an on-chip test system for high-speed (over 10 GHz) test. Including I/O circuits, the system as a whole consists of 1236 Josephson junctions. The chip was fabricated by using NEC’s standard Nb process. We carried out an on-chip test and found correct operations up to 35 GHz.

  5. Nonlinear optical microscopy for immunoimaging: a custom optimized system of high-speed, large-area, multicolor imaging

    PubMed Central

    Li, Hui; Cui, Quan; Zhang, Zhihong; Luo, Qingming

    2015-01-01

    Background The nonlinear optical microscopy has become the current state-of-the-art for intravital imaging. Due to its advantages of high resolution, superior tissue penetration, lower photodamage and photobleaching, as well as intrinsic z-sectioning ability, this technology has been widely applied in immunoimaging for a decade. However, in terms of monitoring immune events in native physiological environment, the conventional nonlinear optical microscope system has to be optimized for live animal imaging. Generally speaking, three crucial capabilities are desired, including high-speed, large-area and multicolor imaging. Among numerous high-speed scanning mechanisms used in nonlinear optical imaging, polygon scanning is not only linearly but also dispersion-freely with high stability and tunable rotation speed, which can overcome disadvantages of multifocal scanning, resonant scanner and acousto-optical deflector (AOD). However, low frame rate, lacking large-area or multicolor imaging ability make current polygonbased nonlinear optical microscopes unable to meet the requirements of immune event monitoring. Methods We built up a polygon-based nonlinear optical microscope system which was custom optimized for immunoimaging with high-speed, large-are and multicolor imaging abilities. Results Firstly, we validated the imaging performance of the system by standard methods. Then, to demonstrate the ability to monitor immune events, migration of immunocytes observed by the system based on typical immunological models such as lymph node, footpad and dorsal skinfold chamber are shown. Finally, we take an outlook for the possible advance of related technologies such as sample stabilization and optical clearing for more stable and deeper intravital immunoimaging. Conclusions This study will be helpful for optimizing nonlinear optical microscope to obtain more comprehensive and accurate information of immune events. PMID:25694951

  6. High-speed impact test using an inertial mass and an optical interferometer

    NASA Astrophysics Data System (ADS)

    Jin, T.; Watanabe, K.; Prayogi, I. A.; Takita, A.; Mitatha, S.; Djamal, M.; Jia, H. Z.; Hou, W. M.; Fujii, Y.

    2013-07-01

    A high-speed impact testing method for evaluating mechanical properties of materials is proposed using an inertial mass and a dual beat-frequencies laser Doppler interferometer (DB-LDI). In this method, an inertial mass levitated using an aerostatic linear bearing is made to collide with the material being tested at a high initial velocity. During the collision, the velocity of the mass, which is even higher than the critical velocity (±0.56 m/s) defined by the frequency difference of the Zeeman laser, is accurately measured using the DB-LDI. The position, acceleration, and impact force of the mass are calculated from the measured velocity. Using the proposed method, the mechanical properties of a visco-elastic material under a high-speed impact loading condition can be accurately evaluated.

  7. High-speed impact test using an inertial mass and an optical interferometer.

    PubMed

    Jin, T; Watanabe, K; Prayogi, I A; Takita, A; Mitatha, S; Djamal, M; Jia, H Z; Hou, W M; Fujii, Y

    2013-07-01

    A high-speed impact testing method for evaluating mechanical properties of materials is proposed using an inertial mass and a dual beat-frequencies laser Doppler interferometer (DB-LDI). In this method, an inertial mass levitated using an aerostatic linear bearing is made to collide with the material being tested at a high initial velocity. During the collision, the velocity of the mass, which is even higher than the critical velocity (±0.56 m/s) defined by the frequency difference of the Zeeman laser, is accurately measured using the DB-LDI. The position, acceleration, and impact force of the mass are calculated from the measured velocity. Using the proposed method, the mechanical properties of a visco-elastic material under a high-speed impact loading condition can be accurately evaluated. PMID:23902115

  8. Optical modeling of a line-scan optical coherence tomography system for high-speed three-dimensional endoscopic imaging

    NASA Astrophysics Data System (ADS)

    Kamal, Mohammad; Sivakumar, Narayanswamy; Packirisamy, Muthukumaran

    2009-06-01

    The optical and analytical modeling of a line-scan optical coherence tomography (LS-OCT) system for high-speed three-dimensional (3D) endoscopic imaging is reported. To avoid complex lens system and image distortion error, an off-axis cylindrical mirror is used for focusing the line illumination on the sample surface and a micro mirror scanner is integrated with the proposed configuration for transverse scanning. The beams are swept on the cylindrical mirror by the micro mirror rotation and finally focused on the sample surface for transverse scanning. A 2mm by 3.2mm en-face scanning is configured with a 2mm focused line and +/-3° scanning mirror rotation. The proposed configuration also has the capability of dynamic focusing by the movement of the cylindrical mirror without changing the transverse resolution. The cylindrical mirror enhances the image quality by reducing the aberration. The system is capable of real-time 3D imaging with 5μm and 10 μm axial and transverse resolutions, respectively.

  9. High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography

    PubMed Central

    Zhang, Yan; Cense, Barry; Rha, Jungtae; Jonnal, Ravi S.; Gao, Weihua; Zawadzki, Robert J.; Werner, John S.; Jones, Steve; Olivier, Scot; Miller, Donald T.

    2008-01-01

    We report the first observations of the three-dimensional morphology of cone photoreceptors in the living human retina. Images were acquired with a high-speed adaptive optics (AO) spectral-domain optical coherence tomography (SD-OCT) camera. The AO system consisted of a Shack-Hartmann wavefront sensor and bimorph mirror (AOptix) that measured and corrected the ocular and system aberrations at a closed-loop rate of 12 Hz. The bimorph mirror was positioned between the XY mechanical scanners and the subject’s eye. The SD-OCT system consisted of a superluminescent diode and a 512 pixel line scan charge-coupled device (CCD) that acquired 75,000 A-scans/s. This rate is more than two times faster than that previously reported. Retinal motion artifacts were minimized by quickly acquiring small volume images of the retina with and without AO compensation. Camera sensitivity was sufficient to detect reflections from all major retinal layers. The regular distribution of bright spots observed within C-scans at the inner segment / outer segment (IS/OS) junctions and at the posterior tips of the OS were found to be highly correlated with one another and with the expected cone spacing. No correlation was found between the posterior tips of the OS and the other retinal layers examined, including the retinal pigment epithelium. PMID:19096730

  10. Initial evaluation of commercially available InGaAsP DFB laser diodes for use in high-speed digital fiber optic transceivers

    NASA Technical Reports Server (NTRS)

    Cook, Anthony L.; Hendricks, Herbert D.

    1990-01-01

    NASA has been pursuing the development of high-speed fiber-optic transceivers for use in a number of space data system applications. Current efforts are directed toward a high-performance all-integrated-circuit transceiver operating up to the 3-5 Gb/s range. Details of the evaluation and selection of candidate high-speed optical sources to be used in the space-qualified high-performance transceiver are presented. Data on the performance of commercially available DFB (distributed feedback) lasers are presented, and their performance relative to each other and to their structural design with regard to their use in high-performance fiber-optic transceivers is discussed. The DFB lasers were obtained from seven commercial manufacturers. The data taken on each laser included threshold current, differential quantum efficiency, CW side mode suppression radio, wavelength temperature coefficient, threshold temperature coefficient, natural linewidth, and far field pattern. It was found that laser diodes with buried heterostructures and first-order gratings had, in general, the best CW operating characteristics. The modulated characteristics of the DFB laser diodes are emphasized. Modulated linewidth, modulated side mode suppression ratio, and frequency response are discussed.

  11. All-optical beam control with high speed using image-induced blazed gratings in coherent media

    SciTech Connect

    Zhao, L.; Duan Wenhui; Yelin, S. F.

    2010-07-15

    Based on the theory of electromagnetically induced transparency, we study the formation of all-optical blazed transmission gratings in a coherently driven three-level atomic system using intensity-modulated images in coupling fields. Also, we analyze the feasibility of high-speed (megahertz) modulation for the induced gratings by means of image-bearing flat-top pulse trains. Consequently, continuous-wave probe fields can be efficiently and rapidly deflected in free space. When more sophisticated images are adopted, our scheme can provide further possibilities of all-optical beam splitting and fanning.

  12. Design of Quantum Dot-Conjugated Lipids for Long-Term, High-Speed Tracking Experiments on Cell Surfaces

    PubMed Central

    Murcia, Michael J.; Minner, Daniel. E.; Mustata, Gina-Mirela; Ritchie, Kenneth; Naumann, Christoph A.

    2009-01-01

    The current study reports the facile design of quantum dot (QD)-conjugated lipids and their application to high-speed tracking experiments on cell surfaces. CdSe/ZnS core/shell QDs with two types of hydrophilic coatings, 2-(2-aminoethoxy)ethanol (AEE-coating) and a 60:40 molar mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol-2000] (LIPO-coating), are conjugated to sulfhydryl lipids via maleimide reactive groups on the QD surface. Prior to lipid conjugation, the colloidal stability of both types of coated QDs in aqueous solution is confirmed using fluorescence correlation spectroscopy. A sensitive assay based on single lipid tracking experiments on a planar solid-supported phospholipid bilayer is presented that establishes conditions of monovalent conjugation of QDs to lipids. The QD lipids are then employed as single molecule tracking probes in plasma membranes of several cell types. Initial tracking experiments at a frame rate of 30 fps corroborate that QD-lipids diffuse like dye-labeled lipids in the plasma membrane of COS-7, HEK-293, 3T3, and NRK cells, thus confirming monovalent labeling. Finally, QD-lipids are applied for the first time to high-speed single molecule imaging by tracking their lateral mobility in the plasma membrane of NRK fibroblasts with up to 1000 fps. Our high-speed tracking data, which are in excellent agreement to previous tracking experiments with larger 40nm Au labels, not only push the time resolution in long-time, continuous fluorescence-based single molecule tracking, but also show that highly photostable, photoluminescent nanoprobes of 10nm size can be employed (AEE-coated QDs). These probes are also attractive because, unlike Au nanoparticles, they facilitate complex multicolor experiments. PMID:18937457

  13. High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm

    NASA Astrophysics Data System (ADS)

    Piao, Zhonglie; Ma, Teng; Li, Jiawen; Wiedmann, Maximilian T.; Huang, Shenghai; Yu, Mingyue; Kirk Shung, K.; Zhou, Qifa; Kim, Chang-Seok; Chen, Zhongping

    2015-08-01

    Intravascular photoacoustic imaging at 1.7 μm spectral band has shown promising capabilities for lipid-rich vulnerable atherosclerotic plaque detection. In this work, we report a high speed catheter-based integrated intravascular photoacoustic/intravascular ultrasound (IVPA/IVUS) imaging system with a 500 Hz optical parametric oscillator laser at 1725 nm. A lipid-mimicking phantom and atherosclerotic rabbit abdominal aorta were imaged at 1 frame per second, which is two orders of magnitude faster than previously reported in IVPA imaging with the same wavelength. Clear photoacoustic signals by the absorption of lipid rich deposition demonstrated the ability of the system for high speed vulnerable atherosclerotic plaques detection.

  14. Measurement of radial expansion and tumbling motion of a high-speed rotor using an optical sensor system

    NASA Astrophysics Data System (ADS)

    Günther, P.; Dreier, F.; Pfister, T.; Czarske, J.; Haupt, T.; Hufenbach, W.

    2011-01-01

    In order to investigate the load capacity and the strength properties of high-speed rotors, dynamic deformation and vibration measurements are of importance, in particular at lightweight composite devices which cannot be simulated reliably. This is a challenging task in metrology since non-contact inspection techniques are required which offer micron uncertainties and high temporal resolution simultaneously, also under vacuum conditions. In order to meet these requirements, a non-incremental laser Doppler distance sensor system was developed using fiber and diffractive optics. In this paper we present for the first time high-speed deformation measurements of a cylindrical steel rotor using this novel sensor system. The radial rotor expansion of only some microns was determined despite the presence of an unsteady tumbling motion of the rotor, which was measured simultaneously. Future prospects are discussed including the possibility to measure non-metallic devices such as fiber-reinforced composites.

  15. Advanced organic dye for high-speed, high-density optical media

    NASA Astrophysics Data System (ADS)

    Kodaira, Takuo; Matsuda, Isao; Somei, Hidenori; Tsuzuki, Takeo; Yokoyama, Daizo; Endo, Akihisa; Takeguchi, Kazunobu; Kojo, Shinichi; Miyazawa, Fuyuki; Otsu, Takeshi; Murai, Wakaaki; Hattori, Masashi; Shimomai, Kenichi; Oshita, Junji; Asano, Sho; Shimizu, Atsuo; Fujii, Toru

    2015-09-01

    Advances in organic dye progress are indispensable for high-speed, high-density recording of recordable Blu-ray Disc™ (BD-R) low-to-high (LTH) discs without a low elastic modulus layer. The optimal physical properties of the organic dyes, i.e., a low decomposition calorific value, a low decomposition temperature, and a large n-value, were determined, and a dye with these properties was synthesized. A BD-R disc using the dye conformed to the BD-R LTH standard at 8× recording and ever higher speeds should be possible. Furthermore, the possibility of 33 GB/layer high-density recording was suggested.

  16. High speed switching in quantum Dot/Ti-TiOx nonvolatile memory device

    NASA Astrophysics Data System (ADS)

    Kannan, V.; Kim, Hyun-Seok; Park, Hyun-Chang

    2016-03-01

    We report a Ti-TiOx/CdSe-ZnS core-shell quantum dot based bipolar nonvolatile resistive memory device. The device exhibits an ON/OFF ratio of 100 and is reproducible. The memory device showed good retention characteristics under stress and excellent stability even after 100,000 cycles of switching operation. The switching speed measured was around 15 ns. The devices are solution processed at room temperature in ambient atmosphere. The operating mechanism is discussed based on charge trapping in quantum dots resulting in the Coulomb blockade effect with a ZnS shell layer and metal-oxide layer acting as the barrier to confine the trapped charges. The proposed mechanism is validated by a three terminal device designed exclusively for this purpose. [Figure not available: see fulltext.

  17. High speed and adaptable error correction for megabit/s rate quantum key distribution

    PubMed Central

    Dixon, A. R.; Sato, H.

    2014-01-01

    Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90–94% of the ideal secure key rate over all fibre distances from 0–80 km. PMID:25450416

  18. High speed and adaptable error correction for megabit/s rate quantum key distribution

    NASA Astrophysics Data System (ADS)

    Dixon, A. R.; Sato, H.

    2014-12-01

    Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90-94% of the ideal secure key rate over all fibre distances from 0-80 km.

  19. High-speed all-optical NAND/AND logic gates using four-wave mixing Bragg scattering.

    PubMed

    Li, Kangmei; Ting, Hong-Fu; Foster, Mark A; Foster, Amy C

    2016-07-15

    A high-speed all-optical NAND logic gate is proposed and experimentally demonstrated using four-wave mixing Bragg scattering in highly nonlinear fiber. NAND/AND logic functions are implemented at two wavelengths by encoding logic inputs on two pumps via on-off keying. A 15.2-dB depletion of the signal is obtained for NAND operation, and time domain measurements show 10-Gb/s NAND/AND logic operations with open eye diagrams. The approach can be readily extended to higher data rates and transferred to on-chip waveguide platforms. PMID:27420525

  20. Protocol based on compressed sensing for high-speed authentication and cryptographic key distribution over a multiparty optical network.

    PubMed

    Yu, Wen-Kai; Li, Shen; Yao, Xu-Ri; Liu, Xue-Feng; Wu, Ling-An; Zhai, Guang-Jie

    2013-11-20

    We present a protocol for the amplification and distribution of a one-time-pad cryptographic key over a point-to-multipoint optical network based on computational ghost imaging (GI) and compressed sensing (CS). It is shown experimentally that CS imaging can perform faster authentication and increase the key generation rate by an order of magnitude compared with the scheme using computational GI alone. The protocol is applicable for any number of legitimate user, thus, the scheme could be used in real intercity networks where high speed and high security are crucial. PMID:24513737

  1. >400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging

    PubMed Central

    Oh, Wang-Yuhl; Vakoc, Benjamin J.; Shishkov, Milen; Tearney, Guillermo J.; Bouma, Brett E.

    2010-01-01

    We demonstrate a high-speed wavelength-swept laser with a tuning range of 104 nm (1228–1332 nm) and a repetition rate of 403 kHz. The design of the laser utilizes a high-finesse polygon-based wavelength-scanning filter and a short-length unidirectional ring resonator. Optical frequency domain imaging of the human skin in vivo is presented using this laser, and the system shows sensitivity of higher than 98 dB with single-side ranging depth of 1.7 mm over 4 dB sensitivity roll-off. PMID:20808369

  2. Compressive sensing based high-speed time-stretch optical microscopy for two-dimensional image acquisition.

    PubMed

    Guo, Qiang; Chen, Hongwei; Weng, Zhiliang; Chen, Minghua; Yang, Sigang; Xie, Shizhong

    2015-11-16

    In this paper, compressive sensing based high-speed time-stretch optical microscopy for two-dimensional (2D) image acquisition is proposed and experimentally demonstrated for the first time. A section of dispersion compensating fiber (DCF) is used to perform wavelength-to-time conversion and then ultrafast spectral shaping of broadband optical pulses can be achieved via high-speed intensity modulation. A 2D spatial disperser comprising a pair of orthogonally oriented dispersers is employed to produce spatially structured illumination for 2D image acquisition and a section of single mode fiber (SMF) is utilized for pulse compression in the optical domain. In our scheme, a 1.2-GHz photodetector and a 50-MHz analog-to-digital converter (ADC) are used to acquire the energy of the compressed pulses. Image reconstructions are demonstrated at a frame rate of 500 kHz and a sixteen-fold image compression is achieved in our proof-of-concept demonstration. PMID:26698446

  3. Optical time-domain analog pattern correlator for high-speed real-time image recognition.

    PubMed

    Kim, Sang Hyup; Goda, Keisuke; Fard, Ali; Jalali, Bahram

    2011-01-15

    The speed of image processing is limited by image acquisition circuitry. While optical pattern recognition techniques can reduce the computational burden on digital image processing, their image correlation rates are typically low due to the use of spatial optical elements. Here we report a method that overcomes this limitation and enables fast real-time analog image recognition at a record correlation rate of 36.7 MHz--1000 times higher rates than conventional methods. This technique seamlessly performs image acquisition, correlation, and signal integration all optically in the time domain before analog-to-digital conversion by virtue of optical space-to-time mapping. PMID:21263506

  4. Optical Design of Plant Canopy Measurement System and Fabrication of Two-Dimensional High-Speed Metal-Semiconductor-Metal Photodetector Arrays

    NASA Technical Reports Server (NTRS)

    Sarto, Anthony; VanZeghbroeck, Bart; Vanderbilt, Vern C.

    1996-01-01

    Electrical and optical designs for the prototype plant canopy architecture measurement system, including specified component and parts lists, are presented. Six single Metal-Semiconductor-Metal (MSM) detectors are mounted in high-speed packages.

  5. A high-speed, large-capacity, 'jukebox' optical disk system

    NASA Technical Reports Server (NTRS)

    Ammon, G. J.; Calabria, J. A.; Thomas, D. T.

    1985-01-01

    Two optical disk 'jukebox' mass storage systems which provide access to any data in a store of 10 to the 13th bits (1250G bytes) within six seconds have been developed. The optical disk jukebox system is divided into two units, including a hardware/software controller and a disk drive. The controller provides flexibility and adaptability, through a ROM-based microcode-driven data processor and a ROM-based software-driven control processor. The cartridge storage module contains 125 optical disks housed in protective cartridges. Attention is given to a conceptual view of the disk drive unit, the NASA optical disk system, the NASA database management system configuration, the NASA optical disk system interface, and an open systems interconnect reference model.

  6. Towards a Flat Rotating Flexible Disk for High Speed Optical Data Storage

    NASA Astrophysics Data System (ADS)

    Gad, Abdelrasoul M. M.; Rhim, Yoon Chul

    2010-08-01

    A flexible optical disk system, which consists of a thin optical disk and a rigid stabilizer, has recently introduced as the next-generation optical storage media. The present work introduces a new design for the stabilizer that helps to hold the rotating flexible optical disk almost flat and thereby reducing its axial run-out at high rotational speeds; the new design incorporates an axisymmetrically curved active surface of the stabilizer. The combination of the stabilizer curvature and disk rotation generates moderate air-film forces that balance the disk mechanical forces and reduces the disk axial run-out considerably. With a proper combination of the stabilizer geometrical parameters, the out-of-flatness as well as the axial run-out of the disk could be reduced to less than 10 µm. The significant decrease in the axial run-out at rotational speed of 10,000 rpm is primarily due to the flatness of the disk.

  7. High-speed asynchronous optical sampling for high-sensitivity detection of coherent phonons

    NASA Astrophysics Data System (ADS)

    Dekorsy, T.; Taubert, R.; Hudert, F.; Schrenk, G.; Bartels, A.; Cerna, R.; Kotaidis, V.; Plech, A.; Köhler, K.; Schmitz, J.; Wagner, J.

    2007-12-01

    A new optical pump-probe technique is implemented for the investigation of coherent acoustic phonon dynamics in the GHz to THz frequency range which is based on two asynchronously linked femtosecond lasers. Asynchronous optical sampling (ASOPS) provides the performance of on all-optical oscilloscope and allows us to record optically induced lattice dynamics over nanosecond times with femtosecond resolution at scan rates of 10 kHz without any moving part in the set-up. Within 1 minute of data acquisition time signal-to-noise ratios better than 107 are achieved. We present examples of the high-sensitivity detection of coherent phonons in superlattices and of the coherent acoustic vibration of metallic nanoparticles.

  8. Quantitative assessment of rat corneal thickness and morphology during stem cell therapy by high-speed optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lal, Cerine; McGrath, James; Subhash, Hrebesh; Rani, Sweta; Ritter, Thomas; Leahy, Martin

    2016-03-01

    Optical Coherence Tomography (OCT) is a non-invasive 3 dimensional optical imaging modality that enables high resolution cross sectional imaging in biological tissues and materials. Its high axial and lateral resolution combined with high sensitivity, imaging depth and wide field of view makes it suitable for wide variety of high resolution medical imaging applications at clinically relevant speed. With the advent of swept source lasers, the imaging speed of OCT has increased considerably in recent years. OCT has been used in ophthalmology to study dynamic changes occurring in the cornea and iris, thereby providing physiological and pathological changes that occur within the anterior segment structures such as in glaucoma, during refractive surgery, lamellar keratoplasty and corneal diseases. In this study, we assess the changes in corneal thickness in the anterior segment of the eye during wound healing process in a rat corneal burn model following stem cell therapy using high speed swept source OCT.

  9. Optical-fiber-transmission laser sheet technique for flow visualization in intermittent high-speed wind tunnels

    NASA Astrophysics Data System (ADS)

    Hu, Chenghang

    2003-04-01

    The light sheet technique provides a unique method of visualization for off-body flow fields at subsonic through supersonic speeds. But conventional mirror tansmission laser systems have some shortcomings: The harsh environments of high speed wind tunnels often cause the misalignment of the optical components and the contamination of the mirror surfaces. The exposed laser beam is dangerous to the persons at the work sites. This paper presents an advanced optical-fiber-transmission laser sheet system, which provides a solution to the problems above and greatly improves the quality, safety and reliability of the light sheet. The emphasis is laid on the detailed composition of the new type visualization system. Some examples of its applications in transonic/supersonic wind tunnels are also given in this paper.

  10. Sub-micron resolution high-speed spectral domain optical coherence tomography in quality inspection for printed electronics

    NASA Astrophysics Data System (ADS)

    Czajkowski, J.; Lauri, J.; Sliz, R.; Fält, P.; Fabritius, T.; Myllylä, R.; Cense, B.

    2012-04-01

    We present the use of sub-micron resolution optical coherence tomography (OCT) in quality inspection for printed electronics. The device used in the study is based on a supercontinuum light source, Michelson interferometer and high-speed spectrometer. The spectrometer in the presented spectral-domain optical coherence tomography setup (SD-OCT) is centered at 600 nm and covers a 400 nm wide spectral region ranging from 400 nm to 800 nm. Spectra were acquired at a continuous rate of 140,000 per second. The full width at half maximum of the point spread function obtained from a Parylene C sample was 0:98 m. In addition to Parylene C layers, the applicability of sub-micron SD-OCT in printed electronics was studied using PET and epoxy covered solar cell, a printed RFID antenna and a screen-printed battery electrode. A commercial SD-OCT system was used for reference measurements.

  11. Designing coherent optical wireless systems for high speed indoor telecom applications

    NASA Astrophysics Data System (ADS)

    Kamalakis, Thomas; Kanakis, Panagiotis; Bogris, Adonis; Dalakas, Vasilis; Dede, Georgia

    2016-01-01

    This paper focuses on several design issues of coherent optical wireless systems as a means of providing high data rate optical links in indoor environments enabling the realization of ultra-broadband wireless local area networks. We show how the performance specifications can be translated into signal-to-noise ratio requirements inside the coverage area, taking into account the laser phase noise mitigation scheme. We then discuss the power budget details using Gaussian beam optics incorporating the transceiver positioning and the optical systems used at the transmitter and receiver side. We also treat the influence of ambient light noise. We show that coherent optical wireless systems are characterized by excellent signal-to-noise performance enabling networking at very high data rates. Our results indicate that 2 Gb/s and 10 Gb/s data rates can be easily sustained at 3 m distances over a circular coverage area of 1 m radius using Class-1 lasers for the transmitter and the local oscillator. We also discuss the power gain compared to intensity modulated/direct detection optical wireless and show that it can be as high as 20 dB, especially near the edge of the coverage area.

  12. Closed-loop motor control using high-speed fiber optics

    NASA Technical Reports Server (NTRS)

    Dawson, Reginald (Inventor); Rodriquiz, Dagobert (Inventor)

    1991-01-01

    A closed-loop control system for controlling the operation of one or more servo motors or other controllable devices is described. The system employs a fiber optics link immune to electromagnetic interference, for transmission of control signals from a controller or controllers at a remote station to the power electronics located in proximity to the motors or other devices at the local station. At the remote station the electrical control signals are time-multiplexed, converted to a formatted serial bit stream, and converted to light signals for transmission over a single fiber of the fiber optics link. At the local station, the received optical signals are reconstructed as electrical control signals for the controlled motors or other devices. At the local station, an encoder sensor linked to the driven device generates encoded feedback signals which provide information as to a condition of the controlled device. The encoded signals are placed in a formatted serial bit stream, multiplexed, and transmitted as optical signals over a second fiber of the fiber optic link which closes the control loop of the closed-loop motor controller. The encoded optical signals received at the remote station are demultiplexed, reconstructed and coupled to the controller(s) as electrical feedback signals.

  13. QUANTUM OPTICS. Universal linear optics.

    PubMed

    Carolan, Jacques; Harrold, Christopher; Sparrow, Chris; Martín-López, Enrique; Russell, Nicholas J; Silverstone, Joshua W; Shadbolt, Peter J; Matsuda, Nobuyuki; Oguma, Manabu; Itoh, Mikitaka; Marshall, Graham D; Thompson, Mark G; Matthews, Jonathan C F; Hashimoto, Toshikazu; O'Brien, Jeremy L; Laing, Anthony

    2015-08-14

    Linear optics underpins fundamental tests of quantum mechanics and quantum technologies. We demonstrate a single reprogrammable optical circuit that is sufficient to implement all possible linear optical protocols up to the size of that circuit. Our six-mode universal system consists of a cascade of 15 Mach-Zehnder interferometers with 30 thermo-optic phase shifters integrated into a single photonic chip that is electrically and optically interfaced for arbitrary setting of all phase shifters, input of up to six photons, and their measurement with a 12-single-photon detector system. We programmed this system to implement heralded quantum logic and entangling gates, boson sampling with verification tests, and six-dimensional complex Hadamards. We implemented 100 Haar random unitaries with an average fidelity of 0.999 ± 0.001. Our system can be rapidly reprogrammed to implement these and any other linear optical protocol, pointing the way to applications across fundamental science and quantum technologies. PMID:26160375

  14. High-speed electro-optic switch with -80 dB crosstalk

    NASA Technical Reports Server (NTRS)

    Pan, J. J.; Su, W. H.; Xu, J. Y.; Grove, C. H.

    1992-01-01

    Special device modeling, design and layout, and precision processing controls were employed to fabricate new balanced-bridge 2x2 and 4x4 switches on X-cut, Y-propagation LiNbO3 substrate using Ti indiffused optical waveguides. The best of these devices achieved extinction ratio and crosstalk isolation of better than 93 dB electrically (46.5 dB optically). The new switches demonstrate good reproducibility with electrical crosstalk less than -80 dB.

  15. Two-dimensional all-optical spatial light modulation with high speed in coherent media.

    PubMed

    Zhao, L; Wang, T; Yelin, S F

    2009-07-01

    We show theoretical evidence that coherent systems based on electromagnetically induced transparency (EIT) can function as optically addressed spatial light modulators with megahertz modulation rates. The transverse spatial properties of cw probe fields can be modulated fast using two-dimensional optical patterns. To exemplify our proposal, we study real-time generation and manipulation of Laguerre-Gaussian beams by means of phase or amplitude modulation using flat-top image-bearing pulse trains as coupling fields in low-cost hot vapor EIT systems. PMID:19571955

  16. Time-Resolved Optical Measurements of Fuel-Air Mixedness in Windowless High Speed Research Combustors

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    1998-01-01

    Fuel distribution measurements in gas turbine combustors are needed from both pollution and fuel-efficiency standpoints. In addition to providing valuable data for performance testing and engine development, measurements of fuel distributions uniquely complement predictive numerical simulations. Although equally important as spatial distribution, the temporal distribution of the fuel is an often overlooked aspect of combustor design and development. This is due partly to the difficulties in applying time-resolved diagnostic techniques to the high-pressure, high-temperature environments inside gas turbine engines. Time-resolved measurements of the fuel-to-air ratio (F/A) can give researchers critical insights into combustor dynamics and acoustics. Beginning in early 1998, a windowless technique that uses fiber-optic, line-of-sight, infrared laser light absorption to measure the time-resolved fluctuations of the F/A (refs. 1 and 2) will be used within the premixer section of a lean-premixed, prevaporized (LPP) combustor in NASA Lewis Research Center's CE-5 facility. The fiber-optic F/A sensor will permit optical access while eliminating the need for film-cooled windows, which perturb the flow. More importantly, the real-time data from the fiber-optic F/A sensor will provide unique information for the active feedback control of combustor dynamics. This will be a prototype for an airborne sensor control system.

  17. Real-time in vivo imaging by high-speed spectral optical coherence tomography.

    PubMed

    Wojtkowski, Maciej; Bajraszewski, Tomasz; Targowski, Piotr; Kowalczyk, Andrzej

    2003-10-01

    An improved spectral optical coherence tomography technique is used to obtain cross-sectional ophthalmic images at an exposure time of 64 micros per A-scan. This method allows real-time images as well as static tomograms to be recorded in vivo. PMID:14514087

  18. Studies of dynamic processes in biomedicine by high-speed spectral optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wojtkowski, M.; Kowalczyk, A.

    2007-02-01

    This contribution demonstrates potential of Spectral Optical Coherence Tomography (SOCT) for studies of dynamic processes in biomedicine occurring at various time scales. Several examples from ophthalmology, optometry, surgery, neurology are given to illustrate the extension of SOCT beyond pure morphological investigations.

  19. Ultrahigh capacity and high-speed DWDM optical devices for telecom and datacom applications

    NASA Astrophysics Data System (ADS)

    Zeng, Andrew; Chon, Joseph C.

    2001-10-01

    The next generation fiber optical communication systems can be characterized in three trends: higher speed, better spectrum efficiency and longer transmission reach. To meet the requirement of next generation systems, passive DWDM components must have the following characteristics, low dispersion, small channel spacing, low insertion loss and high isolation. In this paper, we discuss one of the most important passive components: interleaver. Interleavers have been widely used in fiber optical communications systems. Their main functions include mux, demux, optical add/drop and bi-directional noise reduction. As data rate of fiber optical communication systems increases to 10Gb/s or higher, chromatic dispersion (CD) of interleavers becomes increasingly important. It has been shown that chromatic dispersion of interleavers could significantly limit the transmission reach. In this paper, we discuss 25GHz and 50GHz interleavers and their applications. Chromatic dispersion of several interleavers available on the market are discussed. We explain the generic relation between CD and channel spacing. The CD and CD slope of some interleavers can be reduced or completely compensated by innovative designs. We present an interleaver design with extremely low CD and CD slope. Finally, we present a 10Gb/s 160-channel transport application by using the low-CD 25GHz and 50GHz interleavers. The eye diagram and bit error rate of the 10Gb/s system will be discussed.

  20. Automatic bias control system of high speed electro-optic modulator in DPSK Systems

    NASA Astrophysics Data System (ADS)

    Xu, Miao; Tong, Shoufeng; Wang, Dashuai

    2015-04-01

    In DPSK communication system, the traditional way for bias voltage is loading a fixed bias voltage on the electro-optic modulator. For the influence of the temperature changes, the half-wave voltage of the electro-optic modulator may change and the DC bias supply voltage will have a certain degree of random fluctuations at the meantime which will cause the DC bias point of the modulator drift and consequently the communication systems are affected. To enhance the stability of the DPSK optical communication system and control the bias of Mach-Zehnder electro-optic modulators automatically, a PID control method has been proposed in this paper. After the actual operation, a DPSK signal transmission with transfer rate of 5Gb/s is built. Using the complex spectrum analyzer, stable signal and the constellation can be received. The automatic control system basically meets the needs of the DPSK transmission system of high stability, high accuracy and capacity of resisting disturbance.

  1. Visualization of hair follicles using high-speed optical coherence tomography based on a Fourier domain mode locking laser

    NASA Astrophysics Data System (ADS)

    Tsai, M.-T.; Chang, F.-Y.

    2012-04-01

    In this study, a swept-source optical coherence tomography (SS-OCT) system with a Fourier domain mode locking (FDML) laser is proposed for a dermatology study. The homemade FDML laser is one kind of frequency-sweeping light source, which can provide output power of >20 mW and an output spectrum of 65 nm in bandwidth centered at 1300 nm, enabling imaging with an axial resolution of 12 μm in the OCT system. To eliminate the forward scans from the laser output and insert the delayed backward scans, a Mach-Zehnder configuration is implemented. Compared with conventional frequency-sweeping light sources, the FDML laser can achieve much higher scan rates, as high as ˜240 kHz, which can provide a three-dimensional imaging rate of 4 volumes/s. Furthermore, the proposed high-speed SS-OCT system can provide three-dimensional (3D) images with reduced motion artifacts. Finally, a high-speed SS-OCT system is used to visualize hair follicles, demonstrating the potential of this technology as a tool for noninvasive diagnosis of alopecia.

  2. Three-dimensional optical reconstruction of vocal fold kinematics using high-speed video with a laser projection system

    PubMed Central

    Luegmair, Georg; Mehta, Daryush D.; Kobler, James B.; Döllinger, Michael

    2015-01-01

    Vocal fold kinematics and its interaction with aerodynamic characteristics play a primary role in acoustic sound production of the human voice. Investigating the temporal details of these kinematics using high-speed videoendoscopic imaging techniques has proven challenging in part due to the limitations of quantifying complex vocal fold vibratory behavior using only two spatial dimensions. Thus, we propose an optical method of reconstructing the superior vocal fold surface in three spatial dimensions using a high-speed video camera and laser projection system. Using stereo-triangulation principles, we extend the camera-laser projector method and present an efficient image processing workflow to generate the three-dimensional vocal fold surfaces during phonation captured at 4000 frames per second. Initial results are provided for airflow-driven vibration of an ex vivo vocal fold model in which at least 75% of visible laser points contributed to the reconstructed surface. The method captures the vertical motion of the vocal folds at a high accuracy to allow for the computation of three-dimensional mucosal wave features such as vibratory amplitude, velocity, and asymmetry. PMID:26087485

  3. High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity.

    PubMed

    Gao, Yuanda; Shiue, Ren-Jye; Gan, Xuetao; Li, Luozhou; Peng, Cheng; Meric, Inanc; Wang, Lei; Szep, Attila; Walker, Dennis; Hone, James; Englund, Dirk

    2015-03-11

    Nanoscale and power-efficient electro-optic (EO) modulators are essential components for optical interconnects that are beginning to replace electrical wiring for intra- and interchip communications.1-4 Silicon-based EO modulators show sufficient figures of merits regarding device footprint, speed, power consumption, and modulation depth.5-11 However, the weak electro-optic effect of silicon still sets a technical bottleneck for these devices, motivating the development of modulators based on new materials. Graphene, a two-dimensional carbon allotrope, has emerged as an alternative active material for optoelectronic applications owing to its exceptional optical and electronic properties.12-14 Here, we demonstrate a high-speed graphene electro-optic modulator based on a graphene-boron nitride (BN) heterostructure integrated with a silicon photonic crystal nanocavity. Strongly enhanced light-matter interaction of graphene in a submicron cavity enables efficient electrical tuning of the cavity reflection. We observe a modulation depth of 3.2 dB and a cutoff frequency of 1.2 GHz. PMID:25700231

  4. Improved key integrity checking for high-speed quantum key distribution using combinatorial group testing with strongly selective family design

    NASA Astrophysics Data System (ADS)

    Fang, Junbin; Jiang, Zoe L.; Ren, Kexin; Luo, Yunhan; Chen, Zhe; Liu, Weiping; Wang, Xuan; Niu, Xiamu; Yiu, S. M.; Hui, Lucas C. K.

    2014-06-01

    Key integrity checking is a necessary process in practical quantum key distribution (QKD) to check whether there is any error bit escaped from the previous error correction procedure. The traditional single-hash method may become a bottleneck in high-speed QKD since it has to discard all the key bits even if just one error bit exists. In this paper, we propose an improved scheme using combinatorial group testing (CGT) based on strong selective family design to verify key integrity in fine granularity and consequently improve the total efficiency of key generation after the error correction procedure. Code shortening technique and parallel computing are also applied to enhance the scheme's flexibility and to accelerate the computation. Experimental results show that the scheme can identify the rare error bits precisely and thus avoid dropping the great majority of correct bits, while the overhead is reasonable. For a -bit key, the disclosed information for public comparison is 800 bits (about 0.076 % of the key bits), reducing 256 bits when compared with the previous CGT scheme. Besides, with an Intel® quad-cores CPU at 3.40 GHz and 8 GB RAM, the computational times are 3.0 and 6.3 ms for hashing and decoding, respectively, which are reasonable in real applications and will not cause significant latency in practical QKD systems.

  5. Advanced signaling technologies for high-speed digital fiber-optic links.

    PubMed

    Stark, Andrew J; Isautier, Pierre; Pan, Jie; Pavan, Sriharsha Kota; Filer, Mark; Tibuleac, Sorin; Lingle, Robert; de Salvo, Richard; Ralph, Stephen E

    2014-09-01

    We summarize the most recent research of the Georgia Tech Terabit Optical Networking Consortium and the state-of-the-art in fiber telecommunications. These results comprise high-capacity single-mode fiber systems with digital coherent receivers and shorter-reach multimode fiber links with vertical cavity surface emitting lasers. We strongly emphasize the capabilities that sophisticated digital signal processing and electronics add to these fiber-based data transport links. PMID:25321383

  6. High speed multi-channel optical sampling technique for analog-to-digital converters

    NASA Astrophysics Data System (ADS)

    Noman, Mohammad; Donkor, Eric; Hayduk, Michael J.; Bussjager, Rebecca J.

