Science.gov

Sample records for high-temperature creep behavior

  1. Homogenized Creep Behavior of CFRP Laminates at High Temperature

    NASA Astrophysics Data System (ADS)

    Fukuta, Y.; Matsuda, T.; Kawai, M.

    In this study, creep behavior of a CFRP laminate subjected to a constant stress is analyzed based on the time-dependent homogenization theory developed by the present authors. The laminate is a unidirectional carbon fiber/epoxy laminate T800H/#3631 manufactured by Toray Industries, Inc. Two kinds of creep analyses are performed. First, 45° off-axis creep deformation of the laminate at high temperature (100°C) is analyzed with three kinds of creep stress levels, respectively. It is shown that the present theory accurately predicts macroscopic creep behavior of the unidirectional CFRP laminate observed in experiments. Then, high temperature creep deformations at a constant creep stress are simulated with seven kinds of off-axis angles, i.e., θ = 0°, 10°, 30°, 45°, 60°, 75°, 90°. It is shown that the laminate has marked in-plane anisotropy with respect to the creep behavior.

  2. The high temperature creep behavior of oxides and oxide fibers

    NASA Technical Reports Server (NTRS)

    Jones, Linda E.; Tressler, Richard E.

    1991-01-01

    A thorough review of the literature was conducted on the high-temperature creep behavior of single and polycrystalline oxides which potentially could serve as fiber reinforcements in ceramics or metal matrix applications. Sapphire when oriented with the basal plane perpendicular to the fiber axis (c-axis oriented) is highly creep resistant at temperatures in excess of 1600 C and applied loads of 100 MPa and higher. Pyramidal slip is preferentially activated in sapphire under these conditions and steady-state creep rates in the range of 10(exp -7) to 10 (exp -8)/s were reported. Data on the creep resistance of polycrystalline beryllia suggest that C-axiz oriented single crystal beryllia may be a viable candidate as a fiber reinforcement material; however, the issure of fabricability and moisture sensitivity must be addressed for this material. Yttrium aluminum garnet (YAG) also appears to be a fiber candidate material having a high resistance to creep which is due to it's complex crystal structure and high Peierl resistance. The high creep resistance of garnet suggests that there may be other complex ternary oxides such as single crystal mullite which may also be candidate materials for fiber reinforcements. Finally, CVD and single crystal SiC, although not oxides, do possess a high resistance to creep in the temperature range between 1550 and 1850 C and under stresses of 110 to 220 MPa. From a review of the literature, it appears that for high creep resistant applications sapphire, silicon carbide, yttrium aluminum garnet, mullite, and beryllia are desirable candidate materials which require further investigation.

  3. Creep and Environmental Effects on High Temperature Creep-Fatigue Behavior of Alloy 617

    SciTech Connect

    L. J. Carroll; C. Cabet; R. Madland; R. Wright

    2011-06-01

    Alloy 617 is the leading candidate material for Intermediate Heat Exchanger (IHX) of a Very High Temperature Reactor (VHTR), expected to have an outlet temperature as high as 950 C. System start-ups and shut-downs as well as power transients will produce low cycle fatigue (LCF) loadings of components. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior in both air and impure helium, representative of the VHTR primary coolant. Strain controlled LCF tests including hold times at maximum tensile strain were conducted at total strain range of 0.3% in air at 950 C. Creep-fatigue testing was also performed in a simulated VHTR impure helium coolant for selected experimental conditions. The fatigue resistance decreased when a hold time was added at peak tensile stress, consistent with the observed change in fracture mode from transgranular to intergranular with introduction of a tensile hold. Increases in the tensile hold time, beyond 180 sec, was not detrimental to the creep-fatigue resistance. Grain boundary damage in the form of grain boundary cracking was present in the bulk of the creep-fatigue specimens. This bulk cracking was quantified and found to be similar for hold times of up to 1800 sec consistent with the saturation in failure lives and rapid stress relaxation observed during the creep portion of the creep-fatigue cycle.

  4. High temperature creep behavior of single crystal gamma prime and gamma alloys

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Diaz, J. O.; Miner, R. V.

    1989-01-01

    The creep behavior of single crystals of gamma-prime and gamma alloys were investigated and compared to the response of two-phase superalloys tested previously. High temperature deformation in the gamma alloys was characteristic of a climb-controlled mechanism, whereas the gamma-prime based materials exhibited glide-controlled creep behavior. The superalloys were much more creep resistant than their constituent phases, which indicates the importance of the gamma/gamma-prime interface as a barrier for dislocation motion during creep.

  5. High-Temperature Creep Behavior Of Fiber-Reinforced Niobium

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Titran, Robert H.

    1990-01-01

    Study conducted to determine feasibility of using composite materials in advanced space power systems, described in 22-page report. Tungsten fibers reduce creep and mass in advanced power systems. Reinforcing niobium alloys with tungsten fibers increases their resistances to creep by factors of as much as 10.

  6. In Situ Observation of High Temperature Creep Behavior During Annealing of Steel

    NASA Astrophysics Data System (ADS)

    Zhang, X. F.; Terasaki, H.; Komizo, Y.; Murakami, Y.; Yasuda, K.

    2012-12-01

    Previous studies on creep suggested a close relationship between polycrystal grain size, substructure, and creep rate. At present, however, our understanding of the influence of polycrystal grain size, substructure, and thermal stress on creep deformation behavior seems rather insufficient, especially as there is a general lack of in situ data on structural changes during creep. In this study, the effects of thermal stress, austenite grain size, and cooling rate on slip deformations in C-Mn-Al steel during annealing were investigated systematically on the basis of in situ observations using high temperature laser scanning confocal microscopy. Finally, a kinetics model based on thermal expansion anisotropy and temperature difference was developed to explain these interesting experimental results. The in situ investigation of slip deformation during annealing greatly contributes to the understanding of high temperature creep behavior.

  7. Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    SciTech Connect

    Vasudevan, Vijay; Carroll, Laura; Sham, Sam

    2015-04-06

    This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design.

  8. Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    Wen, Xingshuo

    The Very High Temperature Reactor (VHTR) is one of the leading concepts of the Generation IV nuclear reactor development, which is the core component of Next Generation Nuclear Plant (NGNP). The major challenge in the research and development of NGNP is the performance and reliability of structure materials at high temperature. Alloy 617, with an exceptional combination of high temperature strength and oxidation resistance, has been selected as a primary candidate material for structural use, particularly in Intermediate Heat Exchanger (IHX) which has an outlet temperature in the range of 850 to 950°C and an inner pressure from 5 to 20MPa. In order to qualify the material to be used at the operation condition for a designed service life of 60 years, a comprehensive scientific understanding of creep behavior at high temperature and low stress regime is necessary. In addition, the creep mechanism and the impact factors such as precipitates, grain size, and grain boundary characters need to be evaluated for the purpose of alloy design and development. In this study, thermomechanically processed specimens of alloy 617 with different grain sizes were fabricated, and creep tests with a systematic test matrix covering the temperatures of 850 to 1050°C and stress levels from 5 to 100MPa were conducted. Creep data was analyzed, and the creep curves were found to be unconventional without a well-defined steady-state creep. Very good linear relationships were determined for minimum creep rate versus stress levels with the stress exponents determined around 3-5 depending on the grain size and test condition. Activation energies were also calculated for different stress levels, and the values are close to 400kJ/mol, which is higher than that for self-diffusion in nickel. Power law dislocation climb-glide mechanism was proposed as the dominant creep mechanism in the test condition regime. Dynamic recrystallization happening at high strain range enhanced dislocation climb and

  9. Low Cycle Fatigue and Creep-Fatigue Behavior of Alloy 617 at High Temperature

    SciTech Connect

    Cabet, Celine; Carroll, Laura; Wright, Richard

    2013-10-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the Very High Temperature Nuclear Reactor (VHTR), expected to have an outlet temperature as high as 950 degrees C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanism/s and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 degrees C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens, although evidence of grain boundary cavitation was not observed. Despite the absence of grain boundary cavitation to accelerate crack propagation, the addition of a hold time at peak tensile strain was detrimental to cycle life. This suggests that creepfatigue interaction may occur by a different mechanism or that the environment may be partially responsible for accelerating failure.

  10. Phase Transformation and Creep Behavior in Ti50Pd30Ni20 High Temperature Shape Memory Alloy in Compression

    NASA Technical Reports Server (NTRS)

    Kumar, Parikshith K.; Desai, Uri; Monroe, James; Lagoudas, Dimitris C.; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glenn

    2010-01-01

    The creep behavior and the phase transformation of Ti50Pd30Ni20 High Temperature Shape Memory Alloy (HTSMA) is investigated by standard creep tests and thermomechanical tests. Ingots of the alloy are induction melted, extruded at high temperature, from which cylindrical specimens are cut and surface polished. A custom high temperature test setup is assembled to conduct the thermomechanical tests. Following preliminary monotonic tests, standard creep tests and thermally induced phase transformation tests are conducted on the specimen. The creep test results suggest that over the operating temperatures and stresses of this alloy, the microstructural mechanisms responsible for creep change. At lower stresses and temperatures, the primary creep mechanism is a mixture of dislocation glide and dislocation creep. As the stress and temperature increase, the mechanism shifts to predominantly dislocation creep. If the operational stress or temperature is raised even further, the mechanism shifts to diffusion creep. The thermally induced phase transformation tests show that actuator performance can be affected by rate independent irrecoverable strain (transformation induced plasticity + retained martensite) as well as creep. The rate of heating and cooling can adversely impact the actuators performance. While the rate independent irrecoverable strain is readily apparent early in the actuators life, viscoplastic strain continues to accumulate over the lifespan of the HTSMA. Thus, in order to get full actuation out of the HTSMA, the heating and cooling rates must be sufficiently high enough to avoid creep.

  11. High-Temperature Creep and Oxidation Behavior of Mo-Si-B Alloys with High Ti Contents

    NASA Astrophysics Data System (ADS)

    Schliephake, Daniel; Azim, Maria; von Klinski-Wetzel, Katharina; Gorr, Bronislava; Christ, Hans-Jürgen; Bei, Hongbin; George, Easo P.; Heilmaier, Martin

    2013-08-01

    Multiphase alloys in the Mo-Si-B system are potential high-temperature structural materials due to their good oxidation and creep resistance. Since they suffer from relatively high densities, the current study focuses on the influence of density-reducing Ti additions on creep and oxidation behavior at temperatures above 1273 K (1000 °C). Two alloys with compositions of Mo-12.5Si-8.5B-27.5Ti and Mo-9Si-8B-29Ti (in at. pct) were synthesized by arc melting and then homogenized by annealing in vacuum for 150 hours at 1873 K (1600 °C). Both alloys show similar creep behavior at stresses of 100 to 300 MPa and temperatures of 1473 K and 1573 K (1200 °C and 1300 °C), although they possess different intermetallic volume fractions. They exhibit superior creep resistance and lower density than a state-of-the-art Ni-base superalloy (single-crystalline CMSX-4) as well as other Mo-Si-B alloys. Solid solution strengthening due to Ti was confirmed by Vickers hardness measurements and is believed to be the reason for the significant increase in creep resistance compared to Mo-Si-B alloys without Ti, but with comparable microstructural length scales. The addition of Ti degrades oxidation resistance relative to a Mo-9Si-8B reference alloy due to the formation of a relatively porous duplex layer with titania matrix enabling easy inward diffusion of oxygen.

  12. Effect of minor carbon additions on the high-temperature creep behavior of a single-crystal nickel-based superalloy

    SciTech Connect

    Wang, L. Wang, D.; Liu, T.; Li, X.W.; Jiang, W.G.; Zhang, G.; Lou, L.H.

    2015-06-15

    Different amounts of carbon were added to a single-crystal nickel-based superalloy. The microstructural evolution of these alloys before and after high-temperature creep tests was investigated by employing scanning electron microscopy and transmission electron microscopy. Upon increasing the carbon contents, the volume fraction and diameter of the carbides increased gradually: however, the creep lives of the alloys increased slightly at first and subsequently decreased. The formation of second-phase particles, such as the nano-sized M{sub 23}C{sub 6}, blocky and needle-shaped μ phase, was observed in the creep samples, which was closely related to the high-temperature creep behaviors. - Highlights: • Creep behaviors of alloys with different amounts of carbon were investigated. • The creep rupture lives increased and later decreased with more carbon. • Second-phase particles were responsible for the different creep behaviors.

  13. Development of constitutive models for cyclic plasticity and creep behavior of super alloys at high temperature

    NASA Technical Reports Server (NTRS)

    Haisler, W. E.

    1983-01-01

    An uncoupled constitutive model for predicting the transient response of thermal and rate dependent, inelastic material behavior was developed. The uncoupled model assumes that there is a temperature below which the total strain consists essentially of elastic and rate insensitive inelastic strains only. Above this temperature, the rate dependent inelastic strain (creep) dominates. The rate insensitive inelastic strain component is modelled in an incremental form with a yield function, blow rule and hardening law. Revisions to the hardening rule permit the model to predict temperature-dependent kinematic-isotropic hardening behavior, cyclic saturation, asymmetric stress-strain response upon stress reversal, and variable Bauschinger effect. The rate dependent inelastic strain component is modelled using a rate equation in terms of back stress, drag stress and exponent n as functions of temperature and strain. A sequence of hysteresis loops and relaxation tests are utilized to define the rate dependent inelastic strain rate. Evaluation of the model has been performed by comparison with experiments involving various thermal and mechanical load histories on 5086 aluminum alloy, 304 stainless steel and Hastelloy X.

  14. A model for high temperature creep of single crystal superalloys based on nonlocal damage and viscoplastic material behavior

    NASA Astrophysics Data System (ADS)

    Trinh, B. T.; Hackl, K.

    2014-07-01

    A model for high temperature creep of single crystal superalloys is developed, which includes constitutive laws for nonlocal damage and viscoplasticity. It is based on a variational formulation, employing potentials for free energy, and dissipation originating from plasticity and damage. Evolution equations for plastic strain and damage variables are derived from the well-established minimum principle for the dissipation potential. The model is capable of describing the different stages of creep in a unified way. Plastic deformation in superalloys incorporates the evolution of dislocation densities of the different phases present. It results in a time dependence of the creep rate in primary and secondary creep. Tertiary creep is taken into account by introducing local and nonlocal damage. Herein, the nonlocal one is included in order to model strain localization as well as to remove mesh dependence of finite element calculations. Numerical results and comparisons with experimental data of the single crystal superalloy LEK94 are shown.

  15. Processing, Microstructure and Creep Behavior of Mo-Si-B-Based Intermetallic Alloys for Very High Temperature Structural Applications

    SciTech Connect

    Vijay Vasudevan

    2008-03-31

    This research project is concerned with developing a fundamental understanding of the effects of processing and microstructure on the creep behavior of refractory intermetallic alloys based on the Mo-Si-B system. In the first part of this project, the compression creep behavior of a Mo-8.9Si-7.71B (in at.%) alloy, at 1100 and 1200 C was studied, whereas in the second part of the project, the constant strain rate compression behavior at 1200, 1300 and 1400 C of a nominally Mo-20Si-10B (in at.%) alloy, processed such as to yield five different {alpha}-Mo volume fractions ranging from 5 to 46%, was studied. In order to determine the deformation and damage mechanisms and rationalize the creep/high temperature deformation data and parameters, the microstructure of both undeformed and deformed samples was characterized in detail using x-ray diffraction, scanning electron microscopy (SEM) with back scattered electron imaging (BSE) and energy dispersive x-ray spectroscopy (EDS), electron back scattered diffraction (EBSD)/orientation electron microscopy in the SEM and transmission electron microscopy (TEM). The microstructure of both alloys was three-phase, being composed of {alpha}-Mo, Mo{sub 3}Si and T2-Mo{sub 5}SiB{sub 2} phases. The values of stress exponents and activation energies, and their dependence on microstructure were determined. The data suggested the operation of both dislocation as well as diffusional mechanisms, depending on alloy, test temperature, stress level and microstructure. Microstructural observations of post-crept/deformed samples indicated the presence of many voids in the {alpha}-Mo grains and few cracks in the intermetallic particles and along their interfaces with the {alpha}-Mo matrix. TEM observations revealed the presence of recrystallized {alpha}-Mo grains and sub-grain boundaries composed of dislocation arrays within the grains (in Mo-8.9Si-7.71B) or fine sub-grains with a high density of b = 1/2<111> dislocations (in Mo-20Si-10B), which

  16. Mechanisms of high-temperature, solid-state flow in minerals and ceramics and their bearing on the creep behavior of the mantle

    USGS Publications Warehouse

    Kirby, S.H.; Raleigh, C.B.

    1973-01-01

    The problem of applying laboratory silicate-flow data to the mantle, where conditions can be vastly different, is approached through a critical review of high-temperature flow mechanisms in ceramics and their relation to empirical flow laws. The intimate association of solid-state diffusion and high-temperature creep in pure metals is found to apply to ceramics as well. It is shown that in ceramics of moderate grain size, compared on the basis of self-diffusivity and elastic modulus, normalized creep rates compare remarkably well. This comparison is paralleled by the near universal occurrence of similar creep-induced structures, and it is thought that the derived empirical flow laws can be associated with dislocation creep. Creep data in fine-grained ceramics, on the other hand, are found to compare poorly with theories involving the stress-directed diffusion of point defects and have not been successfully correlated by self-diffusion rates. We conclude that these fine-grained materials creep primarily by a quasi-viscous grain-boundary sliding mechanism which is unlikely to predominate in the earth's deep interior. Creep predictions for the mantle reveal that under most conditions the empirical dislocation creep behavior predominates over the mechanisms involving the stress-directed diffusion of point defects. The probable role of polymorphic transformations in the transition zone is also discussed. ?? 1973.

  17. Creep resistant high temperature martensitic steel

    SciTech Connect

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  18. On The Creep Behavior and Deformation Mechanisms Found in an Advanced Polycrystalline Nickel-Base Superalloy at High Temperatures

    NASA Astrophysics Data System (ADS)

    Deutchman, Hallee Zox

    Polycrystalline Ni-base superalloys are used as turbine disks in the hot section in jet engines, placing them in a high temperature and stress environment. As operating temperatures increase in search of better fuel efficiency, it becomes important to understand how these higher temperatures are affecting mechanical behavior and active deformation mechanisms in the substructure. Not only are operating temperatures increasing, but there is a drive to design next generation alloys in shorter time periods using predictive modeling capabilities. This dissertation focuses on mechanical behavior and active deformation mechanisms found in two different advanced polycrystalline alloy systems, information which will then be used to build advanced predictive models to design the next generation of alloys. The first part of this dissertation discusses the creep behavior and identifying active deformation mechanisms in an advanced polycrystalline Ni-based superalloy (ME3) that is currently in operation, but at higher temperatures and stresses than are experienced in current engines. Monotonic creep tests were run at 700°C and between 655-793MPa at 34MPa increments, on two microstructures (called M1 and M2) produced by different heat treatments. All tests were crept to 0.5% plastic strain. Transient temperature and transient stress tests were used determine activation energy and stress exponents of the M1 microstructure. Constant strain rate tests (at 10-4s-1) were performed on both microstructures as well. Following creep testing, both M1 and M2 microstructures were fully characterized using Scanning Electron Microscopy (SEM) for basic microstructure information, and Scanning Transmission Electron Microscopy (STEM) to determine active deformation mechanism. It was found that in the M1 microstructure, reorder mediated activity (such as discontinuous faulting and microtwinning) is dominant at low stresses (655-724 MPa). Dislocations in the gamma matrix, and overall planar

  19. PROCESSING, MICROSTRUCTURE AND CREEP BEHAVIOR OF Mo-Si-B-BASED INTERMETALLIC ALLOYS FOR VERY HIGH TEMPERATURE STRUCTURAL APPLICATIONS

    SciTech Connect

    Vijay K. Vasudevan

    2005-12-21

    This research project is concerned with developing a fundamental understanding of the effects of processing and microstructure on the creep behavior of refractory intermetallic alloys based on the Mo-Si-B system. During this year, the compressive creep behavior of a Mo-3Si-1B (in wt.%) alloy at 1100 and 1200 C were studied and related to the deformation mechanisms through electron microscopy observations of microstructural changes and deformation structures. The microstructure of this alloy was three-phase, being composed of {alpha}-Mo, Mo{sub 3}Si and T2-Mo{sub 5}SiB{sub 2} phases. Results of compressive creep tests at 1200 and 1100 C showed that the creep rates were quite high at stress levels between 250 and 500 MPa, Two minima in the creep strain rate versus strain data were noted, one at small strain values and the second at much larger strains. A stress exponent of 4.26 was obtained upon plotting the strain rate corresponding to the first minima versus stress, which suggests that dislocation climb and glide dominate the creep process in the early stages. On the other hand, the large strain, minimum creep rate versus stress data gave a stress exponent of {approx}1.18, which indicates diffusional mechanisms and recrystallization dominate the later stages of the creep process. At 1100 C, a stress exponent of 2.26 was obtained, which suggests that both diffusional and dislocation mechanisms contribute to the creep strain. Based on the minimum creep rate data at 1100 C and 1200 C, the activation energy for creep was determined to be 525 kJ/mole, which is somewhat higher than that reported for self diffusion in {alpha}-Mo. Microstructural observations of post-crept samples indicated the presence of many voids in the {alpha}-Mo grains and few cracks in the intermetallic particles and along their interfaces with the {alpha}-Mo matrix. In addition, TEM observations revealed the presence of recrystallized grains and sub-grain boundaries composed of dislocation arrays

  20. PROCESSING, MICROSTRUCTURE AND CREEP BEHAVIOR OF MO-SI-B-BASED INTERMETALLIC ALLOYS FOR VERY HIGH TEMPERATURE STRUCTURAL APPLICATIONS

    SciTech Connect

    Vijay K. Vasudevan

    2005-02-08

    This research project is concerned with developing a fundamental understanding of the effects of processing and microstructure on the creep behavior of refractory intermetallic alloys based on the Mo-Si-B system. During this year, the microstructure, bend strength and compressive creep behavior of a Mo-3Si-1B (in wt.%) alloy were studied. The microstructure of this alloy was three-phase, being composed of {alpha}-Mo, Mo{sub 3}Si and T2-Mo{sub 5}SiB{sub 2} phases. The elastic limit strength of the alloy remained quite high until 1200 C with a value of 800MPa, but dropped rapidly thereafter to a value of 220 MPa at 1400 C. Results of compressive creep tests at 1200 C showed that the creep rates were quite high and varied nearly linearly with stress between 250 and 500 MPa, which suggests that diffusional mechanisms dominate the creep process. Microstructural observations of post-crept samples indicated the presence of many voids in the {alpha}-Mo grains and few cracks in the intermetallic particles and along their interfaces with the {alpha}-Mo matrix. These results and presented and discussed.

  1. High-temperature creep of polycrystalline chromium

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Klopp, W. D.

    1972-01-01

    The creep properties of high-purity, polycrystalline chromium were determined over the temperature range 0.51 to 0.78 T sub m, where T sub m is the melting temperature. Creep rates determined from step-load creep tests can be represented by the general creep equation; epsilon/D = k((sigma/E) to the nth power) where epsilon is the minimum creep rate, D is the diffusivity, k is the creep rate constant, sigma is the applied stress, E is the modulus, and n is the stress exponent, equal to 4.3 for chromium. This correlation and metallographic observations suggest a dislocation climb mechanism is operative in the creep of chromium over the temperature range investigated.

  2. Improved high temperature creep resistant austenitic alloy

    DOEpatents

    Maziasz, P.J.; Swindeman, R.W.; Goodwin, G.M.

    1988-05-13

    An improved austenitic alloy having in wt% 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150-1200/degree/C and then cold deforming 5-15%. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700/degree/C. 2 figs.

  3. High temperature creep resistant austenitic alloy

    DOEpatents

    Maziasz, Philip J.; Swindeman, Robert W.; Goodwin, Gene M.

    1989-01-01

    An improved austenitic alloy having in wt % 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150.degree.-1200.degree. C. and then cold deforming 5-15 %. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700.degree. C.

  4. The constitutive representation of high-temperature creep damage

    NASA Technical Reports Server (NTRS)

    Chan, K. S.

    1988-01-01

    The elastic-viscoplastic constitutive equations of Bodner-Partom were applied to modeling creep damage in a high temperature Ni-alloy, B1900 + Hf. Both tertiary creep in bulk materials and creep crack growth in flawed materials were considered. In the latter case, the energy rate line integral was used for characterizing the crack driving force, and the rate of crack extension was computed using a local damage formulation that assumed fracture was controlled by cavitation occurring within the crack-tip process zone. The results of this investigation were used to assess the evolution equation for isotropic damage utilized in the Bodner-Partom constitutive equations.

  5. Probabilistic material degradation under high temperature, fatigue, and creep

    NASA Technical Reports Server (NTRS)

    Boyce, L.

    1993-01-01

    A methodology has been developed and embodied in two computer codes for quantitatively characterizing the material strength degradation of aerospace propulsion system structural components that are subjected to various random effects over the course of their service lives. The codes, PROMISS and PROMISC, constitute a material-resistance model that is used in the NESSUS aerospace structural-reliability program. NESSUS addresses the service life-reducing effects of high temperature, mechanical fatigue, and creep.

  6. Creep and creep-rupture behavior of Alloy 718

    SciTech Connect

    Brinkman, C.R.; Booker, M.K.; Ding, J.L.

    1991-01-01

    Data obtained from creep and creep-rupture tests conducted on 18 heats of Alloy 718 were used to formulate models for predicting high temperature time dependent behavior of this alloy. Creep tests were conducted on specimens taken from a number of commercial product forms including plate, bar, and forgoing material that had been procured and heat treated in accordance with ASTM specifications B-670 or B-637. Data were obtained over the temperature range of 427 to 760{degree}C ad at test times to about 87,000 h. Comparisons are given between experimental data and the analytical models. The analytical models for creep-rupture included one based on lot-centering regression analysis and two based on the Minimum Commitment Method. A master'' curve approach was used to develop and equation for estimating creep deformation up to the onset of tertiary creep. 11 refs., 13 figs.

  7. Investigation of the rate-controlling mechanism(s) for high temperature creep and the relationship between creep and melting by use of high pressure as a variable

    SciTech Connect

    Not Available

    1991-01-01

    Using high pressure as a variable, the rate-controlling mechanism for high temperature creep and the relationship between creep and melting is investigated for silicon and nickel. An apparatus is used in which the samples are heated to melting point and subjected to 1 to 3 GigaPascal pressure. The stress behavior of the materials are then studied.

  8. Parameter correlation of high-temperature creep constitutive equation for RPV metallic materials

    NASA Astrophysics Data System (ADS)

    Xie, Lin-Jun; Ren, Xin; Shen, Ming-Xue; Tu, Li-Qun

    2015-10-01

    Constant-temperature and constant-load creep tests of SA-508 stainless steel were performed at six temperatures, and the creep behavior and properties of this material were determined. Constitutive models were established based on an isothermal creep method to describe the high-temperature creep behavior of SA-508. Material parameter k, stress exponent nσ, and temperature exponent nt of the established constitutive models were determined through experimental data via numerical optimization techniques. The relationship of k, nσ, and nt was evaluated, and a new coefficient model of k-T, nσ-T, nt-T, and nt-nσ was formulated through the parameters of the isothermal creep equation. Moreover, the isothermal creep equation for this material at every temperature point from 450 °C to 1000 °C was obtained from the models. This method can serve as a reference for isothermal creep analysis and provide a way for the safety assessment of components of reactor pressure vessels.

  9. High temperature fatigue behavior of Haynes 188

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Saltsman, James F.; Kalluri, Sreeramesh

    1988-01-01

    The high temperature, creep-fatigue behavior of Haynes 188 was investigated as an element in a broader thermomechanical fatigue life prediction model development program at the NASA-Lewis. The models are still in the development stage, but the data that were generated possess intrinsic value on their own. Results generated to date is reported. Data were generated to characterize isothermal low cycle fatigue resistance at temperatures of 316, 704, and 927 C with cyclic failure lives ranging from 10 to more than 20,000. These results follow trends that would be predicted from a knowledge of tensile properties, i.e., as the tensile ductility varies with temperature, so varies the cyclic inelastic straining capacity. Likewise, as the tensile strength decreases, so does the high cyclic fatigue resistance. A few two-minute hold-time cycles at peak compressive strain were included in tests at 760 C. These results were obtained in support of a redesign effort for the Orbital Maneuverable System engine. No detrimental effects on cyclic life were noted despite the added exposure time for creep and oxidation. Finally, a series of simulated thermal fatigue tests, referred to as bithermal fatigue tests, were conducted using 316 C as the minimum and 760 C as the maximum temperature. Only out-of-phase bithermal tests were conducted to date. These test results are intended for use as input to a more general thermomechanical fatigue life prediction model based on the concepts of the total strain version of Strainrange Partitioning.

  10. High-Temperature Creep of Fine-Grained Anorthite Aggregate

    NASA Astrophysics Data System (ADS)

    Yabe, K.; Koizumi, S.; Hiraga, T.

    2014-12-01

    Rheology of the lower crust has often been compared to the creep properties of polycrystalline anorthite. Samples that have been used in previous studies (Dimanov et al., 1999; Rybacki and Dresen, 2000) were prepared through crystallization of anorthite glass which can remain in the experiment and also contain some impurities such as absorbed water, TiO2, MgO and Fe2O3. In this study, we synthesized genuinely pure polycrystalline anorthite using the technique that does not allow the contamination of water and glass phase. Also, we prepared anorthite aggregates with glass phase and/or a small amount (1wt%) of MgO to investigate the creep properties of pure and impure anorthite aggregates. Pure anorthite powders were prepared through high temperature reaction of highly pure and nano-sized powders of CaCO3, Al2O3 and SiO2 and then they were vacuum sintered (Koizumi et al., 2010). For MgO doping, we added Mg(OH)2powders at the synthesis of anorthite powders. Glass phase was introduced to the samples by sintering above melting temperature and subsequent quenching. Constant load tests under 1 atmosphere were performed at temperatures ranging from 1150 to 1380˚C and stresses of 10 to 120 MPa. We measured Arithmetic mean grain size of specimens by microstructural observations using scanning electron microscopy (SEM) before and after creep tests. Grain sizes of all the specimens were around 1 μm before and after the creep test. Log stress versus log strain rate showed a linear relationship where its slope gave a stress exponent, n of 1, indicating that all the samples were deformed under diffusion creep. Anorthite containing MgO and glass phase were more than two and one orders of magnitude weaker than genuinely pure anorthite aggregates, respectively. Further, our pure aggregate exhibited three orders of magnitude lager strength compared to the "pure" aggregate used in previous studies. These results indicate that a small amount of glass and/or impurities including water

  11. Improved Creep Measurements for Ultra-High Temperature Materials

    NASA Technical Reports Server (NTRS)

    Hyers, Robert W.; Ye, X.; Rogers, Jan R.

    2010-01-01

    Our team has developed a novel approach to measuring creep at extremely high temperatures using electrostatic levitation (ESL). This method has been demonstrated on niobium up to 2300 C, while ESL has melted tungsten (3400 C). This method has been extended to lower temperatures and higher stresses and applied to new materials, including a niobium-based superalloy, MASC. High-precision machined spheres of the sample are levitated in the NASA MSFC ESL, a national user facility and heated with a laser. The samples are rotated with an induction motor at up to 30,000 revolutions per second. The rapid rotation loads the sample through centripetal acceleration, producing a shear stress of about 60 MPa at the center, causing the sample to deform. The deformation of the sample is captured on high-speed video, which is analyzed by machine-vision software from the University of Massachusetts. The deformations are compared to finite element models to determine the constitutive constants in the creep relation. Furthermore, the non-contact method exploits stress gradients within the sample to determine the stress exponent in a single test.

  12. High temperature tensile creep, creep damage and failure under superimposed compressional stress

    NASA Astrophysics Data System (ADS)

    Boček, M.

    1985-04-01

    The paper presents a theoretical examination of the influence of compressional stresses upon the characteristics of high temperature tensile creep. The calculations are based on a phenomenological creep cavitation model, which is adapted for superimposed pressure loading. Therefrom a power law strain rate/stress equation is obtained in which the hydrostatic pressure P enters in the stress function σ1n = ( σ - P) n. However, impeding cavity growth, P has an additional influence upon the strain rate through a variable structure parameter described by the damage function A< σ1>. From A< σ1> the stress rupture lines tf< σ1> for superimposed creep are obtained. The calculations are compared to experimental results from literature. By means of the life fraction rule the lifetime is calculated for load cycling in which tensional and compressional loading phases alternate. The lifetime depends sensitively upon the ratio of the minimum to maximum stress amplitude ( r) and upon a stress factor η characterizing the influence of the stress state upon cavitation damage. The lifetime computations are compared with experimental results obtained on the stainless steel AISI 304. The calculations show that the Monkman-Grant relationship should also be obeyed for superimposed creep.

  13. Orientation dependence of high temperature creep strength and internal stress in Ni{sub 3}Al alloy single crystals

    SciTech Connect

    Miura, Seiji; Peng, Z.L.; Mishima, Yoshinao

    1997-12-31

    High temperature creep behavior of a nickel-rich Ni{sub 3}(Al,Ta) with the L1{sub 2} structure is investigated in order to clarify the influence of crystallographic orientation with respect to the stress axis. The single crystals with four different orientations are deformed in compressive creep at temperatures ranging from 1,123 to 1,273 K under a constant load, initial shear stress being 35 to 120 MPa for (111)[{bar 1}01] slip system. The results show a distinct orientation dependence of creep strength, although shape of creep curves, stress exponent and the activation energy seem to be independent of the orientation. It is shown, however, the internal stress, being measured by strain transient dip tests, is found to be orientation dependent and the creep behavior is independent on orientation if it is interpreted using the effective stress instead of the applied shear stress.

  14. Correlation of creep rate with microstructural changes during high temperature creep

    NASA Technical Reports Server (NTRS)

    Young, C. T.; Sommers, B. R.; Lytton, J. L.

    1977-01-01

    Creep tests were conducted on Haynes 188 cobalt-base alloy and alpha titanium. The tests on Haynes 188 were conducted at 1600 F and 1800 F for stresses from 3 to 20 ksi, and the as-received, mill-annealed results were compared to specimens given 5%, 10%, and 15% room temperature prestrains and then annealed one hour at 1800 F. The tests on alpha titanium were performed at 7,250 and 10,000 psi at 500 C. One creep test was done at 527 C and 10,000 psi to provide information on kinetics. Results for annealed titanium were compared to specimens given 10% and 20% room temperature prestrains followed by 100 hours recovery at 550 C. Electron microscopy was used to relate dislocation and precipitate structure to the creep behavior of the two materials. The results on Haynes 188 alloy reveal that the time to reach 0.5% creep strain at 1600 F increases with increasing prestrain for exposure times less than 1,000 hours, the increase at 15% prestrain being more than a factor of ten.

  15. Mechanisms of High Temperature/Low Stress Creep of Ni-Based Superalloy Single Crystals

    SciTech Connect

    Michael J. Mills

    2009-03-05

    Cast nickel-based superalloys are used for blades in land-based, energy conversion and powerplant applications, as well as in aircraft gas turbines operating at temperatures up to 1100 C, where creep is one of the life-limiting factors. Creep of superalloy single crystals has been extensively studied over the last several decades. Surprisingly, only recently has work focused specifically on the dislocation mechanisms that govern high temperature and low stress creep. Nevertheless, the perpetual goal of better engine efficiency demands that the creep mechanisms operative in this regime be fully understood in order to develop alloys and microstructures with improved high temperature capability. At present, the micro-mechanisms controlling creep before and after rafting (the microstructure evolution typical of high temperature creep) has occurred have yet to be identified and modeled, particularly for [001] oriented single crystals. This crystal orientation is most interesting technologically since it exhibits the highest creep strength. The major goal of the program entitled ''Mechanisms of High Temperature/Low Stress Creep of Ni-Based Superalloy Single Crystals'' (DOE Grant DE-FG02-04ER46137) has been to elucidate these creep mechanisms in cast nickel-based superalloys. We have utilized a combination of detailed microstructure and dislocation substructure analysis combined with the development of a novel phase-field model for microstructure evolution.

  16. Theory of collective flux creep. [in high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Feigel'man, M. V.; Geshkenbein, V. B.; Larkin, A. I.; Vinokur, V. M.

    1989-01-01

    The nature of flux-creep phenomena in the case of collective pinning by weak disorder is discussed. The Anderson concept of flux bundle is explored and developed. The dependence of the bundle activation barrier U on current j is studied and is shown to be of power-law type: U(j) is proportional to j exp -alpha. The values of exponent alpha for the different regimes of collective creep are found.

  17. The role of interfacial dislocation networks in high temperature creep of superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Draper, S. L.; Hull, D. R.; Mackay, R. A.; Nathal, M. V.

    1989-01-01

    The dislocation networks generated during high-temperature creep of several single-crystal nickel-based superalloys are analyzed. The networks continually evolve during creep at relatively low temperatures or eventually reach a more stable configuration at high temperatures. Specifically, the role of these networks in directional coarsening processes are studied, along with their formation kinetics, characteristics, and stability during creep. The results of this study combined with previous findings suggest that the directional coarsening process is strongly influenced by elastic strain energy. The dislocation networks formed during primary creep are found to be stable during all subsequent creep stages. Aspects of these dislocation networks are determined to be a product of both the applied creep stress and coherency strains.

  18. Compressive Creep Performance and High Temperature Dimensional Stability of Conventional Silica Refractories

    SciTech Connect

    Karakus, M.; Kirkland, T.P.; Liu, K.C.; Moore, R.E.; Pint, B.A.; Wereszczak, A.A.

    1999-03-01

    Furnace designers and refractory engineers recognize that optimized furnace superstructure design and refractory selection are needed as glass production furnaces are continually striving toward greater output and efficiencies. Harsher operating conditions test refractories to the limit, while changing production technology (such as the conversion to oxy-fuel from traditional air-fuel firing) can alter the way the materials perform. Refractories for both oxy- and air-fuel fired furnace superstructures are subjected to high temperatures during service that may cause them to excessively creep or subside if the refractory material is not creep resistant, or if it is subjected to high stress, or both. Furnace designers can ensure that superstructure structural integrity is maintained if the creep behavior of the refractory material is well understood and well represented by appropriate engineering creep models. Several issues limit the abilities of furnace designers to (1) choose the optimum refractory for their applications, (2) optimize the engineering design, or (3) predict the service mechanical integrity of their furnace superstructures. Published engineering creep data are essentially non-existent for almost all commercially available refractories used for glass furnace superstructures. The limited data that do exist are supplied by the various refractory suppliers. Unfortunately, these suppliers generally have different ways of conducting their mechanical testing and they also interpret and report their data differently; this makes it hard for furnace designers to draw fair comparisons between competing grades of candidate refractories. Furthermore, the refractory supplier's data are often not available in a form that can be readily used for furnace design and for the prediction and design of long-term structural integrity of furnace superstructures. With the aim of providing such comparable data, the US DOE's Office of Industrial Technology and its Advanced

  19. Non-contact Creep Resistance Measurement for Ultra-high temperature Materials

    NASA Technical Reports Server (NTRS)

    Hyers, Robert W.; Lee, Jonghuyn; Bradshaw, Richard C.; Rogers, Jan; Rathz, Thomas J.; Wall, James J.; Choo, Hahn; Liaw, Peter K.

    2005-01-01

    Continuing pressures for higher performance and efficiency in propulsion are driving ever more demanding needs for high-temperature materials. Some immediate applications in spaceflight include combustion chambers for advanced chemical rockets and turbomachinery for jet engines and power conversion in nuclear-electric propulsion. In the case of rockets, the combination of high stresses and high temperatures make the characterization of creep properties very important. Creep is even more important in the turbomachinery, where a long service life is an additional constraint. Some very high-temperature materials are being developed, including platinum group metals, carbides, borides, and silicides. But the measurement of creep properties at very high temperatures is itself problematic, because the testing instrument must operate at such high temperatures. Conventional techniques are limited to about 1700 C. A new, containerless technique for measuring creep deformation has been developed. This technique is based on electrostatic levitation (ESL) of a spherical sample, which is heated to the measurement temperature and rotated at a rate such that the centrifugal acceleration causes creep deformation. Creep of samples has been demonstrated at up to 2300 C in the ESL facility at NASA MSFC, while ESL itself has been applied at over 3000 C, and has no theoretical maximum temperature. The preliminary results and future directions of this NASA-funded research collaboration will be presented.

  20. Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions.

