Science.gov

Sample records for high-tc superconducting fault

  1. Gauge Model of High-Tc Superconductivity

    NASA Astrophysics Data System (ADS)

    Kui Ng, Sze

    2012-12-01

    A simple gauge model of superconductivity is presented. The seagull vertex term of this gauge model gives an attractive potential between electrons for the forming of Cooper pairs of superconductivity. This gauge model gives a unified description of superconductivity and magnetism including antiferromagnetism, pseudogap phenomenon, stripes phenomenon, paramagnetic Meissner effect, Type I and Type II supeconductivity and high-Tc superconductivity. The doping mechanism of superconductivity is found. It is shown that the critical temperature Tc is related to the ionization energies of elements and can be computed by a formula of Tc. For the high-Tc superconductors such as La2-xSrxCuO4, Y Ba2Cu3O7, and MgB2, the computational results of Tc agree with the experimental results.

  2. High Tc superconducting materials and devices

    NASA Technical Reports Server (NTRS)

    Haertling, Gene H.

    1990-01-01

    The high Tc Y1Ba2Cu3O(7-x) ceramic materials, initially developed in 1987, are now being extensively investigated for a variety of engineering applications. The superconductor applications which are presently identified as of most interest to NASA-LaRC are low-noise, low thermal conductivity grounding links; large-area linear Meissner-effect bearings; and sensitive, low-noise sensors and leads. Devices designed for these applications require the development of a number of processing and fabrication technologies. Included among the technologies most specific to the present needs are tapecasting, melt texturing, magnetic field grain alignment, superconductor/polymer composite fabrication, thin film MOD (metal-organic decomposition) processing, screen printing of thick films, and photolithography of thin films. The overall objective of the program was to establish a high Tc superconductivity laboratory capability at NASA-LaRC and demonstrate this capability by fabricating superconducting 123 material via bulk and thin film processes. Specific objectives include: order equipment and set up laboratory; prepare 1 kg batches of 123 material via oxide raw material; construct tapecaster and tapecaster 123 material; fabricate 123 grounding link; fabricate 123 composite for Meissner linear bearing; develop 123 thin film processes (nitrates, acetates); establish Tc and Jc measurement capability; and set up a commercial use of space program in superconductivity at LaRC. In general, most of the objectives of the program were met. Finally, efforts to implement a commercial use of space program in superconductivity at LaRC were completed and at least two industrial companies have indicated their interest in participating.

  3. Research on high Tc superconducting compounds

    NASA Technical Reports Server (NTRS)

    Oliver, Frederick W. (Principal Investigator)

    1996-01-01

    Mossbauer research using the 21.54 kev resonance radiation of Eu-151 on the high temperature superconductors Bi(2)Ca(0.5)Eu(0.5)Sr(2)CU2O(x), and EuBa(2)CU(3)O(7-x) is performed. For the Bismuth compound the Mossbauer measurements gave a weak signal at room temperature but improved at lower temperatures. Experimental data indicated that europium is located at only one crystallographic site. Isomer shift measurements were .69 + 0.02 mm/s with respect to EuF(3). The linewidth at room temperature was found to be 2.54 mm/s. This value falls within the values observed by other researchers on Eu based 1,2,3 high-Tc compounds. Our results also show the Eu to be trivalent with no trace of divalent europium present. Superconducting europium based 1,2,3 compounds were prepared and measurements completed. Our results show the Eu to be trivalent with no trace of divalent europium present. These compounds had an average isomer shift of .73 mm/s +/- O.02 for all samples made. One of these was irradiated with 3.5 X 10(exp 16) neutrons and a comparison made of the Mossbauer parameters for the irradiated and non-irradiated samples. Experimental results showed no difference between linewidths but a measurable effect was seen for the isomer shift.

  4. High-Tc superconducting monolithic phase shifter

    NASA Astrophysics Data System (ADS)

    Takemoto-Kobayashi, June H.; Jackson, Charles M.; Pettiette-Hall, Claire L.; Burch, John F.

    1992-03-01

    A high temperature superconducting (HTS) X-band phase shifter using a distributed Josephson inductance (DJI) approach was designed and fabricated. Phase swings of over 60 deg were measured at 65 K and below, with measurable phase shifts at temperatures above 77 K. High quality HTS films and superconducting quantum interference devices (SQUIDs) were deposited by laser ablation. A total of 40 HTS step edge SQUIDs were successfully integrated into a monolithic HTS circuit to produce a phase shifter in a resonant configuration. The magnitude of the Josephson inductance is calculated and a lumped element model is compared to measurements.

  5. Unconventional high-Tc superconductivity in fullerides.

    PubMed

    Takabayashi, Yasuhiro; Prassides, Kosmas

    2016-09-13

    A3C60 molecular superconductors share a common electronic phase diagram with unconventional high-temperature superconductors such as the cuprates: superconductivity emerges from an antiferromagnetic strongly correlated Mott-insulating state upon tuning a parameter such as pressure (bandwidth control) accompanied by a dome-shaped dependence of the critical temperature, Tc However, unlike atom-based superconductors, the parent state from which superconductivity emerges solely by changing an electronic parameter-the overlap between the outer wave functions of the constituent molecules-is controlled by the C60 (3-) molecular electronic structure via the on-molecule Jahn-Teller effect influence of molecular geometry and spin state. Destruction of the parent Mott-Jahn-Teller state through chemical or physical pressurization yields an unconventional Jahn-Teller metal, where quasi-localized and itinerant electron behaviours coexist. Localized features gradually disappear with lattice contraction and conventional Fermi liquid behaviour is recovered. The nature of the underlying (correlated versus weak-coupling Bardeen-Cooper-Schrieffer theory) s-wave superconducting states mirrors the unconventional/conventional metal dichotomy: the highest superconducting critical temperature occurs at the crossover between Jahn-Teller and Fermi liquid metal when the Jahn-Teller distortion melts.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. PMID:27501971

  6. Generalized statistics and high- Tc superconductivity

    NASA Astrophysics Data System (ADS)

    Uys, H.; Miller, H. G.; Khanna, F. C.

    2001-10-01

    Introducing the generalized, non-extensive statistics proposed by Tsallis (J. Stat. Phys. 52 (1/2) (1988) 479) into the standard s-wave pairing BCS theory of superconductivity in 2D yields a reasonable description of many of the main properties of high temperature superconductors, provided some allowance is made for non-phonon mediated interactions.

  7. High-Tc superconducting quantum interference device recordings of spontaneous brain activity: Towards high-Tc magnetoencephalography

    NASA Astrophysics Data System (ADS)

    Öisjöen, F.; Schneiderman, J. F.; Figueras, G. A.; Chukharkin, M. L.; Kalabukhov, A.; Hedström, A.; Elam, M.; Winkler, D.

    2012-03-01

    We have performed single- and two-channel high transition temperature (high-Tc) superconducting quantum interference device (SQUID) magnetoencephalography (MEG) recordings of spontaneous brain activity in two healthy human subjects. We demonstrate modulation of two well-known brain rhythms: the occipital alpha rhythm and the mu rhythm found in the motor cortex. We further show that despite higher noise-levels compared to their low-Tc counterparts, high-Tc SQUIDs can be used to detect and record physiologically relevant brain rhythms with comparable signal-to-noise ratios. These results indicate the utility of high-Tc technology in MEG recordings of a broader range of brain activity.

  8. Ultrafast IR detector response in high Tc superconducting thin films

    NASA Technical Reports Server (NTRS)

    Lindgren, Mikael; Ahlberg, Henrik; Danerud, Martin; Larsson, Anders; Eng, Sverre T.

    1991-01-01

    The response from a high Tc superconducting multielement optical detector made of a laser deposited Y-Ba-Cu-O thin film has been evaluated. Several microscopic and spectroscopic techniques were used to establish the presence of the correct phase of the thin film. Optical pulses from a laser diode at 830 nm and from a Q-switched CO2-laser at 10.6 microns were used. The detector responded to 50 ps (FWHM) pulses. A comparison between dR/dT of the film and the response amplitude as a function of temperature indicated a bolometric response.

  9. Fabrication Of High-Tc Superconducting Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Warner, Joseph D.

    1992-01-01

    Microwave ring resonator fabricated to demonstrate process for fabrication of passive integrated circuits containing high-transition-temperature superconductors. Superconductors increase efficiencies of communication systems, particularly microwave communication systems, by reducing ohmic losses and dispersion of signals. Used to reduce sizes and masses and increase aiming accuracies and tracking speeds of millimeter-wavelength, electronically steerable antennas. High-Tc superconductors preferable for such applications because they operate at higher temperatures than low-Tc superconductors do, therefore, refrigeration systems needed to maintain superconductivity designed smaller and lighter and to consume less power.

  10. Pressure and high-Tc superconductivity in sulfur hydrides

    PubMed Central

    Gor’kov, Lev P.; Kresin, Vladimir Z.

    2016-01-01

    The paper discusses fundamentals of record-TC superconductivity discovered under high pressure in sulfur hydride. The rapid increase of TC with pressure in the vicinity of Pcr ≈ 123GPa is interpreted as the fingerprint of a first-order structural transition. Based on the cubic symmetry of the high-TC phase, it is argued that the lower-TC phase has a different periodicity, possibly related to an instability with a commensurate structural vector. In addition to the acoustic branches, the phonon spectrum of H3S contains hydrogen modes with much higher frequencies. Because of the complex spectrum, usual methods of calculating TC are here inapplicable. A modified approach is formulated and shown to provide realistic values for TC and to determine the relative contributions of optical and acoustic branches. The isotope effect (change of TC upon Deuterium for Hydrogen substitution) originates from high frequency phonons and differs in the two phases. The decrease of TC following its maximum in the high-TC phase is a sign of intermixing with pairing at hole-like pockets which arise in the energy spectrum of the cubic phase at the structural transition. On-pockets pairing leads to the appearance of a second gap and is remarkable for its non-adiabatic regime: hydrogen mode frequencies are comparable to the Fermi energy. PMID:27167334

  11. Pressure and high-Tc superconductivity in sulfur hydrides.

    PubMed

    Gor'kov, Lev P; Kresin, Vladimir Z

    2016-01-01

    The paper discusses fundamentals of record-TC superconductivity discovered under high pressure in sulfur hydride. The rapid increase of TC with pressure in the vicinity of Pcr ≈ 123GPa is interpreted as the fingerprint of a first-order structural transition. Based on the cubic symmetry of the high-TC phase, it is argued that the lower-TC phase has a different periodicity, possibly related to an instability with a commensurate structural vector. In addition to the acoustic branches, the phonon spectrum of H3S contains hydrogen modes with much higher frequencies. Because of the complex spectrum, usual methods of calculating TC are here inapplicable. A modified approach is formulated and shown to provide realistic values for TC and to determine the relative contributions of optical and acoustic branches. The isotope effect (change of TC upon Deuterium for Hydrogen substitution) originates from high frequency phonons and differs in the two phases. The decrease of TC following its maximum in the high-TC phase is a sign of intermixing with pairing at hole-like pockets which arise in the energy spectrum of the cubic phase at the structural transition. On-pockets pairing leads to the appearance of a second gap and is remarkable for its non-adiabatic regime: hydrogen mode frequencies are comparable to the Fermi energy. PMID:27167334

  12. Pressure and high-Tc superconductivity in sulfur hydrides

    NASA Astrophysics Data System (ADS)

    Gor’Kov, Lev P.; Kresin, Vladimir Z.

    2016-05-01

    The paper discusses fundamentals of record-TC superconductivity discovered under high pressure in sulfur hydride. The rapid increase of TC with pressure in the vicinity of Pcr ≈ 123GPa is interpreted as the fingerprint of a first-order structural transition. Based on the cubic symmetry of the high-TC phase, it is argued that the lower-TC phase has a different periodicity, possibly related to an instability with a commensurate structural vector. In addition to the acoustic branches, the phonon spectrum of H3S contains hydrogen modes with much higher frequencies. Because of the complex spectrum, usual methods of calculating TC are here inapplicable. A modified approach is formulated and shown to provide realistic values for TC and to determine the relative contributions of optical and acoustic branches. The isotope effect (change of TC upon Deuterium for Hydrogen substitution) originates from high frequency phonons and differs in the two phases. The decrease of TC following its maximum in the high-TC phase is a sign of intermixing with pairing at hole-like pockets which arise in the energy spectrum of the cubic phase at the structural transition. On-pockets pairing leads to the appearance of a second gap and is remarkable for its non-adiabatic regime: hydrogen mode frequencies are comparable to the Fermi energy.

  13. Metallic alloy targets for high Tc superconducting film deposition

    NASA Astrophysics Data System (ADS)

    Manini, P.; Nigro, A.; Romano, P.; Vaglio, R.

    1989-02-01

    Many experiments are nowadays conducting worldwide on superconducting films based on the recently developed high Tc superconductor materials (YBCO, BISCO, etc). There are different ways to produce these films, among which sputtering and evaporation are most popular. Normally, use is made of oxides, pure metals or compounds as material sources. In the present paper we describe the fabrication process and the physico-chemical characteristics of various metallic alloy components for both sputtering and evaporation processes which show various advantages in terms of stability, easiness of use, purity, flexibility in composition and shape and allow good process control. Deposition techniques and experimental results obtained on thin films of the new superconductors realized starting from these alloys are also reported.

  14. Terahertz imaging system using high-Tc superconducting oscillation devices

    NASA Astrophysics Data System (ADS)

    Tsujimoto, M.; Minami, H.; Delfanazari, K.; Sawamura, M.; Nakayama, R.; Kitamura, T.; Yamamoto, T.; Kashiwagi, T.; Hattori, T.; Kadowaki, K.

    2012-06-01

    Microwatt power oscillation devices at sub-terahertz frequency region between 0.3 and 1.0 terahertz (THz) were fabricated from high-Tc superconducting single crystalline Bi2Sr2CaCu2O8+δ and used as a source of the transmission terahertz imaging system. As test examples, terahertz images of coins and a razor blade placed inside the brownish paper envelopes with the spatial resolution of 1 mm are presented. The signal-to-noise ratio exceeds 130 in these images. Using a simple wedge-shaped interferometer and analysing the interference fringe pattern, the wavelength of the terahertz wave is calibrated within 0.1% accuracy. This interferometer also provides a simple method to measure the absorption coefficient of the liquid sample. Two test measurements for distilled water and ethanol are demonstrated and their absorption coefficients are obtained with 99.2% accuracy. This suggests that our terahertz imaging system can be applied to many practical applications, such as biological and biomedical imaging, environmental monitoring, microanalysis of impurities, structure and dynamical analyses of large molecules and ions in solution.

  15. Direct Pen Writing of High-Tc, Flexible Magnesium Diboride Superconducting Arrays.

    PubMed

    Xue, Mianqi; Chen, Dong; Long, Yujia; Wang, Peipei; Zhao, Lingxiao; Chen, Genfu

    2015-06-24

    High-Tc , flexible MgB2 -nanowire-based superconducting arrays are fabricated via a direct pen writing method on both copper foils and poly(dimethylsiloxane) (PDMS) substrates. Such superconducting arrays constitute a new approach for fabricating superconducting devices. The realization of a PDMS-based device demonstrates the potential for expanding this material into other high-Tc superconductor systems, which may lead to novel ways of driving the development of "real-life" applications. PMID:25974155

  16. High-Tc superconducting materials for electric power applications.

    PubMed

    Larbalestier, D; Gurevich, A; Feldmann, D M; Polyanskii, A

    2001-11-15

    Large-scale superconducting electric devices for power industry depend critically on wires with high critical current densities at temperatures where cryogenic losses are tolerable. This restricts choice to two high-temperature cuprate superconductors, (Bi,Pb)2Sr2Ca2Cu3Ox and YBa2Cu3Ox, and possibly to MgB2, recently discovered to superconduct at 39 K. Crystal structure and material anisotropy place fundamental restrictions on their properties, especially in polycrystalline form. So far, power applications have followed a largely empirical, twin-track approach of conductor development and construction of prototype devices. The feasibility of superconducting power cables, magnetic energy-storage devices, transformers, fault current limiters and motors, largely using (Bi,Pb)2Sr2Ca2Cu3Ox conductor, is proven. Widespread applications now depend significantly on cost-effective resolution of fundamental materials and fabrication issues, which control the production of low-cost, high-performance conductors of these remarkable compounds. PMID:11713544

  17. Magnetic field generated by shielding current in high Tc superconducting coils for NMR magnets

    NASA Astrophysics Data System (ADS)

    Amemiya, Naoyuki; Akachi, Ken

    2008-09-01

    Numerical electromagnetic field analyses of high Tc superconducting tape in coils were carried out to calculate the magnetic field generated by the shielding (magnetization) current in superconducting tape. The numerical model employs the power law electric field-current density characteristic and the thin strip approximation, in which the current component normal to the wide face of the tape is neglected. The shielding (magnetization) currents lead to non-uniform current distributions in the superconducting tape in the coils. The magnetic field generated by the shielding (magnetization) current can deteriorate the field quality and could be a concern in insert coils for NMR magnets using high Tc superconducting tape.

  18. A Simple Demonstration of High Tc Superconductive Powder.

    ERIC Educational Resources Information Center

    Baker, Roger; Thompson, James C.

    1987-01-01

    Described is a simple demonstration that provides a way to determine if a given sample contains even a small fraction of superconducting material. The repulsion of the powder from a magnetic field is indicative of superconductivity. (RH)

  19. Mechanical resonance characteristics of a high-{Tc} superconducting levitation system

    SciTech Connect

    Sugiura, Toshihiko; Fujimori, Hideki

    1996-05-01

    This research deals with dynamic response of a permanent magnet freely levitated above an excited high-{Tc} superconductor. Evaluation of dynamic characteristics is required in mechanical design of high-{Tc} superconducting levitation systems. Their dynamics is coupled with Type-II superconducting phenomena. By a numerical approach based on some macroscopic models they evaluate mechanical resonance characteristics of a superconducting levitation system. Numerical results show some nonlinear properties and effect of the flux flow in Type-II superconductor, which are observed in experiments or predicted by analyses.

  20. Applications using high-Tc superconducting terahertz emitters

    NASA Astrophysics Data System (ADS)

    Nakade, Kurama; Kashiwagi, Takanari; Saiwai, Yoshihiko; Minami, Hidetoshi; Yamamoto, Takashi; Klemm, Richard A.; Kadowaki, Kazuo

    2016-03-01

    Using recently-developed THz emitters constructed from single crystals of the high-Tc superconductor Bi2Sr2CaCu2O8+δ, we performed three prototype tests of the devices to demonstrate their unique characteristic properties for various practical applications. The first is a compact and simple transmission type of THz imaging system using a Stirling cryocooler. The second is a high-resolution Michelson interferometer used as a phase-sensitive reflection-type imaging system. The third is a system with precise temperature control to measure the liquid absorption coefficient. The detailed characteristics of these systems are discussed.

  1. Applications using high-Tc superconducting terahertz emitters

    PubMed Central

    Nakade, Kurama; Kashiwagi, Takanari; Saiwai, Yoshihiko; Minami, Hidetoshi; Yamamoto, Takashi; Klemm, Richard A.; Kadowaki, Kazuo

    2016-01-01

    Using recently-developed THz emitters constructed from single crystals of the high-Tc superconductor Bi2Sr2CaCu2O8+δ, we performed three prototype tests of the devices to demonstrate their unique characteristic properties for various practical applications. The first is a compact and simple transmission type of THz imaging system using a Stirling cryocooler. The second is a high-resolution Michelson interferometer used as a phase-sensitive reflection-type imaging system. The third is a system with precise temperature control to measure the liquid absorption coefficient. The detailed characteristics of these systems are discussed. PMID:26983905

  2. Comprehensive Study of High-Tc Interface Superconductivity

    SciTech Connect

    Logvenov, G.; Gozar A.; Butko, V.Y.; Bollinger, A.T.; Bozovic, N.; Radovic, Z.; Bozovic, I.

    2010-08-01

    Using ALL-MBE technique, we have synthesized different heterostructures consisting of an insulator La{sub 2}CuO{sub 4} (I) and a metal La{sub 1.56}Sr{sub 0.44}CuO{sub 4} (M) layer neither of which is superconducting by itself. The M-I bilayers were superconducting with a critical temperature T{sub c} {approx} 30-36 K. This highly robust phenomenon is confined within 1-2 nm from the interface and is primarily caused by the redistribution of doped holes across the interface. In this paper, we present a comprehensive study of the interface superconductivity by a range of experimental techniques including transport measurements of superconducting properties.

  3. Fabrication and superconducting properties of high Tc oxide wire

    NASA Astrophysics Data System (ADS)

    Sadakata, N.; Ikeno, Y.; Nakagawa, M.; Gotoh, K.; Kohno, O.

    The fabrication of silver sheathed Y-Ba-Cu-O wire by powder metallurgical techniques is discussed along with the superconducting properties of the wire. Although the wire deforming process was shown to degrade superconductivity in the oxide core, the crystal structure remained orthorhombic. Heat treatment at 900 C was found to be effective in recovering a high critical temperature at 89 K. Due to defects in the oxide core, the maximum critical current density was only 560 A/sq cm. It is noted that oxide wire without a silver sheath achieved a value of 3930 A/sq cm in liquid nitrogen.

  4. Magnetic forces in high-Tc superconducting bearings

    NASA Technical Reports Server (NTRS)

    Moon, F. C.

    1991-01-01

    In September 1987, researchers at Cornell levitated a small rotor on superconducting bearings at 10,000 rpm. In April 1989, a speed of 120,000 rpm was achieved in a passive bearing with no active control. The bearing material used was YBa2Cu307. There is no evidence that the rotation speed has any significant effect on the lift force. Magnetic force measurements between a permanent rare-earth magnet and high T(sub c) superconducting material versus vertical and lateral displacements were made. A large hysteresis loop results for large displacements, while minor loops result for small displacements. These minor loops seem to give a slope proportional to the magnetic stiffness, and are probably indicative of flux pinning forces. Experiments of rotary speed versus time show a linear decay in a vacuum. Measurements of magnetic dipole over a high-T(sub c) superconducting disc of YBCO show that the lateral vibrations of levitated rotors were measured which indicates that transverse flux motion in the superconductor will create dissipation. As a result of these force measurements, an optimum shape for the superconductor bearing pads which gives good lateral and axial stability was designed. Recent force measurements on melt-quench processed superconductors indicate a substantial increase in levitation force and magnetic stiffness over free sintered materials. As a result, application of high-T(sub c) superconducting bearings are beginning to show great promise at this time.

  5. High Tc superconducting bolometric and nonbolometric infrared (IR) detectors

    NASA Technical Reports Server (NTRS)

    Lakeou, Samuel; Rajeswari, M.; Goyal, Anuja

    1995-01-01

    The workplan for the period August 1994 through August 1995 includes the following: (1) expand the Applied Superconductivity Laboratory to include stand-alone optical response and noise measurement setups; (2) pursue studies of the low frequency excess electrical noise in YBCO films; and (3) enhance the academic support component of the project through increased student and faculty participation.

  6. Optimal High-TC Superconductivity in Cs3C60

    NASA Astrophysics Data System (ADS)

    Harshman, Dale; Fiory, Anthony

    The highest superconducting transition temperatures in the (A1-xBx)3C60 superconducting family are seen in the A15 and FCC structural phases of Cs3C60 (optimized under hydrostatic pressure), exhibiting measured values for near-stoichiometric samples of TC0 meas . = 37.8 K and 35.7 K, respectively. It is argued these two Cs-intercalated C60 compounds represent the optimal materials of their respective structures, with superconductivity originating from Coulombic e- h interactions between the C60 molecules, which host the n-type superconductivity, and mediating holes associated with the Cs cations. A variation of the interlayer Coulombic pairing model [Harshman and Fiory, J. Supercond. Nov. Magn. 28 ̲, 2967 (2015), and references therein] is introduced in which TC0 calc . ~ 1 / lζ , where l relates to the mean spacing between interacting charges on surfaces of the C60 molecules, and ζ is the average radial distance between the surface of the C60 molecules and the neighboring Cs cations. For stoichiometric Cs3C60, TC0 calc . = 38.08 K and 35.67 K for the A15 and FCC macrostructures, respectively; the dichotomy is attributable to differences in ζ.

  7. High Tc superconducting bolometric and nonbolometric infrared (IR) detectors

    NASA Technical Reports Server (NTRS)

    Lakeou, Samuel

    1995-01-01

    Activities carried out during the reporting period are summarized. The workplan for the period August 1994 to August 1995 included the following: (1) expansion of the Applied Superconductivity Laboratory to include stand-alone optical response and noise measurement setups; (2) study the low frequency excess electrical noise in YBCO films; and (3) enhancement of the academic support component of the project through increased student and faculty participation. Abstracts of papers submitted for publication during this reporting period are included as attachments.

  8. Prospects and progress of high Tc superconductivity for space applications

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Sokoloski, Marty M.

    1991-01-01

    Current research in the area of high temperature superconductivity is organized around four key areas: communications and data, sensors and cryogenics, propulsion and power, and space materials technology. Recently, laser ablated YBa2Cu3O(7-x) films on LaAlO3 produced far superior RF characteristics when compared to metallic films on the same substrate. The achievement has enabled a number of unique microwave device applications, such as low insertion loss phase shifters and high-Q filters. Melt texturing and melt-quenched techniques are being used to produce bulk material with optimized magnetic properties. These yttrium-enriched materials possess enhanced flux pinning characteristics and could lead to prototype cryocooler bearings. Significant progress has also occurred in bolometer and current lead technology. Studies were conducted to evaluate the effect of high temperature superconducting materials on the performance and life of high power magnetoplasma-dynamic thrusters. Extended studies were also performed to evaluate the benefit of superconducting magnetic energy storage for LEO space station, lunar, and Mars mission applications.

  9. Study of high [Tc] superconducting thin films grown by MOCVD

    SciTech Connect

    Erbil, A.

    1990-01-01

    Work is described briefly, which was carried out on development of techniques to grow metal-semiconductor superlattices (artificially layered materials) and on the copper oxide based susperconductors (naturally layered materials). The current growth technique utilized is metalorganic chemical vapor deposition (MOCVD). CdTe, PbTe, La, LaTe, and Bi[sub 2]Te[sub 3] were deposited, mostly on GaAs. Several YBa[sub 2]Cu[sub 3]O[sub 7] compounds were obtained with possible superconductivity at temperatures up to 550 K (1 part in 10[sup 4]). YBa[sub 2]Cu[sub 3]O[sub 7[minus]x] and Tl[sub 2]CaBa[sub 2]Cu[sub 2]O[sub y] thin films were deposited by MOCVD on common substrates such as glass.

  10. Theory of high-TC superconductivity: transition temperature

    NASA Astrophysics Data System (ADS)

    Harshman, Dale R.; Fiory, Anthony T.; Dow, John D.

    2010-12-01

    After reading over our published manuscript, we noticed that the discussion concerning the determination of σ for the ruthenate Ba2YRu0.9Cu0.1O6 in section 2.3.1 (3rd paragraph) is somewhat terse. Herein we provide an expanded analysis which better explains our estimate of γ (and thus σ) for this compound. All numbers, figures and conclusions remain unaltered. The ruthenate compounds A2YRu1-xCuxO6 (with A = Ba or Sr; x = 0.05-0.15) are double-perovskites containing no cuprate planes and with ν = μ = 1 [1] (reference [82] in the paper). The determination of γ follows from equation (2.5b), wherein rule 1b introduces the factor 1/2. In the lower limit, one expects a minimum of ~2 charges per Cu dopant, which are shared between two charge reservoirs of each layer type (AO and 1/2 (YRu1-xCuxO4)), producing a net factor of unity. Thus, for Ba2YRu0.9Cu0.1O6 (with TC0 ~ 30-40 K), we estimate γ = (1/2)(1) = 1/2, yielding σ = 0.05 as stated by equation (2.5c) in the paper. While one may expect an average effective charge state for Ru near +5, and that of Cu to be between +2 and +3 (post anneal) [2], the lower-limit estimation provided, which places the corresponding data point in figure 2 to the left of the line, appears sufficient to include the ruthenates with the other high-TC compounds found to follow equation (2.6) so far. Owing to the uncertainty in the experimental values for TC0, as well as the Ru and Cu valence states, however, this compound was excluded in the data analyses presented. Future research will attempt a more accurate determination of the charge per doped Cu, and thus σ. We would also like to point out a typographical correction in the definition of the corresponding ruthenate type II reservoir in the last column of table 1, which should read 1/2 (YRu0.9Cu0.1O4). An unrelated item is found in the fourth line of section 2.3.3, where Tb(O0.80F0.20)FeAs should read Tb(O0.80-yF0.20)FeAs. Additionally, reference [132] is now known and has the form

  11. The spin-polaron theory of high-Tc superconductivity

    NASA Astrophysics Data System (ADS)

    Mott, N. F.

    1990-01-01

    An outline is given of the model for some high-temperature superconductors which assumes that the carriers are holes in the (hybridized) oxygen 2p band and form ‘spin polarons’ with the moments on the copper atoms. A comparison is made with observations of spin polarons in Gd3-xvxS4 and with the properties of La1-xSrxVO3 in relation to those of La2-xSrxCuO4. It is assumed, following several authors, that in the superconductors the polarons form bipolarons, which are bosons, and a comparison is made with some other treatments of this hypothesis. It is proposed that in many such superconductors the boson, essentially a pair of these holes, moves in an impurity band, and that normally all the polarons (fermions) form bipolarons; the fermions repel each other on the same site (positive Hubbard U) but attract when on adjacent sites; the critical temperature Tc is then that at which the Bose gas becomes non-degenerate. In such materials a non-degenerate gas of bosons would carry the current above Tc as first suggested by Alexandrov et al. (1986). The linear increase in the resistivity above Tc is explained on this hypothesis. The effective mass of the bipolaron is, we believe, large (˜20 30me). The copper 3d9 moments in the superconducting range resonate between their two orientations as a consequence of the motion of the carriers, as they do in the description by Brinkman and Rice (1970) of highly correlated metals. Spin polarons, we believe, form only when this is so, but not in the antiferromagnetic range of x. A discussion is given of the resistivity above Tc, thermopower above Tc, and of the nature of the superconducting gap as shown by tunnelling. We confine our discussion to the materials containing copper, excluding for instance cubic Ba1-xKxBiO3, and possibly any superconductor containing bismuth, where the bosons may be Bi3+.

  12. Search for high-Tc conventional superconductivity at megabar pressures in the lithium-sulfur system

    NASA Astrophysics Data System (ADS)

    Kokail, Christian; Heil, Christoph; Boeri, Lilia

    2016-08-01

    Motivated by the recent report of superconductivity above 200 K in ultra-dense hydrogen sulfide, we search for high-TC conventional superconductivity in the phase diagram of the binary Li-S system, using ab initio methods for crystal structure prediction and linear response calculations for the electron-phonon coupling. We find that at pressures higher than 20 GPa, several new compositions, besides the known Li2S , are stabilized; many exhibit electride-like interstitial charge localization observed in other alkali-metal compounds. Of all predicted phases, only an fcc phase of Li3S , metastable before 640 GPa, exhibits a sizable TC, in contrast to what is observed in sulfur and phosphorus hydrides, where several stoichiometries lead to high TC. We attribute this difference to 2 s -2 p hybridization and avoided core overlap, and predict similar behavior for other alkali-metal compounds.

  13. Note: A hand-held high-Tc superconducting quantum interference device operating without shielding.

    PubMed

    He, D F

    2011-02-01

    By improving the compensation circuit, a hand-held high-Tc rf superconducting quantum interference devices (SQUID) system was developed. It could operate well when moving in unshielded environment. To check the operation, it was used to do eddy-current testing by hand moving the SQUID, and the artificial defect under 6 mm aluminum plate could be successfully detected in shielded environment. PMID:21361649

  14. Metal-insulator quantum critical point beneath the high Tc superconducting dome

    PubMed Central

    Sebastian, Suchitra E.; Harrison, N.; Altarawneh, M. M.; Mielke, C. H.; Liang, Ruixing; Bonn, D. A.; Lonzarich, G. G.; Hardy, W. N.