    2005-05-01

    We describe the design and implementation of an eight channel optical sampling technique for analog-to-digital (A/D) converters. A single mode-locked laser source with a pulse reprtition rate of 250 MHz is used to generate eight highly synchronized smapling clocks each running at 500 MHz. The basic sampling circuit consistes of a reversed-biased photodiode which operates as a very fast optoelectronic switch. Actuating the photodiode ON and OFF with mode-locked laser pulses produce sampled RF signals. In the implementation of this A/D architecture, the optical clocks are delayed relative to each other using fixed passive delay lines. The time-shifted clock signals allow for sampling different phases of the input RF signal resulting in an aggregate sampling rate of 4 Gigasamples/sec (GSPS). We shall show the optical clock setup necessary in order to achieve a 4 BSPS rate. We shall also present sampling results for input RF signals with frequencies ranging from 10 to 500. Interleaving of the sampled RF output from different sampling channels will also be demonstrated.

  7. High-speed guided-wave electro-optic modulators and polarization converters in III-V compound semiconductors

    NASA Astrophysics Data System (ADS)

    Rahmatian, Farnoosh

    In the last few decades, the need for electronic communication has increased by several orders of magnitude. Due to the rapid growth of the demand for transmission bandwidth, development of very high-speed communication systems is crucial. This thesis describes integrated-optic electro-optic modulators using travelling-wave electrodes in compound semiconductors for ultra-high-speed guided-wave optical communications. Both Mach-Zehnder (MZ) interferometric modulators and polarization converters (PC) have been studied with particular emphasis on the latter ones. Slow-wave travelling-wave electrodes in compound semiconductors have previously been proposed and demonstrated. Here, a study of slow-wave, travelling-wave electrodes on compound semiconductors has been performed in order to significantly improve their use in ultra-wide-band guided-wave electro-optic devices. The most important factors limiting the high frequency performance of such devices, in general, are the microwave-lightwave velocity mismatch and the microwave loss on the electrodes. Based on the deeper understanding acquired through our study, we have designed, fabricated, and tested low-loss, slow-wave, travelling-wave electrodes on semi- insulating GaAs (SI-GaAs) and AlGaAs/GaAs substrates. Microwave-to-lightwave velocity matching within 1% was achieved using slow-wave coplanar strip electrodes; many of the electrodes had effective microwave indices in the range 3.3 to 3.4 (measured at frequencies up to 40 GHz). For the electrodes fabricated on SI-GaAs substrates, microwave losses of 0.22 Np/cm and 0.34 Np/cm (average values at 40 GHz) were measured for the slow-wave coplanar strip and the slow-wave coplanar waveguide electrodes, respectively. For the electrodes fabricated on the AlGaAs/GaAs substrates containing the modulators, the corresponding losses were, on average, 0.17 Np/cm higher at 40 GHz. For the first time, ultra-wide-band polarization converters using slow-wave electrodes have been

  8. Data Relay Board with Protocol for High-Speed, Free-Space Optical Communications

    NASA Technical Reports Server (NTRS)

    Wright, Malcolm; Clare, Loren; Gould, Gary; Pedyash, Maxim

    2004-01-01

    In a free-space optical communication system, the mitigation of transient outages through the incorporation of error-control methods is of particular concern, the outages being caused by scintillation fades and obscurants. The focus of this innovative technology is the development of a data relay system for a reliable high-data-rate free-spacebased optical-transport network. The data relay boards will establish the link, maintain synchronous connection, group the data into frames, and provide for automatic retransmission (ARQ) of lost or erred frames. A certain Quality of Service (QoS) can then be ensured, compatible with the required data rate. The protocol to be used by the data relay system is based on the draft CCSDS standard data-link protocol Proximity-1, selected by orbiters to multiple lander assets in the Mars network, for example. In addition to providing data-link protocol capabilities for the free-space optical link and buffering the data, the data relay system will interface directly with user applications over Gigabit Ethernet and/or with highspeed storage resources via Fibre Channel. The hardware implementation is built on a network-processor-based architecture. This technology combines the power of a hardware switch capable of data switching and packet routing at Gbps rates, with the flexibility of a software- driven processor that can host highly adaptive and reconfigurable protocols used, for example, in wireless local-area networks (LANs). The system will be implemented in a modular multi-board fashion. The main hardware elements of the data relay system are the new data relay board developed by Rockwell Scientific, a COTS Gigabit Ethernet board for user interface, and a COTS Fibre Channel board that connects to local storage. The boards reside in a cPCI back plane, and can be housed in a VME-type enclosure.

  9. High speed low power optical detection of sub-wavelength scatterer.

    PubMed

    Roy, S; Bouwens, Maryse; Wei, Lei; Pereira, S F; Urbach, H P; van der Walle, P

    2015-12-01

    Optical detection of scatterers on a flat substrate, generally done using dark field microscopy technique, is challenging since it requires high power illumination to obtain sufficient SNR (Signal to Noise Ratio) to be able to detect sub-wavelength particles. We developed a bright field technique, based on Fourier scatterometry, with special illumination and detection control to achieve this goal with a power level that can be sustained by most substrates including polymers. The performance of the system in a roll-to-roll line in production environment and strict throughput requirement is shown. PMID:26724010

  10. High speed low power optical detection of sub-wavelength scatterer

    NASA Astrophysics Data System (ADS)

    Roy, S.; Bouwens, Maryse; Wei, Lei; Pereira, S. F.; Urbach, H. P.; van der Walle, P.

    2015-12-01

    Optical detection of scatterers on a flat substrate, generally done using dark field microscopy technique, is challenging since it requires high power illumination to obtain sufficient SNR (Signal to Noise Ratio) to be able to detect sub-wavelength particles. We developed a bright field technique, based on Fourier scatterometry, with special illumination and detection control to achieve this goal with a power level that can be sustained by most substrates including polymers. The performance of the system in a roll-to-roll line in production environment and strict throughput requirement is shown.

  11. High-speed imaging of human retina in vivo with swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lim, H.; Mujat, M.; Kerbage, C.; Lee, E. C.; Chen, Y.; Chen, Teresa C.; de Boer, J. F.

    2006-12-01

    We present the first demonstration of human retinal imaging in vivo using optical frequency domain imaging (OFDI) in the 800-nm range. With 460-μW incident power on the eye, the sensitivity is 91 dB at maximum and >85 dB over 2-mm depth range. The axial resolution is 13 μm in air. We acquired images of retina at 43,200 depth profiles per second and a continuous acquisition speed of 84 frames/s (512 A-lines per frame) could be maintained over more than 2 seconds.

  12. High-speed free-space based reconfigurable card-to-card optical interconnects with broadcast capability.

    PubMed

    Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios; Alameh, Kamal

    2013-07-01

    In this paper, we propose and experimentally demonstrate a free-space based high-speed reconfigurable card-to-card optical interconnect architecture with broadcast capability, which is required for control functionalities and efficient parallel computing applications. Experimental results show that 10 Gb/s data can be broadcast to all receiving channels for up to 30 cm with a worst-case receiver sensitivity better than -12.20 dBm. In addition, arbitrary multicasting with the same architecture is also investigated. 10 Gb/s reconfigurable point-to-point link and multicast channels are simultaneously demonstrated with a measured receiver sensitivity power penalty of ~1.3 dB due to crosstalk. PMID:23842326

  13. Real-time and high-performance calibration method for high-speed swept-source optical coherence tomography

    PubMed Central

    Azimi, Ehsan; Liu, Bin; Brezinski, Mark E.

    2010-01-01

    For high-speed swept-source optical coherence tomography (SS-OCT), the real-time calibration process to convert the OCT signal to wave number space is highly essential. A novel calibration process∕algorithm using a genetic algorithm and precise interpolation is developed. This algorithm is embedded and validated in a SS-OCT system with 16-kHz A-scan rate. The performance of the new algorithm is evaluated by measuring point spread functions at two distinct locations in the entire imaging range. The data is compared to the same system but embedded with a regular calibration algorithm, which demonstrates about 20% improvement in the axial resolution. The steady improvement at different locations of the range suggests the strong robustness of the algorithm, which will ultimately optimize the operation performance of this SS-OCT system in terms of resolution and dynamic range and improves details in biological tissues. PMID:20210451

  14. Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging

    PubMed Central

    Furukawa, Hiroyuki; Hiro-Oka, Hideaki; Satoh, Nobuyuki; Yoshimura, Reiko; Choi, Donghak; Nakanishi, Motoi; Igarashi, Akihito; Ishikawa, Hitoshi; Ohbayashi, Kohji; Shimizu, Kimiya

    2010-01-01

    We describe a high-speed long-depth range optical frequency domain imaging (OFDI) system employing a long-coherence length tunable source and demonstrate dynamic full-range imaging of the anterior segment of the eye including from the cornea surface to the posterior capsule of the crystalline lens with a depth range of 12 mm without removing complex conjugate image ambiguity. The tunable source spanned from 1260 to 1360 nm with an average output power of 15.8 mW. The fast A-scan rate of 20,000 per second provided dynamic OFDI and dependence of the whole anterior segment change on time following abrupt relaxation from the accommodated to the relaxed status, which was measured for a healthy eye and that with an intraocular lens. PMID:21258564

  15. High-speed electro-optic switch using buried electrode structure in polymer Mach-Zehnder waveguide

    NASA Astrophysics Data System (ADS)

    Sun, Jingwen; Sun, Jian; Yi, Yunji; Qv, Lucheng; Sun, Shiqi; Wang, Fei; Wang, Xibin; Zhang, Daming

    2016-02-01

    A low-cost and high-speed electro-optic (EO) switch using the guest-host EO material Disperse Red 1/Polymethyl Methacrylate (DR1/PMMA) was designed and fabricated. The DR1/PMMA material presented a low processing cost, an excellent photostability and a large EO coefficient of 13.1 pm/V. To improve the performance of the switch, the in-plane buried electrode structure was introduced in the polymer Mach-Zehnder waveguide to improve the poling and modulating efficiency. The characteristic parameters of the waveguide and the electrodes were carefully designed and the fabrication process was strictly controlled. Under 1550 nm, the insertion loss of the device was 12.7 dB. The measured switching rise time and fall time of the switch were 50.00 ns and 54.29 ns, respectively.

  16. Development of high-speed and wide-angle visible observation diagnostics on Experimental Advanced Superconducting Tokamak using catadioptric optics.

    PubMed

    Yang, J H; Yang, X F; Hu, L Q; Zang, Q; Han, X F; Shao, C Q; Sun, T F; Chen, H; Wang, T F; Li, F J; Hu, A L

    2013-08-01

    A new wide-angle endoscope for visible light observation on the Experimental Advanced Superconducting Tokamak (EAST) has been recently developed. The head section of the optical system is based on a mirror reflection design that is similar to the International Thermonuclear Experimental Reactor-like wide-angle observation diagnostic on the Joint European Torus. However, the optical system design has been simplified and improved. As a result, the global transmittance of the system is as high as 79.6% in the wavelength range from 380 to 780 nm, and the spatial resolution is <5 mm for the full depth of field (4000 mm). The optical system also has a large relative aperture (1:2.4) and can be applied in high-speed camera diagnostics. As an important diagnostic tool, the optical system has been installed on the HT-7 (Hefei Tokamak-7) for its final experimental campaign, and the experiments confirmed that it can be applied to the investigation of transient processes in plasma, such as ELMy eruptions in H-mode, on EAST. PMID:24007102

  17. Thermomechanical Actuator-Based Three-Axis Optical Scanner for High-Speed Two-Photon Endomicroscope Imaging

    PubMed Central

    Chen, Shih-Chi; Choi, Heejin; So, Peter T. C.; Culpepper, Martin L.

    2015-01-01

    This paper presents the design and characterization of a three-axis thermomechanical actuator-based endoscopic scanner for obtaining ex vivo two-photon images. The scanner consisted of two sub-systems: 1) an optical system (prism, gradient index lens, and optical fiber) that was used to deliver and collect light during imaging and 2) a small-scale silicon electromechanical scanner that could raster scan the focal point of the optics through a specimen. The scanner can be housed within a 7 mm Ø endoscope port and can scan at the speed of 3 kHz × 100 Hz × 30 Hz along three axes throughout a 125 × 125 × 100 μm3 volume. The high-speed thermomechanical actuation was achieved through the use of geometric contouring, pulsing technique, and mechanical frequency multiplication (MFM), where MFM is a new method for increasing the device cycling speed by pairing actuators of unequal forward and returning stroke speeds. Sample cross-sectional images of 15-μm fluorescent beads are presented to demonstrate the resolution and optical cross-sectioning capability of the two-photon imaging system. PMID:25673965

  18. Development of high-speed and wide-angle visible observation diagnostics on Experimental Advanced Superconducting Tokamak using catadioptric optics

    SciTech Connect

    Yang, J. H.; Hu, L. Q.; Zang, Q.; Han, X. F.; Shao, C. Q.; Sun, T. F.; Chen, H.; Wang, T. F.; Li, F. J.; Hu, A. L.; Yang, X. F.

    2013-08-15

    A new wide-angle endoscope for visible light observation on the Experimental Advanced Superconducting Tokamak (EAST) has been recently developed. The head section of the optical system is based on a mirror reflection design that is similar to the International Thermonuclear Experimental Reactor-like wide-angle observation diagnostic on the Joint European Torus. However, the optical system design has been simplified and improved. As a result, the global transmittance of the system is as high as 79.6% in the wavelength range from 380 to 780 nm, and the spatial resolution is <5 mm for the full depth of field (4000 mm). The optical system also has a large relative aperture (1:2.4) and can be applied in high-speed camera diagnostics. As an important diagnostic tool, the optical system has been installed on the HT-7 (Hefei Tokamak-7) for its final experimental campaign, and the experiments confirmed that it can be applied to the investigation of transient processes in plasma, such as ELMy eruptions in H-mode, on EAST.

  19. Energy-Efficient pm-ary signaling for ultra-high-speed optical transport

    NASA Astrophysics Data System (ADS)

    Djordjevic, Ivan B.; Liu, Tao

    2015-01-01

    The future optical transport networks will be affected by limited bandwidth of information infrastructure, high power consumption, and heterogeneity of network segments. As a solution to all these problems, the multidimensional signaling has been proposed recently. In this invited paper, we follow a different strategy. Instead of conventional binary and 2mary signaling (m>=1) we propose to use the nonbinary pm-ary signaling, where p is a prime larger than 2. With pm-ary signaling we can improve the spectral of conventional 2m-ary schemes by log2p times for the same bandwidth occupancy. At the same time the energy efficiency of pm-ary signaling scheme is much better than that of 2m-ary signaling scheme based on binary representation of data. We further study the energy-efficient coded modulation for pm-ary signaling. The energy-efficient signal constellation design for pm-ary signaling is discussed as well. We will demonstrate that with the proposed pm-ary signaling in combination with energy-efficient signal constellation design, spectral-multiplexing, and polarization-division multiplexing, we can achieve beyond 1 Pb/s serial optical transport without a need for introduction of spatial-division multiplexing.

  20. Natural motion of the optic nerve head revealed by high speed phase-sensitive OCT

    NASA Astrophysics Data System (ADS)

    OHara, Keith; Schmoll, Tilman; Vass, Clemens; Leitgeb, Rainer A.

    2013-03-01

    We use phase-sensitive optical coherence tomography (OCT) to measure the deformation of the optic nerve head during the pulse cycle, motivated by the possibility that these deformations might be indicative of the progression of glaucoma. A spectral-domain OCT system acquired 100k A-scans per second, with measurements from a pulse-oximeter recorded simultaneously, correlating OCT data to the subject's pulse. Data acquisition lasted for 2 seconds, to cover at least two pulse cycles. A frame-rate of 200-400 B-scans per second results in a sufficient degree of correlated speckle between successive frames that the phase-differences between fames can be extracted. Bulk motion of the entire eye changes the phase by several full cycles between frames, but this does not severely hinder extracting the smaller phase-changes due to differential motion within a frame. The central cup moves about 5 μm/s relative to the retinal-pigment-epithelium edge, with tissue adjacent to blood vessels showing larger motion.

  1. Energy efficient rateless codes for high speed data transfer over free space optical channels

    NASA Astrophysics Data System (ADS)

    Prakash, Geetha; Kulkarni, Muralidhar; Acharya, U. S.

    2015-03-01

    Terrestrial Free Space Optical (FSO) links transmit information by using the atmosphere (free space) as a medium. In this paper, we have investigated the use of Luby Transform (LT) codes as a means to mitigate the effects of data corruption induced by imperfect channel which usually takes the form of lost or corrupted packets. LT codes, which are a class of Fountain codes, can be used independent of the channel rate and as many code words as required can be generated to recover all the message bits irrespective of the channel performance. Achieving error free high data rates with limited energy resources is possible with FSO systems if error correction codes with minimal overheads on the power can be used. We also employ a combination of Binary Phase Shift Keying (BPSK) with provision for modification of threshold and optimized LT codes with belief propagation for decoding. These techniques provide additional protection even under strong turbulence regimes. Automatic Repeat Request (ARQ) is another method of improving link reliability. Performance of ARQ is limited by the number of retransmissions and the corresponding time delay. We prove through theoretical computations and simulations that LT codes consume less energy per bit. We validate the feasibility of using energy efficient LT codes over ARQ for FSO links to be used in optical wireless sensor networks within the eye safety limits.

  2. High-speed duplex optical wireless communication system for indoor personal area networks.

    PubMed

    Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios

    2010-11-22

    In this paper a new hybrid wireless access system incorporating high bandwidth line-of-sight free space optical wireless and radio frequency localization is proposed and demonstrated. This system is capable of supporting several gigabits/second up-stream and down-stream data transmission and ideally suited for high bandwidth indoor applications such as personal area networks. A radio frequency signal is used to achieve localization of subscribers, offering limited mobility to subscribers within a practical office scenario. Even with the modest transmitted power of 5 dBm, we demonstrate satisfactory performance of bit error rates better than 10(-9) over the entire room in the presence of strong background light. Using simulations, the effectiveness of the proposed system architecture is investigated and the key performance trade-offs identified. Proof-of-concept experiments have also been carried out to validate simulation model, and initial experimental results successfully demonstrate the feasibility of the system capable of supporting 2.5 Gbps over a 1-2 m optical wireless link (limited by the length of the sliding rail used in the experiment) with a 45 degrees diffused beam in an indoor environment for the first time. PMID:21164867

  3. Optical resilient Ethernet rings for high-speed MAN networks [Invited

    NASA Astrophysics Data System (ADS)

    Zhong, Wen-De; Lian, Ziwen; Bose, Sanjay Kumar; Wang, Yixin

    2005-12-01

    We propose what we believe to be a new optical resilient Ethernet ring (RER) architecture to allow the operation of Ethernet in ring topologies for efficient data transport in metropolitan area networks (MANs). Developed on the basis of standard Ethernet data-link switching technology, the proposed RER is simple and data efficient. Basic RER system design issues such as architecture, frame structure, frame forwarding mechanism, and self-learning process are described in detail. The ring topology simplifies the decision-making process for frame forwarding and also enables the network to recover from link or node failure rapidly, as in the case of synchronous optical networking (SONET)/synchronous digital hierarchy (SDH) rings. Three different protection schemes are presented, and their performance differences are studied through simulations. The proposed RER is scalable to a large network size by interconnecting multiple rings with a modified transparent bridging technique. We present the first steps toward extending Gigabit Ethernets to MANs and focus on the medium access control (MAC) layer for such a system.

  4. Generation 3 programmable array microscope (PAM) for high speed large format optical sectioning in fluorescence

    NASA Astrophysics Data System (ADS)

    de Vries, Anthony H. B.; Cook, Nathan P.; Kramer, Stephan; Arndt-Jovin, Donna J.; Jovin, Thomas M.

    2015-03-01

    We report on the current version of the optical sectioning programmable array microscope (PAM) implemented with a single digital micro-mirror device (DMD) spatial light modulator utilized as a mask in both the fluorescence excitation and emission paths. The PAM incorporates structured illumination and structured detection operating in synchrony. A sequence of binary patterns of excitation light in high definition format (1920×1080 elements) is projected into the focal plane of the microscope at the 18 kHz binary frame rate of the Texas Instruments 1080p DMD. The resulting fluorescent emission is captured as two distinct signals: conjugate (c, ca. "on-focus") consisting of light impinging on and deviated from the "on" elements of the DMD, and the non-conjugate (nc, ca. "out-of-focus") light falling on and deviated from the "off" elements. The two distinct, deflected beams are optically filtered and detected either by two individual cameras or captured as adjacent images on a single camera after traversing an image combiner. The sectioned image is gained from a subtraction of the nc image from the c image, weighted in accordance with the pattern(s) used for illumination and detection and the relative exposure times of the cameras. The widefield image is given by the sum of the c and nc images. This procedure allows a high duty cycle (typically 25-50%) of on-elements in the excitation patterns and thus functions with low light intensities, preventing saturation and minimizing photobleaching of sensitive fluorophores. The corresponding acquisition speed is also very high, limited only by the bandwidth of the camera(s) (100 fps full frame with the sCMOS camera in current use) and the optical power of the light source (lasers, large area LEDs). In contrast to the static patterns typical of SIM systems, the programmable array allows optimization of the patterns (duty cycle, feature size and distribution), thus enabling a wide range of applications, ranging from patterned

  5. Scalable optical quantum computer

    SciTech Connect

    Manykin, E A; Mel'nichenko, E V

    2014-12-31

    A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr{sup 3+}, regularly located in the lattice of the orthosilicate (Y{sub 2}SiO{sub 5}) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)

  6. High-speed all-optical logic inverter based on stimulated Raman scattering in silicon nanocrystal.

    PubMed

    Sen, Mrinal; Das, Mukul K

    2015-11-01

    In this paper, we propose a new device architecture for an all-optical logic inverter (NOT gate), which is cascadable with a similar device. The inverter is based on stimulated Raman scattering in silicon nanocrystal waveguides, which are embedded in a silicon photonic crystal structure. The Raman response function of silicon nanocrystal is evaluated to explore the transfer characteristic of the inverter. A maximum product criterion for the noise margin is taken to analyze the cascadability of the inverter. The time domain response of the inverter, which explores successful inversion operation at 100 Gb/s, is analyzed. Propagation delay of the inverter is on the order of 5 ps, which is less than the delay in most of the electronic logic families as of today. Overall dimension of the device is around 755  μm ×15  μm, which ensures integration compatibility with the matured silicon industry. PMID:26560565

  7. High-speed fiber-optic links for distribution of satellite traffic

    NASA Technical Reports Server (NTRS)

    Daryoush, Afshin S.; Saedi, Reza; Ackerman, Edward; Kunath, Richard; Shalkhauser, Kurt

    1990-01-01

    Low-loss fiberoptic links are designed for distribution of data and the frequency reference in large-aperture phased-array antennas based on the transmit/receive-level data mixing architecture. In particular, design aspects of a fiberoptic link satisfying the distribution requirements of satellite data traffic are presented. The design is addressed in terms of reactively matched optical transmitter and receiver modules. Analog and digital characterization of a 50-m fiberoptic link realized using these modules indicates the applicability of this architecture as the only viable alternative for distribution of data signals inside a satellite at present. It is demonstrated that the design of a reactive matching modules enhances the link performance. A dynamic range of 88 dB/MHz was measured for analog data over a 500-1000-MHz bandwidth.

  8. Electron-beam and high speed optical diagnostics for the Average Power Laser Experiment (APLE) program

    NASA Astrophysics Data System (ADS)

    Lumpkin, A. H.; McVey, B. D.; Greegor, R. B.; Dowell, D. H.

    The Average Power Laser Experiment (APLE) program is a collaboration of Boeing and Los Alamos to build a free-electron laser (FEL) operating at a wavelength of 10 microns and an average power of 100 kW. This program includes demonstration experiments at Boeing on the injector and at Los Alamos on a single accelerator master oscillator power amplifier (SAMOPA). In response to the simulations of the expected electron beam properties, diagnostic plans have been developed for the low-duty and the 25 percent-duty operations of APLE. Preliminary evaluations of diagnostics based on information conversion to visible or near infrared light (optical transition radiation, Cerenkov radiation, synchrotron radiation, and spontaneous emission radiation) or electrical signals (striplines, toroids, flying wires, etc.) are addressed.

  9. Blind channel estimation for MLSE receiver in high speed optical communications: theory and ASIC implementation.

    PubMed

    Gorshtein, Albert; Levy, Omri; Katz, Gilad; Sadot, Dan

    2013-09-23

    Blind channel estimation is critical for digital signal processing (DSP) compensation of optical fiber communications links. The overall channel consists of deterministic distortions such as chromatic dispersion, as well as random and time varying distortions including polarization mode dispersion and timing jitter. It is critical to obtain robust acquisition and tracking methods for estimating these distortions effects, which, in turn, can be compensated by means of DSP such as Maximum Likelihood Sequence Estimation (MLSE). Here, a novel blind estimation algorithm is developed, accompanied by inclusive mathematical modeling, and followed by extensive set of real time experiments that verify quantitatively its performance and convergence. The developed blind channel estimation is used as the basis of an MLSE receiver. The entire scheme is fully implemented in a 65 nm CMOS Application Specific Integrated Circuit (ASIC). Experimental measurements and results are presented, including Bit Error Rate (BER) measurements, which demonstrate the successful data recovery by the MLSE ASIC under various channel conditions and distances. PMID:24104070

  10. Study of the all-optical high-speed OFDM transmission system based on MAMSK modulation

    NASA Astrophysics Data System (ADS)

    Shang, Tao; Sun, Jinkui; Li, Yang; Wang, Xin

    2012-12-01

    In this paper, an all-optical orthogonal frequency division multiplexing (OOFDM) system based on the multi-amplitude minimum shift keying (MAMSK) modulation is proposed. A scheme to realize MAMSK is designed, and the influence of modulation index on the performance of MAMSK is discussed. Numerical simulations and analysis are performed, and the comparison between the MAMSK-OOFDM and the MAMSK-WDM system is made. The lowest value of the BER of MAMSK-OOFDM is 3.98 × 10-6, while that of MAMSK-WDM is 7.94 × 10-4 when the input power is 0.8 mw and dispersion is completely compensated. The results show that, for its multi-level amplitude and excellent spectrum efficiency, MAMSK-OOFDM can greatly mitigate the effects caused by dispersive and nonlinear phenomena, and it can also effectively improve the capacity of the system.

  11. A fast IPv6 route lookup scheme for high-speed optical link

    NASA Astrophysics Data System (ADS)

    Yao, Xingmiao; Li, Lemin

    2004-05-01

    A fast IPv6 route lookup scheme implemented by hardware is proposed in this paper. It supports a fast IP address lookup and can insert and delete the prefixes effectively. A novel compressed multibit trie algorithm that decreases the memory space occupied and the average searching time is applied. The scheme proposed in this paper is superior to other IPV6 route lookup ones, for example, by using SRAM pipeline, a lookup speed of 125 x 106 per second can be realized to satisfy 40Gbps optical link rate with only 1.9Mbyte consumption of memory space. As there is no actual IPv6 route prefix, we generate various simulation databases in which prefix length distribution is different. Simulation results show that our scheme has reasonable lookup time, memory space for all the prefix length distribution.

  12. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography.

    PubMed

    Cense, Barry; Nassif, Nader; Chen, Teresa; Pierce, Mark; Yun, Seok-Hyun; Park, B; Bouma, Brett; Tearney, Guillermo; de Boer, Johannes

    2004-05-31

    We present the first ultrahigh-resolution optical coherence tomography (OCT) structural intensity images and movies of the human retina in vivo at 29.3 frames per second with 500 A-lines per frame. Data was acquired at a continuous rate of 29,300 spectra per second with a 98% duty cycle. Two consecutive spectra were coherently summed to improve sensitivity, resulting in an effective rate of 14,600 A-lines per second at an effective integration time of 68 micros. The turn-key source was a combination of two super luminescent diodes with a combined spectral width of more than 150 nm providing 4.5 mW of power. The spectrometer of the spectraldomain OCT (SD-OCT) setup was centered around 885 nm with a bandwidth of 145 nm. The effective bandwidth in the eye was limited to approximately 100 nm due to increased absorption of wavelengths above 920 nm in the vitreous. Comparing the performance of our ultrahighresolution SD-OCT system with a conventional high-resolution time domain OCT system, the A-line rate of the spectral-domain OCT system was 59 times higher at a 5.4 dB lower sensitivity. With use of a software based dispersion compensation scheme, coherence length broadening due to dispersion mismatch between sample and reference arms was minimized. The coherence length measured from a mirror in air was equal to 4.0 microm (n= 1). The coherence length determined from the specular reflection of the foveal umbo in vivo in a healthy human eye was equal to 3.5 microm (n = 1.38). With this new system, two layers at the location of the retinal pigmented epithelium seem to be present, as well as small features in the inner and outer plexiform layers, which are believed to be small blood vessels. ?2004 Optical Society of America. PMID:19475080

  13. On the optimum signal constellation design for high-speed optical transport networks.

    PubMed

    Liu, Tao; Djordjevic, Ivan B

    2012-08-27

    In this paper, we first describe an optimum signal constellation design algorithm, which is optimum in MMSE-sense, called MMSE-OSCD, for channel capacity achieving source distribution. Secondly, we introduce a feedback channel capacity inspired optimum signal constellation design (FCC-OSCD) to further improve the performance of MMSE-OSCD, inspired by the fact that feedback channel capacity is higher than that of systems without feedback. The constellations obtained by FCC-OSCD are, however, OSNR dependent. The optimization is jointly performed together with regular quasi-cyclic low-density parity-check (LDPC) code design. Such obtained coded-modulation scheme, in combination with polarization-multiplexing, is suitable as both 400 Gb/s and multi-Tb/s optical transport enabling technology. Using large girth LDPC code, we demonstrate by Monte Carlo simulations that a 32-ary signal constellation, obtained by FCC-OSCD, outperforms previously proposed optimized 32-ary CIPQ signal constellation by 0.8 dB at BER of 10(-7). On the other hand, the LDPC-coded 16-ary FCC-OSCD outperforms 16-QAM by 1.15 dB at the same BER. PMID:23037090

  14. High-speed FRET screening for optical proteomics in a microfluidic format

    NASA Astrophysics Data System (ADS)

    Visitkul, Viput; Matthews, Daniel R.; Weitsman, Gregory E.; Keppler, Melanie D.; Ameer-Beg, Simon M.

    2011-02-01

    Cancer studies require a thorough understanding of how human gene expressions and DNA modifications are translated at the proteome level. In order to unravel the large and complex interactions between proteins, we have developed a compact lifetime-based flow cytometer, utilising a commercial microfluidic chip, to screen large non-adherent cell populations. Fluorescent signals from cells are detected using time correlated single photon counting (TCSPC) in the burst integrated fluorescence lifetime (BIFL) mode and used to determine the lifetime of each cell. Initially, the system was tested using 10 μm highly fluorescent beads to determine optical throughput and detection efficiency. The system was validated with 293T monkey kidney adenocarcinoma cell line transiently transfected with a FRET standard, consisting of eGPF and mRFP1 fluorescent proteins linked by a19 amino-acid chain. Analysis software was developed to process detected signals in BIFL mode and chronologically save the transient burst data for each cell in a multi-dimensional image file.

  15. Study on the polarization scrambling time for ultra-high-speed optical fiber communication systems

    NASA Astrophysics Data System (ADS)

    Jia, Nan; Li, Tangjun; Zhong, Kangping; Gong, Taorong; Lu, Dan; Chen, Ming; Wang, Chen

    2009-11-01

    A 160Gbit/s optical time-division-multiplexing (OTDM) transmission system with polarization Scrambler is demonstrated experimentally. The Scrambler based on the structure of the all-fiber dynamic polarization controller (PolaRITE II by General Photonics Co.). The polarization controller is controlled accurately the peak scrambling frequencies and the corresponding half-wave voltages by home-made a singlechip circuit. Both theory and experience show that the rate of scrambler is related to the spectrum width, spectral distribution, modulation rate and so on. The rate of Scramble for broadband light would be much slower compare with narrowband light to carrying out depolarization. In the same width of spectrum, light with abundant spectrum would need a slower rate. The relationship between the Rate of Scrambler and the Character of different Lasers will be discussed by using Stokes parameters and Mueller matrix. And the experiments performed to verify the results of theoretical analysis results. The Scrambler can reduce Intersymbol Interference, Polarization Mode Dispersion (PMD) and Polarization Dependent Loss (PDL) that have are validated experimentally. Based on the Scrambler, the 160-Gb/s OTDM transmissions are successfully demonstrated.

  16. High speed optical metrology solution for after etch process monitoring and control

    NASA Astrophysics Data System (ADS)

    Charley, Anne-Laure; Leray, Philippe; Pypen, Wouter; Cheng, Shaunee; Verma, Alok; Mattheus, Christine; Wisse, Baukje; Cramer, Hugo; Niesing, Henk; Kruijswijk, Stefan

    2014-04-01

    Monitoring and control of the various processes in the semiconductor require precise metrology of relevant features. Optical Critical Dimension metrology (OCD) is a non-destructive solution, offering the capability to measure profiles of 2D and 3D features. OCD has an intrinsic averaging over a larger area, resulting in good precision and suppression of local variation. We have studied the feasibility of process monitoring and control in AEI (after etch inspection) applications, using the same angular resolved scatterometer as used for CD, overlay and focus metrology in ADI (after develop inspection) applications1. The sensor covers the full azimuthal-angle range and a large angle-of-incidence range in a single acquisition. The wavelength can be selected between 425nm and 700nm, to optimize for sensitivity for the parameters of interest and robustness against other process variation. In this paper we demonstrate the validity of the OCD data through the measurement and comparison with the reference metrology of multiple wafers at different steps of the imec N14 fabrication process in order to show that this high precision OCD tool can be used for process monitoring and control.

  17. Phase-transition thresholds and vaporization phenomena for ultrasound phase-change nanoemulsions assessed via high-speed optical microscopy.

    PubMed

    Sheeran, Paul S; Matsunaga, Terry O; Dayton, Paul A

    2013-07-01

    Ultrasonically activated phase-change contrast agents (PCCAs) based on perfluorocarbon droplets have been proposed for a variety of therapeutic and diagnostic clinical applications. When generated at the nanoscale, droplets may be small enough to exit the vascular space and then be induced to vaporize with high spatial and temporal specificity by externally-applied ultrasound. The use of acoustical techniques for optimizing ultrasound parameters for given applications can be a significant challenge for nanoscale PCCAs due to the contributions of larger outlier droplets. Similarly, optical techniques can be a challenge due to the sub-micron size of nanodroplet agents and resolution limits of optical microscopy. In this study, an optical method for determining activation thresholds of nanoscale emulsions based on the in vitro distribution of bubbles resulting from vaporization of PCCAs after single, short (<10 cycles) ultrasound pulses is evaluated. Through ultra-high-speed microscopy it is shown that the bubbles produced early in the pulse from vaporized droplets are strongly affected by subsequent cycles of the vaporization pulse, and these effects increase with pulse length. Results show that decafluorobutane nanoemulsions with peak diameters on the order of 200 nm can be optimally vaporized with short pulses using pressures amenable to clinical diagnostic ultrasound machines. PMID:23760161

  18. Phase-transition thresholds and vaporization phenomena for ultrasound phase-change nanoemulsions assessed via high speed optical microscopy

    PubMed Central

    Sheeran, Paul S.; Matsunaga, Terry O.; Dayton, Paul A.

    2015-01-01

    Ultrasonically activated phase-change contrast agents (PCCAs) based on perfluorocarbon droplets have been proposed for a variety of therapeutic and diagnostic clinical applications. When generated at the nanoscale, droplets may be small enough to exit the vascular space and then be induced to vaporize with high spatial and temporal specificity by externally-applied ultrasound. The use of acoustical techniques for optimizing ultrasound parameters for given applications can be a significant challenge for nanoscale PCCAs due to the contributions of larger outlier droplets. Similarly, optical techniques can be a challenge due to the sub-micron size of nanodroplet agents and resolution limits of optical microscopy. In this study, an optical method for determining activation thresholds of nanoscale emulsions based on the in vitro distribution of bubbles resulting from vaporization of PCCAs after single, short (<10 cycles) ultrasound pulses is evaluated. Through ultra-high-speed microscopy it is shown that the bubbles produced early in the pulse from vaporized droplets are strongly affected by subsequent cycles of the vaporization pulse, and these effects increase with pulse length. Results show that decafluorobutane nanoemulsions with peak diameters on the order of 200 nm can be optimally vaporized with short pulses using pressures amenable to clinical diagnostic ultrasound machines. PMID:23760161

  19. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cense, Barry; Nassif, Nader A.; Chen, Teresa C.; Pierce, Mark C.; Yun, Seok-Hyun; Hyle Park, B.; Bouma, Brett E.; Tearney, Guillermo J.; de Boer, Johannes F.

    2004-05-01

    We present the first ultrahigh-resolution optical coherence tomography (OCT) structural intensity images and movies of the human retina in vivo at 29.3 frames per second with 500 A-lines per frame. Data was acquired at a continuous rate of 29,300 spectra per second with a 98% duty cycle. Two consecutive spectra were coherently summed to improve sensitivity, resulting in an effective rate of 14,600 A-lines per second at an effective integration time of 68 μs. The turn-key source was a combination of two super luminescent diodes with a combined spectral width of more than 150 nm providing 4.5 mW of power. The spectrometer of the spectraldomain OCT (SD-OCT) setup was centered around 885 nm with a bandwidth of 145 nm. The effective bandwidth in the eye was limited to approximately 100 nm due to increased absorption of wavelengths above 920 nm in the vitreous. Comparing the performance of our ultrahighresolution SD-OCT system with a conventional high-resolution time domain OCT system, the A-line rate of the spectral-domain OCT system was 59 times higher at a 5.4 dB lower sensitivity. With use of a software based dispersion compensation scheme, coherence length broadening due to dispersion mismatch between sample and reference arms was minimized. The coherence length measured from a mirror in air was equal to 4.0 μm (n= 1). The coherence length determined from the specular reflection of the foveal umbo in vivo in a healthy human eye was equal to 3.5 μm (n = 1.38). With this new system, two layers at the location of the retinal pigmented epithelium seem to be present, as well as small features in the inner and outer plexiform layers, which are believed to be small blood vessels.

  20. High Speed Optical Imaging Photon Counting Microchannel Plate Detectors for Astronomical and Space Sensing Applications

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; Welsh, B.; McPhate, J.; Rogers, D.