    PubMed

    Taneike, Masaki; Abe, Fujio; Sawada, Kota

    2003-07-17

    Creep is a time-dependent mechanism of plastic deformation, which takes place in a range of materials under low stress-that is, under stresses lower than the yield stress. Metals and alloys can be designed to withstand creep at high temperatures, usually by a process called dispersion strengthening, in which fine particles are evenly distributed throughout the matrix. For example, high-temperature creep-resistant ferritic steels achieve optimal creep strength (at 923 K) through the dispersion of yttrium oxide nanoparticles. However, the oxide particles are introduced by complicated mechanical alloying techniques and, as a result, the production of large-scale industrial components is economically unfeasible. Here we report the production of a 9 per cent Cr martensitic steel dispersed with nanometre-scale carbonitride particles using conventional processing techniques. At 923 K, our dispersion-strengthened material exhibits a time-to-rupture that is increased by two orders of magnitude relative to the current strongest creep-resistant steels. This improvement in creep resistance is attributed to a mechanism of boundary pinning by the thermally stable carbonitride precipitates. The material also demonstrates enough fracture toughness. Our results should lead to improved grades of creep-resistant steels and to the economical manufacture of large-scale steel components for high-temperature applications. PMID:12867976

  1. Investigation of the rate-controlling mechanism(s) for high temperature creep and the relationship between creep and melting by use of high pressure as a variable. Progress report

    SciTech Connect

    Not Available

    1991-12-31

    Using high pressure as a variable, the rate-controlling mechanism for high temperature creep and the relationship between creep and melting is investigated for silicon and nickel. An apparatus is used in which the samples are heated to melting point and subjected to 1 to 3 GigaPascal pressure. The stress behavior of the materials are then studied.

  2. Creep rupture analysis of a beam resting on high temperature foundation

    NASA Technical Reports Server (NTRS)

    Gu, Randy J.; Cozzarelli, Francis A.

    1988-01-01

    A simplified uniaxial strain controlled creep damage law is deduced with the use of experimental observation from a more complex strain dependent law. This creep damage law correlates the creep damage, which is interpreted as the density variation in the material, directly with the accumulated creep strain. Based on the deduced uniaxial strain controlled creep damage law, a continuum mechanical creep rupture analysis is carried out for a beam resting on a high temperature elastic (Winkler) foundation. The analysis includes the determination of the nondimensional time for initial rupture, the propagation of the rupture front with the associated thinning of the beam, and the influence of creep damage on the deflection of the beam. Creep damage starts accumulating in the beam as soon as the load is applied, and a creep rupture front develops at and propagates from the point at which the creep damage first reaches its critical value. By introducing a series of fundamental assumptions within the framework of technical Euler-Bernoulli type beam theory, a governing set of integro-differential equations is derived in terms of the nondimensional bending moment and the deflection. These governing equations are subjected to a set of interface conditions at the propagating rupture front. A numerical technique is developed to solve the governing equations together with the interface equations, and the computed results are presented and discussed in detail.

  3. Modeling of combined high-temperature creep and cyclic plasticity in components using continuum damage mechanics

    NASA Astrophysics Data System (ADS)

    Dunne, F. P. E.; Hayhurst, D. R.

    1992-06-01

    A computer-based finite-element viscoplastic damage solver is presented to analyze structural components subject to combined cyclic thermal and mechanical loading. The solver is capable of predicting the combined evolution of creep and cyclic plasticity damage by solution of the combined boundary-initial value problem. The solver has been used to predict the high-temperature behavior of a slag tap component subjected to cyclic thermal loading generated by infrared heaters and water cooling ducts. It is found that the initiation of damage and microcracking occur early in the lifetime at about 3000 cycles adjacent to the cooling duct. The propagation of failure zones stabilizes at 60,000 cycles after which no further damage evolution occurs.

  4. Electromagnetic detection and monitoring of creep induced damage in high temperature resistant steels

    NASA Astrophysics Data System (ADS)

    Polar, Alberto

    Monitoring and remaining life assessment of ferritic-martensitic alloys exposed to creep was addressed using electromagnetic evaluation. In order to determine the correlation between the creep damage and the change in magnetic properties, two steels were exposed to different extent of creep and magnetic properties were evaluated for each sample. A close evaluation of the creep damage was performed in each sample using optical microscopy, as well as SEM and TEM techniques. It was found that the microstructural changes occurring during the creep progress have a correlation with variations in the magnetic response at the different levels of creep damage. Saturation decreases as creep damage progress due to the increases of demagnetized sites. Remanence shows the characteristic behavior of isotropic materials and coercivity changes as a function of the progress of the creep damage. Even though this established correlation may be used to directly monitoring the creep damage evolution, a magnetically determined damage factor was defined using the relationship of the hysteretic Jiles-Atherton factors with the extent pf creep damage. On the base of existing Continuous Damage Mechanics (CDM) models for creep, a model has been proposed for the monitoring and assessment of creep damage using the described magnetic damage factor.

  5. Experiment and Modeling of Simultaneous Creep, Plasticity and Transformation of High Temperature Shape Memory Alloys During Cyclic Actuation

    NASA Technical Reports Server (NTRS)

    Kumar, Parikshith K.; Desai, Uri; Chatzigeorgiou, George; Lagoudas, Dimitris C.; Monroe, James; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glen

    2010-01-01

    The present work is focused on studying the cycling actuation behavior of HTSMAs undergoing simultaneous creep and transformation. For the thermomechanical testing, a high temperature test setup was assembled on a MTS frame with the capability to test up to temperatures of 600 C. Constant stress thermal cycling tests were conducted to establish the actuation characteristics and the phase diagram for the chosen HTSMA. Additionally, creep tests were conducted at constant stress levels at different test temperatures to characterize the creep behavior of the alloy over the operational range. A thermodynamic constitutive model is developed and extended to take into account a) the effect of multiple thermal cycling on the generation of plastic strains due to transformation (TRIP strains) and b) both primary and secondary creep effects. The model calibration is based on the test results. The creep tests and the uniaxial tests are used to identify the viscoplastic behavior of the material. The parameters for the SMA properties, regarding the transformation and transformation induced plastic strain evolutions, are obtained from the material phase diagram and the thermomechanical tests. The model is validated by predicting the material behavior at different thermomechanical test conditions.

  6. Correlation of creep rate with microstructural changes during high temperature creep

    NASA Technical Reports Server (NTRS)

    Young, C. T.; Hochella, W. A.; Lytton, J. L.

    1973-01-01

    The techniques of electron microscopy were used to examine the microstructural changes which occur during primary creep for two important types of engineering alloys: (1) alloys strengthened by solid-solution additions, and (2) dispersion-strengthened alloys. The metals chosen for study are unalloyed titanium, Ti-6Al-4V, and the cobalt-base alloy, Haynes 188. Results to date on NGR 47-004-108 show that development of prior dislocation substructure in Haynes 188 by 10% prestrain and annealing for one hour at 1800 F increases the time to reach 0.5% creep strain at 1600 F by more than an order of magnitude for creep stresses from 3 to 20 ksi. For creep at 1800 F, similar results were obtaind for stresses above 7 ksi, but the prior substructure decreases creep resistance below 7 ksi. This effect appears to be related to instability of grain structure at 1800 F in prestrained material.

  7. Constitutive Modeling of High Temperature Uniaxial Creep-Fatigue and Creep-Ratcheting Responses of Alloy 617

    SciTech Connect

    P.G. Pritchard; L.J. Carroll; T. Hassan

    2013-07-01

    Inconel Alloy 617 is a high temperature creep and corrosion resistant alloy and is a leading candidate for use in Intermediate Heat Exchangers (IHX) of the Next Generation Nuclear Plants (NGNP). The IHX of the NGNP is expected to experience operating temperatures in the range of 800 degrees - 950 degrees C, which is in the creep regime of Alloy 617. A broad set of uniaxial, low-cycle fatigue, fatigue-creep, ratcheting, and ratcheting-creep experiments are conducted in order to study the fatigue and ratcheting responses, and their interactions with the creep response at high temperatures. A unified constitutive model developed at North Carolina State University is used to simulate these experimental responses. The model is developed based on the Chaboche viscoplastic model framework. It includes cyclic hardening/softening, strain rate dependence, strain range dependence, static and dynamic recovery modeling features. For simulation of the alloy 617 responses, new techniques of model parameter determination are developed for optimized simulations. This paper compares the experimental responses and model simulations for demonstrating the strengths and shortcomings of the model.

  8. Copper modified austenitic stainless steel alloys with improved high temperature creep resistance

    DOEpatents

    Swindeman, R.W.; Maziasz, P.J.

    1987-04-28

    An improved austenitic stainless steel that incorporates copper into a base Fe-Ni-Cr alloy having minor alloying substituents of Mo, Mn, Si, T, Nb, V, C, N, P, B which exhibits significant improvement in high temperature creep resistance over previous steels. 3 figs.

  9. Developing Dislocation Subgrain Structures and Cyclic Softening During High-Temperature Creep-Fatigue of a Nickel Alloy

    NASA Astrophysics Data System (ADS)

    Carroll, M. C.; Carroll, L. J.

    2013-08-01

    The complex cyclic deformation response of Alloy 617 under creep-fatigue conditions is of practical interest both in terms of the observed detriment in failure life and the considerable cyclic softening that occurs. At the low strain ranges investigated, the inelastic strain is the sole predictor of the failure life without taking into consideration a potentially significant environmental influence. The tensile-hold creep-fatigue peak stress response can be directly correlated to the evolving dislocation substructure, which consists of a relatively homogenous distribution of subgrains. Progressive high-temperature cycling with a static hold allows for the rearrangement of loose tangles of dislocations into well-ordered hexagonal dislocation networks. The cyclic softening during tensile-hold creep-fatigue deformation is attributable to two factors: the rearrangement of dislocation substructures into lower-energy configurations, which includes a decreasing dislocation density in subgrain interiors through integration into the subgrain boundaries, and the formation of surface grain boundary cracks and cavity formation or separation at interior grain boundaries, which occurs perpendicular to the stress axis. Effects attributable to the tensile character of the hold cycle are further analyzed through variations in the creep-fatigue waveform and illuminate the effects of the hold-time character on the overall creep-fatigue behavior and evolution of the dislocation substructure.

  10. Creep of carbon-yarn and carbon-carbon composites at high temperatures and high stresses. Technical report

    SciTech Connect

    Sines, G.; Yang, Z.; Vickers, B.D.

    1988-05-01

    To better understand the creep-behavior of carbon yarn and carbon-carbon composites, creep experiments were developed that permitted testing at high temperatures (up to 2500 C) and at high stresses (up to 850 MPa) on specially prepared, uniaxial specimens that had a known gage length. Using a Dorn-type power-law relation to model steady-state creep, the apparent activation energy for the carbon-yarn and carbon-composite specimens was determined to be 1082 kj/mol. This value represents a single thermally activated process, vacancy diffusion, that compares favorably with the various types of graphitizable carbon. The value determined for the stress exponent was 7.5. It too was found to be independent of the carbon-matrix's presence and independent of the specimens' loading history. Values of the pre-exponential constant for the carbon yarn and carbon composites were also calculated. The carbon matrix greatly improves the creep resistance of the carbon composite. This improvement was attributed to the matrix's microstructure. It distributes applied loads more evenly and it may also impose a triaxial stress state in the yarns's filaments. It is proposed that such a stress state may inhibit the flux of vacancies, thus accounting in part for this increase in creep resistance.

  11. Thermocouples with improved high-temperature creep property by oxide dispersion strengthening

    NASA Astrophysics Data System (ADS)

    Hamada, T.; Yamasaki, H.; Kodama, T.

    2013-09-01

    Platinum-based thermocouples, especially type R and S, whose negative branch is made of pure platinum, often rupture during high-temperature operation. The phenomenon occurs because high-temperature creep strength of pure platinum is very low. In order to avoid this rupture, oxide dispersion strengthened (O.D.S.) platinum was applied to construct high-temperature thermometers for the first time. The W(Ga) value of the O.D.S. platinum was found to be 1.11790, which is not high enough for use as standard platinum resistance thermometer. On the other hand, its purity was found sufficiently high for constituting the negative branch of type R and S thermocouples. Type R thermocouple was prepared with the O.D.S. platinum and was calibrated at the fixed points of tin, zinc, aluminum, silver, gold and palladium and the measured E.M.F. satisfied the IEC class 1 tolerance. The production process for the thermocouple material is similar to that of our original O.D.S. alloy, modified to avoid the contamination from the production process. The observed cross-section microstructure of the developed material was highly elongated, which is typical for O.D.S. platinum and creep rupture strength was almost similar to our original O.D.S. platinum, i.e. the initial stress of the creep rupture was several times higher than that of normal pure platinum when comparing with same rupture time.

  12. High temperature behavior of zirconium germanates

    SciTech Connect

    Utkin, A.V.; Baklanova, N.I.; Vasilyeva, I.G.

    2013-05-01

    The high temperature behavior of zirconium germanates ZrGeO₄ and Zr₃GeO₈ up to 2300 °C has been studied using the original photoemission thermal analysis technique with the comprehensive physicochemical study of solid and gaseous intermediate and final products. The two-stage process of incongruent sublimation of GeO₂ was established and the phase boundary of the homogeneity range for ZrGeO₄ and Zr₃GeO₈ were deduced from the thermal analysis, X-ray diffraction and Raman spectroscopy studies. A high tendency to sintering of the final ZrO₂ product is discussed. - Graphical abstract: The decomposition of zirconium germanates leads to the formation of gaseous GeO₂ and solid sintered ZrO₂ and occurs via two stages with the formation of intermediate ZrO₂-rich solid solution. Highlights: •Thermal behavior of ZrGeO₄ and Zr₃GeO₈ was studied using the original thermal analysis technique in wide temperature range. •The decomposition occurs via two stages with the formation of intermediate ZrO₂-rich solid solution. •The decomposition of zirconium germanates leads to the formation of gaseous GeO₂ and solid sintered ZrO₂. •The temperature of decomposition is strongly depended on the total gas pressure.

  13. Unified high-temperature behavior of thin-gauge superalloys

    NASA Astrophysics Data System (ADS)

    England, Raymond Oliver

    This research proposes a methodology for accelerated testing in the area of high-temperature creep and oxidation resistance for thin-gauge superalloy materials. Traditional long-term creep (stress-relaxation) and oxidation tests are completed to establish a baseline. The temperature range used in this study is between 1200 and 1700°F. The alloys investigated are Incoloy MA 956, Waspaloy, Haynes 214, Haynes 242, Haynes 230, and Incoloy 718. The traditional creep test involves loading the specimens to a constant test mandrel radius of curvature, and measuring the retained radius of curvature as a function of time. The accelerated creep test uses a servohydraulic test machine to conduct single specimen, variable strain-rate load relaxation experiments. Standard metallographic evaluations are used to determine extent and morphology of attack in the traditional oxidation tests, while the accelerated oxidation test utilizes thermogravimetric analysis to obtain oxidation rate data. The traditional long-term creep testing indicates that the mechanically-alloyed material Incoloy MA 956 and Haynes alloy 214 may be suitable for long-term, high-temperature (above 1400°F) structural applications. The accelerated creep test produced a continuous linear function of log stress versus strain rate which can be used to calculate creep rate. The long-term and traditional oxidation tests indicate that Al2O3 scale formers such as Incoloy MA 956 and Haynes 214 are much more resistant to high-temperature oxidation than Cr2O3 scale formers such as Waspaloy. Both accelerated tests can be completed within roughly one day, and can evaluate multiple test temperatures using standardized single specimens. These simple experiments can be correlated with traditional long-term tests which require years to complete.

  14. High temperature tensile and creep behaviour of low pressure plasma-sprayed Ni-Co-Cr-Al-Y coating alloy

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Miner, R. V.

    1986-01-01

    The high temperature tensile and creep behavior of low pressure plasma-sprayed plates of a typical Ni-Co-Cr-Al-Y alloy has been studied. From room temperature to 800 K, the Ni-Co-Cr-Al-Y alloy studied has nearly a constant low ductility and a high strength. At higher temperatures, it becomes weak and highly ductile. At and above 1123 K, the behavior is highly dependent on strain rate and exhibits classic superplastic characteristics with a high ductility at intermediate strain rates and a strain rate sensitivity of about 0.5. At either higher or lower strain rates, the ductility decreases and the strain rate sensitivities are about 0.2. In the superplastic deformation range, the activation energy for creep is 120 + or - 20 kJ/mol, suggesting a diffusion-aided grain boundary sliding mechanism. Outside the superplastic range, the activation energy for creep is calculated to be 290 + or - 20 kJ/mol.

  15. Modeling creep behavior in a directionally solidified nickel base superalloy

    NASA Astrophysics Data System (ADS)

    Ibanez, Alejandro R.

    Directionally solidified (DS) nickel-base superalloys provide significant improvements relative to the limitations inherent to equiaxed materials in the areas of creep resistance, oxidation, and low and high cycle fatigue resistance. Since these materials are being pushed to the limits of their capability in gas turbine applications, accurate mathematical models are needed to predict the service lives of the hot-section components to prevent unscheduled outages due to sudden mechanical failures. The objectives of this study are to perform critical experiments and investigate the high temperature tensile, fracture toughness, creep deformation, creep rupture and creep crack growth behavior of DS GTD111 as well as to apply creep deformation, rupture and crack growth models that will enable the accurate representation of the life times of the DS GTD111 superalloy gas turbine components that are exposed to high temperatures under sustained tensile stresses. The applied models will be capable of accurately representing the creep deformation, rupture and crack growth behavior as a function of stress, time and temperature. The yield strength and fracture toughness behavior with temperature is governed by the gamma particles. The longitudinal direction showed higher ductility and strength than the transverse direction. The TL direction exhibited higher fracture toughness than the LT orientation because the crack follows a more tortuous path. The longitudinal direction showed higher creep ductility, lower minimum strain rates and longer creep rupture times than the transverse direction. The results in the transverse direction were similar to the ones for the equiaxed version of this superalloy. Two models for creep deformation have been evaluated. The power-law model includes a secondary and a tertiary creep term with the primary creep represented by a constant. A theta-projection model has also been evaluated and it appears to provide a more accurate representation of creep

  16. Quantification of uncertainties in coupled material degradation processes - High temperature, fatigue and creep

    NASA Technical Reports Server (NTRS)

    Boyce, L.; Chamis, C. C.

    1991-01-01

    This paper describes the development of methodology that provides for quantification of uncertainties in lifetime strength of aerospace materials subjected to a number of diverse effects. A probabilistic material degradation model, in the form of a randomized multifactor interaction equation, has been postulated for lifetime strength degradation of structural components of aerospace propulsion systems. The model includes effects that typically reduce lifetime strength and may include temperature, mechanical fatigue, creep and others. The paper also includes the analysis of experimental data from the open literature for Inconel 718. These data are used to provide an initial check for model validity, as well as for calibration of the model's empirical material constants. The model validity check and calibration is carried out for three effects, namely, high temperature, mechanical fatigue and creep.

  17. In situ proton irradiation-induced creep at very high temperature

    NASA Astrophysics Data System (ADS)

    Campbell, Anne A.; Was, Gary S.

    2013-02-01

    This objective of this work was to develop an experimental facility that can perform in situ high temperature proton irradiation-induced creep experiments on a range of materials. This was achieved by designing an irradiation chamber and stage that allows for load application and removal, provides a method for controlling and monitoring temperature and proton flux, and a means to make in situ measurement of dimensional change of the samples during the experiment. Initial experiments on POCO Graphite Inc. ZXF-5Q grade ultra-fine grain samples irradiated at 1000 °C at a damage rate of 1.15 × 10-6 dpa/s exhibited a linear dependence of measured creep rate on applied stress over a range of stresses from 10 MPa to 40 MPa.

  18. Creep Testing of High-Temperature Cu-8 Cr-4 Nb Alloy Completed

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Cu-8 at.% Cr-4 at.% Nb (Cu-8 Cr-4 Nb) alloy is under development for high-temperature, high heatflux applications, such as actively cooled, hypersonic vehicle heat exchangers and rocket engine combustion chambers. Cu-8 Cr-4 Nb offers a superior combination of strength and conductivity. It has also shown exceptional low-cycle fatigue properties. Following preliminary testing to determine the best processing route, a more detailed testing program was initiated to determine the creep lives and creep rates of Cu-8 Cr-4 Nb alloy specimens produced by extrusion. Testing was conducted at the NASA Lewis Research Center with constant-load vacuum creep units. Considering expected operating temperatures and mission lives, we developed a test matrix to accurately determine the creep properties of Cu-8 Cr-4 Nb between 500 and 800 C. Six bars of Cu-8 Cr-4 Nb were extruded. From these bars, 54 creep samples were machined and tested. The figure on the left shows the steady-state, or second-stage, creep rates for the samples. Comparison data for NARloy-Z (Cu-3 wt % Ag-0.5 wt % Zr), the alloy currently used in combustion chamber liners, were not unavailable. Therefore the steady-state creep rates for Cu at similar temperatures are presented. As expected, in comparison to pure Cu, the creep rates for Cu-8 Cr-4 Nb are much lower. The lives of the samples are presented in the figure on the right. As shown, Cu-8 Cr-4 Nb at 800 C is comparable to NARloy-Z at 648 C. At equivalent temperatures, Cu-8 Cr-4 Nb enjoys a 20 to 50 percent advantage in stress for a given life and 1 to 3 orders of magnitude greater life at a given stress. The improved properties allow for design tradeoffs and improvements in new and existing heat exchangers such as the next generation of combustion chamber liners. Average creep rates for Cu-8 Cr-4 Nb and pure Cu are shown. Average creep lives for Cu-8 Cr- 4 Nb and NARloy-Z are also shown. Currently, two companies are interested in the commercial usage of the Cu

  19. Creep-fatigue of High Temperature Materials for VHTR: Effect of Cyclic Loading and Environment

    SciTech Connect

    Celine Cabet; L. Carroll; R. Wright; R. Madland

    2011-05-01

    Alloy 617 is the one of the leading candidate materials for Intermediate Heat eXchangers (IHX) of a Very High Temperature Reactor (VHTR). System start-ups and shut-downs as well as power transients will produce low cycle fatigue (LCF) loadings of components. Furthermore, the anticipated IHX operating temperature, up to 950°C, is in the range of creep so that creep-fatigue interaction, which can significantly increase the fatigue crack growth, may be one of the primary IHX damage modes. To address the needs for Alloy 617 codification and licensing, a significant creep-fatigue testing program is underway at Idaho National Laboratory. Strain controlled LCF tests including hold times up to 1800s at maximum tensile strain were conducted at total strain range of 0.3% and 0.6% in air at 950°C. Creep-fatigue testing was also performed in a simulated VHTR impure helium coolant for selected experimental conditions. The creep-fatigue tests resulted in failure times up to 1000 hrs. Fatigue resistance was significantly decreased when a hold time was added at peak stress and when the total strain was increased. The fracture mode also changed from transgranular to intergranular with introduction of a tensile hold. Changes in the microstructure were methodically characterized. A combined effect of temperature, cyclic and static loading and environment was evidenced in the targeted operating conditions of the IHX. This paper This paper reviews the data previously published by Carroll and co-workers in references 10 and 11 focusing on the role of inelastic strain accumulation and of oxidation in the initiation and propagation of surface fatigue cracks.

  20. High temperature creep behaviour of Al-rich Ti-Al alloys

    NASA Astrophysics Data System (ADS)

    Sturm, D.; Heilmaier, M.; Saage, H.; Aguilar, J.; Schmitz, G. J.; Drevermann, A.; Palm, M.; Stein, F.; Engberding, N.; Kelm, K.; Irsen, S.

    2010-07-01

    Compared to Ti-rich γ-TiAl-based alloys Al-rich Ti-Al alloys offer an additional reduction of in density and a better oxidation resistance which are both due to the increased Al content. Polycrystalline material was manufactured by centrifugal casting. Microstructural characterization was carried out employing light-optical, scanning and transmission electron microscopy and XRD analyses. The high temperature creep of two binary alloys, namely Al60Ti40 and Al62Ti38 was comparatively assessed with compression tests at constant true stress in a temperature range between 1173 and 1323 K in air. The alloys were tested in the cast condition (containing various amounts of the metastable phases Al5Ti3 and h-Al2Ti) and after annealing at 1223 K for 200 h which produced (thermodynamically stable) lamellar γ-TiAl + r-Al2Ti microstructures. In general, already the as-cast alloys exhibit a reasonable creep resistance at 1173 K. Compared with Al60Ti40, both, the as-cast and the annealed Al62Ti38 alloy exhibit better creep resistance up to 1323 K which can be rationalized by the reduced lamella spacing. The assessment of creep tests conducted at identical stress levels and varying temperatures yielded apparent activation energies for creep of Q = 430 kJ/mol for the annealed Al60Ti40 alloy and of Q = 383 kJ/mol for the annealed Al62Ti38 material. The latter coincides well with that of Al diffusion in γ-TiAl, whereas the former can be rationalized by the instability of the microstructure containing metastable phases.

  1. Optimization of High Temperature Hoop Creep Response in ODS-Fe3Al Tubes

    SciTech Connect

    Kad, B.K.; Heatherington, J.H.; McKamey, C.; Wright, I.; Sikka, V.; Judkins, R.

    2003-04-22

    Oxide dispersion strengthened (ODS) Fe3Al alloys are currently being developed for heat-exchanger tubes for eventual use at operating temperatures of up to 1100 C in the power generation industry. The development challenges include (a) efforts to produce thin walled ODS-Fe3Al tubes, employing powder extrusion methodologies, with (b) adequate increased strength for service at operating temperatures to (c) mitigate creep failures by enhancing the as-processed grain size. A detailed and comprehensive research and development methodology is prescribed to produce ODS-Fe3Al thin walled tubes. Current single step extrusion consolidation methodologies typically yield 8ft. lengths of 1-3/8 inch diameter, 1/8 inch wall thickness ODS-Fe3Al tubes. The process parameters for such consolidation methodologies have been prescribed and evaluated as being routinely reproducible. Recrystallization treatments at 1200 C produce elongated grains (with their long axis parallel to the extrusion axis), typically 200-2000 {micro}m in diameter, and several millimeters long. The dispersion distribution is unaltered on a micro scale by recrystallization, but the high aspect ratio grain shape typically obtained limits grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloys requires an understanding and manipulating the factors that control grain alignment and recrystallization behavior. Current efforts are focused on examining the processing dependent longitudinal vs. transverse creep anisotropy, and exploring post-extrusion methods to improve hoop creep response in ODS-Fe3Al alloy tubes. In this report we examine the mechanisms of hoop creep failure and describe our efforts to improve creep performance via variations in thermal-mechanical treatments.

  2. Accelerated characterization for long-term creep behavior of polymer

    NASA Astrophysics Data System (ADS)

    Zhao, Rongguo; Chen, Chaozhong; Li, Qifu; Luo, Xiyan

    2008-11-01

    Based on the observation that high stress results in increasing creep rate of polymeric material, which is analogous to the time-temperature equivalence, where high temperature accelerates the process of creep or relaxation of polymer, the time-stress equivalence is investigated. The changes of intrinsic time in polymer induced by temperature and stress are studied using the free volume theory, and a clock model based on the time-temperature and time-stress equivalence is constructed to predict the long-term creep behavior of polymer. Polypropylene is used for this work. The specimens with shape of dumbbell are formed via injection molding. The short-term creep tests under various stress levels are carried out at ambient temperature. The creep strains of specimens are modeled according to the concept of time-stress equivalence, and the corresponding stress shift factors are calculated. A master creep curve is built by the clock model. The result indicates that the time-stress superposition principle provides an accelerated characterization method in the laboratory. Finally, the time-dependent axial elongations at sustained stress levels, whose values are close to the tensile strength of polypropylene, are measured. The three phases of creep, i.e., the transient, steady state and accelerated creep phases, are studied, and the application and limitation of the time-stress superposition principle are discussed.

  3. High temperature behavior of simulated mixed nitrides

    NASA Astrophysics Data System (ADS)

    Baranov, V. G.; Lunev, A. V.; Mikhalchik, V. V.; Tenishev, A. V.; Shornikov, D. P.

    2016-04-01

    Specimen of uranium-based mixed nitrides were synthesized by high-temperature nitriding of metal powder. To investigate thermal stability, samples were annealed at high temperature in a helium atmosphere. During these experiments, the effect of increasing the exposure temperature is studied. Raising the exposure temperature results in a multifold increase of mass loss. A comparison with data on pure uranium nitride shows that increasing the complexity of the nitride systems also results in higher mass loss. Later microscopic investigation of test samples revealed that metal precipitates may be found only on the surface of test samples. Electron probe micro-analysis indicates these precipitates to be uranium metal. Nevertheless, compared to pure uranium nitride, uranium-based mixed nitrides exhibit active evaporation at lower temperatures

  4. High Temperature Fatigue Crack Growth Behavior of Alloy 10

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2001-01-01

    Methods to improve the high temperature, dwell crack growth resistance of Alloy 10, a high strength, nickel-base disk alloy, were studied. Two approaches, heat treat variations and composition modifications, were investigated. Under the heat treat approach, solution temperature, cooling rates, and stabilization, were studied. It was found that higher solution temperatures, which promote coarser grain sizes, coupled with a 1550 F stabilization treatment were found to significantly reduce dwell crack growth rates at 1300 F Changes in the niobium and tantalum content were found to have a much smaller impact on crack growth behavior. Lowering the niobium:tantalum ratio did improve crack growth resistance and this effect was most pronounced for coarse grain microstructures. Based on these findings, a coarse grain microstructure for Alloy 10 appears to be the best option for improving dwell crack growth resistance, especially in the rim of a disk where temperatures can reach or exceed 1300 T. Further, the use of advanced processing technologies, which can produce a coarse grain rim and fine grain bore, would be the preferred option for Alloy 10 to obtain the optimal balance between tensile, creep, and crack growth requirements for small gas turbine engines.

  5. Creep behavior of tungsten/niobium and tungsten/niobium-1 percent zirconium composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Titran, R. H.

    1988-01-01

    A study was conducted to determine the feasibility of using tungsten fiber reinforced niobium or niobium-1 percent zirconium matrix composites to meet the anticipated increased temperature and creep resistance requirements imposed by advanced space power systems. The results obtained on the short time tensile properties indicated that W/Nb composites showed significant improvements in high temperature strength and offer significant mass reductions for high temperature space power systems. The prime material requirement for space power systems applications is long time creep resistance. A study was conducted to determine the effect of high temperature exposure on the properties of these composites, with emphasis upon their creep behavior at elevated temperatures.

  6. Strain localization during high temperature creep of marble: The effect of inclusions

    NASA Astrophysics Data System (ADS)

    Rybacki, E.; Morales, L. F. G.; Naumann, M.; Dresen, G.

    2014-11-01

    The deformation of rocks in the Earth's middle and lower crust is often localized in ductile shear zones. To better understand the initiation and propagation of high-temperature shear zones induced by the presence of structural and material heterogeneities, we performed deformation experiments in the dislocation creep regime on Carrara marble samples containing weak (limestone) or strong (novaculite) second phase inclusions. The samples were mostly deformed in torsion at a bulk shear strain rate of ≈ 1.9 × 10- 4 s- 1 to bulk shear strains γ between 0.02 and 2.9 using a Paterson-type gas deformation apparatus at 900 °C temperature and 400 MPa confining pressure. At low strain, twisted specimens with weak inclusions show minor strain hardening that is replaced by strain weakening at γ > 0.1-0.2. Peak shear stress at the imposed conditions is about 20 MPa, which is ≈ 8% lower than the strength of intact samples. Strain progressively localized within the matrix with increasing bulk strain, but decayed rapidly with increasing distance from the inclusion tip. Microstructural analysis shows twinning and recrystallization within this process zone, with a strong crystallographic preferred orientation, dominated by {r} and (c) slip in < a >. Recrystallization-induced weakening starts at local shear strain of about 1 in the process zone, corresponding to a bulk shear strain of about 0.1. In contrast, torsion of a sample containing strong inclusions deformed at similar stress as inclusion-free samples, but do not show localization. The experiments demonstrate that the presence of weak heterogeneities initiates localized creep at local stress concentrations around the inclusion tips. Recrystallization-induced grain size reduction may only locally promote grain boundary diffusion creep. Accordingly, the bulk strength of the twisted aggregate is close to or slightly below the lower (isostress) strength bound, determined from the flow strength and volume fraction of matrix

  7. Flaw assessment guide for high-temperature reactor components subject to creep-fatigue loading

    SciTech Connect

    Ainsworth, R.A. . Berkeley Nuclear Labs.); Ruggles, M.B. ); Takahashi, Y. . Komae Research Lab.)

    1990-10-01

    A high-temperature flaw assessment procedure is described. This procedure is a result of a collaborative effort between Electric Power Research Institute in the United States, Central Research Institute of Electric Power Industry in Japan, and Nuclear Electric plc in the United Kingdom. The procedure addresses preexisting defects subject to creep-fatigue loading conditions. Laws employed to calculate the crack growth per cycle are defined in terms of fracture mechanics parameters and constants related to the component material. The crack-growth laws can be integrated to calculate the remaining life of a component or to predict the amount of crack extension in a given period. Fatigue and creep crack growth per cycle are calculated separately, and the total crack extension is taken as the simple sum of the two contributions. An interaction between the two propagation modes is accounted for in the material properties in the separate calculations. In producing the procedure, limitations of the approach have been identified. 25 refs., 1 fig.

  8. The influence of cavitation damage upon high temperature creep under stationary and non-stationary loading conditions. Part III: Creep at steady increasing load and true stress

    NASA Astrophysics Data System (ADS)

    Boček, M.; Hoffmann, M.

    1984-11-01

    In this paper for ideally plastic materials the influence of high temperature cavitation damage upon creep at steady increasing loads is investigated. The damage function A(t) enters a constitutive equation for plastíc flow through an effective stress σ e. For given loading conditions the latter is derived from the solution of Hart's tensile test equation. In the present paper the case of time linear increase in load ( F = constant) and in true stress ( /.s = constant) is investigated. The creep equations for cavitating as well as for non-cavitating materials are derived and the volume change during creep at /.F = constant are calculated.

  9. Creep behavior of submarine sediments

    USGS Publications Warehouse

    Silva, Armand J.; Booth, J.S.

    1984-01-01

    A series of experiments on drained creep of marine sediment indicates that strength degradation results from the creep process, which implies an associated reduction in slope stability. Furthermore, the highest creep potential of a sediment may be at its preconsolidation stress. Results from the experiments on samples from Georges Bank continental slope were also used in conjunction with a preliminary theoretical model to predict creep displacements. For the case illustrated in this report, steep slopes (>20??) and thick sections (>30 m) give rise to substantial creep and probable creep rupture; as angles or thicknesses decrease, displacements rapidly become negligible. Creep may be a significant geologic process on many marine slopes. Not only can it cause major displacements of surface sediment, but it may also be the precursor to numerous slope failures. ?? 1985 Springer-Verlag New York Inc.

  10. Creep behavior of tungsten/niobium and tungsten/niobium-1 percent zirconium composites

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Titran, Robert H.

    1988-01-01

    The creep behavior and microstructural stability of tungsten fiber reinforced niobium and niobium 1 percent zirconium was determined at 1400 and 1500 K in order to assess the potential of this material for use in advanced space power systems. The creep behavior of the composite materials could be described by a power law creep equation. A linear relationship was found to exist between the minimum creep rate of the composite and the inverse of the composite creep rupture life. The composite materials had an order of magnitude increase in stress to achieve 1 percent creep strain and in rupture strength at test temperatures of 1400 and 1500 K compared to unreinforced material. The composite materials were also stronger than the unreinforced materials by an order of magnitude when density was taken into consideration. Results obtained on the creep behavior and microstructural stability of the composites show significant potential improvement in high temperature properties and mass reduction for space power system components.

  11. Creep rupture behavior of unidirectional advanced composites

    NASA Technical Reports Server (NTRS)

    Yeow, Y. T.

    1980-01-01

    A 'material modeling' methodology for predicting the creep rupture behavior of unidirectional advanced composites is proposed. In this approach the parameters (obtained from short-term tests) required to make the predictions are the three principal creep compliance master curves and their corresponding quasi-static strengths tested at room temperature (22 C). Using these parameters in conjunction with a failure criterion, creep rupture envelopes can be generated for any combination of in-plane loading conditions and ambient temperature. The analysis was validated experimentally for one composite system, the T300/934 graphite-epoxy system. This was done by performing short-term creep tests (to generate the principal creep compliance master curves with the time-temperature superposition principle) and relatively long-term creep rupture tensile tests of off-axis specimens at 180 C. Good to reasonable agreement between experimental and analytical results is observed.

  12. High temperature tensile deformation behavior of Grade 92 steel

    NASA Astrophysics Data System (ADS)

    Alsagabi, Sultan; Shrestha, Triratna; Charit, Indrajit

    2014-10-01

    Candidate structural materials for advanced reactors need to have superior high temperature strength and creep-rupture properties among other characteristics. The ferritic-martensitic Grade 92 steel (Fe-9Cr-2W-0.5Mo, wt.%) is considered such a candidate structural material. Tensile tests were performed at temperatures of 600, 650 and 700 °C in the strain rate range of 10-5-10-3 s-1. After analyzing the tensile results using the Bird-Mukherjee-Dorn (BMD) equation, a stress exponent of about 9.5 and an activation energy of about 646 kJ/mol were obtained. In the light of high values of the stress exponent and activation energy, the threshold stress concept was used to elucidate the operating high temperature deformation mechanism. As a result of this modification, the true activation energy and stress exponent of the high temperature deformation in Grade 92 steel were found to be about 245 kJ/mol and 5, respectively. Thus, the dominant high temperature deformation mechanism was identified as the high temperature climb of edge dislocations and the appropriate constitutive equation was developed.

  13. Creep crack growth behavior of aluminum alloy 2519. Part 1: Experimental analysis

    SciTech Connect

    Hamilton, B.C.; Saxena, A.; McDowell, D.L.; Hall, D.E.

    1997-12-31

    The discipline of time-dependent fracture mechanics has traditionally focused on the creep crack growth behavior of high-temperature materials that display creep-ductile behavior, such as stainless steels and chromium-molybdenum steels. Elevated temperature aluminum alloys, however, have been developed that exhibit creep-brittle behavior; in this case, the creep crack growth rate correlates with the stress intensity factor, K. The fracture characteristics of aluminum alloy 2519-T87 were studied at 135 C, and the creep and creep crack growth behavior were characterized utilizing experimental and numerical methods. The strain to failure for creep deformation specimens was limited to only 1.2 to 2.0%. Creep crack growth tests revealed a unique correlation between the creep crack growth rate and K, a result consistent with creep-brittle behavior. No experimental correlation was found between the creep crack growth rate and the C{sub t} parameter. Microscopy of fracture surfaces revealed distinct regions of intergranular and transgranular fracture, and the transition between the fracture regions was found to occur at a critical K-level. Experimental results also appeared to show that initiation of crack growth (incubation) is controlled by the accumulation of a critical amount of damage ahead of the crack tip and that a correlation exists between the incubation time and K. Total time to failure is viewed as a summation of the incubation period and the crack growth period, and the design importance of incubation time is discussed.

  14. Tensile creep behavior and cyclic fatigue/creep interaction of hot- isostatically pressed Si sub 3 N sub 4

    SciTech Connect

    Liu, K.C.; Pih, H.; Stevens, C.O.; Brinkman, C.R.

    1991-01-01

    Tensile creep data are reported for a high-performance grade of hot isostatically pressed Si{sub 3}N{sub 4} that is currently being investigated as a candidate material for advanced heat engine applications. Specimens were tested in pure uniaxial tension at temperatures ranging from 1200 to 1370{degree}C. Creep strain was measured with an optical strain extensometer until creep rupture occurred, in some cases for periods in excess of 2000 h. To study the effects of various preloading material histories on creep behavior, specimens were prepared and tested in several conditions, i.e., unannealed, annealed, or precycled. Test results show that either treatment by thermal annealing or by precycling at 1370{degree}C can dramatically modify the initial transient creep behavior and enhance the resistance to creep deformation and hence the creep-rupture lifetime. However, the influence of the preloading histories on creep rate was diminished by high temperature exposure after about 500 h of testing. The rupture lifetime of the precycled specimen at 1370{degree}C was significantly higher than those of the unannealed and annealed specimens. In contrast, no significant extension of the creep-rupture lifetime was observed for a precycled specimen tested at 1300{degree}C. Steady-state creep was absent in some cases under certain conditions of temperature, stress, and heat treatment. Little or no tertiary creep was usually detected before specimen fracture occurred. The steady-state creep rate of this material was found to be a function of applied stress, temperature, and possibly the level of crystallinity in the intergranular phase. 9 refs., 15 figs.

  15. Effect of inclusions on strain localization during high temperature creep of marble

    NASA Astrophysics Data System (ADS)

    Rybacki, E.; Morales, L. G.; Naumann, M.; Dresen, G. H.

    2013-12-01

    The deformation of rocks in the Earth's lower crust is often localized in ductile shear zones. Strain localization in rocks deforming at high temperature and pressures may be induced by various physical, chemical, or structurally-related mechanisms. Here, we studied the initiation and propagation of localized deformation in the ductile deformation regime by high temperature deformation experiments on marble with weak or strong inclusions. As starting material we used samples of coarse-grained Carrara marble containing one or two thin artificially prepared sheets of fine-grained Solnhofen limestone or Arkansas novaculite, which act under the applied experimental conditions as soft or strong material heterogeneities, respectively. Samples were deformed in the dislocation creep regime using a Paterson-type gas deformation apparatus at 900°C temperature and confining pressures of 300-400 MPa. Torsion experiments were performed on hollow cylinder samples at a bulk shear strain rate of ≈1.9 x 10-4 s-1 to shear strains γ between 0.02 and 2.9. At low strain, twisted specimens with weak inclusions show minor strain hardening that is replaced by strain weakening at shear strains in excess of ≈0.1- 0.2. Peak shear stress at the imposed condition is about 20MPa, which is ≈8% lower than the strength of inclusion-free samples. Strain progressively localized within the weak inclusions with increasing bulk strain, approaching at γ ≈ 1 a strain ratio of ≈24 with respect to the adjacent matrix strain. This ratio is about half of the strain ratio that is expected from the creep strength contrast between pure marble and limestone at the measured bulk stress. The localization of strain extended into narrow bands in front of the inclusions, where the degree of localization decays exponentially with increasing distance from the tip of the inclusion. Microstructural analysis shows twinning, recrystallization and the development of a strong crystallographic preferred

  16. Application of an Uncoupled Elastic-plastic-creep Constitutive Model to Metals at High Temperature

    NASA Technical Reports Server (NTRS)

    Haisler, W. E.