    2010-01-01

    An enduring question in correlated systems concerns whether superconductivity is favored at a quantum critical point (QCP) characterized by a divergent quasiparticle effective mass. Despite such a scenario being widely postulated in high Tc cuprates and invoked to explain non-Fermi liquid transport signatures, experimental evidence is lacking for a critical divergence under the superconducting dome. We use ultrastrong magnetic fields to measure quantum oscillations in underdoped YBa2Cu3O6+x, revealing a dramatic doping-dependent upturn in quasiparticle effective mass at a critical metal-insulator transition beneath the superconducting dome. Given the location of this QCP under a plateau in Tc in addition to a postulated QCP at optimal doping, we discuss the intriguing possibility of two intersecting superconducting subdomes, each centered at a critical Fermi surface instability. PMID:20304800

  15. Emergence of superconductivity in HighTc copper oxide superconductors via two crossovers

    NASA Astrophysics Data System (ADS)

    Chatterjee, Utpal; Norman, Mike; Randeria, Mohit; Rosenkranz, Stephan; Campuzano, Juan Carlos

    2011-03-01

    From our detailed ARPES measurements on BISCO 2212 High Tc Superconductors we found that unlike in conventional superconductors, where there is a single temperature scale Tc separating the normal from the superconducting state, HTSCs exhibit with two additional temperature scales. One is T*, below which electronic excitations are gapped. And the other one is Tcoh, below which electronic states are long-lived. We observed that T* and Tcoh change strongly with doping. They cross each other near optimal doping. There is a region in the normal state where the single particle excitations are gapped as well as coherent. Quite remarkably, this is the region from which superconductivity with highest Tc emerges. Our experimental finding that the two crossover lines intersect is not consistent with a ``single quantum critical'' point near optimal doping, rather it is more naturally consistent with theories of superconductivity for doped Mott insulators.

  16. High Tc superconducting IR detectors from Y-Ba-Cu-O thin films

    NASA Technical Reports Server (NTRS)

    Lindgren, M.; Ahlberg, H.; Danerud, M.; Larsson, A.; Eng, M.

    1990-01-01

    A thin-film high-Tc superconducting multielement optical detector made of Y-Ba-Cu-O has been designed and evaluated using optical pulses from a diode laser (830 nm) and a Q-switched CO2-laser (10.6 microns). Different thin films have been tested. A laser deposited film showed the strongest response amplitude for short pulses and responded to an ultrafast, 50 ps wide pulse. Comparisons between dR/dT and response as a function of temperature indicated, however, a bolometric response.

  17. Coherently coupling distinct spin ensembles through a high-Tc superconducting resonator

    NASA Astrophysics Data System (ADS)

    Ghirri, A.; Bonizzoni, C.; Troiani, F.; Buccheri, N.; Beverina, L.; Cassinese, A.; Affronte, M.

    2016-06-01

    The problem of coupling multiple spin ensembles through cavity photons is revisited by using (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl (PyBTM) organic radicals and a high-Tc superconducting coplanar resonator. An exceptionally strong coupling is obtained and up to three spin ensembles are simultaneously coupled. The ensembles are made physically distinguishable by chemically varying the g factor and by exploiting the inhomogeneities of the applied magnetic field. The coherent mixing of the spin and field modes is demonstrated by the observed multiple anticrossing, along with the simulations performed within the input-output formalism, and quantified by suitable entropic measures.

  18. Analysis of a high Tc superconducting levitation system with vibration isolation control

    SciTech Connect

    Nagaya, Kosuke

    1996-03-01

    This paper presents a method for controlling vibrations of a levitated high Tc superconducting body subjected to base disturbances. To have the control forces, an actuator consisting of a permanent magnet with an electromagnet was presented. The analytical solution for calculating levitation forces due to the permanent magnet and the control currents in the electromagnet was obtained. The levitation forces obtained coincide with the previously published results. The equation of motion of the levitated body subjected to base disturbances under the control was presented. Nonlinear vibrations of the body were first discussed; then the method of vibration isolation control using the direct disturbance cancellation combining the velocity feedback control was investigated. Numerical calculations were carried out for the levitation forces, with respect to the levitated body subjected to harmonic or pulse base excitations. It was clarified that the present method is valid for controlling nonlinear systems like the magnetic levitated superconducting body.

  19. Dynamic Jahn-Teller Coupling, Anharmonic Oxygen Vibrations and HIGH-Tc Superconductivity in Oxides

    NASA Astrophysics Data System (ADS)

    Johnson, K. H.; Clougherty, D. P.; McHenry, M. E.

    A universal dynamic Jahn-Teller (DJT) mechanism for superconductivity and its applications to CuO and BaBiO3 high-Tc oxides are reviewed. Dynamical interconversion between the shallow "double-well" potentials of degenerate delocalized oxygen-oxygen "pπ-bonds" at the Fermi energy (EF) induces anharmonic oxygen vibrations, lattice-electron coupling, and Cooper pairing. This mechanism yields high Tc's and small-to-vanishing isotope shifts for cuprates, where O(pπ)-O(pπ) bond overlap at EF is promoted by Cu(dπ*)-O(pπ) hybridization. It yields lower Tc's and larger isotope shifts for BaBiO3's, where O(pπ)-O(pπ) overlap is small. For vanishing bond overlap at EF, DJT coupling reduces to harmonic phonon coupling in BCS theory. Simple formulae for calculating Tc and isotope shifts for any superconductor from the "real-space" chemical bonding at EF are presented, yielding (Tc)max ≈ 230 K.

  20. Levitation performance of the magnetized bulk high- Tc superconducting magnet with different trapped fields

    NASA Astrophysics Data System (ADS)

    Liu, W.; Wang, J. S.; Liao, X. L.; Zheng, S. J.; Ma, G. T.; Zheng, J.; Wang, S. Y.

    2011-03-01

    To a high- Tc superconducting (HTS) maglev system which needs large levitation force density, the magnetized bulk high- Tc superconductor (HTSC) magnet is a good candidate because it can supply additional repulsive or attractive force above a permanent magnet guideway (PMG). Because the induced supercurrent within a magnetized bulk HTSC is the key parameter for the levitation performance, and it is sensitive to the magnetizing process and field, so the magnetized bulk HTSC magnets with different magnetizing processes had various levitation performances, not only the force magnitude, but also its force relaxation characteristics. Furthermore, the distribution and configuration of the induced supercurrent are also important factor to decide the levitation performance, especially the force relaxation characteristics. This article experimentally investigates the influences of different magnetizing processes and trapped fields on the levitation performance of a magnetized bulk HTSC magnet with smaller size than the magnetic inter-pole distance of PMG, and the obtained results are qualitatively analyzed by the Critical State Model. The test results and analyses of this article are useful for the suitable choice and optimal design of magnetized bulk HTSC magnets.

  1. High Tc superconducting magnetic multivibrators for fluxgate magnetic-field sensors

    SciTech Connect

    Mohri, K.; Uchiyama, T.; Ozeki, A. . Faculty of Engineering)

    1989-09-01

    Sensitive and quick-response nonlinear inductance characteristics are found for high Tc superconducting (YBa/sub 2/Cu/sub 3/O/sub 7-chi/) disk cores at 77K in which soft magnetic BH hysteresis loops are observed. Various quick response magnetic devices such as modulators, amplifiers and sensors are built using these cores. The magnetizing frequency can be set to more than 20 MHz, which is difficult for conventional ferromagnetic bulk materials such as Permalloy amorphous alloys and ferrite. New quick-response fluxgate type magnetic-field sensors are made using ac and dc voltage sources. The former is used for second-harmonic type sensors, while the latter is for voltage-output multivibrator type sensors. Stable and quick-response sensor characteristics were obtained for two-core type multivibrators.

  2. Interlayer tunneling mechanism of high- Tc superconductivity: Nonuniversal discontinuity in specific heat

    NASA Astrophysics Data System (ADS)

    Sudbø, A.

    1994-12-01

    Interlayer tunneling mechanism of high- Tc superconductivity is considered with emphasis on the thermodynamics close to T = Tc. For a k-independent interlayer Josephson coupling TJ, we find that, for | T - Tc|/ Tc ≪ 1, the gap on the Fermi surface is Δ( T) = Tcη( Tc; TJ)(1 - T/ Tc) α, with mean-field exponent α = {1}/{2}. The nonuniversal prefactor η( Tc; TJ) drops rapidly from the BCS-value π( {8}/{7}ς(3)) {1}/{2} ≈ 3.06 , as a function of TJ. The nor malized. specific heat discontinuity at T = Tc, ΔCv/ Nn(0) Tc = η2( Tc; TJ)/[1 - TJ/4 Tc] 2, increases initiall y rapidly as a function of TJ, while lim TJ → 0 ΔCv/ Nn(0) Tc = 8 π2/7 ς(3) ≈ 9.4.

  3. Fabrication of single electron tunneling devices using layered structures of high- Tc superconducting materials

    NASA Astrophysics Data System (ADS)

    Kim, S.-J.; Yamashita, T.

    2006-10-01

    We have fabricated the submicron structures using high-Tc superconducting materials of Bi2Sr2CuO6+δ (Bi-2201). The stacks of layered structures are made by focused-ion-beam (FIB) etching methods. The fabricated 3D three terminal devices consist of source, drain and gate electrodes on the same chip. A gate electrode is capacitively coupled to a central island between two ultra-small tunnel junctions with in plane area S = 0.25 μm2 in series. Two stacks including an island structure show a Coulomb blockade region of 15 mV at zero gate potential. The effects are not smeared out by thermal fluctuations until temperatures greater than 150 K are reached.

  4. Underlying mechanisms of pseudogap phenomena and Bose-liquid superconductivity in high-Tc cuprates

    NASA Astrophysics Data System (ADS)

    Dzhumanov, S.; Karimboev, E. X.; Djumanov, Sh. S.

    2016-06-01

    We show that the high-Tc cuprates are non-BCS superconductors exhibiting distinct pseudogap (PG) behaviors (related to real and momentum space excitations) and other anomalies above Tc, novel Bose-liquid superconductivity below Tc, and also a λ-like superconducting (SC) transition at Tc similar to the λ transition in liquid 4He. In these materials, the relevant charge carriers are polarons which are bound into bosonic Cooper pairs above Tc followed by condensing into a Bose superfluid at Tc. We found that the polaronic effects and related PG weaken with increasing of the doping level and disappear in the overdoped region, where the crossover from Bose-liquid to Fermi-liquid (BCS-type) superconductivity occurs at the quantum critical point. We identify the real phase diagrams of the cuprates, the PG and vortex-like states above Tc, the novel SC state and two distinct SC phases below Tc like two superfluid phases of 3He, and explain the rich cuprate phenomenology from lightly doped to overdoped region.

  5. Anomalous open-circuit voltage from a high-Tc superconducting dynamo

    NASA Astrophysics Data System (ADS)

    Bumby, C. W.; Jiang, Zhenan; Storey, J. G.; Pantoja, A. E.; Badcock, R. A.

    2016-03-01

    We report on the behavior of a high-Tc superconducting (HTS) homopolar dynamo which outputs a DC open-circuit voltage when the stator is in the superconducting state, but behaves as a conventional AC alternator when the stator is in the normal state. We observe that this time-averaged DC voltage arises from a change in the shape of the AC voltage waveform that is obtained from a normal conducting stator. The measured DC voltage is proportional to frequency, and decreases with increasing flux gap between the rotor magnet and the HTS stator wire. We observe that the DC output voltage decreases to zero at large flux gaps, although small differences between the normal-conducting and superconducting waveforms are still observed, which we attribute to screening currents in the HTS stator wire. Importantly, the normalised pulse shape is found to be a function of the rotor position angle only. Based on these observations, we suggest that the origin of this unexpected DC effect can be explained by a model first proposed by Giaever, which considers the impact of time-varying circulating eddy currents within the HTS stator wire. Such circulating currents form a superconducting shunt path which "short-circuits" the high field region directly beneath the rotor magnet, at those points in the cycle when the rotor magnet partially overlaps the superconducting stator wire. This reduces the output voltage from the device during these periods of the rotor cycle, leading to partial rectification of the output voltage waveform and hence the emergence of a time-averaged DC voltage.

  6. Spin-polaron theory of high-{Tc} superconductivity: I, spin polarons and high-{Tc} pairing

    SciTech Connect

    Wood, R.F.

    1993-06-01

    The concept of a spin polaron is introduced and contrasted with the more familiar ionic polaron picture. A brief review of aspects of ionic bipolaronic superconductivity is given with particular emphasis on the real-space pairing and true Bose condensation characteristics. The formation energy of spin polarons is then calculated in analogy with ionic polarons. The spin-flip energy of a Cu spin in an antiferromagnetically aligned CuO{sub 2} plane is discussed. It is shown that the introduction of holes into the CuO{sub 2} planes will always lead to the destruction of long-range AF ordering due to the formation of spin polarons. The pairing of two spin polarons can be expected because of the reestablishment of local (short-range) AF ordering; the magnitude of the pairing energy is estimated using a simplified model. The paper closes with a brief discussion of the formal theory of spin polarons.

  7. High-Tc Superconducting Thin- and Thick-Film-Based Coated Conductors for Energy Applications

    SciTech Connect

    Cantoni, Claudia; Goyal, Amit

    2010-01-01

    Although the first epitaxial films of YBCO with high Tc were grown nearly 20 years ago, the understanding and control of the nanostructures responsible for the dissipation-free electrical current transport in high temperature superconductors (HTS) is quite recent. In the last six to seven years, major advances have occurred in the fundamental investigation of low angle grain boundaries, flux-pinning phenomena, growth mode, and atomic-level defect structures of HTS epitaxial films. As a consequence, it has been possible to map and even engineer to some extent the performance of HTS coatings in large regions of the operating H, T, J phase space. With such progress, the future of high temperature superconducting wires looks increasingly promising despite the tremendous challenges offered by these brittle and anisotropic materials. Nevertheless, further performance improvements are necessary for the superconducting technology to become cost-competitive against copper wires and ultimately succeed in revolutionizing the transmission of electricity. This can be achieved by further diminishing the gap between theoretical and experimental values of the critical current density Jc, and/or increasing the thickness of the superconductive layer as much as possible without degrading performance. In addition, further progress in controlling extrinsic and/or intrinsic nano-sized defects within the films is necessary to significantly reduce the anisotropic response of HTS and obtain a nearly constant dependence of the critical current on the magnetic field orientation, which is considered crucial for power applications. This chapter is a review of the challenges still present in the area of superconducting film processing for HTS wires and the approaches currently employed to address them.

  8. Superconductivity in the high-Tc Bi-Ca-Sr-Cu-O system - Phase identification

    NASA Technical Reports Server (NTRS)

    Hazen, R. M.; Prewitt, C. T.; Angel, R. J.; Ross, N. L.; Finger, L. W.

    1988-01-01

    Four phases are observed in superconducting Bi-Ca-Sr-Cu-O samples. The superconducting phase, with onset temperature near 120 K, is a 15.4-A-layered compound with composition near Bi2Ca1Sr2Cu2O9 and an A-centered orthorhombic unit subcell 5.41 x 5.44 x 30.78 A. X-ray diffraction and electron microscopy data are consistent with a structure of alternating perovskite and Bi2O2 layers. High-resolution transmission electron microscopy images reveal a b-axis superstructure of 27.2 A, numerous (001) stacking faults, and other defects.

  9. Effect of van Hove singularities on high-Tc superconductivity in H3 S

    NASA Astrophysics Data System (ADS)

    Sano, Wataru; Koretsune, Takashi; Tadano, Terumasa; Akashi, Ryosuke; Arita, Ryotaro

    One of interesting open questions for the high-Tc superconductivity in sulfur hydrides is why some of the H3S phases under high pressures are so special. Recently, it has been pointed out that the presence of the van Hove singularities (vHs) around the Fermi level is crucial. Interestingly, such vHs are always absent in H2S, for which Tc is estimated to be much lower. Although there have been quantitative calculations of Tc based on the Migdal-Eliashberg theory, the effect of the vHs on the superconductivity is yet to be fully understood. This is because the energy dependence of the density of states (DOS) has been neglected to simplify the Eliashberg equation. In this study, we perform a calculation beyond the constant DOS approximation. In contrast with the conventional calculations, this approach with a sufficiently large number of Matsubara frequencies enables us to calculate Tc self-consistently without introducing the empirical pseudo Coulomb potential. We show that the constant DOS approximation seriously overestimates (underestimates) Tc by ~60 K (~10 K) for H3S (H2S). We then consider the effect of the anharmonicity of the phonon and the energy shift due to the zero-point motion. Eventually, Tc is estimated to be 180 K for H3S and 35 K for H2S, which successfully explains the pressure dependence of Tc observed in the experiment.

  10. High-Tc superconducting quantum interference filters (SQIFs) made by ion irradiation

    NASA Astrophysics Data System (ADS)

    Ouanani, S.; Kermorvant, J.; Ulysse, C.; Malnou, M.; Lemaître, Y.; Marcilhac, B.; Feuillet-Palma, C.; Bergeal, N.; Crété, D.; Lesueur, J.

    2016-09-01

    Superconducting quantum interference filters (SQIFs) are arrays of superconducting loops of different sizes including Josephson junctions (JJ). For a random distribution of sizes, they present a non-periodic response to an applied magnetic field, with a large transfer function and a magnetic field sensitivity potentially improved with respect to that of a single SQUID. Such properties make SQIFs interesting devices to detect the magnetic component of electromagnetic waves at microwave frequencies. We have used the highly scalable technique of ion irradiation to make SQUIDs and SQIFs based on commercial YBa2Cu3O7 films, and studied their properties. Both display optimal performance as a function of temperature and bias current, that can be understood in the frame of numerical simulations that we developed. The role of asymmetries and dispersion in JJ characteristics (routinely found in high Tc superconductors technologies) is also studied. We have found that none of them impede the existence of a SQIF effect but both play a role on the emergence of the optimal point. We finally present results on SQIF made with 2000 SQUIDs in series, showing a transfer function {{d}}V/{{d}}B∼ 1000V/T.

  11. A novel buffered high-Tc superconducting step-edge Josephson junction

    NASA Astrophysics Data System (ADS)

    van Staden, W. F.; Büttner, U.; Srinivasu, V. V.; Perold, W. J.

    2007-11-01

    A novel high-Tc superconducting (HTS) buffered step-edge Josephson junction is fabricated. A 250 nm PrBa2Cu3O7 (PBCO) layer was epitaxially grown on a (001) MgO substrate by PLD, which acts as a buffered template for a step-edge. Argon-ion milling was used to obtain a step-edge with a step angle of 25°. The step-edge is analysed in terms of an extended Wu and Chen model (Wu and Chen 2006 Rev. Sci. Instrum. 77 1). The model validity is confirmed by the correspondence between the theoretically proposed and experimentally observed step angles. A 150 nm YBa2Cu3O7-δ (YBCO) thin film was accordingly grown over the PBCO step-edge and patterned by standard photolithography. I-V characteristics were obtained by DC and AC excitation of the patterned junctions. The IcRn product values are of the order of 1.6 mV and 0.36 mV at 53 K and 77 K, respectively. These values are higher than typical values found in the literature. The observation of Shapiro steps confirms the presence of the Josephson effect in this novel junction topology.

  12. A DFT study of rocksalt proxy copper monochalcogenide structures - Implications for possible high-Tc superconductivity

    NASA Astrophysics Data System (ADS)

    Grant, P. M.; Hammond, R. H.; W2AGZ Technologies/GLAM, Stanford University Collaboration

    2014-03-01

    We report findings derived from a series of DFT calculations on the structural stability and paramagnetic ground states of four idealized copper monochalcogenide (CuO, CuS, CuSe, CuTe) rocksalt structures. Note that none of these target compounds occur naturally, but can possibly be fabricated using ``forced epitaxy'' MBE methods, as has been done to grow CuO tetragonal rocksalt films 5-6 monolayers thick.[1,2] Therefore, we treat all examples we report herein as proxies intended to explore candidate implications for possible future high-TC materials. In particular, we find, as might be expected from the long accepted Van Vleck-Anderson-Hubbard formalism describing antiferromagnetic insulators, the Neel temperature scales upward roughly as the width of the spin-carrying bands near or adjacent to the Fermi level or energy gap. We conclude such trend might result in higher superconducting transition temperatures should this be mediated by carrier-spin excitation/fluctuation driven pairing scaled by TN. Finally, we briefly discuss synthetic paths to realizing actual embodiments of our proxy exercises.

  13. High-Tc superconductivity in nanostructured NaxWO3-y: Sol-gel route

    NASA Astrophysics Data System (ADS)

    Aliev, Ali

    2009-03-01

    Tungsten trioxide, WO3-y infiltrated into various nanoporous matrix structures such as carbon inverse opal, carbon nanotubes paper, or platinum sponge and then intercalated with alkaline ions (Li^+, Na^+) exhibits a pronounced diamagnetic onset in ZFC magnetization in a wide range of temperatures, 125-132 K. Resistivity measurements show non zero jump and intensive fluctuations of electrical resistance below observed transition points. The observed magnetic and electrical anomalies in nanostructured tungsten bronzes (LixWO3-y, NaxWO3-y) suggest the possibility of localized non-percolated superconductivity. The direct evidence of polaron formation from temperature dependence of EPR and photoemission spectra and formation of bipolarons in weakly reduced to WO3-y, with 3-y typically in the order of 2.95 suggest bipolarons mechanism of a Bose-Einstein condensation of trapped electron pairs in doped WO3-y. On the other hand the strong lattice instabilities in 2D systems like layered cuprates and tungsten bronzes place the upper limit on Tc. Than, the percolative self-organized mechanism on the metal/insulator interface like Na/WO3 and NaWO3/nanostructured matrix can facilitate the high Tc obtained in sodium bronzes infiltrated into inverted carbon opal or carbon nanotube matricies.

  14. Spectroscopy of metal "superatom" nanoclusters and high-Tc superconducting pairing

    NASA Astrophysics Data System (ADS)

    Halder, Avik; Kresin, Vitaly V.

    2015-12-01

    A unique property of metal nanoclusters is the "superatom" shell structure of their delocalized electrons. The electronic shell levels are highly degenerate and therefore represent sharp peaks in the density of states. This can enable exceptionally strong electron pairing in certain clusters composed of tens to hundreds of atoms. In a finite system, such as a free nanocluster or a nucleus, pairing is observed most clearly via its effect on the energy spectrum of the constituent fermions. Accordingly, we performed a photoionization spectroscopy study of size-resolved aluminum nanoclusters and observed a rapid rise in the near-threshold density of states of several clusters (A l37 ,44 ,66 ,68 ) with decreasing temperature. The characteristics of this behavior are consistent with compression of the density of states by a pairing transition into a high-temperature superconducting state with Tc≳100 K. This value exceeds that of bulk aluminum by two orders of magnitude. These results highlight the potential of novel pairing effects in size-quantized systems and the possibility to attain even higher critical temperatures by optimizing the particles' size and composition. As a new class of high-temperature superconductors, such metal nanocluster particles are promising building blocks for high-Tc materials, devices, and networks.

  15. High-Tc superconductivity at 40 K emerged in ultrathin FeSe electric-double-layer transistors

    NASA Astrophysics Data System (ADS)

    Junichi, Shiogai; Ito, Yukihiro; Mitsuhashi, Toshiki; Nojima, Tsutomu; Tsukazaki, Atsushi

    A few unit-cell (UC) FeSe films on SrTiO3 substrates have recently attracted much attentions owing to emergence of high temperature superconductivity (high-Tc) about 65 K compared to the bulk value of 8 K. Modulation of electronic structure, charge transfer from SrTiO3, and electron-phonon coupling between the film and substrate are proposed as possible origins for high-Tc. Although the in-situ scanning tunneling and photoemission spectroscopies have been intensively studied, systematic thickness, carrier density and substrate material dependences of electrical measurements have been limited so far. Here we report on high-Tc in FeSe films on SrTiO3 and MgO in electric-double-layer transistor (EDLT). Both the film thickness and electric field can be tuned by electrochemical etching and electrostatic doping in EDLT. The systematic thickness dependences reveal that the onset Tc of 40 K appears from around 10 nm to 1 UC under the electric field while the initial 18-nm-thick FeSe shows no high-Tc. Our results point out the importance of electron accumulation or electronic band modulation for high-Tc in FeSe rather than electron-phonon coupling.

  16. Effect of Van Hove singularities on high-Tc superconductivity in H3S

    NASA Astrophysics Data System (ADS)

    Sano, Wataru; Koretsune, Takashi; Tadano, Terumasa; Akashi, Ryosuke; Arita, Ryotaro

    2016-03-01

    One of the interesting open questions for the high-transition-temperature (Tc) superconductivity in sulfur hydrides is why high-pressure phases of H3S have extremely high Tc's. Recently, it has been pointed out that the presence of the Van Hove singularities (VHS) around the Fermi level is crucial. However, while there have been quantitative estimates of Tc based on the Migdal-Eliashberg theory, the energy dependence of the density of states (DOS) has been neglected to simplify the Eliashberg equation. In this study, we go beyond the constant DOS approximation and explicitly consider the electronic structure over 40 eV around the Fermi level. In contrast with the previous conventional calculations, this approach with a sufficiently large number of Matsubara frequencies enables us to calculate Tc without introducing the empirical pseudo Coulomb potential. We show that while H3S has much higher Tc than H2S for which the VHS is absent, the constant DOS approximation employed so far seriously overestimates (underestimates) Tc by ˜60 K (˜10 K) for H3S (H2S ). We then discuss the impact of the strong electron-phonon coupling on the electronic structure with and without the VHS and how it affects the superconductivity. In particular, we focus on (1) the feedback effect in the self-consistent calculation of the self-energy, (2) the effect of the energy shift due to the zero-point motion, and (3) the effect of the changes in the phonon frequencies due to strong anharmonicity. We show that the effect of (1)-(3) on Tc is about 10-30 K for both H3S and H2S . Eventually, Tc is estimated to be 181 K for H3S at 250 GPa and 34 K for H2S at 140 GPa, which explains the pressure dependence of Tc observed in the experiment. In addition, we evaluate the lowest-order vertex correction beyond the Migdal-Eliashberg theory and discuss the validity of the Migdal approximation for sulfur hydrides.

  17. Theoretical models of flux pinning and flux motion in high-{Tc} superconducting oxides

    SciTech Connect

    Welch, D.O.

    1991-12-31

    Various issues involved in the development of phenomenological models of flux pinning and motion in high-{Tc} oxides are discussed. A simplified model is presented for the critical current density and is used to examine the question of whether flux flow results from an instability due to plasticity of the flux-line array or from pin breaking.

  18. Theoretical models of flux pinning and flux motion in high- Tc superconducting oxides

    SciTech Connect

    Welch, D.O.

    1991-01-01

    Various issues involved in the development of phenomenological models of flux pinning and motion in high-{Tc} oxides are discussed. A simplified model is presented for the critical current density and is used to examine the question of whether flux flow results from an instability due to plasticity of the flux-line array or from pin breaking.

  19. Development of high Tc (greater than 100 K) Bi, Tl and Y-based materials as superconducting circuit elements

    NASA Technical Reports Server (NTRS)

    Haertling, Gene; Grabert, Gregory; Gilmour, Phillip

    1993-01-01

    Results on this project over the past three years have shown that the Bi and Tl-based superconducting materials in bulk form are noticeably different from the Y-based 123 material in that superconductivity is considerably harder to achieve, maintain and reproduce. This is due primarily to the difficulty in obtaining the higher Tc phase in pure form since it commonly co-exists with other undesirable, lower Tc phases. In particular, it has been found that long processing times for calcining and firing (20 - 200 hrs.) and close control of temperatures which are very near the melting point are required in order to obtain higher proportions of the desirable, high Tc (2223) phase.

  20. Charge transfer polarisation wave in high Tc oxides and superconductive pairing

    NASA Technical Reports Server (NTRS)

    Chakraverty, B. K.

    1991-01-01

    A general formalism of quantized charge transfer polarization waves was developed. The nature of possible superconductive pairing between oxygen holes is discussed. Unlike optical phonons, these polarization fields will give rise to dielectric bipolarons or bipolaron bubbles. In the weak coupling limit, a new class of superconductivity is to be expected.

  1. Magnetic relaxation with vortex creep observed by the magneto-optical image method for high Tc superconducting films

    NASA Astrophysics Data System (ADS)

    Lee, Wongi; Lee, Jhinhwan; Youm, Dojun; Yoo, Jaeun

    2016-06-01

    The relaxation of magnetic flux in high Tc superconducting films was investigated. After the samples were cooled in the applied magnetic fields, the magnetic field was turned off and the changes of the remaining magnetic flux distribution were observed by using the magneto-optical image method. The induced current density was examined which varies with the logarithmic-time dependence associated with the creep motions of vortices. The overall magnitude of the induced current density is observed to decrease as the external magnetic field applied during cooling is increased. The range of external fields examined was 30–50 mT. This could be explained by taking into account the formation of meandering shapes of vortices which develop during the period of transition to the creep mode. The results of the numerical simulation for this effect are in good agreement with the experimental results.

  2. Dielectric resonator for measuring the magnetic penetration depth at low temperature in high-Tc superconducting thin films

    NASA Astrophysics Data System (ADS)

    Mourachkine, A. P.

    1995-11-01

    Knowledge of magnetic penetration depth λ(T) at low temperatures allows one to determine the pairing state in the superconductors. A simple method for the evaluation of λ(T) of small (˜1 cmט1 cm), flat, high-Tc superconductive samples at low T is discussed. The resolution of the method is a few Å. In addition to high resolution, the method has several advantages including nondestructive analysis, flexibility in sample size, and minimal requirements on the dielectric resonator. The current distribution within the sample being tested can also be accurately calculated, the experimental setup is convenient, and the procedure is comparatively rapid and can be performed in the necktube of a liquid-helium storage Dewar. The measurements for YBCO thin films have been performed at 14.4 GHz.

  3. Field-dependent critical state of high-Tc superconducting strip simultaneously exposed to transport current and perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Xue, Cun; He, An; Yong, Huadong; Zhou, Youhe

    2013-12-01

    We present an exact analytical approach for arbitrary field-dependent critical state of high-Tc superconducting strip with transport current. The sheet current and flux-density profiles are derived by solving the integral equations, which agree with experiments quite well. For small transport current, the approximate explicit expressions of sheet current, flux-density and penetration depth for the Kim model are derived based on the mean value theorem for integration. We also extend the results to the field-dependent critical state of superconducting strip in the simultaneous presence of applied field and transport current. The sheet current distributions calculated by the Kim model agree with experiments better than that by the Bean model. Moreover, the lines in the Ia-Ba plane for the Kim model are not monotonic, which is quite different from that the Bean model. The results reveal that the maximum transport current in thin superconducting strip will decrease with increasing applied field which vanishes for the Bean model. The results of this paper are useful to calculate ac susceptibility and ac loss.

  4. Mechanism of a high-Tc superconducting flux pump: Using alternating magnetic field to trigger flux flow

    NASA Astrophysics Data System (ADS)

    Geng, Jianzhao; Coombs, T. A.

    2015-10-01

    High-Tc Superconducting (HTS) magnets operating in persistent current mode suffer a current decay due to flux creep of superconductor and joint resistance. Flux pumps are able to inject direct current into superconducting circuit to compensate the current decay, without the thermal loss caused by current leads. In this work, we proposed a flux pumping mechanism for HTS coils, with an experimental verification and an analytical model. The basic principle we have used is that flux flow can be triggered when the superconductor carrying a direct current is subjected to a perpendicular AC magnetic field. Low frequency alternating current is induced in a loop of YBCO tape using an AC field. A portion of the tape which we refer to as the "bridge" shorts a superconducting coil. A high frequency AC field is applied perpendicular to the bridge tape when alternating current in the tape reaches one polarity. This triggers a net flux flow and results in a current increase in the coil. The proposed flux pump has clear physics and is easily controllable, which may make it promising in practical use.

  5. High-Tc superconducting rectangular microstrip patch covered with a dielectric layer

    NASA Astrophysics Data System (ADS)

    Bedra, Sami; Fortaki, Tarek

    2016-05-01

    This paper presents a full-wave method to calculate the resonant characteristics of rectangular microstrip antenna with and without dielectric cover, to explain the difference of performance with temperature between superconducting and normal conducting antenna. Especially the characteristics of high temperature superconducting (HTS) antenna were almost ideal around the critical temperature (Tc). The dyadic Green's functions of the considered structure are efficiently determined in the vector Fourier transform domain. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. The computed results are found to be in good agreement with results obtained using other methods. Also, the effects of the superstrate on the resonant frequency and bandwidth of rectangular microstrip patch in a substrate-superstrate configuration are investigated. This type of configuration can be used for wider bandwidth by proper selection of superstrate thickness and its dielectric constants.

  6. Environmental testing of high Tc superconductive thermal isolators for space-borne cryogenic detector systems

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Buckley, John D.; Randolf, Henry W.; Verbelyi, Darren; Haertling, Gene H.; Hooker, Matthew W.; Selim, Raouf; Caton, Randall

    1992-01-01

    Thick films of superconductive material on low thermal conductivity substrates (e.g., yttria-stabilized zirconia and fused silica) are considered as a replacement for the existing electrical connections between the detector array and data acquisition and storage electronics in the cryogenic detector systems being developed by NASA. The paper describes some of the design constraints on the superconducting device and presents results of a preliminary analysis of the effects of vibration, gamma irradiation, and long-term exposure to high vacuum and liquid nitrogen encountered in operating such a device in space.