    In recent years we have implemented a variety of high-resolution, photon-counting MCP detectors in space instrumentation for satellite FUSE, GALEX, IMAGE, SOHO, SSULI, HST-COS, rocket, and shuttle payloads as well as sensors for ground based Astronomy, reconnaissance and biology. These detectors can meet many of the challenging imaging and timing demands of applications including astronomy of transient and time-variable sources, Earth atmospheric imaging and spectroscopy for real time space weather monitoring, biological single-molecule fluorescence lifetime microscopy, airborne and space situational awareness, and optical night-time/reconnaissance. Our recent work on high performance photon counting imaging readouts enables significant advancements over previous detector systems used for these applications. We have developed novel Cross-Strip and Cross-Delay-Line anode structures that can, in combination with small pore MCP's in sealed tube detectors, can achieve high spatial resolution (better than 10 um FWHM) with self triggered ~1 ns timing accuracy at up to 10 MHz event rates. Sealed tubes with formats, of 18mm, and 25mm with efficient S25 photocathodes have been built and are being used in several applications. The detectors and their properties will be discussed in this paper. Our installation and astronomical commissioning of one of these detectors at the South African Astronomical Observatory, South African Large Telescope (SALT) 10m telescope will be described. Our photometer is positioned in an auxiliary instrument port of the SALT. This is a stand-alone instrument that includes our detector system with two filter wheels (neutral density and U, B, V), an iris, and all the control modules necessary to operate the system. This instrument gives us access to the southern sky with significant sensitivity and unprecedented time resolution (microsec). High time resolution astronomy is still in its infancy, such that high cadence observations of the variable

  1. Ultra-high Speed Optical Imaging of Ultrasound-activated Microbubbles in Mesenteric Microvessels

    NASA Astrophysics Data System (ADS)

    Chen, Hong

    Ultrasound contrast agent microbubbles have gained widespread applications in diagnostic and therapeutic ultrasound. Animal studies of bioeffects induced by ultrasound-activated microbubbles have demonstrated that microbubbles can cause microvessel damage. Much scientific attention has been attracted to such microvascular bioeffects, not only because of the related safety concerns, but also because of the potential useful applications of microbubbles in the intravascular delivery of drugs and genetic materials into target tissues. A significant challenge in using microbubbles in medical ultrasound is the lack of knowledge about how the microbubbles behave in blood vessels when exposed to ultrasound and how their interactions with ultrasound cause vascular damage. Although extensive studies were performed in the past to study the dynamics of microbubbles, most of those studies were performed in vitro and did not directly address the clinical environment in which microbubbles are injected into blood vessels. In this thesis work, a synchronized optical-acoustic system was set up for ultrahigh speed imaging of insonated microbubbles in microvessels. The recorded images revealed the formation of microjets penetrating the microbubbles, as well as vessel distention (motion outward against the surrounding tissue) and vessel invagination (motion inward toward the lumen) caused by the expansion and collapse of the microbubbles, respectively. Contrary to current paradigms which propose that microbubbles damage vessels either by distending them or by forming liquid jets impinging on them, microbubbles translation and jetting were in the direction away from the nearest vessel wall; furthermore, invagination typically exceeded distention in arterioles and venules. Vessel invagination was found to be associated with vascular damage. These studies suggest that vessel invagination may be a newly discovered potential mechanism for vascular damage by ultrasound-activated microbubbles

  2. Burn depth determination using high-speed polarization-sensitive Mueller optical coherence tomography with continuous polarization modulation

    NASA Astrophysics Data System (ADS)

    Todorović, Miloš; Ai, Jun; Pereda Cubian, David; Stoica, George; Wang, Lihong

    2006-02-01

    National Health Interview Survey (NHIS) estimates more than 1.1 million burn injuries per year in the United States, with nearly 15,000 fatalities from wounds and related complications. An imaging modality capable of evaluating burn depths non-invasively is the polarization-sensitive optical coherence tomography. We report on the use of a high-speed, fiber-based Mueller-matrix OCT system with continuous source-polarization modulation for burn depth evaluation. The new system is capable of imaging at near video-quality frame rates (8 frames per second) with resolution of 10 μm in biological tissue (index of refraction: 1.4) and sensitivity of 78 dB. The sample arm optics is integrated in a hand-held probe simplifying the in vivo experiments. The applicability of the system for burn depth determination is demonstrated using biological samples of porcine tendon and porcine skin. The results show an improved imaging depth (1 mm in tendon) and a clear localization of the thermally damaged region. The burnt area determined from OCT images compares well with the histology, thus proving the system's potential for burn depth determination.

  3. A novel super-FEC code based on concatenated code for high-speed long-haul optical communication systems

    NASA Astrophysics Data System (ADS)

    Yuan, Jianguo; Ye, Wenwei; Jiang, Ze; Mao, Youju; Wang, Wei

    2007-05-01

    The structures of the novel super forward error correction (Super-FEC) code type based on the concatenated code for high-speed long-haul optical communication systems are studied in this paper. The Reed-Solomon (RS) (255, 239) + Bose-Chaudhuri-Hocguenghem (BCH) (1023, 963) concatenated code is presented after the characteristics of the concatenated code and the two Super-FEC code type presented in ITU-T G.975.1 have theoretically been analyzed, the simulation result shows that this novel code type, compared with the RS (255, 239) + convolutional-self-orthogonal-code (CSOC) ( k0/ n0 = 6/7, J = 8) code in ITU-T G.975.1, has a lower redundancy and better error-correction capabilities, and its net coding gain (NCG) at the third iteration is 0.57 dB more than that of RS (255, 239) + CSOC ( k0/ n0 = 6/7, J = 8) code in ITU-T G.975.1 at the third iteration for the bit error rate (BER) of 10 -12. Therefore, the novel code type can better be used in long-haul, larger capacity and higher bit-rate optical communication systems. Furthermore, the design and implementation of the novel concatenated code type are also discussed.

  4. A miniature fiber-optic sensor for high-resolution and high-speed temperature sensing in ocean environment

    NASA Astrophysics Data System (ADS)

    Liu, Guigen; Han, Ming; Hou, Weilin; Matt, Silvia; Goode, Wesley

    2015-05-01

    Temperature measurement is one of the key quantifies in ocean research. Temperature variations on small and large scales are key to air-sea interactions and climate change, and also regulate circulation patterns, and heat exchange. The influence from rapid temperature changes within microstructures are can have strong impacts to optical and acoustical sensor performance. In this paper, we present an optical fiber sensor for the high-resolution and high-speed temperature profiling. The developed sensor consists of a thin piece of silicon wafer which forms a Fabry-Pérot interferometer (FPI) on the end of fiber. Due to the unique properties of silicon, such as large thermal diffusivity, notable thermo-optic effects and thermal expansion coefficients of silicon, the proposed sensor exhibits excellent sensitivity and fast response to temperature variation. The small mass of the tiny probe also contributes to a fast response due to the large surface-tovolume ratio. The high reflective index at infrared wavelength range and surface flatness of silicon endow the FPI a spectrum with high visibilities, leading to a superior temperature resolution along with a new data processing method developed by us. Experimental results indicate that the fiber-optic temperature sensor can achieve a temperature resolution better than 0.001°C with a sampling frequency as high as 2 kHz. In addition, the miniature footprint of the senor provide high spatial resolutions. Using this high performance thermometer, excellent characterization of the realtime temperature profile within the flow of water turbulence has been realized.

  5. Quantum Communication Experiments Over Optical Fiber

    NASA Astrophysics Data System (ADS)

    Takesue, Hiroki

    Quantum key distribution (QKD) is expected to be the first application of quantum information to be realized as a practical system. In the last decade, research on QKD made significant progress both in concept and technology. In this chapter, we review the progress of technologies designed to realize high-speed and long-distance quantum communication over optical fiber, focusing on the results obtained by NTT. The first section describes a roadmap towards scalable quantum communications, which is composed of three phases. The second section reviews our effort to realize phase 1 quantum communication systems, namely point-to-point QKD systems based on the differential phase shift QKD (DPS-QKD) protocol. The third section describes entanglement generation and application in the telecom band, which are the key technologies for realizing phase 2 and 3 systems. The final section provides a summary and describes the future outlook.

  6. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics.

    PubMed

    Dong, Bing; Li, Yan; Han, Xin-Li; Hu, Bin

    2016-01-01

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10(-5) in optimized correction and is 1.427 × 10(-5) in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method. PMID:27598161

  7. Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system.

    PubMed

    Wang, Kai; Ding, Zhihua; Wu, Tong; Wang, Chuan; Meng, Jie; Chen, Minghui; Xu, Lei

    2009-07-01

    We develop a high speed spectral domain optical coherence tomography (SD-OCT) system based on a custom-built spectrometer and non-uniform discrete Fourier transform (NDFT) to realize minimized depth dependent sensitivity fall-off. After precise spectral calibration of the spectrometer, NDFT of the acquired spectral data is adopted for image reconstruction. The spectrometer is able to measure a wavelength range of about 138 nm with a spectral resolution of 0.0674 nm at central wavelength of 835 nm, corresponding to an axial imaging range of 2.56 mm in air. Zemax simulations and sensitivity fall-off measurements under two alignment states of the spectrometer are given. Both theoretical simulations and experiments are done to study the depth dependent sensitivity of the developed system based on NDFT in contrast to those based on conventional discrete Fourier transform (DFT) with and without interpolation. In vivo imaging on human finger from volunteer is conducted at A-scan rate of 29 kHz and reconstruction is done based on different methods. The comparing results confirm that reconstruction method based on NDFT indeed improves sensitivity especially at large depth while maintaining the coherence-function-limited depth resolution. PMID:19582127

  8. Parallelized multi–graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy

    PubMed Central

    Tankam, Patrice; Santhanam, Anand P.; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P.

    2014-01-01

    Abstract. Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6  mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing. PMID:24695868

  9. Small-diameter optical fiber and high-speed wavelength interrogator for FBG/PZT hybrid sensing system

    NASA Astrophysics Data System (ADS)

    Komatsuzaki, Shinji; Kojima, Seiji; Hongo, Akihito; Takeda, Nobuo; Sakurai, Takeo

    2007-04-01

    We have been developing a sensing system for checking the health of aircraft structures made of composite materials. In this system, lead zirconium titanate (PZT) actuators generate elastic waves that travel through the composite material and are received by embedded fiber Bragg grating (FBG) sensors. By analyzing the change in received waveforms, we can detect various kinds of damage. The frequency of the elastic waves is several hundred kHz, which is too high for a conventional optical spectrum analyzer to detect the wavelength change. Moreover, a conventional single-mode optical fiber cannot be used for an embedded FBG sensor because it is so thick that it induces defects in the composite material structure when it is embedded. We are thus developing a wavelength interrogator with an arrayed waveguide grating (AWG) that can detect the high-speed wavelength change and a small-diameter optical fiber (cladding diameter of 40µm) that does not induce defects. We use an AWG to convert the wavelength change into an output power change by using the wavelength dependency of the AWG transmittance. For this conversion, we previously used two adjacent output ports that cover the reflection spectrum of an FBG sensor. However, this requires controlling the temperature of the AWG because the ratio of the optical power change to the wavelength change is very sensitive to the relationship of the center wavelengths between an FBG sensor and the output ports of the AWG. We have now investigated the use of a denser AWG and six adjacent output ports, which covers the reflection spectrum of an FBG sensor, for detecting the elastic waves. Experimental results showed that this method can suppress the sensitivity of the power change ratio to the relationship of the center wavelengths between an FBG sensor and the output ports. Although our improved small-diameter optical fiber does not induce structural defects in the composite material when it is embedded, there is some micro or macro

  10. Time-resolved chirp properties of semiconductor optical amplifiers in high-speed all-optical switches

    NASA Astrophysics Data System (ADS)

    Chen, Ligong; Lu, Rongguo; Zhang, Shangjian; Li, Jianfeng; Liu, Yong

    2013-03-01

    The chirp properties of semiconductor optical amplifiers in all-optical switches are numerically investigated using a field propagation model. The chirp dynamics in the blue-shift and red-shift sideband are analyzed under the injection of random optical pump pulses. We also analyze the impact of the blue-detuned filtering scheme that is used to eliminate the pattern effect and enhance the operating speed of the optical switching. The reason for overshoots in eye diagrams in the blue-detuned filtering scheme is explained. We find that overshoots result from the ultrafast blue chirp induced by carrier heating and two-phonon absorption. These results are very useful for semiconductor optical amplifier-based ultrafast all-optical signal processing.

  11. Comparison of Clinically-Relevant Findings from High Speed Fourier Domain and Conventional Time Domain Optical Coherence Tomography

    PubMed Central

    Keane, Pearse A.; Bhatti, Rizwan A.; Brubaker, Jacob W.; Liakopoulos, Sandra; Sadda, Srinivas R.; Walsh, Alexander C.

    2009-01-01

    Purpose To compare the sensitivities of high speed Fourier domain optical coherence tomography (FDOCT) and conventional time domain (TD)-OCT for the detection of clinical findings important in the management of common vitreoretinal disorders. Design Prospective observational study. Methods FDOCT scans (128 B-scans × 512 A-scans) were obtained using a prototype instrument (3D-OCT, Topcon, Japan) in 50 eyes of 28 consecutive patients undergoing conventional high resolution (6 B-scans × 512 A-scans) TDOCT imaging (StratusOCT, Carl Zeiss Meditec, USA). Each image set was reviewed independently for the presence of clinical findings of interest, and device sensitivities calculated. Results The average sensitivity for detection of all features in this study was 94% for FDOCT and 60% for TDOCT. Clinical findings were identical between devices in 18% (9/50) of cases. FDOCT detected features that were not visible on conventional OCT scans in 78% (39/50) of cases. FDOCT was more sensitive than TDOCT for the detection of multiple findings, including: diffuse intraretinal edema (87% versus 60.9%), subretinal fluid (100% versus 46.2%), large pigment epithelium detachments (100% versus 81%), and subretinal tissue (100% versus 61.5%). Conclusions FDOCT appears superior to TDOCT for the detection of many clinically relevant features of vitreoretinal disease. The greater sensitivity of FDOCT systems, for the detection of intraretinal and subretinal fluid, may be of particular importance for the treatment of patients with neovascular AMD. FDOCT is likely to supplant TDOCT as the standard of care for retinal specialists in the near future. PMID:19427620

  12. High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second.

    PubMed

    An, Lin; Li, Peng; Shen, Tueng T; Wang, Ruikang

    2011-10-01

    We present a new development of ultrahigh speed spectral domain optical coherence tomography (SDOCT) for human retinal imaging at 850 nm central wavelength by employing two high-speed line scan CMOS cameras, each running at 250 kHz. Through precisely controlling the recording and reading time periods of the two cameras, the SDOCT system realizes an imaging speed at 500,000 A-lines per second, while maintaining both high axial resolution (~8 μm) and acceptable depth ranging (~2.5 mm). With this system, we propose two scanning protocols for human retinal imaging. The first is aimed to achieve isotropic dense sampling and fast scanning speed, enabling a 3D imaging within 0.72 sec for a region covering 4x4 mm(2). In this case, the B-frame rate is 700 Hz and the isotropic dense sampling is 500 A-lines along both the fast and slow axes. This scanning protocol minimizes the motion artifacts, thus making it possible to perform two directional averaging so that the signal to noise ratio of the system is enhanced while the degradation of its resolution is minimized. The second protocol is designed to scan the retina in a large field of view, in which 1200 A-lines are captured along both the fast and slow axes, covering 10 mm(2), to provide overall information about the retinal status. Because of relatively long imaging time (4 seconds for a 3D scan), the motion artifact is inevitable, making it difficult to interpret the 3D data set, particularly in a way of depth-resolved en-face fundus images. To mitigate this difficulty, we propose to use the relatively high reflecting retinal pigmented epithelium layer as the reference to flatten the original 3D data set along both the fast and slow axes. We show that the proposed system delivers superb performance for human retina imaging. PMID:22025983

  13. High-speed ultrahigh-resolution spectral domain optical coherence tomography using high-power supercontinuum at 0.8 µm wavelength

    NASA Astrophysics Data System (ADS)

    Hattori, Yuji; Kawagoe, Hiroyuki; Ando, Yoshimichi; Yamanaka, Masahito; Nishizawa, Norihiko

    2015-08-01

    We demonstrated high-speed ultrahigh-resolution (UHR) optical coherence tomography (OCT) in the 800 nm wavelength region. A high-power coherent supercontinuum (SC) and a high-speed line scan camera were used to construct a spectral domain OCT. The axial resolution was 3.1 µm in air and 2.3 µm in tissue. The dependence of sensitivity on the SC power and A-scan rate was examined. For the A-scan rate of 70 kHz, the sensitivity of 104 dB was achieved for the SC power higher than 60 mW. High-speed in vivo UHR-OCT imaging was demonstrated for zebrafish embryo and swimming medaka.

  14. All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function

    NASA Astrophysics Data System (ADS)

    Fatome, J.; Garnier, J.; Pitois, S.; Petit, M.; Millot, G.; Gay, M.; Clouet, B.; Bramerie, L.; Simon, J.-C.

    2008-01-01

    We present a simple method for all-optical measurements of background, amplitude, and timing jitters of ultra high speed pulse trains or PRBS sequences using the jitter dependence of the intercorrelation-peak shape. This method is numerically and experimentally demonstrated on a 42.66-Gbit/s PRBS sequence and then applied to measure the jitter growths occurring during the propagation of a 160-GHz pulse train in a classical SMF/DCF dispersion map.

  15. The NACA High-Speed Motion-Picture Camera Optical Compensation at 40,000 Photographs Per Second

    NASA Technical Reports Server (NTRS)

    Miller, Cearcy D

    1946-01-01

    The principle of operation of the NACA high-speed camera is completely explained. This camera, operating at the rate of 40,000 photographs per second, took the photographs presented in numerous NACA reports concerning combustion, preignition, and knock in the spark-ignition engine. Many design details are presented and discussed, details of an entirely conventional nature are omitted. The inherent aberrations of the camera are discussed and partly evaluated. The focal-plane-shutter effect of the camera is explained. Photographs of the camera are presented. Some high-speed motion pictures of familiar objects -- photoflash bulb, firecrackers, camera shutter -- are reproduced as an illustration of the quality of the photographs taken by the camera.

  16. High-speed all-optical pattern recognition of dispersive Fourier images through a photonic reservoir computing subsystem.

    PubMed

    Mesaritakis, Charis; Bogris, Adonis; Kapsalis, Alexandros; Syvridis, Dimitris

    2015-07-15

    In this Letter, we present and fully model a photonic scheme that allows the high-speed identification of images acquired through the dispersive Fourier technique. The proposed setup consists of a photonic reservoir-computing scheme that is based on the nonlinear response of randomly interconnected InGaAsP microring resonators. This approach allowed classification errors of 0.6%, whereas it alleviates the need for complex high-cost optoelectronic sampling and digital processing. PMID:26176483

  17. Quantum optical arbitrary waveform manipulation and measurement in real time.

    PubMed

    Kowligy, Abijith S; Manurkar, Paritosh; Corzo, Neil V; Velev, Vesselin G; Silver, Michael; Scott, Ryan P; Yoo, S J B; Kumar, Prem; Kanter, Gregory S; Huang, Yu-Ping

    2014-11-17

    We describe a technique for dynamic quantum optical arbitrary-waveform generation and manipulation, which is capable of mode selectively operating on quantum signals without inducing significant loss or decoherence. It is built upon combining the developed tools of quantum frequency conversion and optical arbitrary waveform generation. Considering realistic parameters, we propose and analyze applications such as programmable reshaping of picosecond-scale temporal modes, selective frequency conversion of any one or superposition of those modes, and mode-resolved photon counting. We also report on experimental progress to distinguish two overlapping, orthogonal temporal modes, demonstrating over 8 dB extinction between picosecond-scale time-frequency modes, which agrees well with our theory. Our theoretical and experimental progress, as a whole, points to an enabling optical technique for various applications such as ultradense quantum coding, unity-efficiency cavity-atom quantum memories, and high-speed quantum computing. PMID:25402035

  18. High speed handpieces

    PubMed Central

    Bhandary, Nayan; Desai, Asavari; Shetty, Y Bharath

    2014-01-01

    High speed instruments are versatile instruments used by clinicians of all specialties of dentistry. It is important for clinicians to understand the types of high speed handpieces available and the mechanism of working. The centers for disease control and prevention have issued guidelines time and again for disinfection and sterilization of high speed handpieces. This article presents the recent developments in the design of the high speed handpieces. With a view to prevent hospital associated infections significant importance has been given to disinfection, sterilization & maintenance of high speed handpieces. How to cite the article: Bhandary N, Desai A, Shetty YB. High speed handpieces. J Int Oral Health 2014;6(1):130-2. PMID:24653618

  19. Entanglement and Quantum Optics with Quantum Dots

    NASA Astrophysics Data System (ADS)

    Burgers, A. P.; Schaibley, J. R.; Steel, D. G.

    2015-06-01

    Quantum dots (QDs) exhibit many characteristics of simpler two-level (or few level) systems, under optical excitation. This makes atomic coherent optical spectroscopy theory and techniques well suited for understanding the behavior of quantum dots. Furthermore, the combination of the solid state nature of quantum dots and their close approximation to atomic systems makes them an attractive platform for quantum information based technologies. In this chapter, we will discuss recent studies using direct detection of light emitted from a quantum dot to investigate coherence properties and confirm entanglement between the emitted photon and an electron spin qubit confined to the QD.

  20. PREFACE: Quantum Optics III

    NASA Astrophysics Data System (ADS)

    Orszag, M.; Retamal, J. C.; Saavedra, C.; Wallentowitz, S.

    2007-06-01

    All the 50 years of conscious pondering did not bring me nearer to an answer to the question `what is light quanta?'. Nowadays, every rascal believes, he knows it, however, he is mistaken. (A Einstein, 1951 in a letter to M Besso) Quantum optics has played a key role in physics in the last several decades. On the other hand, in these early decades of the information age, the flow of information is becoming more and more central to our daily life. Thus, the related fields of quantum information theory as well as Bose-Einstein condensation have acquired tremendous importance in the last couple of decades. In Quantum Optics III, a fusion of these fields appears in a natural way. Quantum Optics III was held in Pucón, Chile, in 27-30 of November, 2006. This beautiful location in the south of Chile is near the lake Villarrica and below the snow covered volcano of the same name. This fantastic environment contributed to a relaxed atmosphere, suitable for informal discussion and for the students to have a chance to meet the key figures in the field. The previous Quantum Optics conferences took place in Santiago, Chile (Quantum Optics I, 2000) and Cozumel, Mexico (Quantum Optics II, 2004). About 115 participants from 19 countries attended and participated in the meeting to discuss a wide variety of topics such as quantum-information processing, experiments related to non-linear optics and squeezing, various aspects of entanglement including its sudden death, correlated twin-photon experiments, light storage, decoherence-free subspaces, Bose-Einstein condensation, discrete Wigner functions and many more. There was a strong Latin-American participation from Argentina, Brazil, Chile, Colombia, Peru, Uruguay, Venezuela and Mexico, as well as from Europe, USA, China, and Australia. New experimental and theoretical results were presented at the conference. In Latin-America a quiet revolution has taken place in the last twenty years. Several groups working in quantum optics and

  1. High-speed and high-efficiency Si optical modulator with MOS junction, using solid-phase crystallization of polycrystalline silicon

    NASA Astrophysics Data System (ADS)

    Fujikata, Junichi; Takahashi, Masashi; Takahashi, Shigeki; Horikawa, Tsuyoshi; Nakamura, Takahiro

    2016-04-01

    We developed a high-speed and high-efficiency MOS-capacitor-type Si optical modulator (Si-MOD) by applying a low optical loss and a low resistivity of a polycrystalline silicon (poly-Si) gate with large grains. To achieve a low resistivity of a poly-Si film, a P-doped poly-Si film based on Si2H6 solid-phase crystallization (SPC) was developed, which showed a comparable resistivity to that of P-doped single-crystal Si. In addition, high-temperature annealing (HTA) after SPC was effective for realizing low optical loss. We designed the optimum Si-MOD structure and demonstrated a very high modulation efficiency of 0.3 V cm, which is very efficient among the Si-MODs developed thus far. High-speed (15 Gbps) operation was achieved with a small footprint of the 200-µm-long phase shifter and a low drive voltage of 1.5 Vpp at a low optical insertion loss of -2.2 dB and 1.55 µm wavelength.

  2. High-speed InGaAs thin film MSM photodetector characterization using a fiber-based electro-optic sampling system

    NASA Astrophysics Data System (ADS)

    Seo, Sang-Woo; Cho, Sang-Yeon; Huang, Sa; Brown, April; Jokerst, Nan M.

    2004-06-01

    As optoelectronic devices increase in speed, the measurement system used to characterize these devices must have sufficient bandwidth and minimum parasitic loading during test to accurately determine the intrinsic performance of the device under test. Conventional electrical measurement systems have an intrinsic bandwidth due to the available components for test and have parasitic loading due to direct electrical contact to the device under the test. Electro-optic sampling is an excellent measurement technique for characterizing ultra-fast devices because it has high bandwidth, is non-contact, is non-destructive, and relatively non-invasive. In this paper, an optical fiber-based electro-optic sampling system is designed and used for characterizing high speed InGaAs thin film MSM photodetectors. A fiber laser which is operating at 1556 nm wavelength was used for the sampling and excitation beam. Optical fibers were used to connect each component in the system for flexibility. InGaAs thin film MSM photodetectors were fabricated and characterized. InGaAs thin film MSM photodetectors were bonded onto a coplanar strip line deposited on a benzocyclobutene (BCB)-coated glass substrate for characterization. These thin film photodetectors show high speed operation combined with high responsivity and large detection area compared to P-I-N photodetectors operating at similar speeds

  3. Fabrication and characteristics of high speed InGaAs/GaAs quantum-wells superluminescent diode emitting at 1053 nm

    NASA Astrophysics Data System (ADS)

    Duan, L. H.; Fang, L.; Zhang, J.; Zhou, Y.; Guo, H.; Luo, Q. C.; Zhang, S. F.

    2014-05-01

    A high speed 1053 nm superluminescent diode (SLD) with a ridge-waveguide structure has been fabricated for the first time to the best of our knowledge. InGaAs/GaAs quantum well epitaxial structure, the etched depth of the insulation channel and the area of p-side electrode were optimized to enhance the modulation bandwidth of the SLD. Bend-waveguide unpumped absorbing region structure and facet coating methods have been adopted to suppress the lasing oscillation. As a result, a -3 dB cutoff frequency of 1.7 GHz is obtained at a dc bias current of 100 mA and 25 °C heat-sink temperature, corresponding to 2.5 mW output power from single-mode fiber with spectral modulation of less than 0.15 dB and spectral width of 24 nm. The SLD module shows a good reliability.

  4. Optically controlled waveplate at a telecom wavelength using a ladder transition in Rb atoms for all-optical switching and high speed Stokesmetric imaging.

    PubMed

    Krishnamurthy, Subramanian; Tu, Y; Wang, Y; Tseng, S; Shahriar, M S

    2014-11-17

    We demonstrate an optically controlled waveplate at ~1323 nm using the 5S(1/2)-5P(1/2)-6S(1/2) ladder transition in a Rb vapor cell. The lower leg of the transitions represents the control beam, while the upper leg represents the signal beam. We show that we can place the signal beam in any arbitrary polarization state with a suitable choice of polarization of the control beam. Specifically, we demonstrate a differential phase retardance of ~180 degrees between the two circularly polarized components of a linearly polarized signal beam. We also demonstrate that the system can act as a Quarter Wave plate. The optical activity responsible for the phase retardation process is explained in terms of selection rules involving the Zeeman sublevels. As such, the system can be used to realize a fast Stokesmetric imaging system with a speed of ~3 MHz. When implemented using a tapered nano fiber embedded in a vapor cell, this system can be used to realize an ultra-low power all-optical switch as well as a Quantum Zeno Effect based all-optical logic gate by combining it with an optically controlled polarizer, previously demonstrated by us. We present numerical simulations of the system using a comprehensive model which incorporates all the relevant Zeeman sub-levels in the system, using a novel algorithm recently developed by us for efficient computation of the evolution of an arbitrary large scale quantum system. PMID:25402129

  5. Monolithically integrated quantum dot optical modulator with Semiconductor optical amplifier for short-range optical communications

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed. Broadband QD optical gain material was used to achieve Gbps-order high-speed optical data transmission, and an optical gain change as high as approximately 6-7 dB was obtained with a low OGM voltage of 2.0 V. Loss of optical power due to insertion of the device was also effectively compensated for by the SOA section. Furthermore, it was confirmed that the QD-OGM/SOA device helped achieve 6.0-Gbps error-free optical data transmission over a 2.0-km-long photonic crystal fiber. We also successfully demonstrated generation of Gbps-order, high-speed, and error-free optical signals in the >5.5-THz broadband optical frequency bandwidth larger than the C-band. These results suggest that the developed monolithically integrated QD-OGM/SOA device will be an advantageous and compact means of increasing the usable optical frequency channels for short-reach communications.

  6. Review of high speed communications photomultiplier detectors

    NASA Technical Reports Server (NTRS)

    Enck, R. S.; Abraham, W. G.

    1978-01-01

    Four types of newly developed high speed photomultipliers are discussed: all electrostatic; static crossed field; dynamic crossed field; and hybrid (EBS). Design, construction, and performance parameters of each class are presented along with limitations of each class of device and prognosis for its future in high speed light detection. The particular advantage of these devices lies in high speed applications using low photon flux, large cathode areas, and broadband optical detection.

  7. High Speed data acquisition

    SciTech Connect

    Cooper, Peter S.

    1998-02-01

    A general introduction to high Speed data acquisition system techniques in modern particle physics experiments is given. Examples are drawn from the SELEX(E781) high statistics charmed baryon production and decay experiment now taking data at Fermilab.

  8. High Speed Research Program

    NASA Technical Reports Server (NTRS)

    Anderson, Robert E.; Corsiglia, Victor R.; Schmitz, Frederic H. (Technical Monitor)

    1994-01-01

    An overview of the NASA High Speed Research Program will be presented from a NASA Headquarters perspective. The presentation will include the objectives of the program and an outline of major programmatic issues.

  9. Amplitude and phase modulated 8-ary and 16-ary multilevel signaling technologies for high-speed optical fiber communication

    NASA Astrophysics Data System (ADS)

    Kikuchi, Nobuhiko

    2005-11-01

    The optical multilevel modulation is one of the attractive candidates to significantly increase the channel bit rate and total capacity of future optical fiber communications. We review various multilevel modulation schemes proposed to date, including our experimental results of the 8-level and 16-level APSK modulation/demodulation schemes at 10 Gsymbol/s. We also discuss the advantages and disadvantages, and future issues of the optical multilevel modulation schemes.

  10. Sonochemical and high-speed optical characterization of cavitation generated by an ultrasonically oscillating dental file in root canal models.

    PubMed

    Macedo, R G; Verhaagen, B; Fernandez Rivas, D; Gardeniers, J G E; van der Sluis, L W M; Wesselink, P R; Versluis, M

    2014-01-01

    Ultrasonically Activated Irrigation makes use of an ultrasonically oscillating file in order to improve the cleaning of the root canal during a root canal treatment. Cavitation has been associated with these oscillating files, but the nature and characteristics of the cavitating bubbles were not yet fully elucidated. Using sensitive equipment, the sonoluminescence (SL) and sonochemiluminescence (SCL) around these files have been measured in this study, showing that cavitation occurs even at very low power settings. Luminol photography and high-speed visualizations provided information on the spatial and temporal distribution of the cavitation bubbles. A large bubble cloud was observed at the tip of the files, but this was found not to contribute to SCL. Rather, smaller, individual bubbles observed at antinodes of the oscillating file with a smaller amplitude were leading to SCL. Confinements of the size of bovine and human root canals increased the amount of SL and SCL. The root canal models also showed the occurrence of air entrainment, resulting in the generation of stable bubbles, and of droplets, near the air-liquid interface and leading eventually to a loss of the liquid. PMID:23735893

  11. Analysis of the temporal flame kernel development in an optically accessible IC engine using high-speed OH-PLIF

    NASA Astrophysics Data System (ADS)

    Müller, S. H. R.; Böhm, B.; Gleißner, M.; Arndt, S.; Dreizler, A.

    2010-09-01

    The investigation of the combustion process of a direct injection spark-ignition internal combustion (IC) engine is crucial in modern engine development. The present study is aimed at inspecting the temporal development of the spark induced flame kernel within single combustion cycles using high-speed planar laser-induced fluorescence (PLIF). The analysis is based upon the excitation of OH radicals, which are an indicator of the transient flame front. To achieve an adequate temporal resolution of the early combustion phase, the image sampling rate was set to 6 kHz, recording one image per crank-angle (CA) degree at 1000 rpm. A further feature of the technique is a large field of view spanning ˜54×53 mm. The performance of the transient combustion process is characterized by temporally tracking subsequential engine cycles individually. Flame front dynamics with different dilution levels of the intake air, simulating exhaust gas recirculation (EGR) are investigated. Resolving flame front dynamics especially with varying EGR is an important step towards an improved understanding of cyclic variations and pollutant formation.

  12. Two-tone intensity-modulated optical stimulus for self-referencing microwave characterization of high-speed photodetectors

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Zhang, Shangjian; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Zhang, Zhiyao; Zhang, Xiaoxia; Liu, Yong

    2016-08-01

    The two-tone intensity modulated optical stimulus is proposed and demonstrated for measuring the high-frequency response of photodetectors. The method provides a narrow linewidth and wide bandwidth optical stimulus based on the two-tone modulation of a Mach-Zehnder electro-optical intensity modulator, and achieves the self-referenced measurement of photodetectors without the need for correcting the power variation of optical stimulus. Moreover, the two-tone intensity modulation method allows bias-independent measurement with doubled measuring frequency range. In the experiment, the consistency between our method and the conventional methods verifies the simple but accurate measurement.

  13. Implementation of wavelength selector based on electro-optic effect in Mach-Zehnder interferometers for high speed communications

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Bisht, Ashish; Singh, Gurdeep; Choudhary, Kuldeep; Sharma, Divya

    2015-09-01

    The design of 4×1 and 8×1 wavelength selectors have been presented with complete functionality and configuration, which can be used as DWDM components in optical networks. The proposed optical logic unit is based on electro-optic effect in Mach-Zehnder interferometer (MZI). The Mach-Zehnder interferometer (MZI) structures collectively show the powerful capability in switching an input optical signal to a desired output port from a collection of output ports. A strategy for optical wavelength switching has been shown by constructing a design of wavelength selector using MZIs. The paper constitutes the mathematical description of proposed device and thereafter the wavelength switching behavior is analyzed using beam propagation method (BPM). The results are also verified with the help of MATLAB simulations and truth table.

  14. Roadmap on quantum optical systems

    NASA Astrophysics Data System (ADS)

    Dumke, Rainer; Lu, Zehuang; Close, John; Robins, Nick; Weis, Antoine; Mukherjee, Manas; Birkl, Gerhard; Hufnagel, Christoph; Amico, Luigi; Boshier, Malcolm G.; Dieckmann, Kai; Li, Wenhui; Killian, Thomas C.

    2016-09-01

    This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast-developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future.

  15. High Capacity High Speed Optical Data Storage System Based on Diffraction-Free Nanobeam. Final Report, 09-02-98 to 03-17-99

    SciTech Connect

    Tin Aye

    1999-06-16

    Physical Optics Corporation (POC) investigated the development of an optical data storage system built around a current well-engineered high-speed optical disk system with an innovative diffraction-free micro-optical element to produce a beam {approximately}250 nm wide with {approximately}4-5 mm depth of focus, allowing the system to address data at {approximately}100 Mbits/second and to store it 100 to 1,000 times more densely ({approximately}10 Gbit/in.{sup 2}) than in present systems. In Phase 1 of this project POC completed a thorough feasibility study by system design and analysis, successfully demonstrated fabrication of the key components, and conducted a proof-of-principle experimental demonstration. Specifically, production of a subwavelength ({approximately}380 nm) large depth of focus ({approximately}4-5 mm) addressing beam was demonstrated by fabricating a special microdiffractive optical element and recording this beam on a standard optical recording disk coated with a photopolymer material.

  16. Optically deviated focusing method based high-speed SD-OCT for in vivo retinal clinical applications

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Ruchire Eranga; Park, Kibeom; Kim, Pilun; Oh, Jaeryung; Kim, Seong-Woo; Kim, Kwangtae; Kim, Beop-Min; Jeon, Mansik; Kim, Jeehyun

    2016-04-01

    The aim of this study is to provide accurately focused, high-resolution in vivo human retinal depth images using an optically deviated focusing method with spectral-domain optical coherence tomography (SD-OCT) system. The proposed method was applied to increase the retinal diagnosing speed of patients with various values of retinal distances (i.e., the distance between the crystalline eye lens and the retina). The increased diagnosing speed was facilitated through an optical modification in the OCT sample arm configuration. Moreover, the optical path length matching process was compensated using the proposed optically deviated focusing method. The developed system was mounted on a bench-top cradle to overcome the motion artifacts. Further, we demonstrated the capability of the system by carrying out in vivo retinal imaging experiments. The clinical trials confirmed that the system was effective in diagnosing normal and abnormal retinal layers as several retinal abnormalities were identified using non-averaged single-shot OCT images, which demonstrate the feasibility of the method for clinical applications.

  17. High-speed elasticity-specific nonlinear Brillouin imaging/sensing via time-resolved optical (BISTRO) measurements

    NASA Astrophysics Data System (ADS)

    Meng, Zhaokai; Ballman, Charles W.; Petrov, Georgi I.; Yakovlev, Vladislav V.

    2016-03-01

    Viscoelastic properties of living cells are often directly related to the cell types and their physiological conditions. Unfortunately, all the currently existing methods for analysis of viscoelastic properties of cells, such as micropipette aspiration, atomic force microscopy and optical tweezers are intrinsically slow, limiting their applicability to study large population of cells, which are often needed for either fundamental or clinical studies. In this report, by incorporating the concept of impulsive stimulated Brillouin scattering (ISBS), we report a Brillouin Imaging and Sensing system via Time-Resolved Optical (BISTRO) measurements. We will prove the principle of the BISTRO system by presenting example microscopic measurements and flow/cell cytometry results [1].

  18. Quantum optics. Gravity meets quantum physics

    SciTech Connect

    Adams, Bernhard W.

    2015-02-27

    Albert Einstein’s general theory of relativity is a classical formulation but a quantum mechanical description of gravitational forces is needed, not only to investigate the coupling of classical and quantum systems but simply to give a more complete description of our physical surroundings. In this issue of Nature Photonics, Wen-Te Liao and Sven Ahrens reveal a link between quantum and gravitational physics. They propose that in the quantum-optical effect of superradiance, the world line of electromagnetic radiation is changed by the presence of a gravitational field.

  19. Linear optics and quantum maps

    SciTech Connect

    Aiello, A.; Puentes, G.; Woerdman, J. P.

    2007-09-15

    We present a theoretical analysis of the connection between classical polarization optics and quantum mechanics of two-level systems. First, we review the matrix formalism of classical polarization optics from a quantum information perspective. In this manner the passage from the Stokes-Jones-Mueller description of classical optical processes to the representation of one- and two-qubit quantum operations, becomes straightforward. Second, as a practical application of our classical-vs-quantum formalism, we show how two-qubit maximally entangled mixed states can be generated by using polarization and spatial modes of photons generated via spontaneous parametric down conversion.

  20. High Speed data acquisition

    SciTech Connect

    Cooper, P.S.

    1998-02-01

    A general introduction to high Speed data acquisition system techniques in modern particle physics experiments is given. Examples are drawn from the SELEX(E781) high statistics charmed baryon production and decay experiment now taking data at Fermilab. {copyright} {ital 1998 American Institute of Physics.}

  1. High speed civil transport

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.

    1992-01-01

    The design requirements of the High Speed Civil Transport (HSCT) are discussed. The following design concerns are presented: (1) environmental impact (emissions and noise); (2) critical components (the high temperature combustor and the lightweight exhaust nozzle); and (3) advanced materials (high temperature ceramic matrix composites (CMC's)/intermetallic matrix composites (IMC's)/metal matrix composites (MMC's)).

  2. High speed door assembly

    DOEpatents

    Shapiro, Carolyn

    1993-01-01

    A high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  3. High speed door assembly

    DOEpatents

    Shapiro, C.