    1983-01-01

    A uniaxial, uncoupled constitutive model to predict the response of thermal and rate dependent elastic-plastic material behavior is presented. The model is based on an incremental classicial plasticity theory extended to account for thermal, creep, and transient temperature conditions. Revisions to he combined hardening rule of the theory allow for better representation of cyclic phenomenon including the high rate of strain hardening upon cyclic reyield and cyclic saturation. An alternative approach is taken to model the rate dependent inelastic deformation which utilizes hysteresis loops and stress relaxation test data at various temperatures. The model is evaluated and compared to experiments which involve various thermal and mechanical load histories on 5086 aluminum alloy, 304 stainless steel and Hastelloy-X.

  17. Creep of CMSX-4 superalloy single crystals: Effects of rafting at high temperature

    SciTech Connect

    Reed, R.C.; Matan, N.; Cox, D.C.; Rist, M.A.; Rae, C.M.F.

    1999-09-29

    The creep performance of (001)-orientated CMSX-4 superalloy single crystals at temperatures beyond 1000 C is analyzed. Rafting of the {gamma}{prime} structure occurs rapidly, e.g., for the 1150 C/100 MPa tests rafting is completed within the first 10 h. At this stage and for a considerable time thereafter the creep strain rate decreases with increasing strain, implying a creep hardening effect which is absent at lower temperatures when the kinetics of rafting is less rapid. Once a critical strain {epsilon}* of (0.7 {+-} 0.3)% is reached, the creep strain increases dramatically and failure occurs within a few tens of hours. It is demonstrated that methods of interpretation which, assume a proportionality between the creep strain rate and creep strain, are unable to account for creep hardening which occurs as a consequence of rafting. A modification is proposed which accounts for the blocking of the glide/climb of {l{underscore}brace}111{r{underscore}brace}{l{underscore}angle}1{bar 1}0{r{underscore}angle} creep dislocations which occurs as the number of vertical {gamma} channels is reduced and cellular dislocation networks become stabilized. Consequently, failure must be taken to be associated with creep cavitation, which occurs predominantly around casting porosity. It is emphasized that more work is required to quantify the interaction between the various creep damage mechanisms.

  18. Improving high temperature creep resistance of reduced activation steels by addition of nitrogen and intermediate heat treatment

    NASA Astrophysics Data System (ADS)

    Liu, W. B.; Zhang, C.; Xia, Z. X.; Yang, Z. G.

    2014-12-01

    In the present study, we report an enhanced high-temperature creep resistance in reduced activation ferrite/martensite (RAFM) steels, by introducing nitrogen (0.035 wt%, M3 steel) and employing a novel intermediate heat treatment I-Q-T (intermediate treatment, quenching and tempering). In comparison with all the control groups, the uniaxial tests of the I-Q-T treated M3 steel showed significant increase in rupture time and decrease in elongation. The microstructures of the samples were further characterized to elucidate the origin of the enhanced creep resistance. It is found that, by introducing nitrogen, the primary TaC particles were refined; by employing the I-Q-T heat treatment, the dispersed fine secondary MX precipitates, as well as the lath subgrains containing high-density dislocations, were increased: all are responsible for the improved creep resistance.

  19. High Temperature Mechanical Behavior of Polycrystalline Alumina from Mixed Nanometer and Micrometer Powders

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2001-01-01

    Sintered aluminum oxide materials were formed using commercial methods from mechanically mixed powders of nano-and micrometer alumina. The powders were consolidated at 1500 and 1600 C with 3.2 and 7.2 ksi applied stress in argon. The conventional micrometer sized powders failed to consolidate. While 100 percent nanometer-sized alumina and its mixture with the micrometer powders achieved less than 99 percent density. Preliminary high temperature creep behavior indicates no super-plastic strains. However high strains (less than 0.65 percent) were generated in the nanometer powder, due to cracks and linked voids initiated by cavitation.

  20. Creep behavior of pack cementation aluminide coatings on Grade 91 ferritic martensitic alloy

    SciTech Connect

    Bates, Brian; Zhang, Ying; Dryepondt, Sebastien N; Pint, Bruce A

    2014-01-01

    The creep behavior of various pack cementation aluminide coatings on Grade 91 ferritic-martensitic steel was investigated at 650 C in laboratory air. The coatings were fabricated in two temperature regimes, i.e., 650 or 700 C (low temperature) and 1050 C(high temperature), and consisted of a range of Al levels and thicknesses. For comparison, uncoated specimens heat-treated at 1050 C to simulate the high temperature coating cycle also were included in the creep test. All coated specimens showed a reduction in creep resistance, with 16 51% decrease in rupture life compared to the as-received bare substrate alloy. However, the specimens heat-treated at 1050 C exhibited the lowest creep resistance among all tested samples, with a surprisingly short rupture time of < 25 h, much shorter than the specimen coated at 1050 C. Factors responsible for the reduction in creep resistance of both coated and heat-treated specimens were discussed.

  1. Application of neutron diffraction in characterization of texture evolution during high-temperature creep in magnesium alloys

    SciTech Connect

    Vogel, Sven C; Sediako, Dimitry; Shook, S; Sediako, A

    2010-01-01

    A good combination of room-temperature and elevated temperature strength and ductility, good salt-spray corrosion resistance and exceUent diecastability are frequently among the main considerations in development of a new alloy. Unfortunately, there has been much lesser effort in development of wrought-stock alloys for high temperature applications. Extrudability and high temperature performance of wrought material becomes an important factor in an effort to develop new wrought alloys and processing technologies. This paper shows some results received in creep testing and studies of in-creep texture evolution for several wrought magnesium alloys developed for use in elevated-temperature applications. These studies were performed using E3 neutron spectrometer of the Canadian Neutron Beam Centre in Chalk River, ON, and HIPPO time-of-flight (TOF) spectrometer at Los Alamos Neutron Science Center, NM.

  2. Creep behavior of niobium alloy PWC-11

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Moore, T. J.; Grobstein, T. L.

    1987-01-01

    The high vacuum creep and creep-rupture behavior of a Nb-1Zr-.1C alloy (PWC 11) was investigated at 1350 and 1400 K with an applied stress of 40 MPa. The material was tested in the following four conditions: annealed (1 hr 1755 K/2 hr 1475 K); annealed plus EB welded; annealed plus aged for 1000 hr at 1350 or 1400 K; and annealed, welded, and aged. It was found that the material in the annealed state was the most creep-resistant condition tested, and that aging the alloy for 1000 hr without an applied stress greatly reduced that strength; however, it was still approximately three times as creep resistant as Nb-1Zr. Additionally, the EB weld region was stronger than the base metal in each condition tested, and phase extraction of the dispersed precipitate revealed the presence of a 70%ZrC-30%NbC cubic monocarbide phase.

  3. Correlation of Creep Behavior of Domal Salts

    SciTech Connect

    Munson, D.E.

    1999-02-16

    assumptions permit the set to be completed. From the analysis, two distinct response groups were evident, with the salts of one group measurably more creep resistant than the other group. Interestingly, these groups correspond well with the indirectly determined creep closure of the SPR storage caverns, a correlation that probably should be expected. Certainly, the results suggest a simple laboratory determination of the creep characteristics of a salt material from a dome site can indicate the relative behavior of any potential cavern placed within that dome.

  4. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, Mechanical Fatigue, Creep and Thermal Fatigue Effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie Corinne Scheidt

    1994-01-01

    This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  5. Toward Oxide Scale Behavior Management At High Temperature

    SciTech Connect

    Deltombe, R.; Dubar, M.; Dubois, A.; Dubar, L.

    2011-01-17

    Oxide scales grow freely on bare metallic surface under environmental conditions such as high temperature and oxygen. These act as thermal and mechanical shields, especially during high hot forming processes (>1000 deg. C). But product quality can be impacted by these oxide scales due to scale remaining on product or sticking on tools. Thus the TEMPO laboratory has created an original methodology in order to characterize oxide scale under high temperature, pressure and strain gradients. An experimental device has been developed. The final purpose of this work is to understand the scale behavior as a function of temperature, reduction ratio and steel composition.

  6. Non-contact Creep Resistance Measurement for Ultra-High Temperature Materials

    NASA Technical Reports Server (NTRS)

    Lee, J.; Bradshaw, C.; Rogers, J. R.; Rathz, T. J.; Wall, J. J.; Choo, H.; Liaw, P. K.; Hyers, R. W.

    2005-01-01

    Conventional techniques for measuring creep are limited to about 1700 C, so a new technique is required for higher temperatures. This technique is based on electrostatic levitation (ESL) of a spherical sample, which is rotated quickly enough to cause creep deformation by centrifugal acceleration. Creep of samples has been demonstrated at up to 2300 C in the ESL facility at NASA MSFC, while ESL itself has been applied at over 3000 C, and has no theoretical maximum temperature. The preliminary results and future directions of this NASA-funded research collaboration will be presented.

  7. METCAN updates for high temperature composite behavior: Simulation/verification

    NASA Technical Reports Server (NTRS)

    Lee, H.-J.; Murthy, P. L. N.; Chamis, Christos C.

    1991-01-01

    The continued verification (comparisons with experimental data) of the METCAN (Metal Matrix Composite Analyzer) computer code is updated. Verification includes comparisons at room and high temperatures for two composites, SiC/Ti-15-3 and SiC/Ti-6-4. Specifically, verification of the SiC/Ti-15-3 composite includes comparisons of strength, modulus, and Poisson's ratio as well as stress-strain curves for four laminates at room temperature. High temperature verification includes comparisons of strength and stress-strain curves for two laminates. Verification of SiC/Ti-6-4 is for a transverse room temperature stress-strain curve and comparisons for transverse strength at three temperatures. Results of the verification indicates that METCAN can be used with confidence to simulate the high temperature nonlinear behavior of metal matrix composites.

  8. THE DEVELOPMENT OF MICROSTRUCTURAL DAMAGE DURING HIGH TEMPERATURE CREEP-FATIGUE OF A NICKEL ALLOY

    SciTech Connect

    L.J. Carroll; M.C. Carroll; C. Cabet; R.N. Wright

    2013-02-01

    Alloy 617 is the leading candidate material for an Intermediate Heat Exchanger (IHX) of the Very High Temperature Reactor (VHTR). To evaluate the behavior of this material in the expected service conditions, strain-controlled cyclic tests that include hold times up to 9000 s at maximum tensile strain were conducted at 950 degrees C. The fatigue resistance decreased when a hold time was added at peak tensile strain, owing to the mechanisms resulting in a change in fracture mode from transgranular in pure fatigue to intergranular in creep–fatigue. Increases in the tensile hold duration beyond an initial value were not detrimental to the creep–fatigue resistance. An analysis of the evolving failure modes was facilitated by interrupting tests during cycling for ex situ microstructural investigation.

  9. Tensile and compressive creep behavior of extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy

    SciTech Connect

    Wang, H.; Wang, Q.D.; Boehlert, C.J.; Yin, D.D.; Yuan, J.

    2015-01-15

    The tensile and compressive creep behavior of an extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy was investigated at temperatures ranging from 200 °C to 300 °C and under stresses ranging from 30 MPa to 120 MPa. There existed an asymmetry in the tensile and compressive creep properties. The minimum creep rate of the alloy was slightly greater in tension than in compression. The measured values of the transient strain and initial creep rate in compression were greater than those in tension. The creep stress exponent was approximately 2.5 at low temperatures (T < 250 °C) and 3.4 at higher temperatures both in tension and in compression. The compression creep activation energy at low temperatures and high temperatures was 83.4 and 184.3 kJ/mol respectively, while one activation energy (184 kJ/mol) represented the tensile–creep behavior over the temperature range examined. Dislocation creep was suggested to be the main mechanism in tensile creep and in the high-temperature regime in compressive creep, while grain boundary sliding was suggested to dominate in the low-temperature regime in compressive creep. Precipitate free zones were observed near grain boundaries perpendicular to the loading direction in tension and parallel to the loading direction in compression. Electron backscattered diffraction analysis revealed that the texture changed slightly during creep. Non-basal slip was suggested to contribute to the deformation after basal slip was introduced. In the tensile–creep ruptured specimens, intergranular cracks were mainly observed at general high-angle boundaries. - Highlights: • Creep behavior of an extruded Mg–RE alloy was characterized by EBSD. • T5 aging treatment enhanced the tension–compression creep asymmetry. • The grains grew slightly during tensile creep, but not for compressive creep. • Precipitate free zones (PFZs) were observed at specific grain boundaries. • Intergranular fracture was dominant and cracks mainly originated at

  10. Creep rupture behavior of Stirling engine materials

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Scheuerman, C. M.; Stephens, J. R.

    1985-01-01

    The automotive Stirling engine, being investigated jointly by the Department of Energy and NASA Lewis as an alternate to the internal combustion engine, uses high-pressure hydrogen as the working fluid. The long-term effects of hydrogen on the high temperature strength properties of materials is relatively unknown. This is especially true for the newly developed low-cost iron base alloy NASAUT 4G-A1. This iron-base alloy when tested in air has creep-rupture strengths in the directionally solidified condition comparable to the cobalt base alloy HS-31. The equiaxed (investment cast) NASAUT 4G-A1 has superior creep-rupture to the equiaxed iron-base alloy XF-818 both in air and 15 MPa hydrogen.

  11. High-precision Non-Contact Measurement of Creep of Ultra-High Temperature Materials for Aerospace

    NASA Technical Reports Server (NTRS)

    Rogers, Jan R.; Hyers, Robert

    2008-01-01

    For high-temperature applications (greater than 2,000 C) such as solid rocket motors, hypersonic aircraft, nuclear electric/thermal propulsion for spacecraft, and more efficient jet engines, creep becomes one of the most important design factors to be considered. Conventional creep-testing methods, where the specimen and test apparatus are in contact with each other, are limited to temperatures approximately 1,700 C. Development of alloys for higher-temperature applications is limited by the availability of testing methods at temperatures above 2000 C. Development of alloys for applications requiring a long service life at temperatures as low as 1500 C, such as the next generation of jet turbine superalloys, is limited by the difficulty of accelerated testing at temperatures above 1700 C. For these reasons, a new, non-contact creep-measurement technique is needed for higher temperature applications. A new non-contact method for creep measurements of ultra-high-temperature metals and ceramics has been developed and validated. Using the electrostatic levitation (ESL) facility at NASA Marshall Space Flight Center, a spherical sample is rotated quickly enough to cause creep deformation due to centrifugal acceleration. Very accurate measurement of the deformed shape through digital image analysis allows the stress exponent n to be determined very precisely from a single test, rather than from numerous conventional tests. Validation tests on single-crystal niobium spheres showed excellent agreement with conventional tests at 1985 C; however the non-contact method provides much greater precision while using only about 40 milligrams of material. This method is being applied to materials including metals and ceramics for non-eroding throats in solid rockets and next-generation superalloys for turbine engines. Recent advances in the method and the current state of these new measurements will be presented.

  12. Fiber creep rate and high-temperature properties of SiC/SiC composites

    SciTech Connect

    Lewinsohn, C.A.; Jones, R.H.; Youngblood, G.E.; Henager, C.H. Jr.

    1998-03-01

    Results of studies aimed at relating the fiber creep rate to the subcritical crack growth rate and fracture properties of SiC/SiC composites have demonstrated that the crack growth rate in a bulk composite is controlled by the fiber creep rate. This result was demonstrated for Nicalon-CG and Hi-Nicalon fiber reinforced material where a 50--75 c shift in the creep strength of the fiber resulted in a similar shift in the crack growth rate of the composite. Irradiation enhanced creep of SiC fibers and matrix must also be considered in the performance assessment of SiC/SiC composites. The shape of the displacement versus time curve for composites containing Hi-Nicalon fibers were similar to those of the previously tested materials, containing Ceramic-grade fibers, that exhibited subcritical crack growth controlled by time-dependent relaxation of the fiber-bridging stresses due to fiber creep. The crack velocity in the CG-C composites at 1100 C in argon was very close to that of the Hi-C materials at 1150--1175 C, this roughly corresponds to the temperature differential shown by DiCarlo et al. to obtain the same relaxation in 1 hour bend stress relaxation (BSR) tests in the two fibers. This supports the hypothesis that subcritical crack growth in SiC/SiC composites is controlled by fiber creep.

  13. Damage Susceptibility of Grain Boundaries in HT9 Steel Subjected to High-Temperature Creep

    NASA Astrophysics Data System (ADS)

    Leng, Zhe; Field, David P.

    2012-10-01

    HT9 steel is an attractive ferritic/martensitic steel that is used in components of nuclear and fossil power plants because of its high strength and good swelling resistance. Specific phenomena (such as segregation, voiding, cracking, etc.) are prevalent along grain boundaries since these interfaces act as efficient sources for vacancies. The accumulation of vacancies in grain boundaries may result in intergranular fracture. In this study, HT9 steel was subjected to creep tests at elevated temperature (about 0.5 T m) and two different creep conditions (where creep lifetimes were about 100 and about 1000 hours, respectively). The grain boundaries in HT9 steel after creep tests were studied by the use of scanning electron microscopy in order to establish the relationship between the grain boundary structure and creep damage. Images and data obtained using electron backscatter diffraction reveal a high susceptibility of high-angle boundaries to creep cavitation, as expected. In addition, the Σ3 boundaries are also susceptible to damage under these conditions at a similar or even higher rate as compared with random high-angle boundaries.

  14. Computational simulation of high temperature metal matrix composite behavior

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Chamis, Christos C.

    1991-01-01

    Computational procedures are described to simulate the thermal and mechanical behavior of high temperature metal matrix composite (HT MMC) in the following four broad areas: (1) behavior of HT MMC from micromechanics to laminate; (2) HT MMC structural response for simple and complex structural components; (3) HT MMC microfracture; and (4) tailoring of HT MMC behavior for optimum specific performance. Representative results from each area are presented to illustrate the effectiveness of the computational simulation procedures. Relevant reports are referenced for extended discussion regarding the specific area.

  15. Effect of multiaxial stresses on the high-temperature behavior and rupture of advanced alloys

    NASA Astrophysics Data System (ADS)

    Johnson, Nancy Louise

    1998-05-01

    The evolution and effect of multiaxial stress states on the high temperature deformation and rupture behavior of materials with non-uniform microstructures has been investigated. Through a detailed description of the role that multiaxial stresses play on damage evolution and rupture, the abundant existing data for uniaxial rupture can be used to more successfully design for the life of high temperature components. Three dimensional finite element calculations of primary creep deformation were performed for particulate reinforced metal matrix composites under a variety of multiaxial loading conditions. A quasi-steady state stress distribution develops during primary creep for each of the conditions considered. The results indicate that higher stresses exist in regions above and below the particles and accommodate the development of creep damage. The nature of the stress state within these regions is not significantly altered by the presence of the particles. The strain fields show a distribution similar to the stress fields. Despite significantly large regions of enhanced stress, the overall creep strain rates for all models are decreased by the presence of the particles. The applied effective stress does not have a unique relationship with overall effective strain rate for particulate reinforced composites under different applied stress states. The failure of sections of turbine rotor disks formed from the superalloy V-57 which operate under highly multiaxial stresses has been investigated. Optical microscopy of a turbine rotor disk removed from service after 30,000 hrs showed an intergranular crack that initiated at the root of a fir-tree turbine rotor blade attachment. Transmission electron microscopy studies showed heavy grain boundary oxidation that could account for the cracking and failure of the rotor disks. Heat treatments of a TiAl alloy have been established for producing a microstructure suitable for high temperature multiaxial rupture testing. The

  16. Overview of strategies for high-temperature creep and oxidation resistance of alumina-forming austenitic stainless steels

    SciTech Connect

    Yamamoto, Yukinori; Brady, Michael P; Santella, Michael L; Bei, Hongbin; Maziasz, Philip J; Pint, Bruce A

    2011-01-01

    A family of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys is under development for structural use in fossil energy conversion and combustion system applications. The AFA alloys developed to date exhibit comparable creep-rupture lives to state-of-the-art advanced austenitic alloys, and superior oxidation resistance in the {approx}923 K to 1173 K (650 C to 900 C) temperature range due to the formation of a protective Al{sub 2}O{sub 3} scale rather than the Cr{sub 2}O{sub 3} scales that form on conventional stainless steel alloys. This article overviews the alloy design approaches used to obtain high-temperature creep strength in AFA alloys via considerations of phase equilibrium from thermodynamic calculations as well as microstructure characterization. Strengthening precipitates under evaluation include MC-type carbides or intermetallic phases such as NiAl-B2, Fe{sub 2}(Mo,Nb)-Laves, Ni{sub 3}Al-L1{sub 2}, etc. in the austenitic single-phase matrix. Creep, tensile, and oxidation properties of the AFA alloys are discussed relative to compositional and microstructural factors.

  17. High temperature creep of SiC densified using a transient liquid phase

    SciTech Connect

    Jou, Z.C.; Virkar, A.V. ); Cutler, R.A. )

    1991-09-01

    Silicon carbide-based ceramics can be rapidly densified above approximately 1850 {degree}C due to a transient liquid phase resulting from the reaction between alumina and aluminum oxycarbides. The resulting ceramics are fine-grained, dense, and exhibit high strength at room temperature. SiC hot pressed at 1875 {degree}C for 10 min in Ar was subjected to creep deformation in bending at elevated temperatures between 1500 and 1650 {degree}C in Ar. Creep was thermally activated with an activation energy of 743 kJ/mol. Creep rates at 1575 {degree}C were between 10{sup {minus}9}/s and 10{sup {minus}7}/s at an applied stress between 38 and 200 MPa, respectively, resulting in a stress exponent of {approx}1.7.

  18. Simulation of Fatigue Behavior of High Temperature Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Tong, Mike T.; Singhal, Suren N.; Chamis, Christos C.; Murthy, Pappu L. N.

    1996-01-01

    A generalized relatively new approach is described for the computational simulation of fatigue behavior of high temperature metal matrix composites (HT-MMCs). This theory is embedded in a specialty-purpose computer code. The effectiveness of the computer code to predict the fatigue behavior of HT-MMCs is demonstrated by applying it to a silicon-fiber/titanium-matrix HT-MMC. Comparative results are shown for mechanical fatigue, thermal fatigue, thermomechanical (in-phase and out-of-phase) fatigue, as well as the effects of oxidizing environments on fatigue life. These results show that the new approach reproduces available experimental data remarkably well.

  19. The effects of microstructure on the high temperature mechanical behavior of a self-reinforced, hot-pressed silicon nitride

    NASA Astrophysics Data System (ADS)

    Boling-Risser, Martha Ann

    It has long been recognized that silicon nitride has potential for use in high temperature structural applications. Previous studies on silicon nitride have focused on either high temperature failure mechanisms or on high temperature deformation, but no work has concentrated on integrating the two types of mechanisms. Neither has any study examined the effect of microstructure on high temperature failure and deformation mechanisms. The present study focused on using an examination of the effect of microstructure on the high temperature failure and deformation mechanisms as a means for integrating the mechanical behavior. The material used in this study was a self-reinforced, hot-pressed silicon nitride produced by Dow Chemical, USA. Samples with a range of microstructures were fabricated through a post-processing heat treatment. The room temperature mechanical behavior was unchanged by the heat treatment. The high temperature failure mechanisms were examined through the use of indentation controlled flexure tests. Increases in temperature above 1300sp°C led to a transition from fast fracture failure to slow crack growth and creep rupture failure. High temperature deformation mechanisms were explored through the use of compressive creep tests. At temperatures above 1575sp°C, deformation proceeds by solution-precipitation grain boundary sliding. At intermediate temperatures of 1450sp°C to 1525sp°C, an alternate deformation mechanism of grain boundary sliding accommodated by viscous flow of the grain boundary phase becomes active until the silicon nitride grains interlock. Damage at all temperatures developed in the form of pockets located at the two-grain junctions which were similar in shape to cavitation voids, but were filled with grain boundary phase material. A model has been developed integrating failure and deformation mechanisms which demonstrates the dependence of intermediate temperature deformation rates on the volume fraction of grain boundary surface

  20. Constrained Self-adaptive Solutions Procedures for Structure Subject to High Temperature Elastic-plastic Creep Effects

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Tovichakchaikul, S.

    1983-01-01

    This paper will develop a new solution strategy which can handle elastic-plastic-creep problems in an inherently stable manner. This is achieved by introducing a new constrained time stepping algorithm which will enable the solution of creep initiated pre/postbuckling behavior where indefinite tangent stiffnesses are encountered. Due to the generality of the scheme, both monotone and cyclic loading histories can be handled. The presentation will give a thorough overview of current solution schemes and their short comings, the development of constrained time stepping algorithms as well as illustrate the results of several numerical experiments which benchmark the new procedure.

  1. Creep of Refractory Fibers and Modeling of Metal and Ceramic Matrix Composite Creep Behavior

    NASA Technical Reports Server (NTRS)

    Tewari, S.N.

    1995-01-01

    Our concentration during this research was on the following subprograms. (1) Ultra high vacuum creep tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires, temperature range from 1100 K to 1500 K, creep time of 1 to 500 hours. (2) High temperature vacuum tensile tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires. (3) Air and vacuum tensile creep tests on polycrystalline and single crystal alumina fibers, such as alumina-mullite Nextel fiber, yttrium aluminum ganet (YAG) and Saphikon, temperature range from 1150 K to 1470 K, creep time of 2 to 200 hours. (4) Microstructural evaluation of crept fibers, TEM study on the crept metal wires, SEM study on the fracture surface of ceramic fibers. (5) Metal Matrix Composite creep models, based on the fiber creep properties and fiber-matrix interface zone formation.

  2. Brief summary of the evolution of high-temperature creep-fatigue life prediction models for crack initiation

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    1993-01-01

    The evolution of high-temperature, creep-fatigue, life-prediction methods used for cyclic crack initiation is traced from inception in the late 1940's. The methods reviewed are material models as opposed to structural life prediction models. Material life models are used by both structural durability analysts and by material scientists. The latter use micromechanistic models as guidance to improve a material's crack initiation resistance. Nearly one hundred approaches and their variations have been proposed to date. This proliferation poses a problem in deciding which method is most appropriate for a given application. Approaches were identified as being combinations of thirteen different classifications. This review is intended to aid both developers and users of high-temperature fatigue life prediction methods by providing a background from which choices can be made. The need for high-temperature, fatigue-life prediction methods followed immediately on the heels of the development of large, costly, high-technology industrial and aerospace equipment immediately following the second world war. Major advances were made in the design and manufacture of high-temperature, high-pressure boilers and steam turbines, nuclear reactors, high-temperature forming dies, high-performance poppet valves, aeronautical gas turbine engines, reusable rocket engines, etc. These advances could no longer be accomplished simply by trial and error using the 'build-em and bust-em' approach. Development lead times were too great and costs too prohibitive to retain such an approach. Analytic assessments of anticipated performance, cost, and durability were introduced to cut costs and shorten lead times. The analytic tools were quite primitive at first and out of necessity evolved in parallel with hardware development. After forty years more descriptive, more accurate, and more efficient analytic tools are being developed. These include thermal-structural finite element and boundary element

  3. Brief summary of the evolution of high-temperature creep-fatigue life prediction models for crack initiation

    NASA Astrophysics Data System (ADS)

    Halford, Gary R.

    1993-10-01

    The evolution of high-temperature, creep-fatigue, life-prediction methods used for cyclic crack initiation is traced from inception in the late 1940's. The methods reviewed are material models as opposed to structural life prediction models. Material life models are used by both structural durability analysts and by material scientists. The latter use micromechanistic models as guidance to improve a material's crack initiation resistance. Nearly one hundred approaches and their variations have been proposed to date. This proliferation poses a problem in deciding which method is most appropriate for a given application. Approaches were identified as being combinations of thirteen different classifications. This review is intended to aid both developers and users of high-temperature fatigue life prediction methods by providing a background from which choices can be made. The need for high-temperature, fatigue-life prediction methods followed immediately on the heels of the development of large, costly, high-technology industrial and aerospace equipment immediately following the second world war. Major advances were made in the design and manufacture of high-temperature, high-pressure boilers and steam turbines, nuclear reactors, high-temperature forming dies, high-performance poppet valves, aeronautical gas turbine engines, reusable rocket engines, etc. These advances could no longer be accomplished simply by trial and error using the 'build-em and bust-em' approach. Development lead times were too great and costs too prohibitive to retain such an approach. Analytic assessments of anticipated performance, cost, and durability were introduced to cut costs and shorten lead times. The analytic tools were quite primitive at first and out of necessity evolved in parallel with hardware development. After forty years more descriptive, more accurate, and more efficient analytic tools are being developed. These include thermal-structural finite element and boundary element

  4. High-temperature, multi-atmosphere, constant stress compression creep apparatus

    NASA Astrophysics Data System (ADS)

    Carter, C. H., Jr.; Stone, C. A.; Davis, R. F.; Schaub, D. R.

    1980-10-01

    A creep apparatus is presented in which uniaxial compressive stresses, constant to within 1% for strains up to 10%, can be applied to the sample and strains can be read with an accuracy of 5 x 10 to the -7th m. Loads as great as 440 kg can be applied, and the furnace can be operated in vacuum or inert gas to 2573 K or used with a muffle tube. Data acquisition, manipulation, and plotting is computer controlled.

  5. Creep-fatigue behavior of NiCoCrAlY coated PWA 1480

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Gayda, J.; Hebsur, M. G.

    1985-01-01

    This study of high-temperature fatigue and creep-fatigue behavior is part of a program to identify the basic features of the effects of temperature, creep, fatigue, and environment on the behavior of a single crystal superalloy, a bulk coating alloy, and a coated alloy system. A system was selected which has had considerable production experience: the Ni-base superalloy, PWA 1480, and the NiCoCrAlY coating, PWA 276. Isothermal behavior was studied first. A series of fatigue and creep fatigue tests of the types commonly designated as pp, cp, pc and cc were conducted. These tests were conducted at various constant total strain ranges. The creep-fatigue cycles employed constant stress dwells at the maximum and/or minimum load. Test results are given.

  6. High-temperature Tensile Properties and Creep Life Assessment of 25Cr35NiNb Micro-alloyed Steel

    NASA Astrophysics Data System (ADS)

    Ghatak, Amitava; Robi, P. S.

    2016-05-01

    Reformer tubes in petrochemical industries are exposed to high temperatures and gas pressure for prolonged period. Exposure of these tubes at severe operating conditions results in change in the microstructure and degradation of mechanical properties which may lead to premature failure. The present work highlights the high-temperature tensile properties and remaining creep life prediction using Larson-Miller parametric technique of service exposed 25Cr35NiNb micro-alloyed reformer tube. Young's modulus, yield strength, and ultimate tensile strength of the steel are lower than the virgin material and decreases with the increase in temperature. Ductility continuously increases with the increase in temperature up to 1000 °C. Strain hardening exponent increases up to 600 °C, beyond which it starts decreasing. The tensile properties are discussed with reference to microstructure and fractographs. Based on Larson-Miller technique, a creep life of at least 8.3 years is predicted for the service exposed material at 800 °C and 5 MPa.

  7. Creep behavior of uranium carbide-based alloys

    NASA Technical Reports Server (NTRS)

    Seltzer, M. S.; Wright, T. R.; Moak, D. P.

    1975-01-01

    The present work gives the results of experiments on the influence of zirconium carbide and tungsten on the creep properties of uranium carbide. The creep behavior of high-density UC samples follows the classical time-dependence pattern of (1) an instantaneous deformation, (2) a primary creep region, and (3) a period of steady-state creep. Creep rates for unalloyed UC-1.01 and UC-1.05 are several orders of magnitude greater than those measured for carbide alloys containing a Zr-C and/or W dispersoid. The difference in creep strength between alloyed and unalloyed materials varies with temperature and applied stress.

  8. Flux creep and irreversibility line in high-temperature oxide superconductors

    NASA Astrophysics Data System (ADS)

    Matsushita, T.; Fujiyoshi, T.; Toko, K.; Yamafuji, K.

    1990-05-01

    The irreversibility line in high-temperature oxide superconductors is theoretically investigated from a viewpoint of dependence on the flux-pinning strength, and a general relation between the effective pinning potential and the critical current density is derived. It is shown that the irreversibility magnetic field at 77 K in strongly pinned oxide superconductors is sufficiently high for application.

  9. High-temperature measurements of lattice parameters and internal stresses of a creep-deformed monocrystalline nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Biermann, Horst; Strehler, Marcus; Mughrabi, Haël

    1996-04-01

    High-temperature X-ray line profile measurements were performed to maximal temperatures of 1050 °C on samples of the nickel-base superalloy SRR 99. The samples with rod axes near the [001] direction were investigated in the initially undeformed state and after creep deformation at different temperatures and stresses. For the measurements of the (002) and (020) line profiles, a special X-ray double crystal diffractometer with negligible line broadening was used which was equipped with a high-temperature vacuum chamber. The line profiles were evaluated for the lattice parameters of the matrix phase γ and the precipitated γ' phase and for values of the lattice mismatch parallel and perpendicular to the stress axis, respectively, which were found to be different. Elastic, tetragonal distortions of the phases γ and γ' could be determined between room temperature and about 900 °C. These distortions are thermally induced due to the different thermal expansion coefficients of the two phases and deformation induced due to interfacial dislocation networks which were built up during deformation. At the high temperatures of the X-ray measurements, at least partial recovery of the deformation-induced internal stresses occurred, depending on the temperature of the X-ray measurements. The results are discussed and compared with data obtained by complementary techniques.

  10. High temperature fatigue behavior of tungsten copper composites

    NASA Technical Reports Server (NTRS)

    Verrilli, M. J.; Kim, Y.-S.; Gabb, T. P.

    1990-01-01

    The present study investigates the high-temperature fatigue behavior of a 9-v/o tungsten fiber-reinforced copper matrix composite. Load-controlled isothermal fatigue at 260 and 560 C and thermomechanical fatigue (TMF) experiments, both in-phase and out-of-phase between 260 and 560 C, were performed. The stress-strain response under all conditions displayed considerable inelasticity. Strain ratchetting was observed during all the fatigue experiments. For the isothermal fatigue and in-phase TMF tests, the ratchetting was always in a tensile direction, continuing until failure. The ratchetting during the out-of-phase TMF test shifted from a tensile to a compressive direction. For all cases, the fatigue lives were found to be controlled by the damage of the copper matrix. On a stress basis, TMF loading substantially reduced lives relative to isothermal cycling.

  11. Thermally activated flux creep and critical current densities in high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Matsushita, Teruo

    The effect of flux creep is discussed for projected strongly pinned oxide superconductors. It is determined, that if a superconducting wire with a critical current density higher than 10-billion A/sq m at 77 K and 5 T can be produced, the wire will be able to be applied to equipment at high fields; nonzero critical density will be obtained even at 77 K and high fields. The decay of persistent current is expected to be noticeable even in such strongly pinned superconductors, when those are used at 77 K. Although this will be managed in power equipment by lowering the operating current; variation in the magnetic field due to the variation in the current distribution inside superconducting wires appears to be unavoidable. It is suggested that an effort should be made to reduce the variation by reducing the diameter of the superconducting filaments.

  12. Creep-fatigue interaction at high temperature; Proceedings of the Symposium, 112th ASME Winter Annual Meeting, Atlanta, GA, Dec. 1-6, 1991

    SciTech Connect

    Haritos, G.K.; Ochoa, O.O.

    1991-01-01

    Various papers on creep-fatigue interaction at high temperature are presented. Individual topics addressed include: analysis of elevated temperature fatigue crack growth mechanisms in Alloy 718, physically based microcrack propagation laws for creep-fatigue-environment interaction, in situ SEM observation of short fatigue crack growth in Waspaloy at 700 C under cyclic and dwell conditions, evolution of creep-fatigue life prediction models, TMF design considerations in turbine airfoils of advanced turbine engines. Also discussed are: high temperature fatigue life prediction computer code based on the total strain version of strainrange partitioning, atomic theory of thermodynamics of internal variables, geometrically nonlinear analysis of interlaminar stresses in unsymmetrically laminated plates subjected to uniform thermal loading, experimental investigation of creep crack tip deformation using moire interferometry.

  13. Creep-fatigue interaction at high temperature; Proceedings of the Symposium, 112th ASME Winter Annual Meeting, Atlanta, GA, Dec. 1-6, 1991

    NASA Astrophysics Data System (ADS)

    Haritos, George K.; Ochoa, O. O.

    Various papers on creep-fatigue interaction at high temperature are presented. Individual topics addressed include: analysis of elevated temperature fatigue crack growth mechanisms in Alloy 718, physically based microcrack propagation laws for creep-fatigue-environment interaction, in situ SEM observation of short fatigue crack growth in Waspaloy at 700 C under cyclic and dwell conditions, evolution of creep-fatigue life prediction models, TMF design considerations in turbine airfoils of advanced turbine engines. Also discussed are: high temperature fatigue life prediction computer code based on the total strain version of strainrange partitioning, atomic theory of thermodynamics of internal variables, geometrically nonlinear analysis of interlaminar stresses in unsymmetrically laminated plates subjected to uniform thermal loading, experimental investigation of creep crack tip deformation using moire interferometry. (For individual items see A93-31336 to A93-31344)

  14. Design, microstructure, and high-temperature behavior of silicon nitride sintered with rate-earth oxides

    SciTech Connect

    Ciniculk, M.K. . Dept. of Materials Science and Mineral Engineering)

    1991-08-01

    The processing-microstructure-property relations of silicon nitride ceramics sintered with rare-earth oxide additives have been investigated with the aim of improving their high-temperature behavior. The additions of the oxides of Y, Sm, Gd, Dy, Er, or Yb were compositionally controlled to tailor the intergranular phase. The resulting microstructure consisted of {beta}-Si{sub 3}N{sub 4} grains and a crystalline secondary phase of RE{sub 2}Si{sub 2}O{sub 7}, with a thin residual amorphous phase present at grain boundaries. The lanthanide oxides were found to be as effective as Y{sub 2}O{sub 3} in densifying Si{sub 3}N{sub 4}, resulting in identical microstructures. The crystallization behavior of all six disilicates was similar, characterized by a limited nucleation and rapid growth mechanism resulting in large single crystals. Complete crystallization of the intergranular phase was obtained with the exception of a residual amorphous, observed at interfaces and believed to be rich in impurities, the cause of incomplete devitrification. The low resistance to oxidation of these materials was attributed to the minimization of amorphous phases via devitrification to disilicates, compatible with SiO{sub 2}, the oxidation product of Si{sub 3}N{sub 4}. The strength retention of these materials at 1300{degrees}C was found to be between 80% and 91% of room-temperature strength, due to crystallization of the secondary phase and a residual but refractory amorphous grain-boundary phase. The creep behavior was found to be strongly dependent on residual amorphous phase viscosity as well as on the oxidation behavior, as evidenced by the nonsteady-state creep rates of all materials. 122 refs., 51 figs., 12 tabs.

  15. Creep-resistant, cobalt-free alloys for high temperature, liquid-salt heat exchanger systems

    DOEpatents

    Holcomb, David E; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-09-06

    An essentially Fe- and Co-free alloy is composed essentially of, in terms of weight percent: 6.0 to 7.5 Cr, 0 to 0.15 Al, 0.5 to 0.85 Mn, 11 to 19.5 Mo, 0.03 to 4.5 Ta, 0.01 to 9 W, 0.03 to 0.08 C, 0 to 1 Re, 0 to 1 Ru, 0 to 0.001 B, 0.0005 to 0.005 N, balance Ni, the alloy being characterized by, at 850.degree. C., a yield strength of at least 25 Ksi, a tensile strength of at least 38 Ksi, a creep rupture life at 12 Ksi of at least 25 hours, and a corrosion rate, expressed in weight loss [g/(cm.sup.2 sec)]10.sup.-11 during a 1000 hour immersion in liquid FLiNaK at 850.degree. C., in the range of 3 to 10.

  16. Microstructural examination of high temperature creep failure of Zircaloy-2 cladding in irradiated PHWR fuel pins

    NASA Astrophysics Data System (ADS)

    Mishra, Prerna; Sah, D. N.; Kumar, Sunil; Anantharaman, S.