  7. Study on magnetic separation system using high Tc superconducting bulk magnets for water purification technique

    NASA Astrophysics Data System (ADS)

    Oka, T.; Kanayama, H.; Tanaka, K.; Fukui, S.; Ogawa, J.; Sato, T.; Yamaguchi, M.; Ooizumi, M.; Yokoyama, K.; Noto, K.

    2009-03-01

    The application of superconducting bulk magnets to the magnetic separation techniques has been investigated for the Mn-bearing waste water drained from the university laboratories. The research has been conducted in comparison with the electromagnets, and the cryo-cooled superconducting solenoid magnet. The separation ratios of ferrite precipitates including Mn element in the waste slurry were estimated by means of the high gradient magnetic separation method with ferromagnetic iron filters in the water channel and open gradient magnetic separation without them. As the magnetic force acting on the particles is given by the product of a magnetization of particles and a gradient of magnetic field, and a superconducting bulk magnet shows a sharp gradient of the magnetic field on the surface, the performances of the bulk magnet system were almost equivalent to those of the superconducting solenoid magnet with wide bore with respect to the magnetic separation ratios. The separation ratios for Mn have reached over 80 % for HGMS and 10 % for OGMS under the flow rates less than 3 liter/min.

  8. On local pairs vs. BCS: Quo vadis high-Tc superconductivity

    DOE PAGESBeta

    Pavuna, D.; Dubuis, G.; Bollinger, A. T.; Wu, J.; He, X.; Bozovic, I.

    2016-07-28

    Since the discovery of high-temperature superconductivity in cuprates, proposals have been made that pairing may be local, in particular in underdoped samples. Furthermore, we briefly review evidence for local pairs from our experiments on thin films of La 2–xSrxCuO4, synthesized by atomic layer-by-layer molecular beam epitaxy (ALL-MBE).

  9. THz emission from a slice of high-Tc superconducting single crystal

    NASA Astrophysics Data System (ADS)

    Wang, Huabing

    2008-03-01

    Copper oxide superconductors possess intrinsically a layered crystalline structure, in which superconducting and non-superconducting layers interleave each other. Therefore the crystal itself consists of a number of superconducting junctions sequentially stacked along the c axis of the crystal, and these junctions are often referred to as intrinsic Josephson junctions (IJJs). In the case of Bi2Sr2CaCu2O8+δ (BSCCO), each IJJ measures approximately 1.5 nm thick. Many groups have been exploring the possibilities to develop terahertz (THz) detectors and oscillators based on IJJs, due to the high collective plasma frequencies (up to THz region), the uniformity in junction properties, the easiness to make a large junction array, and the low loss at high frequencies. Some years ago, in IJJs singled out from inside a slice of BSCCO single crystal with a double-sided process, THz response was successfully observed as sharp Shapiro steps at frequencies up to 2.5 THz, and harmonic mixings were carried out with harmonic numbers as large as 90. Recently observed have been THz oscillations in various structures of BSCCO IJJs, which can be excited by dc bias, in-plane magnetic fields, or microwave irradiations at several gigahertz. Needless to say, for practical applications, it is necessary to synchronize the emissions from IJJs, couple the THz oscillations into a finite space, guide them in a controllable way, monitor the frequencies and power levels, and preferably do the jobs using an integrated system. We have been making extensive efforts to explore these ideas, and will report our latest results at the meeting.

  10. Twenty-GHz broadband microstrip array with electromagnetically coupled high-{Tc} superconducting feed network

    SciTech Connect

    Herd, J.S.; Poles, L.D.; Kenney, J.P.

    1996-07-01

    The use of high-temperature superconducting (HTS) feed lines and phase shifters can substantially improve the performance of microwave and millimeter-wave printed phased array antennas. A novel antenna architecture is described that provides a broadband radiating aperture to be used as a scanning array with compatible low-loss HTS phase shifters. The approach follows an earlier design demonstrated at 12 GHz, and this work extends the approach to 20 GHz. The antenna design, radiation patterns, bandwidth measurements, and thermal analysis are reported. A prototype thermal isolator design is described that reduces the heat load of coaxial interconnections between cryocooled and room temperature systems.

  11. Correlation of normal and superconducting properties and unified approach to the description of high Tc oxides

    NASA Technical Reports Server (NTRS)

    Kresin, V. Z.; Wolf, S. A.

    1991-01-01

    We present a unified approach based on the Fermi liquid picture which allows us to describe the normal as well as the superconducting properties of the doped cuprates. The theory that is presented is for the doped compounds which are metallic. One can distinguish two interrelated, but nevertheless, different directions in the physics of high T(sub c): one involving the problem of carrier doping and the transition to the metallic state, and the second being the description of the metallic state. It is important that this metallic phase undergoes the transition into the superconducting state; as a result, our analysis is directly related to the origin of high T(sub c). We are using a quasi-2D Fermi liquid model to estimate the fundamental parameters of these very interesting materials. We find that this description is able to describe these materials and also that phonons and plasmons play a major role in the mechanism of high T(sub c).

  12. Development of high Tc (greater than 100 K) Bi, Tl and Y-based materials as superconducting circuit elements

    NASA Astrophysics Data System (ADS)

    Haertling, Gene; Grabert, Gregory; Gilmour, Phillip

    1994-07-01

    Experimental work on this project over the last four years has resulted in establishing processing and characterization techniques for producing both the Bi-based and Tl-based superconductors in their high temperature (2223) forms. In the bulk, dry pressed form, maximum critical temperatures (Tc) of 108.2 K and 117.8 K, respectively, were measured. Results have further shown that the Bi and Tl-based superconducting materials in bulk form are noticeably different from the Y-based 123 material in that superconductivity is considerably harder to achieve, maintain, and reproduce. This is due primarily to the difficulty in obtaining the higher Tc phase in pure form since it commonly co-exists with other undesirable, lower Tc phases. In particular, it has been found that long processing times for calcining and firing (20 - 200 hrs.) and close control of temperatures which are very near the melting point are required in order to obtain higher proportions of the desirable, high Tc (2223) phase. Thus far, the BSCCO bulk materials has been prepared in uniaxially pressed, hot pressed, and tapecast form. The uniaxially pressed material has been synthesized by the mixed oxide, coprecipitation, and melt quenching processes. The tapecast and hot pressed materials have been prepared via the mixed oxide process. In addition, thick films of BSCCO (2223 phase) have been prepared by screen printing on to yttria and magnesia stabilized zirconia with only moderate success; i.e., superconductivity was achieved in these thick films, but the highest Tc obtained in these films was 89.0 K. The Tc's of the bulk hot pressed, tapecast, and screen printed thick film materials were found to be 108.2, 102.4, and 89.0 K, respectively.

  13. Development of high Tc (greater than 100 K) Bi, Tl and Y-based materials as superconducting circuit elements

    NASA Technical Reports Server (NTRS)

    Haertling, Gene; Grabert, Gregory; Gilmour, Phillip

    1994-01-01

    Experimental work on this project over the last four years has resulted in establishing processing and characterization techniques for producing both the Bi-based and Tl-based superconductors in their high temperature (2223) forms. In the bulk, dry pressed form, maximum critical temperatures (Tc) of 108.2 K and 117.8 K, respectively, were measured. Results have further shown that the Bi and Tl-based superconducting materials in bulk form are noticeably different from the Y-based 123 material in that superconductivity is considerably harder to achieve, maintain, and reproduce. This is due primarily to the difficulty in obtaining the higher Tc phase in pure form since it commonly co-exists with other undesirable, lower Tc phases. In particular, it has been found that long processing times for calcining and firing (20 - 200 hrs.) and close control of temperatures which are very near the melting point are required in order to obtain higher proportions of the desirable, high Tc (2223) phase. Thus far, the BSCCO bulk materials has been prepared in uniaxially pressed, hot pressed, and tapecast form. The uniaxially pressed material has been synthesized by the mixed oxide, coprecipitation, and melt quenching processes. The tapecast and hot pressed materials have been prepared via the mixed oxide process. In addition, thick films of BSCCO (2223 phase) have been prepared by screen printing on to yttria and magnesia stabilized zirconia with only moderate success; i.e., superconductivity was achieved in these thick films, but the highest Tc obtained in these films was 89.0 K. The Tc's of the bulk hot pressed, tapecast, and screen printed thick film materials were found to be 108.2, 102.4, and 89.0 K, respectively.

  14. Irradiation response of commercial, high-Tc superconducting tapes: Electromagnetic transport properties

    SciTech Connect

    Gapud, A. A.; Greenwood, N. T.; Alexander, J. A.; Khan, A.; Leonard, K. J.; Aytug, T.; List III, F. A.; Rupich, M. W.; Zhang, Y.

    2015-07-01

    Effects of low dose irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in the irradiative environment of fusion reactors. Three different tapes, each with unique as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results show that at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.

  15. Irradiation response of commercial, high-Tc superconducting tapes: Electromagnetic transport properties

    NASA Astrophysics Data System (ADS)

    Gapud, A. A.; Greenwood, N. T.; Alexander, J. A.; Khan, A.; Leonard, K. J.; Aytug, T.; List, F. A.; Rupich, M. W.; Zhang, Y.

    2015-07-01

    Effects of low dose ion irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in irradiative environments. Three different tapes, each with unique and tailored as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in, for example, a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results show that, at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.

  16. High- Tc superconducting rf receiver coils for magnetic resonance imaging of small animals

    NASA Astrophysics Data System (ADS)

    Wosik, J.; Nesteruk, K.; Xie, L.-M.; Strikovski, M.; Wang, F.; Miller, J. H.; Bilgen, M.; Narayana, P. A.

    We report on an HTS rf receiver surface probe designed for 2-Tesla MRI imaging of spinal cord injuries in small animals. The 2-T probe is used in lieu of an implanted copper coil being currently used in research on spinal cord injuries. The HTS probe was designed with a virtual ground plane, thus reducing the coil-to-ground losses and making its unloaded quality factor and resonant frequency less sensitive to body proximity. Each coil was fabricated using patterned double-sided YBa 2Cu 3O x (YBCO) films deposited either on sapphire or LaAlO 3 substrates. The signal-to-noise ratio (SNR) was analyzed numerically using complete solutions to Maxwell's equations and the reciprocity principle for a rectangular coil next to a finite lossy dielectric cylinder. A comparison of images obtained with superconducting and cooled copper probes is shown.

  17. Experimental and theoretical investigation on high-Tc superconducting intrinsic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Grib, Alexander; Shukrinov, Yury; Schmidl, Frank; Seidel, Paul

    2010-11-01

    Within the last years many groups have realized and investigated different types of intrinsic Josephson junction (IJJ) arrays out of high-temperature superconducting single crystals or thin films. We tried to improve the synchronization between the junctions by external shunts. Mesa structures as well as microbridges on vicinal cut substrates showed multi-branch behaviour in their IV characteristics and random switching between branches. Theoretical modelling was done investigating phase dynamics and stability numerically as well as analytically. Branch structure in current voltage characteristics of IJJ is studied in the framework of different models, particularly, in capacitevely coupled Josephson junctions (CCJJ) model and CCJJ model with diffusion current. Results of modelling of return current in IV characteristics for stacks with different number of IJJ are presented. We discussed the possible mechanisms of synchronization and the ranges of stability. Conclusions with respect to application of such arrays such as radiation sources were given.

  18. Irradiation response of commercial, high-Tc superconducting tapes: Electromagnetic transport properties

    DOE PAGESBeta

    Gapud, A. A.; Greenwood, N. T.; Alexander, J. A.; Khan, A.; Leonard, K. J.; Aytug, T.; List III, F. A.; Rupich, M. W.; Zhang, Y.

    2015-07-01

    Effects of low dose irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in the irradiative environment of fusion reactors. Three different tapes, each with unique as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results showmore » that at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.« less

  19. Conceptual design of 275 kV class high-Tc superconducting cable

    NASA Astrophysics Data System (ADS)

    Mukoyama, S.; Yagi, M.; Fujiwara, N.; Ichikawa, H.

    2010-11-01

    High-temperature superconducting (HTS) cables are expected to be next generation transmission line because of the compact, lightweight, large capacity, and low loss features. Especially, since the YBa 2Cu 3O x (YBCO) tape has a high critical current, high magnetic-field property, low AC loss, and low cost, using YBCO tapes for a HTS cable seems to be one of the most promising ways to make the HTS cable attractive. Therefore, YBCO HTS cables have been studied extensively in Japan, the United States, Korea, and many other countries. We now believe that 275 kV class HTS cables will be used for future large capacity lines based on the needs of Japanese transmission networks for bulk transmission power in overhead transmission lines or gas insulated transmission lines (GIL). We started to develop the 275 kV class HTS cable for the new energy and industrial technology development organization (NEDO) project at 2008, and we have studied the applicability and the environmental and economic advantages of the 275 kV cable. This paper will introduce advantages and a conceptual design of the 275 kV HTS cable.

  20. Integrated high Tc superconducting magnetometer with multiturn input coil and grain boundary junctions

    NASA Astrophysics Data System (ADS)

    Shen, Y. Q.; Sun, Z. J.; Kromann, R.; Holst, T.; Vase, P.; Freloft, T.

    1995-10-01

    We have fabricated and tested integrated magnetometers based on the superconducting quantum interference device (SQUID). The magnetometer consists of two patterned films of YBa2Cu3O7, separated by an insulating layer of SrTiO3. A multiturn input coil was integrated on top of the SQUID, where the misorientation angle in a SrTiO3 bicrystal substrate was used to form the grain boundary junctions. The noise spectrum was characterized at 77 K and showed that above 10 Hz the magnetometer sensitivity is limited by a white noise level of around 4×10-5 Φ0/Hz1/2. In the 4 mm × 4 mm detection area of the input coil, this translates into a magnetic field sensitivity of 320 fT/ Hz1/2 at 100 Hz. Compared to the theoretical value of an optimized SQUID the white noise level of the magnetometer is two times higher. Below 10 Hz the noise is dominated by 1/f noise mainly due to the critical current fluctuations.

  1. Pairing Mechanism for the High-TC Superconductivity: Symmetries and Thermodynamic Properties

    PubMed Central

    Szczęśniak, Radosław

    2012-01-01

    The pairing mechanism for the high- superconductors based on the electron-phonon (EPH) and electron-electron-phonon (EEPH) interactions has been presented. On the fold mean-field level, it has been proven, that the obtained s-wave model supplements the predictions based on the BCS van Hove scenario. In particular: (i) For strong EEPH coupling and the energy gap () is very weak temperature dependent; up to the critical temperature extends into the anomalous normal state to the Nernst temperature. (ii) The model explains well the experimental dependence of the ratio on doping for the reported superconductors in the terms of the few fundamental parameters. In the presented paper, the properties of the d-wave superconducting state in the two-dimensional system have been also studied. The obtained results, like for s-wave, have shown the energy gap amplitude crossover from the BCS to non-BCS behavior, as the value of the EEPH potential increases. However, for the energy gap amplitude extends into the anomalous normal state to the pseudogap temperature. Finally, it has been presented that the anisotropic model explains the dependence of the ratio on doping for the considered superconductors. PMID:22529891

  2. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity

    PubMed Central

    Duan, Defang; Liu, Yunxian; Tian, Fubo; Li, Da; Huang, Xiaoli; Zhao, Zhonglong; Yu, Hongyu; Liu, Bingbing; Tian, Wenjing; Cui, Tian

    2014-01-01

    The high pressure structures, metallization, and superconductivity of recently synthesized H2-containing compounds (H2S)2H2 are elucidated by ab initio calculations. The ordered crystal structure with P1 symmetry is determined, supported by the good agreement between theoretical and experimental X-ray diffraction data, equation of states, and Raman spectra. The Cccm structure is favorable with partial hydrogen bond symmetrization above 37 GPa. Upon further compression, H2 molecules disappear and two intriguing metallic structures with R3m and Im-3m symmetries are reconstructive above 111 and 180 GPa, respectively. The predicted metallization pressure is 111 GPa, which is approximately one-third of the currently suggested metallization pressure of bulk molecular hydrogen. Application of the Allen-Dynes-modified McMillan equation for the Im-3m structure yields high Tc values of 191 K to 204 K at 200 GPa, which is among the highest values reported for H2-rich van der Waals compounds and MH3 type hydride thus far. PMID:25382349

  3. High temperature superconducting fault current limiter

    DOEpatents

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  4. High temperature superconducting fault current limiter

    DOEpatents

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  5. High-Tc superconductivity at the interface between the CaCuO2 and SrTiO3 insulating oxides

    DOE PAGESBeta

    Di Castro, D.; Cantoni, C.; Ridolfi, F.; Aruta, C.; Tebano, A.; Yang, N.; Balestrino, G.

    2015-09-28

    At interfaces between complex oxides it is possible to generate electronic systems with unusual electronic properties, which are not present in the isolated oxides. One important example is the appearance of superconductivity at the interface between insulating oxides, although, until now, with very low Tc. We report the occurrence of high Tc superconductivity in the bilayer CaCuO2/SrTiO3, where both the constituent oxides are insulating. In order to obtain a superconducting state, the CaCuO2/SrTiO3 interface must be realized between the Ca plane of CaCuO2 and the TiO2 plane of SrTiO3. Only in this case can oxygen ions be incorporated in themore » interface Ca plane, acting as apical oxygen for Cu and providing holes to the CuO2 planes. In addition, a detailed hole doping spatial profile can be obtained by scanning transmission electron microscopy and electron-energy-loss spectroscopy at the O K edge, clearly showing that the (super)conductivity is confined to about 1–2 CaCuO2 unit cells close to the interface with SrTiO3. The results obtained for the CaCuO2/SrTiO3 interface can be extended to multilayered high Tc cuprates, contributing to explaining the dependence of Tc on the number of CuO2 planes in these systems.« less

  6. Superconducting fault current limiter for railway transport

    NASA Astrophysics Data System (ADS)

    Fisher, L. M.; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.

    2015-12-01

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered.

  7. Superconducting fault current limiter for railway transport

    SciTech Connect

    Fisher, L. M. Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.

    2015-12-15

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered.

  8. Reassessment of the electronic state, magnetism, and superconductivity in high-Tc cuprates with the Nd2CuO4 structure

    NASA Astrophysics Data System (ADS)

    Naito, Michio; Krockenberger, Yoshiharu; Ikeda, Ai; Yamamoto, Hideki

    2016-04-01

    The electronic phase diagram of the cuprates remains enigmatic and is still a key ingredient to understand the mechanism of high-Tc superconductivity. It has been believed for a long time that parent compounds of cuprates were universally antiferromagnetic Mott insulators (charge-transfer insulators) and that high-Tc superconductivity would develop upon doping holes or electrons in a Mott-Hubbard insulator ("doped Mott-insulator scenario"). However, our recent discovery of superconductivity in the parent compounds of square-planar cuprates with the Nd2CuO4 (T') structure and the revised electronic phase diagram in T' cuprates urged a serious reassessment to the above scenario. In this review, we present the main results derived from our synthesis and experiments on T' cuprates in the undoped or heavily underdoped regime over 20 years, including material issues and basic physics. The key material issue is how to remove excess oxygen ions at the apical site without introducing oxygen vacancies in the CuO2 planes. In order to put this into practice, the basic knowledge of complex solid-state chemistry in T' cuprates is required, which is also included in this review.

  9. Self-triggering superconducting fault current limiter

    DOEpatents

    Yuan, Xing; Tekletsadik, Kasegn

    2008-10-21

    A modular and scaleable Matrix Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. The matrix fault current limiter comprises a fault current limiter module that includes a superconductor which is electrically coupled in parallel with a trigger coil, wherein the trigger coil is magnetically coupled to the superconductor. The current surge doing a fault within the electrical power network will cause the superconductor to transition to its resistive state and also generate a uniform magnetic field in the trigger coil and simultaneously limit the voltage developed across the superconductor. This results in fast and uniform quenching of the superconductors, significantly reduces the burnout risk associated with non-uniformity often existing within the volume of superconductor materials. The fault current limiter modules may be electrically coupled together to form various "n" (rows).times."m" (columns) matrix configurations.

  10. Synthesis of high {Tc} superconducting coatings and patterns by melt writing and oxidation of metallic precursor alloys

    SciTech Connect

    Gao, W.; Vander Sande, J.B.

    1998-07-28

    A method is provided for fabrication of superconducting oxides and superconducting oxide composites and for joining superconductors to other materials. A coating of a molten alloy containing the metallic elements of the oxide is applied to a substrate surface and oxidized to form the superconducting oxide. A material can be contacted to the molten alloy which is subsequently oxidized joining the material to the resulting superconducting oxide coating. Substrates of varied composition and shape can be coated or joined by this method. 5 figs.

  11. Computed tomography image using sub-terahertz waves generated from a high-Tc superconducting intrinsic Josephson junction oscillator

    NASA Astrophysics Data System (ADS)

    Kashiwagi, T.; Nakade, K.; Saiwai, Y.; Minami, H.; Kitamura, T.; Watanabe, C.; Ishida, K.; Sekimoto, S.; Asanuma, K.; Yasui, T.; Shibano, Y.; Tsujimoto, M.; Yamamoto, T.; Marković, B.; Mirković, J.; Klemm, R. A.; Kadowaki, K.

    2014-02-01

    A computed tomography (CT) imaging system using monochromatic sub-terahertz coherent electromagnetic waves generated from a device constructed from the intrinsic Josephson junctions in a single crystalline mesa structure of the high-Tc superconductor Bi2Sr2CaCu2O8+δ was developed and tested on three samples: Standing metallic rods supported by styrofoam, a dried plant (heart pea) containing seeds, and a plastic doll inside an egg shell. The images obtained strongly suggest that this CT imaging system may be useful for a variety of practical applications.

  12. High-Tc superconductivity in ultrathin Bi2Sr2CaCu2O(8+x) down to half-unit-cell thickness by protection with graphene.

    PubMed

    Jiang, Da; Hu, Tao; You, Lixing; Li, Qiao; Li, Ang; Wang, Haomin; Mu, Gang; Chen, Zhiying; Zhang, Haoran; Yu, Guanghui; Zhu, Jie; Sun, Qiujuan; Lin, Chengtian; Xiao, Hong; Xie, Xiaoming; Jiang, Mianheng

    2014-01-01

    High-Tc superconductors confined to two dimension exhibit novel physical phenomena, such as superconductor-insulator transition. In the Bi2Sr2CaCu2O(8+x) (Bi2212) model system, despite extensive studies, the intrinsic superconducting properties at the thinness limit have been difficult to determine. Here, we report a method to fabricate high quality single-crystal Bi2212 films down to half-unit-cell thickness in the form of graphene/Bi2212 van der Waals heterostructure, in which sharp superconducting transitions are observed. The heterostructure also exhibits a nonlinear current-voltage characteristic due to the Dirac nature of the graphene band structure. More interestingly, although the critical temperature remains essentially the same with reduced thickness of Bi2212, the slope of the normal state T-linear resistivity varies by a factor of 4-5, and the sheet resistance increases by three orders of magnitude, indicating a surprising decoupling of the normal state resistance and superconductivity. The developed technique is versatile, applicable to investigate other two-dimensional (2D) superconducting materials. PMID:25483591

  13. Magnetic field dependence of high- Tc interface superconductivity in La1.55Sr0.45CuO4/La2CuO4 heterostructures

    DOE PAGESBeta

    Gasparov, V. A.; Drigo, L.; Audouard, A.; He, Xi; Božović, I.

    2016-07-11

    Heterostructures made of a layer of a cuprate insulator La2CuO4 on the top of a layer of a nonsuperconducting cuprate metal La1.55Sr0.45CuO4 show high-Tc interface superconductivity confined within a single CuO2 plane. Given this extreme quasi-two-dimensional quantum confinement, it is of interest to find out how interface superconductivity behaves when exposed to an external magnetic field. With this motivation, we have performed contactless tunnel-diode-oscillator-based measurements in pulsed magnetic fields up to 56 T as well as measurements of the complex mutual inductance between a spiral coil and the film in static fields up to 3 T. Remarkably, we observe thatmore » interface superconductivity survives up to very high perpendicular fields, in excess of 40 T. Additionally, the critical magnetic field Hm(T) reveals an upward divergence with decreasing temperature, in line with vortex melting as in bulk superconducting cuprates.« less

  14. Superconducting fault current controller/current controller

    DOEpatents

    Cha, Yung S.

    2004-06-15

    A superconducting fault current controller/current controller employs a superconducting-shielded core reactor (SSCR) with a variable impedance in a secondary circuit to control current in a primary circuit such as an electrical distribution system. In a second embodiment, a variable current source is employed in a secondary circuit of an SSCR to control current in the primary circuit. In a third embodiment, both a variable impedance in one secondary circuit and a variable current source in a second circuit of an SSCR are employed for separate and independent control of current in the primary circuit.

  15. Fabrication and chemical composition of RF magnetron sputtered Tl-Ca-Ba-Cu-O high Tc superconducting thin films

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; Radpour, F.; Kapoor, V. J.; Lemon, G. H.

    1990-01-01

    The preparation of TlCaBaCuO superconducting thin films on (100) SrTiO3 substrates is described, and the results of their characterization are presented. Sintering and annealing the thin films in a Tl-rich ambient yielded superconductivity with a Tc of 107 K. The results of an XPS study support two possible mechanisms for the creation of holes in the TlCaBaCuO compound: (1) partial substitution of Ca(2+) for Tl(3+), resulting in hole creation, and (2) charge transfer from Tl(3+) to the CuO layers, resulting in a Tl valence between +3 and +1.

  16. Voltage divider based on submicron slits in a high Tc superconducting film and two bicrystal grain boundaries

    NASA Astrophysics Data System (ADS)

    Kaplunenko, V. K.; Ivanov, Z. G.; Stepantsov, E. A.; Claeson, T.; Wikborg, E.

    1995-07-01

    Experiments on a model of rapid single flux quantum (RSFQ) flip-flop cell, based on high-Tc (HTS) Josephson junctions show that it can operate as a voltage divider at frequency up to 400 GHz. The junctions were formed in YBaCuO film, deposited on novel Y-ZrO2 bicrystals with two asymmetric 32° grain boundaries, about 10 μm apart, and allow a new design of RSFQ logic based on a single HTS layer. Small inductances (≂10 pH) were made as narrow, submicron size slits. The junction widths were between 4 and 10 μm and for ten junctions located close to the tested circuits, the linear critical current densities at T=4.4 K were 10.7 μA/μm±50% for one grain boundary and 8.3 μA/μm±50% for the other one. IcRn was about 1 mV±50%. A current density of half the expected value meant that the test circuit did not act as an ideal flip-flop down to the lowest frequency. As a voltage divider it gave a half value division up to 0.82 mV at T=4.4 K and to 0.4 mV at 30 K.

  17. Spin-polaron theory of high-{Tc} superconductivity: 2, electronic structure of the CuO{sub 2} planes

    SciTech Connect

    Wood, R.F.

    1993-06-01

    After an introductory discussion of electronic structure calculations for the CuO{sub 2} planes in the copper-oxide based high-{Tc} superconductors, the method suggested by Slater for studying antiferromagnetic (AF) metals is described. In this method, as applied here, the chemical unit cell is doubled to form a magnetic unit cell which contains one Cu ion with predominantly up spin and one with predominantly down spin. Down spins are kept off up-spin sites, and conversely, by the introduction of a Hubbard U term. As a result, the band structure obtained is typical of that for a Mott-Hubbard (M-H) or, more generally, a charge transfer insulator. Conductivity in the a-b plane results when holes are introduced into the M-H valence band. The band structure as a function of the parameters in Koster-Slater type calculations is discussed and the Fermi surface is described. A calculation of the delocalization energy for spin-polaron formation is carried out within the context of the band calculations.

  18. Recent high-magnetic-field experiments on the 'high Tc' cuprates: Fermi-surface instabilities as a driver for superconductivity

    SciTech Connect

    Singleton, John; Mc Donald, Ross D; Cox, Susan

    2008-01-01

    The authors give a brief review of high-magnetic-field quantum-oscillation measurements on cuprate superconductors. In the case of the underdoped cuprates, a number of small Fermi-surface pockets are observed, probably due to the incommensurate nesting of the predicted (large) hole Fermi surface. The Fermi-surface instabilities that drive this nesting are also likely to result in the incommensurate spin fluctuations observed in inelastic neutron-scattering measurements. They suggest that the unusually high superconducting transitions in the cuprates are driven by an exact mapping of these incommensurate spin fluctuations onto the d{sub x{sup 2}-y{sup 2}} Cooper-pair wavefunction. The maximum energy of the fluctuations {approx} 100s of Kelvin gives an appropriate energy scale for the superconducting transition temperature.

  19. In-situ deposition of YBCO high-Tc superconducting thin films by MOCVD and PE-MOCVD

    NASA Technical Reports Server (NTRS)

    Zhao, J.; Noh, D. W.; Chern, C.; Li, Y. Q.; Norris, P. E.; Kear, B.; Gallois, B.

    1991-01-01

    Metal-Organic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T(sub c) greater than 90 K and J(sub c) of approximately 10(exp 4) A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metal-organic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology.

  20. Transport Anomalies and Possible High Tc Superconductivity in interconnected multiwall carbon nanotube sheets doped by ion implantation

    NASA Astrophysics Data System (ADS)

    Zakhidov, Anvar; Howard, Austin; Cornell, Nicholas; Goskun, Ulas; Salamon, Myron; Baughman, Ray; Bykova, Julia; Mayo, Nathanael; Wang, Xuemei; Galstyan, Eduard; Freyhardt, Herbert; Kan Chu, Wei

    2012-02-01

    Ion implantation offers an alternative doping method. In searching for superconductivity,we describe here the ion-implantation doping of MWCNT interconnected networks by boron and other dopants (phosphorous, sulfur, arsenic) and report transport anomalies in oriented networks of ion implanted MWCNT sheets as compared to cross coated (non-oriented multilayer MWCNT sheets). The strong drop of resistance R(T) with temperature decrease starting at Tc1= 50-60 K and even at higher T is reminiscent of inhomogeneous superconducting islands appearing in the non-SC matrix. An unusual anomaly of the 4-terminal resistance is observed in many samples, R(T) becoming negative at lower T< Tc2 ˜ 10-20 K, This negative resistance is found to be associated with unusual I-V curves with s-shape at low T < Tc2 and R(T) shows nonlinear dependence on excitation current and other features that are studied carefully in MWCNTs with different lengths and densities. This negative-resistance behavior gives a hint for the possible incorporation of superconducting areas and can be explained in terms of an imbalanced resistance bridge.

  1. Field-dependent critical state of high-Tc superconducting strip simultaneously exposed to transport current and perpendicular magnetic field

    SciTech Connect

    Xue, Cun; He, An; Yong, Huadong; Zhou, Youhe

    2013-12-15

    We present an exact analytical approach for arbitrary field-dependent critical state of high-T{sub c} superconducting strip with transport current. The sheet current and flux-density profiles are derived by solving the integral equations, which agree with experiments quite well. For small transport current, the approximate explicit expressions of sheet current, flux-density and penetration depth for the Kim model are derived based on the mean value theorem for integration. We also extend the results to the field-dependent critical state of superconducting strip in the simultaneous presence of applied field and transport current. The sheet current distributions calculated by the Kim model agree with experiments better than that by the Bean model. Moreover, the lines in the I{sub a}-B{sub a} plane for the Kim model are not monotonic, which is quite different from that the Bean model. The results reveal that the maximum transport current in thin superconducting strip will decrease with increasing applied field which vanishes for the Bean model. The results of this paper are useful to calculate ac susceptibility and ac loss.

  2. Low-energy physical properties of high- Tc superconducting Cu oxides: A comparison between the resonating valence bond and experiments

    NASA Astrophysics Data System (ADS)

    Yang, Kai-Yu; Shih, C. T.; Chou, C. P.; Huang, S. M.; Lee, T. K.; Xiang, T.; Zhang, F. C.

    2006-06-01

    In a recent review by Anderson and co-workers, it was pointed out that an early resonating valence bond (RVB) theory is able to explain a number of unusual properties of high-temperature superconducting (SC) Cu oxides. Here we extend previous calculations to study more systematically the low-energy physical properties of the plain vanilla d -wave RVB state, and to compare the results with the available experiments. We use a renormalized mean-field theory combined with variational Monte Carlo and power Lanczos methods to study the RVB state of an extended t-J model in a square lattice with parameters suitable for the hole-doped Cu oxides. The physical observable quantities we study include the specific heat, the linear residual thermal conductivity, the in-plane magnetic penetration depth, the quasiparticle energy at the antinode (π,0) , the superconducting energy gap, the quasiparticle spectra, and the Drude weights. The traits of nodes (including kF , the Fermi velocity vF , and the velocity along Fermi surface v2 ), and the SC order parameter are studied. Comparisons of the theory and the experiments in cuprates show an overall qualitative agreement, especially on their doping dependences.