    1993-04-27

    A high speed door assembly is described, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  4. Architectures and applications of high-speed vision

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshihiro; Oku, Hiromasa; Ishikawa, Masatoshi

    2014-11-01

    With the progress made in high-speed imaging technology, image processing systems that can process images at high frame rates, as well as their applications, are expected. In this article, we examine architectures for high-speed vision systems, and also dynamic image control, which can realize high-speed active optical systems. In addition, we also give an overview of some applications in which high-speed vision is used, including man-machine interfaces, image sensing, interactive displays, high-speed three-dimensional sensing, high-speed digital archiving, microvisual feedback, and high-speed intelligent robots.

  5. Optical engineering application of modeled photosynthetically active radiation (PAR) for high-speed digital camera dynamic range optimization

    NASA Astrophysics Data System (ADS)

    Alves, James; Gueymard, Christian A.

    2009-08-01

    As efforts to create accurate yet computationally efficient estimation models for clear-sky photosynthetically active solar radiation (PAR) have succeeded, the range of practical engineering applications where these models can be successfully applied has increased. This paper describes a novel application of the REST2 radiative model (developed by the second author) in optical engineering. The PAR predictions in this application are used to predict the possible range of instantaneous irradiances that could impinge on the image plane of a stationary video camera designed to image license plates on moving vehicles. The overall spectral response of the camera (including lens and optical filters) is similar to the 400-700 nm PAR range, thereby making PAR irradiance (rather than luminance) predictions most suitable for this application. The accuracy of the REST2 irradiance predictions for horizontal surfaces, coupled with another radiative model to obtain irradiances on vertical surfaces, and to standard optical image formation models, enable setting the dynamic range controls of the camera to ensure that the license plate images are legible (unsaturated with adequate contrast) regardless of the time of day, sky condition, or vehicle speed. A brief description of how these radiative models are utilized as part of the camera control algorithm is provided. Several comparisons of the irradiance predictions derived from the radiative model versus actual PAR measurements under varying sky conditions with three Licor sensors (one horizontal and two vertical) have been made and showed good agreement. Various camera-to-plate geometries and compass headings have been considered in these comparisons. Time-lapse sequences of license plate images taken with the camera under various sky conditions over a 30-day period are also analyzed. They demonstrate the success of the approach at creating legible plate images under highly variable lighting, which is the main goal of this

  6. Low-noise and high-speed photodetection system using optical feedback with a current amplification function

    NASA Astrophysics Data System (ADS)

    Akiba, M.

    2015-09-01

    A photodetection system with an optical-feedback circuit accompanied by current amplification was fabricated to minimize the drawbacks associated with a transimpedance amplifier (TIA) with a very high resistance feedback resistor. Current amplification was implemented by extracting an output light from the same light source that emitted the feedback light. The current gain corresponds to the ratio of the photocurrent created by the output light to that created by the feedback light because the feedback current value is identical to the input photocurrent value generated by an input light to be measured. The current gain has no theoretical limit. The output light was detected by a photodiode with a TIA having a small feedback resistance. The expression for the input-referred noise current of the optical-feedback photodetection system was derived, and the trade-off between sensitivity and response, which is a characteristic of TIA, was found to considerably improve. An optical-feedback photodetection system with an InGaAs pin photodiode was fabricated. The measured noise equivalent power of the system was 1.7 fW/Hz1/2 at 10 Hz and 1.3 μm, which is consistent with the derived expression. The time response of the system was found to deteriorate with decreasing photocurrent. The 50% rise time for a light pulse input increased from 3.1 μs at a photocurrent of 10 nA to 15 μs at photocurrents below 10 pA. The bandwidth of the input-referred noise current was 7 kHz, which is consistent with rise times below 10 pA.

  7. FPGA implementation of concatenated non-binary QC-LDPC codes for high-speed optical transport.

    PubMed

    Zou, Ding; Djordjevic, Ivan B

    2015-06-01

    In this paper, we propose a soft-decision-based FEC scheme that is the concatenation of a non-binary LDPC code and hard-decision FEC code. The proposed NB-LDPC + RS with overhead of 27.06% provides a superior NCG of 11.9dB at a post-FEC BER of 10-15. As a result, the proposed NB-LDPC codes represent the strong FEC candidate of soft-decision FEC for beyond 100Gb/s optical transmission systems. PMID:26072810

  8. Quantum optics, cavity QED, and quantum optomechanics

    NASA Astrophysics Data System (ADS)

    Meystre, Pierre

    2013-05-01

    Quantum optomechanics provides a universal tool to achieve the quantum control of mechanical motion. It does that in devices spanning a vast range of parameters, with mechanical frequencies from a few Hertz to GHz, and with masses from 10-20 g to several kilos. Its underlying ideas can be traced back to the study of gravitational wave antennas, quantum optics, cavity QED and laser cooling which, when combined with the recent availability of advanced micromechanical and nanomechanical devices, opens a path to the realization of macroscopic mechanical systems that operate deep in the quantum regime. At the fundamental level this development paves the way to experiments that will lead to a more profound understanding of quantum mechanics; and from the point of view of applications, quantum optomechanical techniques will provide motion and force sensing near the fundamental limit imposed by quantum mechanics (quantum metrology) and significantly expand the toolbox of quantum information science. After a brief summary of key historical developments, the talk will give a broad overview of the current state of the art of quantum optomechanics, and comment on future prospects both in applied and in fundamental science. Work supported by NSF, ARO and the DARPA QuASAR and ORCHID programs.

  9. Passive-Damping of the Axial Run-Out for High Speed Rotating Flexible Optical Disk Using the Idea of Damping Orifice

    NASA Astrophysics Data System (ADS)

    Gad, Abdelrasoul M. M.; Rhim, Yoon Chul

    2010-08-01

    In the present work, the idea of damping orifice is applied so as to reduce the axial run-out of a high speed rotating flexible optical disk. A track or more of rectangular-edge orifices is inscribed in a rigid flat stabilizer near the outer region of the disk that exhibits large vibration amplitudes. The effects of the orifice geometry, number of orifices per track, and the number of tracks are investigated experimentally. The results from this study show that the introduced new design of the stabilizer can reduce the axial run-out of the disk at 10,000 rpm to within 10 µm over its entire span using two tracks of damping orifices near the disk rim. The study proved that the introduced orifices in the flat stabilizer effectively enhance the damping capability of the air-film to dissipate the vibration energy of the rotating disk.

  10. High-Speed Gap Servo Control for Solid-Immersion-Lens-Based Near-Field Recording System with a Flexible Optical Disk

    NASA Astrophysics Data System (ADS)

    Hwang, Hyunwoo; Kim, Jung-Gon; Song, Ki Wook; Park, Kyoung-Su; Park, No-cheol; Yang, Hyunseok; Rhim, Yoon-Chul; Park, Young-Pil

    2011-09-01

    Higher data storage capacities and higher data transfer rates will be required in next-generation information storage devices. However, there is a limit to the rotational speeds of conventional disk structures. Hence, conventional disks will not be able to achieve high data transfer rates of over 250 Mbps that is required for next-generation storage devices. To increase the data transfer rate of a disk, flexible optical disks have been studied with the goal of stable rotation at a high speed, using a stabilizer to reduce disk oscillations. If a flexible optical disk is implemented in a near-field recording (NFR) system, simultaneous high data transfer rates and high-density recording should be possible. In an NFR system, it is very important to maintain the gap between the solid immersion lens (SIL) and the disk at distances below tens of nanometers. In this study, to simultaneously achieve high data storage capacity and high data transfer rate, we propose an improved gap servo control system for an SIL-based NFR system with a flexible optical disk. To enable robust control at a high rotational speed, a repetitive controller was designed and applied to the NFR servo algorithm. In both simulation and experiment, the newly designed gap servo controller stably maintained the gap distance in the SIL-based NFR system using a flexible optical disk.

  11. Demonstration of 20Gb/s polarization-insensitive wavelength switching system for high-speed free-space optical network

    NASA Astrophysics Data System (ADS)

    Qian, Feng-chen; Ye, Ya-lin; Wen, Yu; Duan, Tao; Feng, Huan

    2015-10-01

    A 20Gb/s polarization-insensitive all-optical wavelength switching system for high-speed free-space optical communication (FSO) network is experimentally demonstrated All-optical wavelength conversion (AOWC) is implemented using four-wave mixing (FWM) by highly-nonlinear fiber (HNLF). In the experimental setup, a simple actively mode-locked fiber ring laser (AML-FRL) with repetition frequency from 1 to 15 GHz is used to generate eight 2.5Gb/s tributary signals, which are multiplexed into one 20Gb/s optical data stream. At the receiver, the 20 Gb/s OTDM data stream is demultiplexed down to 2.5 Gb/s via a polarization-insensitive FWM scheme. The whole space communication distance is over 10 meters in building hallway. The experimental results show that this system can stably run over 24 hours at 10-9 BER level, thus the proposed architecture can work at higher rate with wavelength-division multiplexing (WDM) and high order modulation schemes.

  12. A high-speed vertical optical trap for the mechanical testing of living cells at piconewton forces

    SciTech Connect

    Bodensiek, Kai Li, Weixing; Sánchez, Paula; Nawaz, Schanila; Schaap, Iwan A. T.; Center for Nanoscale Microscopy and Molecular Physiology of the Brain , Göttingen

    2013-11-15

    Although atomic force microscopy is often the method of choice to probe the mechanical response of (sub)micrometer sized biomaterials, the lowest force that can be reliably controlled is limited to ≈0.1 nN. For soft biological samples, like cells, such forces can already lead to a strain large enough to enter the non-elastic deformation regime. To be able to investigate the response of single cells at lower forces we developed a vertical optical trap. The force can be controlled down to single piconewtons and most of the advantages of atomic force microscopy are maintained, such as the symmetrical application of forces at a wide range of loading rates. Typical consequences of moving the focus in the vertical direction, like the interferometric effect between the bead and the coverslip and a shift of focus, were quantified and found to have negligible effects on our measurements. With a fast responding force feedback loop we can achieve deformation rates as high as 50 μm/s, which allow the investigation of the elastic and viscous components of very soft samples. The potential of the vertical optical trap is demonstrated by measuring the linearity of the response of single cells at very low forces and a high bandwidth of deformation rates.

  13. Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography.

    PubMed

    Kim, Ki Hean; Park, B Hyle; Maguluri, Gopi N; Lee, Tom W; Rogomentich, Fran J; Bancu, Mirela G; Bouma, Brett E; de Boer, Johannes F; Bernstein, Jonathan J

    2007-12-24

    A two-axis scanning catheter was developed for 3D endoscopic imaging with spectral domain optical coherence tomography (SD-OCT). The catheter incorporates a micro-mirror scanner implemented with microelectromechanical systems (MEMS) technology: the micro-mirror is mounted on a two-axis gimbal comprised of folded flexure hinges and is actuated by magnetic field. The scanner can run either statically in both axes or at the resonant frequency (>= 350Hz) for the fast axis. The assembled catheter has an outer diameter of 2.8 mm and a rigid part of 12 mm in length. Its scanning range is +/- 20 in optical angle in both axes with low voltages (1 approximately 3V), resulting in a scannable length of approximately 1 mm at the surface in both axes, even with the small catheter size. The catheter was incorporated with a multi-functional SD-OCT system for 3D endoscopic imaging. Both intensity and polarization-sensitive images could be acquired simultaneously at 18.5K axial scans/s. In vivo 3D images of human fingertips and oral cavity tissue are presented as a demonstration. PMID:19551111

  14. High-speed polarization sensitive optical coherence tomography scan engine based on Fourier domain mode locked laser

    PubMed Central

    Bonesi, Marco; Sattmann, Harald; Torzicky, Teresa; Zotter, Stefan; Baumann, Bernhard; Pircher, Michael; Götzinger, Erich; Eigenwillig, Christoph; Wieser, Wolfgang; Huber, Robert; Hitzenberger, Christoph K.

    2012-01-01

    We report on a new swept source polarization sensitive optical coherence tomography scan engine that is based on polarization maintaining (PM) fiber technology. The light source is a Fourier domain mode locked laser with a PM cavity that operates in the 1300 nm wavelength regime. It is equipped with a PM buffer stage that doubles the fundamental sweep frequency of 54.5 kHz. The fiberization allows coupling of the scan engine to different delivery probes. In a first demonstration, we use the system for imaging human skin at an A-scan rate of 109 kHz. The system illuminates the sample with circularly polarized light and measures reflectivity, retardation, optic axis orientation, and Stokes vectors simultaneously. Furthermore, depolarization can be quantified by calculating the degree of polarization uniformity (DOPU). The high scanning speed of the system enables dense sampling in both, the x- and y-direction, which provides the opportunity to use 3D evaluation windows for DOPU calculation. This improves the spatial resolution of DOPU images considerably. PMID:23162734

  15. High-speed time-reversed ultrasonically encoded (TRUE) optical focusing inside dynamic scattering media at 793 nm

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Lai, Puxiang; Ma, Cheng; Xu, Xiao; Suzuki, Yuta; Grabar, Alexander A.; Wang, Lihong V.

    2014-03-01

    Time-reversed ultrasonically encoded (TRUE) optical focusing is an emerging technique that focuses light deep into scattering media by phase-conjugating ultrasonically encoded diffuse light. In previous work, the speed of TRUE focusing was limited to no faster than 1 Hz by the response time of the photorefractive phase conjugate mirror, or the data acquisition and streaming speed of the digital camera; photorefractive-crystal-based TRUE focusing was also limited to the visible spectral range. These time-consuming schemes prevent this technique from being applied in vivo, since living biological tissue has a speckle decorrelation time on the order of a millisecond. In this work, using a Tedoped Sn2P2S6 photorefractive crystal at a near-infrared wavelength of 793 nm, we achieved TRUE focusing inside dynamic scattering media having a speckle decorrelation time as short as 7.7 ms. As the achieved speed approaches the tissue decorrelation rate, this work is an important step forward toward in vivo applications of TRUE focusing in deep tissue imaging, photodynamic therapy, and optical manipulation.

  16. The creation and early implementation of a high speed fiber optic network for a university health sciences center.

    PubMed Central

    Schueler, J. D.; Mitchell, J. A.; Forbes, S. M.; Neely, R. C.; Goodman, R. J.; Branson, D. K.

    1991-01-01

    In late 1989 the University of Missouri Health Sciences Center began the process of creating an extensive fiber optic network throughout its facilities, with the intent to provide networked computer access to anyone in the Center desiring such access, regardless of geographic location or organizational affiliation. A committee representing all disciplines within the Center produced and, in conjunction with independent consultants, approved a comprehensive design for the network. Installation of network backbone components commenced in the second half of 1990 and was completed in early 1991. As the network entered its initial phases of operation, the first realities of this important new resource began to manifest themselves as enhanced functional capacity in the Health Sciences Center. This paper describes the development of the network, with emphasis on its design criteria, installation, early operation, and management. Also included are discussions on its organizational impact and its evolving significance as a medical community resource. PMID:1807660

  17. Optimal signal constellation design for ultra-high-speed optical transport in the presence of nonlinear phase noise.

    PubMed

    Liu, Tao; Djordjevic, Ivan B

    2014-12-29

    In this paper, we first describe an optimal signal constellation design algorithm suitable for the coherent optical channels dominated by the linear phase noise. Then, we modify this algorithm to be suitable for the nonlinear phase noise dominated channels. In optimization procedure, the proposed algorithm uses the cumulative log-likelihood function instead of the Euclidian distance. Further, an LDPC coded modulation scheme is proposed to be used in combination with signal constellations obtained by proposed algorithm. Monte Carlo simulations indicate that the LDPC-coded modulation schemes employing the new constellation sets, obtained by our new signal constellation design algorithm, outperform corresponding QAM constellations significantly in terms of transmission distance and have better nonlinearity tolerance. PMID:25607183

  18. Electron-beam and high-speed optical diagnostics for the average power laser experiment (APLE) program

    NASA Astrophysics Data System (ADS)

    Lumpkin, Alex H.; McVey, Brian D.; Greegor, Robert B.; Dowell, David H.

    1992-07-01

    The average power laser experiment (APLE) program is a collaboration between Boeing Aerospace and Electronics Company and Los Alamos National Laboratory to build a free-electron laser (FEL) operating at a wavelength of 10 μm and an average power of 100 kW. This program includes demonstration experiments at Boeing on the injector and at Los Alamos on a single accelerator master oscillator power amplifier (SAMOPA). In response to simulations of the expected electron beam properties, diagnostic plans have been developed for the low duty factor and the 25% duty factor operations of APLE. Preliminary evaluations of diagnostics based on information conversion to visible or near-infrared light (optical-transition radiation, Cherenkov radiation, synchrotron radiation, and spontaneous-emission radiation) or electrical signals (striplines, toroids, flying wires, etc.) are addressed.

  19. Visualization of explosion phenomena using a high-speed video camera with an uncoupled objective lens by fiber-optic

    NASA Astrophysics Data System (ADS)

    Tokuoka, Nobuyuki; Miyoshi, Hitoshi; Kusano, Hideaki; Hata, Hidehiro; Hiroe, Tetsuyuki; Fujiwara, Kazuhito; Yasushi, Kondo

    2008-11-01

    Visualization of explosion phenomena is very important and essential to evaluate the performance of explosive effects. The phenomena, however, generate blast waves and fragments from cases. We must protect our visualizing equipment from any form of impact. In the tests described here, the front lens was separated from the camera head by means of a fiber-optic cable in order to be able to use the camera, a Shimadzu Hypervision HPV-1, for tests in severe blast environment, including the filming of explosions. It was possible to obtain clear images of the explosion that were not inferior to the images taken by the camera with the lens directly coupled to the camera head. It could be confirmed that this system is very useful for the visualization of dangerous events, e.g., at an explosion site, and for visualizations at angles that would be unachievable under normal circumstances.

  20. Low-power, high-speed InGaAs/InP photoreceiver for highly-parallel optical data links

    SciTech Connect

    Lovejoy, M.L.; Patrizi, G.A.; Enquist, P.M.

    1995-09-01

    Low-power photoreceivers based on InGaAs/InP heterojunction bipolar transistors (HBTs) and p-i-n diodes for highly-parallel optical data links have been designed, fabricated and characterized. The receivers and designed to operate from 980 nm to over 1.3 {mu}m and interface directly with 3.3 V CMOS. SPICE was utilized to investigate circuit topographies that minimize power dissipation while maintaining large signal operation required to interface directly with CMOS. Low-power dissipation of {approximately}10 mW/channel has been achieved at bit rates up to 800 Mbits/sec. Performance characteristics of discrete HBTs and of low-power photoreceivers fabricated with p-i-n/HBT circuits are reported.

  1. Optically active quantum dots

    NASA Astrophysics Data System (ADS)

    Gerard, Valerie; Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii K.

    2015-10-01

    The main goal of our research is to develop new types of technologically important optically active quantum dot (QD) based materials, study their properties and explore their biological applications. For the first time chiral II-VI QDs have been prepared by us using microwave induced heating with the racemic (Rac), D- and L-enantiomeric forms of penicillamine as stabilisers. Circular dichroism (CD) studies of these QDs have shown that D- and L-penicillamine stabilised particles produced mirror image CD spectra, while the particles prepared with a Rac mixture showed only a weak signal. It was also demonstrated that these QDs show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. These QDs have demonstrated highly specific chiral recognition of various biological species including aminoacids. The utilisation of chiral stabilisers also allowed the preparation of new water soluble white emitting CdS nano-tetrapods, which demonstrated circular dichroism in the band-edge region of the spectrum. Biological testing of chiral CdS nanotetrapods displayed a chiral bias for an uptake of the D- penicillamine stabilised nano-tetrapods by cancer cells. It is expected that this research will open new horizons in the chemistry of chiral nanomaterials and their application in nanobiotechnology, medicine and optical chemo- and bio-sensing.

  2. Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Subhash, Hrebesh M.; Davila, Viviana; Sun, Hai; Nguyen-Huynh, Anh T.; Nuttall, Alfred L.; Wang, Ruikang K.

    2010-05-01

    There is considerable interest in developing new methods for in vivo imaging of the complex anatomy of the mammalian cochlea for clinical as well as fundamental studies. In this study, we explored, the feasibility of spectral domain optical coherence tomography (SD-OCT) for 3-D in vivo imaging of the cochlea in mice. The SD-OCT system employed in this study used a broadband light source centered at 1300 nm, and the imaging speed of the system was 47,000 A-scans per second using the InGaAs camera. The system was capable of providing fully processed, high-resolution B-scan images [512 (axial)×128 (lateral) pixels] at 280 frames per sec. The 3-D imaging acquisition time for a whole cochlea was ~0.45 sec. The traditional SD-OCT structural imaging algorithm was used to reconstruct 3-D cochlear morphology. We demonstrated that SD-OCT can be successfully used for in vivo imaging of important morphological features within the mouse cochlea, such as the otic capsule and structures within, including Reissner's membrane, the basilar membrane, tectorial membrane, organ of Corti, and modiolus of the apical and middle turns.

  3. High speed door assembly

    SciTech Connect

    Shapiro, C.

    1991-12-31

    This invention is comprised of a high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  4. High-speed highly temperature stable 980 nm VCSELs operating at 25 Gb/s at up to 85 °C for short reach optical interconnects

    NASA Astrophysics Data System (ADS)

    Mutig, Alex; Lott, James A.; Blokhin, Sergey A.; Moser, Philip; Wolf, Philip; Hofmann, Werner; Nadtochiy, Alexey M.; Bimberg, Dieter

    2011-03-01

    The progressive penetration of optical communication links into traditional copper interconnect markets greatly expands the applications of vertical cavity surface emitting lasers (VCSELs) for the next-generation of board-to-board, moduleto- module, chip-to-chip, and on-chip optical interconnects. Stability of the VCSEL parameters at high temperatures is indispensable for such applications, since these lasers typically reside directly on or near integrated circuit chips. Here we present 980 nm oxide-confined VCSELs operating error-free at bit rates up to 25 Gbit/s at temperatures as high as 85 °C without adjustment of the drive current and peak-to-peak modulation voltage. The driver design is therefore simplified and the power consumption of the driver electronics is lowered, reducing the production and operational costs. Small and large signal modulation experiments at various temperatures from 20 up to 85 °C for lasers with different oxide aperture diameters are presented in order to analyze the physical processes controlling the performance of the VCSELs. Temperature insensitive maximum -3 dB bandwidths of around 13-15 GHz for VCSELs with aperture diameters of 10 μm and corresponding parasitic cut-off frequencies exceeding 22 GHz are observed. Presented results demonstrate the suitability of our VCSELs for practical high speed and high temperature stable short-reach optical links.

  5. Dispersion-optimized optical fiber for high-speed long-haul dense wavelength division multiplexing transmission

    NASA Astrophysics Data System (ADS)

    Wu, Jindong; Chen, Liuhua; Li, Qingguo; Wu, Wenwen; Sun, Keyuan; Wu, Xingkun

    2011-07-01

    Four non-zero-dispersion-shifted fibers with almost the same large effective area (Aeff) and optimized dispersion properties are realized by novel index profile designing and modified vapor axial deposition and modified chemical vapor deposition processes. An Aeff of greater than 71 μm2 is obtained for the designed fibers. Three of the developed fibers with positive dispersion are improved by reducing the 1550nm dispersion slope from 0.072ps/nm2/km to 0.063ps/nm2/km or 0.05ps/nm2/km, increasing the 1550nm dispersion from 4.972ps/nm/km to 5.679ps/nm/km or 7.776ps/nm/km, and shifting the zero-dispersion wavelength from 1500nm to 1450nm. One of these fibers is in good agreement with G655D and G.656 fibers simultaneously, and another one with G655E and G.656 fibers; both fibers are beneficial to high-bit long-haul dense wavelength division multiplexing systems over S-, C-, and L-bands. The fourth developed fiber with negative dispersion is also improved by reducing the 1550nm dispersion slope from 0.12ps/nm2/km to 0.085ps/nm2/km, increasing the 1550nm dispersion from -4ps/nm/km to -6.016ps/nm/km, providing facilities for a submarine transmission system. Experimental measurements indicate that the developed fibers all have excellent optical transmission and good macrobending and splice performances.

  6. Remote Transmission at High Speed

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Omni and NASA Test Operations at Stennis entered a Dual-Use Agreement to develop the FOTR-125, a 125 megabit-per-second fiber-optic transceiver that allows accurate digital recordings over a great distance. The transceiver s fiber-optic link can be as long as 25 kilometers. This makes it much longer than the standard coaxial link, which can be no longer than 50 meters.The FOTR-125 utilizes laser diode transmitter modules and integrated receivers for the optical interface. Two transmitters and two receivers are employed at each end of the link with automatic or manual switchover to maximize the reliability of the communications link. NASA uses the transceiver in Stennis High-Speed Data Acquisition System (HSDAS). The HSDAS consists of several identical systems installed on the Center s test stands to process all high-speed data related to its propulsion test programs. These transceivers allow the recorder and HSDAS controls to be located in the Test Control Center in a remote location while the digitizer is located on the test stand.

  7. High speed hybrid active system

    NASA Astrophysics Data System (ADS)

    Gonzalez, Ignacio F.; Chang, Fu-Kuo; Qing, Peter X.; Kumar, Amrita; Zhang, David

    2005-05-01

    A novel piezoelectric/fiber-optic system is developed for long-term health monitoring of aerospace vehicles and structures. The hybrid diagnostic system uses the piezoelectric actuators to input a controlled excitation to the structure and the fiber optic sensors to capture the corresponding structural response. The aim of the system is to detect changes in structures such as those found in aerospace applications (damage, cracks, aging, etc.). This system involves the use of fiber Bragg gratings, which may be either bonded to the surface of the material or embedded within it in order to detect the linear strain component produced by the excitation waves generate by an arbitrary waveform generator. Interrogation of the Bragg gratings is carried out using a high speed fiber grating demodulation unit and a high speed data acquisition card to provide actuation input. With data collection and information processing; is able to determine the condition of the structure. The demands on a system suitable for detecting ultrasonic acoustic waves are different than for the more common strain and temperature systems. On the one hand, the frequency is much higher, with typical values for ultrasonic frequencies used in non-destructive testing ranging from 100 kHz up to several MHz. On the other hand, the related strain levels are much lower, normally in the μstrain range. Fiber-optic solutions for this problem do exist and are particularly attractive for ultrasonic sensing as the sensors offer broadband detection capability.

  8. Optical coherence elastography based on high speed imaging of single-hot laser-induced acoustic waves at 16 kHz frame rate

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; Pelivanov, Ivan; O'Donnell, Matthew; Wang, Ruikang K.

    2016-03-01

    Shear wave OCE (SW-OCE) is a novel technique that relies on the detection of the localized shear wave speed to map tissue elasticity. In this study, we demonstrate high speed imaging to capture single-shot transient shear wave propagation for SW-OCE. The fast imaging speed is achieved using a Fourier domain mode-locked (FDML) high-speed swept-source OCT (SS-OCT) system. The frame rate of shear wave imaging is 16 kHz, at an A-line rate of ~1.62 MHz, enabling the detection of high-frequency shear waves up to 8 kHz in bandwidth. Several measures are taken to improve the phase-stability of the SS-OCT system, and the measured displacement sensitivity is ~10 nanometers. To facilitate non-contact elastography, shear waves are generated with the photo-thermal effect using an ultra-violet pulsed laser. High frequency shear waves launched by the pulsed laser contain shorter wavelengths and carry rich localized elasticity information. Benefiting from single-shot acquisition, each SWI scan only takes 2.5 milliseconds, and the reconstruction of the elastogram can be performed in real-time with ~20 Hz refresh rate. SW-OCE measurements are demonstrated on porcine cornea ex vivo. This study is the first demonstration of an all-optical method to perform real-time 3D SW-OCE. It is hoped that this technique will be applicable in the clinic to obtain high-resolution localized quantitative measurements of tissue biomechanical properties.

  9. Sensing and three-dimensional imaging of cochlea and surrounding temporal bone using swept source high-speed optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhao, Mingtao; Chien, Wade W.; Taylor, Russ; Iordachita, Iulian; Huang, Yong; Niparko, John; Kang, Jin U.

    2013-03-01

    We describe a novel dual-functional optical coherence tomography (OCT) system with both a fiber probe using a sapphire ball lens for cross-sectional imaging and sensing, and a 3-D bulk scanner for 3-D OCT imaging. A theoretical sensitivity model for Common Path (CP)-OCT was proposed to assess its optimal performance based on an unbalanced photodetector configuration. A probe design with working distances (WD) 415μm and lateral resolution 11 μm was implemented with sensitivity up to 88dB. To achieve high-speed data processing and real-time three-dimensional visualization, we use graphics processing unit (GPU) based real-time signal processing and visualization to boost the computing performance of swept source optical coherence tomography. Both the basal turn and facial nerve bundles inside the cadaveric human cochlea temporal bone can be clearly identified and 3D images can be rendered with the OCT system, which was integrated with a flexible robotic arm for robotically assisted microsurgery.

  10. High Speed Vortex Flows

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2000-01-01

    A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.

  11. High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This computer generated animation depicts a conceptual simulation of the flight of a High Speed Civil Transport (HSCT). As envisioned, the HSCT is a next-generation supersonic (faster than the speed of sound) passenger jet that would fly 300 passengers at more than 1,500 miles per hour -- more than twice the speed of sound. It will cross the Pacific or Atlantic in less than half the time of modern subsonic jets, and at a ticket price less than 20 percent above comparable, slower flights.

  12. High speed flywheel

    DOEpatents

    McGrath, Stephen V.

    1991-01-01

    A flywheel for operation at high speeds utilizes two or more ringlike coments arranged in a spaced concentric relationship for rotation about an axis and an expansion device interposed between the components for accommodating radial growth of the components resulting from flywheel operation. The expansion device engages both of the ringlike components, and the structure of the expansion device ensures that it maintains its engagement with the components. In addition to its expansion-accommodating capacity, the expansion device also maintains flywheel stiffness during flywheel operation.

  13. Cavity quantum electro-optics

    SciTech Connect

    Tsang, Mankei

    2010-06-15

    The quantum dynamics of the coupling between a cavity optical field and a resonator microwave field via the electro-optic effect is studied. This coupling has the same form as the optomechanical coupling via radiation pressure, so all previously considered optomechanical effects can in principle be observed in electro-optic systems as well. In particular, I point out the possibilities of laser cooling of the microwave mode, entanglement between the optical mode and the microwave mode via electro-optic parametric amplification, and back-action-evading optical measurements of a microwave quadrature.

  14. High speed transient sampler

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing.

  15. High speed transient sampler

    DOEpatents

    McEwan, T.E.

    1995-11-28

    A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing. 17 figs.

  16. Quantum Gases in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Barmettler, Peter; Kollath, Corinna

    2015-09-01

    The experimental realization of correlated quantum phases with ultracold gases in optical lattices and their theoretical understanding has witnessed remarkable progress during the last decade. In this review we introduce basic concepts and tools to describe the many-body physics of quantum gases in optical lattices. This includes the derivation of effective lattice Hamiltonians from first principles and an overview of the emerging quantum phases. Additionally, state-of-the-art numerical tools to quantitatively treat bosons or fermions on different lattices are introduced.

  17. Optical Hybrid Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    Takeda, Shuntaro; Furusawa, Akira

    Historically, two complementary approaches to optical quantum information processing have been pursued: qubits and continuous-variables, each exploiting either particle or wave nature of light. However, both approaches have pros and cons. In recent years, there has been a significant progress in combining both approaches with a view to realizing hybrid protocols that overcome the current limitations. In this chapter, we first review the development of the two approaches with a special focus on quantum teleportation and its applications. We then introduce our recent research progress in realizing quantum teleportation by a hybrid scheme, and mention its future applications to universal and fault-tolerant quantum information processing.

  18. Light weight, high-speed, and self-powered wireless fiber optic sensor (WiFOS) structural health monitor system for avionics and aerospace environments

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan

    2014-09-01

    This paper describes recent progress towards the development of an innovative light weight, high-speed, and selfpowered wireless fiber optic sensor (WiFOS™) structural health monitor system suitable for the onboard and in-flight unattended detection, localization, and classification of load, fatigue, and structural damage in advanced composite materials commonly used in avionics and aerospace systems. The WiFOS™ system is based on ROI's advancements on monolithic photonic integrated circuit microchip technology, integrated with smart power management, on-board data processing, wireless data transmission optoelectronics, and self-power using energy harvesting tools such as solar, vibration, thermoelectric, and magneto-electric. The self-powered, wireless WiFOS™ system offers a versatile and powerful SHM tool to enhance the reliability and safety of avionics platforms, jet fighters, helicopters, commercial aircraft that use lightweight composite material structures, by providing comprehensive information about the structural integrity of the structure from a large number of locations. Immediate SHM applications are found in rotorcraft and aircraft, ships, submarines, and in next generation weapon systems, and in commercial oil and petrochemical, aerospace industries, civil structures, power utilities, portable medical devices, and biotechnology, homeland security and a wide spectrum of other applications.

  19. A high-density EEG study of differences between three high speeds of simulated forward motion from optic flow in adult participants

    PubMed Central

    Vilhelmsen, Kenneth; van der Weel, F. R. (Ruud); van der Meer, Audrey L. H.

    2015-01-01

    A high-density EEG study was conducted to investigate evoked and oscillatory brain activity in response to high speeds of simulated forward motion. Participants were shown an optic flow pattern consisting of a virtual road with moving poles at either side of it, simulating structured forward motion at different driving speeds (25, 50, and 75 km/h) with a static control condition between each motion condition. Significant differences in N2 latencies and peak amplitudes between the three speeds of visual motion were found in parietal channels of interest P3 and P4. As motion speed increased, peak latency increased while peak amplitude decreased which might indicate that higher driving speeds are perceived as more demanding resulting in longer latencies, and as fewer neurons in the motion sensitive areas of the adult brain appear to be attuned to such high visual speeds this could explain the observed inverse relationship between speed and amplitude. In addition, significant differences between alpha de-synchronizations for forward motion and alpha synchronizations in the static condition were found in the parietal midline (PM) source. It was suggested that the alpha de-synchronizations reflect an activated state related to the visual processing of simulated forward motion, whereas the alpha synchronizations in response to the static condition reflect a deactivated resting period. PMID:26578903

  20. The Repeatability Assessment of Three-Dimensional Capsule-Intraocular Lens Complex Measurements by Means of High-Speed Swept-Source Optical Coherence Tomography

    PubMed Central

    Chang, Pingjun; Li, Jin; Savini, Giacomo; Huang, Jinhai; Huang, Shenghai; Zhao, Yinying; Liao, Na; Lin, Lei; Yu, Xiaoyu; Zhao, Yun-e

    2015-01-01

    Purpose To rebuild the three-dimensional (3-D) model of the anterior segment by high-speed swept-source optical coherence tomography (SSOCT) and evaluate the repeatability of measurement for the parameters of capsule-intraocular lens (C-IOL) complex. Methods Twenty-two pseudophakic eyes from 22 patients were enrolled. Three continuous SSOCT measurements were performed in all eyes and the tomograms obtained were used for 3-D reconstruction. The output data were used to evaluate the measurement repeatability. The parameters included postoperative aqueous depth (PAD), the area and diameter of the anterior capsule opening (Area and D), IOL tilt (IOL-T), horizontal, vertical, and space decentration of the IOL, anterior capsule opening, and IOL-anterior capsule opening. Results PAD, IOL-T, Area, D, and all decentration measurements showed high repeatability. Repeated measure analysis showed there was no statistically significant difference among the three continuous measurements (all P > .05). Pearson correlation analysis showed high correlation between each pair of them (all r >0.90, P<0.001). ICCs were all more than 0.9 for all parameters. The 95% LoAs of all parameters were narrow for comparison of three measurements, which showed high repeatability for three measurements. Conclusion SSOCT is available to be a new method for the 3-D measurement of C-IOL complex after cataract surgery. This method presented high repeatability in measuring the parameters of the C-IOL complex. PMID:26600254

  1. A novel optical apparatus for the study of rolling contact wear/fatigue based on a high-speed camera and multiple-source laser illumination.

    PubMed

    Bodini, I; Sansoni, G; Lancini, M; Pasinetti, S; Docchio, F

    2016-08-01

    Rolling contact wear/fatigue tests on wheel/rail specimens are important to produce wheels and rails of new materials for improved lifetime and performance, which are able to operate in harsh environments and at high rolling speeds. This paper presents a novel non-invasive, all-optical system, based on a high-speed video camera and multiple laser illumination sources, which is able to continuously monitor the dynamics of the specimens used to test wheel and rail materials, in a laboratory test bench. 3D macro-topography and angular position of the specimen are simultaneously performed, together with the acquisition of surface micro-topography, at speeds up to 500 rpm, making use of a fast camera and image processing algorithms. Synthetic indexes for surface micro-topography classification are defined, the 3D macro-topography is measured with a standard uncertainty down to 0.019 mm, and the angular position is measured on a purposely developed analog encoder with a standard uncertainty of 2.9°. The very small camera exposure time enables to obtain blur-free images with excellent definition. The system will be described with the aid of end-cycle specimens, as well as of in-test specimens. PMID:27587125

  2. Two-colour high-speed asynchronous optical sampling based on offset-stabilized Yb:KYW and Ti:sapphire oscillators.

    PubMed

    Krauß, N; Schäfer, G; Flock, J; Kliebisch, O; Li, C; Barros, H G; Heinecke, D C; Dekorsy, T

    2015-07-13

    We present a high-speed asynchronous optical sampling system, based on two different Kerr-lens mode-locked lasers with a GHz repetition rate: An Yb:KYW oscillator and a Ti:sapphire oscillator are synchronized in a master-slave configuration at a repetition rate offset of a few kHz. This system enables two-colour pump-probe measurements with resulting noise floors below 10⁻⁶ at a data aquisition time of 5 seconds. The measured temporal resolution within the 1 ns time window is below 350 fs, including a timing jitter of less than 50 fs. The system is applied to investigate zone-folded coherent acoustic phonons in two different semiconductor superlattices in transmission geometry at a probe wavelength far below the bandgap of the superlattice constituents. The lifetime of the phonon modes with a zero wave vector and frequencies in the range from 100 GHz to 500 GHz are measured at room temperature and compared with previous work. PMID:26191885

  3. A novel optical apparatus for the study of rolling contact wear/fatigue based on a high-speed camera and multiple-source laser illumination

    NASA Astrophysics Data System (ADS)

    Bodini, I.; Sansoni, G.; Lancini, M.; Pasinetti, S.; Docchio, F.

    2016-08-01

    Rolling contact wear/fatigue tests on wheel/rail specimens are important to produce wheels and rails of new materials for improved lifetime and performance, which are able to operate in harsh environments and at high rolling speeds. This paper presents a novel non-invasive, all-optical system, based on a high-speed video camera and multiple laser illumination sources, which is able to continuously monitor the dynamics of the specimens used to test wheel and rail materials, in a laboratory test bench. 3D macro-topography and angular position of the specimen are simultaneously performed, together with the acquisition of surface micro-topography, at speeds up to 500 rpm, making use of a fast camera and image processing algorithms. Synthetic indexes for surface micro-topography classification are defined, the 3D macro-topography is measured with a standard uncertainty down to 0.019 mm, and the angular position is measured on a purposely developed analog encoder with a standard uncertainty of 2.9°. The very small camera exposure time enables to obtain blur-free images with excellent definition. The system will be described with the aid of end-cycle specimens, as well as of in-test specimens.