    2012-10-01

    Cladding samples taken from the ballooned region of the irradiated Zircaloy-2 cladded PHWR fuel pins which failed during isothermal heating tests carried out at 800-900 °C were examined using optical and scanning electron microscopy. The examination of samples from the fuel pin tested at 900 °C showed an intergranular mode of failure in the cladding due to formation of cracks, cavities and zirconium hydride precipitates on the grain boundaries in the cladding material. A thin hard α-Zr(O) layer was observed on outer surface due to dissolution of the oxide layer formed during reactor operation. Grain boundary sliding was identified to be the main mode of creep deformation of Zircaloy-2 at 900 °C. Examination of the cladding tested at 800 °C showed absence of cracks or cavities in the deformed material and no localisation of hydrides was observed at the grain boundaries. The failure of the cladding occurred after necking followed by extensive wall thinning of the cladding tube.

  17. High temperature fatigue behavior of tungsten copper composites

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Kim, Yong-Suk; Gabb, Timothy P.

    1989-01-01

    The high temperature fatigue behavior of a 9 vol percent, tungsten fiber reinforced copper matrix composite was investigated. Load-controlled isothermal fatigue experiments at 260 and 560 C and thermomechanical fatigue (TMF) experiments, both in phase and out of phase between 260 and 560 C, were performed. The stress-strain response displayed considerable inelasticity under all conditions. Also, strain ratcheting was observed during all the fatigue experiments. For the isothermal fatigue and in-phase TMF tests, the ratcheting was always in a tensile direction, continuing until failure. The ratcheting during the out-of-phase TMF test shifted from a tensile direction to a compressive direction. This behavior was thought to be associated with the observed bulging and the extensive cracking of the out-of-phase specimen. For all cases, the fatigue lives were found to be controlled by damage to the copper matrix. Grain boundary cavitation was the dominant damage mechanism of the matrix. On a stress basis, TMF loading reduced lives substantially, relative to isothermal cycling. In-phase cycling resulted in the shortest lives, and isothermal fatigue at 260 C, the longest.

  18. Finite Element Based Stress Analysis of Graphite Component in High Temperature Gas Cooled Reactor Core Using Linear and Nonlinear Irradiation Creep Models

    SciTech Connect

    Mohanty, Subhasish; Majumdar, Saurindranath

    2015-01-01

    Irradiation creep plays a major role in the structural integrity of the graphite components in high temperature gas cooled reactors. Finite element procedures combined with a suitable irradiation creep model can be used to simulate the time-integrated structural integrity of complex shapes, such as the reactor core graphite reflector and fuel bricks. In the present work a comparative study was undertaken to understand the effect of linear and nonlinear irradiation creep on results of finite element based stress analysis. Numerical results were generated through finite element simulations of a typical graphite reflector.

  19. Creep crack growth behavior of several structural alloys

    NASA Astrophysics Data System (ADS)

    Sadananda, K.; Shahinian, P.

    1983-07-01

    Creep crack growth behavior of several high temperature alloys, Inconel 600, Inconel 625, Inconel X-750, Hastelloy X, Nimonic PE-16, Incoloy 800, and Haynes 25 (HS-25) was examined at 540, 650, 760, and 870 °C. Crack growth rates were analyzed in terms of both linear elastic stress intensity factor and J*-integral parameter. Among the alloys Inconel 600 and Hastelloy X did not show any observable crack growth. Instead, they deformed at a rapid rate resulting in severe blunting of the crack tip. The other alloys, Inconel 625, Inconel X-750, Incoloy 800, HS-25, and PE-16 showed crack growth at one or two temperatures and deformed continuously at other temperatures. Crack growth rates of the above alloys in terms ofJ* parameter were compared with the growth rates of other alloys published in the literature. Alloys such as Inconel X-750, Alloy 718, and IN-100 show very high growth rates as a result of their sensitivity to an air environment. Based on detailed fracture surface analysis, it is proposed that creep crack growth occurs by the nucleation and growth of wedge-type cracks at triple point junctions due to grain boundary sliding or by the formation and growth of cavities at the boundaries. Crack growth in the above alloys occurs only in some critical range of strain rates or temperatures. Since the service conditions for these alloys usually fall within this critical range, knowledge and understanding of creep crack growth behavior of the structural alloys are important.

  20. Long-Term Creep and Creep Rupture Behavior of Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Haque, A.; Rahman, M.; Mach, A.; Jeelani, S.; Verrilli, Michael J. (Technical Monitor)

    2001-01-01

    Tensile creep behavior of SiC/SiNC ceramic matrix composites at elevated temperatures and at various stress levels have been investigated for turbine engine applications. The objective of this research is to present creep behavior of SiC/SiCN composites at stress levels above and below the monotonic proportional limit strength and predict the life at creep rupture conditions. Tensile creep-rupture tests were performed on an Instron 8502 servohydraulic testing machine at constant load conditions up to a temperature limit of 1000 C. Individual creep curves indicate three stages such as primary, secondary, and tertiary. The creep rate increased linearly at an early stage and then gradually became exponential at higher strains. The stress exponent and activation energy were also obtained at 700 and 1000 C. The specimen lifetime was observed to be 55 hrs at 121 MPa and at 700 C. The life span reduced to 35 hrs at 143 MPa and at 1000 C. Scanning electron microscopy observations revealed significant changes in the crystalline phases and creep damage development. Creep failures were accompanied by extensive fiber pullout, matrix cracking, and debonding along with fiber fracture. The creep data was applied to Time-Temperature-Stress superposition model and the Manson-Haferd parametric model for long-time life prediction.

  1. Lewis' enhanced laboratory for research into the fatigue and constitutive behavior of high temperature materials

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1985-01-01

    Lewis Research Center's high temperature fatigue laboratory has undergone significant changes resulting in the addition of several new experimental capabilities. New materials testing systems have been installed enabling research to be conducted in multiaxial fatigue and deformation at high temperature, as well as cumulative creep-fatigue damage wherein the relative failure-life levels are widely separated. A key component of the new high-temperature fatigue and structures laboratory is a local, distributed computer system whose hardware and software architecture emphasizes a high degree of configurability, which in turn, enables the researcher to tailor a solution to the problem at hand.

  2. Microstructure and Creep Behavior of a Directional Solidification Nickel-based Superalloy

    NASA Astrophysics Data System (ADS)

    Tian, Ning; Tian, Sugui; Yu, Huichen; Li, Ying; Meng, Xianlin

    2015-07-01

    By means of creep property measurement and microstructure observation, an investigation has been made into microstructure and creep behavior of a directional solidification Ni-based superalloy at high temperatures. Results show that after full heat treatment, small cuboidal γ' precipitates distribute in the dendrite regions, while coarser ones distribute in the inter-dendrite regions. In the primary stage of creep, the γ' phase in alloy is transformed into the rafted structure along the direction vertical to stress axis, and then the creep of alloy enters the steady state stage. And dislocations slipping in the g matrix and climbing over the rafted γ' phase are thought to be the deformation mechanism of the alloy during steady creep stage. At the latter stage of creep, the alternate slipping of dislocations may shear and twist the rafted γ'/γ phases, which promotes the initiation and propagation of the micro-cracks along the boundaries near the coarser rafted γ' phase. And the bigger probability of the creep damage occurs in the grain boundaries along 45° angles relative to the stress axis due to them bearing relatively bigger shearing stress.

  3. High-temperature corrosion behavior of coatings and ODS alloys based on Fe{sub 3}Al

    SciTech Connect

    Tortorelli, P.F.; Pint, B.A.; Wright, I.G.

    1996-06-01

    Iron aluminides containing greater than about 20-25 @ % Al have oxidation/sulfidation resistance at temperatures well above those at which these alloys have adequate mechanical strength. In addition to alloying modifications for improved creep resistance of wrought material, this strength limitation is being addressed by development of oxide-dispersion- strengthened (ODS) iron aluminides and by evaluation of Fe{sub 3}Al alloy compositions as coatings or claddings on higher-strength, less corrosion-resistant materials. As part of these efforts, the high-temperature corrosion behavior of iron-aluminide weld overlays and ODS alloys is being characterized and compared to previous results for ingot-processed material.

  4. Tensile creep behavior of polycrystalline alumina fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.

    1993-01-01

    Tensile creep studies were conducted on polycrystalline Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Test conditions were temperatures from 800 to 1050 C and stresses from 60 to 1000 MPa. For both fibers, only a small primary creep portion occurred followed by steady-state creep. The stress exponents for steady-state creep of Nextel 610 and Fiber FP were found to be about 3 and 1, respectively. At lower temperatures, below 1000 C, the finer grained Nextel 610 had a much higher 0.2 percent creep strength for 100 hr than the Fiber FP; while at higher temperatures, Nextel 610 had a comparable creep strength to the Fiber FP. The stress and grain size dependencies suggest Nextel 610 and Fiber FP creep rates are due to grain boundary sliding controlled by interface reaction and Nabarro-Herring mechanisms, respectively.

  5. Computational simulation of probabilistic lifetime strength for aerospace materials subjected to high temperature, mechanical fatigue, creep, and thermal fatigue

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Bast, Callie C.; Trimble, Greg A.

    1992-01-01

    The results of a fourth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA) are presented. The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue, or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation was randomized and is included in the computer program, PROMISC. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 was analyzed using the developed methodology.

  6. Computational simulation of probabilistic lifetime strength for aerospace materials subjected to high temperature, mechanical fatigue, creep and thermal fatigue

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Bast, Callie C.; Trimble, Greg A.

    1992-01-01

    This report presents the results of a fourth year effort of a research program, conducted for NASA-LeRC by the University of Texas at San Antonio (UTSA). The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subject to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 has been analyzed using the developed methodology.

  7. Computer program for predicting creep behavior of bodies of revolution

    NASA Technical Reports Server (NTRS)

    Adams, R.; Greenbaum, G.

    1971-01-01

    Computer program, CRAB, uses finite-element method to calculate creep behavior and predict steady-state stresses in an arbitrary body of revolution subjected to a time-dependent axisymmetric load. Creep strains follow a time hardening law and a Prandtl-Reuss stress-strain relationship.

  8. Creep Behavior, Deformation Mechanisms, and Creep Life of Mod.9Cr-1Mo Steel

    NASA Astrophysics Data System (ADS)

    ABE, Fujio

    2015-12-01

    The creep behavior, deformation mechanisms, and the correlation between creep deformation parameters and creep life have been investigated for Mod.9Cr-1Mo steel (Gr.91, 9Cr-1Mo-VNb) by analyzing creep strain data at 723 K to 998 K (450 °C to 725 °C), 40 to 450 MPa, and t r = 11.4 to 68,755 hours in NIMS Creep Data Sheet. The time to rupture t r is reasonably correlated with the minimum creep rate {dot{\\varepsilon }}_{ min } and the acceleration of creep rate by strain in the acceleration region dln {dot{\\varepsilon }} /d ɛ, as t r = 1.5/[ {dot{\\varepsilon }}_{ min } ( dln {dot{\\varepsilon }} /d ɛ)], where {dot{\\varepsilon }}_{ min } and dln {dot{\\varepsilon }} /d ɛ reflect the creep behavior in the transient and acceleration regions, respectively. The {dot{\\varepsilon }}_{ min } is inversely proportional to the time to minimum creep rate t m, while it is proportional to the strain to minimum creep rate ɛ m, as {dot{\\varepsilon }}_{ min } = 0.54 ( ɛ m/ t m). The ɛ m decreases with decreasing stress, suggesting that the creep deformation in the transient region becomes localized in the vicinity of prior austenite grain boundaries with decreasing stress. The duration of acceleration region is proportional to the duration of transient region, while the dln {dot{\\varepsilon }} /d ɛ is inversely proportional to the ɛ m. The t r is also correlated with the t m, as t r = g t m, where g is a constant. The present creep life equations reasonably predict the degradation in creep rupture strength at long times. The downward deviation takes place in the t r vs {dot{\\varepsilon }}_{ min } curves (Monkman-Grant plot). At the same {dot{\\varepsilon }}_{ min } , both the ɛ m and t m change upon the condition of t m ∝ ɛ m. The decrease in ɛ m with decreasing stress, corresponding to decreasing {dot{\\varepsilon }}_{ min } , causes a decrease in t m, indicating the downward deviation of the t r vs {dot{\\varepsilon }}_{ min } curves.

  9. Effect of Co on Creep Behavior of a P911 Steel

    NASA Astrophysics Data System (ADS)

    Kipelova, Alla; Odnobokova, Marina; Belyakov, Andrey; Kaibyshev, Rustam

    2013-01-01

    The microstructure and creep behavior of a 3 pct Co modified P911 steel and standard P911 steel were examined. It was shown that the nanoscale M23C6 carbides and MX carbonitrides in the 3 pct Co modified P911 steel are not susceptible to significant coarsening under creep conditions. Also, coarsening simulations of M23C6 particles were performed for both steels. The rates of lath and particle coarsening in the P911 + 3 pct Co steel are remarkably lower than those in the P911. Increased stability of a tempered martensite lath structure in the 3 pct Co modified P911 steel provides enhanced creep resistance at an exceptionally high temperature of 923 K (650 °C).

  10. Mechanical behavior of low porosity carbonate rock: from brittle creep to ductile creep

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2013-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this experimental study, we focus on the mechanical behavior of a low porosity (9%) white Tavel (France) carbonate rock (>98% calcite) at P-Q conditions beyond the elastic domain. It has been shown that in sandstones composed of quartz, cracks are developing under these conditions. However, in carbonates, calcite minerals can meanwhile also exhibit microplasticity. The samples were deformed in the triaxial cell of the Ecole Normale Superieure de Paris at effective confining pressures ranging from 35 MPa to 85 MPa and room temperature. Experiments were carried on dry and water saturated samples to explore the role played by the pore fluids. Time dependency was investigated by a creep steps methodology: at each step, differential stress was increased rapidly and kept constant for at least 24h. During these steps elastic wave velocities (P and S) and permeability were measured continuously. Our results show two different creep behaviors: (1) brittle creep is observed at low confining pressures, whereas (2) ductile creep is observed at higher confining pressures. These two creep behaviors have a different signature in term of elastic wave velocities and permeability changes. Indeed, in the brittle domain, the primary creep is associated with a decrease of elastic wave velocities and an increase of permeability, and no secondary creep is observed. In the ductile domain, the primary creep

  11. Improved High-Temperature Microstructural Stability and Creep Property of Novel Co-Base Single-Crystal Alloys Containing Ta and Ti

    NASA Astrophysics Data System (ADS)

    Xue, F.; Zhou, H. J.; Feng, Q.

    2014-12-01

    The influence of Ta and Ti additions on microstructural stability and creep behavior in novel Co-Al-W base single-crystal alloys has been investigated. Compared to the ternary alloy, the γ' solvus temperature and γ' volume fraction were raised by individual additions of Ta and Ti, and increased further in the quinary alloy containing both alloying additions. In contrast to ternary and quaternary alloys, an improved microstructural stability with the stable γ- γ' two-phase microstructure and more than 60% γ' volume fraction existed in the quinary alloy after prolonged aging treatment at 1050°C for 1000 h. The creep behavior at 900°C revealed lower creep rates and longer rupture lives in the quaternary alloys compared to the ternary alloy, whereas the quinary alloy exhibited even better creep resistance. When the creep temperature was elevated to about 1000°C, the creep resistance of the quinary alloy exceeded the previously reported Co-Al-W-base alloys and first-generation Ni-base single-crystal superalloys. The improved creep resistance at approximately 1000°C was considered to be associated with high γ' volume fraction, γ' directional coarsening, and dislocation substructure, which included γ- γ' interfacial dislocation networks and the sheared γ' precipitates containing stacking faults and anti-phase boundaries.

  12. High-temperature oxidation behavior of aluminized AISI 4130 steel

    NASA Astrophysics Data System (ADS)

    Badaruddin, Mohammad; Wang, Chaur Jeng; Wardono, Herry; Tarkono, Asmi, Dwi

    2016-02-01

    AISI 4130 steel was dipped into a molten aluminum bath at 700°C for 16 s to produce an aluminide coating on the steel substrate. The coating, which consisted of an Al-rich layer and an FeAl3 and Fe2Al5 intermetallic layer, strongly adhered to the steel substrate. High-temperature oxidation of the bare steel and aluminized steel was performed by thermogravimetry at 850°C for 49 h in static air. The oxidation products were characterized by scanning electron microscopy and energy-dispersive spectroscopy. The aluminide coating could increase the oxidation resistance of the bare steel by a factor of ˜19. The increase in high-temperature oxidation resistance of the aluminized steel is attributed to the formation of protective alumina scale (α-Al2O3). Although iron oxide nodules grew on the aluminide coating surface, the oxidation rate of the aluminide coatings was very low. After 49 h of oxidation, agglomerates of α-Al2O3 fine grains grew on the rod-shaped FeAl phases.

  13. Creep and inverse stress relaxation behaviors of carbon nanotube yarns.

    PubMed

    Misak, H E; Sabelkin, V; Miller, L; Asmatulu, R; Mall, S

    2013-12-01

    Creep, creep recovery and inverse stress relaxation behaviors of carbon nanotube yarns that consisted of 1-, 30-, and 100-yarn(s) were characterized. Primary and secondary creep stages were observed over the duration of 336 h. The primary creep stage lasted for about 4 h at an applied load equal to 75% of the ultimate tensile strength. The total strain in the primary stage was significantly larger in the carbon nanotube multi-yarn than in the carbon nanotube 1-yarn. In the secondary stage, 1-yarn also had a smaller steady state strain rate than the multi-yarn, and it was independent of number of yarns in multi-yarn. Strain response under cyclic creep loading condition was comparable to its counterpart in non-cyclic (i.e., standard) creep test except that strain response during the first cycle was slightly different from the subsequent cycles. Inverse creep (i.e., strain recovery) was observed in the 100-yarn during the cyclic creep tests after the first unloading cycle. Furthermore, inverse stress relaxation of the multi-yarns was characterized. Inverse stress relaxation was larger and for longer duration with the larger number of yarns. PMID:24266232

  14. Creep behavior of abaca fibre reinforced composite material

    SciTech Connect

    Tobias, B.C.; Lieng, V.T.

    1996-12-31

    This study investigates the creep behavior of abaca fibre reinforced composite lamina. The optimum proportions of constituents and loading conditions, temperature and stresses, are investigated in terms of creep properties. Lamina with abaca fibre volume fractions of 60, 70 and 80 percent, embedded in polyester resin were fabricated. Creep tests in tension at three temperature levels 20{degrees}C, 100{degrees}C and 120{degrees}C and three constant stress levels of 0. 1 MPa, 0. 13 Mpa and 0. 198 MPa using a Dynamic Mechanical Analyzer (DMA) were performed. The creep curves show standard regions of an ideal creep curve such as primary and secondary creep stage. The results also show that the minimum creep rate of abaca fibre reinforced composite increases with the increase of temperature and applied stress. Plotting the minimum creep rate against stress, depicts the variations of stress exponents which vary from 1.6194 at 20{degrees}C to 0.4576 at 120{degrees}C.

  15. Analytical, Numerical, and Experimental Investigation on a Non-Contact Method for the Measurements of Creep Properties of Ultra-High-Temperature Materials

    NASA Technical Reports Server (NTRS)

    Lee, Jonghyun; Hyers, Robert W.; Rogers, Jan R.; Rathz, Thomas J.; Choo, Hahn; Liaw, Peter

    2006-01-01

    Responsive access to space requires re-use of components such as rocket nozzles that operate at extremely high temperatures. For such applications, new ultra-hightemperature materials that can operate over 2,000 C are required. At the temperatures higher than the fifty percent of the melting temperature, the characterization of creep properties is indispensable. Since conventional methods for the measurement of creep is limited below 1,700 C, a new technique that can be applied at higher temperatures is strongly demanded. This research develops a non-contact method for the measurement of creep at the temperatures over 2,300 C. Using the electrostatic levitator in NASA MSFC, a spherical sample was rotated to cause creep deformation by centrifugal acceleration. The deforming sample was captured with a digital camera and analyzed to measure creep deformation. Numerical and analytical analyses have also been conducted to compare the experimental results. Analytical, numerical, and experimental results showed a good agreement with one another.

  16. Cryogenic Behavior of the High Temperature Crystal Oscillator PX-570

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Scherer, Steven

    2011-01-01

    Microprocessors, data-acquisition systems, and electronic controllers usually require timing signals for proper and accurate operation. These signals are, in most cases, provided by circuits that utilize crystal oscillators due to availability, cost, ease of operation, and accuracy. Stability of these oscillators, i.e. crystal characteristics, is usually governed, amongst other things, by the ambient temperature. Operation of these devices under extreme temperatures requires, therefore, the implementation of some temperature-compensation mechanism either through the manufacturing process of the oscillator part or in the design of the circuit to maintain stability as well as accuracy. NASA future missions into deep space and planetary exploration necessitate operation of electronic instruments and systems in environments where extreme temperatures along with wide-range thermal swings are countered. Most of the commercial devices are very limited in terms of their specified operational temperature while very few custom-made and military-grade parts have the ability to operate in a slightly wider range of temperature. Thus, it is becomes mandatory to design and develop circuits that are capable of operation efficiently and reliably under the space harsh conditions. This report presents the results obtained on the evaluation of a new (COTS) commercial-off-the-shelf crystal oscillator under extreme temperatures. The device selected for evaluation comprised of a 10 MHz, PX-570-series crystal oscillator. This type of device was recently introduced by Vectron International and is designed as high temperature oscillator [1]. These parts are fabricated using proprietary manufacturing processes designed specifically for high temperature and harsh environment applications [1]. The oscillators have a wide continuous operating temperature range; making them ideal for use in military and aerospace industry, industrial process control, geophysical fields, avionics, and engine

  17. Development of Advanced Corrosion-Resistant Fe-Cr-Ni Austenitic Stainless Steel Alloy with Improved High Temperature Strenth and Creep-Resistance

    SciTech Connect

    Maziasz, PJ

    2004-09-30

    In February of 1999, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Special Metals Corporation-Huntington Alloys (formerly INCO Alloys International, Inc.) to develop a modified wrought austenitic stainless alloy with considerably more strength and corrosion resistance than alloy 800H or 800HT, but with otherwise similar engineering and application characteristics. Alloy 800H and related alloys have extensive use in coal flue gas environments, as well as for tubing or structural components in chemical and petrochemical applications. The main concept of the project was make small, deliberate elemental microalloying additions to this Fe-based alloy to produce, with proper processing, fine stable carbide dispersions for enhanced high temperature creep-strength and rupture resistance, with similar or better oxidation/corrosion resistance. The project began with alloy 803, a Fe-25Cr-35NiTi,Nb alloy recently developed by INCO, as the base alloy for modification. Smaller commercial developmental alloy heats were produced by Special Metals. At the end of the project, three rounds of alloy development had produced a modified 803 alloy with significantly better creep resistance above 815EC (1500EC) than standard alloy 803 in the solution-annealed (SA) condition. The new upgraded 803 alloy also had the potential for a processing boost in that creep resistance for certain kinds of manufactured components that was not found in the standard alloy. The upgraded 803 alloy showed similar or slightly better oxidation and corrosion resistance relative to standard 803. Creep strength and oxidation/corrosion resistance of the upgraded 803 alloy were significantly better than found in alloy 800H, as originally intended. The CRADA was terminated in February 2003. A contributing factor was Special Metals Corporation being in Chapter 11 Bankruptcy. Additional testing, further commercial scale-up, and any potential

  18. High-temperature behavior of advanced spacecraft TPS

    NASA Technical Reports Server (NTRS)

    Pallix, Joan

    1994-01-01

    The objective of this work has been to develop more efficient, lighter weight, and higher temperature thermal protection systems (TPS) for future reentry space vehicles. The research carried out during this funding period involved the design, analysis, testing, fabrication, and characterization of thermal protection materials to be used on future hypersonic vehicles. This work is important for the prediction of material performance at high temperature and aids in the design of thermal protection systems for a number of programs including programs such as the National Aerospace Plane (NASP), Pegasus and Pegasus/SWERVE, the Comet Rendezvous and Flyby Vehicle (CRAF), and the Mars mission entry vehicles. Research has been performed in two main areas including development and testing of thermal protection systems (TPS) and computational research. A variety of TPS materials and coatings have been developed during this funding period. Ceramic coatings were developed for flexible insulations as well as for low density ceramic insulators. Chemical vapor deposition processes were established for the fabrication of ceramic matrix composites. Experimental testing and characterization of these materials has been carried out in the NASA Ames Research Center Thermophysics Facilities and in the Ames time-of-flight mass spectrometer facility. By means of computation, we have been better able to understand the flow structure and properties of the TPS components and to estimate the aerothermal heating, stress, ablation rate, thermal response, and shape change on the surfaces of TPS. In addition, work for the computational surface thermochemistry project has included modification of existing computer codes and creating new codes to model material response and shape change on atmospheric entry vehicles in a variety of environments (e.g., earth and Mars atmospheres).

  19. Creep Behavior of Glass/Ceramic Sealant and its Effect on Long-term Performance of Solid Oxide Fuel Cells

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Koeppel, Brian J.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2009-10-14

    The creep behavior of glass or glass-ceramic sealant materials used in solid oxide fuel cells (SOFCs) becomes relevant under SOFC operating temperatures. In this paper, the creep of glass-ceramic sealants was experimentally examined, and a standard linear solid model was applied to capture the creep behavior of glass ceramic sealant materials developed for planar SOFCs at high temperatures. The parameters of this model were determined based on the creep test results. Furthermore, the creep model was incorporated into finite-element software programs SOFC-MP and Mentat-FC developed at Pacific Northwest National Laboratory for multi-physics simulation of SOFCs. The effect of creep of glass ceramic sealant materials on the long-term performance of SOFC stacks was investigated by studying the stability of the flow channels and the stress redistribution in the glass seal and on the various interfaces of the glass seal with other layers. Finite element analyses were performed to quantify the stresses in various parts. The stresses in glass seals were released because of creep behavior during operations.

  20. Impression Creep Behavior of a Cast AZ91 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Kabirian, F.; Mahmudi, R.

    2009-01-01

    The creep behavior of the cast AZ91 magnesium alloy was investigated by impression testing. The tests were carried out under constant punching stress in the range 100 to 650 MPa, corresponding to 0.007 ≤ σ imp/ G ≤ 0.044, at temperatures in the range 425 to 570 K. Assuming a power-law relationship between the impression velocity and stress, depending on the testing temperature, stress exponents of 4.2 to 6.0 were obtained. When the experimental creep rates were normalized to the grain size and effective diffusion coefficient, a stress exponent of approximately 5 was obtained, which is in complete agreement with stress exponents determined by the conventional creep testing of the same material reported in the literature. Calculation of the activation energy showed a slight decrease in the activation energy with increasing stress such that the creep-activation energy of 122.9 kJ/mol at σ imp/ G = 0.020 decreases to 94.0 kJ/mol at σ imp/ G = 0.040. Based on the obtained stress exponents and activation energy data, it is proposed that dislocation climb is the controlling creep mechanism. However, due to the decreasing trend of creep-activation energy with stress, it is suggested that two parallel mechanisms of lattice and pipe-diffusion-controlled dislocation climb are competing. To elucidate the contribution of each mechanism to the overall creep deformation, the creep rates were calculated based on the effective activation energy. This yielded a criterion that showed that, in the high-stress regimes, the experimental activation energies fall in the range in which the operative creep mechanism is dislocation climb controlled by dislocation pipe diffusion. In the low-stress regime, however, the lattice-diffusion dislocation climb is dominant.

  1. Hydrogen permeation behavior through F82H at high temperature

    SciTech Connect

    Matsuda, S.; Katayama, K.; Shimozori, M.; Fukada, S.; Ushida, H.; Nishikawa, M.

    2015-03-15

    F82H is a primary candidate of structural material and coolant pipe material in a blanket of a fusion reactor. Understanding tritium permeation behavior through F82H is important. In a normal operation of a fusion reactor, the temperature of F82H will be controlled below 550 C. degrees because it is considered that F82H can be used up to 30,000 hours at 550 C. degrees. However, it is necessary to assume the situation where F82H is heated over 550 C. degrees in a severe accident. In this study, hydrogen permeation behavior through F82H was investigated in the temperature range from 500 to 800 C. degrees. In some cases, water vapor was added in a sample gas to investigate an effect of water vapor on hydrogen permeation. The permeability of hydrogen in the temperature range from 500 to 700 C. degrees agreed well with the permeability reported by E. Serra et al. The degradation of the permeability by water vapor was not observed. After the hydrogen permeation reached in a steady state at 700 C. degrees, the F82H sample was heated to 800 C. degrees. The permeability of hydrogen through F82H sample which was once heated up to 800 C. degrees was lower than that of the original one. (authors)

  2. Effect of Nb and Cu on the high temperature creep properties of a high Mn–N austenitic stainless steel

    SciTech Connect

    Lee, Kyu-Ho; Suh, Jin-Yoo; Huh, Joo-Youl; Park, Dae-Bum; Hong, Sung-Min; Shim, Jae-Hyeok; Jung, Woo-Sang

    2013-09-15

    The effect of Nb and Cu addition on the creep properties of a high Mn–N austenitic stainless steel was investigated at 600 and 650 °C. In the original high Mn–N steel, which was initially precipitate-free, the precipitation of M{sub 23}C{sub 6} (M = Cr, Fe) and Cr{sub 2}N took place mostly on grain boudaries during creep deformation. On the other hand, the minor addition of Nb resulted in high number density of Z-phases (CrNbN) and MX (M = Nb; X = C, N) carbonitrides inside grains by combining with a high content of N, while suppressing the formation of Cr{sub 2}N. The addition of Cu gave rise to the independent precipitation of nanometer-sized metallic Cu particles. The combination of the different precipitate-forming mechanisms associated with Z-phase, MX and Cu-rich precipitates turned out to improve the creep-resistance significantly. The thermodynamics and kinetics of the precipitation were discussed using thermo-kinetic simulations. - Highlights: • The creep rupture life was improved by Nb and Cu addition. • The creep resistance of the steel A2 in this study was comparable to that of TP347HFG. • The size of Z-phase and MX carbonitride did not change significantly after creep test. • The nanometer sized Cu-rich precipitate was observed after creep. • The predicted size of precipitates by MatCalc agreed well with measured size.

  3. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, T. L.

    1989-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared on a strength to density basis. The effect of fiber orientation on the creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending on the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  4. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, Toni L.

    1992-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  5. Threshold Stress Creep Behavior of Alloy 617 at Intermediate Temperatures

    SciTech Connect

    J.K. Benz; L.J. Carroll; J.K. Wright; R.N. Wright; T. Lillo

    2014-06-01

    Creep of Alloy 617, a solid solution Ni-Cr-Mo alloy, was studied in the temperature range of 1023 K to 1273 K (750 °C to 1000 °C). Typical power-law creep behavior with a stress exponent of approximately 5 is observed at temperatures from 1073 K to 1273 K (800 °C to 1000 °C). Creep at 1023 K (750 °C), however, exhibits threshold stress behavior coinciding with the temperature at which a low volume fraction of ordered coherent y' precipitates forms. The threshold stress is determined experimentally to be around 70 MPa at 1023 K (750 °C) and is verified to be near zero at 1173 K (900 °C)—temperatures directly correlating to the formation and dissolution of y' precipitates, respectively. The y' precipitates provide an obstacle to continued dislocation motion and result in the presence of a threshold stress. TEM analysis of specimens crept at 1023 K (750 °C) to various strains, and modeling of stresses necessary for y' precipitate dislocation bypass, suggests that the climb of dislocations around the y' precipitates is the controlling factor for continued deformation at the end of primary creep and into the tertiary creep regime. As creep deformation proceeds at an applied stress of 121 MPa and the precipitates coarsen, the stress required for Orowan bowing is reached and this mechanism becomes active. At the minimum creep rate at an applied stress of 145 MPa, the finer precipitate size results in higher Orowan bowing stresses and the creep deformation is dominated by the climb of dislocations around the y' precipitates.

  6. Tensile creep and creep rupture behavior of monolithic and SiC-whisker-reinforced silicon nitride ceramics

    SciTech Connect

    Ohji, Tatsuki; Yamauchi, Yukihiko )

    1993-12-01

    The tensile creep and creep rupture behavior of silicon nitride was investigated at 1,200 to 1,350 C using hot-pressed materials with and without SiC whiskers. Stable steady-state creep was observed under low applied stresses at 1,200 C. Accelerated creep regimes, which were absent below 1,300 C, were identified above that temperature. The appearance of accelerated creep at the higher temperatures attributable to formation of microcracks throughout a specimen. The whisker-reinforced material exhibited better creep resistance than the monolith at 1,200 C. Considerably high values 3 to 5, were obtained for the creep exponent in the overall temperature range. The exponent tended to decrease with decreasing applied stress at 1,200 C. The primary creep mechanism was considered cavitation-enhanced creep. Specimen lifetimes followed the Monkman-Grant relationship except for fractures with large accelerated creep regimes. The creep rupture behavior is discussed in association with cavity formation and crack adolescence.

  7. High-Temperature Oxidation Behavior of Iridium-Rhenium Alloys

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1995-01-01

    The life-limiting mechanism for radiation-cooled rockets made from iridium-coated rhenium (Ir/Re) is the diffusion of Re into the Ir layer and the subsequent oxidation of the resulting Ir-Re alloy from the inner surface. In a previous study, a life model for Ir/Re rockets was developed. It incorporated Ir-Re diffusion and oxidation data to predict chamber lifetimes as a function of temperature and oxygen partial pressure. Oxidation testing at 1540 deg C suggested that a 20-wt percent Re concentration at the inner wall surface should be established as the failure criterion. The present study was performed to better define Ir-oxidation behavior as a function of Re concentration and to supplement the data base for the life model. Samples ranging from pure Ir to Ir-40 wt percent Re (Ir-40Re) were tested at 1500 deg C, in two different oxygen environments. There were indications that the oxidation rate of the Ir-Re alloy increased significantly when it went from a single-phase solid solution to a two-phase mixture, as was suggested in previous work. However, because of testing anomalies in this study, there were not enough dependable oxidation data to definitively raise the Ir/Re rocket failure criterion from 20-wt percent Re to a Re concentration corresponding to entry into the two-phase region.

  8. High temperature deformation behavior of a nanocrystalline titanium aluminide

    SciTech Connect

    Mishra, R.S.; Mukherjee, A.K.; Mukhopadhyay, D.K.; Suryanarayana, C.; Froes, F.H.

    1996-06-01

    Gamma titanium intermetallic alloys are potentially attractive for elevated temperature applications. The room temperature ductility and fracture toughness have been improved considerably by the addition of ternary and quaternary elements. The synthesis of nanocrystalline materials has provided further avenues for possible improvement in the mechanical properties. The exciting prospect of low temperature superplasticity in nanocrystalline materials has been discussed. Recently, nanocrystalline {gamma}-TiAl alloys have been synthesized by hot isostatic pressing (HIP) of mechanically alloyed (MA) Ti-47.5 Al-3 Cr (at.%) powders. The purpose of this study was to evaluate the possibility of observing low temperature superplasticity in this nanocrystalline alloy. By determining the stress exponent for flow, it should be possible to comment on the micromechanism of deformation in a nanocrystalline intermetallic alloy. A number of studies have shown that superplasticity is possible in {gamma}-TiAl alloys and it is important to establish whether the scaling law extends to nanocrystalline {gamma}-TiAl regime or the flow behavior changes.

  9. Creep deformation behavior of Sn-3.5Ag solder/Cu couple at small length scales

    SciTech Connect

    Kerr, M.; Chawla, N

    2004-09-06

    In order to adequately characterize the behavior of solder balls in electronic devices, the mechanical behavior of solder joints needs to be studied at small length scales. The creep behavior of single solder ball Sn-Ag/Cu solder joints was studied in shear, at 25, 60, 95, and 130 deg. C, using a microforce testing system. A change in the creep stress exponent with increasing stress was observed and explained in terms of a threshold stress for bypass of Ag{sub 3}Sn particles by dislocations. The stress exponent was also temperature dependent, exhibiting an increase in exponent of two from lower to higher temperature. The activation energy for creep was found to be temperature dependant, correlating with self-diffusion of pure Sn at high temperatures, and dislocation core diffusion of pure Sn at lower temperatures. Normalizing the creep rate for activation energy and the temperature-dependence of shear modulus allowed for unification of the creep data. Microstructure characterization, including preliminary TEM analysis, and fractographic analysis were conducted in order to fully describe the creep behavior of the material.

  10. Oxidation behaviors of porous Haynes 214 alloy at high temperatures

    SciTech Connect

    Wang, Yan; Liu, Yong; Tang, Huiping; Li, Weijie

    2015-09-15

    The oxidation behaviors of porous Haynes 214 alloy at temperatures from 850 to 1000 °C were investigated. The porous alloys before and after the oxidation were examined by optical microscopy, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) analyses, and X-ray photoelectron spectroscopy (XPS). The oxidation kinetics of the porous alloy approximately follows a parabolic rate law and exhibits two stages controlled by different oxidation courses. Complex oxide scales composed of Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4} and Al{sub 2}O{sub 3} are formed on the oxidized porous alloys, and the formation of Cr{sub 2}O{sub 3} on its outer layer is promoted with the oxidation proceeding. The rough surface as well as the micropores in the microstructures of the porous alloy caused by the manufacturing process provides fast diffusion paths for oxygen so as to affect the formation of the oxide layers. Both the maximum pore size and the permeability of the porous alloys decrease with the increase of oxidation temperature and exposure time, which may limit its applications. - Highlights: • Two-stage oxidation kinetics controlled by different oxidation courses is showed. • Oxide scale mainly consists of Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4} and Al{sub 2}O{sub 3}. • Rough surface and micropores lead to the formation of uneven oxide structure. • Content of Cr{sub 2}O{sub 3} in the outer layer of the scale increases with time at 1000 °C. • Maximum pore size and permeability decrease with increasing temperature and time.

  11. Measurement of Creep Properties of Ultra-High-Temperature Materials by a Novel Non-Contact Technique

    NASA Technical Reports Server (NTRS)

    Hyers, Robert W.; Lee, Jonghyun; Rogers, Jan R.; Liaw, Peter K.

    2007-01-01

    A non-contact technique for measuring the creep properties of materials has been developed and validated as part of a collaboration among the University of Massachusetts, NASA Marshall Space Flight Center Electrostatic Levitation Facility (ESL), and the University of Tennessee. This novel method has several advantages over conventional creep testing. The sample is deformed by the centripetal acceleration from the rapid rotation, and the deformed shapes are analyzed to determine the strain. Since there is no contact with grips, there is no theoretical maximum temperature and no concern about chemical compatibility. Materials may be tested at the service temperature even for extreme environments such as rocket nozzles, or above the service temperature for accelerated testing of materials for applications such as jet engines or turbopumps for liquid-fueled engines. The creep measurements have been demonstrated to 2400 C with niobium, while the test facility, the NASA MSFC ESL, has processed materials up to 3400 C. Furthermore, the ESL creep method employs a distribution of stress to determine the stress exponent from a single test, versus the many tests required by conventional methods. Determination of the stress exponent from the ESL creep tests requires very precise measurement of the surface shape of the deformed sample for comparison to deformations predicted by finite element models for different stress exponents. An error analysis shows that the stress exponent can be determined to about 1% accuracy with the current methods and apparatus. The creep properties of single-crystal niobium at 1985 C showed excellent agreement with conventional tests performed according to ASTM Standard E-139. Tests on other metals, ceramics, and composites relevant to rocket propulsion and turbine engines are underway.

  12. The solid-solution alloying effects of Ti on the high-temperature deformation behavior of NiAl single crystals

    SciTech Connect

    Kitabjian, P.H.; Nix, W.D.; Garg, A.; Noebe, R.

    1997-12-31

    The authors have investigated the high-temperature deformation behavior of the solid-solution strengthened alloy Ni-47.5Al-2.5Ti. Single crystals were deformed in compression in the hard <001> and soft <111> orientations, at temperatures between 900 C and 1,200 C. The results show that Ti has a very powerful solute strengthening effect in NiAl. The creep rates for the solid-solution alloy were observed to be three to four orders of magnitude lower than for the stoichiometric material. They discuss the efforts to understand this solid-solution strengthening effect. They have studied high-temperature deformation transients in an effort to determine whether solute drag effects contribute to the creep resistance of this solid solution. In addition, they have examined the solute size effect of Ti as it replaces Al on the Al sub-lattice. They discuss the probable mechanism of creep of this alloy in light of TEM observations of the dislocation structures in creep-deformed crystals.