  3. Development of high Tc (greater than 110K) Bi, Tl and Y-based materials as superconducting circuit elements

    NASA Technical Reports Server (NTRS)

    Haertling, Gene; Grabert, Gregory; Gilmour, Phillip

    1991-01-01

    Experimental work was continued on the development and characterization of bulk and hot pressed powders and tapecast materials in the Bi-Sr-Ca-Cu-O and Tl-Ba-Ca-Cu-O systems. A process for producing warp-free, sintered, superconducting tapes of Bi composition Bi1Sr2Ca2 Cu3O(x) was established. The procedure requires a triple calcination at 830 C for 24 hours and sintering at 845 C from 20 to 200 hours. Hot pressing the triple calcined powder at 845 C for 6 hours at 5000 psi yielded a dense material, which on further heat treatment at 845 C for 24 hours, exhibited a Tc of 108.2K. The Bi compositions were found to be much less oxygen sensitive than the Y compositions. This was especially noted in the case of the hot pressed materials which were superconducting as hot pressed, a condition that could not be achieved in the Y compositions. Safire-type grounding links are in the process of being fabricated from these materials.

  4. First principles Study on Transparent High-Tc Superconductivity in hole-doped Delafossite CuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi

    2012-02-01

    The CuAlO2 is the transparent p-type conductor without any intentional doping. Transparent superdoncutivity and high thermoelectric power are suggested in p-type CuAlO2 [1]. Katayama-Yoshida et al. proposed that it may cause a strong electron-phonon interaction and a superconductivity. But, the calculation of superconducting critical temperature Tc is not performed. We performed the first principles calculation about the Tc of hole-doped CuAlO2 by shifting the Fermi level rigidly. In lightly hole-doped CuAlO2, the Fermi level is located at Cu and O anti-bonding band. The electrons of this band strongly interact with the A1L1 phonon mode because the direction of O-Cu-O dumbbell is parallel to the oscillation direction of the A1L1 phonon mode. As a result, Tc of lightly hole-doped CuAlO2 is about 50 K. We also discuss the materials design to enhance the Tc based on the charge-excitation-induced negative effective U system.[4pt] [1] H. Katayama-Yoshida, T. Koyanagi, H. Funashima, H. Harima, A. Yanase: Solid State Communication 126 (2003) 135. [0pt] [2] A. Nakanishi and H. Katayama-Yoshida: Solid State Communication, in printing. (arXiv:1107.2477v3

  5. Fault-tolerant architectures for superconducting qubits

    NASA Astrophysics Data System (ADS)

    DiVincenzo, David P.

    2009-12-01

    In this short review, I draw attention to new developments in the theory of fault tolerance in quantum computation that may give concrete direction to future work in the development of superconducting qubit systems. The basics of quantum error-correction codes, which I will briefly review, have not significantly changed since their introduction 15 years ago. But an interesting picture has emerged of an efficient use of these codes that may put fault-tolerant operation within reach. It is now understood that two-dimensional surface codes, close relatives of the original toric code of Kitaev, can be adapted as shown by Raussendorf and Harrington to effectively perform logical gate operations in a very simple planar architecture, with error thresholds for fault-tolerant operation simulated to be 0.75%. This architecture uses topological ideas in its functioning, but it is not 'topological quantum computation'—there are no non-abelian anyons in sight. I offer some speculations on the crucial pieces of superconducting hardware that could be demonstrated in the next couple of years that would be clear stepping stones towards this surface-code architecture.

  6. Study of high {Tc} superconducting thin films grown by MOCVD. Final report, July 1, 1986--April 30, 1990

    SciTech Connect

    Erbil, A.

    1990-12-31

    Work is described briefly, which was carried out on development of techniques to grow metal-semiconductor superlattices (artificially layered materials) and on the copper oxide based susperconductors (naturally layered materials). The current growth technique utilized is metalorganic chemical vapor deposition (MOCVD). CdTe, PbTe, La, LaTe, and Bi{sub 2}Te{sub 3} were deposited, mostly on GaAs. Several YBa{sub 2}Cu{sub 3}O{sub 7} compounds were obtained with possible superconductivity at temperatures up to 550 K (1 part in 10{sup 4}). YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} and Tl{sub 2}CaBa{sub 2}Cu{sub 2}O{sub y} thin films were deposited by MOCVD on common substrates such as glass.

  7. THORIUM-DOPING INDUCED HIGH-Tc SUPERCONDUCTIVITY IN Dy1-xThxFeAsO

    NASA Astrophysics Data System (ADS)

    Luo, Yongkang; Lin, Xiao; Li, Yuke; Tao, Qian; Li, Linjun; Zhu, Zengwei; Cao, Guanghan; Xu, Zhu'an

    2012-12-01

    Parent compound of DyFeAsO was successfully synthesized by solid-state reaction under ambient pressure and superconductivity was induced by partial substitution of trivalent Dy3+ ions with tetravalent Th4+ in Dy1-xThx FeAsO. In the undoped parent compound, an anomaly in the resistivity appears around 140 K which corresponds to the structural phase transition and/or antiferromagnetic (AFM) order of the magnetic moments of Fe2+ ions. At low temperature, another AFM order associated with the magnetic moments of Dy3+ ions occurs at TN of 9.55 K. The AFM order around 140 K has significant influence on the transport properties, which can be interpreted by opening of partial gap on Fermi surface. Th doping suppresses the AFM order related to the Fe2+ ions and the midpoint transition temperature Tc mid of 49.3 K is observed for x = 0.3. Our results also indicate that the [Ln2O2]2+ layer has influence on the magnetism of [Fe2As2]2- layer.

  8. An experimental study of high Tc superconducting microstrip transmission lines at 35 GHz and the effect of film morphology

    NASA Technical Reports Server (NTRS)

    Chorey, C. M.; Bhasin, K. B.; Warner, J. D.; Josefowicz, J. Y.; Rensch, D. B.; Nieh, C. W.

    1990-01-01

    Microstrip transmission lines in the form of ring resonators were fabricated from a number of in-situ grown laser ablated films and post-annealed co-sputtered YBa2Cu3O(7-x) films. The properties of these resonators were measured at 35 GHz and the observed performance is examined in light of the critical temperature (Tc) and film thickness and also the film morphology which is different for the two deposition techniques. It is found that Tc is a major indicator of the film performance for each growth type with film thickness becoming important as it decreases towards 100 A. It is also found that the films with a mixed grain orientation (both a axis and c axis oriented grains) have poorer microwave properties as compared with the primarily c axis oriented material. This is probably due to the significant number of grain boundaries between the different crystallites, which may act as superconducting weak links and contribute to the surface resistance.

  9. Uniform mixing of high- Tc superconductivity and antiferromagnetism on a single CuO 2 plane in five-layered cuprates

    NASA Astrophysics Data System (ADS)

    Mukuda, H.; Abe, M.; Kitaoka, Y.; Kotegawa, H.; Tokiwa, K.; Watanabe, T.; Iyo, A.; Kito, H.; Tanaka, Y.; Kodama, Y.

    2007-09-01

    We report systematic Cu-NMR studies on five-layered cuprates from under-doped HgBa2Ca4Cu5O12+δ (Hg-1245(UD)) to slightly overdoped Tl-1245(OVD), and compare with optimally-doped Hg-1245(OPT). In the under-doped Hg-1245(UD), antiferromagnetism (AFM) has been found to take place at TN = 290 K, exhibiting a large antiferromagnetic moment of 0.67-0.69 μB at three inner planes (IP's). These values are comparable to that reported for non-doped cuprates, suggesting that the IP's may be in a nearly non-doped regime. Most surprisingly, the AFM order is also detected with MAFM(OP) = 0.1 μB even at two outer planes (OP's) that are responsible for the onset of superconductivity (SC) with Tc = 72 K. The high-Tc SC at Tc = 72 K can uniformly coexist on a microscopic level with the AFM at OP's. This is the first microscopic evidence for the uniformly mixed phase of AFM and SC on a single CuO2 plane. Although, the AFM/SC mixed CuO2 planes are significantly separated by three non-doped AFM layers, the onset of AFM does not prevent the occurrence of SC with the high value of Tc = 72 K.

  10. Phase Transformations in the High-Tc Superconducting Compounds, Ba2RCu3O7−δ (R = Nd, Sm, Gd, Y, Ho, and Er)

    PubMed Central

    Wong-Ng, W.; Cook, L. P.; Su, H. B.; Vaudin, M. D.; Chiang, C. K.; Welch, D. R.; Fuller, E. R.; Yang, Z.; Bennett, L. H.

    2006-01-01

    The phase transformation between the orthorhombic and tetragonal structures of six high-Tc superconductors, Ba2RCu3O7−δ, where R = Nd, Sm, Gd, Y, Ho, and Er, and δ = 0 to 1, has been investigated using techniques of x-ray diffraction, differential thermal analysis/thermogravimetric analysis (DTA/TGA) and electron diffraction. The transformation from the oxygen-rich orthorhombic phase to the oxygen-deficient tetragonal phase involves two orthorhombic phases. A superlattice cell caused by oxygen ordering, with a′ = 2a, was observed for materials with smaller ionic radius (Y, Ho, and Er). For the larger lanthanide samples (Nd, Sm, and Gd), the a′ = 2a type superlattice cell was not observed. The structural phase transition temperatures, oxygen stoichiometry and characteristics of the Tc plateaus appear to correlate with the ionic radius, which varies based on the number of f electrons. Lanthanide elements with a smaller ionic radius stabilize the orthorhombic phase to higher temperatures and lower oxygen content. Also, the superconducting temperature is less sensitive to the oxygen content for materials with smaller ionic radius. The trend of dependence of the phase transformation temperature on ionic radius across the lanthanide series can be explained using a quasi-chemical approximation (QCA) whereby the strain effect plays an important role on the order-disorder transition due to the effect of oxygen content on the CuO chain sites. PMID:27274916

  11. High-Tc Nodeless s±-wave Superconductivity in (Y,La)FeAsO1-y with Tc=50K:As75-NMR Study

    NASA Astrophysics Data System (ADS)

    Mukuda, H.; Furukawa, S.; Kinouchi, H.; Yashima, M.; Kitaoka, Y.; Shirage, P. M.; Eisaki, H.; Iyo, A.

    2012-10-01

    We report on an As75-NMR study on the Fe-pnictide high-Tc superconductor Y0.95La0.05FeAsO1-y (Y0.95La0.051111) with Tc=50K that includes no magnetic rare-earth elements. The measurement of the nuclear-spin lattice-relaxation rate (751/T1) has revealed that the nodeless bulk superconductivity takes place at Tc=50K while antiferromagnetic spin fluctuations develop moderately in the normal state. These features are consistently described by the multiple fully gapped s±-wave model based on the Fermi-surface nesting. Incorporating the theory based on band calculations, we propose that the reason that Tc=50K in Y0.95La0.051111 is larger than Tc=28K in La1111 is that the Fermi-surface multiplicity is maximized, and hence the Fermi-surface nesting condition is better than that in La1111.

  12. New Insight into an Under-doped Regime of High Tc Superconductivity - NMR Studies of Multi-layered Cuprates

    NASA Astrophysics Data System (ADS)

    Kitaoka, Yoshio

    2007-03-01

    High-temperature superconductivity (HTSC) has not been fully understood yet despite 20 year's intensive research. In particular, a possible interplay between antiferromagnetism (AFM) and HTSC remains as a most interesting problem. It is believed that they all fit into a universal phase diagram which suggests a competition between AFM and HTSC. Recently, however, through the systematic Cu-NMR studies on the Hg-, Tl- and Cu-based five-layered HTSC, we propose a novel phase diagram [1-3], which differs from the generic phase diagram of the HTSC reported so far, for instance, such as LSCO. The multi-layered HTSC compounds include two types of CuO2 planes, an outer CuO2 plane (OP) in a pyramidal coordination and an inner CuO2 plane (IP) in a square one with no apical oxygen. Remarkable feature of the multi-layered HTSC is the presence of ideally flat CuO2 planes that are homogeneously doped, which is ensured by the narrowest NMR spectral width among the various HTSC compounds with very high quality to date. It should be noted that the nearly non-doped AFM in the IP and the IP* takes place, whereas inhomogeneous magnetic phases such as spin-glass phase or stripe phase are not observed at both the IP's and the OP's. Instead, the existence of the doped AFM metallic (AFMM) phase at the IP and the IP* is remarkable at the boundary between AFM insulating (AFMI) phase and SC. This differs from the case of LSCO where the disorder-driven magnetic phases exist between the AFMI phase in Nh< 0.02 and the SC phase in Nh> 0.05. In an underlying phase diagram, the AFMM is extended to a higher hole density due to the flatness of CuO2 plane with no apical oxygen and the homogeneous distribution of carrier density. By contrast, the prototype phase diagrams reported thus far are under the inevitable disorder effect associated with the chemical substitution introduced into the CuO2 out-of-planes as corroborated by the observation of a disorder-driven transition from AFMM phase to AFMI

  13. Self field triggered superconducting fault current limiter

    DOEpatents

    Tekletsadik, Kasegn D.

    2008-02-19

    A superconducting fault current limiter array with a plurality of superconductor elements arranged in a meanding array having an even number of supconductors parallel to each other and arranged in a plane that is parallel to an odd number of the plurality of superconductors, where the odd number of supconductors are parallel to each other and arranged in a plane that is parallel to the even number of the plurality of superconductors, when viewed from a top view. The even number of superconductors are coupled at the upper end to the upper end of the odd number of superconductors. A plurality of lower shunt coils each coupled to the lower end of each of the even number of superconductors and a plurality of upper shunt coils each coupled to the upper end of each of the odd number of superconductors so as to generate a generally orthoganal uniform magnetic field during quenching using only the magenetic field generated by the superconductors.

  14. Superconducting Fault Current Limiter for Transmission Voltage

    NASA Astrophysics Data System (ADS)

    Kraemer, Hans-Peter; Schmidt, Wolfgang; Cai, Hong; Gamble, Bruce; Madura, David; MacDonald, Tim; McNamara, Joe; Romanosky, Walther; Snitchler, Greg; Lallouet, Nicolas; Schmidt, Frank; Ahmed, Syed

    Within a collaboration of American Superconductor, Siemens, Nexans and Southern California Edison one electrical phase of a resistive superconducting fault current limiter for the 115 kV transmission voltage level has been designed and manufactured. The active part of the limiter consists of 63 bifilar coils made of 12 mm wide steel-stabilized YBCO conductor and is housed in a cryostat operated at 5 bar and 74 K. The first phase was completely assembled and successfully subjected to power switching tests and high voltage tests. The basic design of the system and the test results are reported. The work was funded in part by US-DOE under Contract Number DE-FC26-07NT43243.

  15. Growth of high {Tc} superconducting fibers using a miniaturized laser-heated float zone process. Progress report, November 6, 1990--December 31, 1991

    SciTech Connect

    Feigelson, R.S.; Route, R.K.; DeMattei, R.C.

    1991-12-31

    This report summarizes the progress made on the project ``Growth of High {Tc} Superconducting Fibers Using a Miniaturized Laser-Heated Float Zone Process`` during the 14 month period from Nov. 6, 1990 to Dec. 31, 1991. The studies during this period focused primarily on phase diagram studies, phase relations in the calcium aluminate system and on Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} (BSCCO). Some work was also done on the Advanced Fiber Growing Station. Because of the complicated phase relationships found in the incongruently melting BSCCO system, the incongruently melting CA{sub 3}Al{sub 2}O{sub 6} phase of the calcium oxide-aluminum oxide system was studied as a model material. The data obtained was in agreement with well known solidification theory. Fibers grown from calcium oxide rich sources contained calcium oxide nodules which transported from the melting source interface to the growth interface, while those grown from aluminum oxide rich sources contained continuous inclusions of a divorced eutectic. The melt compositions were also found to follow theoretical predictions. The agreement of this data with the phase diagram and solidification theory demonstrates that phase equilibrium information can be extracted from fiber growth experiments. BSCCO feed rods were made from 12 different compositions. Fibers were grown from these rods and the melts were abruptly quenched which preserves the as-grown 2212 fiber, a glassy frozen melt and the source. A future study of these sections will reveal the phase relationships that exist in the BSCCO system. Melt temperature gradients of 500--1,000 C/cm were measured near the interface in these experiments. During this reporting period, work continued on the mechanical components of the Advanced Fiber Growth Station.

  16. Novel Interplay between High-Tc Superconductivity and Antiferromagnetism in Tl-Based Six-CuO2-Layered Cuprates: 205Tl- and 63Cu-NMR Probes

    NASA Astrophysics Data System (ADS)

    Mukuda, Hidekazu; Shiki, Nozomu; Kimoto, Naoki; Yashima, Mitsuharu; Kitaoka, Yoshio; Tokiwa, Kazuyasu; Iyo, Akira

    2016-08-01

    We report 63Cu- and 205Tl-NMR studies on six-layered (n = 6) high-Tc superconducting (SC) cuprate TlBa2Ca5Cu6O14+δ (Tl1256) with Tc ˜ 100 K, which reveal that antiferromagnetic (AFM) order takes place below TN ˜ 170 K. In this compound, four underdoped inner CuO2 planes [n(IP) = 4] sandwiched by two outer planes (OPs) are responsible for the onset of AFM order, whereas the nearly optimally-doped OPs responsible for the onset of bulk SC. It is pointed out that an increase in the out-of-plane magnetic interaction within an intra-unit-cell causes TN ˜ 45 K for Tl1245 with n(IP) = 3 to increase to ˜170 K for Tl1256 with n(IP) = 4. It is remarkable that the marked increase in TN and the AFM moments for the IPs does not bring about any reduction in Tc, since Tc ˜ 100 K is maintained for both compounds with nearly optimally doped OP. We highlight the fact that the SC order for n ≥ 5 is mostly dominated by the long-range in-plane SC correlation even in the multilayered structure, which is insensitive to the magnitude of TN and the AFM moments at the IPs or the AFM interaction among the IPs. These results demonstrate a novel interplay between the SC and AFM orders when the charge imbalance between the IPs and OP is significantly large.

  17. Superconducting Fault Current Limiter optimized design

    NASA Astrophysics Data System (ADS)

    Tixador, Pascal; Badel, Arnaud

    2015-11-01

    The SuperConducting Fault Current Limiter (SCFCL) appears as one of the most promising SC applications for the electrical grids. Despite its advantages and many successful field experiences the market of SCFCL has difficulties to take off even if the first orders for permanent operation in grids are taken. The analytical design of resistive SCFCL will be discussed with the objective to reduce the quantity of SC conductor (length and section) to be more cost-effective. For that the SC conductor must have a high resistivity in normal state. It can be achieved by using high resistivity alloy for shunt, such as Hastelloy®. One of the most severe constraint is that the SCFCL should operate safely for any faults, especially those with low prospective short-circuit currents. This constraint requires to properly design the thickness of the SC tape in order to limit the hot spot temperature. An operation at 65 K appears as very interesting since it decreases the SC cost at least by a factor 2 with a simple LN2 cryogenics. Taking into account the cost reduction in a near future, the SC conductor cost could be rather low, half a dollar per kV A.

  18. Superconducting fault current-limiter with variable shunt impedance

    DOEpatents

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  19. Magnetic field dependence of high-Tc interface superconductivity in L a1.55S r0.45Cu O4/L a2Cu O4 heterostructures

    NASA Astrophysics Data System (ADS)

    Gasparov, V. A.; Drigo, L.; Audouard, A.; He, Xi; Božović, I.

    2016-07-01

    Heterostructures made of a layer of a cuprate insulator L a2Cu O4 on the top of a layer of a nonsuperconducting cuprate metal L a1.55S r0.45Cu O4 show high-Tc interface superconductivity confined within a single Cu O2 plane. Given this extreme quasi-two-dimensional quantum confinement, it is of interest to find out how interface superconductivity behaves when exposed to an external magnetic field. With this motivation, we have performed contactless tunnel-diode-oscillator-based measurements in pulsed magnetic fields up to 56 T as well as measurements of the complex mutual inductance between a spiral coil and the film in static fields up to 3 T. Remarkably, we observe that interface superconductivity survives up to very high perpendicular fields, in excess of 40 T. In addition, the critical magnetic field Hm(T ) reveals an upward divergence with decreasing temperature, in line with vortex melting as in bulk superconducting cuprates.

  20. Photoinduced Melting of Superconductivity in the High-Tc Superconductor La2−xSrxCuO4 Probed by Time-resolved Optical and Terahertz Techniques

    SciTech Connect

    Logvenov, G.; Beyer, M.; Staedter, D.; Beck, M.; Schaefer, H.; Kabanov, V.V.; Bozovic, I.; Koren, G.; Demsar, J.

    2011-06-13

    The dynamics of depletion and recovery of a superconducting state in La{sub 2-x}Sr{sub x}CuO{sub 4} thin films is investigated utilizing optical pump-probe and optical pump-THz-probe techniques as a function of temperature and excitation fluence. The absorbed energy density required to suppress superconductivity is found to be about eight times higher than the thermodynamically determined condensation energy density and nearly temperature independent between 4 and 25 K. These findings indicate that, during the time when the superconducting state suppression takes place ({approx}0.7 ps), a large part (nearly 90%) of the energy is transferred to the phonons with energy lower than twice the maximum value of the superconducting gap and only 10% is spent on Cooper pair breaking.

  1. Spectral investigation of hot-spot and cavity resonance effects on the terahertz radiation emitted from high-Tc superconducting Bi2Sr2CaCu2O8+δ single crystal mesa structures

    NASA Astrophysics Data System (ADS)

    Kadowaki, Kazuo; Watanabe, Chiharu; Minami, Hidetoshi; Yamamoto, Takashi; Kashiwagi, Takanari; Klemm, Richard

    2014-03-01

    Terahertz (THz) electromagnetic radiation emitted from high-Tc superconducting Bi2Sr2CaCu2O8+δ mesa structures in the case of single mesa and series-connected mesas is investigated by the FTIR spectroscopic technique while observing its temperature distribution simultaneously by a SiC photoluminescence technique. Changing the bias level, sudden jumps of the hot-spot position were clearly observed. Although the radiation intensity changes drastically associated with the jump of the hot spot position, the frequency is unaffected as long as the voltage per junction is kept constant. Since the frequency of the intense radiation satisfies the cavity resonance condition, we confirmed that the cavity resonance is of primarily importance for the synchronization of whole intrinsic Josephson junctions in the mesa for high power radiation. This work was supported in part by the Grant-in-Aid for challenging Exploratory Research, the Ministry of Education, Culture, Sports, Science & Technology (MEXT).

  2. Correlation between Fermi surface transformations and superconductivity in the electron-doped high-Tc superconductor Nd2 -xCexCuO4

    NASA Astrophysics Data System (ADS)

    Helm, T.; Kartsovnik, M. V.; Proust, C.; Vignolle, B.; Putzke, C.; Kampert, E.; Sheikin, I.; Choi, E.-S.; Brooks, J. S.; Bittner, N.; Biberacher, W.; Erb, A.; Wosnitza, J.; Gross, R.

    2015-09-01

    Two critical points have been revealed in the normal-state phase diagram of the electron-doped cuprate superconductor Nd2 -xCexCuO4 by exploring the Fermi surface properties of high-quality single crystals by high-field magnetotransport. First, the quantitative analysis of the Shubnikov-de Haas effect shows that the weak superlattice potential responsible for the Fermi surface reconstruction in the overdoped regime extrapolates to zero at the doping level xc=0.175 corresponding to the onset of superconductivity. Second, the high-field Hall coefficient exhibits a sharp drop right below optimal doping xopt=0.145 where the superconducting transition temperature is maximum. This drop is most likely caused by the onset of long-range antiferromagnetic ordering. Thus the superconducting dome appears to be pinned by two critical points to the normal state phase diagram.

  3. Experimental study on superconducting fault current limiting transformer for fault current suppression and system stability improvement

    NASA Astrophysics Data System (ADS)

    Kagawa, H.; Hayakawa, N.; Kashima, N.; Nagaya, S.; Okubo, H.

    2002-08-01

    We have been developing a superconducting fault current limiting transformer (SFCLT) with 3-phase, 500/275 kV, 625 MVA and optimized the main parameters by EMTP simulation. In this paper, we designed and fabricated an experimental scale-down model of SFCLT with 3-phase, 275/105 V, 6.25 kVA, using NbTi superconducting wire. We introduced the experimental model SFCLT into a transient network analyzer consisted of synchronous generators, transformers, transmission lines, circuit breakers and an infinite bus. It was revealed that experimental model had effective function-parameters as was simulated and experimental results clarified the effectiveness of SFCLT having both functions of the fault current suppression and the system stability improvement in a future superconducting power system.

  4. From Ions to Wires to the Grid: The Transformational Science of LANL Research in High-Tc Superconducting Tapes and Electric Power Applications

    ScienceCinema

    Marken, Ken [Superconductivity Technology Center, Los Alamos, New Mexico, United States

    2010-01-08

    The Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) has been tasked to lead national efforts to modernize the electric grid, enhance security and reliability of the energy infrastructure, and facilitate recovery from disruptions to energy supplies. LANL has pioneered the development of coated conductors ? high-temperature superconducting (HTS) tapes ? which permit dramatically greater current densities than conventional copper cable, and enable new technologies to secure the national electric grid. Sustained world-class research from concept, demonstration, transfer, and ongoing industrial support has moved this idea from the laboratory to the commercial marketplace.

  5. High-Tc Superconductivity near the Anion Height Instability in Fe-Based Superconductors: Analysis of LaFeAsO1-xHx

    NASA Astrophysics Data System (ADS)

    Onari, Seiichiro; Yamakawa, Youichi; Kontani, Hiroshi

    2014-05-01

    The isostructural transition in the tetragonal phase with a sizable change in the anion height, is realized in heavily H-doped LaFeAsO and (La,P) codoped CaFe2As2. In these compounds, the superconductivity with higher Tc (40-50 K) is realized near the isostructural transition. To find the origin of the anion-height instability and the role in realizing the higher-Tc state, we develop the orbital-spin fluctuation theory by including the vertex correction. We analyze LaFeAsO1-xHx and find that the non-nematic orbital fluctuations, which induce the anion-height instability, are automatically obtained at x ˜0.5, in addition to the conventional nematic orbital fluctuations at x˜0. The non-nematic orbital order triggers the isostructural transition, and its fluctuation would be a key ingredient to realize higher-Tc superconductivity of order 50 K.

  6. Raman scattering in high-{Tc} superconductors: Electronic excitations

    SciTech Connect

    Cardona, M.; Strohm, T.; Kircher, J.

    1996-12-31

    Since the discovery of the high {Tc} superconductors Raman scattering has proven to be an excellent technique to characterize them and to investigate basic physical properties relevant to the elusive mechanism responsible for their superconductivity. The authors discuss here several aspects of the technique as applied to superconductivity, including scattering by lattice vibrations, magnetic excitations, and electronic excitations, with particular emphasis on the latter, both in the normal and the superconducting state. 47 refs., 8 figs., 1 tab.

  7. Assessing active faulting by hydrogeological modeling and superconducting gravimetry: A case study for Hsinchu Fault, Taiwan

    NASA Astrophysics Data System (ADS)

    Lien, Tzuyi; Cheng, Ching-Chung; Hwang, Cheinway; Crossley, David

    2014-09-01

    We develop a new hydrology and gravimetry-based method to assess whether or not a local fault may be active. We take advantage of an existing superconducting gravimeter (SG) station and a comprehensive groundwater network in Hsinchu to apply the method to the Hsinchu Fault (HF) across the Hsinchu Science Park, whose industrial output accounts for 10% of Taiwan's gross domestic product. The HF is suspected to pose seismic hazards to the park, but its existence and structure are not clear. The a priori geometry of the HF is translated into boundary conditions imposed in the hydrodynamic model. By varying the fault's location, depth, and including a secondary wrench fault, we construct five hydrodynamic models to estimate groundwater variations, which are evaluated by comparing groundwater levels and SG observations. The results reveal that the HF contains a low hydraulic conductivity core and significantly impacts groundwater flows in the aquifers. Imposing the fault boundary conditions leads to about 63-77% reduction in the differences between modeled and observed values (both water level and gravity). The test with fault depth shows that the HF's most recent slip occurred in the beginning of Holocene, supplying a necessary (but not sufficient) condition that the HF is currently active. A portable SG can act as a virtual borehole well for model assessment at critical locations of a suspected active fault.

  8. Superconducting power link for power transmission and fault current limitation

    NASA Astrophysics Data System (ADS)

    Paasi, J.; Herrmann, P. F.; Verhaege, T.; Lehtonen, J.; Bock, J.; Cowey, L.; Freyhardt, H. C.; Usoskin, A.; Moulaert, G.; Collet, M.

    2001-05-01

    Superconducting power links (SUPERPOLI) will offer the opportunity for low-loss power transmission of high nominal currents and fault current limitation simultaneously in a single device. This paper presents the status of European SUPERPOLI project where the long term goal is to build a GVA class, 20 kV, three-phased, 200 m long superconducting power link. As a step towards the GVA-class application, a one-phase demonstrator of 2 m length for 20 kV, 2-5 kA rms operation has been designed and is now under construction. The project includes the development of two alternative low-ac-loss conductor designs suitable for current limitation: a tubular Bi-2212 bulk conductor with moderate Jc and a tubular YBCO coated conductor with high Jc.

  9. High- Tc thin-film magnetometer

    SciTech Connect

    Miklich, A.H.; Wellstood, F.C.; Kingston, J.J.; Clarke, J. ); Colclough, M.S. ); Cardona, A.H.; Bourne, L.C.; Olson, W.L.; Eddy, M.M. )

    1990-09-01

    We have constructed and tested high-{Tc} magnetometers by coupling a high-{Tc} thin-film Superconducting QUantum Interference Device (SQUID) to two different high-{Tc} thin-film flux transformers. The SQUID was made from Tl{sub 2}CaBa{sub 2}Cu{sub 2}O{sub 8+y} films grown on MgO, with junctions consisting of native grain boundaries. The flux transformers were made from YBa{sub 2}Cu{sub 3}O{sub 7-x}, and each had 10-turn input coils and a single-turn pickup loop. The first transformer, which was patterned with a combination of shadow masks and photolithography, yielded a magnetic field gain of about {minus}7.5, functioned up to 79 K, and gave a magnetic field sensitivity B{sub N} (10 Hz) {approx} 3.1 pT Hz{sup {minus}1/2}at 38 K. The second transformer, which was patterned entirely by photolithography, yielded a gain of about {minus}8.7, functioned up to 25 K, and had a sensitivity B{sub N} (10 Hz) {approx} 3.5 pT Hz{sup {minus}1/2} at 4.2 K. In both cases, the limiting noise arose in the SQUID. 10 refs., 5 figs., 1 tab.

  10. Implementing fault tolerance in a superconducting quantum circuit

    NASA Astrophysics Data System (ADS)

    Barends, Rami

    2015-03-01

    The surface code error correction scheme is appealing for superconducting circuits as the fundamental operations have been demonstrated at the fault-tolerant threshold. Here, we present experimental results on the repetition code, a one-dimensional primitive of the surface code which can detect bit-flip errors, implemented on a device consisting of nine Xmon transmon qubits. We discuss the basic mechanics of error detection, show preservation of a Greenberger-Horne-Zeilinger state, and show suppression of environmentally-induced error.

  11. μSR Studies on Magnetism in High-Tc Cuprates

    NASA Astrophysics Data System (ADS)

    Koike, Yoji; Adachi, Tadashi

    2016-09-01

    Since the discovery of high-Tc superconductivity in cuprates, muon spin relaxation (μSR) measurements have greatly contributed to the understanding of high-Tc superconductivity. In this paper, μSR studies on the magnetism in high-Tc cuprates obtained these past three decades are reviewed. Antiferromagnetic long-range order, 1/8 anomaly, stripes of Cu spins and holes, impurity-induced magnetism, magnetic-field-induced magnetism, pseudogap, ferromagnetism in the heavily overdoped regime, and undoped superconductivity in T'-type cuprates are discussed. Moreover, the fundamentals of μSR measurements for the study of magnetism are described for μSR beginners.