  4. High speed civil transport

    NASA Technical Reports Server (NTRS)

    Bogardus, Scott; Loper, Brent; Nauman, Chris; Page, Jeff; Parris, Rusty; Steinbach, Greg

    1990-01-01

    The design process of the High Speed Civil Transport (HSCT) combines existing technology with the expectation of future technology to create a Mach 3.0 transport. The HSCT was designed to have a range in excess of 6000 nautical miles and carry up to 300 passengers. This range will allow the HSCT to service the economically expanding Pacific Basin region. Effort was made in the design to enable the aircraft to use conventional airports with standard 12,000 foot runways. With a takeoff thrust of 250,000 pounds, the four supersonic through-flow engines will accelerate the HSCT to a cruise speed of Mach 3.0. The 679,000 pound (at takeoff) HSCT is designed to cruise at an altitude of 70,000 feet, flying above most atmospheric disturbances.

  5. HIGH SPEED CAMERA

    DOEpatents

    Rogers, B.T. Jr.; Davis, W.C.

    1957-12-17

    This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.

  6. Neutron Matter Wave Quantum Optics

    NASA Astrophysics Data System (ADS)

    Rauch, Helmut

    2012-06-01

    Neutron matter-wave optics provides the basis for new quantum experiments and a step towards applications of quantum phenomena. Most experiments have been performed with a perfect crystal neutron interferometer where widely separated coherent beams can be manipulated individually. Various geometric phases have been measured and their robustness against fluctuation effects has been proven, which may become a useful property for advanced quantum communication. Quantum contextuality for single particle systems shows that quantum correlations are to some extent more demanding than classical ones. In this case entanglement between external and internal degrees of freedom offers new insights into basic laws of quantum physics. Non-contextuality hidden variable theories can be rejected by arguments based on the Kochen-Specker theorem.

  7. High-speed phosphor thermometry.

    PubMed

    Fuhrmann, N; Baum, E; Brübach, J; Dreizler, A

    2011-10-01

    Phosphor thermometry is a semi-invasive surface temperature measurement technique utilising the luminescence properties of doped ceramic materials. Typically, these phosphor materials are coated onto the object of interest and are excited by a short UV laser pulse. Up to now, primarily Q-switched laser systems with repetition rates of 10 Hz were employed for excitation. Accordingly, this diagnostic tool was not applicable to resolve correlated temperature transients at time scales shorter than 100 ms. This contribution reports on the first realisation of a high-speed phosphor thermometry system employing a highly repetitive laser in the kHz regime and a fast decaying phosphor. A suitable material was characterised regarding its temperature lifetime characteristic and its measurement precision. Additionally, the influence of laser power on the phosphor coating was investigated in terms of heating effects. A demonstration of this high-speed technique has been conducted inside the thermally highly transient system of an optically accessible internal combustion engine. Temperatures have been measured with a repetition rate of 6 kHz corresponding to one sample per crank angle degree at 1000 rpm. PMID:22047319

  8. High-speed, efficient metal - semiconductor - metal photodetectors

    SciTech Connect

    Collin, St; Pardo, F; Bardou, N; Pelouard, J.-L.; Averin, S V

    2010-08-03

    Design principles and the fabrication technique of highly efficient, high-speed photodetectors based on MSM nanostructures are developed. To efficiently confine light in the region of the strong field as well as to decrease light losses due to reflection from the diode contacts, use is made of a nanoscale interdigital diffraction grating and a multilayer Bragg grating. Measurements of the reflection coefficients and the quantum efficiency for a multilayer structure are in good agreement with theoretical estimates. A record-high quantum efficiency (QE = 46 %) is obtained for high speed MSM photodetectors. The detector has a high spectral selectivity ({Delta}{lambda}{sub 1/2} = 17 nm) at a wavelength of 800 nm. Taking into account the diode capacitance and the drift time of photogenerated carriers, the performance of the detectors under study is {approx} 500 GHz. The low level of the dark current density in the structures under study (j={sup 1} pA {mu}m{sup -2}) makes it possible to realise on their basis highly sensitive, high-speed selective detectors of optical radiation.

  9. High-speed, bi-directional dual-core fiber transmission system for high-density, short-reach optical interconnects

    NASA Astrophysics Data System (ADS)

    Geng, Ying; Li, Shenping; Li, Ming-Jun; Sutton, Clifford G.; McCollum, Robert L.; McClure, Randy L.; Koklyushkin, Alexander V.; Matthews, Karen I.; Luther, James P.; Butler, Douglas L.

    2015-03-01

    A complete single mode dual-core fiber system for short-reach optical interconnects is fabricated and tested for high-speed data transmission. It includes dual-core fibers capable of bi-directional data transmission, dual-core simplex LC connectors, and fan-outs. The transmission system offers simplified bi-directional traffic engineering with integrated bidirectional transceivers and compact system design, utilizing simplex dual-core LC connectors that use half the space while increasing the bandwidth density by a factor of two. The fiber has two cores that are compatible with single mode fiber and conforms to the industry standard outer diameter of 125 μm. This reduces operational complexity by reducing the size and number of fibers, cables and connectors. Measured OTDR loss for both cores was 0.34 dB/km at 1310 nm and 0.19 dB/km at 1550 nm. Crosstalk for a piece of 5.8 km long dual-core fiber was measured to be below -75 dB at 1310 nm, and below -40 dB at 1550 nm. Both free-space optics fan-outs and tapered-fiber-coupler based MCF fan-outs were evaluated for the transmission system. Error-free and penalty-free 25 Gb/s bi-directional transmission performance was demonstrated for three different fiber lengths, 200 m, 2 km and 10 km, using the complete all-fiber-based system including connectors and fan-outs. This single mode, dual-core fiber transmission system adds complementary value to systems where additional increases in bandwidth density can come from wavelength division multiplexing and multiple bits per symbol.

  10. Prospective applications of optical quantum memories

    NASA Astrophysics Data System (ADS)

    Bussières, Félix; Sangouard, Nicolas; Afzelius, Mikael; de Riedmatten, Hugues; Simon, Christoph; Tittel, Wolfgang

    2013-10-01

    An optical quantum memory can be broadly defined as a system capable of storing a quantum state through interaction with light at optical frequencies. During the last decade, intense research was devoted to their development, mostly with the aim of fulfilling the requirements of their first two applications, namely quantum repeaters and linear-optical quantum computation. A better understanding of those requirements then motivated several different experimental approaches. Along the way, other exciting applications emerged, such as as quantum metrology, single-photon detection, tests of the foundations of quantum physics, device-independent quantum information processing and nonlinear processing of quantum information. Here we review several prospective applications of optical quantum memories, as well as recent experimental achievements pertaining to these applications. This review highlights that optical quantum memories have become essential for the development of optical quantum information processing.

  11. III-V alloy heterostructure high speed avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Law, H. D.; Nakano, K.; Tomasetta, L. R.

    1979-01-01

    Heterostructure avalanche photodiodes have been successfully fabricated in several III-V alloy systems: GaAlAs/GaAs, GaAlSb/GaAlSb, and InGaAsP/InP. These diodes cover optical wavelengths from 0.4 to 1.8 micron. Early stages of development show very encouraging results. High speed response of less than 35 ps and high quantum efficiency more than 95 percent have been obtained. The dark currents and the excess avalanche noise are also dicussed. A direct comparison of GaAlSb, GaAlAsSb, and In GaAsP avalanche photodiodes is given.

  12. High speed packet switching

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document constitutes the final report prepared by Proteon, Inc. of Westborough, Massachusetts under contract NAS 5-30629 entitled High-Speed Packet Switching (SBIR 87-1, Phase 2) prepared for NASA-Greenbelt, Maryland. The primary goal of this research project is to use the results of the SBIR Phase 1 effort to develop a sound, expandable hardware and software router architecture capable of forwarding 25,000 packets per second through the router and passing 300 megabits per second on the router's internal busses. The work being delivered under this contract received its funding from three different sources: the SNIPE/RIG contract (Contract Number F30602-89-C-0014, CDRL Sequence Number A002), the SBIR contract, and Proteon. The SNIPE/RIG and SBIR contracts had many overlapping requirements, which allowed the research done under SNIPE/RIG to be applied to SBIR. Proteon funded all of the work to develop new router interfaces other than FDDI, in addition to funding the productization of the router itself. The router being delivered under SBIR will be a fully product-quality machine. The work done during this contract produced many significant findings and results, summarized here and explained in detail in later sections of this report. The SNIPE/RIG contract was completed. That contract had many overlapping requirements with the SBIR contract, and resulted in the successful demonstration and delivery of a high speed router. The development that took place during the SNIPE/RIG contract produced findings that included the choice of processor and an understanding of the issues surrounding inter processor communications in a multiprocessor environment. Many significant speed enhancements to the router software were made during that time. Under the SBIR contract (and with help from Proteon-funded work), it was found that a single processor router achieved a throughput significantly higher than originally anticipated. For this reason, a single processor router was

  13. Congestion control of high-speed networks

    NASA Astrophysics Data System (ADS)

    1993-06-01

    We report on four areas of activity in the past six months. These areas include the following: (1) work on the control of integrated video and image traffic, both at the access to a network and within a high-speed network; (2) more general/game theoretic models for flow control in networks; (3) work on fault management for high-speed heterogeneous networks to improve survivability; and (4) work on all-optical (lightwave) networks of the future, designed to take advantage of the enormous bandwidth capability available at optical frequencies.

  14. High speed laser tomography system.

    PubMed

    Samsonov, D; Elsaesser, A; Edwards, A; Thomas, H M; Morfill, G E

    2008-03-01

    A high speed laser tomography system was developed capable of acquiring three-dimensional (3D) images of optically thin clouds of moving micron-sized particles. It operates by parallel-shifting an illuminating laser sheet with a pair of galvanometer-driven mirrors and synchronously recording two-dimensional (2D) images of thin slices of the imaged volume. The maximum scanning speed achieved was 120,000 slices/s, sequences of 24 volume scans (up to 256 slices each) have been obtained. The 2D slices were stacked to form 3D images of the volume, then the positions of the particles were identified and followed in the consecutive scans. The system was used to image a complex plasma with particles moving at speeds up to cm/s. PMID:18377040

  15. High speed civil transport

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This report discusses the design and marketability of a next generation supersonic transport. Apogee Aeronautics Corporation has designated its High Speed Civil Transport (HSCT): Supercruiser HS-8. Since the beginning of the Concorde era, the general consensus has been that the proper time for the introduction of a next generation Supersonic Transport (SST) would depend upon the technical advances made in the areas of propulsion (reduction in emissions) and material composites (stronger, lighter materials). It is believed by many in the aerospace industry that these beforementioned technical advances lie on the horizon. With this being the case, this is the proper time to begin the design phase for the next generation HSCT. The design objective for a HSCT was to develop an aircraft that would be capable of transporting at least 250 passengers with baggage at a distance of 5500 nmi. The supersonic Mach number is currently unspecified. In addition, the design had to be marketable, cost effective, and certifiable. To achieve this goal, technical advances in the current SST's must be made, especially in the areas of aerodynamics and propulsion. As a result of these required aerodynamic advances, several different supersonic design concepts were reviewed.

  16. Design of high-speed optical transmission module with an integrated Ti:Er:LiNbO3 waveguide laser/ LiNbO3 electro-optic modulator

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Chen, Shufen; Fu, Li; Fang, Wei; Lu, Junjun

    2005-01-01

    A high bit rate more than 10Gbit/s optical pulse generation device is the key to achieving high-speed and broadband optical fiber communication network system .Now, we propose a novel high-speed optical transmission module(TM) consisting of a Ti:Er:LiNbO3 waveguide laser and a Mach-Zehnder-type encoding modulator on the same Er-doped substrate. According to the standard of ITU-T, we design the 10Gbit/ s transmission module at 1.53μm on the Z cut Y propagation LiNbO3 slice. A dynamic model and the corresponding numerical code are used to analyze the waveguide laser while the electrooptic effect to design the modulator. Meanwhile, the working principle, key technology, typical characteristic parameters of the module are given. The transmission module has a high extinction ratio and a low driving voltage, which supplies the efficient, miniaturized light source for wavelength division multiplexing(WDM) system. In additional, the relation of the laser gain with the cavity parameter, as well as the relation of the bandwidth of the electrooptic modulator with some key factors are discussed .The designed module structure is simulated by BPM software and HFSS software.

  17. High-speed low-power photonic transistor devices based on optically-controlled gain or absorption to affect optical interference.

    PubMed

    Huang, Yingyan; Ho, Seng-Tiong

    2008-10-13

    We show that a photonic transistor device can be realized via the manipulation of optical interference by optically controlled gain or absorption in novel ways, resulting in efficient transistor signal gain and switching action. Exemplary devices illustrate two complementary device types with high operating speed, microm size, microW switching power, and switching gain. They can act in tandem to provide a wide variety of operations including wavelength conversion, pulse regeneration, and logical operations. These devices could have a Transistor Figure-of-Merits >10(5) times higher than current chi((3)) approaches and are highly attractive. PMID:18852789

  18. Fabrication and integration of micro/nano-scale optical wire circuit arrays and devices for high-speed and compact optical printed circuit board (O-PCB) and VLSI photonic applications

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.; Kang, J. K.; Choi, Y. W.; Song, S. H.

    2005-09-01

    We report on the design, fabrication and integration of micro/nano-scale optical wire circuit arrays and devices for high-speed, compact, light-weight, low power optical printed circuit boards (O-PCBs) and VLSI photonic applications. The optical wires are formed in the form of waveguides by thermal embossing and ultraviolet (UV) radiated embossing of polymer materials. The photonic devices include vertically coupled surface emitting laser (VCSEL) microlasers, microlenses, 45-degree reflection couplers, directional couplers, arrayed waveguide grating structures, multimode interference (MMI) devices and photodetectors. These devices are optically interconnected and integrated for O-PCB assembly and VLSI micro/nano-photonics. The O-PCBs are to perform the functions of transporting, switching, routing and distributing optical signals on flat modular boards or substrates. We report on the result of the optical transmission performances of these assembled O-PCBs. For the design, fabrication, and VLSI integration of nano-scale photonic devices, we used photonic crystal structures and plasmonic metallic waveguide structures. We examined the bandwidth, power dissipation, thermal stability, weight, and the miniaturization and density of optical wires and the O-PCB module. Characteristics of these devices are also described.

  19. Novel multiple quantum well modulators for optical interconnects

    NASA Astrophysics Data System (ADS)

    Krol, Mark F.; Boncek, Raymond K.; Hayduk, Michael J.; Ten, Sergey Y.; Ohtsuki, Tomoko; McGinnis, Brian P.; Khitrova, Galina; Gibbs, Hyatt M.; Peyghambarian, Nasser

    1995-02-01

    Novel multiple quantum well (MQW) optical modulators for use in time-division optical fiber interconnects are presented. A bit-error-rate analysis of a time-division receiver indicates high contrast ratio optical gates are required for high-speed interconnect applications. A high contrast MQW gate, consisting of a nonlinear asymmetric reflection modulator, suitable for use in optical time-division systems is presented which utilizes the GaAlInAs alloy lattice- matched to InP. This system is ideal for optical interconnect applications since MQW materials and devices are easily designed for operation in the optical fiber transmission windows of 1.3 and 1.5 micrometers . Utilizing asymmetric double quantum wells (ADQWs) as the nonlinear spacer for the asymmetric reflection modulator also is discussed. The recovery time of ADQWs can be tailored for interconnect applications by choosing the optimum width of the tunnel barrier. Electro-optic modulators which utilize real space transfer of electrons in ADQWs also are presented.

  20. High Speed Digital Camera Technology Review

    NASA Technical Reports Server (NTRS)

    Clements, Sandra D.

    2009-01-01

    A High Speed Digital Camera Technology Review (HSD Review) is being conducted to evaluate the state-of-the-shelf in this rapidly progressing industry. Five HSD cameras supplied by four camera manufacturers participated in a Field Test during the Space Shuttle Discovery STS-128 launch. Each camera was also subjected to Bench Tests in the ASRC Imaging Development Laboratory. Evaluation of the data from the Field and Bench Tests is underway. Representatives from the imaging communities at NASA / KSC and the Optical Systems Group are participating as reviewers. A High Speed Digital Video Camera Draft Specification was updated to address Shuttle engineering imagery requirements based on findings from this HSD Review. This draft specification will serve as the template for a High Speed Digital Video Camera Specification to be developed for the wider OSG imaging community under OSG Task OS-33.

  1. Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire.

    PubMed

    Mulvad, Hans Christian Hansen; Palushani, Evarist; Hu, Hao; Ji, Hua; Lillieholm, Mads; Galili, Michael; Clausen, Anders T; Pu, Minhao; Yvind, Kresten; Hvam, Jørn M; Jeppesen, Palle; Oxenløwe, Leif K

    2011-12-12

    We demonstrate conversion from 64 × 10 Gbit/s optical time-division multiplexed (OTDM) data to dense wavelength division multiplexed (DWDM) data with 25 GHz spacing. The conversion is achieved by time-domain optical Fourier transformation (OFT) based on four-wave mixing (FWM) in a 3.6 mm long silicon nanowire. A total of 40 out of 64 tributaries of a 64 × 10 Gbit/s OTDM-DPSK data signal are simultaneously converted with a bit-error rate (BER) performance below the 2 × 10(-3) FEC limit. Using a 50 m long highly nonlinear fiber (HNLF) for higher FWM conversion efficiency, 43 tributaries of a 64 × 10 Gbit/s OTDM-OOK data signal are converted with error-free performance (BER<10(-9)). PMID:22274110

  2. High-speed pressure clamp.

    PubMed

    Besch, Stephen R; Suchyna, Thomas; Sachs, Frederick

    2002-10-01

    We built a high-speed, pneumatic pressure clamp to stimulate patch-clamped membranes mechanically. The key control element is a newly designed differential valve that uses a single, nickel-plated piezoelectric bending element to control both pressure and vacuum. To minimize response time, the valve body was designed with minimum dead volume. The result is improved response time and stability with a threefold decrease in actuation latency. Tight valve clearances minimize the steady-state air flow, permitting us to use small resonant-piston pumps to supply pressure and vacuum. To protect the valve from water contamination in the event of a broken pipette, an optical sensor detects water entering the valve and increases pressure rapidly to clear the system. The open-loop time constant for pressure is 2.5 ms for a 100-mmHg step, and the closed-loop settling time is 500-600 micros. Valve actuation latency is 120 micros. The system performance is illustrated for mechanically induced changes in patch capacitance. PMID:12397401

  3. High-Speed Operation of Interband Cascade Lasers

    NASA Technical Reports Server (NTRS)

    Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Wright, Malcom W.; Farr, William H.; Yang, Rui Q.; Liu, H. C.

    2010-01-01

    Optical sources operating in the atmospheric window of 3-5 microns are of particular interest for the development of free-space optical communication link. It is more advantageous to operate the free-space optical communication link in 3-5-microns atmospheric transmission window than at the telecom wavelength of 1.5 m due to lower optical scattering, scintillation, and background radiation. However, the realization of optical communications at the longer wavelength has encountered significant difficulties due to lack of adequate optical sources and detectors operating in the desirable wavelength regions. Interband Cascade (IC) lasers are novel semiconductor lasers that have a great potential for the realization of high-power, room-temperature optical sources in the 3-5-microns wavelength region, yet no experimental work, until this one, was done on high-speed direct modulation of IC lasers. Here, highspeed interband cascade laser, operating at wavelength 3.0 m, has been developed and the first direct measurement of the laser modulation bandwidth has been performed using a unique, highspeed quantum well infrared photodetector (QWIP). The developed laser has modulation bandwidth exceeding 3 GHz. This constitutes a significant increase of the IC laser modulation bandwidth over currently existing devices. This result has demonstrated suitability of IC lasers as a mid-IR light source for multi-GHz free-space optical communications links

  4. Cascaded Amplifying Quantum Optical Taps: A Robust Noiseless Optical Bus

    SciTech Connect

    Bencheikh, K.; Simonneau, C.; Levenson, J.A.

    1997-01-01

    Two identical amplifying quantum optical taps, based on noiseless optical parametric amplification and twin beam quantum correlation, have been implemented in a series configuration and experimentally investigated. The result is an optical bus which we have shown to be robust with respect to downstream losses. {copyright} {ital 1996} {ital The American Physical Society}

  5. Compact component for integrated quantum optic processing

    PubMed Central

    Sahu, Partha Pratim

    2015-01-01

    Quantum interference is indispensable to derive integrated quantum optic technologies (1–2). For further progress in large scale integration of quantum optic circuit, we have introduced first time two mode interference (TMI) coupler as an ultra compact component. The quantum interference varying with coupling length corresponding to the coupling ratio is studied and the larger HOM dip with peak visibility ~0.963 ± 0.009 is found at half coupling length of TMI coupler. Our results also demonstrate complex quantum interference with high fabrication tolerance and quantum visibility in TMI coupler. PMID:26584759

  6. HIGH SPEED KERR CELL FRAMING CAMERA

    DOEpatents

    Goss, W.C.; Gilley, L.F.

    1964-01-01

    The present invention relates to a high speed camera utilizing a Kerr cell shutter and a novel optical delay system having no moving parts. The camera can selectively photograph at least 6 frames within 9 x 10/sup -8/ seconds during any such time interval of an occurring event. The invention utilizes particularly an optical system which views and transmits 6 images of an event to a multi-channeled optical delay relay system. The delay relay system has optical paths of successively increased length in whole multiples of the first channel optical path length, into which optical paths the 6 images are transmitted. The successively delayed images are accepted from the exit of the delay relay system by an optical image focusing means, which in turn directs the images into a Kerr cell shutter disposed to intercept the image paths. A camera is disposed to simultaneously view and record the 6 images during a single exposure of the Kerr cell shutter. (AEC)

  7. Quantum reading of unitary optical devices

    SciTech Connect

    Dall'Arno, Michele; Bisio, Alessandro; D'Ariano, Giacomo Mauro

    2014-12-04

    We address the problem of quantum reading of optical memories, namely the retrieving of classical information stored in the optical properties of a media with minimum energy. We present optimal strategies for ambiguous and unambiguous quantum reading of unitary optical memories, namely when one's task is to minimize the probability of errors in the retrieved information and when perfect retrieving of information is achieved probabilistically, respectively. A comparison of the optimal strategy with coherent probes and homodyne detection shows that the former saves orders of magnitude of energy when achieving the same performances. Experimental proposals for quantum reading which are feasible with present quantum optical technology are reported.

  8. Ultracold quantum gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Bloch, Immanuel

    2005-10-01

    Artificial crystals of light, consisting of hundreds of thousands of optical microtraps, are routinely created by interfering optical laser beams. These so-called optical lattices act as versatile potential landscapes to trap ultracold quantum gases of bosons and fermions. They form powerful model systems of quantum many-body systems in periodic potentials for probing nonlinear wave dynamics and strongly correlated quantum phases, building fundamental quantum gates or observing Fermi surfaces in periodic potentials. Optical lattices represent a fast-paced modern and interdisciplinary field of research.

  9. Quantum vortices in optical lattices

    SciTech Connect

    Vignolo, P.; Fazio, R.; Tosi, M. P.

    2007-08-15

    A vortex in a superfluid gas inside an optical lattice can behave as a massive particle moving in a periodic potential and exhibiting quantum properties. In this paper we discuss these properties and show that the excitation of vortex dynamics in a two-dimensional lattice can lead to striking measurable changes in its dynamic response. It would be possible by means of Bragg spectroscopy to carry out the first direct measurement of the effective vortex mass. In addition, the experiments proposed here provide an alternative way to study the pinning to the underlying lattice and the dissipative damping.

  10. Electrical and optical control of optical gain in a coupled triple quantum dot system operating in telecommunication window

    NASA Astrophysics Data System (ADS)

    Mehmannavaz, Mohammad Reza; Sattari, Hamed

    2014-12-01

    We investigate the light amplification and gain without inversion (GWI) in triple quantum dot molecules in both steady-state and transient state. We demonstrate that the light amplification and GWI of a light pulse can be controlled through the rates of the incoherent pumping and tunneling between electronic levels. The required switching times for switching of a light pulse from absorption to gain and vice versa is then discussed. We obtain switching time at about 40 ps, which resembles a high-speed optical switch in nanostructure. The proposed approach in QDMs may provide some new possibilities for technological applications in optoelectronics and solid-state quantum information science.

  11. The Holy Grail of quantum optical communication

    SciTech Connect

    García-Patrón, Raúl; Navarrete-Benlloch, Carlos; Lloyd, Seth; Shapiro, Jeffrey H.; Cerf, Nicolas J.

    2014-12-04

    Optical parametric amplifiers together with phase-shifters and beamsplitters have certainly been the most studied objects in the field of quantum optics. Despite such an intensive study, optical parametric amplifiers still keep secrets from us. We will show how they hold the answer to one of the oldest problems in quantum communication theory, namely the calculation of the optimal communication rate of optical channels.

  12. The Holy Grail of quantum optical communication

    NASA Astrophysics Data System (ADS)

    García-Patrón, Raúl; Navarrete-Benlloch, Carlos; Lloyd, Seth; Shapiro, Jeffrey H.; Cerf, Nicolas J.

    2014-12-01

    Optical parametric amplifiers together with phase-shifters and beamsplitters have certainly been the most studied objects in the field of quantum optics. Despite such an intensive study, optical parametric amplifiers still keep secrets from us. We will show how they hold the answer to one of the oldest problems in quantum communication theory, namely the calculation of the optimal communication rate of optical channels.

  13. Optical Quantum Entanglement in Astrophysics

    NASA Astrophysics Data System (ADS)

    Gómez, J.; Peimbert, A.; Echevarría, J.

    2009-10-01

    The theories of quantum entanglement between two distant particles, which clearly confirm the non-local nature of Quantum Mechanics, are applied to naturally produced particles in astrophysical objects. We study the production and reception of the cases of optical quantum entanglement most feasible to be observed: the two-photon spontaneous transition of the hydrogen 2 ^{2}S_{1/2} metastable level, which is known to be one of the components of the continuous spectra of ionized regions. We obtain the two-photon emission rate for four astrophysical objects: the Orion Nebula, two nearby planetary nebulae IC 2149 and NGC 7293, and the solar corona. The production of entangled pairs per second is 5.80×10^48, 9.39×10^45, 9.77×10^44, and 1.46×10^16 respectively. The distribution of the propagation directions of both emitted photons does not vanish at any angle; therefore it is possible to observe the entangled pair at an angles θ ≈ 0°. Because the number of two-photon coincidences goes as the fourth power of the ratio between the detector size and the distance from the astrophysical object, coincidences are scarce; for its detection we require receivers much larger than those currently available.

  14. Experimental Quantum Optics with Photons

    NASA Astrophysics Data System (ADS)

    Wu, Ling-An

    2005-10-01

    Our group is engaged primarily in experimental quantum optics and related research involving single photon detection that may have future applications. There are six graduate students involved, of whom three are women. We have recently completed the first successful demonstration of correlated two-photon imaging and sub-wavelength interference with true thermal light from a hollow cathode lamp. The object was a pair of pinholes, and the corresponding thin lens equation was well satisfied. Although the visibility is substantially lower than in the case of entangled photons, it is conceivable that if the background could be removed by some means (e.g., digitally), there could be many applications for correlated imaging with thermal light. We have also built a quantum key distribution system based on two polarization beam splitters that cancel out the phase modulator's polarization dependence. A high key generation rate has been obtained for the first time at 1310 nm transmitted over a 25-km-long fiber, with a fringe visibility of 99.4%. A sifted key rate of about 0.6 kbits/s and quantum bit error rate of about 0.5% have been obtained.

  15. High-Speed Electrochemical Imaging.

    PubMed

    Momotenko, Dmitry; Byers, Joshua C; McKelvey, Kim; Kang, Minkyung; Unwin, Patrick R

    2015-09-22

    The design, development, and application of high-speed scanning electrochemical probe microscopy is reported. The approach allows the acquisition of a series of high-resolution images (typically 1000 pixels μm(-2)) at rates approaching 4 seconds per frame, while collecting up to 8000 image pixels per second, about 1000 times faster than typical imaging speeds used up to now. The focus is on scanning electrochemical cell microscopy (SECCM), but the principles and practicalities are applicable to many electrochemical imaging methods. The versatility of the high-speed scan concept is demonstrated at a variety of substrates, including imaging the electroactivity of a patterned self-assembled monolayer on gold, visualization of chemical reactions occurring at single wall carbon nanotubes, and probing nanoscale electrocatalysts for water splitting. These studies provide movies of spatial variations of electrochemical fluxes as a function of potential and a platform for the further development of high speed scanning with other electrochemical imaging techniques. PMID:26267455

  16. Universal Linear Optics: A Testbed for Optical Quantum Logic

    NASA Astrophysics Data System (ADS)

    Sparrow, Chris; Carolan, Jacques; Harrold, Christopher; Russell, Nicholas; Marshall, Graham; Silverstone, Joshua; Thompson, Mark; Matthews, Jonathan; O'Brien, Jeremy; Laing, Anthony; Martin-Lopez, Enrique; Shadbolt, Peter; Matsuda, Nobuyuki; Oguma, Manabu; Itoh, Mikitaka; Hashimoto, Toshikazu

    Linear optics is a promising platform for scalable quantum information processing. We demonstrate a single reprogrammable optical circuit that is sufficient to implement all possible linear optical protocols up the size of the circuit [Carolan et al., Science, 349, (2015)]. The system is an ideal testbed for rapidly prototyping new linear optical quantum gates, and testing known protocols in experimentally realistic scenarios. We use the device to perform a series of postselected and heralded quantum logic gates including a new scheme for heralded bell state generation, a key primitive in measurement-based linear optical quantum computation. We propose and demonstrate techniques for efficiently and accurately characterising and verifying these gates' operation. The ability to rapidly reprogram linear optical devices promises to replace a multitude of existing and future prototype systems, pointing the way to applications across quantum technologies.

  17. SEAL FOR HIGH SPEED CENTRIFUGE

    DOEpatents

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  18. Optical Fiber Sensing Using Quantum Dots

    PubMed Central

    Jorge, Pedro; Martins, Manuel António; Trindade, Tito; Santos, José Luís; Farahi, Faramarz

    2007-01-01

    Recent advances in the application of semiconductor nanocrystals, or quantum dots, as biochemical sensors are reviewed. Quantum dots have unique optical properties that make them promising alternatives to traditional dyes in many luminescence based bioanalytical techniques. An overview of the more relevant progresses in the application of quantum dots as biochemical probes is addressed. Special focus will be given to configurations where the sensing dots are incorporated in solid membranes and immobilized in optical fibers or planar waveguide platforms.

  19. The High Speed Photometer for the Space Telescope

    NASA Technical Reports Server (NTRS)

    Bless, R. C.

    1982-01-01

    An overview of the high speed photometer (HSP), its optics and detectors, its electronics, its mechanical structure, and some observational considerations are presented. The capabilities and limitations of the HSP are outlined.

  20. High-speed broadband tunable lasers

    NASA Astrophysics Data System (ADS)

    Adams, Laura E.; Nykolak, Gerald; Bethea, Clyde G.; Tanbun-Ek, Tawee; People, Roosevelt; Sergent, A. M.; Sciortino, Paul F., Jr.; Fullowan, Thomas R.

    1997-12-01

    New enabling technologies are needed for optical communication systems to accommodate rapidly growing traffic demands. Wavelength conversion and high-speed optical packet switching/routing will be key technology components for realizing more flexible and efficient optical networks. Lasers capable of wide-band, high-speed wavelength tuning will be essential to support these advanced functions. Also, many applications will require high launch powers in order to access an increasing number of users, nodes, or base stations. Hence, laser transmitters capable of suppressing stimulated Brillouin scattering (SBS) would be highly desirable. We have developed an ultrafast, broadband tunable laser, based on an electroabsorption modulator laser (EML), which exhibits wavelength switching speeds as fast as 56 ps. Here, we report system performance results on wavelength conversion high-speed optical packet switching, and SBS suppression using this device. We have tested multiple wavelength conversion sequences and demonstrated penalty-free transmission through two cascaded wavelength conversion stages including 200 km of standard non-DS fiber. When used to perform packet switching at 2.5 Gb/s, the tunable laser allows switching between optical packets on 4 wavelength channels in less than 1 bit period, thereby requiring no significant guardband. The modulated data packets have been transmitted through 200 km of non-DSF and yield open eye diagrams. The tunable laser has also been used to perform SBS suppression. We have measured SBS thresholds of approximately 25 dBm on 4 separate WDM channels. The required modulation signal is very small, 95 mVpp, and the residual AM is only approximately 1%.

  1. High speed multiwire photon camera

    NASA Technical Reports Server (NTRS)

    Lacy, Jeffrey L. (Inventor)

    1991-01-01

    An improved multiwire proportional counter camera having particular utility in the field of clinical nuclear medicine imaging. The detector utilizes direct coupled, low impedance, high speed delay lines, the segments of which are capacitor-inductor networks. A pile-up rejection test is provided to reject confused events otherwise caused by multiple ionization events occuring during the readout window.

  2. High speed multiwire photon camera

    NASA Technical Reports Server (NTRS)

    Lacy, Jeffrey L. (Inventor)

    1989-01-01

    An improved multiwire proportional counter camera having particular utility in the field of clinical nuclear medicine imaging. The detector utilizes direct coupled, low impedance, high speed delay lines, the segments of which are capacitor-inductor networks. A pile-up rejection test is provided to reject confused events otherwise caused by multiple ionization events occurring during the readout window.

  3. Quantum correlations among optical and vibrational quanta

    NASA Astrophysics Data System (ADS)

    Carlig, Sergiu; Macovei, Mihai A.

    2014-05-01

    We investigate the feasibility of correlating an optical cavity field and a vibrational phonon mode. A laser pumped quantum dot fixed on a nanomechanical resonator beam interacts as a whole with the optical resonator mode. When the quantum dot variables are faster than the optical and phonon ones, we obtain a final master equation describing the involved modes only. Increasing the temperature, which directly affects the vibrational degrees of freedom, one can as well influence the cavity photon intensity, i.e., the optical and phonon modes are correlated. Furthermore, the corresponding Cauchy-Schwarz inequality is violated demonstrating the quantum nature of those correlations.

  4. A quantum optical firewall based on simple quantum devices

    NASA Astrophysics Data System (ADS)

    Amellal, H.; Meslouhi, A.; Hassouni, Y.; El Baz, M.

    2015-07-01

    In order to enhance the transmission security in quantum communications via coherent states, we propose a quantum optical firewall device to protect a quantum cryptosystem against eavesdropping through optical attack strategies. Similar to the classical model of the firewall, the proposed device gives legitimate users the possibility of filtering, controlling (input/output states) and making a decision (access or deny) concerning the traveling states. To prove the security and efficiency of the suggested optical firewall, we analyze its performances against the family of intercept and resend attacks, especially against one of the most prominent attack schemes known as "Faked State Attack."

  5. Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for thousand and original band optical communication

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Matsumoto, Atsushi; Kawanishi, Tetsuya

    2016-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed with T-band (1.0 µm waveband) and O-band (1.3 µm waveband) QD optical gain materials for Gbps-order, high-speed optical data generation. The insertion loss due to coupling between the device and the optical fiber was effectively compensated for by the SOA section. It was also confirmed that the monolithic QD-OGM/SOA device enabled >4.8 Gbps optical data generation with a clear eye opening in the T-band. Furthermore, we successfully demonstrated error-free 4.8 Gbps optical data transmissions in each of the six wavelength channels over a 10-km-long photonic crystal fiber using the monolithic QD-OGM/SOA device in multiple O-band wavelength channels, which were generated by the single QD gain chip. These results suggest that the monolithic QD-OGM/SOA device will be advantageous in ultra-broadband optical frequency systems that utilize the T+O-band for short- and medium-range optical communications.

  6. High speed data transmission for the SSC solenoidal detector

    SciTech Connect

    Leskovar, B.

    1991-04-24

    High speed data transmission using fiber optics for the Superconducting Super Collider solenoidal detector has been studied. The solenoidal detector system will consist of nine subsystems involving more than a total 10{sup 7} channels of readout electronics. Consequently, a new high performance data acquisition system, incorporating high-speed optical fiber networks, will be required to process this large quantity of data. 15 refs., 3 figs., 1 tab.

  7. High speed data transmission at the Superconducting Super Collider

    SciTech Connect

    Leskovar, B.

    1990-04-01

    High speed data transmission using fiber optics in the data acquisition system of the Superconducting Super Collider has been investigated. Emphasis is placed on the high speed data transmission system overview, the local data network and on subassemblies, such as optical transmitters and receivers. Also, the performance of candidate subassemblies having a low power dissipation for the data acquisition system is discussed. 14 refs., 5 figs.

  8. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Three-Dimensional Lattice Boltzmann Model for High-Speed Compressible Flows

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Xu, Ai-Guo; Zhang, Guang-Cai; Li, Ying-Jun

    2010-12-01

    A highly efficient three-dimensional (3D) Lattice Boltzmann (LB) model for high-speed compressible flows is proposed. This model is developed from the original one by Kataoka and Tsutahara [Phys. Rev. E 69 (2004) 056702]. The convection term is discretized by the Non-oscillatory, containing No free parameters and Dissipative (NND) scheme, which effectively damps oscillations at discontinuities. To be more consistent with the kinetic theory of viscosity and to further improve the numerical stability, an additional dissipation term is introduced. Model parameters are chosen in such a way that the von Neumann stability criterion is satisfied. The new model is validated by well-known benchmarks, (i) Riemann problems, including the problem with Lax shock tube and a newly designed shock tube problem with high Mach number; (ii) reaction of shock wave on droplet or bubble. Good agreements are obtained between LB results and exact ones or previously reported solutions. The model is capable of simulating flows from subsonic to supersonic and capturing jumps resulted from shock waves.

  9. A self-assembled microbonded germanium/silicon heterojunction photodiode for 25 Gb/s high-speed optical interconnects

    PubMed Central

    Tseng, Chih-Kuo; Chen, Wei-Ting; Chen, Ku-Hung; Liu, Han-Din; Kang, Yimin; Na, Neil; Lee, Ming-Chang M.

    2013-01-01

    A novel technique using surface tension to locally bond germanium (Ge) on silicon (Si) is presented for fabricating high performance Ge/Si photodiodes. Surface tension is a cohesive force among liquid molecules that tends to bring contiguous objects in contact to maintain a minimum surface energy. We take advantage of this phenomenon to fabricate a heterojunction optoelectronic device where the lattice constants of joined semiconductors are different. A high-speed Ge/Si heterojunction waveguide photodiode is presented by microbonding a beam-shaped Ge, first grown by rapid-melt-growth (RMG) method, on top of a Si waveguide via surface tension. Excellent device performances such as an operating bandwidth of 17 GHz and a responsivity of 0.66 and 0.70 A/W at the reverse bias of −4 and −6 V, respectively, are demonstrated. This technique can be simply implemented via modern complementary metal-oxide-semiconductor (CMOS) fabrication technologies for integrating Ge on Si devices. PMID:24232956

  10. AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water

    NASA Astrophysics Data System (ADS)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lucja; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Watson, Malcolm A.; White, Henry; Watson, Scott; Kelly, Antony E.

    2016-02-01

    AlGaInN ridge waveguide laser diodes are fabricated to achieve single-mode operation with optical powers up to 100 mW at ˜420 nm for visible free-space, underwater, and plastic optical fiber communication. We report high-frequency operation of AlGaInN laser diodes with data transmission up to 2.5 GHz for free-space and underwater communication and up to 1.38 GHz through 10 m of plastic optical fiber.