  13. The high-pressure-high-temperature behavior of bassanite

    SciTech Connect

    Comodi, Paola; Nazzareni, Sabrina; Dubrovinsky, Leonid; Merlini, Marco

    2010-02-11

    The pressure evolution of bassanite (CaSO{sub 4} {center_dot} 1/2 H{sub 2}O) was investigated by synchrotron X-ray powder diffraction along three isotherms: at room temperature up to 33 GPa, at 109 C up to 22 GPa, and at 200 C up to 12 GPa. The room-temperature cell-volume data, from 0.001 to 33 GPa, were fitted to a third-order Birch-Murnaghan equation-of-state, and a bulk modulus K{sub 0} = 86(7) GPa with K' = 2.5(3) was obtained. The axial compressibility values are {beta}{sub a} = 3.7(2), {beta}{sub b} = 3.6(1), and {beta}{sub c} = 2.8(1) GPa{sup -1} (x10{sup -3}) showing a slightly anisotropic behavior, with the least compressible direction along c axis. The strain tensor analysis shows that the main deformation occurs in the (010) plane in a direction 18{sup o} from the a axis. The bulk moduli for isotherms 109 and 200 C, were obtained by fitting cell-volume data with a second-order Birch-Murnaghan equation-of-state, with K' fixed at 4, and were found to be K{sub 109} = 79(4) GPa and K{sub 200} = 63(7) GPa, respectively. The axial compressibility values for isotherm 109 C are {beta}{sub a} = 2.4(1), {beta}{sub b} = 3.0(1), {beta}{sub c} = 2.5(1) (x10{sup -3}) GPa{sup -1}, and for isotherm 200 C they are {beta}{sub a} = 3.5(3), {beta}{sub b} = 3.4(3), {beta}{sub c} = 2.6(4) (x10{sup -3}) GPa{sup -1}. These two bulk moduli and the 20 C bulk modulus, K{sub 0,20} = 69(8) recalculated to a second-order Birch-Murnaghan EoS to be consistent, as well as the axial compressibilities, are similar for the three isotherms indicating that the thermal effect on the bulk moduli is not significant up to 200 C. The size variation of the pseudo-hexagonal channel with pressure and temperature indicates that the sulfate 'host' lattice and the H{sub 2}O 'guest' molecule in bassanite do not undergo strong change up to 33 GPa and 200 C.

  14. Effects of grain size on high temperature creep of fine grained, solution and dispersion hardened V -1.6Y -8W -0.8TiC

    NASA Astrophysics Data System (ADS)

    Furuno, T.; Kurishita, H.; Nagasaka, T.; Nishimura, A.; Muroga, T.; Sakamoto, T.; Kobayashi, S.; Nakai, K.; Matsuo, S.; Arakawa, H.

    2011-10-01

    Creep resistance is the major concern of vanadium and its alloys for fusion reactor structural applications. In order to elucidate the effects of grain size on the creep behavior of solution and dispersion strengthened vanadium alloys, V-1.6Y-8W-0.8TiC specimens with fine grain sizes from 0.58 to 1.45 μm were prepared by mechanical alloying and HIP without any plastic working and tested at 1073 K and 250 MPa in vacuum. It is shown that the creep resistance of V-1.6Y-8W-0.8TiC depends strongly on grain size and increases with increasing grain size: The creep life for the grain size of 1.45 μm is almost one order longer than that of 0.58 μm, and about two orders longer than that of V-4Cr-4Ti (NIFS-Heat 2) although the grain size of V-4Cr-4Ti is as large as 17.8 μm. The observed creep behavior is discussed in terms of grain size effects on dislocation glide and grain boundary sliding.

  15. Influence of composition gradients on weld metal creep behavior: An analysis based on laminate composites

    SciTech Connect

    Choi, I.

    1989-01-01

    The effects of weld metal microsegregation, as altered by post-weld heat treatments, on both low and high temperatures tensile properties were investigated on Monel alloy 400. Flat, all weld metal, tensile specimens were machined from single pass GTA welds and were heat treated in vacuum in the range of 600 C to 1000 C to produce samples with different composition gradients. Short-time tensile tests were run at room temperature and elevated temperature. Long-time constant load creep tests were performed at 500 C. The room temperature mechanical properties of the as-welded specimen and heat treated specimens were similar and thus unaffected by variations in composition gradients. In contrast, at high temperatures the steady state creep rates decreased, rupture strains increased, and rupture lives decreases with increases in heat treatment temperature, that is, with decreases in the amplitudes of composition gradients. The deformation behavior of solidified dendritic structure was modeled based on results obtained on laminate composites of nickel and copper. The laminates, prepared by roll bonding, were annealed to produce controlled composition gradients with dimensions equivalent to those observed in the weld metal. The steady state creep rates of laminate composites decreased with increases in heat treatment time, that is, with decreases in the amplitudes of composition gradients. To rationalize the creep properties of each component in laminate composites, nickel-copper solid solutions having systematic compositional variations were prepared and tested under the same conditions as the laminate composites. The creep rates of nickel-copper solid solutions showed a minimum with nickel composition.

  16. Assessment of microalloying effects on the high temperature fatigue behavior of NiAl

    NASA Technical Reports Server (NTRS)

    Noebe, R. D.; Lerch, B. A.; Rao, K. B. S.

    1995-01-01

    Binary NiAl suffers from a lack of strength and poor creep properties at and above 1000 K. Poor creep resistance in turn affects low cycle fatigue (LCF) lives at low strain ranges due to the additional interactions of creep damage. One approach for improving these properties involved microalloying with either Zr or N. As an integral part of a much larger alloying program the low cycle fatigue behavior of Zr and N doped nickel aluminides produced by extrusion of prealloyed powders has been investigated. Strain controlled LCF tests were performed in air at 1000 K. The influence of these microalloying additions on the fatigue life and cyclic stress response of polycrystalline NiAl are discussed.

  17. Effect of misalignment on mechanical behavior of metals in creep. [computer programs

    NASA Technical Reports Server (NTRS)

    Wu, H. C.

    1979-01-01

    Application of the endochronic theory of viscoplasticity to creep, creep recovery, and stress relaxation at the small strain and short time range produced the following results: (1) The governing constitutive equations for constant-strain-rate stress-strain behavior, creep, creep recovery, and stress relaxation were derived by imposing appropriate constraints on the general constitutive equation of the endochronic theory. (2) A set of material constants was found which correlate strain-hardening, creep, creep recovery, and stress relaxation. (3) The theory predicts with reasonable accuracy the creep and creep recovery behaviors at short time. (4) The initial strain history prior to the creep stage affects the subsequent creep significantly. (5) A critical stress was established for creep recovery. A computer program, written for the misalignment problem is reported.

  18. Transient creep and semibrittle behavior of crystalline rocks

    USGS Publications Warehouse

    Carter, N.L.; Kirby, S.H.

    1978-01-01

    We review transient creep and semibrittle behavior of crystalline solids. The results are expected to be pertinent to crystalline rocks undergoing deformation in the depth range 5 to 20 km, corresponding to depths of focus of many major earthquakes. Transient creep data for crystalline rocks at elevated temperatures are analyzed but are poorly understood because of lack of information on the deformation processes which, at low to moderate pressure, are likely to be semibrittle in nature. Activation energies for transient creep at high effective confining pressure are much higher than those found for atmospheric pressure tests in which thermally-activated microfracturing probably dominates the creep rate. Empirical transient creep equations are extrapolated at 200?? to 600??C, stresses from 0.1 to 1.0 kbar, to times ranging from 3.17??102 to 3.17??108 years. At the higher temperatures, appreciable transient creep strains may take place but the physical significance of the results is in question because the flow mechanisms have not been determined. The purpose of this paper is to stimulate careful research on this important topic. ?? 1978 Birkha??user Verlag.

  19. Creep-Fatigue Behavior of Alloy 617 at 850 and 950°C, Revision 2

    SciTech Connect

    Carroll, L.; Carroll, M.

    2015-05-01

    Alloy 617 is the leading candidate material for an Intermediate Heat Exchanger (IHX) of the Very High Temperature Reactor (VHTR). To evaluate the behavior of this material in the expected service conditions, strain-controlled cyclic tests including hold times up to 9000 s at maximum tensile strain were conducted at 850 and 950 degrees C. At both temperatures, the fatigue resistance decreased when a hold time was added at peak tensile strain. The magnitude of this effect depended on the specific mechanisms and whether they resulted in a change in fracture mode from transgranular in pure fatigue to intergranular in creep-fatigue for a particular temperature and strain range combination. Increases in the tensile hold duration beyond an initial value were not detrimental to the creep-fatigue resistance at 950 degrees C but did continue to degrade the lifetimes at 850 degrees C.

  20. Creep-rupture behavior of iron superalloys in high pressure hydrogen

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.

    1981-01-01

    Two cast alloys (CRM-6D and XF-818) and four sheet alloys (A-26, Incoloy 800H, N-155, and 19-9DL) in the thickness range of 0.79 to 0.99 mm were evaluated for use in the Stirling engine. The creep rupture behavior of these iron base high temperature alloys is being determined in air for 10 hr to 3,00 hr, and in 20.7 MPa (3,000 psi) H2 for 10 to 300 hr at temperatures of 650 deg to 925 deg. Material procurement, preparation and air creep rupture testing are described and existing data is analyzed. Systems for the high pressure hydrogen testing are discussed. Statistical analysis of temperature-compensated rupture data for each alloy is included.

  1. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, High-Cycle and Low-Cycle Mechanical Fatigue, Creep and Thermal Fatigue Effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    The development of methodology for a probabilistic material strength degradation is described. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing predictions of high-cycle mechanical fatigue and high temperature effects with experiments are presented. Results from this limited verification study strongly supported that material degradation can be represented by randomized multifactor interaction models.

  2. Creep Behavior and Durability of Cracked CMC

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Fox, Dennis; Smith, Craig

    2015-01-01

    To understand failure mechanisms and durability of cracked Ceramic matrix composites (CMCs), Melt Infiltration (MI) SiCSiC composites with Sylramic-iBN fibers and full Chemical vapour infiltration SiCSiC composites with Sylramic-ion bombarded BN (iBN) and Hi-Nicalon -S fibers were pre-cracked between 150 to 200 megapascal and then creep and Sustained Peak Low Cycle Fatigue (SPLCF) tested at 13150 C at stress levels from 35 to 103 megapascal for up to 200 hours under furnace and burner rig conditions. In addition creep testing was also conducted on pre-cracked full Chemical vapour infiltration SiCSiC composites at 14500 C between 35 and 103 megapascal for up to 200 hours under furnace conditions. If the specimens survived the 200 hour durability tests, then they were tensile tested at room temperature to determine their residual tensile properties. The failed specimens were examined by Scanning electron microscope (SEM) to determine the failure modes and mechanisms. The influence of crack healing matrix, fiber types, crack density, testing modes and interface oxidation on durability of cracked Ceramic matrix composites (CMCs) will be discussed.

  3. A technique to achieve uniform stress distribution in compressive creep testing of advanced ceramics at high temperatures

    SciTech Connect

    Liu, K.C.; Stevens, C.O.; Brinkman, C.R.; Holshauser, N.E.

    1996-05-01

    A technique to achieve stable and uniform uniaxial compression is offered for creep testing of advanced ceramic materials at elevated temperatures, using an innovative self-aligning load-train assembly. Excellent load-train alignment is attributed to the inherent ability of a unique hydraulic universal coupler to maintain self-aligning. Details of key elements, design concept, and pricniples of operation of the self-aligning coupler are described. A method of alignment verification using a strain-gaged specimen is then discussed. Results of verification tests indicate that bending below 1.5% is routinely achievable usin the load-train system. A successful compression creep test is demonstrated using a dumbbell-shpaed Si nitride specimen tested at 1300 C for over 4000 h.

  4. Coarsening behaviour of M23C6 carbides in creep-resistant steel exposed to high temperatures

    PubMed Central

    Godec, M.; Skobir Balantič, D. A.

    2016-01-01

    High operating temperatures can have very deleterious effects on the long-term performance of high-Cr, creep-resistant steels used, for example, in the structural components of power plants. For the popular creep-resistant steel X20CrMoV12.1 we analysed the processes of carbide growth using a variety of analytical techniques: transmission electron microscopy (TEM) and diffraction (TED), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). The evolution of the microstructure after different aging times was the basis for a much better understanding of the boundary-migration processes and the growth of the carbides. We present an explanation as to why some locations are preferential for this growth, and using EBSD we were able to define the proper orientational relationship between the carbides and the matrix. PMID:27406340

  5. Coarsening behaviour of M23C6 carbides in creep-resistant steel exposed to high temperatures

    NASA Astrophysics Data System (ADS)

    Godec, M.; Skobir Balantič, D. A.

    2016-07-01

    High operating temperatures can have very deleterious effects on the long-term performance of high-Cr, creep-resistant steels used, for example, in the structural components of power plants. For the popular creep-resistant steel X20CrMoV12.1 we analysed the processes of carbide growth using a variety of analytical techniques: transmission electron microscopy (TEM) and diffraction (TED), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). The evolution of the microstructure after different aging times was the basis for a much better understanding of the boundary-migration processes and the growth of the carbides. We present an explanation as to why some locations are preferential for this growth, and using EBSD we were able to define the proper orientational relationship between the carbides and the matrix.

  6. Antioxidative responses in roots and shoots of creeping bentgrass under high temperature: effects of nitrogen and cytokinin.

    PubMed

    Wang, Kehua; Zhang, Xunzhong; Ervin, Erik

    2012-03-15

    It has been previously reported that either nitrogen (N) or cytokinin (CK) applications can alleviate heat stress injury on creeping bentgrass, with some studies reporting enhanced antioxidant metabolism being related to stress protection. The objective of this research was to investigate the simultaneous effects of CK and N on the antioxidant enzyme activity and isoforms of heat stressed creeping bentgrass. 'L-93' creeping bentgrass treated with three rates of CK (trans-zeatin riboside, tZR, 0, 10 and 100μM, designated by CK0, 10, and 100) and two nitrogen rates (2.5 and 7.5kgNha(-1) biweekly, low and high N) in a complete factorial arrangement was maintained in a 38/28°C (day/night) growth chamber for 28d and then harvested. Grass grown at high N (averaged across CK rates) had higher O(2)(-) production, H(2)O(2) concentration, and malondialdehyde content in roots. The activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and guaiacol peroxidase (POD) in roots were enhanced 19%, 22%, and 24%, respectively, by high N relative to low N. Twenty-eight days of heat stress resulted in either the development of new isoforms or enhanced isoform intensities of SOD, APX, and POD in roots compared to plant responses prior to heat stress. However, no apparent differences were observed across treatments. Both SOD and POD showed different isoform patterns between roots and shoots, suggesting the function of these isoforms could be tissue specific. Interestingly, no CK effects on these antioxidant parameters were found in this experiment. These results demonstrate the impacts of N on antioxidant metabolism of creeping bentgrass under heat stress with some differences between roots and shoots, but no simultaneous impacts of CK and N. PMID:22226339

  7. High-temperature flexural creep of ZrB2-SiC ceramics in argon atmosphere

    SciTech Connect

    Guo, Wei-Ming; Zhang, Guo-Jun; Lin, Hua-Tay

    2012-01-01

    Four-point flexure creep deformation of ZrB2-30 vol% SiC ceramics in argon atmosphere under a static load of 19 MPa for 0-100 h at 1500 and 1600 C was investigated. The strain rate at 1600 oC was 3.7 times higher than that at 1500 oC. Microstructural evolution during creep consisted of nucleation and growth of triple-point cavitations which were always associated with SiC particles. Due to the low stress, only isolated cavitations were nucleated, and no microcracks were formed. For up to 100 h at 1500 and 1600 C, the grains maintained their size and shape. The cavitations in both size and number showed no obvious difference from 26 to 100 h at 1500 C, whereas that showed a significant increase from 26 to 100 h at 1600 C. Present study suggested that ZrB2-30 vol% SiC exhibited relatively good microstructural stability and creep resistance at 1500 C in argon atmosphere.

  8. Evaluating the Hot Corrosion Behavior of High-Temperature Alloys for Gas Turbine Engine Components

    NASA Astrophysics Data System (ADS)

    Deodeshmukh, V. P.

    2015-11-01

    The hot corrosion behavior of high-temperature alloys is critically important for gas turbine engine components operating near the marine environments. The two test methods—Two-Zone and Burner-Rig—used to evaluate the hot corrosion performance of high-temperature alloys are illustrated by comparing the Type I hot corrosion behavior of selected high-temperature alloys. Although the ranking of the alloys is quite comparable, it is evident that the two-zone hot corrosion test is significantly more aggressive than the burner-rig test. The effect of long-term exposures and the factors that influence the hot corrosion performance of high-temperature alloys are briefly discussed.

  9. The microstructure and creep behavior of cold rolled udimet 188 sheet.

    PubMed

    Boehlert, C J; Longanbach, S C

    2011-06-01

    Udimet 188 was subjected to thermomechanical processing (TMP) in an attempt to understand the effects of cold-rolling deformation on the microstructure and tensile-creep behavior. Commercially available sheet was cold rolled to varying amounts of deformation (between 5-35% reduction in sheet thickness) followed by a solution treatment at 1,464 K (1,191 °C) for 1 h and subsequent air cooling. This sequence was repeated four times to induce a high-volume fraction of low-energy grain boundaries. The resultant microstructure was characterized using electron backscattered diffraction. The effect of the TMP treatment on the high-temperature [1,033-1,088 K (760-815 °C)] creep behavior was evaluated. The measured creep stress exponents (6.0-6.8) suggested that dislocation creep was dominant at 1,033 K (760 °C) for stresses ranging between 100-220 MPa. For stresses ranging between 25-100 MPa at 1,033 K (760 °C), the stress exponents (2.3-2.8) suggested grain boundary sliding was dominant. A significant amount of grain boundary cracking was observed both on the surface and subsurface of deformed samples. To assess the mechanisms of crack nucleation, in situ scanning electron microscopy was performed during the elevated-temperature tensile-creep deformation. Cracking occurred preferentially along general high-angle grain boundaries (GHAB) and less than 25% of the cracks were found on low-angle grain boundaries (LAB) and coincident site lattice boundaries (CSLB). Creep rupture experiments were performed at T = 1,088 K (815 °C) and σ = 165 MPa and the greatest average time-to-rupture was exhibited by the TMP sheet with the greatest fraction of LAB+CSLB. However, a clear correlation was not exhibited between the grain boundary character distribution and the minimum creep rates. The findings of this work suggest that although grain boundary engineering may be possible for this alloy, simply relating the fraction of grain boundary types to the creep resistance is not

  10. Effect of Mo on the High-Temperature Creep Resistance and Machinability of a Recycled Al-Alloy with High Iron Impurity

    NASA Astrophysics Data System (ADS)

    Ain, W. Q.; Faisal, M. K.; Talari, M. K.; Darham, W.; Ratnam, M. M.; Kwon, Y.; Kim, N. J.; Prasada Rao, A. K.

    2016-08-01

    Reported work focuses on the effect of morphology of the Fe-rich intermetallic phases on the machinability of Al-alloy containing >2wt.% Fe, obtained from automotive scrap. Effect of Mo addition on the microstructure, high-temperature impression creep and thereby the machinability of the Al-recycled alloy were studied. The machinability of the recycled alloy was estimated by investigating the built-up-edge (BUE) and surface roughness (R a). SEM-EDS and TEM-SADP studies have shown that the crystal structure (BCC) of the Al8Fe2Si phase remained unchanged; however, Mo replaced few Fe atoms with little effect on the lattice dimension. It has been found that the addition of Mo to the recycled alloy suppresses the formation of β-phase (Al5FeSi) by suppressing the peritectic transformation of α (Al8Fe2Si) phase. Such suppression is found to improve the high-temperature creep resistance and the machinability with the increase in the Mo addition level.

  11. High temperature structural silicides

    SciTech Connect

    Petrovic, J.J.

    1997-03-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi{sub 2}-based materials, which are borderline ceramic-intermetallic compounds. MoSi{sub 2} single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi{sub 2} possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi{sub 2}-Si{sub 3}N{sub 4} composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi{sub 2}-based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing.

  12. Creep Resistance and Oxidation Behavior of Novel Mo-Si-B-Ti Alloys

    NASA Astrophysics Data System (ADS)

    Azim, M. A.; Schliephake, D.; Hochmuth, C.; Gorr, B.; Christ, H.-J.; Glatzel, U.; Heilmaier, M.

    2015-11-01

    Mo-Si-B-alloys are promising materials for high-temperature applications because of their high melting point, excellent phase stability, large alloying capabilities, and reasonable mechanical as well as oxidative properties. A continuing alloy development is, however, required because of the catastrophic oxidation taking place at intermediate temperatures and the rather high density. The addition of Ti stabilizes a new ternary phase field including the Mo5Si3 (T1) phase instead of the Mo3Si (A15) phase. Alloys comprising the phases Moss, T1 and Mo5SiB2 (T2) show very high creep resistance, improved oxidation behavior and significantly reduced density. The new T1 phase seems to play a crucial role in the improved oxidation resistance of these new materials, since this phase exhibits excellent oxidation behavior at intermediate and high temperatures. The 4-component alloys possess superior creep behavior compared to Mo-Si-B alloys with the same microstructural phase arrangement and size or to the single crystal Ni-base superalloy CMSX-4. The main reason was found to be the formation of Ti-rich silicide precipitates during processing.

  13. Creep behavior of Fe-bearing olivine under hydrous conditions

    NASA Astrophysics Data System (ADS)

    Tasaka, Miki; Zimmerman, Mark E.; Kohlstedt, David L.

    2015-09-01

    To understand the effect of iron content on the creep behavior of olivine, (MgxFe(1 - x))2SiO4, under hydrous conditions, we have conducted tri-axial compressive creep experiments on samples of polycrystalline olivine with Mg contents of x = 0.53, 0.77, 0.90, and 1. Samples were deformed at stresses of 25 to 320 MPa, temperatures of 1050° to 1200°C, a confining pressure of 300 MPa, and a water fugacity of 300 MPa using a gas-medium high-pressure apparatus. Under hydrous conditions, our results yield the following expression for strain rate as a function of iron content for 0.53 ≤ x ≤ 0.90 in the dislocation creep regime: ɛ˙=ɛ˙0.90((1-x/0.1))1/2exp[226×1030.9-x/RT]. In this equation, the strain rate of San Carlos olivine, ɛ˙0.90, is a function of T, σ, and fH2O. As previously shown for anhydrous conditions, an increase in iron content directly increases creep rate. In addition, an increase in iron content increases hydrogen solubility and therefore indirectly increases creep rate. This flow law allows us to extrapolate our results to a wide range of mantle conditions, not only for Earth's mantle but also for the mantle of Mars.

  14. Creep and creep-rupture behavior of a continuous strand, swirl mat reinforced polymer composite in automotive environments

    SciTech Connect

    Ren, W.; Brinkman, C.R.

    1998-12-31

    Creep and creep-rupture behavior of an isocyanurate based polyurethane matrix with a continuous strand, swirl mat E-glass reinforcement was investigated for automotive applications. The material under stress was exposed to various automobile service environments. Results show that environment has substantial effects on its creep and creep-rupture properties. Proposed design guide lines and stress reduction factors were developed for various automotive environments. These composites are considered candidate structural materials for light weight and fuel efficient automobiles of the future.

  15. Creep behavior of refractory concretes. First annual report, October 1, 1981-September 30, 1982

    SciTech Connect

    McGee, T.D.

    1982-12-01

    Objectives are to evaluate the creep of alumina refractory concretes, determine differential transient creep strain of pristine specimens, develop a mathematical model for the creep behavior of refractory concretes, investigate the creep of commercial refractory concretes, and determine the effect of fiber reinforcements on the creep of concretes. After a summary of the first four years' progress, the technical progress during the fourth year is described in detail. 97 figures. (DLC)

  16. Development of Advanced Corrosion-Resistant Fe-Cr-Ni Austenitic Stainless Steel Alloy with Improved High-Temperature Strength and Creep-Resistance

    SciTech Connect

    Maziasz, P.J.; Swindeman, R.W.

    2001-06-15

    In February of 1999, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Special Metals Corporation - Huntington Alloys (formerly INCO Alloys International, Inc.) to develop a modified wrought austenitic stainless alloy with considerably more strength and corrosion resistance than alloy 800H or 800HT, but with otherwise similar engineering and application characteristics. Alloy 800H and related alloys have extensive use in coal flue gas environments, as well as for tubing or structural components in chemical and petrochemical applications. The main concept of the project was make small, deliberate elemental microalloying additions to this Fe-based alloy to produce, with proper processing, fine stable carbide dispersions for enhanced high temperature creep-strength and rupture resistance, with similar or better oxidation/corrosion resistance. The project began with alloy 803, a Fe-25Cr-35NiTi,Nb alloy recently developed by INCO, as the base alloy for modification. Smaller commercial developmental alloy heats were produced by Special Metal. At the end of the project, three rounds of alloy development had produced a modified 803 alloy with significantly better creep resistance above 815 C (1500 C) than standard alloy 803 in the solution-annealed (SA) condition. The new upgraded 803 alloy also had the potential for a processing boost in that creep resistance for certain kinds of manufactured components that was not found in the standard alloy. The upgraded 803 alloy showed similar or slightly better oxidation and corrosion resistance relative to standard 803. Creep strength and oxidation/corrosion resistance of the upgraded 803 alloy were significantly better than found in alloy 800 H, as originally intended. The CRADA was terminated in February 2003. A contributing factor was Special Metals Corporation being in Chapter 11 Bankruptcy. Additional testing, further commercial scale-up, and any potential

  17. Effect of high temperature creep and oxidation on residual room temperature properties for several thin sheet superalloys

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Lisagor, W. B.

    1972-01-01

    Superalloys are being considered for the primary heat shields and supports in the thermal protection system of both hypersonic transport and space shuttle vehicles. Since conservative design philosophy dictates designs based on residual material properties at the end of the service life, material characterization after exposure to the environmental conditions imposed by the flight requirements of these two classes of vehicles is needed on the candidate alloys. An investigation was conducted to provide some of the necessary data, with emphasis placed on oxidation, creep, and residual properties of thin-gage sheet material.

  18. Creep and stress relaxation behavior of two soft denture liners.

    PubMed

    Salloum, Alaa'a M

    2014-03-01

    Numerous investigators stated the indications of soft denture lining materials; but no one determined the indications of these materials according to their chemical structure. The purpose of this investigation was to evaluate the viscoelastic properties of acrylic and silicon lining materials. This study investigated and compared viscoelastic properties of two resilient denture lining materials. Tested materials were laboratory processed; one of them was silicone-based liner product (Molloplast-B), and the other was plasticized acrylic resin (Vertex™ Soft). Twenty cylindrical specimens (10-20 mm in length, 11.55 mm in diameter) were fabricated in an aluminum mold from each material for creep and stress relaxation testing (the study of viscoelastic properties). Tests were performed by using the universal testing machine DY-34. Collected data were analyzed with t test statistics for statistically significant differences at the 95 % confidence level. There was a clear difference in creep and stress relaxation behavior between acrylic and silicone liners. Statistical study of Young's moduli illustrated that Vertex™ Soft was softer than Molloplast-B. On the other hand, the results explained that the recovery of silicone material was better than of acrylic one. The creep test revealed that the plasticized acrylic resin lining material exhibited considerable creep, whereas silicone-based liner exhibited elastic behavior. Besides, the stress relaxation test showed that relaxation of the plasticized acrylic resin material was bigger than of the silicone-based liner. PMID:24605004

  19. Mechanical Behavior of Low Porosity Carbonate Rock: From Brittle Creep to Ductile Creep.

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2014-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this study, we focus on the mechanical behavior of a 14.7% porosity white Tavel (France) carbonate rock (>98% calcite). The samples were deformed in a triaxial cell at effective confining pressures ranging from 0 MPa to 85 MPa at room temperature and 70°C. Experiments were carried under dry and water saturated conditions in order to explore the role played by the pore fluids. Two types of experiments have been carried out: (1) a first series in order to investigate the rupture envelopes, and (2) a second series with creep experiments. During the experiments, elastic wave velocities (P and S) were measured to infer crack density evolution. Permeability was also measured during creep experiments. Our results show two different mechanical behaviors: (1) brittle behavior is observed at low confining pressures, whereas (2) ductile behavior is observed at higher confining pressures. During creep experiments, these two behaviors have a different signature in term of elastic wave velocities and permeability changes, due to two different mechanisms: development of micro-cracks at low confining pressures and competition between cracks and microplasticity at high confining pressure. The attached figure is a summary of 20 triaxial experiments performed on Tavel limestone under different conditions. Stress states C',C* and C*' and brittle strength are shown in the P-Q space: (a) 20°C and dry

  20. Assessment of Tungsten Content on Tertiary Creep Deformation Behavior of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Vanaja, J.; Laha, Kinkar

    2015-10-01

    Tertiary creep deformation behavior of reduced activation ferritic-martensitic (RAFM) steels having different tungsten contents has been assessed. Creep tests were carried out at 823 K (550 °C) over a stress range of 180 to 260 MPa on three heats of the RAFM steel (9Cr-W-0.06Ta-0.22V) with tungsten content of 1, 1.4, and 2.0 wt pct. With creep exposure, the steels exhibited minimum in creep rate followed by progressive increase in creep rate until fracture. The minimum creep rate decreased, rupture life increased, and the onset of tertiary stage of creep deformation delayed with the increase in tungsten content. The tertiary creep behavior has been assessed based on the relationship, , considering minimum creep rate () instead of steady-state creep rate. The increase in tungsten content was found to decrease the rate of acceleration of tertiary parameter ` p.' The relationships between (1) tertiary parameter `p' with minimum creep rate and time spent in tertiary creep deformation and (2) the final creep rate with minimum creep rate revealed that the same first-order reaction rate theory prevailed in the minimum creep rate as well as throughout the tertiary creep deformation behavior of the steel. A master tertiary creep curve of the steels has been developed. Scanning electron microscopic investigation revealed enhanced coarsening resistance of carbides in the steel on creep exposure with increase in tungsten content. The decrease in tertiary parameter ` p' with tungsten content with the consequent decrease in minimum creep rate and increase in rupture life has been attributed to the enhanced microstructural stability of the steel.

  1. Probabilistic material strength degradation model for Inconel 718 components subjected to high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    This report presents the results of both the fifth and sixth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA). The research included on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for five variables, namely, high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using an updated version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of high-cycle mechanical fatigue, creep and thermal fatigue was performed. Then using the current version of PROMISS, entitled PROMISS94, a second sensitivity study including the effect of low-cycle mechanical fatigue, as well as, the three previous effects was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of high-cycle mechanical

  2. Influence of deformation behavior, oxydation, and temperature on the long time cyclic stress behavior of high temperature steels

    NASA Technical Reports Server (NTRS)

    Maile, K.

    1982-01-01

    The influence of different parameters on the creep-fatigue behavior of several steel alloys was investigated. The higher the temperature the lower the crack initiation value. Pauses during the cycle reduce the damage. Oxidation reduces and protective gas increases the lifetime. Prior loading and prior deformation reduce the lifetime. Short annealing slightly affects the cycle stress behavior. The test results do not satisfactorily agree with methods of extrapolation and damage accumulation.

  3. Elevated temperature creep behavior of Inconel alloy 625

    SciTech Connect

    Purohit, A.; Burke, W.F.

    1984-07-01

    Inconel 625 in the solution-annealed condition has been selected as the clad material for the fuel and control rod housing assemblies of the Upgraded Transient Reactor Test Facility (TREAT Upgrade or TU). The clad is expected to be subjected to temperatures up to about 1100/sup 0/C. Creep behavior for the temperature range of 800/sup 0/C to 1100/sup 0/C of Inconel alloy 625, in four distinct heat treated conditions, was experimentally evaluated.

  4. High-temperature creep rupture of low alloy ferritic steel butt-welded pipes subjected to combined internal pressure and end loadings.

    PubMed

    Vakili-Tahami, F; Hayhurst, D R; Wong, M T

    2005-11-15

    Constitutive equations are reviewed and presented for low alloy ferritic steels which undergo creep deformation and damage at high temperatures; and, a thermodynamic framework is provided for the deformation rate potentials used in the equations. Finite element continuum damage mechanics studies have been carried out using these constitutive equations on butt-welded low alloy ferritic steel pipes subjected to combined internal pressure and axial loads at 590 and 620 degrees C. Two dominant modes of failure have been identified: firstly, fusion boundary failure at high stresses; and, secondly, Type IV failure at low stresses. The stress level at which the switch in failure mechanism takes place has been found to be associated with the relative creep resistance and lifetimes, over a wide range of uniaxial stresses, for parent, heat affected zone, Type IV and weld materials. The equi-biaxial stress loading condition (mean diameter stress equal to the axial stress) has been confirmed to be the worst loading condition. For this condition, simple design formulae are proposed for both 590 and 620 degrees C. PMID:16243708

  5. Effect of microstructure on high-temperature mechanical behavior of nickel-base superalloys for turbine disc applications

    NASA Astrophysics Data System (ADS)

    Sharpe, Heather Joan

    2007-05-01

    Engineers constantly seek advancements in the performance of aircraft and power generation engines, including, lower costs and emissions, and improved fuel efficiency. Nickel-base superalloys are the material of choice for turbine discs, which experience some of the highest temperatures and stresses in the engine. Engine performance is proportional to operating temperatures. Consequently, the high-temperature capabilities of disc materials limit the performance of gas-turbine engines. Therefore, any improvements to engine performance necessitate improved alloy performance. In order to take advantage of improvements in high-temperature capabilities through tailoring of alloy microstructure, the overall objectives of this work were to establish relationships between alloy processing and microstructure, and between microstructure and mechanical properties. In addition, the projected aimed to demonstrate the applicability of neural network modeling to the field of Ni-base disc alloy development and behavior. The first phase of this work addressed the issue of how microstructure varies with heat treatment and by what mechanisms these structures are formed. Further it considered how superalloy composition could account for microstructural variations from the same heat treatment. To study this, four next-generation Ni-base disc alloys were subjected to various controlled heat-treatments and the resulting microstructures were then quantified. These quantitative results were correlated to chemistry and processing, including solution temperature, cooling rate, and intermediate hold temperature. A complex interaction of processing steps and chemistry was found to contribute to all features measured; grain size, precipitate distribution, grain boundary serrations. Solution temperature, above a certain threshold, and cooling rate controlled grain size, while cooling rate and intermediate hold temperature controlled precipitate formation and grain boundary serrations. Diffusion

  6. Influence of Hold Time on Creep-Fatigue Behavior of an Advanced Austenitic Alloy

    SciTech Connect

    Mark Carroll; Laura Carroll

    2011-09-01

    An advanced austenitic alloy, HT-UPS (high temperature-ultrafine precipitate strengthened), is a candidate material for the structural components of fast reactors and energy-conversion systems. HT-UPS provides improved creep resistance through a composition based on 316 stainless steel (SS) with additions of Ti and Nb to form nano-scale MC precipitates in the austenitic matrix. The low cycle fatigue and creep-fatigue behavior of a HT-UPS alloy has been investigated at 650 C, 1.0% total strain, and an R ratio of -1 with hold times as long as 9000 sec at peak tensile strain. The cyclic deformation response of HT-UPS is compared to that of 316 SS. The cycles to failure are similar, despite differences in peak stress profiles and the deformed microstructures. Cracking in both alloys is transgranular (initiation and propagation) in the case of continuous cycle fatigue, while the primary cracks also propagate transgranularly during creep-fatigue cycling. Internal grain boundary damage as a result of the tensile hold is present in the form of fine cracks for hold times of 3600 sec and longer and substantially more internal cracks are visible in 316 SS than HT-UPS. The dislocation substructures observed in the deformed material are different. An equiaxed cellular structure is observed in 316 SS, whereas tangles of dislocations are present at the nanoscale MC precipitates in HT-UPS and no cellular substructure is observed.

  7. High temperature deformation behavior, thermal stability and irradiation performance in Grade 92 steel

    NASA Astrophysics Data System (ADS)

    Alsagabi, Sultan

    The 9Cr-2W ferritic-martensitic steel (i.e. Grade 92 steel) possesses excellent mechanical and thermophysical properties; therefore, it has been considered to suit more challenging applications where high temperature strength and creep-rupture properties are required. The high temperature deformation mechanism was investigated through a set of tensile testing at elevated temperatures. Hence, the threshold stress concept was applied to elucidate the operating high temperature deformation mechanism. It was identified as the high temperature climb of edge dislocations due to the particle-dislocation interactions and the appropriate constitutive equation was developed. In addition, the microstructural evolution at room and elevated temperatures was investigated. For instance, the microstructural evolution under loading was more pronounced and carbide precipitation showed more coarsening tendency. The growth of these carbide precipitates, by removing W and Mo from matrix, significantly deteriorates the solid solution strengthening. The MX type carbonitrides exhibited better coarsening resistance. To better understand the thermal microstructural stability, long tempering schedules up to 1000 hours was conducted at 560, 660 and 760°C after normalizing the steel. Still, the coarsening rate of M23C 6 carbides was higher than the MX-type particles. Moreover, the Laves phase particles were detected after tempering the steel for long periods before they dissolve back into the matrix at high temperature (i.e. 720°C). The influence of the tempering temperature and time was studied for Grade 92 steel via Hollomon-Jaffe parameter. Finally, the irradiation performance of Grade 92 steel was evaluated to examine the feasibility of its eventual reactor use. To that end, Grade 92 steel was irradiated with iron (Fe2+) ions to 10, 50 and 100 dpa at 30 and 500°C. Overall, the irradiated samples showed some irradiation-induced hardening which was more noticeable at 30°C. Additionally

  8. Creep behavior of thin laminates of iron-cobalt alloys for use in switched reluctance motors and generators

    NASA Astrophysics Data System (ADS)

    Fingers, Richard Todd

    The United States Air Force is in the process of developing magnetic bearings as well as an aircraft Integrated Power Unit and an Internal Starter/Generator for main propulsion engines. These developments are the driving force behind a new emphasis on high temperature, high strength magnetic materials for power applications. Analytical work, utilizing elasticity theory, in conjunction with design requirements, indicates a need for magnetic materials to have strengths in excess of 80 ksi up to about 1000sp°F. It is this combination of desired material characteristics that is the motivation for this effort to measure, model, and predict the creep behavior of such advanced magnetic materials. Hipercosp°ler Alloy 50HS, manufactured by Carpenter Technology Corporation, is one of the leading candidates for application and is studied in this effort by subjecting mechanical test specimens to a battery of tensile and creep tests. The tensile tests provide stress versus strain behaviors that clearly indicate: a yield point, a heterogeneous deformation described as Luders elongation, the Portevin-LeChatelier effect at elevated temperatures, and, most often, a section of homogeneous deformation that concluded with necking and fracture. Creep testing indicated two distinct types of behavior. The first was a traditional response with primary, secondary and tertiary stages, while the second type could be characterized by an abrupt increase in strain rate that acted as a transition from one steady state behavior to another. This second linear region was then followed by the tertiary stage. The relationship between the tensile response and the creep responses is discussed. Analyses of the mechanical behavior includes double linear regression of empirically modeled data, scanning electron microscopy for microstructural investigations, isochronous stress-strain relations, and constant strain rate testing to relate the tensile and creep test parameters. Also, elastic and creep

  9. High Temperature Damping Behavior of Plasma-Sprayed Thermal Barrier and Protective Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Duffy, Kirsten P.; Ghosn, Louis J.

    2010-01-01

    A high temperature damping test apparatus has been developed using a high heat flux CO 2 laser rig in conjunction with a TIRA S540 25 kHz Shaker and Polytec OFV 5000 Vibrometer system. The test rig has been successfully used to determine the damping performance of metallic and ceramic protective coating systems at high temperature for turbine engine applications. The initial work has been primarily focused on the microstructure and processing effects on the coating temperature-dependence damping behavior. Advanced ceramic coatings, including multicomponent tetragonal and cubic phase thermal barrier coatings, along with composite bond coats, have also been investigated. The coating high temperature damping mechanisms will also be discussed.

  10. Creep behavior of an A286 type stainless steel

    SciTech Connect

    DeCicco, H. . E-mail: decicco@cnea.gov.ar; Luppo, M.I.; Raffaeli, H.; Di Gaetano, J.; Gribaudo, L.M.; Ovejero-Garcia, J.

    2005-08-15

    A model for steady state deformation of the commercial {gamma}' precipitation hardened alloy A286 at moderately high temperature is presented. This model is mainly based on the theory of thermally activated glide. The activation parameters such as the maximum free energy necessary to overcome obstacles to glide, the threshold stress for jerky glide and the activation volume of the rate controlling process are derived from experimental results and allowed rationalization of all the measurements in the range of stresses and temperatures investigated. Creep tests were carried out at constant stress in the range of 180-750 MPa at 600, 640, 670 and 700 deg. C in air. Transmission electron microscopy has permitted determination of the size of the {gamma}' particles and the average distance between them.

  11. Creep behavior of starch-based nanocomposite films with cellulose nanofibrils.

    PubMed

    Li, Meng; Li, Dong; Wang, Li-jun; Adhikari, Benu

    2015-03-01

    Nanocomposite films were successfully prepared by incorporating cellulose nanofibrils (CNFs) from sugar beet pulp into plasticized starch (PS) at CNFs concentration of 5-20%. The storage (G') and loss (G″) moduli, creep and creep-recovery behavior of these films were studied. The creep behavior of these films at long time frame was studied using time-temperature superposition (TTS). The CNFs were uniformly distributed within these films up to 15% of CNFs. The PS-only and the PS/CNFs nanocomposite films exhibited dominant elastic behavior. The incorporation of CNFs increased both the G' and G″. The CNFs improved the creep resistance and reduced the creep recovery rate of the PS/CNFs nanocomposite films. TTS method was successfully used to predict the creep behavior of these films at longer time frame. Power law and Burgers model were capable (R(2)>0.98) of fitting experimental G' versus angular frequency and creep strain versus time data, respectively. PMID:25498722

  12. High temperature deformation behavior of a fine-grained tetragonal zirconia

    SciTech Connect

    Morita, K.; Hiraga, K.