  12. Superconducting matrix fault current limiter with current-driven trigger mechanism

    DOEpatents

    Yuan; Xing

    2008-04-15

    A modular and scalable Matrix-type Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. An inductor is connected in series with the trigger superconductor in the trigger matrix and physically surrounds the superconductor. The current surge during a fault will generate a trigger magnetic field in the series inductor to cause fast and uniform quenching of the trigger superconductor to significantly reduce burnout risk due to superconductor material non-uniformity.

  13. Gap anisotropy and van Hove singularities in high {Tc} superconductors

    SciTech Connect

    Bok, J.; Bouvier, J.

    1996-12-31

    The authors compute the superconducting gap {Delta}{sub {rvec k}} using a simple band structure of the CuO{sub 2} planes in the high Tc materials. They suppose that for materials with doping corresponding to maximum {Tc}, the van Hove singularities lie close to the Fermi level as is confirmed by many photoemission experiments. They use a electron-photon interaction with weak screening, they find a strong gap anisotropy. For Bi 2212, {Delta} is maximum along the 100 and 010 directions with values between 20 and 30 meV and minimum along 110 with values between 0 and 10 meV. They use this anisotropic gap to compute the quasi-particle excitations density of states and the tunneling current-voltage I(V) characteristic for N-I-S and S-I-S junctions. This model agrees remarkably well with recent experiments of tunneling spectroscopy in high {Tc} cuprates.

  14. High -Tc superlight bipolarons in novel superconductors

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sasha

    2003-03-01

    Over the last decade, several competing models of high-temperature superconductivity (HTSC) have been proposed, none of which have succeeded to explain high values of the superconducting critical temperature Tc without adjustable parameters. Most of the proposed models are based on the short-range electron-electron correlations or/and on a short-range electron-phonon interaction. However, in the cuprates the screening is poor due to the low carrier density, layered crystal structure, and high ionicity of the lattice. Here we develop further a model of HTSC, which explicitly takes into account the long-range origin of both types of interaction [1]. The long-range electron-phonon (Froehlich) interaction binds carriers into real space pairs-small bipolarons with surprisingly low mass but sufficient binding energy, while the long-range Coulomb repulsion keeps them from forming larger clusters. We analytically solve this multi-polaron "Froelich-Coulomb" model of oxides for a zigzag ladder and a perovskite layer [2]. The model numerically explains high Tc values in the cuprates without any fitting parameters. It describes other key features of the cuprates such as the isotope effect on the effective mass, pseudogap, the normal state diamagnetism, anomalous upper critical field, and spectral functions measured in tunnelling and photoemission. We argue that strong coupling of carriers with high-frequency phonons and low Fermi energies is the cause of high critical temperatures of novel superconductors. [1] A.S. Alexandrov, in Models and Phenomenology for Conventional and High-temperature Superconductivity (Course CXXXVI of the International School of Physics`Enrico Fermi'), eds. G. Iadonisi, J.R. Schrieffer and M.L. Chiofalo, (IOS Press, Amsterdam), p. 309 (1998). [2] A.S. Alexandrov and P.E. Kornilovitch, J. Phys.: Condens. Matter 14 (2002) 5337. * Mailing address: Department of Physics, Loughborough University, Loughborough LE11 3TU, United Kingdom; E-mail: a

  15. Implementation of superconducting fault current limiter for flexible operation in the power substation

    NASA Astrophysics Data System (ADS)

    Song, Chong Suk; Lee, Hansang; Cho, Yoon-sung; Suh, Jaewan; Jang, Gilsoo

    2014-09-01

    The concentration of large-scale power loads located in the metropolitan areas have resulted in high fault current levels during a fault thereby requiring the substation to operate in the double busbar configuration mode. However, the double busbar configuration mode results in deterioration of power system reliability and unbalanced power flow in the adjacent transmission lines which may result in issues such as overloading of lines. This paper proposes the implementation of the superconducting fault current limiter (SFCL) to be installed between the two substation busbars for a more efficient and flexible operation of the substation enabling both single and double busbar configurations depending on the system conditions for guaranteeing power system reliability as well as fault current limitations. Case studies are being performed for the effectiveness of the SFCL installation and results are compared for the cases where the substation is operating in single and double busbar mode and with and without the installation of the SFCL for fault current mitigation.

  16. Fault and joint measurements in Austin Chalk, Superconducting Super Collider Site, Texas

    SciTech Connect

    Nance, H.S.; Laubach, S.E.; Dutton, A.R.

    1994-12-31

    Structure maps of 9.4 mi of nearly continuous tunnel excavations and more than 10 mi of other exposures and excavations in Austin Chalk at the Superconducting Super Collider (SSC) site in Ellis County, Texas, record normal-fault and joint populations in the subsurface within the northern segment of the Balcones Fault Zone with unmatched resolution for such a long traverse. Small faults (<10 ft throw) occur in clusters or swarms that have as many as 24 faults. Fault swarms are as much as 2,000 ft wide, and spacing between swarms ranges from 800 to 2,000 ft, averaging about 1,000 ft. Predominantly northeast-trending joints are in swarms spaced 500 to more than 21,000 ft apart.

  17. Simulated performance of the superconducting section of the APT linac under various fault and error conditions

    SciTech Connect

    Gray, E.R.; Nath, S.; Wangler, T.P.

    1997-08-01

    The current design for the production of tritium uses both normal-conducting (NC) and superconducting (SC) structures. To evaluate the performance of the superconducting part of the linac which constitutes more than 80% of the accelerator, studies have been made to include the effects of various error and fault conditions. Here, the authors present the simulation results of studies such as effects of rf phase and amplitude errors, cavity/klystron failure, quadrupole misalignment errors, quadrupole gradient error, and beam-input mismatches.

  18. Analysis of the effects of asymmetric faults in three-phase superconducting inductive fault current limiters

    NASA Astrophysics Data System (ADS)

    Ferreira, R.; Pina, J. M.; Vilhena, N.; Arsénio, P.; Pronto, A. G.; Martins, J.

    2014-05-01

    Inductive fault current limiters of magnetic shielding type can be described in terms of the excursion in the plane defined by flux linked with primary and line current, and this methodology has been previously applied to single-phase devices. Practical applications, however, require three-phase limiters, which, for the sake of compactness, may be built by three legged cores, instead of three single phase units. This has the advantage of using well established methods of power transformers industry, but the performance of the devices depends on the type of fault, e.g. phase to ground or phase to phase. For instance, in a three legged core, a phase to ground fault affects healthy phases, and these are the most frequent faults in distribution grids, where such systems are envisaged. The effects of asymmetric faults are analysed in this paper, by means of measured excursions in the linked flux-current plane.

  19. A superconducting fault current limiter integrated in the cold heat exchanger of a thermoacoustic refrigerator

    NASA Astrophysics Data System (ADS)

    Osorio, M. R.; Bétrancourt, A.; François, M. X.; Veira, J. A.; Vidal, F.

    2008-09-01

    In this work we probe a compact superconducting fault current limiter (SFCL) integrated in the cold heat exchanger of a thermoacoustic refrigerator. A design for an SFCL device with a power of about 2.2 kW is presented and described in detail. A thermoacoustic refrigerator is also proposed which, under fault conditions, must be able to remove around 50 W at 80 K. A simulation routine is run to test the performance of the SFCL, based on YBCO films, in terms of both the limiting capacity and the energy to be dissipated and removed inside the heat exchanger.

  20. A hybrid superconducting fault current limiter for enhancing transient stability in Korean power systems

    NASA Astrophysics Data System (ADS)

    Seo, Sangsoo; Kim, Seog-Joo; Moon, Young-Hwan; Lee, Byongjun

    2013-11-01

    Additional power generation sites have been limited in Korea, despite the fact load demands are gradually increasing. In order to meet these increasing demands, Korea’s power system company has begun constructing new generators at existing sites. Thus, multi-unit plants can create problems in terms of transient stability when a large disturbance occurs. This paper proposes a hybrid superconducting fault current limiter (SFCL) application to enhance the transient stability of multi-unit power plants. SFCLs reduce fault currents, and limitation currents decrease the imbalance of the mechanical and electrical torque of the generators, resulting in an improvement in transient stability.

  1. Finite gap behaviour in the superconductivity of the 'infinite layer' n-doped high-Tc superconductor Sr0.9La0.1CuO2

    NASA Astrophysics Data System (ADS)

    White, J. S.; Forgan, E. M.; Laver, M.; Häfliger, P. S.; Khasanov, R.; Cubitt, R.; Dewhurst, C. D.; Park, M.-S.; Jang, D.-J.; Lee, H.-G.; Lee, S.-I.

    2008-03-01

    We report on the first small-angle neutron scattering measurements from the flux line lattice (FLL) in the high-Tc cuprate superconductor Sr0.9La0.1CuO2. Using a polycrystalline sample, the scattered intensity decreases monotonically with scattering angle away from the undiffracted beam, independently of the azimuthal angle around the beam. The absence of clear peaks in the intensity suggests the establishment of a highly disordered FLL within the grains. We find that the intensity distribution may be represented by the form factor for a single flux line in the London approximation, with some contribution from crystal anisotropy. Most interestingly however, we find that, over the observed field range, the temperature dependence of the diffracted intensity is best represented by s-wave pairing, with lower limits of the gap values being very similar to the Bardeen-Cooper-Schrieffer value of Δ(0) = 1.76 kBTc. However, a qualitative consideration of corrections to the observed intensity suggests that these gap values are likely to be higher, implying strong-coupling behaviour.

  2. In situ growth of YBa sub 2 Cu sub 3 O sub 7 minus x high Tc superconducting thin films directly on sapphire by plasma-enhanced metalorganic chemical vapor deposition

    SciTech Connect

    Chern, C.S.; Zhao, J.; Li, Y.Q.; Norris, P.; Kear, B.; Gallois, B. )

    1990-08-13

    Highly {ital c}-axis oriented YBa{sub 2}Cu{sub 3}O{sub 7{minus}{ital x}} superconducting thin films have been, {ital in} {ital situ}, deposited directly on sapphire substrate by a remote microwave plasma-enhanced metalorganic chemical vapor deposition process (PE-MOCVD). The films were deposited at a substrate temperature of 730 {degree}C followed by a fast cooling. The as-deposited films show attainment of zero resistance at 82 K and have critical current density of 10{sup 4} A/cm{sup 2} at 70 K. ac susceptibility measurement indicated that the films contain a single superconducting phase. PE-MOCVD was carried out in a commercial-scale MOCVD reactor with capability of uniform deposition over 100 cm{sup 2} per growth run.

  3. Subgap Structures in High-Tc Intrinsic Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Müller, Paul

    1998-03-01

    Due to their extremely short coherence length many high-Tc superconductors form natural superconducting multilayers. Adjacent superconducting layers are weakly coupled by the Josephson effect. As a result single crystals act intrinsically as vertical stacks of hundreds of Josephson junctions. We start by summarizing our present state of knowledge, including recent observations of Cherenkov radiation from moving fluxons (G. Hechtfischer, R. Kleiner, A.V. Ustinov, P. Müller, Phys. Rev. Lett. 79, 1365 (1997), and this conference.), and the direct measurement of the (collective) Josephson plasma frequency. We then report on pronounced structures in the current-voltage characteristics of Bi_2Sr_2CaCu_2O8 single crystals, and of Tl_2Ba_2Ca_2Cu_3O_10 thin films. These structures appear well below the superconducting gap, independent on magnetic field and temperatures up to 0.5 T_c(K. Schlenga, G. Hechtfischer, R. Kleiner, W. Walkenhorst, P. Müller, Phys. Rev. Lett. 76, 4943 (1996).). We explain these features by coupling between c-axis phonons and Josephson oscillations(Ch. Helm, Ch. Preis, F. Forsthofer, J. Keller, K. Schlenga, R. Kleiner, P. Müller, Phys. Rev. Lett. 79, 737 (1997).). C-axis lattice vibrations between adjacent superconducting layers are exited by the rf Josephson currents in the resistive state. Our results correspond well to the frequencies of longitudinal c-axis phonons.

  4. Preparation of Superconducting Magnetostatic Wave (MSW) Devices Consisting of High-Tc Superconductor (HTS)/Perovskite-Type Manganite Heterostructures: Application of Pr0.85Ca0.15MnO3 as a MSW Waveguide

    NASA Astrophysics Data System (ADS)

    Hontsu, Shigeki; Sakatani, Tomotaka; Nishikawa, Hiroaki; Nakamori, Masaya; Fujimaki, Akira; Kawai, Tomoji

    2001-10-01

    Electric and magnetic properties of Pr0.85Ca0.15MnO3 (PCMO) have been investigated in order to apply the material to superconducting microwave devices. PCMO films are prepared on (100) surfaces of a (La0.3Sr0.7) (Al0.65Ta0.35)O3 (LSAT) single crystal by a pulsed laser deposition technique. By optimizing the deposition conditions, c-axis oriented PCMO epitaxial films are obtained. The Curie temperature (TC) of these PCMO films is approximately 130 K. The remanent magnetization and the coercive field for the sample measured at 77 K are about 240 G and 250 Oe, respectively. The relative dielectric constant and loss tangent are significantly decreased below TC and are about 13 and 6×10-3 at 30 K, respectively. Furthermore, magnetostatic wave (MSW) excitation is observed in a PCMO film by constructing a band elimination filter based on the MSW mode with YBa2Cu3O7-δ(YBCO)/PCMO heterostructure. These results indicate that PCMO is applicable for magnetic microwave devices including MSW devices with superconducting thin films.

  5. Ultrasonic attenuation studies in high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Shen, Zhong Cheng; Jiang, Zuo

    2005-04-01

    In this paper a great number of mechanical relaxation spectrum experiment results in the mixed state of high Tc superconductors have been summarized. A new low frequency mechanical relaxation spectrum apparatus have been shown. We pointed out that the mechanical relaxation peaks are attributed to anelastic relaxation processes and the transition of rigidly pinned FLL into a depinned state.

  6. High-Tc Superconductivity and Raman Scattering Study of the phonon properties of electron doped (transition metal, rare-earth) - Oxygen-Free CaFeAsF and compared with RFeAsO system

    NASA Astrophysics Data System (ADS)

    Sasmal, Kalyan; Hadjiev, Viktor; Chu, C. W.(Paul)

    Quaternary CaFeAsF has ZrCuSiAs-type structure,(RO)δ+ layer in RFeAsO replaced by (CaF)δ+ layer,with tetragonal (P4/nmm)-orthorhombic (Cmma) phase transition at 134K,while magnetic order,SDW sets in at 114K. Partial replacement of Fe with Co/Ni is direct electron doping to (FeAs)δ+ layer.Tc ~15K in CaFe0.9Ni0.1AsF.Substitution of rare earth metal for alkaline earth metal suppresses anomaly in resistivity & induces superconductivity.Tc ~52K in Ca0.5Pr0.5FeAsF.Characterized by resistivity, susceptibility,XRD & EDX-SEM.Upper critical field estimated from magneto resistance.Bulk superconductivity proved by DC magnetization. Hall coefficient RH revealed hole-like charge carriers in parent compound CaFeAsF, while electron-type (RH in normal state is -Ve) for Ca0.5Pr0.5FeAsF.Evolution of Raman active phonons of Ca1-xPrxFeAsF measured with polarized Raman spectroscopy at room temperature from absurfaces of impurity-free microcrystals.Spectra exhibit sharp phonon lines on very weak electronic scattering background.Frequency and symmetry of Raman phonons involving out-of-plane atomic vibrations are found at 162.5 cm-1 (A1 g, Pr), 201 cm-1 (A1 g, As), 215.5 cm-1 (B1 g, Fe), 265 cm-1 (Eg, Fe) and 334 cm-1 (B1 g, F) for Ca0.5Pr0.5FeAsF.Observations are compared with RFeAsO unconventional superconductors also possibly related to magnetic fluctuations

  7. Research on fast fault identification method of 10.5 kV/1.5 kA superconducting fault current limiter

    NASA Astrophysics Data System (ADS)

    Zhang, Zhifeng; Sun, Qiang; Xiao, Liye; Liu, Daqian; Qiu, Ming; Qiu, Qinquan; Zhang, Guomin; Dai, Shaotao; Lin, Liangzhen

    2014-09-01

    Superconducting fault current limiter (SFCL) is a prospective electric devices connected in series in power grid to limit short-circuit current. A 10.5 kV/1.5 kA 3-phase SFCL with HTS coil of 6.24 mH was developed at IEECAS in China in 2005, which was operated in a local power grid in Hunan province for more than 11,000 h, and integrated lately in a superconducting power substation in Baiyin city in 2011 and is still running safely and reliably. In order to reduce the fault response time and enhance the performance of the SFCL, we analyzed the structure characteristics of the SFCL and discussed the variation of currents and voltages of the HTS coil and the bridge during the fault time. The simulation and tests results of power system validate the feasibility of the fast fault identification method.

  8. Performance analysis of saturated iron core superconducting fault current limiter using Jiles-Atherton hysteresis model

    NASA Astrophysics Data System (ADS)

    Sarkar, D.; Roy, D.; Choudhury, A. B.; Yamada, S.

    2015-09-01

    In this paper study of the Saturated Iron Core Superconducting Fault Current Limiter (SISFCL) has been carried out. Since in an SISFCL, the iron core plays a key role in distributing the magnetic flux, the hysteresis property of the core material has been introduced in a mathematical model to get a more accurate result. In this paper the Jiles-Atherton hysteresis model has been used for modeling the core. The equations are solved through numerical method and performances of SISFCL are analyzed for both normal and fault conditions. On further analysis it is observed that for suppression of higher value of fault current a high voltage develops across the DC source. Hence there is a chance of the DC source being damaged by the rise in voltage under fault condition. In order to protect the DC source, a shorted ring is introduced in the SISFCL circuit and its effects have been analyzed. It is noticed that the shorted ring has successfully reduced the voltage across the DC coil during fault condition while the performance of the limiter remains the same.

  9. Tests of a GM Cryocooler and high Tc leads for use on the ALS superbend magnets

    SciTech Connect

    Zbasnik, J.; Green, M.A.; Hoyer, E.H.; Taylor, C.E.; Chen, J.Y.; Wang, S.T.

    1999-07-09

    A 1.5 W (at the second stage) Gifford McMahon (GM) cryocooler was selected for cooling the superconducting SuperBend dipoles for the Advanced Light Source (ALS) at Berkeley. A GM cryocooler is a reasonable choice if conduction cooled leads are used to provide current to the superconducting magnet. The expected parasitic heat leaks are expected to range from 0.1 to 0.5 W at 4.2 K depending on the temperature of the shield and the cold mass support intercepts. Heat flow to 4 K down the SuperBend 350 A high Tc superconducting leads is expected to vary from 0.11 to 0.35 W depending on the intercept temperature and the current in the leads. The high Tc leads are designed to carry 350 A without significant resistive heating when the upper end of the lead is at 80 K. The 1.5 W cryocooler is expected to provide 45 to 50 W of refrigeration at the first stage at 50 K. The parasitic beat load into the first stage of the cryocooler will be about 8 W. The heat flow from 300 K down the upper copper leads is expected to be around 30 W. The cryocooler and high Tc lead test will measure the penormance of the cryocooler and the high Tc leads. The heat leak down the cryocooler, when it is not operating, is also of interest.

  10. NMR/MRI with hyperpolarized gas and high Tc SQUID

    DOEpatents

    Schlenga, Klaus; de Souza, Ricardo E.; Wong-Foy, Annjoe; Clarke, John; Pines, Alexander

    2000-01-01

    A method and apparatus for the detection of nuclear magnetic resonance (NMR) signals and production of magnetic resonance imaging (MRI) from samples combines the use of hyperpolarized inert gases to enhance the NMR signals from target nuclei in a sample and a high critical temperature (Tc) superconducting quantum interference device (SQUID) to detect the NMR signals. The system operates in static magnetic fields of 3 mT or less (down to 0.1 mT), and at temperatures from liquid nitrogen (77K) to room temperature. Sample size is limited only by the size of the magnetic field coils and not by the detector. The detector is a high Tc SQUID magnetometer designed so that the SQUID detector can be very close to the sample, which can be at room temperature.

  11. Transient analysis of superconducting generator under the three phases of sudden grounding fault condition

    NASA Astrophysics Data System (ADS)

    Chun, Yon-Do; Kim, Youn-Hyun; Kim, Sol; Lee, Ju

    2002-08-01

    This paper presents 2-D transient analysis of 30 kV A superconducting AC generator (SCG) using the finite element method (FEM). The compensated 2-D model obtained by lengthening the airgap of the original 2-D model is proposed for the efficient transient analysis. The performance of SCG is analyzed by taking into account the rotation, external circuit equations, and eddy current effect of the damper. The eddy current losses occurring in the dampers are analyzed during the transient state under the three phases of sudden grounding fault condition in the armature. Moving line technique is introduced to carry out the dynamic FEM analysis efficiently without remesh of the total elements.

  12. Shock compaction of high- Tc superconductors

    SciTech Connect

    Weir, S.T.; Nellis, W.J.; McCandless, P.C.; Brocious, W.F. ); Seaman, C.L.; Early, E.A.; Maple, M.B. . Dept. of Physics); Kramer, M.J. ); Syono, Y.; Kikuchi, M. )

    1990-09-01

    We present the results of shock compaction experiments on high-{Tc} superconductors and describe the way in which shock consolidation addresses critical problems concerning the fabrication of high J{sub c} bulk superconductors. In particular, shock compaction experiments on YBa{sub 2}Cu{sub 3}O{sub 7} show that shock-induced defects can greatly increase intragranular critical current densities. The fabrication of crystallographically aligned Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} samples by shock-compaction is also described. These experiments demonstrate the potential of the shock consolidation method as a means for fabricating bulk high-{Tc} superconductors having high critical current densities.

  13. Study of recovery characteristics of 2nd generation HTS tapes with different stabilizers for resistive type superconducting fault current limiters

    NASA Astrophysics Data System (ADS)

    Sheng, Jie; Zeng, Weina; Ma, Jun; Yao, Zhihao; Li, Zhuyong; Jin, Zhijian; Hong, Zhiyong

    2016-02-01

    The resistive type superconducting fault current limiter (SFCL) is one of the most important superconducting power applications nowadays. As known, this type of SFCL is settled directly in the power transmission line. When a short fault happens, the temperature of the superconductors in the SFCL will increase sharply due to the huge generated heat. This means the superconductors need time to recover the superconducting properties and be ready for the next short fault. So the recovery characteristics become one of the most crucial features of the resistive type SFCL. In this paper, several different kinds of measuring methods are presented to calculate the recovery time of the HTS tapes, and comparison of these methods is also carried out by a standard test. On basis of this, samples with different kinds of stabilizers are used to explore the influence of stabilizer on their recovery characteristics. In addition, the influence of the encapsulation technology is also discussed in this paper.

  14. Geostatistical analysis of fault and joint measurements in Austin Chalk, Superconducting Super Collider Site, Texas

    SciTech Connect

    Mace, R.E.; Nance, H.S.; Laubach, S.E.

    1995-06-01

    Faults and joints are conduits for ground-water flow and targets for horizontal drilling in the petroleum industry. Spacing and size distribution are rarely predicted accurately by current structural models or documented adequately by conventional borehole or outcrop samples. Tunnel excavations present opportunities to measure fracture attributes in continuous subsurface exposures. These fracture measurements ran be used to improve structural models, guide interpretation of conventional borehole and outcrop data, and geostatistically quantify spatial and spacing characteristics for comparison to outcrop data or for generating distributions of fracture for numerical flow and transport modeling. Structure maps of over 9 mi of nearly continuous tunnel excavations in Austin Chalk at the Superconducting Super Collider (SSC) site in Ellis County, Texas, provide a unique database of fault and joint populations for geostatistical analysis. Observationally, small faults (<10 ft. throw) occur in clusters or swarms that have as many as 24 faults, fault swarms are as much as 2,000 ft. wide and appear to be on average 1,000 ft. apart, and joints are in swarms spaced 500 to more than 2l,000 ft. apart. Semi-variograms show varying degrees of spatial correlation. These variograms have structured sills that correlate directly to highs and lows in fracture frequency observed in the tunnel. Semi-variograms generated with respect to fracture spacing and number also have structured sills, but tend to not show any near-field correlation. The distribution of fault spacing can be described with a negative exponential, which suggests a random distribution. However, there is clearly some structure and clustering in the spacing data as shown by running average and variograms, which implies that a number of different methods should be utilized to characterize fracture spacing.

  15. An Analysis of Superconducting Fault Current Limiter for Stabilization of Synchronous Generators in Multi-Machine System

    NASA Astrophysics Data System (ADS)

    Yagami, Masaki; Shibata, Shinsuke; Murata, Toshiaki; Tamura, Junji

    This paper presents the results of analyses of the effectiveness of a superconducting fault current limiter (SFCL) to stabilize the synchronous generators, suppress turbine shaft torque oscillations, and limit the fault current in a two-machine-infinite bus system. In this study, the system model with two SFCLs having shunt resistance installed at each generator terminal was used taking 3LG (three lines to ground) fault at 12 fault points into account. These analyses were performed using EMTP/ATP. It is concluded that the use of SFCL with shunt resistance value of 1.1 pu is most effective for all fault points for the stabilization of synchronous generators, the suppression of turbine shaft torque oscillations, and the limitation of fault current.

  16. Superconducting quantum circuits at the surface code threshold for fault tolerance.

    PubMed

    Barends, R; Kelly, J; Megrant, A; Veitia, A; Sank, D; Jeffrey, E; White, T C; Mutus, J; Fowler, A G; Campbell, B; Chen, Y; Chen, Z; Chiaro, B; Dunsworth, A; Neill, C; O'Malley, P; Roushan, P; Vainsencher, A; Wenner, J; Korotkov, A N; Cleland, A N; Martinis, John M

    2014-04-24

    A quantum computer can solve hard problems, such as prime factoring, database searching and quantum simulation, at the cost of needing to protect fragile quantum states from error. Quantum error correction provides this protection by distributing a logical state among many physical quantum bits (qubits) by means of quantum entanglement. Superconductivity is a useful phenomenon in this regard, because it allows the construction of large quantum circuits and is compatible with microfabrication. For superconducting qubits, the surface code approach to quantum computing is a natural choice for error correction, because it uses only nearest-neighbour coupling and rapidly cycled entangling gates. The gate fidelity requirements are modest: the per-step fidelity threshold is only about 99 per cent. Here we demonstrate a universal set of logic gates in a superconducting multi-qubit processor, achieving an average single-qubit gate fidelity of 99.92 per cent and a two-qubit gate fidelity of up to 99.4 per cent. This places Josephson quantum computing at the fault-tolerance threshold for surface code error correction. Our quantum processor is a first step towards the surface code, using five qubits arranged in a linear array with nearest-neighbour coupling. As a further demonstration, we construct a five-qubit Greenberger-Horne-Zeilinger state using the complete circuit and full set of gates. The results demonstrate that Josephson quantum computing is a high-fidelity technology, with a clear path to scaling up to large-scale, fault-tolerant quantum circuits. PMID:24759412

  17. Assessment on the influence of resistive superconducting fault current limiter in VSC-HVDC system

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Geon; Khan, Umer Amir; Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Park, Byung-Bae; Lee, Bang-Wook

    2014-09-01

    Due to fewer risk of commutation failures, harmonic occurrences and reactive power consumptions, Voltage Source Converter (VSC) based HVDC system is known as the optimum solution of HVDC power system for the future power grid. However, the absence of suitable fault protection devices for HVDC system hinders the efficient VSC-HVDC power grid design. In order to enhance the reliability of the VSC-HVDC power grid against the fault current problems, the application of resistive Superconducting Fault Current Limiters (SFCLs) could be considered. Also, SFCLs could be applied to the VSC-HVDC system with integrated AC Power Systems in order to enhance the transient response and the robustness of the system. In this paper, in order to evaluate the role of SFCLs in VSC-HVDC systems and to determine the suitable position of SFCLs in VSC-HVDC power systems integrated with AC power System, a simulation model based on Korea Jeju-Haenam HVDC power system was designed in Matlab Simulink/SimPowerSystems. This designed model was composed of VSC-HVDC system connected with an AC microgrid. Utilizing the designed VSC-HVDC systems, the feasible locations of resistive SFCLs were evaluated when DC line-to-line, DC line-to-ground and three phase AC faults were occurred. Consequently, it was found that the simulation model was effective to evaluate the positive effects of resistive SFCLs for the effective suppression of fault currents in VSC-HVDC systems as well as in integrated AC Systems. Finally, the optimum locations of SFCLs in VSC-HVDC transmission systems were suggested based on the simulation results.

  18. Improvement in operational characteristics of KEPCO’s line-commutation-type superconducting hybrid fault current limiter

    NASA Astrophysics Data System (ADS)

    Yim, S.-W.; Park, B.-C.; Jeong, Y.-T.; Kim, Y.-J.; Yang, S.-E.; Kim, W.-S.; Kim, H.-R.; Du, H.-I.

    2013-01-01

    A 22.9 kV class hybrid fault current limiter (FCL) developed by Korea Electric Power Corporation and LS Industrial Systems in 2006 operates using the line commutation mechanism and begins to limit the fault current after the first half-cycle. The first peak of the fault current is available for protective coordination in the power system. However, it also produces a large electromagnetic force and imposes a huge stress on power facilities such as the main transformer and gas-insulated switchgear. In this study, we improved the operational characteristics of the hybrid FCL in order to reduce the first peak of the fault current. While maintaining the structure of the hybrid FCL system, we developed a superconducting module that detects and limits the fault current during the first half-cycle. To maintain the protective coordination capacity, the hybrid FCL was designed to reduce the first peak value of the fault current by up to approximately 30%. The superconducting module was also designed to produce a minimum AC loss, generating a small, uniform magnetic field distribution during normal operation. Performance tests confirmed that when applied to the hybrid FCL, the superconducting module showed successful current limiting operation without any damage.

  19. Quantum-limit linkage of ‘strange’ and conventional metal states of high-Tc superconductors

    NASA Astrophysics Data System (ADS)

    Krusin-Elbaum, L.; Shibauchi, T.; Kasahara, Y.; Okazaki, R.; Matsuda, Y.; McDonald, R. D.; Mielke, C. H.; Hasegawa, M.

    2013-10-01

    The key to the nature of superconducting pairing in high-Tc cuprates lies in understanding the transition to a conventional behavior when they are heavily doped. By using high magnetic fields, we show that the pseudogapped Tl2Ba2CuO6+x becomes a conventional metal at heavy doping in a quantum phase transition, where the pseudogap boundary develops a thermodynamic divergence corresponding to a zero entropy jump. The critical doping point downshifts with magnetic field in unison with the suppression of Tc. This implies that quantum critical fluctuations and magnetic degrees that destabilize the pseudogap are linked to the superconductivity with high Tc.

  20. Quaternary borocarbides: Relatively high Tc intermetallic superconductors and magnetic superconductors

    NASA Astrophysics Data System (ADS)

    Mazumdar, Chandan; Nagarajan, R.

    2015-07-01

    Discovery of superconductivity in Y-Ni-B-C (Tc ∼ 13 K) gave rise to the class of quaternary rare earth transition metal borocarbide superconductors. Before the discovery of Fe-based arsenide superconductors, this was the only class of materials containing a magnetic element, viz., Ni, yet exhibiting Tcs > 5 K. Many members of this class have high Tc (>10 K). Tc of ∼23 K in Y-Pd-B-C system equaled the record Tc known then, for intermetallics. Another feature that sets this class apart, is the occurrence of the exotic phenomenon of coexistence of superconductivity and magnetism at temperatures >5 K. Availability of large and electronically 'clean' single crystals and large Ginzburg-Landau (G-L) parameter, κ, have enabled detailed investigation of nonlocal effects of superconductivity. Intermediate value of upper critical field Hc2, has enabled detailed investigation of superconductivity in this class, over the complete H-T plane. This has revealed details of anisotropy of superconductivity (e.g., a fourfold symmetry in the square a-b plane is found) and raised questions on the symmetry of order parameter. After a brief outline of the discovery, this article gives a summary of the materials and highlights of superconducting properties of this class of materials. Interesting results from studies, using various techniques, on YNi2B2C (Tc ∼ 15 K) and LuNi2B2C (Tc ∼ 16 K) are presented, including observation of unusual square vortex lattice and its structural transformation with H and T. With conduction electrons involved in the magnetic order of this class of superconductors, the interplay of superconductivity and magnetism is intimate in these magnetic superconductors. With Tc (∼11 K) > TN (∼6 K) in ErNi2B2C, Tc (∼8 K) = TN (∼8 K) in HoNi2B2C and Tc (∼6 K) < TN (∼11 K) in DyNi2B2C, and with other parameters being favorable as mentioned earlier, this class of magnetic superconductors have become ideal materials to investigate the coexistence

  1. Feasibility of far-infrared radiation modulators using high-{Tc} superconductors

    SciTech Connect

    Zhang, Z.M.