  11. High-speed multispectral confocal biomedical imaging

    PubMed Central

    Carver, Gary E.; Locknar, Sarah A.; Morrison, William A.; Krishnan Ramanujan, V.; Farkas, Daniel L.

    2014-01-01

    Abstract. A new approach for generating high-speed multispectral confocal images has been developed. The central concept is that spectra can be acquired for each pixel in a confocal spatial scan by using a fast spectrometer based on optical fiber delay lines. This approach merges fast spectroscopy with standard spatial scanning to create datacubes in real time. The spectrometer is based on a serial array of reflecting spectral elements, delay lines between these elements, and a single element detector. The spatial, spectral, and temporal resolution of the instrument is described and illustrated by multispectral images of laser-induced autofluorescence in biological tissues. PMID:24658777

  12. High-Speed Ring Bus

    NASA Technical Reports Server (NTRS)

    Wysocky, Terry; Kopf, Edward, Jr.; Katanyoutananti, Sunant; Steiner, Carl; Balian, Harry

    2010-01-01

    The high-speed ring bus at the Jet Propulsion Laboratory (JPL) allows for future growth trends in spacecraft seen with future scientific missions. This innovation constitutes an enhancement of the 1393 bus as documented in the Institute of Electrical and Electronics Engineers (IEEE) 1393-1999 standard for a spaceborne fiber-optic data bus. It allows for high-bandwidth and time synchronization of all nodes on the ring. The JPL ring bus allows for interconnection of active units with autonomous operation and increased fault handling at high bandwidths. It minimizes the flight software interface with an intelligent physical layer design that has few states to manage as well as simplified testability. The design will soon be documented in the AS-1393 standard (Serial Hi-Rel Ring Network for Aerospace Applications). The framework is designed for "Class A" spacecraft operation and provides redundant data paths. It is based on "fault containment regions" and "redundant functional regions (RFR)" and has a method for allocating cables that completely supports the redundancy in spacecraft design, allowing for a complete RFR to fail. This design reduces the mass of the bus by incorporating both the Control Unit and the Data Unit in the same hardware. The standard uses ATM (asynchronous transfer mode) packets, standardized by ITU-T, ANSI, ETSI, and the ATM Forum. The IEEE-1393 standard uses the UNI form of the packet and provides no protection for the data portion of the cell. The JPL design adds optional formatting to this data portion. This design extends fault protection beyond that of the interconnect. This includes adding protection to the data portion that is contained within the Bus Interface Units (BIUs) and by adding to the signal interface between the Data Host and the JPL 1393 Ring Bus. Data transfer on the ring bus does not involve a master or initiator. Following bus protocol, any BIU may transmit data on the ring whenever it has data received from its host. There

  13. Implementation of a High-Speed FPGA and DSP Based FFT Processor for Improving Strain Demodulation Performance in a Fiber-Optic-Based Sensing System

    NASA Technical Reports Server (NTRS)

    Farley, Douglas L.

    2005-01-01

    NASA's Aviation Safety and Security Program is pursuing research in on-board Structural Health Management (SHM) technologies for purposes of reducing or eliminating aircraft accidents due to system and component failures. Under this program, NASA Langley Research Center (LaRC) is developing a strain-based structural health-monitoring concept that incorporates a fiber optic-based measuring system for acquiring strain values. This fiber optic-based measuring system provides for the distribution of thousands of strain sensors embedded in a network of fiber optic cables. The resolution of strain value at each discrete sensor point requires a computationally demanding data reduction software process that, when hosted on a conventional processor, is not suitable for near real-time measurement. This report describes the development and integration of an alternative computing environment using dedicated computing hardware for performing the data reduction. Performance comparison between the existing and the hardware-based system is presented.

  14. Quantum cryptography over underground optical fibers

    SciTech Connect

    Hughes, R.J.; Luther, G.G.; Morgan, G.L.; Peterson, C.G.; Simmons, C.

    1996-05-01

    Quantum cryptography is an emerging technology in which two parties may simultaneously generated shared, secret cryptographic key material using the transmission of quantum states of light whose security is based on the inviolability of the laws of quantum mechanics. An adversary can neither successfully tap the key transmissions, nor evade detection, owing to Heisenberg`s uncertainty principle. In this paper the authors describe the theory of quantum cryptography, and the most recent results from their experimental system with which they are generating key material over 14-km of underground optical fiber. These results show that optical-fiber based quantum cryptography could allow secure, real-time key generation over ``open`` multi-km node-to-node optical fiber communications links between secure ``islands.``

  15. High Speed Data Bus Active Coupler

    NASA Astrophysics Data System (ADS)

    Herrmann, James J.

    The author discusses the HSDB (high speed data bus) active coupler which provides a typical 13-dB power margin for HSDB systems installed in military aircraft. This high-power margin ensures reliable HSDB operation through fiber-optic component degradation. The active coupler performs optical amplification and signal reshaping functions such that an incoming signal is modified only in amplitude. Signal distortion and jitter are removed by a retiming ASIC (application-specific integrated circuit). The active coupler is modular in design, and plug-in growth for a 38 x 38 user interface is available. The active coupler achieves better than -27 dBm sensitivity at 5 x 10 exp -11 bit error rate and outputs -8 to -12 dBm optical power. The active coupler unit weighs only 6.25 lbs and has a predicted mean time between failure of over 21,000 h.

  16. Quantum ratchets for quantum communication with optical superlattices

    SciTech Connect

    Romero-Isart, Oriol; Garcia-Ripoll, Juan Jose

    2007-11-15

    We propose to use a quantum ratchet to transport quantum information in a chain of atoms trapped in an optical superlattice. The quantum ratchet is created by a continuous modulation of the optical superlattice which is periodic in time and in space. Though there is zero average force acting on the atoms, we show that indeed the ratchet effect permits atoms on even and odd sites to move along opposite directions. By loading the optical lattice with two-level bosonic atoms, this scheme permits us to perfectly transport a qubit or entangled state imprinted in one or more atoms to any desired position in the lattice. From the quantum computation point of view, the transport is achieved by a smooth concatenation of perfect swap gates. We analyze setups with noninteracting and interacting particles and in the latter case we use the tools of optimal control to design optimal modulations. We also discuss the feasibility of this method in current experiments.

  17. High-bandwidth and low-loss multimode polymer waveguides and waveguide components for high-speed board-level optical interconnects

    NASA Astrophysics Data System (ADS)

    Bamiedakis, N.; Chen, J.; Penty, R. V.; White, I. H.

    2016-03-01

    Multimode polymer waveguides are being increasingly considered for use in short-reach board-level optical interconnects as they exhibit favourable optical properties and allow direct integration onto standard PCBs with conventional methods of the electronics industry. Siloxane-based multimode waveguides have been demonstrated with excellent optical transmission performance, while a wide range of passive waveguide components that offer routing flexibility and enable the implementation of complex on-board interconnection architectures has been reported. In recent work, we have demonstrated that these polymer waveguides can exhibit very high bandwidth-length products in excess of 30 GHz×m despite their highly-multimoded nature, while it has been shown that even larger values of > 60 GHz×m can be achieved by adjusting their refractive index profile. Furthermore, the combination of refractive index engineering and launch conditioning schemes can ensure high bandwidth (> 100 GHz×m) and high coupling efficiency (<1 dB) with standard multimode fibre inputs with relatively large alignment tolerances (~17×15 μm2). In the work presented here, we investigate the effects of refractive index engineering on the performance of passive waveguide components (crossings, bends) and provide suitable design rules for their on-board use. It is shown that, depending on the interconnection layout and link requirements, appropriate choice of refractive index profile can provide enhanced component performance, ensuring low loss interconnection and adequate link bandwidth. The results highlight the strong potential of this versatile optical technology for the formation of high-performance board-level optical interconnects with high routing flexibility.

  18. Disturbance, the uncertainty principle and quantum optics

    NASA Technical Reports Server (NTRS)

    Martens, Hans; Demuynck, Willem M.

    1993-01-01

    It is shown how a disturbance-type uncertainty principle can be derived from an uncertainty principle for joint measurements. To achieve this, we first clarify the meaning of 'inaccuracy' and 'disturbance' in quantum mechanical measurements. The case of photon number and phase is treated as an example, and it is applied to a quantum non-demolition measurement using the optical Kerr effect.

  19. Flexible high-speed CODEC

    NASA Technical Reports Server (NTRS)

    Segallis, Greg P.; Wernlund, Jim V.; Corry, Glen

    1993-01-01

    This report is prepared by Harris Government Communication Systems Division for NASA Lewis Research Center under contract NAS3-25087. It is written in accordance with SOW section 4.0 (d) as detailed in section 2.6. The purpose of this document is to provide a summary of the program, performance results and analysis, and a technical assessment. The purpose of this program was to develop a flexible, high-speed CODEC that provides substantial coding gain while maintaining bandwidth efficiency for use in both continuous and bursted data environments for a variety of applications.

  20. High speed quantitative digital microscopy

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Price, K. H.; Eskenazi, R.; Ovadya, M. M.; Navon, M. A.

    1984-01-01

    Modern digital image processing hardware makes possible quantitative analysis of microscope images at high speed. This paper describes an application to automatic screening for cervical cancer. The system uses twelve MC6809 microprocessors arranged in a pipeline multiprocessor configuration. Each processor executes one part of the algorithm on each cell image as it passes through the pipeline. Each processor communicates with its upstream and downstream neighbors via shared two-port memory. Thus no time is devoted to input-output operations as such. This configuration is expected to be at least ten times faster than previous systems.

  1. High-Speed TCP Testing

    NASA Technical Reports Server (NTRS)

    Brooks, David E.; Gassman, Holly; Beering, Dave R.; Welch, Arun; Hoder, Douglas J.; Ivancic, William D.

    1999-01-01

    Transmission Control Protocol (TCP) is the underlying protocol used within the Internet for reliable information transfer. As such, there is great interest to have all implementations of TCP efficiently interoperate. This is particularly important for links exhibiting long bandwidth-delay products. The tools exist to perform TCP analysis at low rates and low delays. However, for extremely high-rate and lone-delay links such as 622 Mbps over geosynchronous satellites, new tools and testing techniques are required. This paper describes the tools and techniques used to analyze and debug various TCP implementations over high-speed, long-delay links.

  2. A high speed sequential decoder

    NASA Technical Reports Server (NTRS)

    Lum, H., Jr.

    1972-01-01

    The performance and theory of operation for the High Speed Hard Decision Sequential Decoder are delineated. The decoder is a forward error correction system which is capable of accepting data from binary-phase-shift-keyed and quadriphase-shift-keyed modems at input data rates up to 30 megabits per second. Test results show that the decoder is capable of maintaining a composite error rate of 0.00001 at an input E sub b/N sub o of 5.6 db. This performance has been obtained with minimum circuit complexity.

  3. Superplane! High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The High Speed Civil Transport (HSCT). This light-hearted promotional piece explains what the HSCT 'Superplane' is and what advantages it will have over current aircraft. As envisioned, the HSCT is a next-generation supersonic (faster than the speed of sound) passenger jet that would fly 300 passengers at more than 1,500 miles per hour -- more than twice the speed of sound. It will cross the Pacific or Atlantic in less than half the time of modern subsonic jets, and at a ticket price less than 20 percent above comparable, slower flights

  4. Mathematical simulation of an experimental prototype of a high-speed nonreturn-to-zero differential phase-shift-keying fibre-optic communication system

    SciTech Connect

    Redyuk, A A; Shtyrina, Ol'ga V; Nanii, Oleg E; Kapin, Yu A; Sachalin, E A; Titov, E B; Treshchikov, V N; Yaryshkin, A A; Fedoruk, Mikhail P

    2011-10-31

    The influence of chromatic dispersion, optical power, and nonlinear distortions in a fibre-optic communication system on the quality of data transmission based on nonreturn-to-zero differential phase-shift keying at a rate of 40 Gbit s{sup -1} in one spectral channel have been numerically simulated and experimental studied. The results of direct numerical calculations and estimates based on the quality factor (Q factor) are in qualitative agreement with the experimental data. It is found experimentally that the dependence of the error rate on the accumulated dispersion has a plateau in the range from -50 to 50 ps nm{sup -1}; a similar dependence is obtained in the numerical calculation based on the Q factor. The optimal calculated value of the power launched into each of 10 sections of a line with a total length of 1000 km is 2 - 4 dBm; it corresponds to the experimental value of 3 dBm.

  5. Free space millimeter wave-coupled electro-optic high speed nonlinear polymer phase modulator with in-plane slotted patch antennas.

    PubMed

    Park, D H; Pagán, V R; Murphy, T E; Luo, J; Jen, A K-Y; Herman, W N

    2015-04-01

    We report in-plane slotted patch antenna-coupled electro-optic phase modulators with a carrier-to-sideband ratio (CSR) of 22 dB under an RF power density of 120 W/m(2) and a figure of merit of 2.0 W(-1/2) at the millimeter wave frequencies of 36-37 GHz based on guest-host type of second-order nonlinear polymer SEO125. CSR was improved more than 20 dB by using a SiO(2) protection layer. We demonstrate detection of 3 GHz modulation of the RF carrier. We also derive closed-form expressions for the modulated phase of optical wave and carrier-to-sideband ratio. Design, simulation, fabrication, and experimental results are discussed. PMID:25968775

  6. Optically controlled spins in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Economou, Sophia

    2010-03-01

    Spins in charged semiconductor quantum dots are currently generating much interest, both from a fundamental physics standpoint, as well as for their potential technological relevance. Being naturally a two-level quantum system, each of these spins can encode a bit of quantum information. Optically controlled spins in quantum dots possess several desirable properties: their spin coherence times are long, they allow for all-optical manipulation---which translates into fast logic gates---and their coupling to photons offers a straightforward route to exchange of quantum information between spatially separated sites. Designing the laser fields to achieve the unprecedented amount of control required for quantum information tasks is a challenging goal, towards which there has been recent progress. Special properties of hyperbolic secant optical pulses enabled the design of single qubit rotations, initially developed about the growth axis z [1], and later about an arbitrary direction [2]. Recently we demonstrated our theoretical proposal [1] in an ensemble of InAs/GaAs quantum dots by implementing ultrafast rotations about the z axis by an arbitrary angle [3], with the angle of rotation as a function of the optical detuning in excellent agreement with the theoretical prediction. We also developed two-qubit conditional control in a quantum dot `molecule' using the electron-hole exchange interaction [4]. In addition to its importance in quantum dot-based quantum computation, our two-qubit gate can also play an important role in photonic cluster state generation for measurement-based quantum computing [5]. [1] S. E. Economou, L. J. Sham, Y. Wu, D. S. Steel, Phys. Rev. 74, 205415 (2006) [2] S. E. Economou and T. L. Reinecke, Phys. Rev. Lett., 99, 217401 (2007) [3] A. Greilich, S. E. Economou et al, Nature Phys. 5, 262 (2009) [4] S. E. Economou and T. L. Reinecke, Phys. Rev. B, 78, 115306 (2008) [5] S. E. Economou, N. H. Lindner, and T. Rudolph, in preparation

  7. Design and implementation of novel optical subsystems for enhancing spectral efficiency, security, and performance of high-speed WDM and OCDMA links

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Paniz

    To increase the capacity of optical links, higher bit rates, longer transmission links, narrow channel spacings and lower noise are desirable. The following projects each study a different issue to maximize throughput. All order PMD emulator to be able to test systems and PMD compensators . Polarization mode dispersion (PMD) is one of the critical hurdles in achieving higher bit rate optical transmission. PMD is caused by an optical fiber's randomly varying birefringence and is a statistical phenomena. Since high PMD fibers already installed are not readily available and even if they were, the changes in the fiber are too slow, realistic all order emulators are needed to test the systems and PMD compensators. We investigated both experimentally and theoretically a technique to realistically emulate PMD. It is shown that: (a) the DGD of this emulator is Maxwellian-distributed over an ensemble of fiber realizations at any fixed optical frequency, and (b) the frequency autocorrelation function of the PMD emulator resembles that of a real fiber when averaged over an ensemble of fiber realizations. Effects of PMD on the signal gain in distributed Raman amplified links. We show that polarization dependent gain (PDG) in Raman fiber amplifiers is a statistical parameter that depends on the PMD of the fiber. The PDG distribution is characterized by simulation and verified by experiment. Stimulated Brillouin Scattering and Rayleigh scattering effects in bi-directional and narrow channel spaced Raman amplified links. We characterize the degradations due to SBS and Rayleigh backscattering in a 10Gb/s DWDM bidirectional transmission link using distributed Raman amplification for channel spacings smaller than 25GHz for different cases of signal input power and amplifier gain. We show that there is an optimum range of gain-input power combinations, governed by the SBS threshold, that permit bidirectional transmission at 12.5GHz spacing with less than 2dB power penalty. A 10-mus

  8. Long wavelength quantum well lasers: Synopsis of the RACE ``AQUA'' project: MOVPE/MBE/GSMBE for InGaAsP/InP and InGaAlAs/InP high speed MQW DFB lasers

    NASA Astrophysics Data System (ADS)

    Speier, Peter

    1991-12-01

    The technological limits for ultra high speed devices are now rapidly expanding due to the use of quantum well (QW) materials. This new class of materials gives the opportunity of tailoring materials parameters by controlling geometries on an atomic scale. They look very promising as materials for lasers, detectors and transistors suitable even above 10 Gb/s. It will be demonstrated that state of the art MQW structures can be realized in both material systems, InGaAsP/InP and InGaAlAs/InP. Parallel lateral laser structures ( e.g. SIBH, BRS and TBH) have been designed to take full benefit of QW technology. Ultimate reduction of parasitics, whilst using potential low cost fabrication technologies is the basis for achieving high bitrate (10 Gb/s) MQW lasers, even with the stronger damping in QW material. Using the DFB-SIBH laser structure 10 Gb/s large signal experiments are successfully performed with bulk, MQW and SLMQW lasers. Extremely low fall times of 44 ps are achieved. Additional MQW based improvements are observed such as: -3 times higher differential gain, increased output power (>110 mW), 2.5 times lower chirp (Δλ-20dB = 0.40 nm at 10 Gb/s modulation), and 2 dB gain in power budget at 10 Gb/s digital transmission.

  9. Quantum secured gigabit optical access networks.

    PubMed

    Fröhlich, Bernd; Dynes, James F; Lucamarini, Marco; Sharpe, Andrew W; Tam, Simon W-B; Yuan, Zhiliang; Shields, Andrew J

    2015-01-01

    Optical access networks connect multiple endpoints to a common network node via shared fibre infrastructure. They will play a vital role to scale up the number of users in quantum key distribution (QKD) networks. However, the presence of power splitters in the commonly used passive network architecture makes successful transmission of weak quantum signals challenging. This is especially true if QKD and data signals are multiplexed in the passive network. The splitter introduces an imbalance between quantum signal and Raman noise, which can prevent the recovery of the quantum signal completely. Here we introduce a method to overcome this limitation and demonstrate coexistence of multi-user QKD and full power data traffic from a gigabit passive optical network (GPON) for the first time. The dual feeder implementation is compatible with standard GPON architectures and can support up to 128 users, highlighting that quantum protected GPON networks could be commonplace in the future. PMID:26656307

  10. Quantum secured gigabit optical access networks

    NASA Astrophysics Data System (ADS)

    Fröhlich, Bernd; Dynes, James F.; Lucamarini, Marco; Sharpe, Andrew W.; Tam, Simon W.-B.; Yuan, Zhiliang; Shields, Andrew J.

    2015-12-01

    Optical access networks connect multiple endpoints to a common network node via shared fibre infrastructure. They will play a vital role to scale up the number of users in quantum key distribution (QKD) networks. However, the presence of power splitters in the commonly used passive network architecture makes successful transmission of weak quantum signals challenging. This is especially true if QKD and data signals are multiplexed in the passive network. The splitter introduces an imbalance between quantum signal and Raman noise, which can prevent the recovery of the quantum signal completely. Here we introduce a method to overcome this limitation and demonstrate coexistence of multi-user QKD and full power data traffic from a gigabit passive optical network (GPON) for the first time. The dual feeder implementation is compatible with standard GPON architectures and can support up to 128 users, highlighting that quantum protected GPON networks could be commonplace in the future.

  11. Quantum cryptography on optical fiber networks

    NASA Astrophysics Data System (ADS)

    Townsend, Paul D.

    1998-07-01

    Quantum cryptography exploits the fact that an unknown quantum state cannot be accurately copied or measured without disturbance. By using such elementary quantum states to represent binary information it is possible, therefore, to construct communication systems with verifiable levels of security that are 'guaranteed' by fundamental quantum mechanical laws. This paper describes recent progress at BT Laboratories in the development of practical optical fiber- based quantum cryptography system. These developments include interferometric systems operating in the 1.3 micrometers - wavelength fiber transparency window over point-to-point links up to approximately 50km in length and on multi-user passive optical networks. We describe how this technology performs on fiber links installed in BT's public network and discuss issues such as cross-talk with conventional data channels propagating at different wavelengths in the same fiber.

  12. Quantum secured gigabit optical access networks

    PubMed Central

    Fröhlich, Bernd; Dynes, James F.; Lucamarini, Marco; Sharpe, Andrew W.; Tam, Simon W.-B.; Yuan, Zhiliang; Shields, Andrew J.

    2015-01-01

    Optical access networks connect multiple endpoints to a common network node via shared fibre infrastructure. They will play a vital role to scale up the number of users in quantum key distribution (QKD) networks. However, the presence of power splitters in the commonly used passive network architecture makes successful transmission of weak quantum signals challenging. This is especially true if QKD and data signals are multiplexed in the passive network. The splitter introduces an imbalance between quantum signal and Raman noise, which can prevent the recovery of the quantum signal completely. Here we introduce a method to overcome this limitation and demonstrate coexistence of multi-user QKD and full power data traffic from a gigabit passive optical network (GPON) for the first time. The dual feeder implementation is compatible with standard GPON architectures and can support up to 128 users, highlighting that quantum protected GPON networks could be commonplace in the future. PMID:26656307

  13. High Sensitivity Optically Pumped Quantum Magnetometer

    PubMed Central

    Tiporlini, Valentina; Alameh, Kamal

    2013-01-01

    Quantum magnetometers based on optical pumping can achieve sensitivity as high as what SQUID-based devices can attain. In this paper, we discuss the principle of operation and the optimal design of an optically pumped quantum magnetometer. The ultimate intrinsic sensitivity is calculated showing that optimal performance of the magnetometer is attained with an optical pump power of 20 μW and an operation temperature of 48°C. Results show that the ultimate intrinsic sensitivity of the quantum magnetometer that can be achieved is 327 fT/Hz1/2 over a bandwidth of 26 Hz and that this sensitivity drops to 130 pT/Hz1/2 in the presence of environmental noise. The quantum magnetometer is shown to be capable of detecting a sinusoidal magnetic field of amplitude as low as 15 pT oscillating at 25 Hz. PMID:23766716

  14. High-speed tunable diode laser absorption spectroscopy for sampling-free in-cylinder water vapor concentration measurements in an optical IC engine

    NASA Astrophysics Data System (ADS)

    Witzel, O.; Klein, A.; Wagner, S.; Meffert, C.; Schulz, C.; Ebert, V.

    2012-11-01

    A novel, fiber-optic in situ laser hygrometer was developed to measure water vapor with microsecond time resolution directly inside an internal combustion (IC) engine. The instrument is intended for sampling-free quantification of recirculated exhaust gas in combustion engines. Direct tunable diode laser absorption spectroscopy was employed to allow absolute and self-calibrating H2O measurements. The compact and user-friendly instrument combines a fiber-coupled, 1.37 μm distributed feedback diode laser with kHz-fast, continuous wavelength scanning. Only small, typically 10 mm, optical access ports in the engine are needed. The new in situ hygrometer was tested via measurements in a motored optical research engine operated on ambient air, without any artificial humidification. Scanning the laser at 4 kHz resulted in a time resolution of 250 μs (i.e., 3° crank angle at 2,000 rpm), while the DC-coupled detector signals are digitized with a 4MSamples/s 16-bit data acquisition system. Absolute water vapor concentrations around 1 vol.% could be measured and quantified during the full compression stroke, i.e., over a pressure/temperature range of 0.07-0.52 MPa/300-500 K. Without any scan averaging or bandwidth filtering we could demonstrate signal-to-noise ratios between 51 (at p = 0.1 MPa) and 33 (at p = 0.4 MPa), which corresponds to H2O detection limits between 0.02 and 0.035 vol.% or length and bandwidth normalized detectivities of 285 and 477 ppb m Hz-½, respectively. Comparison of the dynamic H2O behavior during the compression stroke across several engine cycles and different operating conditions showed good reproducibility and absolute accuracy of the results, consistent with the boundary conditions, i.e., motored air operation. This new sensor therefore opens up new possibilities for engine cycle-resolved, calibration-free in situ AGR quantification and optimization in engine applications.

  15. All-optical quantum random bit generation from intrinsically binary phase of parametric oscillators.

    PubMed

    Marandi, Alireza; Leindecker, Nick C; Vodopyanov, Konstantin L; Byer, Robert L

    2012-08-13

    We demonstrate a novel all-optical quantum random number generator (RNG) based on above-threshold binary phase state selection in a degenerate optical parametric oscillator (OPO). Photodetection is not a part of the random process, and no post processing is required for the generated bit sequence. We show that the outcome is statistically random with 99% confidence, and verify that the randomness is due to the phase of initiating photons generated through spontaneous parametric down conversion of the pump, with negligible contribution of classical noise sources. With the use of micro- and nanoscale OPO resonators, this technique offers a promise for simple, robust, and high-speed on-chip all-optical quantum RNGs. PMID:23038574

  16. Reversible optical-to-microwave quantum interface.

    PubMed

    Barzanjeh, Sh; Abdi, M; Milburn, G J; Tombesi, P; Vitali, D

    2012-09-28

    We describe a reversible quantum interface between an optical and a microwave field using a hybrid device based on their common interaction with a micromechanical resonator in a superconducting circuit. We show that, by employing state-of-the-art optoelectromechanical devices, one can realize an effective source of (bright) two-mode squeezing with an optical idler (signal) and a microwave signal, which can be used for high-fidelity transfer of quantum states between optical and microwave fields by means of continuous variable teleportation. PMID:23030075

  17. Cavity Quantum Electrodynamics: A Universal Quantum Optics Toolbox

    NASA Astrophysics Data System (ADS)

    Rempe, Gerhard

    2016-05-01

    Electromagnetic resonators provide unparalleled capabilities in controlling the interaction between light and matter. The recently developed techniques for trapping and cooling atoms between closely spaced mirrors now open up new experimental avenues for genuine quantum-mechanical experiments. Particularly exciting possibilities concern long-distance quantum networking and scalable quantum computation. Recent achievements like the nondestructive detection of an optical photon, the realization of a quantum gate between a single atom and a single photon, and the heralded and efficient conversion of a flying qubit into a stationary qubit are past highlights. The longstanding dream of a quantum gate between individually addressable photonic qubits might become reality in the future. The talk will summarize recent experiments and give an outlook onto future directions.

  18. Experiments on high speed ejectors

    NASA Technical Reports Server (NTRS)

    Wu, J. J.

    1986-01-01

    Experimental studies were conducted to investigate the flow and the performance of thrust augmenting ejectors for flight Mach numbers in the range of 0.5 to 0.8, primary air stagnation pressures up to 107 psig (738 kPa), and primary air stagnation temperatures up to 1250 F (677 C). The experiment verified the existence of the second solution ejector flow, where the flow after complete mixing is supersonic. Thrust augmentation in excess of 1.2 was demonstrated for both hot and cold primary jets. The experimental ejector performed better than the corresponding theoretical optimal first solution ejector, where the mixed flow is subsonic. Further studies are required to realize the full potential of the second solution ejector. The research program was started by the Flight Dynamics Research Corporation (FDRC) to investigate the characteristic of a high speed ejector which augments thrust of a jet at high flight speeds.

  19. High-speed data search

    NASA Technical Reports Server (NTRS)

    Driscoll, James N.

    1994-01-01

    The high-speed data search system developed for KSC incorporates existing and emerging information retrieval technology to help a user intelligently and rapidly locate information found in large textual databases. This technology includes: natural language input; statistical ranking of retrieved information; an artificial intelligence concept called semantics, where 'surface level' knowledge found in text is used to improve the ranking of retrieved information; and relevance feedback, where user judgements about viewed information are used to automatically modify the search for further information. Semantics and relevance feedback are features of the system which are not available commercially. The system further demonstrates focus on paragraphs of information to decide relevance; and it can be used (without modification) to intelligently search all kinds of document collections, such as collections of legal documents medical documents, news stories, patents, and so forth. The purpose of this paper is to demonstrate the usefulness of statistical ranking, our semantic improvement, and relevance feedback.

  20. Small Scale High Speed Turbomachinery

    NASA Technical Reports Server (NTRS)

    London, Adam P. (Inventor); Droppers, Lloyd J. (Inventor); Lehman, Matthew K. (Inventor); Mehra, Amitav (Inventor)

    2015-01-01

    A small scale, high speed turbomachine is described, as well as a process for manufacturing the turbomachine. The turbomachine is manufactured by diffusion bonding stacked sheets of metal foil, each of which has been pre-formed to correspond to a cross section of the turbomachine structure. The turbomachines include rotating elements as well as static structures. Using this process, turbomachines may be manufactured with rotating elements that have outer diameters of less than four inches in size, and/or blading heights of less than 0.1 inches. The rotating elements of the turbomachines are capable of rotating at speeds in excess of 150 feet per second. In addition, cooling features may be added internally to blading to facilitate cooling in high temperature operations.

  1. Flexible High Speed Codec (FHSC)

    NASA Technical Reports Server (NTRS)

    Segallis, G. P.; Wernlund, J. V.

    1991-01-01

    The ongoing NASA/Harris Flexible High Speed Codec (FHSC) program is described. The program objectives are to design and build an encoder decoder that allows operation in either burst or continuous modes at data rates of up to 300 megabits per second. The decoder handles both hard and soft decision decoding and can switch between modes on a burst by burst basis. Bandspreading is low since the code rate is greater than or equal to 7/8. The encoder and a hard decision decoder fit on a single application specific integrated circuit (ASIC) chip. A soft decision applique is implemented using 300 K emitter coupled logic (ECL) which can be easily translated to an ECL gate array.

  2. High speed photography and photonics applications: An underutilized technology

    SciTech Connect

    Paisley, D.L.

    1996-10-01

    Snapshot: Paisley describes the development of high-speed photography including the role of streak cameras, fiber optics, and lasers. Progress in this field has created a powerful tool for viewing such ultrafast processes as hypersonic events and ballistics. {copyright} {ital 1996 Optical Society of America.} [1047-6938-96-10-9939-04

  3. High speed sampler and demultiplexer

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A high speed sampling demultiplexer based on a plurality of sampler banks, each bank comprising a sample transmission line for transmitting an input signal, a strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates at respective positions along the sample transmission line for sampling the input signal in response to the strobe signal. Strobe control circuitry is coupled to the plurality of banks, and supplies a sequence of bank strobe signals to the strobe transmission lines in each of the plurality of banks, and includes circuits for controlling the timing of the bank strobe signals among the banks of samplers. Input circuitry is included for supplying the input signal to be sampled to the plurality of sample transmission lines in the respective banks. The strobe control circuitry can repetitively strobe the plurality of banks of samplers such that the banks of samplers are cycled to create a long sample length. Second tier demultiplexing circuitry is coupled to each of the samplers in the plurality of banks. The second tier demultiplexing circuitry senses the sample taken by the corresponding sampler each time the bank in which the sampler is found is strobed. A plurality of such samples can be stored by the second tier demultiplexing circuitry for later processing. Repetitive sampling with the high speed transient sampler induces an effect known as "strobe kickout". The sample transmission lines include structures which reduce strobe kickout to acceptable levels, generally 60 dB below the signal, by absorbing the kickout pulses before the next sampling repetition.

  4. High speed sampler and demultiplexer

    DOEpatents

    McEwan, T.E.

    1995-12-26

    A high speed sampling demultiplexer based on a plurality of sampler banks, each bank comprising a sample transmission line for transmitting an input signal, a strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates at respective positions along the sample transmission line for sampling the input signal in response to the strobe signal. Strobe control circuitry is coupled to the plurality of banks, and supplies a sequence of bank strobe signals to the strobe transmission lines in each of the plurality of banks, and includes circuits for controlling the timing of the bank strobe signals among the banks of samplers. Input circuitry is included for supplying the input signal to be sampled to the plurality of sample transmission lines in the respective banks. The strobe control circuitry can repetitively strobe the plurality of banks of samplers such that the banks of samplers are cycled to create a long sample length. Second tier demultiplexing circuitry is coupled to each of the samplers in the plurality of banks. The second tier demultiplexing circuitry senses the sample taken by the corresponding sampler each time the bank in which the sampler is found is strobed. A plurality of such samples can be stored by the second tier demultiplexing circuitry for later processing. Repetitive sampling with the high speed transient sampler induces an effect known as ``strobe kickout``. The sample transmission lines include structures which reduce strobe kickout to acceptable levels, generally 60 dB below the signal, by absorbing the kickout pulses before the next sampling repetition. 16 figs.

  5. Quantum Computation Using Optically Coupled Quantum Dot Arrays

    NASA Technical Reports Server (NTRS)

    Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)

    1998-01-01

    A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.

  6. High-speed rolling deflectometer data evaluation

    NASA Astrophysics Data System (ADS)

    Andren, Peter

    1999-01-01

    The high-speed rolling deflectometer is one of the result of almost twenty year of research in pavement condition using laser technique. The latest research vehicle is the laser Road Deflection Tester, built in the mid-nineties using experiences from a prototype truck from the early nineties. Apart from the laser range finders used for finding used for finding the deflection, the truck is also equipped with optical speedometers for both longitudinal and transversal speed, accelerometers and force transducers on the rear wheel axle and a gyro for assessing the deviation. Presently, only the laser range finders are being used as the rest of the sensors has not been calibrated in a satisfying way. During the spring and summer of 1998 a first test program was carried out, and about twenty different roads were studied as a first step towards a more thorough investigation on a road network level. The results from this first major test with the high-speed rolling deflectometer are very promising and, even though many questions remains to be answered, the method has most certainly a strong potential. A general view of some different ways to evaluate the data, as well as more thorough evaluation of some specific roads, will be presented in this paper.

  7. High speed photodetectors based on a two-dimensional electron/hole gas heterostructure

    NASA Astrophysics Data System (ADS)

    Gallo, Eric M.; Cola, Adriano; Quaranta, Fabio; Spanier, Jonathan E.

    2013-04-01

    We report on high-speed metal-semiconductor-metal (MSM) resonant cavity enhanced photodetectors based on Schottky-contacted (Al,In)GaAs heterostructures containing both electron and hole quantum wells. Interdigitated detectors were fabricated and characterized with and without an underlying Distributed Bragg Reflector (DBR). All detectors had very low dark currents and high linear responsivities. The fastest measured temporal response with a 16 ps full-width at half-maximum and a 29 ps fall time was demonstrated on a device with 1 μm gap between electrodes and an underlying DBR. Single quantum well detectors have previously demonstrated increased responsivity and speed but were limited by a slow decaying tail in the high speed photoresponse, attributed to the long collection path of minority carriers. The use of an electron and hole well, separated by a 110 nm absorption region as well as an underlying DBR, eliminates the slow tail by providing an enhanced collection path for both optically generated electrons and holes. Here, we present the fabricated device structure along with the DC and high speed photoresponse under varying incident powers. We briefly compare these results to those of the previous single well devices and attribute improvements in the time response tail to enhanced diffusion created by the presence of the separated dual well structure.

  8. Faster Is Better: High-Speed Modems.

    ERIC Educational Resources Information Center

    Roth, Cliff

    1995-01-01

    Discusses using high-speed modems to access the Internet. Examines internal and external modems, data speeds, compression and error reduction, faxing and voice capabilities, and software features. Considers ISDN (Integrated Services Digital Network) as the future replacement of high-speed modems. Sidebars present high-speed modem product…

  9. Preliminary study of high-speed machining

    SciTech Connect

    Jordan, R.E.

    1980-07-01

    The feasibility of a high speed machining process has been established for application to Bendix aluminum products, based upon information gained through visits to existing high speed machining facilities and by the completion of a representative Bendix part using this process. The need for an experimental high speed machining capability at Bendix for further process evaluation is established.

  10. Materials, structures, and devices for high-speed electronics

    NASA Astrophysics Data System (ADS)

    Woollam, John A.; Snyder, Paul G.

    1992-12-01

    Advances in materials, devices, and instrumentation made under this grant began with ex-situ null ellipsometric measurements of simple dielectric films on bulk substrates. Today highly automated and rapid spectroscopic ellipsometers are used for ex-situ characterization of very complex multilayer epitaxial structures. Even more impressive is the in-situ capability, not only for characterization but also for the actual control of the growth and etching of epitaxial layers. Spectroscopic ellipsometry has expanded from the research lab to become an integral part of the production of materials and structures for state of the art high speed devices. Along the way, it has contributed much to our understanding of the growth characteristics and material properties. The following areas of research are summarized: Si3N4 on GaAs, null ellipsometry; diamondlike carbon films; variable angle spectroscopic ellipsometry (VASE) development; GaAs-AlGaAs heterostructures; Ta-Cu diffusion barrier films on GaAs; GaAs-AlGaAs superlattices and multiple quantum wells; superconductivity; in situ elevated temperature measurements of III-V's; optical constants of thermodynamically stable InGaAs; doping dependence of optical constants of GaAs; in situ ellipsometric studies of III-V epitaxial growth; photothermal spectroscopy; microellipsometry; and Si passivation and Si/SiGe strained-layer superlattices.

  11. Materials, structures, and devices for high-speed electronics

    NASA Technical Reports Server (NTRS)

    Woollam, John A.; Snyder, Paul G.

    1992-01-01

    Advances in materials, devices, and instrumentation made under this grant began with ex-situ null ellipsometric measurements of simple dielectric films on bulk substrates. Today highly automated and rapid spectroscopic ellipsometers are used for ex-situ characterization of very complex multilayer epitaxial structures. Even more impressive is the in-situ capability, not only for characterization but also for the actual control of the growth and etching of epitaxial layers. Spectroscopic ellipsometry has expanded from the research lab to become an integral part of the production of materials and structures for state of the art high speed devices. Along the way, it has contributed much to our understanding of the growth characteristics and material properties. The following areas of research are summarized: Si3N4 on GaAs, null ellipsometry; diamondlike carbon films; variable angle spectroscopic ellipsometry (VASE) development; GaAs-AlGaAs heterostructures; Ta-Cu diffusion barrier films on GaAs; GaAs-AlGaAs superlattices and multiple quantum wells; superconductivity; in situ elevated temperature measurements of III-V's; optical constants of thermodynamically stable InGaAs; doping dependence of optical constants of GaAs; in situ ellipsometric studies of III-V epitaxial growth; photothermal spectroscopy; microellipsometry; and Si passivation and Si/SiGe strained-layer superlattices.

  12. Quantum optical properties in plasmonic systems

    SciTech Connect

    Ooi, C. H. Raymond

    2015-04-24

    Plasmonic metallic particle (MP) can affect the optical properties of a quantum system (QS) in a remarkable way. We develop a general quantum nonlinear formalism with exact vectorial description for the scattered photons by the QS. The formalism enables us to study the variations of the dielectric function and photon spectrum of the QS with the particle distance between QS and MP, exciting laser direction, polarization and phase in the presence of surface plasmon resonance (SPR) in the MP. The quantum formalism also serves as a powerful tool for studying the effects of these parameters on the nonclassical properties of the scattered photons. The plasmonic effect of nanoparticles has promising possibilities as it provides a new way for manipulating quantum optical properties of light in nanophotonic systems.