    1999-12-31

    The stress exponent, n, defined in the following creep equation has often been regarded as a primary parameter to characterize superplastic deformation in fine-grained tetragonal zirconia containing 2.5 {approximately} 4 mol% yttria (Y-TZP): {var_epsilon} = A{sigma}{sup n}/d{sup p} where {var_epsilon} is the strain rate, {sigma} is the stress, d is the grain size, n is the stress exponent, p is the grain size exponent and A is a material constant. Recent studies have noted that the stress exponents of high-purity Y-TZP can be divided into two categories: n {approximately} 3 at low stresses and n {approximately} 2 at high stresses, where the stress dividing the deformation regions depends on both temperature and grain size. To argue the origins of such regions and relating mechanisms, however, some additional examination seems to be necessary for confirming that the regions characterized with n {approximately} 2 and {approximately} 3 are the genuine ones. This is because experimental limitations have tended to prevent the examination of deformation behavior by Eq. (1) in a strict sense. For example, the n-values have been derived from the overall strain rates that may indispensably include the effects of deformation around the grips of tensile specimens or those of constrained deformation near both sides of compression specimens. Furthermore, the data were obtained under an assumption that the effects of grain growth on the strain rate is negligible in Y-TZP. There seems to be rather little assurance, however, that these situations did not affect the evaluation of the stress exponent. From this point of view, the present study was conducted (1) to examine the effects of grain growth and some other experimental factors on creep behavior and (2) to evaluate the stress exponent from creep strain-rate curves corrected for both instantaneous stress and strain in a high purity Y-TZP.

  13. Extension of viscoplasticity based on overstress to capture the effects of prior aging on the time dependent deformation behavior of a high-temperature polymer: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    McClung, Amber J. W.

    The inelastic deformation behavior of PMR-15 neat resin, a high-temperature thermoset polymer, was investigated at 288° C. The experimental program was designed to explore the influence of strain rate on tensile loading, unloading, and strain recovery behaviors. In addition, the effect of the prior strain rate on the relaxation response of the material, as well as on the creep behavior following strain controlled loading were examined. The material exhibits positive, nonlinear strain rate sensitivity in monotonic loading. Nonlinear, "curved" stress-strain behavior during unloading is observed at all strain rates. The recovery of strain at zero stress is strongly affected by prior strain rate. The prior strain rate also has a profound influence on relaxation behavior. The rest stresses measured at the termination of relaxation tests form the relaxation boundary which resembles a nonlinear stress-strain curve. Likewise, creep response is significantly influenced by prior strain rate. The experimental results suggest that the inelastic behavior of the PMR-15 solid polymer at 288°C can be represented using a unified constitutive model with an overstress dependence of the inelastic rate of deformation. The experimental data were modeled with the Viscoplasticity Based on Overstress (VBO) theory. A systematic procedure for determining model parameters was developed and the model was employed to predict the response of the material under various test histories. Additionally the effects of prior aging at 288° C in argon on the time (rate)-dependent behavior of the PMR-15 polymer were evaluated in a series of strain and load controlled experiments. Based on experimental results, the VBO theory was extended to capture the environmentally induced changes in the material response. Several of the VBO material parameters were expanded as functions of prior aging time. The resulting model was used to predict the high-temperature behavior of the PMR-15 polymer subjected to prior

  14. High-temperature mechanical behavior of B2 type IrAl doped with Ni

    SciTech Connect

    Chiba, A.; Ono, T.; Li, X.G.; Takahashi, S.

    1997-12-31

    Constant-velocity and constant-load compression tests have been conducted to examine the mechanical behavior of polycrystalline IrAl and Ir{sub 1{minus}x}Ni{sub x}Al at ambient and elevated temperatures. Although IrAl exhibits brittle fracture before or immediately after yielding below 1,073 K, steady-state deformation takes place at temperatures higher than 1,273 K. Ductility of Ir{sub 1{minus}x}Ni{sub x}Al is improved with increasing x. On the contrary, strength decreases with increasing x. IrAl exhibits the 0.2% flow stress of 1,200MPa at 1,073 K and 350 MPa at 1,473 K, about an order of magnitude higher than NiAl. Secondary creep of IrAl and Ir{sub 0.2}Ni{sub 0.8}Al (i.e., modified NiAl) exhibits class II and class I behavior respectively. Creep strength of binary IrAl and modified NiAl with Ir is about a magnitude of 4 higher than that of single-phase and multi-phase NiAl at a given applied stress.

  15. Transient modeling of the thermohydraulic behavior of high temperature heat pipes for space reactor applications

    NASA Technical Reports Server (NTRS)

    Hall, Michael L.; Doster, Joseph M.

    1986-01-01

    Many proposed space reactor designs employ heat pipes as a means of conveying heat. Previous researchers have been concerned with steady state operation, but the transient operation is of interest in space reactor applications due to the necessity of remote startup and shutdown. A model is being developed to study the dynamic behavior of high temperature heat pipes during startup, shutdown and normal operation under space environments. Model development and preliminary results for a hypothetical design of the system are presented.

  16. Corrosion behavior of zirconia-coated Hastelloy X in a high-temperature helium environment

    SciTech Connect

    Kondo, Y.; Fukaya, K.

    1989-01-01

    The corrosion behavior of Hastelloy X coated with (NiCrAl)/(ZrO/sub 2/-CaC/sub 2/) was examined, after serving as the liner tube of helium engineering demonstration loop (HENDEL) hot gas duct. The Hastelloy X with the ceramic coating system was exposed to high-temperature helium gas for --6000 h. The compositions of oxide films formed on Hastelloy X were entirely different between the noncoated and ceramic-coated tubes.

  17. Microstructural development and creep behavior in A286 superalloy

    SciTech Connect

    De Cicco, H.; Luppo, M.I.; Gribaudo, L.M.; Ovejero-Garcia, J

    2004-05-15

    The precipitation-hardened alloy A286 has been characterized as a function of ageing treatment, and the creep behavior has been studied in the temperature range of 600-700 deg. C and at 230-740 MPa. Microhardness tests of samples aged at different temperatures have been performed, and it was observed that the fastest precipitation kinetics of the metastable {gamma}' occurred during ageing at 730 deg. C. Further exposure at this temperature degraded the good mechanical properties of the material because the {gamma}' dissolved, and the stable {eta} phase formed. Optical and scanning and transmission electron microscopy (SEM and TEM, respectively) characterization of samples in as-received state and after ageing were performed to study the microstructural development. In all creep tests, the damage observed was intergranular. The correlation between secondary strain rate and time to failure was shown to be a modified Monkman-Grant, including the elongation to rupture and an exponent different of 1 for the strain rate to obtain a better correlation. The Larson-Miller parameter has been used to correlate creep stress, temperature and rupture time for the aged material.

  18. Effect of Phosphorous Inoculation on Creep Behavior of a Hypereutectic Al-Si Alloy

    NASA Astrophysics Data System (ADS)

    Faraji, Masoumeh; Khalilpour, Hamid

    2014-10-01

    Creep behavior of Al-Si hypereutectic alloys inoculated with phosphorus was investigated using the impression creep testing. The results showed that at stress regimes of up to 400-450 MPa and temperatures up to 300 °C, no significant creep deformation occurred in both uninoculated and inoculated specimens; however, at temperatures above 300 °C, the inoculated alloys presented better creep properties. Creep data were used to calculate the stress exponent of steady-state creep rate, n, and creep activation energy, Q, for different additive conditions where n was found varied between 5 and 8. Owing to the fact that most alloys have lower values for n (4, 5), threshold stress was estimated for studied conditions. The creep governing mechanisms for different conditions are discussed here, with a particular attention to the effect of phosphorous addition on the microstructural features, including number of primary silicon particles, mean primary silicon spacing, and morphology and distribution of eutectic silicon.

  19. Creep-rupture behavior of candidate Stirling engine iron supperalloys in high-pressure hydrogen. Volume 2: Hydrogen creep-rupture behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Peterman, W.; Hales, C.

    1984-01-01

    The creep rupture behavior of nine iron base and one cobalt base candidate Stirling engine alloys is evaluated. Rupture life, minimum creep rate, and time to 1% strain data are analyzed. The 3500 h rupture life stress and stress to obtain 1% strain in 3500 h are also estimated.

  20. Effect of prior oxidation on the creep behavior of NiAl-hardened austenitic steel

    NASA Astrophysics Data System (ADS)

    Satyanarayana, D. V. V.; Malakondaiah, G.; Sarma, D. S.

    2003-11-01

    The effect of prior oxidation at 1473 K on the creep behavior of an Fe-Ni-Cr-Al alloy, hardened by ordered NiAl precipitates, has been investigated at 873 K over a stress range of 275 to 450 MPa. The alloy in the as-electroslag remelted (ESR) as well as the ESR-plus-hot-worked conditions was considered. Prior oxidation causes creep strengthening in the Fe-Ni-Cr-Al alloy, resulting in a decrease in minimum creep rate and increase in time to rupture, in contrast to the observations reported on nickel-based superalloys. Creep strengthening is, however, accompanied by a significant reduction in creep ductility. Oxidation-induced creep strengthening in the current alloy can be attributed to the improved adherence of surface oxide caused by the presence of yttrium. An effective stress that incorporates the contributions of load transfer as well as substructural strengthening is used to account for the observed oxidation-induced creep strengthening. While creep strengthening is more pronounced in the ESR cast alloy, the loss in creep ductility is more intense in the ESR wrought alloy. Increasing the oxidation time beyond 1 hour has a minimal effect on creep strengthening of both the alloys, though it lowers significantly the creep ductility of the wrought alloy. The observed differences in creep behavior of the alloy in the two different conditions could be attributed to the differences in grain size as well as morphology and related oxidation-induced damage.

  1. Creep and Stress-strain Behavior After Creep from Sic Fiber Reinforced, Melt-infiltrated Sic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Pujar, Vijay

    2004-01-01

    Silicon carbide fiber (Hi-Nicalon Type S, Nippon Carbon) reinforced silicon carbide matrix composites containing melt-infiltrated Si were subjected to creep at 1315 C for a number of different stress conditions, This study is aimed at understanding the time-dependent creep behavior of CMCs for desired use-conditions, and also more importantly, how the stress-strain response changes as a result of the time-temperature-stress history of the crept material. For the specimens that did not rupture, fast fracture experiments were performed at 1315 C or at room temperature immediately following tensile creep. In many cases, the stress-strain response and the resulting matrix cracking stress of the composite change due to stress-redistribution between composite constituents during tensile creep. The paper will discuss these results and its implications on applications of these materials for turbine engine components.

  2. Fatigue behavior of Fe-48 at.% Al polycrystals with B2 structure at high temperatures

    SciTech Connect

    Yasuda, H.Y.; Behgozin, A.; Umakoshi, Y.

    1998-12-18

    In FeAl alloys with the B2 structure, slip transition from <111> at low temperature to <001> at high temperature occurs depending on crystal orientation, alloying composition and lattice defects such as excess thermal vacancies. The slip transition strongly influences the strength, ductility and fracture mode in these alloys. According to recent results using FeAl single crystals containing a low density of excess thermal vacancies, yield stress increased with increasing temperature showing an anomalous peak between 823 and 873K. The anomalous strengthening peak corresponded to the slip transition: <111> superlattice dislocations were dominantly operative at temperatures below the peak, while <001> dislocations appeared above the peak. In this article, the authors report on the fatigue behavior of an Fe-48at.%Al polycrystalline alloy deformed at high temperatures, focusing on the effect of anomalous strengthening and the transition in slip direction.

  3. Thermal Shock Behavior of Single Crystal Oxide Refractive Concentrators for High Temperatures Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium-aluminum-garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) have been considered as refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermal mechanical reliability of the oxide components in severe thermal environments during space mission sun/shade transitions is of great concern. In this paper, critical mechanical properties of these oxide crystals are determined by the indentation technique. Thermal shock resistance of the oxides is evaluated using a high power CO, laser under high temperature-high thermal gradients. Thermal stress fracture behavior and failure mechanisms of these oxide materials are investigated under various temperature and heating conditions.

  4. Deterministic Multiaxial Creep and Creep Rupture Enhancements for CARES/Creep Integrated Design Code

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.

    1998-01-01

    High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep rupture criterion. However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of sum, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of Ns methodology and the

  5. Impression Creep Behavior of 316LN Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mathew, M. D.; Naveena; Vijayanand, D.

    2013-02-01

    Impression creep tests have been carried out at 923 K on 316LN SS containing 0.07, 0.14, and 0.22 wt.% nitrogen, under different applied stress levels. It was observed that the impression creep depth versus time curves were similar to the creep curves obtained from conventional uniaxial creep tests. The impression creep curves were characterized by a loading strain and primary and secondary creep stages similar to uniaxial creep curves. The tertiary stage observed in uniaxial creep curves was absent. The steady-state impression velocity was found to increase with increasing applied stress. The equivalent steady-state creep rates calculated from impression velocities were found to be in good agreement with the steady-state creep rates obtained from conventional uniaxial creep tests. Equivalence between applied stress and steady-state impression velocity with uniaxial creep stress and steady-state creep rate, respectively, has been established based on the laws of mechanics for time-dependent plasticity. It was found that impression velocity was sensitive to the variation in nitrogen content in the steel; impression velocity decreased with increasing nitrogen content, and the results obtained in this study were in agreement with those obtained from uniaxial creep tests.

  6. Creep Behavior of Organic-Rich Shales - Evidences of Microscale Strain Partitioning

    NASA Astrophysics Data System (ADS)

    Sone, H.; Morales, L. F. G.; Dresen, G. H.

    2015-12-01

    Laboratory creep experiments conducted using organic-rich shales show that these rocks exhibit some ductility under sustained loading conditions although they may appear to be elastic and brittle (Young's modulus 15-80 GPa) at shorter time scales. At room-temperature and in-situ pressure conditions, creep strain observed after 3 hours of sustained loading reach strains on the order of 10-5per megapascal of applied differential stress. The creep behavior is highly anisotropic such that creep occurs more in the direction perpendicular to the bedding plane than in the direction parallel to the bedding plane. In general, we find that the creep behavior is largely controlled by the amount of clay mineral and organic content. This is also supported by evidences of elastic stiffening and sample volume reduction during creep which imply that the creep is accommodated by localized compaction occurring within clay-aggregates and/or organic materials, the relatively porous members in the rock. We also find that the tendency to creep has a unique relation with the Young's modulus regardless of the loading direction or the mineral composition. Sone and Zoback (2013) explained this correlation by appealing to the stress partitioning behavior that occurs between the relatively stiff and soft components of the rock, and also by assuming that creep only occurs within the soft components, namely the clay and organic contents, with a specific local 3-hour creep compliance value of 10-4 MPa-1. In order to confirm that such strain-partitioning occurs during creep deformation, we also performed creep experiments under a scanning electron microscope using a deformation stage setup. Such experiments allow us to directly observe the deformation and quantify the strain-partitioning occurring between the different mineral constituents with the aid of digital image correlation analysis. Results suggest that strain-partitioning do occur during creep deformation and inferred creep properties of

  7. Creep and recovery behaviors of magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix

    NASA Astrophysics Data System (ADS)

    Qi, S.; Yu, M.; Fu, J.; Li, P. D.; Zhu, M.

    2016-01-01

    This paper mainly investigated the creep and recovery behaviors of magnetorheological elastomers (MRE) based on polyurethane/epoxy resin (EP) graft interpenetrating polymer networks (IPNs). The influences of constant stress level, content of EP, particle distribution, magnetic field and temperature on the creep and recovery behaviors were systematically investigated. As expected, results suggested that the presence of IPNs leads to a significant improvement of creep resistance of MRE, and creep and recovery behaviors of MRE were highly dependent on magnetic field and temperature. To further understand its deformation mechanism, several models (i.e., Findley’s power law model, Burgers model, and Weibull distribution equation) were used to fit the measured creep and recovery data. Results showed that the modeling of creep and recovery of samples was satisfactorily conducted by using these models. The influences of content of EP and magnetic field on fitting parameters were discussed, and relevant physical mechanism was proposed to explain it qualitatively.

  8. Semi-analytical solution of time-dependent thermomechanical creep behavior of FGM hollow spheres

    NASA Astrophysics Data System (ADS)

    Jafari Fesharaki, J.; Loghman, A.; Yazdipoor, M.; Golabi, S.

    2014-02-01

    By using a method of successive elastic solution, the time-dependent creep behavior of a functionally graded hollow sphere under thermomechanical loads has been investigated. Based on volume percentage, the mechanical and thermal properties of material, except for the Poisson's ratio, are assumed to be radially dependent. Total strains are assumed to be the sum of elastic, thermal and creep strains. Creep strains are temperature-, stress- and time-dependent. Using the Prandtl-Reuss relations and Sherby's law, histories of stresses and strains are presented from their initial elastic values at zero time up to 30 years after loading. The results show that the creep stresses and strains change with time and material inhomogeneity has influence on thermomechanical creep behavior. The aim of this work was to understand the effect of creep behavior on a functionally graded hollow sphere subjected to thermomechanical load.

  9. High temperature degradation behavior of sputtered nanostructured Co-Al coatings on superalloy

    NASA Astrophysics Data System (ADS)

    Rahman, Atikur; Jayaganthan, R.; Chandra, Ramesh; Ambardar, R.

    2013-01-01

    Microstructure and cyclic high temperature oxidation behavior of nanostructured Co-Al coatings on Superni-718 substrate have been investigated. Cyclic high temperature oxidation tests were conducted on uncoated and coated samples at peak temperatures of 800 °C and 900 °C for up to 100 thermal cycles between the peak and room temperatures. The results showed that bare substrate has higher oxidation resistance at 800 °C as compared to 900 °C and coated sample has slightly higher oxidation resistance at 900 °C. The external scale of both coated sample exhibited good spallation resistance during cyclic oxidation testing at both temperatures. The improvement in oxide scale spallation resistance is believed to be related to the fine-grained structure of the coating. Nanostructured Co-Al coatings on Superni-718 substrate were deposited by DC/RF magnetron sputtering. FE-SEM/EDS and XRD were used to characterize the morphology and formation of different phases in the coatings, respectively. The Co-Al coating on superalloy substrate showed better performance of cyclic high temperature oxidation resistance due to its possession of β-CoAl phase as Al reservoir and the formation of Al2O3 and spinel phases such as CoCr2O4 and CoAl2O4 in the scale. The oxidation results confirmed an improved oxidation resistance of the Co-Al coating on superalloy as compared to bare substrate up to 100 cycles.

  10. Isothermal oxidation behavior of ternary Zr-Nb-Y alloys at high temperature

    SciTech Connect

    Prajitno, Djoko Hadi; Soepriyanto, Syoni; Basuki, Eddy Agus; Wiryolukito, Slameto

    2014-03-24

    The effect of yttrium content on isothermal oxidation behavior of Zr-2,5%Nb-0,5%Y, Zr-2,5%Nb-1%Y Zr-2,5%Nb-1,5%Y alloy at high temperature has been studied. High temperature oxidation carried out at tube furnace in air at 600,700 and 800°C for 1 hour. Optical microscope is used for microstructure characterization of the alloy. Oxidized and un oxidized specimen was characterized by x-ray diffraction. In this study, kinetic oxidation of Zr-2,5%Nb with different Y content at high temperature has also been studied. Characterization by optical microscope showed that microstructure of Zr-Nb-Y alloys relatively unchanged and showed equiaxed microstructure. X-ray diffraction of the alloys depicted that the oxide scale formed during oxidation of zirconium alloys is monoclinic ZrO2 while unoxidised alloy showed two phase α and β phase. SEM-EDS examination shows that depletion of Zr composition took place under the oxide layer. Kinetic rate of oxidation of zirconium alloy showed that increasing oxidation temperature will increase oxidation rate but increasing yttrium content in the alloys will decrease oxidation rate.

  11. High temperature oxidation behavior of SiC coating in TRISO coated particles

    NASA Astrophysics Data System (ADS)

    Liu, Rongzheng; Liu, Bing; Zhang, Kaihong; Liu, Malin; Shao, Youlin; Tang, Chunhe

    2014-10-01

    High temperature oxidation behavior of SiC coatings in tristructural-isotropic (TRISO) coated particles is crucial to the in-pile safety of fuel particles for a high temperature gas cooled reactor (HTGR). The postulated accident condition of air ingress was taken into account in evaluating the reliability of the SiC layer. Oxidation tests of SiC coatings were carried out in the ranges of temperature between 800 and 1600 °C and time between 1 and 48 h in air atmosphere. Based on the microstructure evolution of the oxide layer, the mechanisms and kinetics of the oxidation process were proposed. The existence of silicon oxycarbides (SiOxCy) at the SiO2/SiC interface was demonstrated by X-ray photospectroscopy (XPS) analysis. Carbon was detected by Raman spectroscopy at the interface under conditions of very high temperatures and long oxidation time. From oxidation kinetics calculation, activation energies were 145 kJ/mol and 352 kJ/mol for the temperature ranges of 1200-1500 °C and 1550-1600 °C, respectively.

  12. Creep-rupture behavior of iron superalloys in high-pressure hydrogen

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Peterman, W.

    1984-01-01

    The creep-rupture properties of five iron-base and one cobalt-base high temperature alloys were investigated to assess the feasibility of using the alloys as construction materials in a Stirling engine. The alloys were heat treated and hardness measurements were taken. Typical microstructures of the alloys are shown. The creep-rupture properties of the alloys were determined at 760 and 815 C in 15.0 MPa H2 for 200 to 1000 hours. Plots of rupture life versus stress for the six superalloys are presented along with creep strain-time plots.

  13. Type IV Creep Damage Behavior in Gr.91 Steel Welded Joints

    NASA Astrophysics Data System (ADS)

    Hongo, Hiromichi; Tabuchi, Masaaki; Watanabe, Takashi

    2012-04-01

    Modified 9Cr-1Mo steel (ASME Grade 91 steel) is used as a key structural material for boiler components in ultra-supercritical (USC) thermal power plants at approximately 873 K (600 °C). The creep strength of welded joints of this steel decreases as a result of Type IV creep cracking that forms in the heat-affected zone (HAZ) under long-term use at high temperatures. The current article aims to elucidate the damage processes and microstructural degradations that take place in the HAZ of these welded joints. Long-term creep tests for base metal, simulated HAZ, and welded joints were conducted at 823 K, 873 K, and 923 K (550 °C, 600 °C, and 650 °C). Furthermore, creep tests of thick welded joint specimens were interrupted at several time steps at 873 K (600 °C) and 90 MPa, after which the distribution and evolution of creep damage inside the plates were measured quantitatively. It was found that creep voids are initiated in the early stages (0.2 of life) of creep rupture life, which coalesce to form a crack at a later stage (0.8 of life). In a fine-grained HAZ, creep damage is concentrated chiefly in an area approximately 20 pct below the surface of the plate. The experimental creep damage distributions coincide closely with the computed results obtained by damage mechanics analysis using the creep properties of a simulated fine-grained HAZ. Both the concentration of creep strain and the high multiaxial stress conditions in the fine-grained HAZ influence the distribution of Type IV creep damage.

  14. Elevated temperature creep-rupture behavior of the single crystal nickel-base superalloy NASAIR 100

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Ebert, L. J.

    1985-01-01

    The creep and rupture behavior of 001-line-oriented single crystals of the nickel-base superalloy NASAIR 100 was investigated at temperatures of 925 and 1000 C. In the stress and temperature ranges studied, the steady state creep rate, time to failure, time to the onset of secondary creep, and the time to the onset of tertiary creep all exhibited power law dependencies on the applied stress. The creep rate exponents for this alloy were between seven and eight, and the modulus-corrected activation energy for creep was approximately 350 kjoule/mole, which was comparable to the measured activation energy for Ostwald ripening of the gamma-prime precipitates. Oriented gamma-prime coarsening to form lamellae perpendicular to the applied stress was very prominent during creep. At 1000 C, the formation of a continuous gamma-gamma-prime lamellar structure was completed during the primary creep stage. Shear through the gamma-gamma-prime interface is considerd to be the rate limiting step in the deformation process. Gradual thickening of the lamellae appeared to be the cause of the onset of tertiary creep. At 925 C, the fully developed lamellar structure was not achieved until the secondary or tertiary creep stages. At this temperature, the gamma-gamma-prime lamellar structure did not appear to be as beneficial for creep resistance as at the higher temperature.

  15. Effect of High Temperature on the Tensile Behavior of CFRP and Cementitious Composites

    NASA Technical Reports Server (NTRS)

    Toutanji, Houssam A.

    1999-01-01

    Concrete and other composite manufacturing processes are continuing to evolve and become more and more suited for use in non-Earth settings such as the Moon and Mars. The fact that structures built in lunar environments would experience a range of effects from temperature extremes to bombardment by micrometeorites and that all the materials for concrete production exist on the Moon means that concrete appears to be the most feasible building material. it can provide adequate shelter from the harshness of the lunar environment and at the same time be a cost effective building material. With a return to the Moon planned by NASA to occur after the turn of the century, it will be necessary to include concrete manufacturing as one of the experiments to be conducted in one of the coming missions. Concrete's many possible uses and possibilities for manufacturing make it ideal for lunar construction. The objectives of this research are summarized as follows: i) study the possibility of concrete production on the Moon or other planets, ii) study the effect of high temperature on the tensile behavior of concrete, and iii) study the effect of high temperature on the tensile behavior of carbon fiber reinforced with inorganic polymer composites. Literature review indicates that production of concrete on the Moon or other planets is feasible using the indigenous materials. Results of this study has shown that both the tensile strength and static elastic modulus of concrete decreased with a rise in temperature from 200 to 500 C. The addition of silica fume to concrete showed higher resistance to high temperatures. Carbon fiber reinforced inorganic polymer (CFRIP) composites seemed to perform well up to 300 C. However, a significant reduction in strength was observed of about 40% at 400 C and up to 80% when the specimens were exposed to 700 C.

  16. Oxidation behavior of TD-NiCr in a dynamic high temperature environment

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Young, C. T.; Herring, H. W.

    1974-01-01

    The oxidation behavior of TD-NiCr has been studied in static and high-speed flowing air environments at 1100 and 1200 C. It has been found that the stable oxide morphologies formed on the specimens exposed to the static and dynamic environments were markedly different. The faceted crystal morphology characteristic of static oxidation was found to be unstable under high-temperature, high-speed flow conditions and was quickly replaced by a porous NiO 'mushroom' type structure. Also, it was found that the rate of formation of CrO3 from Cr2O3 was greatly enhanced by high gas velocity conditions. The stability of Cr2-O3 was found to be greatly improved by the presence of an outer NiO layer, even though the NiO layer was very porous. An oxidation model is proposed to explain the observed microstructures and overall oxidation behavior of TD-NiCr alloys.

  17. Autoignition behavior of unsaturated hydrocarbons in the low and high temperature regions

    SciTech Connect

    Mehl, M; Pitz, W J; Westbrook, C K; Yasunaga, K; Curran, H J

    2010-02-22

    In this work, numerical and experimental techniques are used to investigate the effect of the position of the double bond on the ignition properties of pentene and hexene linear isomers. A wide-range kinetic model for the oxidation of C{sub 5}-C{sub 6} linear alkenes has been developed. Literature rapid compression machine data were used to validate the model at low temperatures and new shock tube experiments were performed in order to assess the behavior of the considered alkenes in the high temperature region. Some interesting inversions in the relative reactivity of the isomers were detected. The model successfully reproduced the measured behavior and allowed to explain the reason of these reactivity changes. The information gathered will be applied to the development of the kinetic mechanisms of larger unsaturated surrogate components.

  18. In-Situ Transmission Electron Microscope High Temperature Behavior in Nanocrystalline Platinum Thin Films

    NASA Astrophysics Data System (ADS)

    Garcia, Davil; Leon, Alexander; Kumar, Sandeep

    2016-01-01

    In this work, we present a micro electro-mechanical systems (MEMS)-based in situ transmission electron microscope (TEM) experimental setup for high-temperature uniaxial tensile behavior of nanocrystalline thin films. This setup utilizes self-heating (Ohmic) to raise the temperature of thin films while applying uniaxial tensile loading using electro-thermal actuators. Self-heating is achieved by passing a high-density direct current through the specimen. We carried out a qualitative uniaxial tensile experiment on a 75-nm platinum thin film at 360 K. Temperature is estimated using COMSOL modeling. In this qualitative experiment, we observed initial grain growth followed by formation of edge serrations. We propose that grain boundary sliding coupled with grain growth is the underlying mechanism responsible for the observed behavior.

  19. High temperature mechanical behavior of Nb{sub 5}Si{sub 3}/Nb laminates

    SciTech Connect

    Provancher, W.; Ghosh, A.K.

    1995-07-01

    Two phase alloys based on the intermetallic system Nb{sub 5}Si{sub 3}/Nb system provide potentially superior combination of strength and toughness over their monolithic counterparts at high temperatures. To gain fundamental knowledge of the mechanical behavior of these materials, initial focus has been on the mechanical behavior of Nb{sub 5}Si{sub 3}/Nb laminates and composites at elevated temperatures. In this study, laminates have been fabricated at 32 at% Si with Nb, and a total laminate thickness of 2.1 mm. Tests are being conducted on notched and unnotched tensile specimens. The unnotched specimens provide the overall strength and ductility of the laminate and a basis for comparison with notched specimens which provide information on crack propagation and ductile phase toughening effects. Results from samples with a variety of laminate spacings are being explored, and preliminary data will be presented.

  20. Nanoindentation Creep Behavior of an Al0.3CoCrFeNi High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Yu, Pengfei; Cheng, Hu; Zhang, Huan; Diao, Haoyan; Shi, Yunzhu; Chen, Bilin; Chen, Peiyong; Feng, Rui; Bai, Jie; Jing, Qin; Ma, Mingzhen; Liaw, P. K.; Li, Gong; Liu, Riping

    2016-03-01

    Nanoindentation creep behavior was studied on a coarse-grained Al0.3CoCrFeNi high-entropy alloy with a single face-centered cubic structure. The effects of the indentation size and loading rate on creep behavior were investigated. The experimental results show that the hardness, creep depth, creep strain rate, and stress exponent are all dependent on the holding load and loading rate. The creep behavior shows a remarkable indentation size effect at different maximum indentation loads. The dominant creep mechanism is dislocation creep at high indentation loads and self-diffusion at low indentation loads. An obvious loading rate sensitivity of creep behavior is found under different loading rates for the alloy. A high loading rate can lead to a high strain gradient, and numerous dislocations emerge and entangle together. Then during the holding time, a large creep deformation characteristic with a high stress exponent will happen.

  1. The corrosion behavior of hafnium in high-temperature-water environments

    SciTech Connect

    Rishel, D.M.; Smee, J.D.; Kammenzind, B.F.

    1999-10-01

    The high-temperature-water corrosion performance of hafnium is evaluated. Corrosion kinetic data are used to develop correlations that are a function of time and temperature. The evaluation is based on corrosion tests conducted in out-of-pile autoclaves and in out-of-flux locations of the Advanced Test Reactor (ATR) at temperatures ranging from 288 to 360 C. Similar to the corrosion behavior of unalloyed zirconium, the high-temperature-water corrosion response of hafnium exhibits three corrosion regimes: pretransition, posttransition, and spalling. In the pretransition regime, cubic corrosion kinetics are exhibited, whereas in the posttransition regime, linear corrosion kinetics are exhibited. Because of the scatter in the spalling regime data, it is not reasonable to use a best fit of the data to describe spalling regime corrosion. Data also show that neutron irradiation does not alter the corrosion performance of hafnium. Finally, the data illustrate that the corrosion rate of hafnium is significantly less than that of Zircaloy-2 and Zircaloy-4.

  2. Behaviors of Zn2GeO4 under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Shu-Wen, Yang; Fang, Peng; Wen-Tao, Li; Qi-Wei, Hu; Xiao-Zhi, Yan; Li, Lei; Xiao-Dong, Li; Duan-Wei, He

    2016-07-01

    The structural stability of Zn2GeO4 was investigated by in-situ synchrotron radiation angle dispersive x-ray diffraction. The pressure-induced amorphization is observed up to 10 GPa at room temperature. The high-pressure and high-temperature sintering experiments and the Raman spectrum measurement firstly were performed to suggest that the amorphization is caused by insufficient thermal energy and tilting Zn–O–Ge and Ge–O–Ge bond angles with increasing pressure, respectively. The calculated bulk modulus of Zn2GeO4 is 117.8 GPa from the pressure-volume data. In general, insights into the mechanical behavior and structure evolution of Zn2GeO4 will shed light on the micro-mechanism of the materials variation under high pressure and high temperature. Project supported by the Joint Fund of the National Natural Science Foundation of China and Chinese Academy of Sciences (Grant No. U1332104).

  3. Oxidation Behavior of GRCop-84 (Cu-8Cr-4Nb) at Intermediate and High Temperatures

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U.; Humphrey, Donald L.; Greenbauer-Seng, Leslie (Technical Monitor)

    2000-01-01

    The oxidation behavior of GRCop-84 (Cu-8 at %Cr-4 at %Nb) has been investigated in air and in oxygen, for durations of 0.5 to 50 hours and temperatures ranging from 500 to 900 C. For comparison, data was also obtained for the oxidation of Cu and NARloy-Z (Cu-3 wt% Ag-0.5 wt% Zr) under the same conditions. Arrhenius plots of those data showed that all three materials had similar oxidation rates at high temperatures (> 750 C). However, at intermediate temperatures (500 to 750 C) GRCop exhibited significantly higher oxidation resistance than Cu and NARloy-Z. The oxidation kinetics of GRCop-84 exhibited a sharp and discontinuous jump between the two regimes. Also, in the high temperature regime GRCop-84 oxidation rate was found to change from a high initial value to a significantly smaller terminal value at each temperature, with progress of oxidation; the two different oxidation rates were found to correlate with a porous intial oxide and a dense final oxide, respectively.

  4. Determination of Creep Behavior of Thermal Barrier Coatings Under Laser Imposed High Thermal and Stress Gradient Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    A laser sintering/creep technique has been established to determine the creep behavior of thermal barrier coatings under steady-state high heat flux conditions. For a plasma sprayed zirconia-8 wt. % yttria coating, a significant primary creep strain and a low apparent creep activation energy were observed. Possible creep mechanisms involved include stress induced mechanical sliding and temperature and stress enhanced cation diffusion through the splat and grain boundaries. The elastic modulus evolution, stress response, and total accumulated creep strain variation across the ceramic coating are simulated using a finite difference approach. The modeled creep response is consistent with experimental observations.

  5. Prediction and verification of creep behavior in metallic materials and components for the space shuttle thermal protection system. Volume 2: Phase 2 subsize panel cyclic creep predictions

    NASA Technical Reports Server (NTRS)

    Cramer, B. A.; Davis, J. W.

    1975-01-01

    A method for predicting permanent cyclic creep deflections in stiffened panel structures was developed. The resulting computer program may be applied to either the time-hardening or strain-hardening theories of creep accumulation. Iterative techniques were used to determine structural rotations, creep strains, and stresses as a function of time. Deflections were determined by numerical integration of structural rotations along the panel length. The analytical approach was developed for analyzing thin-gage entry vehicle metallic-thermal-protection system panels subjected to cyclic bending loads at high temperatures, but may be applied to any panel subjected to bending loads. Predicted panel creep deflections were compared with results from cyclic tests of subsize corrugation and rib-stiffened panels. Empirical equations were developed for each material based on correlation with tensile cyclic creep data and both the subsize panels and tensile specimens were fabricated from the same sheet material. For Vol. 1, see N75-21431.

  6. In Situ Measurement of the γ/ γ' Lattice Mismatch Evolution of a Nickel-Based Single-Crystal Superalloy During Non-isothermal Very High-Temperature Creep Experiments

    NASA Astrophysics Data System (ADS)

    Le Graverend, Jean-Briac; Dirand, Laura; Jacques, Alain; Cormier, Jonathan; Ferry, Olivier; Schenk, Thomas; Gallerneau, Franck; Kruch, Serge; Mendez, José

    2012-11-01

    The evolution of the γ/ γ' lattice mismatch of the AM1 single-crystal superalloy was measured during in situ non-isothermal very high-temperature creep tests under X-ray synchrotron radiation. The magnitude of the effective lattice mismatch in the 1273 K to 1323 K (1000 °C to 1050 °C) temperature range always increased after overheatings performed at temperatures lower than 1403 K (1130 °C). In contrast, a decrease of its magnitude was observed after overheatings at temperatures greater than 1453 K (1180 °C) due to massive dislocation recovery processes occurring at very high temperature.

  7. Creep-Fatigue Behavior of Alloy 617 at 850°C

    SciTech Connect

    Carroll, Laura

    2015-05-01

    Creep-fatigue deformation is expected to be a significant contributor to the potential factors that limit the useful life of the Intermediate Heat Exchanger (IHX) in the Very High Temperature Reactor (VHTR) nuclear system.[1] The IHX of a high temperature gas reactor will be subjected to a limited number of transient cycles due to start-up and shut-down operations imparting high local stresses on the component. This cycling introduces a creep-fatigue type of interaction as dwell times occur intermittently. The leading candidate alloy for the IHX is a nickel-base solid solution strengthened alloy, Alloy 617, which must safely operate near the expected reactor outlet temperature of up to 950 °C.[1] This solid solution strengthened nickel-base alloy provides an interesting creep-fatigue deformation case study because it has characteristics of two different alloy systems for which the cyclic behavior has been extensively investigated. Compositionally, it resembles nickel-base superalloys, such as Waspalloy, IN100, and IN718, with the exception of its lower levels of Al. At temperatures above 800 °C, the microstructure of Alloy 617, however, does not contain the ordered ?’ or ?’’ phases. Thus microstructurally, it is more similar to an austenitic stainless steel, such as 316 or 304, or Alloy 800H comprised of a predominantly solid solution strengthened matrix phase with a dispersion of inter- and intragranular carbides. Previous studies of the creep-fatigue behavior of Alloy 617 at 950 °C indicate that the fatigue life is reduced when a constant strain dwell is added at peak tensile strain.[2-5] This results from the combination of faster crack initiation occurring at surface-connected grain boundaries due to oxidation from the air environment along with faster, and intergranular, crack propagation resulting from the linking of extensive interior grain boundary cracking.[3] Saturation, defined as the point at which further increases in the strain

  8. Creep-Rupture Behavior and Recrystallization in Cold-Bent Boiler Tubing for USC Applications

    SciTech Connect

    Shingledecker, John P

    2008-01-01

    Creep-rupture experiments were conducted on candidate Ultrasupercritical (USC) alloy tubes to evaluate the effects of cold-work and recrystallization during high-temperature service. These creep tests were performed by internally pressurizing cold-bent boiler tubes at 775 C for times up to 8000 hours. The bends were fabricated with cold-work levels beyond the current ASME Boiler and Pressure Vessel (ASME B&PV) Code Section I limits for austenitic stainless steels. Destructive metallographic evaluation of the crept tube bends was used to determine the effects of cold-work and the degree of recrystallization. The metallographic analysis combined with an evaluation of the creep and rupture data suggest that solid-solution strengthened nickel-based alloys can be fabricated for high-temperature service at USC conditions utilizing levels of cold-work higher than the current allowed levels for austenitic stainless steels.

  9. Microstructural development and mechanical behavior of eutectic bismuth-tin and eutectic indium-tin in response to high temperature deformation

    SciTech Connect

    Goldstein, J.L.F. |

    1993-11-01

    The mechanical behavior and microstructure of eutectic Bi-Sn and In-Sn solders were studied in parallel in order to better understand high temperature deformation of these alloys. Bi-Sn solder joints were made with Cu substrates, and In-Sn joints were made with either Cu or Ni substrates. The as-cast microstructure of Bi-Sn is complex regular, with the two eutectic phases interconnected in complicated patterns. The as-cast microstructure of In-Sn depends on the substrate. In-Sn on Cu has a non-uniform microstructure caused by diffusion of Cu into the solder during sample preparation, with regions of the Sn-rich {gamma} phase imbedded in a matrix of the In-rich {beta} phase. The microstructure of In-Sn on Ni is uniform and lamellar and the two phases are strongly coupled. The solders deform non-uniformly, with deformation concentrating in a band along the length of the sample for Bi-Sn and In-Sn on Cu, though the deformation is more diffuse in In-Sn than in Bi-Sn. Deformation of In-Sn on Ni spreads throughout the width of the joint. The different deformation patterns affect the shape of the stress-strain curves. Stress-strain curves for Bi-Sn and In-Sn on Cu exhibit sharp decays in the engineering stress after reaching a peak. Most of this stress decay is removed for In-Sn on Ni. The creep behavior of In-Sn also depends on the substrate, with the creep deformation controlled by the soft P phase of the eutectic for In-Sn on Cu and controlled by the harder {gamma} phase for In-Sn on Ni. When In-Sn on Ni samples are aged, the microstructure coarsens and changes to an array of {gamma} phase regions in a matrix of the {beta} phase, and the creep behavior changes to resemble that of In-Sn on Cu. The creep behavior of Bi-Sn changes with temperature. Two independent mechanisms operate at lower temperatures, but there is still some question as to whether one or both of these, or a third mechanism, operates at higher temperatures.