    1996-12-31

    The potential of using high-{Tc} superconductors as intensity modulators for far-infrared radiation is investigated in this work. Reflectance and transmittance for several design structures are computed using the published optical constants of the superconductor YBa{sub 2}Cu{sub 3}O{sub 7} and substrate materials. Notable differences in the reflectance and transmittance between the superconducting state and the normal state are illustrated. The best results are obtained based on the reflectance of thin films (10 nm--50 nm thick) on thin substrates (less than 100 {micro}m thick) and for radiation incident on the substrate. This study demonstrates that high-{Tc} superconductive thin films can be used to build far-infrared radiation modulators. Future experimental study is recommended in order to materialize this promising thermooptical device.

  2. Design, Fabrication and Testing of a Superconducting Fault Current Limiter (SFCL)

    SciTech Connect

    Gouge, M..; Schwenterly, S.W.; Hazelton, D.

    2011-06-15

    The purpose of this project was to conduct R&D on specified components and provide technical design support to a SuperPower team developing a high temperature superconducting Fault Current Limiter (SFCL). ORNL teamed with SuperPower, Inc. on a Superconductivity Partnerships with Industry (SPI) proposal for the SFCL that was submitted to DOE and approved in FY 2003. A contract between DOE and SuperPower, Inc. was signed on July 14, 2003 to design, fabricate and test the SFCL. This device employs high temperature superconducting (HTS) elements and SuperPower's proprietary technology. The program goal was to demonstrate a device that will address a broad range of the utility applications and meet utility industry requirements. This DOE-sponsored Superconductivity Partnership with Industry project would positively impact electric power transmission reliability and security by introducing a new element in the grid that can significantly mitigate fault currents and provide lower cost solutions for grid protection. The project will conduct R&D on specified components and provide technical design support to a SuperPower-led team developing a SFCL as detailed in tasks 1-5 below. Note the SuperPower scope over the broad SPI project is much larger than that shown below which indicates only the SuperPower tasks that are complementary to the ORNL tasks. SuperPower is the Project Manager for the SFCL program, and is responsible for completion of the project on schedule and budget. The scope of work for ORNL is to provide R&D support for the SFCL in the following four broad areas: (1) Assist with high voltage subsystem R&D, design, fabrication and testing including characterization of the general dielectric performance of LN2 and component materials; (2) Consult on cryogenic subsystem R&D, design, fabrication and testing; (3) Participate in project conceptual and detailed design reviews; and (4) Guide commercialization by participation on the Technical Advisory Board (TAB). Super

  3. Joint operation of the superconducting fault current limiter and magnetic energy storage system in an electric power network

    NASA Astrophysics Data System (ADS)

    Kopylov, S. I.; Balashov, N. N.; Ivanov, S. S.; Veselovsky, A. S.; Zhemerikin, V. D.

    2010-06-01

    An opportunity of using superconductors as active elements of electric power systems designed to control the electric power distribution, to enhance the systems operating modes and to limit fault currents, was very attractive for investigators for a long time. In this paper, is considered an opportunity to enhance the electric power systems with the aid of superconducting magnetic energy storage systems (SMES) and superconducting fault current limiters (SFCL) operating together. It has been shown that the joint operation of both these superconducting devices allows additional varying of their parameters, what in turn gives a further opportunity to reduce their mass and dimensions and consequently the costs. There had been also shown an additional advantage of the SMES and SFCL joint operation consisting in that they ensure a more effective protection for a power system, preventing its uncontrolled load-off and subsequent acceleration up to the inaccessible rotation speed.

  4. Channeling study of high- Tc superconducting single crystal sublattices

    NASA Astrophysics Data System (ADS)

    Shakun, N. A.; Grinchenko, A. Yu.; Deev, A. S.; Makarov, V. I.; Olejnik, V. A.; Svetashov, P. A.; Slabospitsky, R. P.; Shul'ga, N. F.

    1992-04-01

    Backscattering of H, 4He, 3He ions, X-ray radiation and the nuclear reactions 16O( 4He, 4He) 16O, 18O(p, α) 15N, 16O( 3He, 4He) 15O, 7Li(p, α) 4He, etc., in combination with orientation effects have been used to investigate the structure and properties of the single crystals Nd2- xCexCuO4(T'-phase) and La2- xSrxCuO4 (T-phase). The possibility of a selective study of cation and onion sublattices, as well as oxygen O1, O2 positions is demonstrated. The dependence of the La 2- xSr xCuO 4 structural perfection on the Sr content is established. The location of Li and B is determined. Studies were made of the diffusion mobility and adsorption properties of 18O in the YBa 2Cu 3O 7-y ceramics. The influence of crystal irradiation with H and 4He ions on the shapes of the angular dependences of the yields of nuclear reactions was studied. The effect of interest has been observed for the α-yield of the 16O( 4He, 4He) 16O reactions after 4He ion irradiation of Nd 2- xCe xCuO 4, namely, the dip with Xmin(O) ≅ 0.18 transforms to a peak with Xmin(O) ≅ 1.5; the Xmin(Nd) value changes in this case from 0.024 ro 0.19.

  5. Computational Study on the Steady-state Impedance of Saturated-core Superconducting Fault Current Limiter

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Tang, Y.; Liang, S.; Ren, L.; Wang, Z.; Xu, Y.

    This paper presents the electromagnetic analysis of a high voltage saturated-core superconducting fault current limiter (SCSFCL). The numerical analyses of a three-dimensional (3D) model is shown, and the specific parameters are given. The model focus on the steady-state impedance of the limiter when connected to the power grid. It analyzed the dependence of steady-state impedance on the AC coil current, and the relationship between oil gap and coil inductance. The results suggest that, adding oil gap between slice of silicon steel can reduce the core cross-section, restrain the ultraharmonic and decrease the steady-state impedance. As the core cross-section of AC limb decreased from 4344 cm2 to 3983 cm2, the total harmonic distortion for voltage decreased from 2.4% to 1.8%, and the impedance decreased from 1.082 Ω to 1.069 Ω(Idc=400A,Iac=1296A).

  6. Comparative study of superconducting fault current limiter both for LCC-HVDC and VSC-HVDC systems

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Geon; Khan, Umer Amir; Lim, Sung-Woo; Shin, Woo-ju; Seo, In-Jin; Lee, Bang-Wook

    2015-11-01

    High Voltage Direct Current (HVDC) system has been evaluated as the optimum solution for the renewable energy transmission and long-distance power grid connections. In spite of the various advantages of HVDC system, it still has been regarded as an unreliable system compared to AC system due to its vulnerable characteristics on the power system fault. Furthermore, unlike AC system, optimum protection and switching device has not been fully developed yet. Therefore, in order to enhance the reliability of the HVDC systems mitigation of power system fault and reliable fault current limiting and switching devices should be developed. In this paper, in order to mitigate HVDC fault, both for Line Commutated Converter HVDC (LCC-HVDC) and Voltage Source Converter HVDC (VSC-HVDC) system, an application of resistive superconducting fault current limiter which has been known as optimum solution to cope with the power system fault was considered. Firstly, simulation models for two types of LCC-HVDC and VSC-HVDC system which has point to point connection model were developed. From the designed model, fault current characteristics of faulty condition were analyzed. Second, application of SFCL on each types of HVDC system and comparative study of modified fault current characteristics were analyzed. Consequently, it was deduced that an application of AC-SFCL on LCC-HVDC system with point to point connection was desirable solution to mitigate the fault current stresses and to prevent commutation failure in HVDC electric power system interconnected with AC grid.

  7. Performance test of the cryogenic cooling system for the superconducting fault current limiter

    NASA Astrophysics Data System (ADS)

    Hong, Yong-Ju; In, Sehwan; Yeom, Han-Kil; Kim, Heesun; Kim, Hye-Rim

    2015-12-01

    A Superconducting Fault Current Limiter is an electric power device which limits the fault current immediately in a power grid. The SFCL must be cooled to below the critical temperature of high temperature superconductor modules. In general, they are submerged in sub-cooled liquid nitrogen for their stable thermal characteristics. To cool and maintain the target temperature and pressure of the sub-cooled liquid nitrogen, the cryogenic cooling system should be designed well with a cryocooler and coolant circulation devices. The pressure of the cryostat for the SFCL should be pressurized to suppress the generation of nitrogen bubbles in quench mode of the SFCL. In this study, we tested the performance of the cooling system for the prototype 154 kV SFCL, which consist of a Stirling cryocooler, a subcooling cryostat, a pressure builder and a main cryostat for the SFCL module, to verify the design of the cooling system and the electric performance of the SFCL. The normal operation condition of the main cryostat is 71 K and 500 kPa. This paper presents tests results of the overall cooling system.

  8. A feasibility study of full-bridge type superconducting fault current controller on electric machine power stability

    NASA Astrophysics Data System (ADS)

    Jang, J. Y.; Hwang, Y. J.; Lee, J.; Ko, T. K.

    2016-02-01

    Recently, because of the advent of Smart Grid and integration of distributed generations, electrical power grids are facing uncountable challenges. Increase of fault current is one of such serious challenges and there are some fault current limiters (FCLs) that can limit the fault current. Existing grid protection FCLs, however, simply limit the fault current passively and can allow the existing protection coordination schemes to fail. This phenomenon leads to catastrophic failure in the complex system and may cause unpredictable power grid operation. Unlike a FCL, a superconducting fault current controller (SFCC) employs a full-bridge thyristor rectifier, a high temperature superconducting (HTS) DC reactor, and an embedded control unit to maintain the fault current level at a proper value by adjusting the phase angle of thyristors. This paper contains experimental and numerical analysis to design and fabricate a SFCC system for protection and stability improvement in power grids. At first, fundamental characteristics of a SFCC system were introduced. System circuit diagram and operational principles were proposed. Secondly, the developed small-scale SFCC system was introduced and verified. A 40 Vrms/30 Arms class prototype SFCC employing HTS DC reactor was fabricated and short circuit tests that simulate various fault conditions were implemented to verify the control performance of the fault current. Finally, the practical feasibility of application of the SFCC system to the power system was studied. The problems caused by three-phase faults from the power grid were surveyed and transient stability analysis of the power system was conducted by simulations. From the experimental and simulation results, we can verify the feasibility of the SFCC in power system.

  9. Investigation of low-energy electronic response in high-{Tc} superconductor by Raman spectroscopy

    SciTech Connect

    Yamanaka, Akio; Asayama, Nobuo; Furutani, Takashi; Inoue, Kuon; Takekawa, Shunji

    1996-12-31

    Low-energy electronic response due to single-particle excitations has been investigated in high-{Tc} copper-oxide Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} single-crystals by Raman scattering spectroscopy. The authors find that the low-energy electronic response in the superconducting phase depends significantly on polarization configuration. For tetragonal B{sub 1g} the suppression of the low-energy spectral weight of the electronic continuum due to an opening of the superconducting gap occurs abruptly below {Tc}, whereas that of the B{sub 2g}-response shows a gradual temperature dependence. The symmetry-dependent superconducting response is basically consistent with the superconducting order parameter having a nodal structure with X{sup 2}-Y{sup 2} symmetry.

  10. Compact spherical neutron polarimeter using high-Tc YBCO films

    NASA Astrophysics Data System (ADS)

    Wang, T.; Parnell, S. R.; Hamilton, W. A.; Li, F.; Washington, A. L.; Baxter, D. V.; Pynn, R.

    2016-03-01

    We describe a simple, compact device for spherical neutron polarimetry measurements at small neutron scattering angles. The device consists of a sample chamber with very low (<0.01 G) magnetic field flanked by regions within which the neutron polarization can be manipulated in a controlled manner. This allows any selected initial and final polarization direction of the neutrons to be obtained. We have constructed a prototype device using high-Tc superconducting films and mu-metal to isolate regions with different magnetic fields and tested device performance in transmission geometry. Finite-element methods were used to simulate the device's field profile and these have been verified by experiment using a small solenoid as a test sample. Measurements are reported using both monochromatic and polychromatic neutron sources. The results show that the device is capable of extracting sample information and distinguishing small angular variations of the sample magnetic field. As a more realistic test, we present results on the characterization of a 10 μm thick Permalloy film in zero magnetic field, as well as its response to an external magnetic field.

  11. Aspects of nodal quasiparticle transport in high-Tc superconductors

    NASA Astrophysics Data System (ADS)

    Smith, Michael F.

    Various low-temperature thermodynamic and transport properties of high TC superconductors at temperatures well below TC are studied theoretically under the assumption that the low-energy excited states can be regarded as independent Bogolubov quasiparticles near the nodes of the superconducting order parameter. In the limiting case of temperatures well above that corresponding to the impurity scattering rate, a Boltzmann-equation description of the quasiparticle distribution is used to study thermal and electrical transport for several scattering mechanisms. In particular, the dominant scattering mechanism for the relaxation of microwave electrical currents well below TC is identified, and the observed temperature dependence of the microwave conductivity data in optimally-doped YBa2Cu3O7-delta thus explained. The Knight shift and nuclear spin relaxation rate at temperatures well above the impurity scattering rate are also calculated and compared with available data. In the opposite limiting case of temperatures well below that corresponding to the impurity scattering rate, the sound attenuation and electron-phonon heat transfer rate are calculated. A model for the electron-phonon interaction in square-lattice tight-binding materials is developed and used to explain the huge measured anisotropy of the normal-state sound attenuation in the unconventional superconductor Sr2RuO4 and to rule out certain candidates for the order parameter symmetry of this material. A calculation of the electron-phonon heat transfer rate for d-wave superconductors gives the dependence of this quantity on various material parameters. Finally, the result for the electron-phonon heat transfer rate is used to explain the origin of the anomalous downturns in the thermal conductivity that have been observed in both the normal and superconducting state of cuprate superconductors, most notably in Pr2-xCe xCuO7-delta.

  12. Peak Effect in High-Tc Superconductors

    NASA Astrophysics Data System (ADS)

    Ling, Xinsheng

    1996-03-01

    Like many low-Tc superconductors, high-quality YBCO single crystals are found(X.S. Ling and J.I. Budnick, in Magnetic Susceptibility of Superconductors and Other Spin Systems), edited by R.A. Hein, T.L. Francavilla, and D.H. Liebenberg (Plenum Press, New York, 1991), p.377. to exhibit a striking peak effect. In a magnetic field, the temperature dependence of the critical current has a pronounced peak below T_c(H). Pippard(A.B. Pippard, Phil. Mag. 19), 217 (1969)., and subsequently Larkin and Ovchinnikov(A.I. Larkin and Yu.N. Ovchinnikov, J. Low Temp. Phys. 34), 409 (1979)., attributed the onset of the peak effect to a softening of the vortex lattice. In this talk, the experimental discovery^1 of the peak effect in high-Tc superconductors will be described, followed by a brief historical perspective of the understanding of this phenomenon and a discussion of a new model(X.S. Ling, C. Tang, S. Bhattacharya, and P.M. Chaikin, cond-mat/9504109, (NEC Preprint 1995).) for the peak effect. In this model, the peak effect is an interesting manifestation of the vortex-lattice melting in the presence of weak random pinning potentials. The rise of critical current with increasing temperature is a signature of the ``melting'' of the Larkin domains. This work is done in collaboration with Joe Budnick, Chao Tang, Shobo Bhattacharya, Paul Chaikin, and Boyd Veal.

  13. Comparative Analysis of Various Superconducting and Non-Superconducting Fault Current Limiting Devices Designed for Operation in a 110 kV/100 MW Power Network

    NASA Astrophysics Data System (ADS)

    Kopylov, S. I.; Altov, V. A.; Balashov, N. N.; Ivanov, S. S.; Zheltov, V. V.; Zemerikin, V. D.

    As it is known one of the most promising fault current limiting (FCL) devices for high-power electric networks can be the so-called transformer type superconducting fault current limiter (SFCL) with the primary winding connected to the load in series and the secondary one shortened by a fast-acting circuit-breaker. These devices when made of conventional materials can be very large and expensive - e.g., for a 100 MW circuit under protection the total mass of copper winding conductors can exceed 15 tons and the heat losses in a normal operating mode can be more than 200 kW. Therefore, using of high-temperature superconductors (HTSC) can be a solution which can sufficiently improve the mass, geometrical and operational characteristics of an FCL. Unlike other superconducting AC devices, the magnetic field in SFCL does not exceed 0.1 - 0.2 T what allows using HTSC windings even at a comparatively high level of AC losses existing nowadays. In this paper is performed a comparative analysis of various designs of SCFL with the non-superconducting FCL. It has been shown that the former have a mass by an order of magnitude lower than the latter and the rate of lowering of heat losses in a normal operating mode is the same. The equalization of costs of both designs is expected to be reached within the nearest 3 - 5 five years.

  14. High Tc superconductors - Composite wire fabrication

    NASA Astrophysics Data System (ADS)

    Jin, S.; Sherwood, R. C.; van Dover, R. B.; Tiefel, T. H.; Johnson, D. W., Jr.

    1987-07-01

    The fabrication of fine-wire, composite superconductors consisting of a high-conductivity normal metal shell, such as Ag or Cu/Ni/Au, and a superconducting core of Ba2YCu3O oxide is described. The functions of the normal metal shell and the importance of using the proper diffusion barrier metals are discussed. A resistivity-temperature curve for the composite wire Ag/Ba2YCu3O7 is examined, and the compound inside the finished wire is analyzed using X-ray diffraction. It is observed that the zero-field critical current density of the wire at 77 K is about 175 A/sq cm and the superconducting core is continuous and retains phase composition after wire drawing and heat treatment. The supplying of oxygen to the core of the long wire during heat treatments is studied. The data reveal that it is possible to process ceramic superconductors into a desirable composite wire form.

  15. Optoelectronic device applications of high [Tc] superconductors

    SciTech Connect

    Shi, Lei.

    1993-01-01

    Material processing and optoelectronic device applications of high T[sub c] materials are the main topic of this work. This dissertation is organized into three parts. Part I describes the material processing aspects of the HTSCs, YBCO thin films in particular. Pulsed laser deposition and device fabrication processes of high T[sub c] superconducting thin films are studied. 1/f noise measurement of HTSC thin films is also discussed. The deposition of CdS thin films onto YBCO superconducting films are studied. It is the author's effort to hybridize the semiconductor technology into HTSCs. High quality CdS/YBCO heterostructure is obtained. Part II concentrates on the construction of a femtosecond dye laser system and on the introduction of the femtosecond laser spectroscopy. Femtosecond colliding pulse mode-locking (CPM) dye laser has been built and is used to study the femtosecond transient reflectivity of high T[sub c] YBCO thin films and n-type GaAs samples. Part III describes in full detail both theory and experimental results of the optical response measurements on ultrathin YBCO thin films. Several important topics such as thermal diffusion, thermal boundary resistance and optical response in YBCO thin films are addressed. Single laser pulse duractions of 400 ps, 40 ps and 500 fs and a 40 ps pulse train are used in the experiments. A Double-bridge Voltage Correlation Technique is proposed and applied to measure the superconductivity recovery time in ultrathin YBCO films. Ultrafast voltage pulses faster than 40 ps are generated. A quasiparticle generation and recombination mechanism is further supported by two experimental evidences: (1) thickness dependence of the superconductivity recovery time; (2) the relaxation time scale <40ps.

  16. Quasiparticle tunneling spectroscopy of high {Tc} cuprates

    SciTech Connect

    Zasadzinski, J.; Ozyuzer, L.; Yusof, Z.; Chen, J.; Gray, K.E.; Mogilevsky, R.; Hinks, D.G.; Cobb, J.L.; Markert, J.T.

    1996-04-01

    Superconductor-insulator-normal metal (SIN) and superconductor-insulator-superconductor (SIS) tunnel junctions provide important information on pairing state symmetry and mechanism. Measurements of such junctions on high {Tc} superconductors (HTS) are reported using mechanical point contacts, which generally display the optimum characteristics that can be obtained from HTS native-surface tunnel barriers. New tunneling data on the infinite-layer cuprate, Sr{sub 1{minus}x}Nd{sub x}CuO{sub 2} are reported which show a remarkable similarity to another electron-doped cuprate, Nd{sub 1.85}Ce{sub 0.85}CuO{sub 4}. In particular, there is a strong, asymmetric linear background conductance that is indicative of inelastic tunneling from a continuum of states. A discussion is given of the anomalous dip feature found in the tunneling and photoemission data on BSCCO 2212. It is shown that a similar feature is found in many cuprate junctions and that this dip scales with the gap energy over a wide range. New data on the single-layer, tetragonal cuprate, Tl{sub 2}Ba{sub 2}CuO{sub 6} (Tl2201) are presented and discussed in light of recent published results on the similar compound HgBa{sub 2}CuO{sub 4} (Hg1201). The HG1201 data display a low, flat sub-gap tunneling conductance which is consistent with a BCS density of states whereas the T12201 data display a cusp-like feature at zero bias which is more consistent with d{sub x}2-{sub y}2 symmetry.

  17. Development, Testing and Installation of a Superconducting Fault Current Limiter for Medium Voltage Distribution Networks

    NASA Astrophysics Data System (ADS)

    Martini, Luciano; Bocchi, Marco; Ascade, Massimo; Valzasina, Angelo; Rossi, Valerio; Angeli, Giuliano; Ravetta, Cesare

    Since 2009 Ricerca sul Sistema Energetico (RSE S.p.A.) has been involved in the design of resistive-type Superconducting Fault Current Limiter (SFCL) for MV applications to be installed in the A2A Reti Elettriche S.p.A distribution grid in the Milano area. The project started with simulations, design and testing activities for a singlephase device; in this paper we report on the successive step, which is concerned with developing, testing and installation at the hosting utility of the final three-phase SFCL prototype. The result of this research activity is a resistive-type 9 kV/3.4 MVA SFCL device, based on first generation (1G) BSCCO tapes, developed by RSE in the framework of a R&D national project. Owing to the positive test results of partial discharge, dielectric and shortcircuit results the three-phase SFCL device is being to be installed in the A2A distribution grid in the Milano area and it is going to be soon energized starting a one-year long field-testing activity.

  18. Application of a modified flux-coupling type superconducting fault current limiter to transient performance enhancement of micro-grid

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zheng, Feng; Deng, Changhong; Li, Shichun; Li, Miao; Liu, Hui; Zhu, Lin; Guo, Fang

    2015-11-01

    Concerning the application and development of a micro-grid system which is designed to accommodate high penetration of intermittent renewable resources, one of the main issues is related to an increase in the fault-current level. It is crucial to ensure the micro-grid's operational stability and service reliability when a fault occurs in the main network. In this paper, our research group suggests a modified flux-coupling type superconducting fault current limiter (SFCL) to enhance the transient performance of a typical micro-grid system. The SFCL is installed at the point of common coupling (PCC) between the main network and the micro-grid, and it is expected to actively improve the micro-grid's fault ride-through capability. And for some specific faults, the micro-grid should disconnect from the main network, and the SFCL's contribution is to make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. Related theory derivation, technical discussion and simulation analysis are performed. From the demonstrated results, applying the SFCL can effectively limit the fault current, maintain the power balance, and enhance the voltage and frequency stability of the micro-grid.

  19. Influence of a voltage compensation type active superconducting fault current limiter on the transient stability of power system

    NASA Astrophysics Data System (ADS)

    Chen, L.; Tang, Y. J.; Shi, J.; Chen, N.; Song, M.; Cheng, S. J.; Hu, Y.; Chen, X. S.

    2009-10-01

    We have proposed a voltage compensation type active superconducting fault current limiter (SFCL). In this paper, the influence of the SFCL on the transient stability of power system is investigated. For the typical one-machine infinite-bus system, the power-angle characteristics of generator with SFCL are studied in different working conditions, and the transient physical process is analyzed. Using MATLAB SIMULINK, the power-angle swing curves are simulated under different current-limiting modes, fault types and fault clearance times. The results show that the proposed SFCL can effectively reduce the transient swing amplitude of rotor and extend the critical clearance time under mode 1, compared with mode 2 and mode 3 having few effects on enhancing the transient stability.

  20. Superconductivity

    SciTech Connect

    Langone, J.

    1989-01-01

    This book explains the theoretical background of superconductivity. Includes discussion of electricity, material fabrication, maglev trains, the superconducting supercollider, and Japanese-US competition. The authors reports the latest discoveries.

  1. Submillimeter residual losses in high-{Tc} superconductors

    SciTech Connect

    Miller, D.

    1993-09-01

    Bolometry was used obtain accurate submillimeter residual loss data for epitaxial films of YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO), Tl{sub 2}Ca{sub 2}Ba{sub 2}Cu{sub 3}O{sub 10}, Tl{sub 2}CaBa{sub 2}Cu{sub 2}O{sub 8} (TCBCO), and Ba{sub 0.6}K{sub 0.4}BiO{sub 3} (BKBO). We were able to fit the absorptivity measured for Nb films to an Eliashberg strong coupling calculation; excellent agreement resulted between parameters from best fits and measured Residual Resistivity Ratio. Microwave surface resistance measurements made on the same YBCO and TCBCO films are in excellent agreement with submillimeter measurements. Absorptivities for all YBCO films studied are qualitatively similar, increasing smoothly with frequency, with no gap-like features below the well known absorption edge at 450 cm{sup {minus}1}. Losses in YBCO films were fit to a weakly coupled grain model for the a-b plane conductivity. Strong phonon structure was observed in TCBCO films between 60 and 700 cm{sup {minus}1} (2 THz and 23 THz); these losses could not be fitted to the simple weakly coupled grain model, in contrast to the case for other high-{Tc} superconductors where phonon structure observed in ceramics are is absent in epitaxial oriented films and crystals because of electronic screening due to high conductivity of a-b planes. Absorptivity data for the BKBO films all show a strong absorption onset near the BCS tunneling gap of 3.5 k{sub B}{Tc}. Comparison with strong coupling Eliashberg predictions and of a Kramers-Kronig analysis indicate that the absorption onset is consistent with a superconducting energy gap. Effects of magnetic field on residual losses in YBCO films show a resonant absorption feature in vicinity of predicted

  2. High-Tc SQUID Magnetometers for Industrial Applications

    NASA Astrophysics Data System (ADS)

    Diiorio, Mark; Yang, Kai-Yueh; Yoshizumi, Shozo; Haupt, Steven; Haran, Don; Koch, Roger; Lathrop, Dan; Trammel, Hoke

    1998-03-01

    We have developed high-Tc SQUID magnetometers for use in a variety of industrial applications. Relatively inexpensive direct-coupled magnetometers have been developed for low-frequency applications including fetal-magnetocardiography. A manufacturable process has been developed to reproducibly fabricate high-resistance (up to 6 Ω) SNS step-edge junctions with YBa_2Cu_3O_7-x as the superconductor and Ag-Au alloy as the normal metal. Magnetic field sensitivities at 77K of 22 ft/Hz^1/2 at 1 KHz and 32 ft/Hz^1/2 at 1 Hz have been achieved in a well-shielded laboratory environment. Current effort is focused on operation in an unshielded environment using flux dams(Milliken et al. Appl. Phys. Lett. 71 1857 (1997)) in conjunction with narrow superconducting pickup coils placed in parallel. An integrated magnetometer process has also been optimized for use in high-frequency applications. The integrated megnetometer utilizes two layers of YBa_2Cu_3O_7-x and one layer of deposited SrTiO_3, all on the same 24 mm x 5 mm substrate. The applications under development include the detection of the explosive material in non-metallic land mines using nuclear quadrupole resonance as well as the non-destructive evaluation of non-metallic composites using nuclear magnetic resonance. For operation in the MHz regime, these applications demand a high quality insulator layer and a robust SQUID that can withstand high current transients.

  3. High-Tc and low-Tc dc SQUID electronics

    NASA Astrophysics Data System (ADS)

    Drung, Dietmar

    2003-12-01

    Superconducting quantum interference devices (SQUIDs) are commonly operated in a flux-locked loop (FLL). The SQUID electronics amplifies the small SQUID signal to an acceptable level without adding noise, and it linearizes the transfer function of the SQUID in order to provide sufficient dynamic range. In this paper, the fundamentals of SQUID readout are reviewed including a discussion of preamplifier noise. The basic FLL concepts, direct readout and flux modulation readout, are discussed both with dc bias and bias reversal. Alternative readout concepts such as additional positive feedback (APF), two-stage SQUIDs, SQUID series arrays, relaxation oscillation SQUIDs and digital SQUIDs are briefly described. The FLL dynamics are discussed on the basis of a simple model with finite loop delay. It is shown that with optimized SQUID electronics a system bandwidth of ap18 MHz and a corresponding slew rate of ap8 PHgr0 µs-1 are possible. A novel FLL scheme involving a Smith predictor is presented which allows one to increase the FLL bandwidth to about 100 MHz. The theoretical predictions are experimentally checked using a high-speed SQUID electronics prototype with a small-signal bandwidth of 300 MHz. Methods for increasing the dynamic range of SQUID systems are described: flux-quanta counting and dynamic field compensation (DFC). With DFC, the residual magnetic field at the SQUID can be kept close to zero even if the device is moved in the Earth's field. Therefore, the noise level of a high-Tc magnetometer measured inside a magnetically shielded room (60 fT Hz-1/2 with a 1/f corner at 2 Hz) remained unchanged after moving the device in the magnetic field outside the room (60 µT dc plus 0.8 µT peak-to-peak power line interference).

  4. Microstructure of RABiTS-type high-Tc superconductor coated conductors

    NASA Astrophysics Data System (ADS)

    Yang, Chau-Yun

    2000-11-01

    The objective of this dissertation was to characterize quantitatively the microstructure of the high Tc superconductor and buffer layer materials in prototype superconducting coated conductor tapes with the goal of understanding the microstructure-property relationships that determine their suitability for large scale applications of high Tc superconductivity. The coated conductor materials were fabricated by the rolling-assisted biaxially-textured substrates (RABiTS) approach at Oak Ridge National Laboratory. YBa2Cu 3O7-δ (YBCO), a high Tc superconductor, was deposited on various combinations of oxide buffer layers on RABiT metal tape substrates. Scanning and transmission electron microscopy, x-ray diffraction, atomic force microscopy, and Auger electron spectroscopy were used in combination to study the microstructure in the superconductor and buffer layers. The electromagnetic properties of the samples were determined in collaborations with researchers in the UW Applied Superconductivity Center and Oak Ridge National Laboratory. Buffer layers deposited by both physical vapor deposition and chemical solution deposition methods showed a wide range of microstructures and surface topographies. Electron-beam evaporated yttia stabilized-zirconia (YSZ) buffer layers were composed of loosely packed, slab- shaped columnar grains with rectangular cross sections and average dimensions of 10nm by 50nm by the film thickness. Magnetron sputtered YSZ had a smooth and featureless surface and a 50nm diameter cell structure defined by the threading dislocations. Solution deposited buffer layers were locally dense, but showed larger scale surface roughness of ~50 nm in some cases. The YBCO films grown epitaxially on these buffer layers had similar microstructures and properties, however. With one exception, the YBCO layers possessed island structures. The average misorientation angles of the boundaries that defined the islands were largely between 2 and 4° in the high critical

  5. Position determine system for lymph node relating breast cancer using a high- Tc SQUID

    NASA Astrophysics Data System (ADS)

    Tanaka, Saburo; Ota, Hajime; Kondo, Yoichi; Tamaki, Yasuhiro; Noguchi, Shinzaburo; Hasegawa, Masakatsu

    2002-03-01

    The performance of a lymph-node detection system used with a high- Tc superconducting quantum interference device was investigated. Ultra-small iron oxide particles containing 360 pg in weight of iron could be detected at a distance of 1 mm using Helmholtz coils. When a pair of angled field coils, which were of a more practical design, were used this value was increased to 2.8 ng. This value is still large enough to apply the technique for sentinel-node biopsy and lymphatic mapping.

  6. The Electronic Structure of the HighTc Superconductors Obtained by Angle-Resolved Photoemission

    NASA Astrophysics Data System (ADS)

    Campuzano, Juan-Carlos; Randeria, Mohit; Norman, Michael; Ding, Hong

    In conclusion, we hope that we have been able to convey to the readers the exciting new physics that has come out of ARPES studies of the high Tc superconductors. What is really astonishing is the range of issues on which ARPES has given new insights: from non-Fermi liquid behavior with a Fermi surface, to the symmetry of the superconducting order parameter, to the development of a Fermi surface in a doped Mott-insulator and the pseudo-gap phenomena in the underdoped cuprates.