  13. Optically Loaded Semiconductor Quantum Memory Register

    NASA Astrophysics Data System (ADS)

    Kim, Danny; Kiselev, Andrey A.; Ross, Richard S.; Rakher, Matthew T.; Jones, Cody; Ladd, Thaddeus D.

    2016-02-01

    We propose and analyze an optically loaded quantum memory that exploits capacitive coupling between self-assembled quantum-dot molecules and electrically gated quantum-dot molecules. The self-assembled dots are used for spin-photon entanglement, which is transferred to the gated dots for long-term storage or processing via a teleportation process heralded by single-photon detection. We illustrate a device architecture enabling this interaction and outline both its operation and fabrication. We provide self-consistent Poisson-Schrödinger simulations to establish the design viability, to refine the design, and to estimate the physical coupling parameters and their sensitivities to dot placement. The device we propose generates heralded copies of an entangled state between a photonic qubit and a solid-state qubit with a rapid reset time upon failure. The resulting fast rate of entanglement generation is of high utility for heralded quantum networking scenarios involving lossy optical channels.

  14. Double quantum dot in a quantum dash: Optical properties

    SciTech Connect

    Kaczmarkiewicz, Piotr Machnikowski, Paweł; Kuhn, Tilmann

    2013-11-14

    We study the optical properties of highly elongated, highly flattened quantum dot structures, also referred to as quantum dashes, characterized by the presence of two trapping centers located along the structure. Such a system can exhibit some of the properties characteristic for double quantum dots. We show that sub- and super-radiant states can form for certain quantum dash geometries, which is manifested by a pronounced transfer of intensity between spectral lines, accompanied by the appearance of strong electron-hole correlations. We also compare exciton absorption spectra and polarization properties of a system with a single and double trapping center and show how the geometry of multiple trapping centers influences the optical properties of the system. We show that for a broad range of trapping geometries the relative absorption intensity of the ground state is larger than that of the lowest excited states, contrary to the quantum dash systems characterized by a single trapping center. Thus, optical properties of these structures are determined by fine details of their morphology.

  15. Single-qubit optical quantum fingerprinting.

    PubMed

    Horn, Rolf T; Babichev, S A; Marzlin, Karl-Peter; Lvovsky, A I; Sanders, Barry C

    2005-10-01

    We analyze and demonstrate the feasibility and superiority of linear optical single-qubit fingerprinting over its classical counterpart. For one-qubit fingerprinting of two-bit messages, we prepare "tetrahedral" qubit states experimentally and show that they meet the requirements for quantum fingerprinting to exceed the classical capability. We prove that shared entanglement permits 100% reliable quantum fingerprinting, which will outperform classical fingerprinting even with arbitrary amounts of shared randomness. PMID:16241707

  16. Optically controlled periodical chain of quantum rings

    NASA Astrophysics Data System (ADS)

    Hasan, M.; Iorsh, I. V.; Kibis, O. V.; Shelykh, I. A.

    2016-03-01

    We demonstrated theoretically that a circularly polarized electromagnetic field substantially modifies electronic properties of a periodical chain of quantum rings. Particularly, the field opens band gaps in the electron energy spectrum of the chain, generates edge electron currents, and induces the Fano-like features in the electron transport through the finite chain. These effects create physical prerequisites for the development of optically controlled nanodevices based on a set of coupled quantum rings.

  17. Enhanced quantum communication via optical refocusing

    NASA Astrophysics Data System (ADS)

    Lupo, Cosmo; Giovannetti, Vittorio; Pirandola, Stefano; Mancini, Stefano; Lloyd, Seth

    2011-07-01

    We consider the problem of quantum communication mediated by a passive optical refocusing system. The model captures the basic features of all those situations in which a signal is either refocused by a repeater for long-distance communication, or it is focused on a detector prior to the information decoding process. Introducing a general method for linear passive optical systems, we determine the conditions under which optical refocusing implies information transmission gain. Although the finite aperture of the repeater may cause loss of information, we show that the presence of the refocusing system can substantially enhance the rate of reliable communication with respect to the free-space propagation. We explicitly address the transferring of classical messages over the quantum channel, but the results can be easily extended to include the case of transferring quantum messages as well.

  18. Towards Quantum Magnetism with Ultracold Quantum Gases in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Bloch, Immanuel

    2008-05-01

    Quantum mechanical superexchange interactions form the basis of quantum magnetism in strongly correlated electronic media and are believed to play a major role in high-Tc superconducting materials. We report on the first direct measurement of such superexchange interactions with ultracold atoms in optical lattices. After preparing a spin-mixture of ultracold atoms with the help of optical superlattices in an antiferromagnetically ordered state, we are able to observe a coherent superexchange mediated spin dynamics down to coupling energies as low as 5 Hz. Furthermore, it is shown how these superexchange interactions can be fully controlled in magnitude and sign. The prospects of using such superexchange interactions for the investigation of dynamical behaviour in quantum spin systems and for quantum information processing will be outlined in the talk. In addition we present results on the dynamical resolved co-tunneling of repulsively bound atom pairs in optical superlattices and show how by using ``Coulomb-blockade'' type tunneling resonance one can count atoms one by one to determine their number statistics in the lattice potential. Finally, latest results on ultracold Fermions and Bose-Fermi mixtures in optical lattices will be presented.

  19. Towards Quantum Magnetism with Ultracold Quantum Gases in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Bloch, Immanuel

    2008-03-01

    Quantum mechanical superexchange interactions form the basis of quantum magnetism in strongly correlated electronic media and are believed to play a major role in high-Tc superconducting materials. We report on the first direct measurement of such superexchange interactions with ultracold atoms in optical lattices. After preparing a spin-mixture of ultracold atoms with the help of optical superlattices in an antiferromagnetically ordered state, we are able to observe a coherent superexchange mediated spin dynamics down to coupling energies as low as 5 Hz. Furthermore, it is shown how these superexchange interactions can be fully controlled in magnitude and sign. The prospects of using such superexchange interactions for the investigation of dynamical behaviour in quantum spin systems and for quantum information processing will be outlined in the talk. In addition we present results on the dynamical resolved co-tunnelling of repulsively bound atom pairs in optical superlattices and show how by using ``Coulomb-blockade'' type tunnelling resonance one can count atoms one by one to determine their number statistics in the lattice potential. Finally, latest results on ultracold Fermions and Bose-Fermi mixtures in optical lattices will be presented.

  20. High-speed bridge circuit for InGaAs avalanche photodiode single-photon detector

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hirofumi; Tomita, Akihisa; Okamoto, Atsushi

    2014-02-01

    Because of low power consumption and small footprint, avalanche photodiodes (APD) have been commonly applied to photon detection. Recently, high speed quantum communication has been demonstrated for high bit-rate quantum key distribution. For the high speed quantum communication, photon detectors should operate at GHz-clock frequencies. We propose balanced detection circuits for GHz-clock operation of InGaAs-APD photon detectors. The balanced single photon detector operates with sinusoidal wave gating. The sinusoidal wave appearing in the output is removed by the subtraction from APD signal without sharp band-elimination filters. Omission of the sharp filters removes the constraint on the operating frequency of the single photon detector. We present two designs, one works with two identical APDs, the other with one APD and a low-pass filter. The sinusoidal gating enables to eliminate the gating noise even with the simple configuration of the latter design. We demonstrated the balanced single photon detector operating with 1.020GHz clock at 233 K, 193 K, and 186.5 K. The dark count probability was 4.0 x 10-4 counts/pulse with the quantum efficiency of 10% at 233K, and 1.6 x 10-4 counts/pulse at 186.5 K. These results were obtained with easily available APDs (NR8300FP-C.C, RENESASS) originally developed for optical time-domain reflectmeters.

  1. High-speed photometric imaging of elves

    NASA Astrophysics Data System (ADS)

    Santeler, C.; Moore, R. C.

    2011-12-01

    A new high-speed photometric array is used to analyze the properties of optical emissions associated with elves, including the expansion rate and luminosity as a function of time. The new instrument samples 8 channels at 2.5 MHz with 14-bit resolution and streams data to a 12 TB RAID array, enabling continuous operation during thunderstorm activity. In order to leverage the full bandwidth of the system, a particular observational geometry is required. The array is aimed vertically at the overlying ionosphere in order to detect elves produced by lightning flashes ~50 to 100 km distant. We address the issue of cloud coverage by choosing among several favorable observation locations on the night of the storm. This paper provides a summary of observations performed in Florida during the winter and the summer of 2011.

  2. High-Speed Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Ando, Toshio; Uchihashi, Takayuki; Kodera, Noriyuki

    2012-08-01

    The technology of high-speed atomic force microscopy (HS-AFM) has reached maturity. HS-AFM enables us to directly visualize the structure and dynamics of biological molecules in physiological solutions at subsecond to sub-100 ms temporal resolution. By this microscopy, dynamically acting molecules such as myosin V walking on an actin filament and bacteriorhodopsin in response to light are successfully visualized. High-resolution molecular movies reveal the dynamic behavior of molecules in action in great detail. Inferences no longer have to be made from static snapshots of molecular structures and from the dynamic behavior of optical markers attached to biomolecules. In this review, we first describe theoretical considerations for the highest possible imaging rate, then summarize techniques involved in HS-AFM and highlight recent imaging studies. Finally, we briefly discuss future challenges to explore.

  3. Quantum optics of lossy asymmetric beam splitters.

    PubMed

    Uppu, Ravitej; Wolterink, Tom A W; Tentrup, Tristan B H; Pinkse, Pepijn W H

    2016-07-25

    We theoretically investigate quantum interference of two single photons at a lossy asymmetric beam splitter, the most general passive 2×2 optical circuit. The losses in the circuit result in a non-unitary scattering matrix with a non-trivial set of constraints on the elements of the scattering matrix. Our analysis using the noise operator formalism shows that the loss allows tunability of quantum interference to an extent not possible with a lossless beam splitter. Our theoretical studies support the experimental demonstrations of programmable quantum interference in highly multimodal systems such as opaque scattering media and multimode fibers. PMID:27464096

  4. ADVANCED HIGH SPEED PROGRAMMABLE PREFORMING

    SciTech Connect

    Norris Jr, Robert E; Lomax, Ronny D; Xiong, Fue; Dahl, Jeffrey S; Blanchard, Patrick J

    2010-01-01

    Polymer-matrix composites offer greater stiffness and strength per unit weight than conventional materials resulting in new opportunities for lightweighting of automotive and heavy vehicles. Other benefits include design flexibility, less corrosion susceptibility, and the ability to tailor properties to specific load requirements. However, widespread implementation of structural composites requires lower-cost manufacturing processes than those that are currently available. Advanced, directed-fiber preforming processes have demonstrated exceptional value for rapid preforming of large, glass-reinforced, automotive composite structures. This is due to process flexibility and inherently low material scrap rate. Hence directed fiber performing processes offer a low cost manufacturing methodology for producing preforms for a variety of structural automotive components. This paper describes work conducted at the Oak Ridge National Laboratory (ORNL), focused on the development and demonstration of a high speed chopper gun to enhance throughput capabilities. ORNL and the Automotive Composites Consortium (ACC) revised the design of a standard chopper gun to expand the operational envelope, enabling delivery of up to 20kg/min. A prototype unit was fabricated and used to demonstrate continuous chopping of multiple roving at high output over extended periods. In addition fiber handling system modifications were completed to sustain the high output the modified chopper affords. These hardware upgrades are documented along with results of process characterization and capabilities assessment.

  5. High speed imager test station

    DOEpatents

    Yates, George J.; Albright, Kevin L.; Turko, Bojan T.

    1995-01-01

    A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment.

  6. High speed imager test station

    DOEpatents

    Yates, G.J.; Albright, K.L.; Turko, B.T.

    1995-11-14

    A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment. 12 figs.

  7. Quiet High-Speed Fan

    NASA Technical Reports Server (NTRS)

    Lieber, Lysbeth; Repp, Russ; Weir, Donald S.

    1996-01-01

    A calibration of the acoustic and aerodynamic prediction methods was performed and a baseline fan definition was established and evaluated to support the quiet high speed fan program. A computational fluid dynamic analysis of the NASA QF-12 Fan rotor, using the DAWES flow simulation program was performed to demonstrate and verify the causes of the relatively poor aerodynamic performance observed during the fan test. In addition, the rotor flowfield characteristics were qualitatively compared to the acoustic measurements to identify the key acoustic characteristics of the flow. The V072 turbofan source noise prediction code was used to generate noise predictions for the TFE731-60 fan at three operating conditions and compared to experimental data. V072 results were also used in the Acoustic Radiation Code to generate far field noise for the TFE731-60 nacelle at three speed points for the blade passage tone. A full 3-D viscous flow simulation of the current production TFE731-60 fan rotor was performed with the DAWES flow analysis program. The DAWES analysis was used to estimate the onset of multiple pure tone noise, based on predictions of inlet shock position as a function of the rotor tip speed. Finally, the TFE731-60 fan rotor wake structure predicted by the DAWES program was used to define a redesigned stator with the leading edge configured to minimize the acoustic effects of rotor wake / stator interaction, without appreciably degrading performance.

  8. Quantum state sharing using linear optical elements

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Song, Jie; Song, He-Shan

    2008-10-01

    Motivated by protocols [G. Gordon, G. Rigolin, Phys. Rev. A 73 (2006) 062316] and [N.B. An, G. Mahler, Phys. Lett. A 365 (2007) 70], we propose a linear optical protocol for quantum state sharing of polarization entangled state in terms optical elements. Our protocol can realize a near-complete quantum state sharing of polarization entangled state with arbitrary coefficients, and it is possible to achieve unity fidelity transfer of the state if the parties collaborate. This protocol can also be generalized to the multi-party system.

  9. Sequential quantum teleportation of optical coherent states

    SciTech Connect

    Yonezawa, Hidehiro; Furusawa, Akira; Loock, Peter van

    2007-09-15

    We demonstrate a sequence of two quantum teleportations of optical coherent states, combining two high-fidelity teleporters for continuous variables. In our experiment, the individual teleportation fidelities are evaluated as F{sub 1}=0.70{+-}0.02 and F{sub 2}=0.75{+-}0.02, while the fidelity between the input and the sequentially teleported states is determined as F{sup (2)}=0.57{+-}0.02. This still exceeds the optimal fidelity of one half for classical teleportation of arbitrary coherent states and almost attains the value of the first (unsequential) quantum teleportation experiment with optical coherent states.

  10. Long-distance entanglement-based quantum key distribution over optical fiber.

    PubMed

    Honjo, T; Nam, S W; Takesue, H; Zhang, Q; Kamada, H; Nishida, Y; Tadanaga, O; Asobe, M; Baek, B; Hadfield, R; Miki, S; Fujiwara, M; Sasaki, M; Wang, Z; Inoue, K; Yamamoto, Y

    2008-11-10

    We report the first entanglement-based quantum key distribution (QKD) experiment over a 100-km optical fiber. We used superconducting single photon detectors based on NbN nanowires that provide high-speed single photon detection for the 1.5-mum telecom band, an efficient entangled photon pair source that consists of a fiber coupled periodically poled lithium niobate waveguide and ultra low loss filters, and planar lightwave circuit Mach-Zehnder interferometers (MZIs) with ultra stable operation. These characteristics enabled us to perform an entanglement-based QKD experiment over a 100-km optical fiber. In the experiment, which lasted approximately 8 hours, we successfully generated a 16 kbit sifted key with a quantum bit error rate of 6.9 % at a rate of 0.59 bits per second, from which we were able to distill a 3.9 kbit secure key. PMID:19582004

  11. Focus on integrated quantum optics

    NASA Astrophysics Data System (ADS)

    O'Brien, Jeremy; Patton, Brian; Sasaki, Masahide; Vučković, Jelena

    2013-03-01

    A key goal of research into quantum information processing is the development of technologies that are scaleable in complexity while allowing the mass manufacture of devices that promise transformative effects on information science. The demonstration that integrated photonics circuits could be made to perform operations that exploit the quantum nature of the photon has turned them into leading candidates for practical quantum information processing technologies. To fully achieve their promise, however, requires research from diverse fields. This focus issue provides a snapshot of some of the areas in which key advances have been made. We are grateful for the contributions from leading teams based around the globe and hope that the degree of progress being made in a challenging and exciting field is apparent from the papers published here.

  12. Tamper-indicating quantum optical seals

    SciTech Connect

    Humble, Travis S; Williams, Brian P

    2015-01-01

    Confidence in the means for identifying when tampering occurs is critical for containment and surveillance technologies. Fiber-optic seals have proven especially useful for actively surveying large areas or inventories due to the extended transmission range and flexible layout of fiber. However, it is reasonable to suspect that an intruder could tamper with a fiber-optic sensor by accurately replicating the light transmitted through the fiber. In this contribution, we demonstrate a novel approach to using fiber-optic seals for safeguarding large-scale inventories with increased confidence in the state of the seal. Our approach is based on the use of quantum mechanical phenomena to offer unprecedented surety in the authentication of the seal state. In particular, we show how quantum entangled photons can be used to monitor the integrity of a fiber-optic cable - the entangled photons serve as active sensing elements whose non-local correlations indicate normal seal operation. Moreover, we prove using the quantum no-cloning theorem that attacks against the quantum seal necessarily disturb its state and that these disturbances are immediately detected. Our quantum approach to seal authentication is based on physical principles alone and does not require the use of secret or proprietary information to ensure proper operation. We demonstrate an implementation of the quantum seal using a pair of entangled photons and we summarize our experimental results including the probability of detecting intrusions and the overall stability of the system design. We conclude by discussing the use of both free-space and fiber-based quantum seals for surveying large areas and inventories.

  13. Quantum Limits of Space-to-Ground Optical Communications

    NASA Technical Reports Server (NTRS)

    Hemmati, H.; Dolinar, S.

    2012-01-01

    Quantum limiting factors contributed by the transmitter, the optical channel, and the receiver of a space-to-ground optical communications link are described. Approaches to move toward the ultimate quantum limit are discussed.

  14. Nonlinear quantum optics mediated by Rydberg interactions

    NASA Astrophysics Data System (ADS)

    Firstenberg, O.; Adams, C. S.; Hofferberth, S.

    2016-08-01

    By mapping the strong interaction between Rydberg excitations in ultra-cold atomic ensembles onto single photons via electromagnetically induced transparency, it is now possible to realize a medium which exhibits a strong optical nonlinearity at the level of individual photons. We review the theoretical concepts and the experimental state-of-the-art of this exciting new field, and discuss first applications in the field of all-optical quantum information processing.

  15. High-Speed Digital Interferometry

    NASA Technical Reports Server (NTRS)

    De Vine, Glenn; Shaddock, Daniel A.; Ware, Brent; Spero, Robert E.; Wuchenich, Danielle M.; Klipstein, William M.; McKenzie, Kirk

    2012-01-01

    Digitally enhanced heterodyne interferometry (DI) is a laser metrology technique employing pseudo-random noise (PRN) codes phase-modulated onto an optical carrier. Combined with heterodyne interferometry, the PRN code is used to select individual signals, returning the inherent interferometric sensitivity determined by the optical wavelength. The signal isolation arises from the autocorrelation properties of the PRN code, enabling both rejection of spurious signals (e.g., from scattered light) and multiplexing capability using a single metrology system. The minimum separation of optical components is determined by the wavelength of the PRN code.

  16. Excess optical quantum noise in atomic sensors

    NASA Astrophysics Data System (ADS)

    Novikova, Irina; Mikhailov, Eugeniy; Xiao, Yanhong

    2015-05-01

    Enhanced nonlinear optical response of a coherent atomic medium is the basis for many atomic sensors, and their performance is ultimately limited by the quantum fluctuations of the optical read-out. Here we demonstrate that off-resonant interactions can significantly modify the quantum noise of the optical field, even when their effect on the mean signal is negligible. We illustrate this concept by using an atomic magnetometer based on the nonlinear Faraday effect: the rotation of the light polarization is mainly determined by the resonant light-induced spin alignment, which alone does not change the photon statistics of the optical probe. Yet, we found that the minimum noise of output polarization rotation measurements is above the expected shot noise limit. This excess quantum noise is due to off-resonant coupling and grows with atomic density. We also show that the detection scheme can be modified to reduce the measured quantum noise (even below the shot-noise limit) but only at the expense of the reduced rotational sensitivity. These results show the existence of previously unnoticed factors in fundamental limitations in atomic magnetometry and could have impacts in many other atom-light based precision measurements. We acknowledge the support from AFOSR (grant FA9550-13-1-0098), NSF (grant PHY-1308281), NBRPC(973 Program Grant 2012CB921604 and 2011CB921604), and NNSFC (Grants No. 11322436).

  17. Violation of Bell's inequalities in quantum optics

    NASA Technical Reports Server (NTRS)

    Reid, M. D.; Walls, D. F.

    1984-01-01

    An optical field produced by intracavity four-wave mixing is shown to exhibit the following nonclassical features: photon antibunching, squeezing, and violation of Cauchy-Schwarz and Bell's inequalities. These intrinsic quantum mechanical effects are shown to be associated with the nonexistence of a positive normalizable Glauber-Sudarshan P function.

  18. On the nonlocal predictions of quantum optics

    NASA Technical Reports Server (NTRS)

    Marshall, Trevor W.; Santos, Emilio; Vidiella-Barranco, Antonio

    1994-01-01

    We give a definition of locality in quantum optics based upon Bell's work, and show that locality has been violated in no experiment performed up to now. We argue that the interpretation of the Wigner function as a probability density gives a very attractive local realistic picture of quantum optics provided that this function is nonnegative. We conjecture that this is the case for all states which can be realized in the laboratory. In particular, we believe that the usual representation of 'single photon states' by a Fock state of the Hilbert space is not correct and that a more physical, although less simple mathematically, representation involves density matrices. We study in some detail the experiment showing anticorrelation after a beam splitter and prove that it naturally involves a positive Wigner function. Our (quantum) predictions for this experiment disagree with the ones reported in the literature.

  19. Sub-Poissonian processes in quantum optics

    NASA Astrophysics Data System (ADS)

    Davidovich, Luiz

    1996-01-01

    The author reviews methods for generating sub-Poissonian light and related concepts. This light has energy fluctuations reduced below the level which corresponds to a classical Poissonian process (shot-noise level). After an introduction to the concept of nonclassical light, an overview is given of the main methods of quantum-noise reduction. Sub-Poissonian processes are exemplified in different areas of optics, ranging from single-atom resonance fluorescence to nonlinear optics, laser physics, and cavity quantum electrodynamics. Emphasis is placed on the conceptual foundations, and on developments in laser theory that lead to the possibility, already demonstrated experimentally, of linewidth narrowing and sub-Poissonian light generation in lasers and masers. The sources of quantum noise in these devices are analyzed, and four noise-suppression methods are discussed in detail: regularization of the pumping, suppression of spontaneous-emission noise, nonadiabatic evolution of the atomic variables, and twin-beam generation.

  20. High-speed pulse-shape generator, pulse multiplexer

    DOEpatents

    Burkhart, Scott C.

    2002-01-01

    The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.

  1. High speed imaging - An important industrial tool

    NASA Technical Reports Server (NTRS)

    Moore, Alton; Pinelli, Thomas E.

    1986-01-01

    High-speed photography, which is a rapid sequence of photographs that allow an event to be analyzed through the stoppage of motion or the production of slow-motion effects, is examined. In high-speed photography 16, 35, and 70 mm film and framing rates between 64-12,000 frames per second are utilized to measure such factors as angles, velocities, failure points, and deflections. The use of dual timing lamps in high-speed photography and the difficulties encountered with exposure and programming the camera and event are discussed. The application of video cameras to the recording of high-speed events is described.

  2. High speed imaging - An important industrial tool

    NASA Astrophysics Data System (ADS)

    Moore, Alton; Pinelli, Thomas E.

    1986-05-01

    High-speed photography, which is a rapid sequence of photographs that allow an event to be analyzed through the stoppage of motion or the production of slow-motion effects, is examined. In high-speed photography 16, 35, and 70 mm film and framing rates between 64-12,000 frames per second are utilized to measure such factors as angles, velocities, failure points, and deflections. The use of dual timing lamps in high-speed photography and the difficulties encountered with exposure and programming the camera and event are discussed. The application of video cameras to the recording of high-speed events is described.

  3. Towards highly multimode optical quantum memory for quantum repeaters

    NASA Astrophysics Data System (ADS)

    Jobez, Pierre; Timoney, Nuala; Laplane, Cyril; Etesse, Jean; Ferrier, Alban; Goldner, Philippe; Gisin, Nicolas; Afzelius, Mikael

    2016-03-01

    Long-distance quantum communication through optical fibers is currently limited to a few hundreds of kilometres due to fiber losses. Quantum repeaters could extend this limit to continental distances. Most approaches to quantum repeaters require highly multimode quantum memories in order to reach high communication rates. The atomic frequency comb memory scheme can in principle achieve high temporal multimode storage, without sacrificing memory efficiency. However, previous demonstrations have been hampered by the difficulty of creating high-resolution atomic combs, which reduces the efficiency for multimode storage. In this article we present a comb preparation method that allows one to increase the multimode capacity for a fixed memory bandwidth. We apply the method to a 3+151Eu -doped Y2SiO5 crystal, in which we demonstrate storage of 100 modes for 51 μ s using the AFC echo scheme (a delay-line memory) and storage of 50 modes for 0.541 ms using the AFC spin-wave memory (an on-demand memory). We also briefly discuss the ultimate multimode limit imposed by the optical decoherence rate, for a fixed memory bandwidth.

  4. 850-nm Zn-diffusion vertical-cavity surface-emitting lasers with with oxide-relief structure for high-speed and energy-efficient optical interconnects from very-short to medium (2km) reaches

    NASA Astrophysics Data System (ADS)

    Shi, Jin-Wei; Wei, Chia-Chien; Chen, Jason (Jyehong); Yang, Ying-Jay

    2015-03-01

    High-speed and "green" ~850 nm vertical-cavity surface-emitting lasers (VCSELs) have lately attracted lots of attention due to their suitability for applications in optical interconnects (OIs). To further enhance the speed and its maximum allowable linking distance of VCSELs are two major trends to meet the requirement of OI in next generation data centers. Recently, by use of the advanced 850 nm VCSEL technique, data rate as high as 64 Gbit/sec over 57m and 20 Gbit/sec over 2km MMF transmission have been demonstrated, respectively. Here, we will review our recent work about 850 nm Zn-diffusion VCSELs with oxide-relief apertures to further enhance the above-mentioned performances. By using Zn-diffusion, we can not only reduce the device resistance but also manipulate the number of optical modes to benefit transmission. Combing such device, which has excellent single-mode (SMSR >30 dB) and high-power (~7mW) performance, with advanced modulation format (OFDM), record-high bit-rate-distance-product through MMF (2.3 km×28 Gbit/sec) has been demonstrated. Furthermore, by selective etching away the oxide aperture inside Zn-diffusion VCSEL, significant enhancement of device speed, D-factor, and reliability can be observed. With such unique VCSEL structure, >40 Gbit/sec energy-efficient transmission over 100m MMF under extremely low-driving current density (<10kA/cm2) has been successfully demonstrated.

  5. High-speed modulation of vertical cavity surface emitting lasers

    SciTech Connect

    Hietala, V.M.; Armendariz, M.G.; Choquette, K.D.; Lear, K.L.

    1998-03-01

    This report summarizes work on the development of high-speed vertical cavity surface emitting lasers (VCSELs) for multi-gigabit per second optical data communications applications (LDRD case number 3506.010). The program resulted in VCSELs that operate with an electrical bandwidth of 20 GHz along with a simultaneous conversion efficiency (DC to light) of about 20%. To achieve the large electrical bandwidth, conventional VCSELs were appropriately modified to reduce electrical parasitics and adapted for microwave probing for high-speed operation.

  6. Quantum criticality in disordered bosonic optical lattices

    SciTech Connect

    Cai Xiaoming; Chen Shu; Wang Yupeng

    2011-04-15

    Using the exact Bose-Fermi mapping, we study universal properties of ground-state density distributions and finite-temperature quantum critical behavior of one-dimensional hard-core bosons in trapped incommensurate optical lattices. Through the analysis of universal scaling relations in the quantum critical regime, we demonstrate that the superfluid-to-Bose-glass transition and the general phase diagram of disordered hard-core bosons can be uniquely determined from finite-temperature density distributions of the trapped disordered system.

  7. High-Speed Photography with Computer Control.

    ERIC Educational Resources Information Center

    Winters, Loren M.

    1991-01-01

    Describes the use of a microcomputer as an intervalometer for the control and timing of several flash units to photograph high-speed events. Applies this technology to study the oscillations of a stretched rubber band, the deceleration of high-speed projectiles in water, the splashes of milk drops, and the bursts of popcorn kernels. (MDH)

  8. High Speed Video for Airborne Instrumentation Application

    NASA Technical Reports Server (NTRS)

    Tseng, Ting; Reaves, Matthew; Mauldin, Kendall

    2006-01-01

    A flight-worthy high speed color video system has been developed. Extensive system development and ground and environmental. testing hes yielded a flight qualified High Speed Video System (HSVS), This HSVS was initially used on the F-15B #836 for the Lifting Insulating Foam Trajectory (LIFT) project.

  9. Reducing Heating In High-Speed Cinematography

    NASA Technical Reports Server (NTRS)

    Slater, Howard A.

    1989-01-01

    Infrared-absorbing and infrared-reflecting glass filters simple and effective means for reducing rise in temperature during high-speed motion-picture photography. "Hot-mirror" and "cold-mirror" configurations, employed in projection of images, helps prevent excessive heating of scenes by powerful lamps used in high-speed photography.

  10. High speed switching in gases

    SciTech Connect

    Cassell, R.E.; Villa, F.

    1989-02-01

    A fast, efficient and reliable switch is the basic ingredient of a pulse power accelerator. Two switches have been proposed so far: the solid state switch, and the vacuum photodiode switch. The solid state version has been tested to some extent, albeit at low (few kilovolts) level, with risetime around 10 ps in the radial line transformer configuration. The vacuum photodiode is being investigated by Fisher and Rao at Brookhaven National Laboratory. Common to both switches is the need of a short laser pulse; near infrared for the solid state switch, and ultraviolet for the vacuum photodiode switch. Another common feature is the poor energy gain of these switches: the gain being the ratio between the electrical energy switched and the laser energy needed to drive the switch. For the solid state switch, calculations and experimental data show that the energy gain cannot exceed a value between 5 and 10. For the vacuum photodiode, the situation is somewhat similar, unless very high quantum efficiency, rugged photocathodes can be found. A closing switch also can be used to produce short pulses of rf at frequencies related to its closing time, using a well-known device called the frozen wave generator. For a risetime of the order of 30 ps, one could produce several Gigawatts of rf at Xband at very low cost. 12 refs., 12 figs.

  11. Progress and issues for high-speed vertical cavity surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Lear, Kevin L.; Al-Omari, Ahmad N.

    2007-02-01

    Extrinsic electrical, thermal, and optical issues rather than intrinsic factors currently constrain the maximum bandwidth of directly modulated vertical cavity surface emitting lasers (VCSELs). Intrinsic limits based on resonance frequency, damping, and K-factor analysis are summarized. Previous reports are used to compare parasitic circuit values and electrical 3dB bandwidths and thermal resistances. A correlation between multimode operation and junction heating with bandwidth saturation is presented. The extrinsic factors motivate modified bottom-emitting structures with no electrical pads, small mesas, copper plated heatsinks, and uniform current injection. Selected results on high speed quantum well and quantum dot VCSELs at 850 nm, 980 nm, and 1070 nm are reviewed including small-signal 3dB frequencies up to 21.5 GHz and bit rates up to 30 Gb/s.

  12. OPTICS. Quantum spin Hall effect of light.

    PubMed

    Bliokh, Konstantin Y; Smirnova, Daria; Nori, Franco

    2015-06-26

    Maxwell's equations, formulated 150 years ago, ultimately describe properties of light, from classical electromagnetism to quantum and relativistic aspects. The latter ones result in remarkable geometric and topological phenomena related to the spin-1 massless nature of photons. By analyzing fundamental spin properties of Maxwell waves, we show that free-space light exhibits an intrinsic quantum spin Hall effect—surface modes with strong spin-momentum locking. These modes are evanescent waves that form, for example, surface plasmon-polaritons at vacuum-metal interfaces. Our findings illuminate the unusual transverse spin in evanescent waves and explain recent experiments that have demonstrated the transverse spin-direction locking in the excitation of surface optical modes. This deepens our understanding of Maxwell's theory, reveals analogies with topological insulators for electrons, and offers applications for robust spin-directional optical interfaces. PMID:26113717

  13. Optical Lattices With Quantum Gas Microscope

    NASA Astrophysics Data System (ADS)

    Peng, Amy Wan-Chih

    In this thesis, we demonstrate how the recent achievement of single site resolution using the "Quantum Gas Microscope" can be integrated with a system of ultra-cold atoms in a two dimensional optical lattice, to facilitate the study of condensed matter Hamiltonians in the strongly interacting regime. With the combination of magnetic and optical manipulation of atoms, we show how to reproducibly generate cold two dimensional Bose Einstein Condensates of 87Rb situated at the focus of our "Quantum Gas Microscope", allowing us to utilise the high numerical aperture for both lattice generation and single atom detection. As a first demonstration of the type of study we can perform with this apparatus, we implement the Bose-Hubbard Hamiltonian and give some evidence of the superfluid to Mott insulator transition in this system, seen on the single lattice site level.

  14. Quantum vacuum radiation in optical glass

    NASA Astrophysics Data System (ADS)

    Liberati, Stefano; Prain, Angus; Visser, Matt

    2012-04-01

    A recent experimental claim of the detection of analogue Hawking radiation in an optical system [Phys. Rev. Lett. 105, 203901 (2010)PRLTAO0031-900710.1103/PhysRevLett.105.203901] has led to some controversy [Phys. Rev. Lett. 107, 149401 (2011)PRLTAO0031-900710.1103/PhysRevLett.107.149401]. While this experiment strongly suggests some form of particle creation from the quantum vacuum (and hence it is per se very interesting), it is also true that it seems difficult to completely explain all features of the observations by adopting the perspective of a Hawking-like mechanism for the radiation. For instance, the observed photons are emitted parallel to the optical horizon, and the relevant optical horizon is itself defined in an unusual manner by combining group and phase velocities. This raises the question: Is this really Hawking radiation, or some other form of quantum vacuum radiation? Naive estimates of the amount of quantum vacuum radiation generated due to the rapidly changing refractive index—sometimes called the dynamical Casimir effect—are not encouraging. However we feel that naive estimates could be misleading depending on the quantitative magnitude of two specific physical effects: “pulse steepening” and “pulse cresting”. Plausible bounds on the maximum size of these two effects results in estimates much closer to the experimental observations, and we argue that the dynamical Casimir effect is now worth additional investigation.

  15. Quantum amplification and quantum optical tapping with squeezed states and correlated quantum states

    NASA Technical Reports Server (NTRS)

    Ou, Z. Y.; Pereira, S. F.; Kimble, H. J.

    1994-01-01

    Quantum fluctuations in a nondegenerate optical parametric amplifier (NOPA) are investigated experimentally with a squeezed state coupled into the internal idler mode of the NOPA. Reductions of the inherent quantum noise of the amplifier are observed with a minimum noise level 0.7 dB below the usual noise level of the amplifier with its idler mode in a vacuum state. With two correlated quantum fields as the amplifier's inputs and proper adjustment of the gain of the amplifier, it is shown that the amplifier's intrinsic quantum noise can be completely suppressed so that noise-free amplification is achieved. It is also shown that the NOPA, when coupled to either a squeezed state or a nonclassically correlated state, can realize quantum tapping of optical information.

  16. High-speed curing by laser irradiation

    NASA Astrophysics Data System (ADS)

    Decker, Christian

    1999-05-01

    Laser-assisted processing of multifunctional systems is a very efficient method for achieving high-speed curing of photosensitive resins. With acrylate functionalized monomers and polymers, crosslinking was achieved upon a few millisecond exposure to a UV laser beam, in the presence of a radical-type photoinitiator. The polymerization reaction was followed in real-time by infrared spectroscopy and shown to proceed with long kinetic chains (up to 20,000 functional groups polymerized per initiating radical). An acrylate functionalized polyester proved to be the most reactive system, with formation of a tightly cross-linked and strickly insoluble polymer. Its high sensitivity makes this photoresist particularly well suited for laser direct imaging applications. Similar results have been obtained with epoxy and vinyl ether functionalized polymers, which undergo a fast cationic polymerization in the presence of a photogenerated protonic acid. Interpenetrating polymer networks have been synthetized by laser irradiation of blends of acrylate and epoxy-functionalized oligomers to obtain polymers that combine the elastomeric character of cross-linked polyurethanes and the toughness of epoxy polymers. These laser-sensitive polymers are to be used as photoresists to produce microcircuits, as protective coatings of optical fibers, as recording media in holography and as photocurable resins in stereolithography.

  17. High-Speed RaPToRS

    NASA Astrophysics Data System (ADS)

    Henchen, Robert; Esham, Benjamin; Becker, William; Pogozelski, Edward; Padalino, Stephen; Sangster, Thomas; Glebov, Vladimir

    2008-11-01

    The High-Speed Rapid Pneumatic Transport of Radioactive Samples (HS-RaPToRS) system, designed to quickly and safely move radioactive materials, was assembled and tested at the Mercury facility of the Naval Research Laboratory (NRL) in Washington D.C. A sample, which is placed inside a four-inch-diameter carrier, is activated before being transported through a PVC tube via airflow. The carrier travels from the reaction chamber to the end station where it pneumatically brakes prior to the gate. A magnetic latch releases the gate when the carrier arrives and comes to rest. The airflow, optical carrier-monitoring devices, and end gate are controlled manually or automatically with LabView software. The installation and testing of the RaPToRS system at NRL was successfully completed with transport times of less than 3 seconds. The speed of the carrier averaged 16 m/s. Prospective facilities for similar systems include the Laboratory for Laser Energetics and the National Ignition Facility.

  18. Sensor study for high speed autonomous operations

    NASA Astrophysics Data System (ADS)

    Schneider, Anne; La Celle, Zachary; Lacaze, Alberto; Murphy, Karl; Del Giorno, Mark; Close, Ryan

    2015-06-01

    As robotic ground systems advance in capabilities and begin to fulfill new roles in both civilian and military life, the limitation of slow operational speed has become a hindrance to the wide-spread adoption of these systems. For example, military convoys are reluctant to employ autonomous vehicles when these systems slow their movement from 60 miles per hour down to 40. However, these autonomous systems must operate at these lower speeds due to the limitations of the sensors they employ. Robotic Research, with its extensive experience in ground autonomy and associated problems therein, in conjunction with CERDEC/Night Vision and Electronic Sensors Directorate (NVESD), has performed a study to specify system and detection requirements; determined how current autonomy sensors perform in various scenarios; and analyzed how sensors should be employed to increase operational speeds of ground vehicles. The sensors evaluated in this study include the state of the art in LADAR/LIDAR, Radar, Electro-Optical, and Infrared sensors, and have been analyzed at high speeds to study their effectiveness in detecting and accounting for obstacles and other perception challenges. By creating a common set of testing benchmarks, and by testing in a wide range of real-world conditions, Robotic Research has evaluated where sensors can be successfully employed today; where sensors fall short; and which technologies should be examined and developed further. This study is the first step to achieve the overarching goal of doubling ground vehicle speeds on any given terrain.