  10. Experimental characterization and modelling of UO2 behavior at high temperatures and high strain rates

    NASA Astrophysics Data System (ADS)

    Salvo, Maxime; Sercombe, Jérôme; Ménard, Jean-Claude; Julien, Jérôme; Helfer, Thomas; Désoyer, Thierry

    2015-01-01

    This work presents an experimental characterization of uranium dioxide (UO2) in compression under Reactivity Initiated Accident (RIA) conditions. Pellet samples were tested at four temperatures (1100, 1350, 1550 and 1700 °C) and at a strain rate varying over 4 decades (10-4-10-3-10-2-10-1 /s). The experimental results show that the stress-strain curves cannot be fitted with a unique power law as it is the case at smaller strain rates (10-9-10-5 /s). A strain-hardening also appears in most of the tests. The microstructural observations show a pronounced evolution of the porosity at the pellet center during the tests. A hyperbolic sine model which accounts for volume variations (pore compressibility) was therefore proposed to describe the behavior of UO2 on a large range of temperatures (1100 - 1700 °C) and strain rates (10-9-10-1 /s). The Finite Element simulations of the compression tests lead to results (maximum stress, axial and hoop strain distribution, porosity distribution) in good agreement with the measurements. The model was then assessed on a database of more than two hundred creep tests.

  11. Influence of Prior Fatigue Cycling on Creep Behavior of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Vijayanand, V. D.; Parameswaran, P.; Shankar, Vani; Sandhya, R.; Laha, K.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2014-06-01

    Creep tests were carried out at 823 K (550 °C) and 210 MPa on Reduced Activation Ferritic-Martensitic (RAFM) steel which was subjected to different extents of prior fatigue exposure at 823 K at a strain amplitude of ±0.6 pct to assess the effect of prior fatigue exposure on creep behavior. Extensive cyclic softening that characterized the fatigue damage was found to be immensely deleterious for creep strength of the tempered martensitic steel. Creep rupture life was reduced to 60 pct of that of the virgin steel when the steel was exposed to as low as 1 pct of fatigue life. However, creep life saturated after fatigue exposure of 40 pct. Increase in minimum creep rate and decrease in creep rupture ductility with a saturating trend were observed with prior fatigue exposures. To substantiate these findings, detailed transmission electron microscopy studies were carried out on the steel. With fatigue exposures, extensive recovery of martensitic-lath structure was distinctly observed which supported the cyclic softening behavior that was introduced due to prior fatigue. Consequently, prior fatigue exposures were considered responsible for decrease in creep ductility and associated reduction in the creep rupture strength.

  12. High strain rate behavior of alloy 800H at high temperatures

    NASA Astrophysics Data System (ADS)

    Shafiei, E.

    2016-05-01

    In this paper, a new model using linear estimation of strain hardening rate vs. stress, has been developed to predict dynamic behavior of alloy 800H at high temperatures. In order to prove the accuracy and competency of the presented model, Johnson-Cook model pertaining modeling of flow stress curves was used. Evaluation of mean error of flow stress at deformation temperatures from 850 °C to 1050 °C and at strain rates of 5 S-1 to 20 S-1 indicates that the predicted results are in a good agreement with experimentally measured ones. This analysis has been done for the stress-strain curves under hot working condition for alloy 800H. However, this model is not dependent on the type of material and can be extended for any similar conditions.

  13. A universal scaling behavior in magnetic resonance peak in high temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Shin, Seung Joon; Salk, Sung-Ho Suck

    2015-08-01

    Eminent inelastic neutron scattering (INS) measurements of high temperature cuprates currently lacking theoretical interpretations are the observed temperature dependence of magnetic resonance peak and linear scaling relation between the resonance peak energy, Eres and the superconducting transition temperature, Tc. Using our slave-boson approach of the t-J Hamiltonian (Phys. Rev. 64, 052501 (2001)) for this study, we show that starting from the pseudogap temperature T∗, the magnetic resonance peak increases with decreasing temperature, revealing its inflection point at Tc and that spin pairing correlations are responsible for d-wave superconductivity. We find that there exists a universal linear scaling behavior of Eres/Tc = const., irrespective of the Heisenberg exchange coupling.

  14. Behavior of femtosecond laser-induced eccentric fiber Bragg gratings at very high temperatures.

    PubMed

    Chikh-Bled, Hicham; Chah, Karima; González-Vila, Álvaro; Lasri, Boumediène; Caucheteur, Christophe

    2016-09-01

    In this work, eccentric Bragg gratings are photoinscribed in telecommunication-grade optical fibers. They are localized close to the core-cladding interface, yielding strong cladding mode resonance couplings and high photoinduced birefringence. Their transmitted amplitude spectrum is measured with polarized light while they are exposed to temperature changes up to 900°C. Despite the gratings' overall good thermal stability that confirms their robustness for high-temperature refractometry, we report an interesting polarization effect depending on both the cladding mode resonance family and mode order. While the core mode birefringence decreases with growing temperatures, certain cladding mode resonances show an increase in wavelength splitting between their orthogonally polarized components. This differential behavior is of high interest in developing high-resolution, multiparametric sensing platforms. PMID:27607969

  15. Mechanical Behavior of Glidcop Al-15 at High Temperature and Strain Rate

    NASA Astrophysics Data System (ADS)

    Scapin, M.; Peroni, L.; Fichera, C.

    2014-05-01

    Strain rate and temperature are variables of fundamental importance for the definition of the mechanical behavior of materials. In some elastic-plastic models, the effects, coming from these two quantities, are considered to act independently. This approach should, in some cases, allow to greatly simplify the experimental phase correlated to the parameter identification of the material model. Nevertheless, in several applications, the material is subjected to dynamic load at very high temperature, as, for example, in case of machining operation or high energy deposition on metals. In these cases, to consider the effect of strain rate and temperature decoupled could not be acceptable. In this perspective, in this work, a methodology for testing materials varying both strain rate and temperature was described and applied for the mechanical characterization of Glidcop Al-15, a copper-based composite reinforced with alumina dispersion, often used in nuclear applications. The tests at high strain rate were performed using the Hopkinson Bar setup for the direct tensile tests. The heating of the specimen was performed using an induction coil system and the temperature was controlled on the basis of signals from thermocouples directly welded on the specimen surface. Varying the strain rate, Glidcop Al-15 shows a moderate strain-rate sensitivity at room temperature, while it considerably increases at high temperature: material thermal softening and strain-rate hardening are strongly coupled. The experimental data were fitted using a modified formulation of the Zerilli-Armstrong model able to reproduce this kind of behavior with a good level of accuracy.

  16. Long-Term Cyclic Oxidation Behavior of Wrought Commercial Alloys at High Temperatures

    SciTech Connect

    Bingtao Li

    2003-08-05

    The oxidation resistance of a high-temperature alloy is dependent upon sustaining the formation of a protective scale, which is strongly related to the alloying composition and the oxidation condition. The protective oxide scale only provides a finite period of oxidation resistance owing to its eventual breakdown, which is especially accelerated under thermal cycling conditions. This current study focuses on the long-term cyclic oxidation behavior of a number of commercial wrought alloys. The alloys studied were Fe- and Ni-based, containing different levels of minor elements, such as Si, Al, Mn, and Ti. Oxidation testing was conducted at 1000 and 1100 C in still air under both isothermal and thermal cycling conditions (1-day and 7-days). The specific aspects studied were the oxidation behavior of chromia-forming alloys that are used extensively in industry. The current study analyzed the effects of alloying elements, especially the effect of minor element Si, on cyclic oxidation resistance. The behavior of oxide scale growth, scale spallation, subsurface changes, and chromium interdiffusion in the alloy were analyzed in detail. A novel model was developed in the current study to predict the life-time during cyclic oxidation by simulating oxidation kinetics and chromium interdiffusion in the subsurface of chromia-forming alloys.

  17. The high temperature creep deformation of Si3N4-6Y2O3-2Al2O3

    NASA Technical Reports Server (NTRS)

    Todd, J. A.; Xu, Zhi-Yue

    1988-01-01

    The creep properties of silicon nitride containing 6 wt percent yttria and 2 wt percent alumina have been determined in the temperature range 1573 to 1673 K. The stress exponent, n, in the equation epsilon dot varies as sigma sup n, was determined to be 2.00 + or - 0.15 and the true activation energy was found to be 692 + or - 25 kJ/mol. Transmission electron microscopy studies showed that deformation occurred in the grain boundary glassy phase accompanied by microcrack formation and cavitation. The steady state creep results are consistent with a diffusion controlled creep mechanism involving nitrogen diffusion through the grain boundary glassy phase.

  18. Out-of-pile creep behavior of uranium carbide

    NASA Technical Reports Server (NTRS)

    Wright, T. R.; Seltzer, M. S.

    1974-01-01

    Compression creep tests were investigated on various UC-based fuel materials having a variation in both density and composition. Specimens were prepared by casting and by hot pressing. Steady-state creep rates were measured under vacuum at 1400 to 1800 C in the stress range 500-4000 psi.

  19. Long-time creep behavior of the niobium alloy C-103

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Klopp, W. D.

    1980-01-01

    The creep behavior of C-103 was studied as a function of stress, temperature, and grain size for test times to 19000 hr. Over the temperature range 827 to 1204 C and the stress range 6.89 to 138 MPa, only tertiary (accelerating) creep was observed. The creep strain epsilon can be related to time t by an exponential relation epsilon = epsilon(0) + K e raised to power (st) - 1), where epsilon (0) is initial creep strain, K is the tertiary creep strain parameter, and s is the tertiary creep rate parameter. The observed stress exponent 2.87 is similar to the three power law generally observed for secondary (linear) creep of Class I solid solutions. The apparent activation energy 374 kj/g mol is close to that observed for self diffusion of pure niobium. The initial tertiary creep rate was slightly faster for fine grained than for coarse-grained material. The strain parameter K can be expressed as a combination of power functions of stress and grain size and an exponential function of temperature. Strain time curves generated by using calculated values for K and s showed reasonable agreement with observed curves to strains of at least 4 percent. The time to 1 percent strain was related to stress, temperature, and grain size in a similar manner as the initial tertiary creep rate.

  20. Deflagration Behavior of HMX-Based Explosives at High Temperatures and Pressures

    SciTech Connect

    Maienschein, J L; Wardell, J F

    2003-11-20

    We report the deflagration behavior of several HMX-based explosives at pressure from 10-600 MPa and temperatures from 20-180 C. We have made laminar burn rate measurements with the LLNL High Pressure Strand Burner, in which burn wires are used to record the time-of-arrival of the burn front in the cylindrical sample as a function of pressure. The explosive samples are 6.4 mm in diameter and 63 mm long, with ten burn wires embedded at different positions in the sample. Burning on the cylindrical surface is inhibited with an epoxy layer. With this direct measurement we do not have to account for product gas equation of state or heat losses in the system, and the burn wires allow detection of irregular burning. We find that formulation details are very important to overall deflagration behavior - the presence of 10% or less by weight of binder leads to physical deconsolidation and rapid deflagration at high pressures, and a larger particle size distribution leads to slower deflagration. High temperatures have a relatively minor effect on the deflagration rate until the beta-to-delta phase transition temperature is reached, beyond which the deflagration rate increases approximately 40-fold.

  1. Influence of microstructure on the flow behavior of duplex stainless steels at high temperatures

    SciTech Connect

    Balancin, O.; Hoffmann, W.A.M.; Jonas, J.J.

    2000-05-01

    Three kinds of duplex stainless steel, with different ferrite-to-austenite ratios, were deformed in torsion over the temperature range 900 C to 1,200 C; the corresponding microstructural evolution was observed and correlated with the deformation conditions. The shapes of the high-temperature flow curves depend strongly on the volume fractions of the phases, the characteristics of the ferrite-austenite interface, and the active softening mechanism. At low volume fractions of austenite, the mechanical behavior is determined by the ferrite matrix and the flow curves are typical of materials that soften by continuous dynamic recrystallization. When the volume fraction of austenite is increased, coherent {gamma} particles distributed within the grains and at the grain boundaries hinder the deformation of the softer {alpha} matrix, increasing both the yield and the peak stress. These peaked flow curves are characterized by rapid work hardening followed by extensive flow softening; under these conditions, the hard austenite particles become aligned with the deformation direction after large strains. AT high volume fractions of austenite ({approximately}50%), the material tends to form a duplex structure, with the flow curves displaying extended work-hardening and work-softening regions; however, a drastic decrease is observed in ductility because of the dissimilar plastic behaviors of the two phases.

  2. High temperature deformation behavior of Inconel 718 at temperatures reaching into the mushy zone

    NASA Astrophysics Data System (ADS)

    Lewandowski, Michael Stanley

    2000-10-01

    The mechanical response of Inconel 718 with various microstructures (cast directionally-solidified, cast random dendritic, and equiaxed non-dendritic) in the solid and semi-solid state has been characterized. The activation energy for plastic flow in the solid phase was in good agreement with the activation energies for self diffusion and creep in pure nickel and pure iron. When the dendrites were aligned along the compression axis, the directionally solidified materials exhibited a similar activation energy for plastic flow, even at temperatures within the mushy zone. However, in samples containing either the random dendritic or equiaxed non-dendritic microstructures in the semi-solid state, the deformation exhibited a greater dependence on temperature. A simple analysis indicates that this greater temperature dependence is simply a consequence of the transition from plastic flow in the solid to viscous flow in the liquid as the fraction liquid increases (i.e., lubricated flow of the grains due to intergranular liquid in the mushy zone). The deformation behavior is compared against a number of investigations from the literature and a general constitutive equation relating peak now stress versus temperature compensated strain rate is presented. The temperature compensated strain rate is often termed the Zener-Holloman parameter, Z=ėexp (QRT) , where ė is the strain rate, T is the temperature, R is the gas constant, and Q is the activation energy for plastic flow. The results obtained in this investigation for solid state deformation were in good agreement with published literature values and extended the experimental range to higher temperatures and lower strain rates.

  3. High Temperature Strength and Stress Relaxation Behavior of Dilute Binary Mg Alloys

    NASA Astrophysics Data System (ADS)

    Abaspour, Saeideh; Cáceres, Carlos H.

    2016-03-01

    Monotonic compression and stress relaxation tests were carried out on specimens of 6 cast binary alloys with (at. pct) 2.5 Al, 0.6 Sn, 2.2 Zn, 0.9 Nd, 0.8 Gd and 1.3 Y, and of a similarly cast AZ91D alloy for reference. The solute concentration of the binary alloys was kept deliberately low to limit precipitation hardening effects during the testing, done in the solution heat treated and quenched condition. Compression testing was carried out at 298 K, 373 K and 453 K (25 °C, 100 °C and 180 °C) for all of the alloys and at 493 K and 523 K (220 °C and 250 °C) for the Nd-, Gd- and Y- containing ones. Stress relaxation was done at 453 K (180 °C) at either a predetermined strain (0.05) or stress (150 MPa). The Mg-Al and the AZ91 alloys softened considerably above 373 K (100 °C). The rest of the alloys exhibited increasing linear strain hardening in compression and reduced stress relaxation, in the order Sn, Zn, Nd, Gd and Y, an indication of a progressively stable dislocation substructure, hence of an increasingly extended athermal regime in the strength-temperature relationship. The overall strain hardening behavior matches that of commercial alloys involving the same solutes at comparable or higher concentrations, and can be accounted for through the respective tendency of the solute atoms to develop short range order. This tendency is lowest for the near-random solid solution introduced by Al, and highest for Nd, Gd and Y, in agreement with their respective phase diagrams. The implications for creep resistant alloy selection and design are discussed.

  4. Estimation of creep and recovery behavior of a shape memory polymer

    NASA Astrophysics Data System (ADS)

    Sakai, Takenobu; Tao, Takayuki; Somiya, Satoshi

    2015-11-01

    The shape recovery and shape fixity properties of shape memory polymers (SMPs), advanced functional materials, were investigated in this study. Although the shape recovery behavior of these polymers has been examined from a viscoelastic point of view, questions remain with regard to quantifying the recovery behavior of SMPs. SMPs can recover their shape after the molding process; this recovery occurs via creep recovery and/or shape recovery; an estimation of SMP recovery requires a good understanding of both processes. In this study, the time-temperature superposition principle was applied to the creep and shape recovery behavior of SMPs. The creep behavior was estimated using an experimentally obtained master curve and time-temperature shift factors. Our estimated results were in good agreement with the experimental data. However, the estimation of the creep recovery with changing temperature below or above the glass transition temperature was not successful due to the lack of consideration of the shape recovery behavior. The time and temperature dependency of the shape recovery were confirmed for creep behavior, using the master curve for the recovery ratio and the corresponding shift factors for shape recovery. The values of the shape recovery shift factors differed from those for the time-temperature shift factors obtained for creep behavior. Therefore, these shape recovery shift factors were used in the estimation of creep and shape recovery behavior using the master curve for the creep tests. The estimated results were closer to the results obtained experimentally. Moreover, our results indicated that the recovery behavior above Tg was dominated by shape recovery as a result of polymer viscoelasticity.

  5. Creep-rupture behavior of 6 candidate stirling engine iron-base superalloys in high pressure hydrogen. Volume 1: Air creep-rupture behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.

    1982-01-01

    Four wrought alloys (A-286, IN 800H, N-155, and 19-9DL) and two cast alloys (CRM-6D and XF-818) were tested to determine their creep-rupture behavior. The wrought alloys were used in the form of sheets of 0.89 mm (0.035 in.) average thickness. The cast alloy specimens were investment cast and machined to 6.35 mm (0.250 in.) gage diameter. All specimens were tested to rupture in air at different times up to 3000 h over the temperature range of 650 C to 925 C (1200 F to 1700 F). Rupture life, minimum creep rate, and time to 1% creep strain were statistically analyzed as a function of stress at different temperatures. Temperature-compensated analysis was also performed to obtain the activation energies for rupture life, time to 1% creep strain, and the minimum creep rate. Microstructural and fracture analyses were also performed. Based on statistical analyses, estimates were made for stress levels at different temperatures to obtain 3500 h rupture life and time to 1% creep strain. Test results are to be compared with similar data being obtained for these alloys under 15 MPa (2175 psi) hydrogen.

  6. Experimental investigation of creep crack tip deformation using moire interferometry

    NASA Astrophysics Data System (ADS)

    Kang, B. S.-J.; Zhuang, Y.-N.

    High temperature moire interferometry was applied to obtain full-field creep crack tip displacements of a three-point bend Al 2024-T4 specimen under constant temperature of 200 C up to 720 hr. C* was evaluated by the moire data obtained at discrete time intervals. Test results indicated that under steady-state creep condition, the creep crack tip v-displacement rate agreed with the asymptotic solution based on C*-integral, however, no creeping behavior was observed for the crack tip u-displacement field after t = 276 hr. This discrepancy may be due to the initial large creep crack tip blunting and cavitation damage which alter the creep crack tip singular field such that the C*-integral is no longer applicable to characterize steady-state creep crack tip field. It is suggested that the size and shape of material grain boundaries may play an important role on the creeping behavior of the material.

  7. Thermomechanical behavior of NiTiPdPt high temperature shape memory alloy springs

    NASA Astrophysics Data System (ADS)

    Nicholson, D. E.; Padula, S. A., II; Noebe, R. D.; Benafan, O.; Vaidyanathan, R.

    2014-12-01

    Transformation strains in high temperature shape memory alloys (HTSMAs) are generally smaller than for conventional NiTi alloys and can be purposefully limited in cases where stability and repeatability at elevated temperatures are desired. Yet such alloys can still be used in actuator applications that require large strokes when used in the form of springs. Thus there is a need to understand the thermomechanical behavior of shape memory alloy spring actuators, particularly those consisting of alternative alloys. In this work, a modular test setup was assembled with the objective of acquiring stroke, stress, temperature, and moment data in real time during joule heating and forced convective cooling of Ni19.5Ti50.5Pd25Pt5 HTSMA springs. The spring actuators were subjected to both monotonic axial loading and thermomechanical cycling. The role of rotational constraints (i.e., by restricting rotation or allowing for free rotation at the ends of the springs) on stroke performance was also assessed. Finally, recognizing that evolution in the material microstructure can result in changes in HTSMA spring geometry, the effect of material microstructural evolution on spring performance was examined. This was done by taking into consideration the changes in geometry that occurred during thermomechanical cycling. This work thus provides insight into designing with HTSMA springs and predicting their thermomechanical performance.

  8. High-pressure high-temperature behavior of polymer derived amorphous B-C-N

    NASA Astrophysics Data System (ADS)

    Bhat, S.; Lauterbach, S.; Dzivenko, D.; Kleebe, H.; Riedel, R.; Lathe, C.; Bayarjargal, L.; Winkler, B.; Schwarz, M.; Kroke, E.

    2013-06-01

    Dense diamond-like BCN compounds are of interest due to their extreme hardness and predicted exceptional thermal and chemical stability superior to diamond and c-BN. Here, we report on high-pressure high-temperature (HP-HT) behavior of amorphous BC2N and BC4N - potential precursors for HP-HT synthesis of diamond-like BCN. Prepared via hydroboration reaction of piperazine borane and pyridine borane, respectively, amorphous BC2N and BC4N are characterized by well-mixed B-N, C-C and C-N bonds, confirmed by XPS analysis. These BCN compositions were subjected to pressures between 5-24 GPa and temperatures up to 2000°C using multi anvil press, toroid press and laser-heated diamond anvil cell (LH-DAC). In- and ex-situ X-ray diffraction reveals decomposition of BC4N to graphite and h-BN between 5 to 12 GPa above 700°C, in contrast to BC2N which remains amorphous up to 1600°C. Examination of the recovered LH-DAC samples using HR-TEM, EELS and EDS, indicates a tendency of BC2N to transform into a mixture of c-BN (micron size) and nanocrystalline diamond between 20-24 GPa and 1500-2000°C. Financially supported by the DFG within SPP 1236.

  9. Thermal Cycling Behavior of Zinc Antimonide Thin Films for High Temperature Thermoelectric Power Generation Applications.

    PubMed

    Shim, Hyung Cheoul; Woo, Chang-Su; Han, Seungwoo

    2015-08-19

    The zinc antimonide compound ZnxSby is one of the most efficient thermoelectric materials known at high temperatures due to its exceptional low thermal conductivity. For this reason, it continues to be the focus of active research, especially regarding its glass-like atomic structure. However, before practical use in actual surroundings, such as near a vehicle manifold, it is imperative to analyze the thermal reliability of these materials. Herein, we present the thermal cycling behavior of ZnxSby thin films in nitrogen (N2) purged or ambient atmosphere. ZnxSby thin films were prepared by cosputtering and reached a power factor of 1.39 mW m(-1) K(-2) at 321 °C. We found maximum power factor values gradually decreased in N2 atmosphere due to increasing resistivity with repeated cycling, whereas the specimen in air kept its performance. X-ray diffraction and electron microscopy observations revealed that fluidity of Zn atoms leads to nanoprecipitates, porous morphologies, and even growth of a coating layer or fiber structures on the surface of ZnxSby after repetitive heating and cooling cycles. With this in mind, our results indicate that proper encapsulation of the ZnxSby surface would reduce these unwanted side reactions and the resulting degradation of thermoelectric performance. PMID:26226167

  10. Impression creep behavior of SiC particle-MoSi{sub 2} composites

    SciTech Connect

    Butt, D.P.; Korzekwa, D.A.; Maloy, S.A.; Kung, H.; Petrovic, J.J.

    1996-06-01

    Using a cylindrical indenter (or punch), the impression creep behavior of MoSi{sub 2}-SiC composites containing 0{endash}40{percent} SiC by volume, was characterized at 1000{endash}1200{degree}C, 258{endash}362 MPa punch pressure. Through finite element modeling, an equation that depends on the material stress exponent was derived that converts the stress distribution beneath the punch to an effective compressive stress. Using this relationship, direct comparisons were made between impression and compressive creep studies. Under certain conditions, compressive creep and impression creep measurements yield comparable results after correcting for effective stresses and strain rates beneath the punch. However, rate-controlling mechanisms may be quite different under the two stressing conditions, in which case impression creep data should not be used to predict compressive creep behavior. The addition of SiC affects the impression creep behavior of MoSi{sub 2} in a complex manner by pinning grain boundaries during pressing, thus leading to smaller MoSi{sub 2} grains and by obstructing or altering both dislocation motion and grain boundary sliding. {copyright} {ital 1996 Materials Research Society.}

  11. Deterministic and Probabilistic Creep and Creep Rupture Enhancement to CARES/Creep: Multiaxial Creep Life Prediction of Ceramic Structures Using Continuum Damage Mechanics and the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.

    1998-01-01

    High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep ripture criterion However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of stress, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of this methodology and

  12. Creep behavior of 6 micrometer linear low density polyethylene film

    NASA Technical Reports Server (NTRS)

    Simpson, J. M.; Schur, W. W.

    1993-01-01

    Creep tests were performed to provide material characteristics for a 6.4-micron polyethylene film used to construct high altitude balloons. Results suggest simple power law relationships are adequate for stresses below about 4.83 MPa.

  13. Analysis of the creep strain-time behavior of alloy 800

    SciTech Connect

    Booker, M.K.

    1983-05-01

    The high-nickel austenitic alloy 800 (in both the mill-annealed and the solution-treated grades) has several attractive properties that make it a good candidate for service attractive properties that make it a good candidate for service at elevated temperatures in corrosive environments. One such property is creep resistance. This report analyzes the elevated-temperature creep behavior of the mill-annealed grade, generally referred to simply as alloy 800. (The solution-treated grade is known as alloy 800H). Available data over the temperature range from 538 to 760/sup 0/C were collected and evaluated to yield mathematically approximations for creep-rupture and strain-time behavior for use in design calculations. However, the creep behavior of this material is extremely complex, and the analysis presented here contains substantial uncertainties. All results in this report should be considered preliminary because of limited data currently available. 20 figures.

  14. High temperature behavior of metal matrix composites. Final report, 15 July 1992-29 February 1996

    SciTech Connect

    Taya, M.; Lee, J.K.; Dunn, M.L.; Walker, G.; Mori, T.

    1996-05-28

    When a metal matrix composite(MMC) is subjected to combined creep and thermal cycling loading, dimensional change is known to occur. This project is aimed at elucidating the mechanisms of a MMC subjected to creep/thermal cycling both experimentally and theoretically. The target MMCs is SiC particulate/Al matrix composite. The experimental results of dimensional change of SiCp/Al composite indicates that larger the maximum temperature(Tmax), and larger creep applied stress, the larger dimensional change is observed. The analytical model based on dislocation punching can explain the experimental results well. Thermal cycling of SCS6 fiber/Ti-alloy matrix composite was also conducted and the mechanical properties of as-cycled composite were assessed. The minor degradation of the as-cycled composite was observed only under the condition that Tmax is equal to or higher than 600C. Analytical modeling of relaxation of CTE mismatch strain that exists at the metal-ceramic interface was also developed by using variational principle and Eshelby`s method. Complete relaxation can be found by minimizing the total potential energy. As a example, a complete relaxation of a creeping MMC is that the Von-Mises stress in the metal matrix becomes zero, i.e., hydrostatic state of stress.

  15. Creep behavior for advanced polycrystalline SiC fibers

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-08-01

    A bend stress relaxation (BSR) test is planned to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Baseline 1 hr and 100 hr BSR thermal creep {open_quotes}m{close_quotes} curves have been obtained for five selected advanced SiC fiber types and for standard Nicalon CG fiber. The transition temperature, that temperature where the S-shaped m-curve has a value 0.5, is a measure of fiber creep resistance. In order of decreasing thermal creep resistance, with the 100 hr BSR transition temperature given in parenthesis, the fibers ranked: Sylramic (1261{degrees}C), Nicalon S (1256{degrees}C), annealed Hi Nicalon (1215{degrees}C), Hi Nicalon (1078{degrees}C), Nicalon CG (1003{degrees}C) and Tyranno E (932{degrees}C). The thermal creep for Sylramic, Nicalon S, Hi Nicalon and Nicalon CG fibers in a 5000 hr irradiation creep BSR test is projected from the temperature dependence of the m-curves determined during 1 and 100 hr BSR control tests.

  16. Creep deformation behavior in eutectic Sn-Ag solder joints using a novel mapping technique

    SciTech Connect

    Lucas, J.P.; Guo, F.; McDougall, J.; Bieler, T.R.; Subramanian, K.N.; Park, J.K.

    1999-11-01

    Creep deformation behavior was measured for 60--100 {micro}m thick solder joints. The solder joints investigated consisted of: (1) non-composite solder joints made with eutectic Sn-Ag solder, and (2) composite solder joints with eutectic Sn-Ag solder containing 20 vol.%, 5 {micro}m diameter in-situ Cu{sub 6}Sn{sub 5} intermetallic reinforcements. All creep testing in this study was carried out at room temperature. Qualitative and quantitative assessment of creep deformation was characterized on the solder joints. Creep deformation was analyzed using a novel mapping technique where a geometrical-regular line pattern was etched over the entire solder joint using excimer laser ablation. During creep, the laser-ablation (LA) pattern becomes distorted due to deformation in the solder joint. By imaging the distortion of laser-ablation patterns using the SEM, actual deformation mapping for the entire solder joint is revealed. The technique involves sequential optical/digital imaging of the deformation versus time history during creep. By tracing and recording the deformation of the LA patterns on the solder over intervals of time, local creep data are obtained in many locations in the joint. This analysis enables global and localized creep shear strains and strain rate to be determined.

  17. Creep and precipitation behaviors of AL6XN austenitic steel at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Meng, L. J.; Sun, J.; Xing, H.

    2012-08-01

    Creep behaviors of the solution-treated AL6XN austenitic stainless steel have been investigated at 873-1023 K and 120-260 MPa. The results showed that the creep stress exponent and activation energy of the AL6XN steel are 5 and 395.4 kJ/mol, respectively in the power-law breakdown regime. TEM observations revealed that dislocations distributed homogenously in grains. The creep deformation mechanism is mainly attributed to viscous dislocation glide. Precipitates in the steel after creep deformation were additionally analyzed by TEM, and the results showed that there are four different types of precipitates, such as M23C6, M6C, σ phase and Laves phase. The M23C6 carbides were observed at grain boundaries in the steel after creep at 873 K. The M6C, σ phase and Laves phase precipitates were found when the creep temperature increases to 923-1023 K. Although the AL6XN steel exhibited low steady state creep rates, a high volume fraction of brittle precipitates of σ and Laves phases reduced the creep lifetime of the steel at elevated temperatures.

  18. A New Creep Constitutive Model for 7075 Aluminum Alloy Under Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Jiang, Yu-Qiang; Zhou, Hua-Min; Liu, Guan

    2014-12-01

    Exposure of aluminum alloy to an elastic loading, during "creep-aging forming" or other manufacturing processes at relatively high temperature, may lead to the lasting creep deformation. The creep behaviors of 7075 aluminum alloy are investigated by uniaxial tensile creep experiments over wide ranges of temperature and external stress. The results show that the creep behaviors of the studied aluminum alloy strongly depend on the creep temperature, external stress, and creep time. With the increase of creep temperature and external stress, the creep strain increases quickly. In order to overcome the shortcomings of the Bailey-Norton law and θ projection method, a new constitutive model is proposed to describe the variations of creep strain with time for the studied aluminum alloy. In the proposed model, the dependences of creep strain on the creep temperature, external stress, and creep time are well taken into account. A good agreement between the predicted and measured creep strains shows that the established creep constitutive model can give an accurate description of the creep behaviors of 7075 aluminum alloy. Meanwhile, the obtained stress exponent indicates that the creep process is controlled by the dislocation glide, which is verified by the microstructural observations.

  19. Creep Deformation of Allvac 718Plus

    DOE PAGESBeta

    Hayes, Robert W.; Unocic, Raymond R.; Nasrollahzadeh, Maryam

    2014-11-11

    The creep deformation behavior of Allvac 718Plus was studied over the temperature range 650° to 732°C at initial applied stress levels ranging from 517 to 655 MPa. Over the entire experimental temperature stress regime this alloy exhibits Class M type creep behavior with all creep curves exhibiting a decelerating strain rate with strain or time throughout primary creep. However, unlike pure metals or simple solid solution alloys this gamma prime strengthened superalloy does not exhibit steady state creep. Rather, primary creep is instantly followed by a long duration of accelerating strain rate with strain or time. These creep characteristics aremore » common amongst the gamma prime strengthened superalloys. Allvac 718Plus also exhibits a very high temperature dependence of creep rate. Detailed TEM examination of the deformation structures of selected creep samples reveals dislocation mechanisms similar to those found in high volume fraction gamma prime strengthened superalloys. Strong evidence of microtwinning is found in several of the deformation structures. The presence of microtwinning may account for the strong temperature dependence of creep rate observed in this alloy. In addition, due to the presence of Nb and thus, grain boundary delta phase, matrix dislocation activity which is not present in non Nb bearing superalloys occurs in this alloy. The creep characteristics and dislocation mechanisms are presented and discussed in detail.« less

  20. Creep Deformation of Allvac 718Plus

    SciTech Connect

    Hayes, Robert W.; Unocic, Raymond R.; Nasrollahzadeh, Maryam

    2014-11-11

    The creep deformation behavior of Allvac 718Plus was studied over the temperature range 650° to 732°C at initial applied stress levels ranging from 517 to 655 MPa. Over the entire experimental temperature stress regime this alloy exhibits Class M type creep behavior with all creep curves exhibiting a decelerating strain rate with strain or time throughout primary creep. However, unlike pure metals or simple solid solution alloys this gamma prime strengthened superalloy does not exhibit steady state creep. Rather, primary creep is instantly followed by a long duration of accelerating strain rate with strain or time. These creep characteristics are common amongst the gamma prime strengthened superalloys. Allvac 718Plus also exhibits a very high temperature dependence of creep rate. Detailed TEM examination of the deformation structures of selected creep samples reveals dislocation mechanisms similar to those found in high volume fraction gamma prime strengthened superalloys. Strong evidence of microtwinning is found in several of the deformation structures. The presence of microtwinning may account for the strong temperature dependence of creep rate observed in this alloy. In addition, due to the presence of Nb and thus, grain boundary delta phase, matrix dislocation activity which is not present in non Nb bearing superalloys occurs in this alloy. The creep characteristics and dislocation mechanisms are presented and discussed in detail.

  1. Creep Deformation of Allvac 718Plus

    NASA Astrophysics Data System (ADS)

    Hayes, Robert W.; Unocic, Raymond R.; Nasrollahzadeh, Maryam

    2015-01-01

    The creep deformation behavior of Allvac 718Plus was studied over the temperature range of 923 K to 1005 K (650 °C to 732 °C) at initial applied stress levels ranging from 517 to 655 MPa. Over the entire experimental temperature-stress regime this alloy exhibits Class M-type creep behavior with all creep curves exhibiting a decelerating strain rate with strain or time throughout primary creep. However, unlike pure metals or simple solid solution alloys, this gamma prime strengthened superalloy does not exhibit steady-state creep. Rather, primary creep is instantly followed by a long duration of accelerating strain rate with strain or time. These creep characteristics are common among the gamma prime strengthened superalloys. Allvac 718Plus also exhibits a very high temperature dependence of creep rate. Detailed TEM examination of the deformation structures of selected creep samples reveals dislocation mechanisms similar to those found in high volume fraction gamma prime strengthened superalloys. Strong evidence of microtwinning is found in several of the deformation structures. The presence of microtwinning may account for the strong temperature dependence of creep rate observed in this alloy. In addition, due to the presence of Nb and thus, grain boundary delta phase, matrix dislocation activity which is not present in non-Nb-bearing superalloys occurs in this alloy. The creep characteristics and dislocation mechanisms are presented and discussed in detail.

  2. Change in high-temperature strength properties of 12Kh1MF steel in long-term loading under creep conditions

    SciTech Connect

    Shron, R.Z.; Mints, I.I.; Shul`gina, N.G.

    1995-01-01

    Stress-rupture strength tests were made of metal steam pipe (12Kh1MF steel) in various conditions, the original, after aging under laboratory conditions (580{degrees}C, 10,000 h), and after long service. It was shown that the more the steel is hardened by heat treatment or cold plastic working in the original condition, the less it hardens in creep. It was established that softening in creep of steel with a moderate yield strength is caused primarily by aging and with a high yield strength by pore formation.

  3. LCF behavior and life prediction method of a single crystal nickel-based superalloy at high temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihua; Yu, Huichen; Dong, Chengli

    2015-12-01

    Low cycle fatigue tests were conducted on the single crystal nickel-based superalloy, DD6, with different crystallographic orientations (i.e., [001], [011], and [111]) and strain dwell types (i.e., tensile, compressive, and balanced types) at a certain high temperature. Given the material anisotropy and mean stress, both orientation factor and stress range were introduced to the Smith,Watson, and Topper (SWT) stress model to predict the fatigue life. Experimental results indicated that the fatigue properties of DD6 depend on both crystallographic orientation and loading types. The fatigue life of the tensile, compressive, and balanced strain dwell tests are shorter than those of continuous cycling tests without strain dwell because of the important creep effect. The predicted results of the proposed modified SWT stress method agree well with the experimental data.

  4. Numerical modeling of high temperature fracture of metallic composites

    NASA Astrophysics Data System (ADS)

    Cendales, E. D.; García, A.

    2016-02-01

    Mechanical properties of materials are strongly affected by increasing temperature, showing behaviors that could cause failure as creep. This article provides a brief theoretical description about fracture of materials, deepening on creep and intergranular creep. Some parameters as creep strain, strain rate, time to failure and displacement of the crack tip of a metallic glass selected at high temperature were studied. This paper shows a computer numerical model that permits establish mechanical behavior of a metal composite material Zr52.5Cu18Ni14.5Al10Ti5, bulk metallic glass. In the presence of cracking when the material is subjected to temperatures exceeding 30% of the melt temperature of material. The results obtained by computer simulation show correlation with the results about the behavior of the material viewed through the creep test. From the results we conclude that the mechanical properties of the material generally do not undergo major changes at high temperatures. However, at temperatures greater than 650C, the effect of the application of stress during creep entails failures in this kind of material.

  5. Matrix cracking and creep behavior of monolithic zircon and zircon silicon carbide fiber composites

    NASA Astrophysics Data System (ADS)

    Anandakumar, Umashankar

    In this study, the first matrix cracking behavior and creep behavior of zircon matrix silicon carbide fiber composites were studied, together with the fracture and creep behavior of the monolithic zircon. These behaviors are of engineering and scientific importance, and the study was aimed at understanding the deformation mechanisms at elevated temperatures. The first matrix cracking behavior of zircon matrix uniaxially reinforced with silicon carbide fiber (SCS-6) composites and failure behavior of monolithic zircon were studied as a function of temperature (25°C, 500°C, and 1200°C) and crack length in three point bending mode. A modified vicker's indentation technique was used to vary the initial crack length in monolithic and composite samples. The interfacial shear strength was measured at these temperatures from matrix crack saturation spacing. The composites exhibited steady state and non steady state behaviors at the three different temperatures as predicted by theoretical models, while the failure stress of zircon decreased with increasing stress. The intrinsic properties of the composites were used to numerically determine the results predicted by three different matrix cracking models based on a fracture mechanics approach. The analysis showed that the model based on crack bridging analysis was valid at 25°C and 500°C, while a model based on statistical fiber failure was valid at 1200°C. Microstructural studies showed that fiber failure in the crack wake occurred at or below the matrix cracking stress at 1200°C, and no fiber failure occurred at the other two temperatures, which validated the results predicted by the theoretical models. Also, it was shown that the interfacial shear stress corresponding to debonding determined the matrix cracking stress, and not the frictional shear stress. This study showed for the first time, the steady state and non-steady state matrix cracking behavior at elevated temperatures, the difference in behavior between

  6. Compressive creep behavior of an electric brush-plated nanocrystalline Cu at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, Guoyong; Lian, Jianshe; Jiang, Zhonghao; Qin, Liyuan; Jiang, Qing

    2009-10-01

    Creep tests were conducted on a nanocrystalline Cu at room temperature. The results at very low strain rates (<4×10-8 s-1) are consistent with Coble creep. An overall view of stress-strain rate behavior of this nanocrystalline Cu indicates that as the strain rate decreases, the deformation mechanism transition from predominantly dislocation activity to diffusion Coble creep, as evidenced by the strain rate sensitivity on stress trending to m =1 and activation volume trending to υ =1.5b3. The typical strain rate sensitivity of m =0.5 for surperplasticity can hardly be obtained at such low homogenous temperature.