  7. Inverse correlation between quasiparticle mass and Tc in a cuprate high-Tc superconductor

    PubMed Central

    Putzke, Carsten; Malone, Liam; Badoux, Sven; Vignolle, Baptiste; Vignolles, David; Tabis, Wojciech; Walmsley, Philip; Bird, Matthew; Hussey, Nigel E.; Proust, Cyril; Carrington, Antony

    2016-01-01

    Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature Tc is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-δ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-Tc superconductivity. We have tested the robustness of this correlation between m* and Tc by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-δ, we find that in YBa2Cu4O8, the mass decreases as Tc increases under pressure. This inverse correlation between m* and Tc suggests that quantum fluctuations of the charge order enhance m* but do not enhance Tc. PMID:27034989

  8. Superstructures and superconductivity

    SciTech Connect

    Fisk, Z.; Aeppli, G.

    1993-04-02

    Heavy fermion materials - so named because their conduction electrons behave as though they had extra mass - are like the cuprates in that they exhibit unusual superconducting properties. By the time the cuprates had been discovered, a good understanding of these materials was in hand. Unlike theories of high-[Tc] superconductivity, however, ideas about heavy fermions have not been the subject of great controversy. Thus, most of the effort in this backwater of condensed matter physics has focused on certain details of the behavior of one particularly well-studied compounds, UPt[sub 3]. The cause for sustained interest was that the process of developing ever more elaborate explanations for ever more elaborate experiments did not seem to converage. A recent paper by Midgley et al. reporting modulations in the crystal lattice of UPt[sub 3] suggests that theory and experiment might finally converge in a way that, while it does not threaten the broad understanding of heavy fermion systems, involves a degree of freedom ignored until now even in the face of past experience with elemental metallic uranium. Their transmission electron micrograph evidence for the existence of an incommensurate lattice modulation in UPt[sub 3] implicates this modulation as a probable source of the double superconducting transitions. Remarkably, the superconducting and magnetic coherence lengths, and the now discovered modulation period, are all of the same magnitude. For some time people have felt that stacking faults might be relevant to the properties of UPt[sub 3], but these new results are distinct from this. What Midgley et al. suggest is that the complicated superconducting phase diagram of UPt[sub 3] derives from the internal strain field caused by the modulation, and that this strain field lifts the degeneracy associated with unconventional pairing.

  9. High Tc: The Discovery of RBCO

    NASA Astrophysics Data System (ADS)

    Chu, C. W.

    2007-03-01

    It was said by Emerson that ``there is no history; there is only biography.'' This is especially true when the events are recounted by a person who, himself, has been heavily involved and the line between history and autobiography can become blurred. However, it is reasonable to say that discovery itself is not a series of accidents but an inevitable product of each development stage of scientific knowledge as was also pointed out by Holden et al. (1) The discovery of RBCO (2,3) with R = Y, La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu is no exception. In this presentation, I will briefly recount several events that were crucial to the discovery of RBCO: those before 1986 (4) that sowed the seeds in our group important to our later high temperature superconductivity effort; those in 1986 (5) that were critical to our discovery of the 93 K RBCO soon after the discovery of the 35 K high temperature superconductor by M"uller and Bednorz (6); and those in 1987 when the barrier of the liquid nitrogen boiling temperature of 77 K was finally conquered. 1. G. J. Holton et al., American Scientist 84, 364 (1996). 2. M. K. Wu et al., Phys. Rev. Lett. 58, 908 (1987). 3. P. H. Hor et al., Phys. Rev. Lett. 58, 1891 (1987). 4. C. W. Chu et al., S. S. Comm. 18, 977 (1976); C. W. Chu and V. Diatchenko, Phys. Rev. Lett. 41, 572 (1978); T. H. Lin et al., Phys. Rev. B(RC) 29, 1493 (1984); J. H. Lin et al., J. Low Temp. Phys. 58, 363 (1985). 5. C. W. Chu et al., Phys. Rev. Lett. 58, 405 (1987); C. W. Chu et al., Science 235, 567 (1987). 6. J. G. Bednorz and K. A. M"uller, Z. Phys. B64, 189 (1986).

  10. 3D modeling of high-Tc superconductors by finite element software

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Coombs, T. A.

    2012-01-01

    A three-dimensional (3D) numerical model is proposed to solve the electromagnetic problems involving transport current and background field of a high-Tc superconducting (HTS) system. The model is characterized by the E-J power law and H-formulation, and is successfully implemented using finite element software. We first discuss the model in detail, including the mesh methods, boundary conditions and computing time. To validate the 3D model, we calculate the ac loss and trapped field solution for a bulk material and compare the results with the previously verified 2D solutions and an analytical solution. We then apply our model to test some typical problems such as superconducting bulk array and twisted conductors, which cannot be tackled by the 2D models. The new 3D model could be a powerful tool for researchers and engineers to investigate problems with a greater level of complicity.

  11. Normal-state nodal electronic structure in underdoped high-Tc copper oxides.

    PubMed

    Sebastian, Suchitra E; Harrison, N; Balakirev, F F; Altarawneh, M M; Goddard, P A; Liang, Ruixing; Bonn, D A; Hardy, W N; Lonzarich, G G

    2014-07-01

    An outstanding problem in the field of high-transition-temperature (high-Tc) superconductivity is the identification of the normal state out of which superconductivity emerges in the mysterious underdoped regime. The normal state uncomplicated by thermal fluctuations can be studied using applied magnetic fields that are sufficiently strong to suppress long-range superconductivity at low temperatures. Proposals in which the normal ground state is characterized by small Fermi surface pockets that exist in the absence of symmetry breaking have been superseded by models based on the existence of a superlattice that breaks the translational symmetry of the underlying lattice. Recently, a charge superlattice model that positions a small electron-like Fermi pocket in the vicinity of the nodes (where the superconducting gap is minimum) has been proposed as a replacement for the prevalent superlattice models that position the Fermi pocket in the vicinity of the pseudogap at the antinodes (where the superconducting gap is maximum). Although some ingredients of symmetry breaking have been recently revealed by crystallographic studies, their relevance to the electronic structure remains unresolved. Here we report angle-resolved quantum oscillation measurements in the underdoped copper oxide YBa2Cu3O6 + x. These measurements reveal a normal ground state comprising electron-like Fermi surface pockets located in the vicinity of the nodes, and also point to an underlying superlattice structure of low frequency and long wavelength with features in common with the charge order identified recently by complementary spectroscopic techniques. PMID:24930767

  12. Development of 6.6 kV/600 A superconducting fault current limiter using coated conductors

    NASA Astrophysics Data System (ADS)

    Yazawa, T.; Koyanagi, K.; Takahashi, M.; Toba, K.; Takigami, H.; Urata, M.; Iijima, Y.; Saitoh, T.; Amemiya, N.; Shiohara, Y.; Ito, T.

    2009-10-01

    As one of the programs in the Ministry of Economy, Trade and Industry (METI) project regarding R&D on superconducting coated conductor, three-phase superconducting fault current limiter (SFCL) for 6.6 kV application was developed and successfully tested. The developed SFCL was mainly comprised three-phase set of current limiting coils installed in a sub-cooled nitrogen cryostat with a GM cryocooler, circuit breakers and a sequence circuit. The whole system was installed in a cubicle. Two tapes of coated conductor were wound in parallel in each coil to obtain the rated current of 72 A rms. After developing the whole SFCL system, short circuit experiments were implemented with a short circuit generator. In a three-line ground fault test, the SFCL successfully restricted the prospected short circuit current over 1.6 kA to about 800 A by the applied voltage of 6.6 kV. The SFCL was installed in a user field and connected with a gas engine generator, followed by a consecutive operation. In this program, 600 A class FCL coil, with which four coated conductor tapes were wound, was also developed. The coil showed sufficiently low AC loss at the rated current. With these results, the program attained the planned target of the fundamentals for the 6.6 kV/600 A SFCL.

  13. Application of a combined superconducting fault current limiter and STATCOM to enhancement of power system transient stability

    NASA Astrophysics Data System (ADS)

    Mahdad, Belkacem; Srairi, K.

    2013-12-01

    Stable and reliable operation of the power system network is dependent on the dynamic equilibrium between energy production and power demand under large disturbance such as short circuit or important line tripping. This paper investigates the use of combined model based superconducting fault current limiter (SFCL) and shunt FACTS Controller (STATCOM) for assessing the transient stability of a power system considering the automatic voltage regulator. The combined model located at a specified branch based on voltage stability index using continuation power flow. The main role of the proposed combined model is to achieve simultaneously a flexible control of reactive power using STATCOM Controller and to reduce fault current using superconducting technology based SFCL. The proposed combined model has been successfully adapted within the transient stability program and applied to enhance the transient power system stability of the WSCC9-Bus system. Critical clearing time (CCT) has been used as an index to evaluate and validate the contribution of the proposed coordinated Controller. Simulation results confirm the effectiveness and perspective of this combined Controller to enhance the dynamic power system performances.

  14. Superconductivity

    NASA Astrophysics Data System (ADS)

    Yeo, Yung K.

    Many potential high-temperature superconductivity (HTS) military applications have been demonstrated by low-temperature superconductivity systems; they encompass high efficiency electric drives for naval vessels, airborne electric generators, energy storage systems for directed-energy weapons, electromechanical launchers, magnetic and electromagnetic shields, and cavity resonators for microwave and mm-wave generation. Further HST applications in militarily relevant fields include EM sensors, IR focal plane arrays, SQUIDs, magnetic gradiometers, high-power sonar sources, and superconducting antennas and inertial navigation systems. The development of SQUID sensors will furnish novel magnetic anomaly detection methods for ASW.

  15. Measurements of the rf surface resistance of high- Tc superconductors

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Roche, C.T.

    1990-01-01

    An experimental program is being conducted to assess the applicability of high-{Tc} superconductors for use in high power rf and microwave devices. The program involves the measurement of the rf surface resistance of high-{Tc} samples at frequencies between 0.15 and 40 GHz and rf surface magnetic fields as high as 640 gauss. Polycrystalline samples were found to have surface resistances which increase monotonically with rf-field amplitude, saturating at high field at a few percent of the normal-state surface resistance just above {Tc}. 13 refs., 2 figs., 1 tab.

  16. Cryocooler cooled HTS current lead for a 35 kJ/7 kW-class high- Tc SMES system

    NASA Astrophysics Data System (ADS)

    Ren, L.; Tang, Y.; Shi, J.; Chen, N.; Li, J.; Cheng, S.

    2008-09-01

    Within 863 program of China, a 35 kJ/7 kW-class high- Tc superconducting magnetic energy storage system (SMES) was completed in Nov. 2005. It operates at 100 A in the cryogenic environment of 20 K and is cooled by conduction cooling. It is essential to minimize heat loss from room temperature and to optimize the ohmic heating of current leads. So, 100 A hybrid type current leads, consisting of conventional copper parts and high- Tc superconducting (HTS) parts, were designed, fabricated and tested. The HTS parts of the leads were made of Bi-2223 cylindrical bulk and the copper parts were winded into just like a sparse solenoid to prolong the path for heat transfer. The current leads were cooled directly by a two-stage cryocooler. And, a series of experiments were carried out. The experimental results show a good according with the simulation, which verify that the hybrid current lead meets the requirements of high- Tc SMES.

  17. Experimental studies of the quench behaviour of MgB2 superconducting wires for fault current limiter applications

    NASA Astrophysics Data System (ADS)

    Ye, Lin; Majoros, M.; Campbell, A. M.; Coombs, T.; Astill, D.; Harrison, S.; Husband, M.; Rindfleisch, M.; Tomsic, M.

    2007-07-01

    Various MgB2 wires with different sheath materials provided by Hyper Tech Research Inc., have been tested in the superconducting fault current limiter (SFCL) desktop tester at 24-26 K in a self-field. Samples 1 and 2 are similarly fabricated monofilamentary MgB2 wires with a sheath of CuNi, except that sample 2 is doped with SiC and Mg addition. Sample 3 is a CuNi sheathed multifilamentary wire with Cu stabilization and Mg addition. All the samples with Nb barriers have the same diameter of 0.83 mm and superconducting fractions ranging from 15% to 27% of the total cross section. They were heat-treated at temperatures of 700 °C for a hold time of 20-40 min. Current limiting properties of MgB2 wires subjected to pulse overcurrents have been experimentally investigated in an AC environment in the self-field at 50 Hz. The quench currents extracted from the pulse measurements were in a range of 200-328 A for different samples, corresponding to an average engineering critical current density (Je) of around 4.8 × 104 A cm-2 at 25 K in the self-field, based on the 1 µV cm-1 criterion. This work is intended to compare the quench behaviour in the Nb-barrier monofilamentary and multifilamentary MgB2 wires with CuNi and Cu/CuNi sheaths. The experimental results can be applied to the design of fault current limiter applications based on MgB2 wires. This work is supported by Rolls-Royce plc and the UK Department of Trade and Industry (DTI).

  18. Superconductivity:

    NASA Astrophysics Data System (ADS)

    Sacchetti, N.

    In this paper a short historical account of the discovery of superconductivity and of its gradual development is given. The physical interpretation of its various aspects took about forty years (from 1911 to 1957) to reach a successful description of this phenomenon in terms of a microscopic theory At the very end it seemed that more or less everything could be reasonably interpreted even if modifications and refinements of the original theory were necessary. In 1986 the situation changed abruptly when a cautious but revolutionary paper appeared showing that superconductivity was found in certain ceramic oxides at temperatures above those up to then known. A rush of frantic experimental activity started world-wide and in less than one year it was shown that superconductivity is a much more widespread phenomenon than deemed before and can be found at temperatures well above the liquid air boiling point. The complexity and the number of the substances (mainly ceramic oxides) involved call for a sort of modern alchemy if compounds with the best superconducting properties are to be manufactured. We don't use the word alchemy in a deprecatory sense but just to emphasise that till now nobody can say why these compounds are what they are: superconductors.

  19. Quench distribution in superconducting fault current limiters at various voltages H.-R. Kim, H.-S. Choi,

    NASA Astrophysics Data System (ADS)

    Kim, Hye-Rim; Choi, Hyo-Sang; Lim, Hae-Ryong; Kim, In-Seon; Hyun, Ok-Bae

    2001-04-01

    We investigated the quench distribution in resistive superconducting fault current limiters (SFCLs) based on YBa 2Cu 3O 7 thin films at various source voltages. The film was grown on sapphire substrates, coated in situ with a gold layer and patterned into pairs of 1 mm wide and 26 cm long meander lines by photolithography. Fabricated limiters were tested with simulated AC fault currents. The resistivity of Au/YBa 2Cu 3O 7 meander lines was relatively uniform in the center stripes at all voltages. This result is important because it means the dissipated power was distributed relatively evenly among most of stripes. The resistivity of the stripes near electrodes was significantly lower than that of center stripes, reflecting the cooling power of the electrode area. The difference increased with the source voltage. These results could be explained quantitatively in terms of heat transfer from limiter meander lines to surroundings. Data fit reasonably well to the solution of heat balance equation obtained with appropriate boundary conditions.

  20. Scattering rates and specific heat jumps in high-Tc cuprates

    NASA Astrophysics Data System (ADS)

    Storey, James

    Inspired by recent ARPES and tunneling studies on high-Tc cuprates, we examine the effect of a pair-breaking term in the self-energy on the shape of the electronic specific heat jump. It is found that the observed specific heat jump can be described in terms of a superconducting gap, that persists above the observed Tc, in the presence of a strongly temperature dependent pair-breaking scattering rate. An increase in the scattering rate is found to explain the non-BCS-like suppression of the specific heat jump with magnetic field. A discussion of these results in the context of other properties such as the superfluid density and Raman spectra will also be presented. Supported by the Marsden Fund Council from Government funding, administered by the Royal Society of New Zealand.

  1. NMR investigation of iron-selenide and iron-arsenide high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Imai, Takashi

    2012-02-01

    We have investigated the electronic, magnetic, and superconducting properties of the iron-selenide high Tc superconductor KxFe2-ySez (Tc=33 K) with ^77Se NMR [1]. We will compare the results with those observed for FeSe in ambient and applied pressures (Tc>9 K) [2], and with iron-arsenides [3]. Similarities and dissimilarities will be pointed out, with primary focus on the anomalous normal state properties. Our latest work on KxFe2-ySez was carried out in collaboration with D. Torchetti, M. Fu, D. Christensen, K. Nelson (McMaster), H. Lei, and C. Petrovic (Brookhaven National Lab).[4pt] [1] D. Torchetti et al., PR B83, 104508 (2011).[0pt] [2] T. Imai et al. PRL 102, 177005 (2009).[0pt] [3] F.L. Ning et al., PRL 104, 037001 (2010); JPSJ 78, 103711 (2009).

  2. The effect of processing parameters during heat treatment of bulk high-{Tc} superconductors

    SciTech Connect

    Cha, Y.S.; Dorris, S.E.; Hull, J.R.; Poeppel, R.B.

    1991-04-01

    Plastic extrusion is a promising method for producing the long lengths of high-{Tc} superconductor that will be necessary to meet many potential applications. A crucial phase of the extrusion method is removal of organic constituents. Incomplete removal can leave residual carbon at grain boundaries, which can adversely affect the superconducting properties, whereas excessively rapid removal of the organics can cause the extruded superconductor to disintegrate completely. In this paper, we analyze the effects of the following aspects of organics removal, as they apply to the firing of extruded YBa{sub 2}Cu{sub 3}O{sub x} coils: (1) total pressure in the furnace, (2) oxygen flow, (3) heat conduction, and (4) diffusion of volatile components during removal of organics.

  3. The effect of processing parameters during heat treatment of bulk high- Tc superconductors

    SciTech Connect

    Cha, Y.S.; Dorris, S.E.; Hull, J.R.; Poeppel, R.B.

    1991-04-01

    Plastic extrusion is a promising method for producing the long lengths of high-{Tc} superconductor that will be necessary to meet many potential applications. A crucial phase of the extrusion method is removal of organic constituents. Incomplete removal can leave residual carbon at grain boundaries, which can adversely affect the superconducting properties, whereas excessively rapid removal of the organics can cause the extruded superconductor to disintegrate completely. In this paper, we analyze the effects of the following aspects of organics removal, as they apply to the firing of extruded YBa{sub 2}Cu{sub 3}O{sub x} coils: (1) total pressure in the furnace, (2) oxygen flow, (3) heat conduction, and (4) diffusion of volatile components during removal of organics.

  4. Superconducting Field-Effect Transistors

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Romanofsky, Robert R.; Tabib-Azar, Massood

    1995-01-01

    Devices offer switching speeds greater than semiconducting counterparts. High-Tc superconducting field-effect transistors (SUPEFETs) investigated for use as electronic switches in delay-line-type microwave phase shifters. Resemble semiconductor field-effect transistors in some respects, but their operation based on different principle; namely, electric-field control of transition between superconductivity and normal conductivity.

  5. Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor

    NASA Astrophysics Data System (ADS)

    Campi, G.; Bianconi, A.; Poccia, N.; Bianconi, G.; Barba, L.; Arrighetti, G.; Innocenti, D.; Karpinski, J.; Zhigadlo, N. D.; Kazakov, S. M.; Burghammer, M.; Zimmermann, M. V.; Sprung, M.; Ricci, A.

    2015-09-01

    It has recently been established that the high-transition-temperature (high-Tc) superconducting state coexists with short-range charge-density-wave order and quenched disorder arising from dopants and strain. This complex, multiscale phase separation invites the development of theories of high-temperature superconductivity that include complexity. The nature of the spatial interplay between charge and dopant order that provides a basis for nanoscale phase separation remains a key open question, because experiments have yet to probe the unknown spatial distribution at both the nanoscale and mesoscale (between atomic and macroscopic scale). Here we report micro X-ray diffraction imaging of the spatial distribution of both short-range charge-density-wave `puddles' (domains with only a few wavelengths) and quenched disorder in HgBa2CuO4 + y, the single-layer cuprate with the highest Tc, 95 kelvin (refs 26, 27, 28). We found that the charge-density-wave puddles, like the steam bubbles in boiling water, have a fat-tailed size distribution that is typical of self-organization near a critical point. However, the quenched disorder, which arises from oxygen interstitials, has a distribution that is contrary to the usually assumed random, uncorrelated distribution. The interstitial-oxygen-rich domains are spatially anticorrelated with the charge-density-wave domains, because higher doping does not favour the stripy charge-density-wave puddles, leading to a complex emergent geometry of the spatial landscape for superconductivity.

  6. Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor.

    PubMed

    Campi, G; Bianconi, A; Poccia, N; Bianconi, G; Barba, L; Arrighetti, G; Innocenti, D; Karpinski, J; Zhigadlo, N D; Kazakov, S M; Burghammer, M; Zimmermann, M v; Sprung, M; Ricci, A

    2015-09-17

    It has recently been established that the high-transition-temperature (high-Tc) superconducting state coexists with short-range charge-density-wave order and quenched disorder arising from dopants and strain. This complex, multiscale phase separation invites the development of theories of high-temperature superconductivity that include complexity. The nature of the spatial interplay between charge and dopant order that provides a basis for nanoscale phase separation remains a key open question, because experiments have yet to probe the unknown spatial distribution at both the nanoscale and mesoscale (between atomic and macroscopic scale). Here we report micro X-ray diffraction imaging of the spatial distribution of both short-range charge-density-wave 'puddles' (domains with only a few wavelengths) and quenched disorder in HgBa2CuO4 + y, the single-layer cuprate with the highest Tc, 95 kelvin (refs 26-28). We found that the charge-density-wave puddles, like the steam bubbles in boiling water, have a fat-tailed size distribution that is typical of self-organization near a critical point. However, the quenched disorder, which arises from oxygen interstitials, has a distribution that is contrary to the usually assumed random, uncorrelated distribution. The interstitial-oxygen-rich domains are spatially anticorrelated with the charge-density-wave domains, because higher doping does not favour the stripy charge-density-wave puddles, leading to a complex emergent geometry of the spatial landscape for superconductivity. PMID:26381983

  7. The unconventional electrodynamics of high {Tc} and organic superconductors

    SciTech Connect

    Timusk, T.; Cao, N.; Basov, D.N.; Homes, C.C.

    1996-12-31

    The combination of lowered dimensionality and electron-electron correlations are responsible for the unusual temperature and frequency dependence of the electrical conductivity of the new superconductors. The authors first review the electrodynamics of two systems, U{sub 2}Ru{sub 2}Si{sub 2} and Sr{sub 2}RuO{sub 4} where conventional Fermi liquid ideas seem to work. Here transport is by free carriers with strongly renormalized masses. On the other hand the electrodynamics of the high {Tc} cuprates and the organic charge transfer salts is unconventional. The high {Tc}`s show a Drude peak with an anomalous temperature and frequency dependent scattering rate for the in-plane conductivity, while normal to the planes they are almost insulating. In the organics, the transport currents are carried by a narrow collective mode coupled to phonons. 44 refs., 7 figs.

  8. Fluxoid motion and resistive transition in high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Matsushita, T.; Ni, B.

    1990-07-01

    Significantly broad resistive transition has been observed in high-Tc superconductors under a magnetic field. A similar broad transition was observed by French et al. (1967) in resistance versus magnetic field characteristics in low-temperature superconductors for various current densities. In this case, the critical current density and the flow resistivity completely determine the overall resistive characteristics. This suggests that the resistive characteristics in high-Tc superconductors may also be determined by these two quantities alone. In fact, the procedure outlined reproduces the commonly observed resistive characteristics. A notable feature determined from this procedure is that a knee exists in the resistance versus temperature curve. This projection corresponds to the irreversibility point; i.e. the temperature at which the critical current density is reduced to zero.

  9. SPECIAL ISSUE DEVOTED TO THE 80TH ANNIVERSARY OF ACADEMICIAN N G BASOV'S BIRTH: Interlayer electrodynamics of high-Tc superconductors: an experimental overview

    NASA Astrophysics Data System (ADS)

    Basov, Dmitrii N.

    2002-12-01

    An astonishing feature of underdoped high-Tc superconductors is that the energy scale associated with the formation of superconducting condensate dramatically exceeds the energy gap and appears to be of the interband caliber. This effect can be interpreted in terms of lowering of the electronic kinetic energy at T < Tc and thus points to a mechanism of superconductivity radically departing from the Bardeen — Cooper — Schrieffer (BCS) theory. This nontrivial superconducting state electrodynamics appears to be directly connected to anomalies of cuprates observed in the normal state, including the pseudogap, and to the lack of well-defined quasiparticles.

  10. High-Tc SQUID magnetometer system with active cancellation

    NASA Astrophysics Data System (ADS)

    Kuriki, S.; Oyama, H.; Hayashi, A.; Washio, T.; Fujita, M.; Hirata, Y.

    2002-05-01

    Recent developments of high-Tc SQUIDs have enabled high sensitivity magnetometers to be used in wide range of places, such as laboratory and outdoor fields. At the early stage of developing multichannel system for measurement of magnetocardiogram (MCG) in clinical application, we have fabricated a single channel high-Tc SQUID magnetometer system. The system includes a direct-coupled SQUID with slot structure, a simple magnetically shielded room (MSR), and some active compensation electronics for the purpose of reducing various environmental field noises. A novel active noise cancellation was made by using a combination of a normal conducting detection coil that was horizontally wound in the middle height of the MSR, and two compensation coils that were wound at the top and bottom of the MSR. In addition, adaptive noise cancellation was supplemented by means of adaptive digital filter that was implemented in a digital signal processor. A total noise field attenuation of 50-60 dB was attained at 0.5-100 Hz. Low noise signals from the human heart were measured with a high-Tc SQUID in the noise reduced space in the MSR.

  11. Identification of Liquids by High-Tc Josephson THz Detectors

    NASA Astrophysics Data System (ADS)

    Divin, Y.; Lyatti, M.; Poppe, U.; Urban, K.

    Fast and reliable detection of liquids will be required for future checkpoint screening techniques. Recently, a new electromagnetic-wave concept based on our high-Tc Josephson detectors and Hilbert spectroscopy has been suggested to distinguish between liquids. This technology covers a spectral range of main dispersions of liquids, from a few GHz to a few THz, and thus significantly enhances reliability of identification. The high-Tc detectors, due to a power dynamic range of more than five orders, might guarantee short identification times. Several demonstration set-ups of liquid identifiers, consisting of high-Tc Josephson detectors, integrated in Stirling coolers, and polychromatic radiation sources, have been developed and characterized. Reflection polychromatic spectra of various liquids in plastic containers have been measured at the spectral range of 15-500 GHz with total scanning time down to 0.2 second. Reliable identification of liquids, both benign and threat, within an accuracy of 0.3% was demonstrated using water as a reflectance reference. The reflectance values for 30%H2O2/H2O solution at frequencies of 30 and 100 GHz were practically undistinguishable from that of for pure water, but an increase of the relative reflectance from 1.017 at 282 GHz to 1.033 at 434 GHz has been found. Last circumstance will be used for optimization of the identifiers.

  12. Quench characteristics of HTSC elements in integrated three-phase flux-lock type SFCL according to ground-fault types

    NASA Astrophysics Data System (ADS)

    Lim, S. H.; Han, T. H.; Cho, Y. S.; Choi, H. S.; Han, B. S.; Lee, Su-Won

    2007-10-01

    The quench characteristics of high-TC superconducting (HTSC) elements in the integrated three-phase flux-lock type superconducting fault current limiter (SFCL), which consisted of HTSC elements and a three-phase flux-lock reactor wound on one iron core with the same turn's ratio between coil 1 and coil 2 in each single phase, were investigated. In a normal condition, the magnetic flux generated in the iron core is zero because the magnetic flux generated between two coils of each single phase is canceled out. However, unlike other three-phase SFCL with three isolated iron cores, the integrated three-phase flux-lock type SFCL showed the different fault current limiting characteristics for the three-phase faults such as the single line-to-ground fault, the double line-to-ground fault, the line-to-line fault and the triple line-to-ground fault. In addition, the power burden of HTSC elements comprising the integrated three-phase flux-lock type SFCL can be decreased. In this paper, we investigated the quench characteristics of HTSC elements in the integrated three-phase flux-lock type SFCL according to three-phase ground fault types. Through the experiments for the fault current limiting characteristics of this type SFCL according to three-phase ground fault types, the quench characteristics of HTSC elements were analyzed and compared with those of three-phase resistive type SFCL.

  13. Influence of lateral displacement on the levitation performance of a magnetized bulk high-Tc superconductor magnet

    NASA Astrophysics Data System (ADS)

    Liu, W.; Wang, J. S.; Ma, G. T.; Zheng, J.; Tuo, X. G.; Li, L. L.; Ye, C. Q.; Liao, X. L.; Wang, S. Y.

    2012-03-01

    Compared with the permanent magnet, the magnetized bulk high-Tc superconductor magnet (MBSCM) can trap higher magnetic field due to its strong flux pinning ability, so it is a good candidate to improve the levitation performance of high-Tc superconductive (HTS) maglev system. The trapped magnetic flux of a MBSCM is sustained by the inductive superconducting current produced by the magnetizing process and is susceptible to the current intensity as well as configuration. In the HTS maglev system, the lateral displacement is an important process to change the superconducting current within a MBSCM and then affects its levitation performance, which is essential for the traffic ability in curve-way, the loading capacity of lateral impact and so on. The research about influence of lateral displacement on the levitation performance of MBSCM is necessary when MBSCM is applied on the HTS maglev vehicle. The experimental investigations about the influence of lateral displacement on the levitation performance of a MBSCM with different trapped fluxes and applied fields are processed in this article. The analyses and conclusions of this article are useful for the practical application of MBSCM in HTS maglev system.

  14. Phase transition between two kinds of flux-line lattice in high- Tc superconductors in a tilted field

    NASA Astrophysics Data System (ADS)

    Nonomura, Y.; Hu, X.

    2004-10-01

    Structures of flux-line lattices (FLL) in vortex states of high- Tc superconductors in a tilted field are directly studied by Monte Carlo simulations of the three-dimensional anisotropic XY model, where only Josephson couplings are considered between superconducting layers. A nontrivial structural transition between the Josephson-dominant and Abrikosov-dominant FLL phases occurs as the tilting angle of the external field is increased at low enough temperatures. A similar phase transition is observed by varying the anisotropy parameter with a fixed external field. A finite latent heat at the transition point indicates that this phase transition is of first order.

  15. Superconductivity applications for infrared and microwave devices; Proceedings of the Meeting, Orlando, FL, Apr. 19, 20, 1990

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B. (Editor); Heinen, Vernon O. (Editor)

    1990-01-01

    Various papers on superconductivity applications for IR and microwave devices are presented. The individual topics addressed include: pulsed laser deposition of Tl-Ca-Ba-Cu-O films, patterning of high-Tc superconducting thin films on Si substrates, IR spectra and the energy gap in thin film YBa2Cu3O(7-delta), high-temperature superconducting thin film microwave circuits, novel filter implementation utilizing HTS materials, high-temperature superconductor antenna investigations, high-Tc superconducting IR detectors, high-Tc superconducting IR detectors from Y-Ba-Cu-O thin films, Y-Ba-Cu0-O thin films as high-speed IR detectors, fabrication of a high-Tc superconducting bolometer, transition-edge microbolometer, photoresponse of YBa2Cu3O(7-delta) granular and epitaxial superconducting thin films, fast IR response of YBCO thin films, kinetic inductance effects in high-Tc microstrip circuits at microwave frequencies.

  16. Microstructures and critical currents in high-{Tc} superconductors

    SciTech Connect

    Suenaga, Masaki

    1998-11-01

    Microstructural defects are the primary determining factors for the values of critical-current densities in a high {Tc} superconductor after the electronic anisotropy along the a-b plane and the c-direction. A review is made to assess firstly what would be the maximum achievable critical-current density in YBa{sub 2}Cu{sub 3}O{sub 7} if nearly ideal pinning sites were introduced and secondly what types of pinning defects are currently introduced or exist in YBa{sub 2}Cu{sub 3}O{sub 7} and how effective are these in pinning vortices.

  17. Nodal bilayer-splitting controlled by spin-orbit interactions in underdoped high-Tc cuprates

    DOE PAGESBeta

    Harrison, N.; Ramshaw, B. J.; Shekhter, A.