  19. The WS2 quantum dot: preparation, characterization and its optical limiting effect in polymethylmethacrylate.

    PubMed

    Long, Hui; Tao, Lili; Chiu, Chun Pang; Tang, Chun Yin; Fung, Kin Hung; Chai, Yang; Tsang, Yuen Hong

    2016-10-14

    Due to the matching surface energy, WS2 quantum dots (QDs) can be obtained through direct liquid exfoliation in N-methyl-2-pyrrolidone rather than an ethanol and water mixture. Ultra-small WS2 QDs with a diameter of 2.4 nm are fabricated by an ultrasound method followed by high speed centrifugation up to 10 000 rpm. An excellent nonlinear optical (NLO) property of the WS2 QD/ polymethylmethacrylate (PMMA) composite for the nanosecond pulsed laser at both 532 and 1064 nm has been measured. Results illustrate the lower onset thresholds (F ON ), lower optical limiting thresholds (F OL ), and higher two-photon absorption coefficient (β) with respect to a higher concentration of embedded WS2 QDs into the PMMA solid state matrix for both 532 and 1064 nm. PMID:27607761

  20. Laryngeal High-Speed Videoendoscopy: Rationale and Recommendation for Accurate and Consistent Terminology

    PubMed Central

    Deliyski, Dimitar D.; Hillman, Robert E.

    2015-01-01

    Purpose The authors discuss the rationale behind the term laryngeal high-speed videoendoscopy to describe the application of high-speed endoscopic imaging techniques to the visualization of vocal fold vibration. Method Commentary on the advantages of using accurate and consistent terminology in the field of voice research is provided. Specific justification is described for each component of the term high-speed videoendoscopy, which is compared and contrasted with alternative terminologies in the literature. Results In addition to the ubiquitous high-speed descriptor, the term endoscopy is necessary to specify the appropriate imaging technology and distinguish among modalities such as ultrasound, magnetic resonance imaging, and nonendoscopic optical imaging. Furthermore, the term video critically indicates the electronic recording of a sequence of optical still images representing scenes in motion, in contrast to strobed images using high-speed photography and non-optical high-speed magnetic resonance imaging. High-speed videoendoscopy thus concisely describes the technology and can be appended by the desired anatomical nomenclature such as laryngeal. Conclusions Laryngeal high-speed videoendoscopy strikes a balance between conciseness and specificity when referring to the typical high-speed imaging method performed on human participants. Guidance for the creation of future terminology provides clarity and context for current and future experiments and the dissemination of results among researchers. PMID:26375398

  1. Damping Bearings In High-Speed Turbomachines

    NASA Technical Reports Server (NTRS)

    Von Pragenau, George L.

    1994-01-01

    Paper presents comparison of damping bearings with traditional ball, roller, and hydrostatic bearings in high-speed cryogenic turbopumps. Concept of damping bearings described in "Damping Seals and Bearings for a Turbomachine" (MFS-28345).

  2. Study of high speed photography measuring instrument

    NASA Astrophysics Data System (ADS)

    Zhang, Zhijun; Sun, Jiyu; Wu, Keyong

    2007-01-01

    High speed photograph measuring instrument is mainly used to measure and track the exterior ballistics, which can measure the flying position of the missile in the initial phase and trajectory. A new high speed photograph measuring instrument is presented in this paper. High speed photography measuring system records the parameters of object real-time, and then acquires the flying position and trajectory data of the missile in the initial phase. The detection distance of high speed photography is more than 4.5km, and the least detection distance is 450m, under the condition of well-balanced angular velocity and angular acceleration, program pilot track error less than 5'. This instrument also can measure and record the flying trail and trajectory parameters of plane's aero naval missile.

  3. Lubrication and cooling for high speed gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.

    1985-01-01

    The problems and failures occurring with the operation of high speed gears are discussed. The gearing losses associated with high speed gearing such as tooth mesh friction, bearing friction, churning, and windage are discussed with various ways shown to help reduce these losses and thereby improve efficiency. Several different methods of oil jet lubrication for high speed gearing are given such as into mesh, out of mesh, and radial jet lubrication. The experiments and analytical results for the various methods of oil jet lubrication are shown with the strengths and weaknesses of each method discussed. The analytical and experimental results of gear lubrication and cooling at various test conditions are presented. These results show the very definite need of improved methods of gear cooling at high speed and high load conditions.

  4. Ultra-high speed communications based on solitons in fibers

    NASA Astrophysics Data System (ADS)

    Hasegawa, Akira

    2000-10-01

    The citation of the Maxwell prize reads: ``For innovative discoveries and seminal contributions to the theories of nonlinear drift wave turbulence, Alfvén wave propagation in laboratory and space plasmas, and optical solitons and their application to high speed communication". The prize is given to three somewhat unrelated contributions made during the course of my career as a plasma physicist. Traditionally an award talk summarizes works related to the citation. However, because of the diversified contents of the citations, I prepared my talk with the focus only on the last topic because some of the audience may be of more expertise on the other subjects. I apologize for the fact that the talk may be worth only one third of the prize. Multi-Terabits’s, ultra-high speed optical transmissions over several thousand kilometers on fibers are becoming reality and are expected to serve as the trunk line for highly demanded Internet traffics. Most of them use soliton or soliton-like RZ (Return to Zero) format in fibers with properly managed (group velocity) dispersion. These formats are the only stable envelope waveforms of light waves in fibers in the presence of Kerr (cubic) nonlineariy and dispersion with loss compensated by periodic optical amplifications. In practice, the transmission systems utilize the all-optical transmission concept and the nonlinear Schrodinger equation assisted by the split step numerical solutions as the master equation to describe the information transfer in fibers. All these facts are the outcome of research on optical solitons in fibers. The talk presents a brief historical development of the soliton based high-speed communications followed by current status of ultra-high speed communications by means of solitons as well as by other formats. Although the talk may not be of a core interest of plasma physics community, it presents an interesting example of a useful by-product of plasma physics research.

  5. Quantum Optics of Ultra-Cold Molecules

    NASA Astrophysics Data System (ADS)

    Meiser, D.; Miyakawa, T.; Uys, H.; Meystre, P.

    Quantum optics has been a major driving force behind the rapid experimental developments that have led from the first laser cooling schemes to the Bose-Einstein condensation (BEC) of dilute atomic and molecular gases. Not only has it provided experimentalists with the necessary tools to create ultra-cold atomic systems, but it has also provided theorists with a formalism and framework to describe them: many effects now being studied in quantum-degenerate atomic and molecular systems find a very natural explanation in a quantum optics picture. This article briefly reviews three such examples that find their direct inspiration in the trailblazing work carried out over the years by Herbert Walther, one of the true giants of that field. Specifically, we use an analogy with the micromaser to analyze ultra-cold molecules in a double-well potential; study the formation and dissociation dynamics of molecules using the passage time statistics familiar from superradiance and superfluorescence studies; and show how molecules can be used to probe higher-order correlations in ultra-cold atomic gases, in particular bunching and antibunching.

  6. Quantum cryptography on multiuser optical fibre networks

    NASA Astrophysics Data System (ADS)

    Townsend, Paul D.

    1997-01-01

    To establish a secure communication channel, it is necessary to distribute between two users a key which allows safe encryption and decryption of messages. But because decryption is a simple task for any key holder, it is crucial that the key remains secret during distribution. Secrecy cannot be guaranteed if distribution occurs on the basis of classical physical mechanisms, as it is impossible to know whether the key has been intercepted during transmission. Quantum cryptography1-3 provides a fundamental solution to this problem. When quantum-mechanical processes are used to establish the key, any eavesdropping during transmission leads to an unavoidable and detectable disturbance in the received key information. Quantum cryptography has been demonstrated using standard telecommunication fibres linking single pairs of users4-8, but practical implementations will require communication networks with many users9. Here I introduce a practical scheme for multi-user quantum cryptography, and demonstrate its operation on an optical fibre network. The scheme enables a single controller on the network to establish, and regularly update, a distinct secret key with each network user. These keys can then be used to securely encrypt conventional data transmissions that are broadcast on the network.

  7. Giant electro-optic effect in Ge/SiGe coupled quantum wells

    PubMed Central

    Frigerio, Jacopo; Vakarin, Vladyslav; Chaisakul, Papichaya; Ferretto, Marcello; Chrastina, Daniel; Le Roux, Xavier; Vivien, Laurent; Isella, Giovanni; Marris-Morini, Delphine

    2015-01-01

    Silicon-based photonics is now considered as the photonic platform for the next generation of on-chip communications. However, the development of compact and low power consumption optical modulators is still challenging. Here we report a giant electro-optic effect in Ge/SiGe coupled quantum wells. This promising effect is based on an anomalous quantum-confined Stark effect due to the separate confinement of electrons and holes in the Ge/SiGe coupled quantum wells. This phenomenon can be exploited to strongly enhance optical modulator performance with respect to the standard approaches developed so far in silicon photonics. We have measured a refractive index variation up to 2.3 × 10−3 under a bias voltage of 1.5 V, with an associated modulation efficiency VπLπ of 0.046 V cm. This demonstration paves the way for the development of efficient and high-speed phase modulators based on the Ge/SiGe material system. PMID:26477947

  8. Giant electro-optic effect in Ge/SiGe coupled quantum wells.

    PubMed

    Frigerio, Jacopo; Vakarin, Vladyslav; Chaisakul, Papichaya; Ferretto, Marcello; Chrastina, Daniel; Le Roux, Xavier; Vivien, Laurent; Isella, Giovanni; Marris-Morini, Delphine

    2015-01-01

    Silicon-based photonics is now considered as the photonic platform for the next generation of on-chip communications. However, the development of compact and low power consumption optical modulators is still challenging. Here we report a giant electro-optic effect in Ge/SiGe coupled quantum wells. This promising effect is based on an anomalous quantum-confined Stark effect due to the separate confinement of electrons and holes in the Ge/SiGe coupled quantum wells. This phenomenon can be exploited to strongly enhance optical modulator performance with respect to the standard approaches developed so far in silicon photonics. We have measured a refractive index variation up to 2.3 × 10(-3) under a bias voltage of 1.5 V, with an associated modulation efficiency V(π)L(π) of 0.046 V cm. This demonstration paves the way for the development of efficient and high-speed phase modulators based on the Ge/SiGe material system. PMID:26477947

  9. A high-speed photonic clock and carrier regenerator

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Lutes, G.

    1995-01-01

    As data communications rates climb toward 10 Gbits/s, clock recovery and synchronization become more difficult, if not impossible, using conventional electronic circuits. The high-speed photonic clock regenerator described in this article may be more suitable for such use. This photonic regenerator is based on a previously reported photonic oscillator capable of fast acquisition and synchronization. With both electrical and optical clock inputs and outputs, the device is easily interfaced with fiber-optic systems. The recovered electrical clock can be used locally and the optical clock can be used anywhere within a several kilometer radius of the clock/carrier regenerator.

  10. Ultracold quantum gases in triangular optical lattices

    NASA Astrophysics Data System (ADS)

    Becker, C.; Soltan-Panahi, P.; Kronjäger, J.; Dörscher, S.; Bongs, K.; Sengstock, K.

    2010-06-01

    Over recent years, exciting developments in the field of ultracold atoms confined in optical lattices have led to numerous theoretical proposals devoted to the quantum simulation of problems e.g. known from condensed matter physics. Many of those ideas demand experimental environments with non-cubic lattice geometries. In this paper, we report on the implementation of a versatile three-beam lattice allowing for the generation of triangular as well as hexagonal optical lattices. As an important step, the superfluid-Mott insulator (SF-MI) quantum phase transition has been observed and investigated in detail in this lattice geometry for the first time. In addition to this, we study the physics of spinor Bose-Einstein condensates (BEC) in the presence of the triangular optical lattice potential, especially spin changing dynamics across the SF-MI transition. Our results suggest that, below the SF-MI phase transition, a well-established mean-field model describes the observed data when renormalizing the spin-dependent interaction. Interestingly, this opens up new perspectives for a lattice-driven tuning of a spin dynamics resonance occurring through the interplay of the quadratic Zeeman effect and spin-dependent interaction. Finally, we discuss further lattice configurations that can be realized with our setup.

  11. The high speed interconnect system architecture and operation

    NASA Astrophysics Data System (ADS)

    Anderson, Steven C.

    The design and operation of a fiber-optic high-speed interconnect system (HSIS) being developed to meet the requirements of future avionics and flight-control hardware with distributed-system architectures are discussed. The HSIS is intended for 100-Mb/s operation of a local-area network with up to 256 stations. It comprises a bus transmission system (passive star couplers and linear media linked by active elements) and network interface units (NIUs). Each NIU is designed to perform the physical, data link, network, and transport functions defined by the ISO OSI Basic Reference Model (1982 and 1983) and incorporates a fiber-optic transceiver, a high-speed protocol based on the SAE AE-9B linear token-passing data bus (1986), and a specialized application interface unit. The operating modes and capabilities of HSIS are described in detail and illustrated with diagrams.

  12. Flow-Visualization Techniques Used at High Speed by Configuration Aerodynamics Wind-Tunnel-Test Team

    NASA Technical Reports Server (NTRS)

    Lamar, John E. (Editor)

    2001-01-01

    This paper summarizes a variety of optically based flow-visualization techniques used for high-speed research by the Configuration Aerodynamics Wind-Tunnel Test Team of the High-Speed Research Program during its tenure. The work of other national experts is included for completeness. Details of each technique with applications and status in various national wind tunnels are given.

  13. Efficient quantum optical state engineering and applications

    NASA Astrophysics Data System (ADS)

    McCusker, Kevin T.

    Over a century after the modern prediction of the existence of individual particles of light by Albert Einstein, a reliable source of this simple quantum state of one photon does not exist. While common light sources such as a light bulb, LED, or laser can produce a pulse of light with an average of one photon, there is (currently) no way of knowing the number of photons in that pulse without first absorbing (and thereby destroying) them. Spontaneous parametric down-conversion, a process in which one high-energy photon splits into two lower-energy photons, allows us to prepare a single-photon state by detecting one of the photons, which then heralds the existence of its twin. This process has been the workhorse of quantum optics, allowing demonstrations of a myriad of quantum processes and protocols, such as entanglement, cryptography, superdense coding, teleportation, and simple quantum computing demonstrations. All of these processes would benefit from better engineering of the underlying down-conversion process, but despite significant effort (both theoretical and experimental), optimization of this process is ongoing. The focus of this work is to optimize certain aspects of a down-conversion source, and then use this tool in novel experiments not otherwise feasible. Specifically, the goal is to optimize the heralding efficiency of the down-conversion photons, i.e., the probability that if one photon is detected, the other photon is also detected. This source is then applied to two experiments (a single-photon source, and a quantum cryptography implementation), and the detailed theory of an additional application (a source of Fock states and path-entangled states, called N00N states) is discussed, along with some other possible applications.

  14. Fibonacci optical lattices for tunable quantum quasicrystals

    NASA Astrophysics Data System (ADS)

    Singh, K.; Saha, K.; Parameswaran, S. A.; Weld, D. M.

    2015-12-01

    We describe a quasiperiodic optical lattice, created by a physical realization of the abstract cut-and-project construction underlying all quasicrystals. The resulting potential is a generalization of the Fibonacci tiling. Calculation of the energies and wave functions of ultracold atoms loaded into such a lattice demonstrate a multifractal energy spectrum, a singular continuous momentum-space structure, and the existence of controllable edge states. These results open the door to cold atom quantum simulation experiments in tunable or dynamic quasicrystalline potentials, including topological pumping of edge states and phasonic spectroscopy.

  15. Monolithically integrated quantum dot optical gain modulator with semiconductor optical amplifier for 10-Gb/s photonic transmission

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-03-01

    Short-range interconnection and/or data center networks require high capacity and a large number of channels in order to support numerous connections. Solutions employed to meet these requirements involve the use of alternative wavebands to increase the usable optical frequency range. We recently proposed the use of the T- and O-bands (Thousand band: 1000-1260 nm, Original band: 1260-1360 nm) as alternative wavebands because large optical frequency resources (>60 THz) can be easily employed. In addition, a simple and compact Gb/s-order high-speed optical modulator is a critical photonic device for short-range communications. Therefore, to develop an optical modulator that acts as a highfunctional photonic device, we focused on the use of self-assembled quantum dots (QDs) as a three-dimensional (3D) confined structure because QD structures are highly suitable for realizing broadband optical gain media in the T+O bands. In this study, we use the high-quality broadband QD optical gain to develop a monolithically integrated QD optical gain modulator (QD-OGM) device that has a semiconductor optical amplifier (QD-SOA) for Gb/s-order highspeed optical data generation in the 1.3-μm waveband. The insertion loss of the device can be compensated through the SOA, and we obtained an optical gain change of up to ~7 dB in the OGM section. Further, we successfully demonstrate a 10-Gb/s clear eye opening using the QD-OGM/SOA device with a clock-data recovery sequence at the receiver end. These results suggest that the monolithic QD-EOM/SOA is suitable for increasing the number of wavelength channels for smart short-range communications.

  16. Classical and quantum optics of hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Jacob, Zubin

    Nanotechnology has paved the way for artificial materials which have electromagnetic, mechanical, thermal and acoustic properties beyond those which are ordinarily found in nature. Photonic nanomaterials hold the promise:- to usher in a new generation of photonic devices with imaging capabilities well beyond the reach of conventional optics, to drive CMOS compatible nanophotonics research for sustaining Moores law and even address pressing societal needs of solar energy harvesting. The central theme of this thesis is the understanding of the essential physics for new devices based on nanofabricated metamaterials, where the bulk macroscopic material properties are governed and tailored at will, according to the constituent nanostructured building blocks. The particular class of metamaterials considered are uniaxial media with an extreme dielectric anisotropy i.e. materials with dielectric constants of opposite signs in the dielectric tensor. This gives rise to a hyperbolic dispersion relation for extraordinary propagating waves in the medium. We unravel a unique singularity in the photonic density of states (PDOS) of such hyperbolic metamaterials. The remarkable property which sets it apart from other photonic systems is the broad spectral bandwidth in which the PDOS diverges, paving the way for a new approach to controlling broadband light-matter interaction. We use the unique electromagnetic metamaterial states that cause the divergence in the PDOS for two specific device applications: subdiffraction imaging and quantum optics. We solve the long standing problem of the fundamental diffraction limit which plagues all conventional optical imaging systems using a device called the hyperlens, comprising of nanostructured hyperbolic metamaterials. The hyperlens produces magnified images of subwavelength objects in the far-field, promising to revolutionize applications such as nano-bio imaging and subdiffraction lithography. We show that the hyperlens can be understood

  17. Ultracold lanthanides: from optical clock to a quantum simulator

    NASA Astrophysics Data System (ADS)

    Vishnyakova, G. A.; Golovizin, A. A.; Kalganova, E. S.; Sorokin, V. N.; Sukachev, D. D.; Tregubov, D. O.; Khabarova, K. Yu; Kolachevsky, N. N.

    2016-02-01

    We review the current research on precision spectroscopy and quantum optics applications of laser-cooled lanthanides. We discuss the specific electronic structure of hollow atoms, which determine prospects for application in optical frequency standards and in quantum simulators based on spin interactions in optical lattices. Using the example of the thulium atom, we describe the specifics of laser cooling, optical lattice trapping techniques, and clock transition spectroscopy using spectrally narrow lasers.

  18. Heterostructures as a quantum optical klistron

    SciTech Connect

    Malov, Yu.A.

    1995-12-31

    THE beam of {open_quotes}hot{close_quotes} ballistic electrons which were first obtained experimentally in (1) is considered when passing through the heterostructures consisting of two potential barriers in barriers in the presence of FEL tuning in infra-red region. In the presence of the first barrier the electron beam in the FEL electromagnetic field can either absorb or emit the field quanta. The initial electron beam may split into states n=1 (absorption of one quantum), n=0 (the beam energy unchanged), and n=-1 (emission of one quantum). The interference of the states with n=0, n=1 and n=0, n=1 results in the initiation of two traveling modulation waves at electromagnetic frequency w. Beats between these waves in the region of the of their overlapping lead to a periodic dependence of the modulation from w. It has been found that the spontaneous coherent radiation (SCR) intensity oscillates with the period depending on FEL frequency w. It is possible to increase or to decrease the spectral intensity of SCR varying w. The suggested idea of modulation on the first barrier of heterostructures and the radiation of modulated electron beam on the second barrier is a scheme of an quantum optical klistron in infra-red region.

  19. Optical electronics

    NASA Technical Reports Server (NTRS)

    Javan, A.

    1976-01-01

    The development of an optical diode consisting of a metal-dielectric-metal junction in which the high-speed electric conduction process occurs due to quantum mechanical electron tunneling across the dielectric barrier is briefly reviewed. Potential applications of the diode are discussed.

  20. Machine Vision Techniques For High Speed Videography

    NASA Astrophysics Data System (ADS)

    Hunter, David B.

    1984-11-01

    The priority associated with U.S. efforts to increase productivity has led to, among other things, the development of Machine Vision systems for use in manufacturing automation requirements. Many such systems combine solid state television cameras and data processing equipment to facilitate high speed, on-line inspection and real time dimensional measurement of parts and assemblies. These parts are often randomly oriented and spaced on a conveyor belt under continuous motion. Television imagery of high speed events has historically been achieved by use of pulsed (strobe) illumination or high speed shutter techniques synchronized with a camera's vertical blanking to separate write and read cycle operation. Lack of synchronization between part position and camera scanning in most on-line applications precludes use of this vertical interval illumination technique. Alternatively, many Machine Vision cameras incorporate special techniques for asynchronous, stop-motion imaging. Such cameras are capable of imaging parts asynchronously at rates approaching 60 hertz while remaining compatible with standard video recording units. Techniques for asynchronous, stop-motion imaging have not been incorporated in cameras used for High Speed Videography. Imaging of these events has alternatively been obtained through the utilization of special, high frame rate cameras to minimize motion during the frame interval. High frame rate cameras must undoubtedly be utilized for recording of high speed events occurring at high repetition rates. However, such cameras require very specialized, and often expensive, video recording equipment. It seems, therefore, that Machine Vision cameras with capability for asynchronous, stop-motion imaging represent a viable approach for cost effective video recording of high speed events occurring at repetition rates up to 60 hertz.

  1. Quantum confinement in metal nanofilms: Optical spectra

    NASA Astrophysics Data System (ADS)

    Khmelinskii, Igor; Makarov, Vladimir I.

    2016-05-01

    We report optical absorption and photoluminescence spectra of Au, Fe, Co and Ni polycrystalline nanofilms in the UV-vis-NIR range, featuring discrete bands resulting from transverse quantum confinement. The film thickness ranged from 1.1 to 15.6 nm, depending on the material. The films were deposited on fused silica substrates by sputtering/thermo-evaporation, with Fe, Co and Ni protected by a SiO2 film deposited on top. The results are interpreted within the particle-in-a-box model, with the box width equal to the mass thickness of the nanofilm. The transverse-quantized energy levels and transition energies scale as the inverse square of the film thickness. The calculated values of the effective electron mass are 0.93 (Au), 0.027 (Fe), 0.21 (Co) and 0.16 (Ni), in units of mo - the mass of the free electron, being independent on the film thickness. The uncertainties in the effective mass values are ca. 2.5%, determined by the film thickness calibration. The second calculated model parameter, the quantum number n of the HOMO, was thickness-independent in Au (5.00) and Fe (6.00), and increased with the film thickness in Co (from 7 to 9) and Ni (from 7 to 11). The transitions observed in the absorbance all start at the level n and correspond to Δn=+1, +2, +3, etc. The photoluminescence bands exhibit large Stokes shifts, shifting to higher energies with the increased excitation energy. The photoluminescence quantum yields grow linearly with the excitation energy, showing evidence of multiple exciton generation. A prototype Fe-SnO2 nanofilm photovoltaic cell demonstrated at least 90% quantum yield of photoelectrons at 77 K.

  2. Arbitrary unitary transformations on optical states using a quantum memory

    SciTech Connect

    Campbell, Geoff T.; Pinel, Olivier; Hosseini, Mahdi; Buchler, Ben C.; Lam, Ping Koy

    2014-12-04

    We show that optical memories arranged along an optical path can perform arbitrary unitary transformations on frequency domain optical states. The protocol offers favourable scaling and can be used with any quantum memory that uses an off-resonant Raman transition to reversibly transfer optical information to an atomic spin coherence.

  3. Application of Optical Measurement Techniques During Stages of Pregnancy: Use of Phantom High Speed Cameras for Digital Image Correlation (D.I.C.) During Baby Kicking and Abdomen Movements

    NASA Technical Reports Server (NTRS)

    Gradl, Paul

    2016-01-01

    Paired images were collected using a projected pattern instead of standard painting of the speckle pattern on her abdomen. High Speed cameras were post triggered after movements felt. Data was collected at 120 fps -limited due to 60hz frequency of projector. To ensure that kicks and movement data was real a background test was conducted with no baby movement (to correct for breathing and body motion).

  4. Aerodynamics of High-Speed Trains

    NASA Astrophysics Data System (ADS)

    Schetz, Joseph A.

    This review highlights the differences between the aerodynamics of high-speed trains and other types of transportation vehicles. The emphasis is on modern, high-speed trains, including magnetic levitation (Maglev) trains. Some of the key differences are derived from the fact that trains operate near the ground or a track, have much greater length-to-diameter ratios than other vehicles, pass close to each other and to trackside structures, are more subject to crosswinds, and operate in tunnels with entry and exit events. The coverage includes experimental techniques and results and analytical and numerical methods, concentrating on the most recent information available.

  5. Small, high-speed dataflow processor

    SciTech Connect

    Leler, W.

    1983-01-01

    Dataflow processors show much promise for high-speed computation at reasonable cost, but they are not without problems. The author discusses a processor design which combines ideas from dynamic dataflow architecture with those from reduced instruction set computers and proven large computers with parallel internal structures. The resulting processor includes a number of innovations, including operand destinations, killer tokens, I/O streams and closed-loop computation, which result in a small, relatively inexpensive processor capable of high-speed computation. The expected application areas of the processor include interactive computer graphics, signal processing, and artificial intelligence. 6 references.

  6. PREFACE: International Conference on Quantum Optics and Quantum Information (icQoQi) 2013

    NASA Astrophysics Data System (ADS)

    2014-11-01

    Quantum Information can be understood as being naturally derived from a new understanding of information theory when quantum systems become information carriers and quantum effects become non negligible. Experiments and the realization of various interesting phenomena in quantum information within the established field of quantum optics have been reported, which has provided a very convenient framework for the former. Together, quantum optics and quantum information are among the most exciting areas of interdisciplinary research in modern day science which cover a broad spectrum of topics, from the foundations of quantum mechanics and quantum information science to the introduction of new types of quantum technologies and metrology. The International Conference on Quantum Optics and Quantum Information (icQoQi) 2013 was organized by the Faculty of Science, International Islamic University Malaysia with the objective of bringing together leading academic scientists, researchers and scholars in the domain of interest from around the world to share their experiences and research results about all aspects of quantum optics and quantum information. While the event was organized on a somewhat modest scale, it was in fact a rather fruitful meeting for established researchers and students as well, especially for the local scene where the field is relatively new. We would therefore, like to thank the organizing committee, our advisors and all parties for having made this event successful and last but not least would extend our sincerest gratitude to IOP for publishing these selected papers from icQoQi2013 in Journal of Physics: Conference Series.

  7. EDITORIAL The 17th Central European Workshop on Quantum Optics

    NASA Astrophysics Data System (ADS)

    Man'ko, Margarita A.

    2011-02-01

    Although the origin of quantum optics can be traced back to the beginning of the 20th century, when the fundamental ideas about the quantum nature of the interaction between light and matter were put forward, the splendid blossoming of this part of physics began half a century later, after the invention of masers and lasers. It is remarkable that after another half a century the tree of quantum optics is not only very strong and spreading, but all its branches continue to grow, showing new beautiful blossoms and giving very useful fruits. A reflection of this progress has been the origin and development of the series of annual events called the Central European Workshops on Quantum Optics (CEWQO). They started at the beginning of the 1990s as rather small meetings of physicists from a few countries in central-eastern Europe, but in less than two decades they have transformed into important events, gathering 100 to 200 participants from practically all European countries. Moreover, many specialists from other continents like to attend these meetings, since they provide an excellent chance to hear about the latest results and new directions of research. Regarding this, it seems worth mentioning at least some of the most interesting and important areas of quantum optics that have attracted the attention of researchers for the past two decades. One of these areas is quantum information, which over the course of time has become an almost independent area of quantum physics. But it still maintains very close ties with quantum optics. The specific parts of this area are, in particular, quantum computing, quantum communication and quantum cryptography, and the problem of quantitative description of such genuine quantum phenomena as entanglement is one of the central items in the current stream of publications. Theory and experiment related to quantum tomography have also become important to contemporary quantum optics. They are closely related to the subject of so

  8. Quantum cryptography and applications in the optical fiber network

    NASA Astrophysics Data System (ADS)

    Luo, Yuhui

    2005-09-01

    Quantum cryptography, as part of quantum information and communications, can provide absolute security for information transmission because it is established on the fundamental laws of quantum theory, such as the principle of uncertainty, No-cloning theorem and quantum entanglement. In this thesis research, a novel scheme to implement quantum key distribution based on multiphoton entanglement with a new protocol is proposed. Its advantages are: a larger information capacity can be obtained with a longer transmission distance and the detection of multiple photons is easier than that of a single photon. The security and attacks pertaining to such a system are also studied. Next, a quantum key distribution over wavelength division multiplexed (WDM) optical fiber networks is realized. Quantum key distribution in networks is a long-standing problem for practical applications. Here we combine quantum cryptography and WDM to solve this problem because WDM technology is universally deployed in the current and next generation fiber networks. The ultimate target is to deploy quantum key distribution over commercial networks. The problems arising from the networks are also studied in this part. Then quantum key distribution in multi-access networks using wavelength routing technology is investigated in this research. For the first time, quantum cryptography for multiple individually targeted users has been successfully implemented in sharp contrast to that using the indiscriminating broadcasting structure. It overcomes the shortcoming that every user in the network can acquire the quantum key signals intended to be exchanged between only two users. Furthermore, a more efficient scheme of quantum key distribution is adopted, hence resulting in a higher key rate. Lastly, a quantum random number generator based on quantum optics has been experimentally demonstrated. This device is a key component for quantum key distribution as it can create truly random numbers, which is an

  9. High Speed Photography In The Federal Republic Of Germany

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Manfred

    1983-03-01

    The present paper gives a survey on recent applications of high-speed photography and cinematography in various fields of scientific research such as plasma physics, laser physics and high power pulse technology. Toward this end classical optical systems have been used and new recording methods have been developed. Improved temporal and spatial resolution has been achieved. High-speed shutters provide useful information if self-luminous phenomena have to be in-vestigated. Since high light amplification is obtained with intensifiers even weakly luminous processes such as electrical prebreakdown phenomena can be recorded. The use of lasers provides highly interesting applications in the ps-, ns- and in the ps-time scale. New laser switching techniques are reported. Nano- and subnanosecond laser pulses, like those produced by superradiant gas laser sources are currently used, because pulse repetition rates up to the GHz range are easily available. By the use of additional dyes the wavelengths of these pulses can be transformed nearly throughout the whole visible spectral range. If needed for particular experiments, precise timing can be provided. For highest time resolution, however, mode locked lasers are required. Examples are given of the feasability of high-speed photographic techniques for the investigation of electrical discharges, for example in sparks or in plasma focus devices, and for studies of optically induced breakdown processes by focussing high power laser radiation on solids state targets, liquids or gases.

  10. High speed single- and dual-stage vertical positioners

    NASA Astrophysics Data System (ADS)

    Yong, Yuen K.; Wadikhaye, Sachin P.; Fleming, Andrew J.

    2016-08-01

    This article presents a high-speed single- and dual-stage vertical positioners for applications in optical systems. Each positioner employs a unique end-constraint method with orthogonal flexures to preload a piezoelectric stack actuator. This end-constraint method also significantly increases the first mechanical resonance frequency. The single-stage positioner has a displacement range of 7.6 μm and a first resonance frequency of 46.8 kHz. The dual-stage design consists of a long-range slow-stage and a short-range fast-stage. An inertial counterbalance technique was implemented on the fast-stage to cancel inertial forces resulting from high-speed motion. The dual-stage positioner has a combined travel range of approximately 10 μm and a first evident resonance frequency of 130 kHz.

  11. High speed single- and dual-stage vertical positioners.

    PubMed

    Yong, Yuen K; Wadikhaye, Sachin P; Fleming, Andrew J

    2016-08-01

    This article presents a high-speed single- and dual-stage vertical positioners for applications in optical systems. Each positioner employs a unique end-constraint method with orthogonal flexures to preload a piezoelectric stack actuator. This end-constraint method also significantly increases the first mechanical resonance frequency. The single-stage positioner has a displacement range of 7.6 μm and a first resonance frequency of 46.8 kHz. The dual-stage design consists of a long-range slow-stage and a short-range fast-stage. An inertial counterbalance technique was implemented on the fast-stage to cancel inertial forces resulting from high-speed motion. The dual-stage positioner has a combined travel range of approximately 10 μm and a first evident resonance frequency of 130 kHz. PMID:27587157

  12. Reconfigurable high-speed optoelectronic interconnect technology for multiprocessor computers

    NASA Astrophysics Data System (ADS)

    Cheng, Julian

    1995-06-01

    We describe a compact optoelectronic switching technology for interconnecting multiple computer processors and shared memory modules together through dynamically reconfigurable optical paths to provide simultaneous, high speed communication amongst different nodes. Each switch provides a optical link to other nodes as well as electrical access to an individual processor, and it can perform optical and optoelectronic switching to covert digital data between various electrical and optical input/output formats. This multifunctional switching technology is based on the monolithic integration of arrays of vertical-cavity surface-emitting lasers with photodetectors and heterojunction bipolar transistors. The various digital switching and routing functions, as well as optically cascaded multistage operation, have been experimentally demonstrated.

  13. High Speed and Slow Motion: The Technology of Modern High Speed Cameras

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2011-01-01

    The enormous progress in the fields of microsystem technology, microelectronics and computer science has led to the development of powerful high speed cameras. Recently a number of such cameras became available as low cost consumer products which can also be used for the teaching of physics. The technology of high speed cameras is discussed,…

  14. Design and application of a digital array high-speed camera system

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Yao, Xuefeng; Ma, Yinji; Yuan, Yanan

    2016-03-01

    In this paper, a digital array high-speed camera system is designed and applied in dynamic fracture experiment. First, the design scheme for 3*3 array digital high-speed camera system is presented, including 3*3 array light emitting diode (LED) light source unit, 3*3 array charge coupled device (CCD) camera unit, timing delay control unit, optical imaging unit and impact loading unit. Second, the influence of geometric optical parameters on optical parallax is analyzed based on the geometric optical imaging mechanism. Finally, combining the method of dynamic caustics with the digital high-speed camera system, the dynamic fracture behavior of crack initiation and propagation in PMMA specimen under low-speed impact is investigated to verify the feasibility of the high-speed camera system.

  15. Excitations of quantum gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Yesilada, Emek

    This thesis describes experiments that studied the excitations of an ultra-cold atomic Rb gas in an optical lattice using Bragg spectroscopy. A Bose-Einstein condensate (BEC) of 87Rb was formed in a cloverleaf trap. An optical lattice of cubic symmetry, formed by the interference of six laser beams, was superimposed on the Rb BEC and turned on adiabatically. Such a system is well described by the Bose-Hubbard model, which predicts a quantum phase transition from a superfluid to a Mott insulator state at a critical lattice depth. In the first experiment, we studied the superfluid regime. The superfluid admits sound waves as phonon excitations. In two photon Bragg spectroscopy two laser beams intersecting at angle on the condensate create such excitations. The excitation spectrum of BEC was measured in a three dimensional optical lattice as a function of lattice strength. In the second experiment we studied the excitation spectrum of the Mott insulator. The lowest energy excitations in such a system are particle-hole excitations. These correspond to the hopping of atoms from one lattice site to another. The insulating phase is characterized by a gap in the excitation spectrum and we measured this particle-hole gap by Bragg spectroscopy. The precise nature of our measurement allowed us to study the opening of the excitation gap that has previously eluded experimental verification.

  16. Ultracompact quantum well waveguide electro-optic modulators

    NASA Astrophysics Data System (ADS)

    Zucker, Jane E.

    1994-06-01

    Quantum well heterostructures provide enhanced electrooptic effects that allow waveguide modulators with both low drive voltage requirements and small physical footprint. Compactness is important for incorporation in systems where space is at a premium or weight is an issue. Minimizing waveguide device length is also a critical factor in reducing production cost, especially when the modulator is monolithically integrated with other components for higher functionality. Finally, for electrorefractive waveguide modulators that are RC-limited, compactness is the key to obtaining high speed operation.

  17. Ultracold Quantum Gases in Hexagonal Optical Lattices

    NASA Astrophysics Data System (ADS)

    Sengstock, Klaus

    2010-03-01

    Hexagonal structures occur in a vast variety of systems, ranging from honeycombs of bees in life sciences to carbon nanotubes in material sciences. The latter, in particular its unfolded two-dimensional layer -- Graphene -- has rapidly grown to one of the most discussed topics in condensed-matter physics. Not only does it show proximity to various carbon-based materials but also exceptional properties owing to its unusual energy spectrum. In quantum optics, ultracold quantum gases confined in periodic light fields have shown to be very general and versatile instruments to mimic solid state systems. However, so far nearly all experiments were performed in cubic lattice geometries only. Here we report on the first experimental realization of ultracold quantum gases in a state-dependent, two-dimensional, Graphene-like optical lattice with hexagonal symmetry. The lattice is realized via a spin-dependent optical lattice structure with alternating σ^+ and σ^- -sites and thus constitutes a so called `magnetic'-lattice with `antiferromagnetic'-structure. Atoms with different spin orientation can be loaded to specific lattice sites or -- depending on the parameters -- to the whole lattice. As a consequence e.g. superpositions of a superfluid spin component with a different spin component in the Mott-insulating phase can be realized as well as spin-dependent transport properties, disorder etc. After preparing an antiferromagnetically ordered state we e.g. measure sustainable changes of the transport properties of the atoms. This manifests in a significant reduction of the tunneling as compared to a single-component system. We attribute this observation to a partial tunneling blockade for one spin component induced by population in another spin component localized at alternating lattice sites. Within a Gutzwiller-Ansatz we calculate the phase diagrams for the mixed spin-states and find very good agreement with our experimental results. Moreover, by state-resolved recording

  18. Italian High-speed Airplane Engines

    NASA Technical Reports Server (NTRS)

    Bona, C F

    1940-01-01

    This paper presents an account of Italian high-speed engine designs. The tests were performed on the Fiat AS6 engine, and all components of that engine are discussed from cylinders to superchargers as well as the test set-up. The results of the bench tests are given along with the performance of the engines in various races.

  19. Aerodynamic design on high-speed trains

    NASA Astrophysics Data System (ADS)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-01-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  20. High speed hydrogen/graphite interaction

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Hamman, R.; Sharma, O. P.; Harrje, D. T.

    1974-01-01

    Various aspects of a research program on high speed hydrogen/graphite interaction are presented. Major areas discussed are: (1) theoretical predictions of hydrogen/graphite erosion rates; (2) high temperature, nonequilibrium hydrogen flow in a nozzle; and (3) molecular beam studies of hydrogen/graphite erosion.