    2015-06-03

    The highest superconducting transition temperatures in the cuprates are achieved in bilayer and trilayer systems, highlighting the importance of interlayer interactions for high Tc. It has been argued that interlayer hybridization vanishes along the nodal directions by way of a specific pattern of orbital overlap. Recent quantum oscillation measurements in bilayer cuprates have provided evidence for a residual bilayer-splitting at the nodes that is sufficiently small to enable magnetic breakdown tunneling at the nodes. Here we show that several key features of the experimental data can be understood in terms of weak spin-orbit interactions naturally present in bilayer systems, whosemore » primary effect is to cause the magnetic breakdown to be accompanied by a spin flip. These features can now be understood to include the equidistant set of three quantum oscillation frequencies, the asymmetry of the quantum oscillation amplitudes in c-axis transport compared to ab-plane transport, and the anomalous magnetic field angle dependence of the amplitude of the side frequencies suggestive of small effective g-factors. We suggest that spin-orbit interactions in bilayer systems can further affect the structure of the nodal quasiparticle spectrum in the superconducting phase. PACS numbers: 71.45.Lr, 71.20.Ps, 71.18.+y« less

  18. Nodal bilayer-splitting controlled by spin-orbit interactions in underdoped high-Tc cuprates

    PubMed Central

    Harrison, N.; Ramshaw, B. J.; Shekhter, A.

    2015-01-01

    The highest superconducting transition temperatures in the cuprates are achieved in bilayer and trilayer systems, highlighting the importance of interlayer interactions for high Tc. It has been argued that interlayer hybridization vanishes along the nodal directions by way of a specific pattern of orbital overlap. Recent quantum oscillation measurements in bilayer cuprates have provided evidence for a residual bilayer-splitting at the nodes that is sufficiently small to enable magnetic breakdown tunneling at the nodes. Here we show that several key features of the experimental data can be understood in terms of weak spin-orbit interactions naturally present in bilayer systems, whose primary effect is to cause the magnetic breakdown to be accompanied by a spin flip. These features can now be understood to include the equidistant set of three quantum oscillation frequencies, the asymmetry of the quantum oscillation amplitudes in c-axis transport compared to ab-plane transport, and the anomalous magnetic field angle dependence of the amplitude of the side frequencies suggestive of small effective g-factors. We suggest that spin-orbit interactions in bilayer systems can further affect the structure of the nodal quasiparticle spectrum in the superconducting phase. PACS numbers: 71.45.Lr, 71.20.Ps, 71.18.+y PMID:26039222

  19. The first Italian Superconducting Fault Current Limiter: Results of the field testing experience after one year operation

    NASA Astrophysics Data System (ADS)

    Martini, L.; Bocchi, M.; Ascade, M.; Valzasina, A.; Rossi, V.; Ravetta, C.; Angeli, G.

    2014-05-01

    Ricerca sul Sistema Energetico S.p.A. (RSE) has been gaining a relevant experience in the simulation, design and installation of resistive-type Superconducting Fault Current Limiter (SFCL) devices for more than five years in the framework of a R&D national project funded by the Ricerca di Sistema (RdS). The most recent outcome of this research activity is the installation of a resistive-type BSCCO-based 9 kV / 3.4 MVA SFCL device in a single feeder branch of the Medium Voltage (MV) distribution network managed by A2A Reti Elettriche S.p.A (A2A) in the Milano area. This installation represents the first SFCL successfully installed in Italy. In this paper, we report on the main outcomes after a more than 1-year long steady-state field testing activity. The design of an upgraded device to be installed in the same substation has already been initiated: the new SFCL will allow to protect four different feeders, therefore implying a device upgrade up to 15.6 MVA.

  20. Separation of charge-order and magnetic QCPs in heavy fermions and high Tc cuprates

    NASA Astrophysics Data System (ADS)

    Harrison, Neil

    2010-03-01

    The Fermi surface topology of high temperature superconductors inferred from magnetic quantum oscillation measurements provides clues for the origin of unconventional pairing thus previously not accessed by other spectroscopy techniques. While the overdoped regime of the high Tc phase diagram has a large Fermi surface consistent with bandstructure calculations, the underdoped regime of YBa2Cu2O6+x is found to be composed of small pockets. There is considerable debate as to whether the small observed ``pocket'' is hole-like or electron-like- whether the Fermi surface is best described by a t-J model or a conventional band folding picture- whether or not a Fermi liquid description applies- or- whether bilayer coupling splits the degeneracy of the observed pockets. We (myself and collaborators) have now collected an extensive body of experimental data that brings this debate to rest, but raises new questions about the nature of itinerant magnetism in underdoped high Tc cuprates. Quantum oscillation measurements are performed on multiple samples in magnetic fields extending to 85 T, temperatures between 30 mK (dilution fridge in dc fields to 45 T) and 18 K, over a range of hole dopings and with samples rotated in-situ about multiple axes with respect to the magnetic field. We perform a topographical map of the Fermi surface, enabling the in-plane shape of one of the pockets to be determined- imposing stringent constraints on the origin of the Fermi surface. While quantum oscillations measurements are consistent with a topological Fermi surface change associated with magnetism near optimal doping, they also point to a secondary instability deep within the underdoped regime beneath a high Tc superconducting sub-dome. An steep upturn in the quasiparticle effective mass is observed on underdoping, suggestive of a quantum critical point near x= 0.46 separating the metallic regime (composed of small pockets) from a more underdoped insulating charge-ordered regime (earlier

  1. Korea's developmental program for superconductivity

    NASA Technical Reports Server (NTRS)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  2. Proximity Effect at Graphene - High Tc Superconductor Junctions

    NASA Astrophysics Data System (ADS)

    Wang, Da; Shih, En-Min; Arefe, Ghidewon; Kim, Youngduck; Edelberg, Drew; Andrade, Erick; Wang, Dennis; Hone, James; Dean, Cory; Pasupathy, Abhay; Department of Physics, Columbia University, New York, NY 10027, USA Collaboration

    The proximity effect is a well-known mesoscopic phenomenon where Cooper pairs from a superconductor (S) enter into a normal metal (N) that is well coupled to it. Since graphene was discovered a decade ago, the proximity effect at superconductor-graphene junctions has been extensively studied and interesting phenomena such as specular Andreev reflection and ballistic transport at graphene Josephson junctions have been observed. However, superconductors used in these experiments to date are of conventional low Tc, such as aluminum(Tc=1.2K), NbSe2(Tc=7K), and MoRe(Tc=8K). Understanding how the proximity effect works between high-Tc superconductors (pnictides and cuprates) and the Dirac Fermions of graphene remains largely unexplored. The chief technical challenge here is to create high-quality junctions between high-Tc superconductors and graphene. In this work, we will introduce a home-made setup that allows us to exfoliate, transfer and encapsulate superconductor-graphene junctions in a well controlled inert atmosphere. Transport measurements of the proximity effect at graphene-iron pnictide(FeSe, FeTeSe) and graphene-cuprate(BSCCO) junctions will be described.

  3. Buffer layers for high-Tc thin films on sapphire

    NASA Technical Reports Server (NTRS)

    Wu, X. D.; Foltyn, S. R.; Muenchausen, R. E.; Cooke, D. W.; Pique, A.; Kalokitis, D.; Pendrick, V.; Belohoubek, E.

    1992-01-01

    Buffer layers of various oxides including CeO2 and yttrium-stabilized zirconia (YSZ) have been deposited on R-plane sapphire. The orientation and crystallinity of the layers were optimized to promote epitaxial growth of YBa2Cu3O(7-delta) (YBCO) thin films. An ion beam channeling minimum yield of about 3 percent was obtained in the CeO2 layer on sapphire, indicating excellent crystallinity of the buffer layer. Among the buffer materials used, CeO2 was found to be the best one for YBCO thin films on R-plane sapphire. High Tc and Jc were obtained in YBCO thin films on sapphire with buffer layers. Surface resistances of the YBCO films were about 4 mOmega at 77 K and 25 GHz.

  4. Global Phase Diagram of the High-Tc Cuprates

    NASA Astrophysics Data System (ADS)

    Chen, Han-Dong; Zhang, Shou-Cheng

    2006-02-01

    We propose a bosonic effective quantum Hamiltonian based on the projected SO(5) model with extended interactions, which can be derived from the microscopic models of the cuprates. The global phase diagram of this model is obtained using mean-field theory and the quantum Monte Carlo simulation. We show that this single quantum model can account for most salient features observed in the high-Tc cuprates, with different families of the cuprates attributed to different traces in the global phase diagram. A particular prediction of this theory is the checkerboard state of the d-wave hole pairs formed at certain magic filling fractions. We shall describe various properties of this state and present evidence that this novel state has been detected in recent STM and transport experiments.

  5. Towards a complete Fermi surface in underdoped high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Harrison, Neil

    The discovery of magnetic quantum oscillations in underdoped high Tc superconductors raised many questions, and initiated a quest to understand the origin of the Fermi surface the like of which had not been seen since the very first discovery of quantum oscillations in elemental bismuth. While studies of the Fermi surface of materials are today mostly assisted by computer codes for calculating the electronic band structure, this was not the case in the underdoped high Tc materials. The Fermi surface was shown to reconstructed into small pockets, yet there was no hint of a viable order parameter. Crucial clues to understanding the origin of the Fermi surface were provided by the small value of the observed Fermi surface cross-section, the negative Hall coefficient and the small electronic heat capacity at high magnetic fields. We also know that the magnetic fields were likely to be too weak to destroy the pseudogap and that vortex pinning effects could be seen to persist to high magnetic fields at low temperatures. I will show that the Fermi surface that appears to fit best with the experimental observations is a small electron pocket formed by connecting the nodal `Fermi arcs' seen in photoemission experiments, corresponding to a density-wave state with two different orthogonal ordering vectors. The existence of such order has subsequently been detected by x-ray scattering experiments, thereby strengthening the case for charge ordering being responsible for reconstructing the Fermi surface. I will discuss new efforts to understand the relationship between the charge ordering and the pseudogap state, discussing the fate of the quasiparticles in the antinodal region and the dimensionality of the Fermi surface. The author acknowledges contributions from Suchitra Sebastian, Brad Ramshaw, Mun Chan, Yu-Te Hsu, Mate Hartstein, Gil Lonzarich, Beng Tan, Arkady Shekhter, Fedor Balakirev, Ross McDonald, Jon Betts, Moaz Altarawneh, Zengwei Zhu, Chuck Mielke, James Day, Doug

  6. Moderately shielded high-Tc SQUID system for rat MCG

    NASA Astrophysics Data System (ADS)

    Bechstein, S.; Kim, I.-S.; Drung, D.; Novikov, I.; Schurig, Th

    2010-06-01

    Recently, we have developed a 5-channel high-Tc SQUID system with one signal channel intended for rat magnetocardiography (MCG) in moderately shielded or "quiet" real environment. This system is an adapted version of a human MCG system which has been improved with respect to user-friendliness and stability. A dewar with a cold-warm distance of 7 mm and a refill cycle time of up to one week is utilized. The implemented high-Tc SQUIDs are single-layer devices with grain boundary junctions fabricated at KRISS with laser ablation on 10 mm × 10 mm STO substrates. In order to cancel environmental magnetic noise, three of the five SQUIDs are arranged to build an axial software first-order or second-order gradiometer with a base line of 35 mm. The other two SQUIDs are used for balancing. To overcome previous system instabilities, we have implemented an Earth field compensation for each SQUID. For this, the SQUIDs were mounted in capsules containing integrated field compensation coils. The three Earth field components are measured with an additional triaxial fluxgate, and compensated at the SQUID locations using the low-noise current source of the SQUID readout electronics. This way, the SQUIDs can be cooled and operated in a low residual field that improves system stability and reduces low-frequency SQUID noise. It is even possible to slowly move the dewar in the Earth field (dynamic field compensation). Different noise cancellation procedures were optimized and compared employing a periodic signal source.

  7. A microscopic two-band model for the electron-hole asymmetry in high-Tc superconductors and reentering behavior

    NASA Astrophysics Data System (ADS)

    Bru, J.-B.; Pedra, W. de Siqueira; Dömel, A.-S.

    2011-07-01

    To our knowledge there is no rigorously analyzed microscopic model explaining the electron-hole asymmetry of the critical temperature seen in high-Tc cuprate superconductors - at least no model not breaking artificially this symmetry. We present here a microscopic two-band model based on the structure of energetic levels of holes in CuO2 conducting layers of cuprates. In particular, our Hamiltonian does not contain ad hoc terms implying - explicitly - different masses for electrons and holes. We prove that two energetically near-lying interacting bands can explain the electron-hole asymmetry. Indeed, we rigorously analyze the phase diagram of the model and show that the critical temperatures for fermion densities below half-filling can manifest a very different behavior as compared to the case of densities above half-filling. This fact results from the inter-band interaction and intra-band Coulomb repulsion in interplay with thermal fluctuations between two energetic levels. So, if the energy difference between bands is too big (as compared to the energy scale defined by the critical temperatures of superconductivity) then the asymmetry disappears. Moreover, the critical temperature turns out to be a non-monotonic function of the fermion density and the phase diagram of our model shows "superconducting domes" as in high-Tc cuprate superconductors. This explains why the maximal critical temperature is attained at donor densities away from the maximal one. Outside the superconducting phase and for fermion densities near half-filling the thermodynamics governed by our Hamiltonian corresponds, as in real high-Tc materials, to a Mott-insulating phase. The nature of the inter-band interaction can be electrostatic (screened Coulomb interaction), magnetic (for instance, some Heisenberg-type one-site spin-spin interaction), or a mixture of both. If the inter-band interaction is predominately magnetic then - additionally to the electron-hole asymmetry - we observe a

  8. Techniques for Connecting Superconducting Thin Films

    NASA Technical Reports Server (NTRS)

    Mester, John; Gwo, Dz-Hung

    2006-01-01

    Several improved techniques for connecting superconducting thin films on substrates have been developed. The techniques afford some versatility for tailoring the electronic and mechanical characteristics of junctions between superconductors in experimental electronic devices. The techniques are particularly useful for making superconducting or alternatively normally conductive junctions (e.g., Josephson junctions) between patterned superconducting thin films in order to exploit electron quantum-tunneling effects. The techniques are applicable to both low-Tc and high-Tc superconductors (where Tc represents the superconducting- transition temperature of a given material), offering different advantages for each. Most low-Tc superconductors are metallic, and heretofore, connections among them have been made by spot welding. Most high-Tc superconductors are nonmetallic and cannot be spot welded. These techniques offer alternatives to spot welding of most low-Tc superconductors and additional solutions to problems of connecting most high-Tc superconductors.

  9. Laser surface interaction of high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Chen, C. H.; Mccann, M. P.; Phillips, R. C.

    1991-01-01

    During the past two years, one of the most exciting research fields in science has been the study of the newly discovered high-T(sub c) metal oxide superconductors. Although many theoretical models were proposed, there is no general agreement on any theory to explain these materials. One of the peculiar features of these high-T(sub c) materials is the noninteger number of oxygen atoms. The oxygen content is extremely critical to the superconductive properties. Take YBa2Cu3O(7-x) as an example. Its superconductive properties disappear whenever x is larger than 0.5. The existence of Cu(+ 3) was considered to account for x less than 0.5. However, results from mass spectroscopy of laser desorbed species indicate that significant quantities of oxygen molecules are trapped in the bulk of these high-T(sub c) superconductors. It appears that these trapped oxygen molecules may play key roles in superconductive properties. Preparation of superconductive thin films are considered very important for the applications of these new superconductors for the electronics industry. Fluorescence spectra and ion spectra following laser ablation of high-temperature superconductors were obtained. A real time monitor for preparation of superconductive thin films can possibly be developed.

  10. Emergence of Complex States in CMR Manganites and High-Tc Cuprates

    NASA Astrophysics Data System (ADS)

    Dagotto, Elbio

    2005-03-01

    Recent developments in the context of theory and experiments for manganites and cuprates will be discussed. It will be argued that the presence of nanoscale phase separation is at the heart of the colossal magnetoresistance phenomenon [1]. Simulation results support this view, as well as experimental data. These effects are not limited to manganites, but they may appear in other compounds as well, such as the high-Tc cuprates. New results will be presented in this area, on the phenomenological competition between antiferromagnetism and d-wave superconductivity, suggesting the possibility of ``colossal'' effects in this context [2]. This is compatible with the recent discovery of ``giant proximity effects'' in Cu-oxides [3]. All this suggests that clustered or mixed-phase states could form a new paradigm for the understanding of compounds in condensed matter physics. Work in collaboration with G. Alvarez, M. Mayr, A. Moreo, C. Sen, and I. Sergienko, supported by NSF DMR. [1] A. Moreo et al., Science 283, 2034 (1999); E.D., T. Hotta and A. Moreo, Physics Reports 344,1 (2001); E.D., ``Nanoscale Phase Separation and Colossal Magnetoresistance'', Springer-Verlag, 2002. [2] G. Alvarez et al., cond-mat/0401474, PRB to appear. [3] I. Bozovic et al., Phys. Rev. Lett. 93, 157002 (2004)

  11. Possible enhancements of AFM spin-fluctuations in high-TC cuprates

    NASA Astrophysics Data System (ADS)

    Jarlborg, Thomas

    2009-03-01

    Ab-initio band calculations for high-TC cuprates, together with modelling based of a free electron like band, show a strong interaction between anti-ferromagnetic (AFM) spin waves and periodic lattice distortions as for phonons, even though this type of spin-phonon coupling (SPC) is underestimated in calculations using the local density approximation. The SPC has a direct influence on the properties of the HTC cuprates and it can explain many observations. The strongest effects are seen for modulated waves in the CuO bond direction, and a band gap is formed near the X,Y points, but unusal band dispersion (like ``waterfalls'') might also be induced below the Fermi energy (EF) in the diagonal direction. The band results are used to propose different ways of increasing AFM spin-fluctuations locally, and to have a higher density-of-states (DOS) at EF. Static potential modulations, via periodic distribution of dopants or lattice distortions, can be tuned to increase the DOS. This opens for possibilities to enhance coupling for spin fluctuations (λsf) and superconductivity. The exchange enhancement is in general increased near a surface, which suggests a tendency towards static spin configurations. The sensivity of the band results to corrections of the local density potential are discussed.

  12. Analysis of the renormalization of the quasiparticle dispersion in high-Tc superconductors

    NASA Astrophysics Data System (ADS)

    Li, Jian-Xin; Wang, Z. D.

    2005-03-01

    Based on the slave-boson approach to the bilayer t-t^'- J model, the renormalization of the quasiparticle dispersion in high-Tc cuprates is investigated by examining both interactions of fermions with spin fluctuations and phonons. It is shown that both interactions can give rise to a kink in the dispersion around the antinodes of the d-wave gap (near (,) and (0,π)). However, three remarkable differences caused by these interactions are found, namely the peak/dip/hump structure in the quasiparticle lineshape, the doping dependence of the quasiparticle weight, and the role played by the interlayer coupling on the formation of the antinodal kink. These differences are suggested to serve as a discriminance to single out the main residual interaction in the superconducting state. A comparison to the recent angle-resolved photoemission (ARPES) experiments shows that the coupling to the spin resonance dominates for quasiparticles around the antinodes. ^1National Laboratory of Solid State of Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China^2Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China^3The Interdisciplinary Center of Theoretical Studies, Chinese Academy of Science, Beijing 100080, China.

  13. Engineer's guide to high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Doss, James D.

    The physics, properties, preparation, and applications of high-Tc superconductors are described. Chapters are devoted to the history of superconductivity, fundamental considerations, superconductor applications, the processing of high-Tc superconductors, measurement techniques, and safety problems. Also provided are a review of basic electrical and magnetic theory; a table of units and conversions; a glossary of terms and symbols; and lists of superconductor-related products, services, publications, and associations.

  14. High Tc YBCO superconductor deposited on biaxially textured Ni substrate

    DOEpatents

    Budai, John D.; Christen, David K.; Goyal, Amit; He, Qing; Kroeger, Donald M.; Lee, Dominic F.; List, III, Frederick A.; Norton, David P.; Paranthaman, Mariappan; Sales, Brian C.; Specht, Eliot D.

    1999-01-01

    A superconducting article includes a biaxially-textured Ni substrate, and epitaxial buffer layers of Pd (optional), CeO.sub.2 and YSZ, and a top layer of in-plane aligned, c-axis oriented YBCO having a critical current density (J.sub.c) in the range of at least 100,000 A/cm.sup.2 at 77 K.

  15. High temperature interface superconductivity

    NASA Astrophysics Data System (ADS)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  16. High temperature interface superconductivity

    DOE PAGESBeta

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  17. Ultra-sensitive sensors for weak electromagnetic fields using high-{Tc} SQUIDS for biomagnetism, NDE, and corrosion currents

    SciTech Connect

    Kraus, R.H. Jr.; Flynn, E.R.; Espy, M.; Jia, Q.X.; Wu, X.D.; Reagor, D.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The research has directly contributed to a new DOE supported project, three patents (one granted and two submitted), and several potential opportunities for new program funding at the Laboratory. The authors report significant developments extending from basic understanding of and fabrication techniques for high critical-temperature (high-{Tc}) SQUID devices to the development of high-level applications such as the SQUID Microscope. The development of ramp edge geometry and silver-doped YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) electrodes has tremendously improved the performance of high-{Tc} SQUIDS. Recent experiments have proven and quantified the LANL-patented superconducting imaging plane gradiometry concept. A SQUID microscope, developed largely under this project, has recently acquired data that demonstrated exceptional sensitivity a nd resolution. New techniques for background noise suppression, needed to use the extraordinarily sensitive SQUID sensors in unshielded environments, have also been developed. Finally, initial investigations to use SQUIDs in a basic physics experiment to measure the electric dipole moment of the neutron were very successful.

  18. Nd, Ce(fπ)-O(pπ) Hybridization in Nd2-xCexCuO4 and Dynamic Jahn-Teller Pairing in HIGH-Tc Superconductors

    NASA Astrophysics Data System (ADS)

    Johnson, K. H.; Clougherty, D. P.; McHenry, M. E.

    Hybridization of Nd(fπ) and Ce(fπ) orbitals with composite O(pπ)-O(pπ) bonding/ Cu(dπ*)-O(pπ) antibonding orbitals at the Fermi energy (EF) is shown to promote high-Tc superconductivity in Nd2-xCexCuO4. Dynamic Jahn-Teller coupling of these hybrid molecular orbitals to the lattice leads to Cooper pairing as it does in other high-Tc superconductors, such as La2-xSrxCuO4, where O(pπ) character at EF is dominant.

  19. Early High Tc Activity in Japan: The Franco Rasetti Lecture

    NASA Astrophysics Data System (ADS)

    Tanaka, Shoji

    2007-03-01

    From 1960 to 1980, R&D of superconductivity in Japan was carried out mainly to improve A15 superconducting wires and magnets. Improvement of wires were made mainly in the National Institute for Metals, and improvements of superconducting magnets were made in the Japan Atomic Energy Research Institute for future nuclear fusion reactors, the National Railway Laboratory for future maglev trains and also in the Electo-Technical Laboratory for MHD generators. I began the research of BPBO in 1975 and at that time the research of oxide superconductors was limited only to my laboratory in the University of Tokyo. During the study of this new superconductor, we learned quite a lot on how to make ceramic samples, how to measure electrical conductivity and magnetic susceptibility at low temperatures. In 1982, Prof. S. Nakajima organized a rather small group for investigating ``New Superconducting Phenomena,'' and I became a member of the group. In 1985, Nakajima expanded the research group to include more than 5 experimentalists and 5 theoreticians. The title of the research was ``New Superconducting Materials'' and the funds came from the Ministry of Education of Japan. In late October, 1986, we followed the first paper of Bednorz and Muller, and immediately found the material includes high temperature superconductor and reported it to the group meeting held in early November. In early December, we confirmed La2-xBaxCuO4 is the real high temperature superconductor, the critical temperature is 28K. I sent a copy of our paper to Prof. Beasley of California and asked to inform this fact to his colleagues. Asahi Shimbun, the biggest newspaper in Japan announced this in its science section, and then many people knew the high temperature superconductor had been discovered. Then many physicists and chemists rushed to this field very quickly and many kinds of materials were synthesized. In the Government, the Ministry of Education, the Ministry of International Trade and Industry

  20. Thermodynamics of the magnetic-field-induced "normal" state in an underdoped high Tc superconductor

    NASA Astrophysics Data System (ADS)

    Riggs, Scott Chandler

    High magnetic fields are used to kill superconductivity and probe what happens to system when it cannot reach the ideal ground state, i.e. what is the normal-state ground state? Early work in High-Tc, where the application of magnetic field destroyed the zero resistance state and recovered a resistivity value that connected continuously with the zero field curve, lead people to believe this magnetic-field-induced-state had fully driven the system normal, revealing the true underlying ground state, without any vestige of superconductivity. Many experiments done in this region of phase space have results interpreted as coming from the low energy ground state excitations. With the emergence of ultra-clean crystals in a unique family of hole doped high-Tc superconductors, YBa2Cu3O 7-delta, YBCO, a new and highly unexpected phenomena of quantum oscillations were discovered, and they followed the standard Liftshitz-Kosevich (LK) theory for a normal metal. The results suddenly made the problem of high-T c appear to be analogous to superconductivity in the organics, which is brought about by a wave-vector nesting and Fermi surface reconstruction. The only problem, it appeared, that needed to be reconciled was with Angle Resolved Photo-Emission Spectroscopy (ARPES) and Scanning Tunneling Microscopy (STM) data that claimed to see no such Fermi surface, instead only "arcs", a set of disconnected segments in the Brillouin zone which quasiparticle peaks are observed at the Fermi energy, which in a mean field description does not allow for a continuous Fermi surface contour. These two discrepancies led to the "arc vs pocket" debate, which is still unresolved. The other kink in the quantum oscillation armor is that, to this date, quantum oscillations in the hole-doped cuprates have only been seen in YBCO, the only cuprate structure to have CuO chains, which conduct and are located in between two CuO2 superconducting planes in the unit cell. In an attempt to reconcile the "arc vs

  1. Quantized massive collective modes and massive spin fluctuations in high-Tc cuprates

    NASA Astrophysics Data System (ADS)

    Kanazawa, I.; Sasaki, T.

    2015-10-01

    We have analyzed angle-resolved photoemission spectra of the single- and double-layered Bi-family high-Tc superconductors by using quantized massive gauge fields, which might contain effects of spin fluctuations, charge fluctuations, and phonons. It is suggested strongly that the quantized massive gauge fields might be mediating Cooper pairing in high-Tc cuprates.

  2. Spin correlations in electron-doped high-Tc superconductor

    NASA Astrophysics Data System (ADS)

    Fujita, M.

    2007-11-01

    Spin correlations in the electron-doped Pr1-xLaCexCuO4 have been investigated by neutron-scattering and muon rotation/relaxation measurements. The low-enegy spin correlations were found to be in commensurate with the wide superconducting phase, unlike the incommensurate ones in the hole-doped La2-xSrxCuO4. No enhancement of the magnetic order by impurity-doping and applying magnetic fields was observed, although the superconductivity is effectively suppressed, compared to that in the hole-doped system. Distinct impurity and magnetic field effects between the static spin correlation in the electron-doped system and those in the hole-doped systems suggest the different magnetic ground state in the two systems.

  3. TOPICAL REVIEW: Current status of high-Tc wire

    NASA Astrophysics Data System (ADS)

    Vase, Per; Flükiger, René; Leghissa, Martino; Glowacki, Bartek

    2000-07-01

    This paper is the result of the work of a SCENET (The European Network for Superconductivity) material working group's efforts on giving values for present and future expected performance of high-temperature superconducting (HTS) wires and tapes. The purpose of the work is to give input to the design of HTS applications like power cables, motors, current leads, magnets, transformers and generators. The current status performance values are supposed to be used in the design of today's prototypes and the future values for the design of fully commercial HTS applications of the future. We focus on what is expected to be the relevant parameters for HTS application design. The most successful technique by far for making HTS tapes has been on the (Bi, Pb)2Sr2Ca2Cu3Ox (Bi-2223) material by the powder-in-tube (PIT) technique and this paper therefore focuses on giving the current status and expected future performance for Bi-2223 tapes.

  4. The unusually high Tc in rare-earth-doped single crystalline CaFe2As2

    NASA Astrophysics Data System (ADS)

    Wei, Fengyan; Lv, Bing; Deng, Liangzi; Meen, James K.; Xue, Yu-Yi; Chu, Ching-Wu

    2014-08-01

    In rare-earth-doped single crystalline CaFe2As2, the mysterious small volume fraction which superconducts up to 49 K, much higher than the bulk Tc ~ 30 s K, has prompted a long search for a hidden variable that could enhance the Tc by more than 30% in iron-based superconductors of the same structure. Here we report a chemical, structural and magnetic study of CaFe2As2 systematically doped with La, Ce, Pr and Nd. Coincident with the high Tc phase, we find extreme magnetic anisotropy, accompanied by an unexpected doping-independent Tc and equally unexpected superparamagnetic clusters associated with As vacancies. These observations lead us to conjecture that the tantalizing Tc enhancement may be associated with naturally occurring chemical interfaces and may thus provide a new paradigm in the search for superconductors with higher Tc.

  5. Midwest Superconductivity Consortium

    SciTech Connect

    Liedl, G.L.

    1992-01-01

    The Midwest Superconductivity Consortium's, MISCON, mission is to advance the science and understanding of high {Tc} superconductivity. Programmatic research focuses upon key materials-related problems: synthesis and processing; and limiting features in transport phenomena. During the past twenty-one projects produced over eighty-seven talks and seventy-two publications. Key achievements this past year expand our understanding of processing phenomena relating to crystallization and texture, metal superconductor composites, and modulated microstructures. Further noteworthy accomplishments include calculations on 2-D superconductor insulator transition, prediction of flux line lattice melting, and an expansion of our understanding and use of microwave phenomena as related to superconductors.

  6. Improved heat exhaust and the characteristics of the high Tc superconducting terahertz emitter

    NASA Astrophysics Data System (ADS)

    Kashiwagi, T.; Yamamoto, T.; Kitamura, T.; Asanuma, K.; Yasui, T.; Shibano, Y.; Watanabe, C.; Nakade, K.; Saiwai, Y.; Kubo, H.; Sakamoto, K.; Katsuragawa, T.; Tsujimoto, M.; Yoshizaki, R.; Minami, H.; Klemm, R. A.; Kadowaki, K.

    2015-03-01

    In our previous study it is known that THz emitting efficiency improves greatly when the stand-alone type of mesa structure is used for the THz emitting device. The principle reason for that lies in the heat removal from the mesa, in which a gigantic amount of heat is generated while the mesa is in the resistive state. Recently, we developed a new device structure based on the stand-alone type of mesa structure of Bi2212 single crystal in order to make high exhaust of Joule heating. The results show that although the power is comparable and is not significantly increased, very wide the radiation frequencies ranging from 0.3 to 1.6 THz were obtained. We will discuss the details of the radiation characteristics of this one. This study has been supported by CREST-JST. TK is also supported by the Matsuda grant and JST A-STEP. This work is in part performed in collaboration with Dr. Wai Kwok and his group in Argonne National Lab.

  7. Spin-polaron theory of high-{Tc} superconductivity: 3, Gap function and critical temperature

    SciTech Connect

    Wood, R.F.

    1993-06-01

    Results from previous papers in this series are used to derive approximate expressions for the gap and {Tc} within the framework of a Cooper-pairing approach. The possible symmetry types of the gap are discussed. It is shown how the proximity of the Fermi level to the Mott-Hubbard band edge and the interplay of O 2p{sigma} and 2p{pi} bands and/or localization effects can provide good fits to the variation of {Tc} with x in La{sub 2-x}Sr{sub x}CuO{sub 4} and YBa{sub 2}Cu{sub 3}O{sub 7-x}. It is concluded that the in-plane gap is either s- or d-like but anisotropic in either case. Other aspects and implications of the model and of the calculations are given and comparisons with Mott`s spin-bipolaron model are made.

  8. Low-loss, high-speed, high-{Tc} superconducting bearings

    DOEpatents

    Hull, J.R.; Mulcahy, T.M.; Uherka, K.L.

    1996-07-30

    A flywheel energy storage device is disclosed including an iron structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet. The stationary permanent magnet levitates the iron structure while the superconductor structure can stabilize and levitate the rotating iron structure. 15 figs.

  9. Low-loss, high-speed, high-{Tc} superconducting bearings

    DOEpatents

    Hull, J.R.; Mulcahy, T.M.; Uherka, K.L.

    1997-06-24

    A flywheel energy storage device is disclosed including an iron structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet. The stationary permanent magnet levitates the iron structure while the superconductor structure can stabilize the rotating iron structure. 15 figs.

  10. Submicron-scale high- Tc superconducting Bi-2212 stack fabrication for single-Cooper-pair tunneling

    NASA Astrophysics Data System (ADS)

    Kim, S.-J.; Latyshev, Yu. I.; Yamashita, T.; Sato, N.; Kishida, S.

    2000-07-01

    We report the characteristics of Bi-2212 intrinsic Josephson junctions (IJJ) showing single-Cooper-pair tunneling effect with a decrease of their in-plane area, S, smaller than a micron scale. The junctions show the typical slope of critical current and current peak-like structure up to 37 K.