  7. Behavior of a hammerhead ribozyme in aqueous solution at medium to high temperatures.

    PubMed

    El-Murr, Nizar; Maurel, Marie-Christine; Rihova, Martina; Vergne, Jacques; Hervé, Guy; Kato, Mikio; Kawamura, Kunio

    2012-09-01

    The "RNA world" hypothesis proposes that--early in the evolution of life--RNA molecules played important roles both in information storage and in enzymatic functions. However, this hypothesis seems to be inconsistent with the concept that life may have emerged under hydrothermal conditions since RNA molecules are considered to be labile under such extreme conditions. Presently, the possibility that the last common ancestor of the present organisms was a hyperthermophilic organism which is important to support the hypothesis of the hydrothermal origin of life has been subject of strong discussions. Consequently, it is of importance to study the behavior of RNA molecules under hydrothermal conditions from the viewpoints of stability, catalytic functions, and storage of genetic information of RNA molecules and determination of the upper limit of temperature where life could have emerged. In the present work, self-cleavage of a natural hammerhead ribozyme was examined at temperatures 10-200 °C. Self-cleavage was investigated in the presence of Mg(2+), which facilitates and accelerates this reaction. Self-cleavage of the hammerhead ribozyme was clearly observed at temperatures up to 60 °C, but at higher temperatures self-cleavage occurs together with hydrolysis and with increasing temperature hydrolysis becomes dominant. The influence of the amount of Mg(2+) on the reaction rate was also investigated. In addition, we discovered that the reaction proceeds in the presence of high concentrations of monovalent cations (Na(+) or K(+)), although very slowly. Furthermore, at high temperatures (above 60 °C), monovalent cations protect the ribozyme against degradation. PMID:22915317

  8. Behavior of a hammerhead ribozyme in aqueous solution at medium to high temperatures

    NASA Astrophysics Data System (ADS)

    El-Murr, Nizar; Maurel, Marie-Christine; Rihova, Martina; Vergne, Jacques; Hervé, Guy; Kato, Mikio; Kawamura, Kunio

    2012-09-01

    The "RNA world" hypothesis proposes that—early in the evolution of life—RNA molecules played important roles both in information storage and in enzymatic functions. However, this hypothesis seems to be inconsistent with the concept that life may have emerged under hydrothermal conditions since RNA molecules are considered to be labile under such extreme conditions. Presently, the possibility that the last common ancestor of the present organisms was a hyperthermophilic organism which is important to support the hypothesis of the hydrothermal origin of life has been subject of strong discussions. Consequently, it is of importance to study the behavior of RNA molecules under hydrothermal conditions from the viewpoints of stability, catalytic functions, and storage of genetic information of RNA molecules and determination of the upper limit of temperature where life could have emerged. In the present work, self-cleavage of a natural hammerhead ribozyme was examined at temperatures 10-200 °C. Self-cleavage was investigated in the presence of Mg2+, which facilitates and accelerates this reaction. Self-cleavage of the hammerhead ribozyme was clearly observed at temperatures up to 60 °C, but at higher temperatures self-cleavage occurs together with hydrolysis and with increasing temperature hydrolysis becomes dominant. The influence of the amount of Mg2+ on the reaction rate was also investigated. In addition, we discovered that the reaction proceeds in the presence of high concentrations of monovalent cations (Na+ or K+), although very slowly. Furthermore, at high temperatures (above 60 °C), monovalent cations protect the ribozyme against degradation.

  9. The development of methods for the prediction of primary creep behavior in metals

    NASA Technical Reports Server (NTRS)

    Zerwekh, R. P.

    1978-01-01

    The applicability of a thermodynamic constitutive theory of deformation to the prediction of primary creep and creep strain relaxation behavior in metals is examined. Constitutive equations derived from the theory are subjected to a parametric analysis in order to determine the influence of several parameters on the curve forms generated by the equations. A computer program is developed which enables the solution of a generalized constitutive equation using experimental data as input. Several metals were tested to form a data base of primary creep and relaxation behavior. The extent to which these materials conformed to the constitutive equation showed wide variability, with the alloy Ti-6Al-4V exhibiting the most consistent results. Accordingly, most of the analysis is concentrated upon data from that alloy, although creep and relaxation data from all the materials tested are presented. Experimental methods are outlined as well as some variations in methods of analysis. Various theoretical and practical implications of the work are discussed.

  10. Corrosion potential behavior in high-temperature water of noble metal-doped alloy coatings deposited by underwater thermal spraying

    SciTech Connect

    Kim, Y.J.; Andresen, P.L.; Gray, D.M.; Lau, Y.C.; Offer, H.P.

    1996-06-01

    Intergranular stress corrosion cracking (IGSCC) of sensitized stainless steel (SS) components in boiling water reactors (BWR) is a major concern. The SCC susceptibility of structural materials in high-temperature water is affected by the electrochemical corrosion potential (ECP). The ECP of type 304 stainless steel coated under water by hyper-velocity oxy-fuel (HVOF) and plasma-spray (PS) techniques using noble metal-doped powders was measured to evaluate the catalytic behavior in high-temperature water under various water chemistry conditions. Thermal-spray coatings of noble metal-doped powders exhibited catalytic behavior for the recombination of oxygen and hydrogen in high-temperature water, which caused ECP to decrease well below a critical value of {minus}230 mV{sub SHE} for intergranular stress corrosion cracking protection in water. This was observed in water containing various amounts of oxygen and hydrogen peroxide when stoichiometric excess hydrogen was present.

  11. High-temperature behavior of a Pd-Ag alloy for porcelain.

    PubMed

    Mackert, J R; Ringle, R D; Fairhurst, C W

    1983-12-01

    The mechanism of formation of nodular material on the surface of a Pd-Ag-based alloy for porcelain during pre-porcelainization heat treatment was investigated using scanning electron microscopy, x-ray diffraction, quantitative metallography, and Auger electron spectroscopy. The nodules were found to form by a Nabarro-Herring creep mechanism driven by the internal oxidation of tin and indium. Implications of this process with regard to porcelain bonding and discoloration are discussed. PMID:6581200

  12. Effect of Constraint on Creep Behavior of 9Cr-1Mo Steel

    NASA Astrophysics Data System (ADS)

    Goyal, Sunil; Laha, K.; Das, C. R.; Panneerselvi, S.; Mathew, M. D.

    2014-02-01

    The effect of constraint on creep rupture behavior of 9Cr-1Mo steel has been investigated. The constraint was introduced by incorporating a circumferential U-notch in a plain cylindrical creep specimen of 5 mm diameter. The degree of constraint was increased by decreasing the notch root radius from 5 to 0.25 mm. Creep tests were conducted on plain and notched specimens at stresses in the range of 110 to 210 MPa at 873 K (600 °C). The creep rupture life of the steel was found to increase under constrained conditions, which increased with the increase in degree of constraint and applied stress, and tended to saturate at a higher degree of constraint. The creep rupture ductility (pct reduction in area) of the steel was found to be lower under constrained conditions. The decrease in creep ductility was more pronounced at a higher degree of constraint and lower applied stresses. Scanning electron microscopic studies revealed a change in fracture behavior with stress and degree of constraint. The fracture surface appearance for relatively lower constrained specimens at higher stresses was predominantly transgranular dimple. Creep cavitation-induced intergranular brittle fracture near the notch root was observed for specimens having a higher degree of constraint at relatively lower stresses. The creep rupture life of the steel under constrained conditions has been predicted based on the estimation of damage evolution by continuum damage mechanics coupled with finite element analysis of the triaxial state of stress across the notch. It was found that the creep rupture life of the steel under constrained conditions was predominantly governed by the von-Mises stress and the principal stress became progressively important with increase in the degree of constraint and decrease in applied stress.

  13. Microstructure and creep behavior of magnesium-aluminum alloys containing alkaline and rare earth additions

    NASA Astrophysics Data System (ADS)

    Saddock, Nicholas David

    In the past few decades governmental regulation and consumer demands have lead the automotive companies towards vehicle lightweighting. Powertrain components offer significant potential for vehicle weight reductions. Recently, magnesium alloys have shown promise for use in powertrain applications where creep has been a limiting factor. These systems are Mg-Al based, with alkaline earth or rare earth additions. The solidification, microstructure, and creep behavior of a series of Mg-4 Al- 4 X:(Ca, Ce, La, and Sr) alloys and a commercially developed AXJ530 (Mg--5 Al--3 Ca--0.15 Sr) alloy (by wt%) have been investigated. The order of decreasing freezing range of the five alloys was: AX44, AXJ530, AJ44, ALa44 and ACe44. All alloys exhibited a solid solution primary alpha-Mg phase surrounded by an interdendritic region of Mg and intermetallic(s). The primary phase was composed of grains approximately an order of magnitude larger than the cellular structure. All alloys were permanent mold cast directly to creep specimens and AXJ530 specimens were provided in die-cast form. The tensile creep behavior was investigated at 175 °C for stresses ranging from 40 to 100 MPa. The order of decreasing creep resistance was: die-cast AXJ530 and permanent mold cast AXJ530, AX44, AJ44, ALa44 and ACe44. Grain size, solute concentration, and matrix precipitates were the most significant microstructural features that influenced the creep resistance. Decreases in grain size or increases in solute concentration, both Al and the ternary addition, lowered the minimum creep rate. In the Mg-Al-Ca alloys, finely distributed Al2Ca precipitates in the matrix also improved the creep resistance by a factor of ten over the same alloy with coarse precipitates. The morphology of the eutectic region was distinct between alloys but did not contribute to difference in creep behavior. Creep strain distribution for the Mg-Al-Ca alloys developed heterogeneously on the scale of the alpha-Mg grains. As

  14. Creep behavior for advanced polycrystalline SiC fibers

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-04-01

    A bend stress relaxation (BSR) test has been utilized to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Qualitative, S-shaped 1hr BSR curves were compared for three selected advanced SiC fiber types and standard Nicalon CG fiber. The temperature corresponding to the middle of the S-curve (where the BSR parameter m = 0.5) is a measure of a fiber`s thermal stability as well as it creep resistance. In order of decreasing thermal creep resistance, the measured transition temperatures were Nicalon S (1450{degrees}C), Sylramic (1420{degrees}C), Hi-Nicalon (1230{degrees}C) and Nicalon CG (1110{degrees}C).

  15. The Study of High-Temperature Behaviors of Brush-Plating NI/NANO-SiO2 Composite Coating

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Tao, Jie; Zhuo, Chenzhi; Jiang, Shuyun

    In order to improve the high-temperature behaviors of hot work die steel in engineering application, the high-temperature wear and thermal fatigue behavior of brush plating Ni/nano-SiO2 composite coating have been investigated. The microstructure of Ni/nano-SiO2 composite coating has been analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TEM observation of Ni/nano-SiO2 composite coating has shown that the added SiO2 particle with an average size of about 20 nm is uniformly distributed in Nickel matrix. The high-temperature wear behavior of Ni/nano-SiO2 composite coating has been investigated using a ball-on-block test rig. The results from the high-temperature wear behaviors studies indicate that the steady-state friction coefficient and the specific wear rate of Ni/nano-SiO2 composite coating are lower than that of Cr12MoNi steel. The thermal fatigue tests were fulfilled by heating and quenching in water at a cycle period of 2 min. The results of thermal fatigue testing show that brush plating Ni/nano-SiO2 composite coating can improve thermal fatigue resistance as compared to the Cr12MoNi hot rolling tool steel.

  16. The influence of matrix microstructure and particle reinforcement on the creep behavior of 2219 aluminum

    NASA Astrophysics Data System (ADS)

    Krajewski, P. E.; Allison, J. E.; Jones, J. W.

    1993-12-01

    The influence of matrix microstructure and reinforcement with 15 vol pct of TiC particles on the creep behavior of 2219 aluminum has been examined in the temperature range of 150 ‡C to 250 ‡C. At 150 ‡C, reinforcement led to an improvement in creep resistance, while at 250 ‡C, both materials exhibited essentially identical creep behavior. Precipitate spacing in the matrix exerted the predominant influence on minimum creep rate in both the unreinforced and the reinforced materials over the temperature range studied. This behavior and the high-stress dependence of minimum creep rate are explained using existing constant structure models where, in the present study, precipitate spacing is identified as the pertinent substructure dimension. A modest microstructure-independent strengthening from particle reinforcement was observed at 150 ‡C and was accurately modeled by existing continuum mechanical models. The absence of reinforcement creep strengthening at 250 ‡C can be attributed to diffusional relaxation processes at the higher temperature.

  17. Mechanical behavior of a triaxially braided textile composite at high temperature

    NASA Astrophysics Data System (ADS)

    El Mourid, Amine

    The work presented in this thesis aimed at understanding the influence of viscoelasticity, temperature and aging on the mechanical behaviour of a textile composite using experimental, analytical and numerical tools. The studied material was a triaxially braided composite with fibres in the 0°/+/-60° directions. The yarns were made of carbon fibres, embedded in an MVK10 temperature resistant polyimide matrix. The first step consisted in developing analytical and numerical frameworks to predict viscoelastic behaviour in textile composites. Simulations were performed for both braided and woven textile architectures, at different stiffness contrasts and yarns volume fractions. The analytical framework accuracy was verified with the help of the numerical simulations. An important finding of this study was that the analytical framework, combined with the Mori-Tanaka model, leads to relatively accurate predictions for both the permanent and transient parts. Therefore, the authors believe that the Mori-Tanaka model with an adjusted aspect ratio to take into account yarn curvature is reliable for predicting viscoelastic behaviour in textile composites. The textile composite that was studied in this project did not display viscoelastic behaviour, due to the high yarn volume fraction. However, the framework remains relevant for higher temperature applications or lower yarn volume fractions. The second step was to investigate the temperature effect on the tensile behavior of the carbon/MVK10 triaxially braided composite material studied in this project. To achieve this goal, a series of room and high temperature tensile tests on both matrix and composite samples were performed. The tests on composite samples were performed along two different material directions at the maximum service temperature allowed by the Federal Aviation Administration for aircraft components, and a dedicated replication technique was developed in order to track crack densities as a function of

  18. High-temperature behavior of NH4H2PO4 studied by single-crystal and MAS NMR

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Lee, Kwang-Sei

    2013-07-01

    To confirm a high-temperature behavior of NH4H2PO4, the temperature dependences of the line-width, resonance frequency, and spin-lattice relaxation times in the laboratory frame, T1, and in the rotating frame, T1ρ, were investigated using a Fourier transform NMR spectrometer. The hydrogen bonds both in O-H-O between two PO4 groups and in N-H-O between NH4 and PO4 were distinguished, and the T1 values of both types of hydrogen-bond proton and 31P ions were described by the Bloembergen-Purcell-Pound theory. In addition, the T1ρ values of both types of hydrogen-bond proton and of 31P ions exhibited strong temperature dependences at high temperature; the changes in T1ρ at high temperature were related to variations in the symmetry.

  19. A Modified Theta Projection Model for Creep Behavior of Metals and Alloys

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Singh, I. V.; Mishra, B. K.; Ahmad, S.; Venugopal Rao, A.; Kumar, Vikas

    2016-06-01

    In this work, a modified theta projection model is proposed for the constitutive modeling of creep behavior of metals and alloys. In the conventional theta projection model, strain hardening exponent is a function of time and theta, whereas in the modified theta projection model, the exponent is taken as a function of time, theta, and applied stress. The results obtained by the modified theta projection model for Al 2124 T851 alloy at constant uniaxial tensile stress are compared with the experimental results and with the predictions of the conventional theta projection method. The creep behavior of Al 7075 T651 alloy is also predicted using modified and conventional theta projection model and compared with the available experimental data. It is observed that the modified theta projection model captures the creep behavior more accurately as compared to the conventional theta projection model. The modified theta projection model can be used to predict the creep strain of pure metals and class M alloys (similar creep behavior to pure metals) for intermediate range of stress and temperature.

  20. Counter-intuitive Behavior of Subduction Zones: Weak Faults Rupture, Strong Faults Creep

    NASA Astrophysics Data System (ADS)

    Wang, K.; Gao, X.; Bilek, S. L.; Brown, L. N.

    2014-12-01

    Subduction interfaces that produce great earthquakes are often said to be "strongly coupled", and those that creep are said to be "weakly coupled". However, the relation between the strength and seismogenic behavior of subduction faults is far from clear. Seismological and geodetic observations of earthquake rupture usually provide information only on stress change, not fault strength. In this study, we infer fault strength by calculating frictional heating along megathrusts and comparing results with heat flow measurements. We find that stick-slip megathrusts that have produced great earthquakes such as at Japan Trench and northern Sumatra have very low apparent friction coefficients (~ 0.02 - 0.03), but megathrusts that creep such as at Northern Hikurangi and Manila Trench have higher values (up to ~0.13). The differnce cannot be explained by coseismic dynamic weakening of the stick-slip megathrusts, because the average stress drop in great earthquakes is usually less than 5 MPa, equivalent to a coseismic reduction of apparent friction coefficient by less than ~0.01. Therefore our results indicate differences in the static strength of different subduction faults. Why are the creeping faults stronger? We think it is related to their creeping mechanism. Very rugged subducting seafloor tends to cause creep and hinder great earthquake rupture (Wang and Bilek, 2014). In contrast, all giant earthquakes have occurred at subduction zones with relatively smooth subducting seafloor. Large geometrical irregularities such as seamounts generate heterogeneous structure and stresses that promote numerous small and medium size earthquakes and aseismic creep. The creeping is a process of breaking and wearing of geometrical irregularities in a deformation zone and is expected to be against relatively large resistance (strong creep). This is different from the creeping of smooth faults due to the presence of weak fault gouge (weak creep) such as along the creeping segment of the

  1. Behavior of platinum/tantalum as interdigital transducers for SAW devices in high-temperature environments.

    PubMed

    Aubert, Thierry; Elmazria, Omar; Assouar, Badreddine; Bouvot, Laurent; Hehn, Michel; Weber, Sylvain; Oudich, Mourad; Genève, Damien

    2011-03-01

    In this paper, we report on the use of tantalum as adhesion layer for platinum electrodes used in high-temperature SAW devices based on langasite substrates (LGS). Tantalum exhibits a great adhesive strength and a very low mobility through the Pt film, ensuring a device lifetime at 900°C of about one hour in an air atmosphere and at least 20 h under vacuum. The latter is limited by morphological modifications of platinum, starting with the apparition of crystallites on the surface, followed by important terracing and breaking of the film continuity. Secondary neutral mass spectroscopy (SNMS), Auger electron spectroscopy (AES), X-ray diffraction (XRD) measurements, and comparison with iridium-based electrodes allowed us to show that this deterioration is likely intrinsic to platinum film, consisting of agglomeration phenomena. Finally, based on these results, we present a solution that could significantly enhance the lifetime of Pt-based IDTs placed in high-temperature conditions. PMID:21429851

  2. A study on corrosion behavior of austenitic stainless steel in liquid metals at high temperature

    NASA Astrophysics Data System (ADS)

    Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Choi, Kyoung Joon; Bang, In Cheol; Kim, Ji Hyun

    2012-03-01

    The purpose of this study is to investigate the interaction between austenitic stainless steel, AISI 316L, and gallium liquid metal at a high temperature, for the potential application to advanced fast reactor coolants. Test specimens of AISI 316L were exposed to static gallium at 500 °C for up to 700 h in two different cover-gas conditions, including air and vacuum. Similar experimental tests were conducted in gallium alloy liquid metal environments, including Ga-14Sn-6Zn and Ga-8Sn-6Zn, in order to study the effect of addition of alloying elements. The results have shown that the weight change and metal loss of specimens were generally reduced in Ga-14Sn-6Zn and Ga-8Sn-6Zn compared to those in pure gallium at a high temperature.

  3. Transient creep behavior of {gamma}-TiAl polycrystals

    SciTech Connect

    Viguier, B.; Bonneville, J.; Spaetig, P.; Martin, J.L.

    1997-12-31

    Two types of transient creep experiments performed along stress-strain curves are described and successfully applied to {gamma}TiAl polycrystals at room temperature. They allow to determine activation volumes in good agreement with those measured through successive load relaxation tests. In addition, the combination of the latter method and the present ones provides relevant values of the plastic strain hardening coefficient. This latter parameter is found to exhibit similar values in transient as well as during constant strain rate tests.

  4. Static and Dynamic Friction Behavior of Candidate High Temperature Airframe Seal Materials

    NASA Technical Reports Server (NTRS)

    Dellacorte, C.; Lukaszewicz, V.; Morris, D. E.; Steinetz, B. M.

    1994-01-01

    The following report describes a series of research tests to evaluate candidate high temperature materials for static to moderately dynamic hypersonic airframe seals. Pin-on-disk reciprocating sliding tests were conducted from 25 to 843 C in air and hydrogen containing inert atmospheres. Friction, both dynamic and static, was monitored and serves as the primary test measurement. In general, soft coatings lead to excessive static friction and temperature affected friction in air environments only.

  5. Co-Optimization of Wrought Alumina-Forming Austenitic Stainless Steel Composition Ranges for High-Temperature Creep and Oxidation/Corrosion Resistance

    SciTech Connect

    Brady, Michael P; Magee, John H; Yamamoto, Yukinori; Helmick, David; Wang, Lu

    2014-01-01

    A seriesofcandidatealumina-formingaustenitic(AFA)stainlesssteelsdesignedtoevaluatetheeffectsof variationinAl,C,Cr,Mn,Nb,andNicontentonhigh-temperaturetensileproperties,creep,and oxidation/corrosionresistancewerestudied.ThecompositionsassessedwerebasedonmediumNi (20 25 wt%)andlowNi(12wt%)AFAvariationsstrengthenedprimarilybyMCand/orM23C6 carbide precipitates,andahighNi(32wt%)AFAsuperalloyvariationstrengthenedprimarilyby -Ni3Al intermetallic precipitates.Tensileandcreeppropertiesweremeasuredat650and750/760 1C, oxidation resistance from650to900 1C inairwithwatervaporandsteamenvironments,andsulfidation oxidation resistance inAr 20%H2 20%H2O 5% H2S at550and650 1C. Optimizedcompositionrangesfordifferent use temperaturesrangesbasedontheseevaluationsarepresented.

  6. High-Temperature Oxidation Behavior of Two Nickel-Based Superalloys Produced by Metal Injection Molding for Aero Engine Applications

    NASA Astrophysics Data System (ADS)

    Albert, Benedikt; Völkl, Rainer; Glatzel, Uwe

    2014-09-01

    For different high-temperature applications like aero engines or turbochargers, metal injection molding (MIM) of superalloys is an interesting processing alternative. For operation at high temperatures, oxidation behavior of superalloys produced by MIM needs to match the standard of cast or forged material. The oxidation behavior of nickel-based superalloys Inconel 713 and MAR-M247 in the temperature interval from 1073 K to 1373 K (800 °C to 1100 °C) is investigated and compared to cast material. Weight gain is measured discontinuously at different oxidation temperatures and times. Analysis of oxidized samples is done via SEM and EDX-measurements. MIM samples exhibit homogeneous oxide layers with a thickness up to 4 µm. After processing by MIM, Inconel 713 exhibits lower weight gain and thinner oxide layers than MAR-M247.

  7. Some effects of gas adsorption on the high temperature volatile release behavior of a terrestrial basalt, tektite and lunar soil

    NASA Technical Reports Server (NTRS)

    Graham, D. G.; Muenow, D. W.; Gibson, E. K., Jr.

    1979-01-01

    Mass pyrograms obtained from high-temperature, mass psectrometric pyrolysis of a glassy theoleiitic submarine basalt and a tektite, ground in air to less than 64 microns, have shown N2 and SO release patterns very similar to those from the pyrolysis of mature lunar soil fines. The N2 and CO release behavior from the terrestrial samples reproduces the biomodal, high-temperature (approximately 700 and 1050 C) features from the lunar samples. Unground portions of the basalt and tektite show no release of N2 and CO during pyrolysis. Grinding also alters the release behavior and absolute amounts of H2O and CO2. It is suggested that adsorption of atmospheric gases in addition to solar wind implantation of ions may account for the wide range of values in previously reported concentrations of carbon and nitrogen from lunar fines.

  8. Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation

    NASA Astrophysics Data System (ADS)

    Hashiba, K.; Fukui, K.

    2016-07-01

    To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.

  9. Creep-constitutive behavior of Sn-3.8Ag-0.7Cu solder using an internal stress approach

    NASA Astrophysics Data System (ADS)

    Rist, Martin A.; Plumbridge, W. J.; Cooper, S.

    2006-05-01

    The experimental tensile creep deformation of bulk Sn-3.8Ag-0.7Cu solder at temperatures between 263 K and 398 K, covering lifetimes up to 3,500 h, has been rationalized using constitutive equations that incorporate structure-related internal state variables. Primary creep is accounted for using an evolving internal back stress, due to the interaction between the soft matrix phase and a more creep-resistant particle phase. Steady-state creep is incorporated using a conventional power law, modified to include the steady-state value of internal stress. It is demonstrated that the observed behavior is well-fitted using creep constants for pure tin in the modified creep power law. A preliminary analysis of damage-induced tertiary creep is also presented.

  10. Creep behavior of MoSi{sub 2} with Si{sub 3}N{sub 4} reinforcements

    SciTech Connect

    Feng, C.R.; Sadananda, K.

    1997-12-31

    Because of its high melting point, excellent oxidation resistance and ductility at high temperatures, MoSi{sub 2} and its composites are attractive for elevated temperature applications. In this study, the compression creep behavior of hot pressed MoSi{sub 2} with various volume fraction of Si{sub 3}N{sub 4} at 1200 C, 1300 C and 1400 C were investigated. Within the stress range of 115--425MPa, the stress exponent, n, was either 1 or 5 depended on the volume fraction of Si{sub 3}N{sub 4}. The activation energy of creep for MoSi{sub 2}-50%Si{sub 3}N{sub 4} composite was 750kJ/mol. At still higher volume fraction of Si{sub 3}N{sub 4}, the activation energy decreases to 693kJ/mol, which is the same as that for monolithic Si{sub 3}N{sub 4}.

  11. Effect of Notches on Creep-Fatigue Behavior of a P/M Nickel-Based Superalloy

    NASA Technical Reports Server (NTRS)

    Telesman, Jack; Gabb, Timothy P.; Ghosn, Louis J.; Gayda, John, Jr.

    2015-01-01

    A study was performed to determine and model the effect of high temperature dwells on notched low cycle fatigue (NLCF) and notch stress rupture behavior of a fine grain LSHR powder metallurgy (PM) nickel-based superalloy. It was shown that a 90 second dwell applied at the minimum stress (min dwell) was considerably more detrimental to the NLCF lives than similar dwell applied at the maximum stress (max dwell). The short min dwell NLCF lives were shown to be caused by growth of small oxide blisters which caused preferential cracking when coupled with high concentrated notch root stresses. The cyclic max dwell notch tests failed mostly by a creep accumulation, not by fatigue, with the crack origin shifting internally to a substantial distance away from the notch root. The classical von Mises plastic flow model was unable to match the experimental results while the hydrostatic stress profile generated using the Drucker-Prager plasticity flow model was consistent with the experimental findings. The max dwell NLCF and notch stress rupture tests exhibited substantial creep notch strengthening. The triaxial Bridgman effective stress parameter was able to account for the notch strengthening by collapsing the notched and uniform gage geometry test data into a singular grouping.

  12. The Transient Behavior of Aseismic Slip Along the Creeping Section of the North Anatolian Fault, Turkey

    NASA Astrophysics Data System (ADS)

    Jolivet, R.; Rousset, B.; Simons, M.; Lasserre, C.; Riel, B. V.; Milillo, P.; Cakir, Z.

    2014-12-01

    The ongoing development of constellations of Synthetic Aperture Radar (SAR) satellites with short repeat time acquisitions allows to explore the behavior of active faults with an unprecedented temporal and spatial resolution. The improvement from monthly to daily repeat times sheds a new light on the dynamics of near-surface fault creep along continental faults, which has been shown to exhibit various temporal behaviors, from persistent slow silent slip to discrete episodes of aseismic slip. Along the North Anatolian Fault (NAF), an 80 km-long section is creeping at least since the 1944, M7.3 earthquake near Ismetpasa, Turkey. Recent geodetic measurements suggest an average creep rate of about half the total slip rate accommodated by the NAF (8±3 mm/yr vs. 22±3 mm/yr). In addition, an effective bi-modal distribution of frictional properties along fault dip (rate-strengthening from the surface to 5-7 km-depth and rate-weakening down to the locking depth) can explain the persistent creep rate and the extent of past ruptures. We take advantage of the dense set of SAR images acquired by the Cosmo-SkyMed™ (ASI) constellation over the creeping section of the NAF to quantify, with a high spatial and temporal resolution, the distribution of aseismic slip along strike and its evolution between August 2013 and June 2014. We compute 1000+ interferograms from 350+ radar acquisitions over 7 tracks using the ISCE software (JPL). We use the Generic InSAR Analysis Toolbox (GIAnT) and the PyAPS library to correct interferograms from the propagation delays due to the stratification of the troposphere, predicted using the ERA-Interim (ECMWF) re-analysis. We use the New Small Baseline (NSBAS) method to derive the spatial and temporal evolution of the near-fault displacements independently for each track. Our results suggest the fault does not creep steadily over the 2013-2014 period but rather releases strain through discrete aseismic events we refer to as bursts of creep. In

  13. Creep behavior of interfaces in fiber reinforced metal-matrix composites

    SciTech Connect

    Funn, J.V.; Dutta, I.

    1998-12-11

    The elevated temperature deformation behavior of interfaces in model single fiber composites was isolated and studied using a fiber push-down approach, whereby the interface is loaded in shear. Two fiber-matrix systems, one with no mutual solubility (quartz-lead) and the other with limited mutual solubility (nickel-lead), were investigated. In both systems, the matrix and fiber underwent sliding relative to each other, with the interface acting as a high diffusivity path. The mechanism of sliding was inferred to be interface-diffusion-controlled diffusional creep with a threshold stress (Bingham flow). The behavior was modeled analytically using a continuum approach, and an expression for the constitutive creep behavior of the interface was derived. The model provided a physical basis for the observed threshold behavior, which was found to be directly related to the normal (radial) residual stress acting on the fiber-matrix interface. The results are deemed to be significant because (1) in some instances, interfacial sliding may be instrumental in determining the overall creep/thermal cycling response of a composite; and (2) they offer an alternative rationalization of threshold behavior during diffusional flow (besides interface reaction control) and may be useful in understanding creep in multi-phase systems with internal stresses.

  14. Effect of anisotropy on creep behavior in a functionally graded material disc of variable thickness

    NASA Astrophysics Data System (ADS)

    Gupta, Vandana; Singh, S. B.

    2014-09-01

    In this paper, an effort has been made to study the effect of anisotropy on the steady state creep behavior in the functionally graded material disc with hyperbolic thickness made of Al-SiC (particle). The content of silicon carbide particles in the disc is assumed to decrease linearly from the inner to the outer radius of the disc. The creep behavior of the disc under stresses developing due to rotation at 15,000 rpm has been determined by Sherby's law. The creep parameters of the FGM disc vary along the radial distance due to varying composition and this variation has been estimated by regression fit of the available experimental data. The creep response of rotating disc is expressed by a threshold stress with value of stress exponent as 8. The study reveals that the anisotropy has a significant effect on the steady state creep response of rotating FGM disc. Thus, the care to introduce anisotropy should be taken for the safe design of the rotating FGM disc with hyperbolic thickness.

  15. Experimental Investigation of the Mechanical Behavior in Unloading Conditions of Sandstone After High-Temperature Treatment

    NASA Astrophysics Data System (ADS)

    Ding, Qi-Le; Ju, Feng; Mao, Xian-Biao; Ma, Dan; Yu, Bang-Yong; Song, Shuai-Bing

    2016-07-01

    A detailed understanding of damage evolution in rock after high-temperature treatment in unloading conditions is extremely important in underground engineering applications, such as the disposal of highly radioactive nuclear waste, underground coal gasification, and post-disaster reconstruction. We have studied the effects of temperature (200, 400, 600 and 800 °C) and confining pressure (20, 30 and 40 MPa) on the mechanical properties of sandstone. Scanning electron microscopy studies revealed that at temperatures exceeding 400 °C, new cracks formed, and original cracks extended substantially. When the confining pressure was 20 MPa, a temperature increase from 400 to 800 °C resulted in a 75.2% increase in peak strain, a decrease in Young's modulus and peak strength of 62.5 and 35.8 %, respectively, and transition of the failure mechanism from brittleness to ductility. In the triaxial compression tests, the specimen deformed in a more obvious ductile failure manner at higher confining pressure, whereas in the unloading confining pressure experiments, brittle failure was more obvious when the initial confining pressure was higher. We focused on the effects of temperature and initial confining pressure on peak effective loading stress and peak ductile deformation during unloading. At temperatures of >400 °C, the peak ductile deformation increased rapidly with increases in the high temperature treatment or initial confining pressure. The peak effective loading stress decreased sharply with increased temperature but barely changed when the initial confining pressure was varied.

  16. High Temperature Oxidation Behavior of HVOF-sprayed Coatings for Use in Thixoextrusion Processes

    SciTech Connect

    Picas, J. A.; Punset, M.; Menargues, S.; Campillo, M.; Baile, M. T.; Forn, A.

    2011-05-04

    The dies used for the thixoextrusion of steels have to be capable of withstanding complex thermal and mechanical loads, while giving a sufficient wear resistance against abrasion and adhesion at very high temperatures. In order to improve the wear resistance and reduce the heating of the extrusion die it can be protected with a hard cermet coating. The purpose of this work is to study the high-temperature performance of CrC-CoNiCrAlY coating and explore the potential application of this coating to improve dies used in thixoextrusion processes. A two-layer 75CrC-25CoNiCrAlY coating with a CoNiCrAlY bond-coating was fabricated by the HVOF thermal spray process on a steel substrate. Coatings were heat-treated at a range of temperatures between 900 deg. C and 1100 deg. C. The microstructural characterization of the coatings before and after heat treatment was conducted by scanning electron microscopy (SEM) and an X-ray diffractometer (XRD). The mechanical properties of coatings were determined as a function of the temperature of heat treatment. The bond coat effect on the thermal shock resistance of CrC-CoNiCrAlY coating was analyzed.

  17. Influence of cerium additions on high-temperature-impact ductility and fracture behavior of iridium alloys

    SciTech Connect

    Gubbi, A.N.; Zee, R.H.; George, E.P.; Ohriner, E.K.

    1997-10-01

    Radioisotope thermoelectric generators (RTGs), used for supplying electric power to interplanetary space missions, utilize the energy liberated due to decay of the radioisotope fuel. The material used for cladding the fuel pellets is an iridium-based alloy developed at Oak Ridge National Laboratory, which contains nominally 0.3 wt pct W, 60 wppm Th, and 50 wppm Al, generally known as DOP-26. High-temperature tensile impact testing was carried out on Ir + 0.3 wt pct W alloys doped with cerium and thorium individually, and with cerium and thorium together. Impact ductility was evaluated as a function of grain size and test temperature. Cerium by itself was not as effective as thorium in improving the grain boundary cohesion, even though it segregated more strongly than thorium to the grain boundaries. This lower grain boundary cohesion was responsible for lower impact ductility and higher brittle-to-ductile transition temperature of cerium-doped alloys compared to those of the thorium- or thorium plus cerium-doped alloys. Reduction in thorium content by a factor of 5 (from 50 to 10 appm) in the bulk did not result in any significant reduction in high-temperature impact ductility or an increase in the brittle-to-ductile transition temperature as long as sufficient cerium was added to provide grain refinement. Grain boundary strengths of thorium- and thorium plus cerium-doped alloys were almost identical.

  18. High Temperature Oxidation Behavior of HVOF-sprayed Coatings for Use in Thixoextrusion Processes

    NASA Astrophysics Data System (ADS)

    Picas, J. A.; Punset, M.; Menargues, S.; Campillo, M.; Baile, M. T.; Forn, A.

    2011-05-01

    The dies used for the thixoextrusion of steels have to be capable of withstanding complex thermal and mechanical loads, while giving a sufficient wear resistance against abrasion and adhesion at very high temperatures. In order to improve the wear resistance and reduce the heating of the extrusion die it can be protected with a hard cermet coating. The purpose of this work is to study the high-temperature performance of CrC-CoNiCrAlY coating and explore the potential application of this coating to improve dies used in thixoextrusion processes. A two-layer 75CrC-25CoNiCrAlY coating with a CoNiCrAlY bond-coating was fabricated by the HVOF thermal spray process on a steel substrate. Coatings were heat-treated at a range of temperatures between 900 °C and 1100 °C. The microstructural characterization of the coatings before and after heat treatment was conducted by scanning electron microscopy (SEM) and an X-ray diffractometer (XRD). The mechanical properties of coatings were determined as a function of the temperature of heat treatment. The bond coat effect on the thermal shock resistance of CrC-CoNiCrAlY coating was analyzed.

  19. Field emission behavior of carbon nanotube field emitters after high temperature thermal annealing

    SciTech Connect

    Sun, Yuning; Shin, Dong Hoon; Yun, Ki Nam; Leti, Guillaume; Hwang, Yeon Mo; Song, Yenan; Saito, Yahachi; Lee, Cheol Jin

    2014-07-15

    The carbon nanotube (CNT) field emitters have been fabricated by attaching a CNT film on a graphite rod using graphite adhesive material. The CNT field emitters showed much improved field emission properties due to increasing crystallinity and decreasing defects in CNTs after the high temperature thermal annealing at 900 °C in vacuum ambient. The CNT field emitters showed the low turn-on electric field of 1.15 V/μm, the low threshold electric field of 1.62 V/μm, and the high emission current of 5.9 mA which corresponds to a current density of 8.5 A/cm{sup 2}. In addition, the CNT field emitters indicated the enhanced field emission properties due to the multi-stage effect when the length of the graphite rod increases. The CNT field emitter showed good field emission stability after the high temperature thermal annealing. The CNT field emitter revealed a focused electron beam spot without any focusing electrodes and also showed good field emission repeatability.

  20. The influence of Mg on creep properties and fracture behaviors of Mar-M247 superalloy under 1255 K/200 MPa

    SciTech Connect

    Bor, H.Y.; Chao, C.G.; Ma, C.Y.

    2000-05-01

    The effects of Mg microadditions on the high-temperature/low stress (1,255 K/200 MPa) creep properties and fracture behavior of a Mar-M247 supralloy were investigated in this study. The results of quantitative statistical analyses showed that when Mg microadditions up to 50 ppm were made, the MC carbides located at grain boundaries (designated GB MC) were significantly refined and spheroidized and the number of MC carbides decreased. In addition, the M{sub 23}C{sub 6} carbides present on GBs dramatically increased with increasing Mg contents up to 50 ppm, and the creep resistance was enhanced under the test condition of 1,255 K/200 MPa. However, the creep performance of a Mar-M247 superalloy containing 80 ppm Mg deteriorated due to the formation of an extremely large amount of MC carbide and a decrease in the number of M{sub 23}C{sub 6} carbides at GBs. The cracks mainly initiated and propagated along GBs in both the Mg-free and Mg-containing Mar-M247 superalloys under 1,255 K/200 MPa, and the final rupture was caused by intergranular fracture. Under the present creep condition, the optimal Mg microaddition to a Mar-M247 superalloy should be 30 to 50 ppm.

  1. A Nonlinear Viscoelastic Model for Ceramics at High Temperatures

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Panoskaltsis, Vassilis P.; Gasparini, Dario A.; Choi, Sung R.

    2002-01-01

    High-temperature creep behavior of ceramics is characterized by nonlinear time-dependent responses, asymmetric behavior in tension and compression, and nucleation and coalescence of voids leading to creep rupture. Moreover, creep rupture experiments show considerable scatter or randomness in fatigue lives of nominally equal specimens. To capture the nonlinear, asymmetric time-dependent behavior, the standard linear viscoelastic solid model is modified. Nonlinearity and asymmetry are introduced in the volumetric components by using a nonlinear function similar to a hyperbolic sine function but modified to model asymmetry. The nonlinear viscoelastic model is implemented in an ABAQUS user material subroutine. To model the random formation and coalescence of voids, each element is assigned a failure strain sampled from a lognormal distribution. An element is deleted when its volumetric strain exceeds its failure strain. Element deletion has been implemented within ABAQUS. Temporal increases in strains produce a sequential loss of elements (a model for void nucleation and growth), which in turn leads to failure. Nonlinear viscoelastic model parameters are determined from uniaxial tensile and compressive creep experiments on silicon nitride. The model is then used to predict the deformation of four-point bending and ball-on-ring specimens. Simulation is used to predict statistical moments of creep rupture lives. Numerical simulation results compare well with results of experiments of four-point bending specimens. The analytical model is intended to be used to predict the creep rupture lives of ceramic parts in arbitrary stress conditions.

  2. High temperature tension-compression fatigue behavior of a tungsten copper composite

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Gabb, Timothy P.

    1990-01-01

    The high temperature fatigue of a (O)12 tungsten fiber reinforced copper matrix composite was investigated. Specimens having fiber volume percentages of 10 and 36 were fatigued under fully-reversed, strain-controlled conditions at both 260 and 560 C. The fatigue life was found to be independent of fiber volume fraction because fatigue damage preferentially occurred in the matrix. Also, the composite fatigue lives were shorter at 560 C as compared to 260 C due to changes in mode of matrix failure. On a total strain basis, the fatigue life of the composite at 560 C was the same as the life of unreinforced copper, indicating that the presence of the fibers did not degrade the fatigue resistance of the copper matrix in this composite system. Comparison of strain-controlled fatigue data to previously-generated load-controlled data revealed that the strain-controlled fatigue lives were longer because of mean strain and mean stress effects.

  3. Study on the behavior of atomic layer deposition coatings on a nickel substrate at high temperature

    NASA Astrophysics Data System (ADS)

    Sohrabi Baba Heidary, Damoon; Randall, Clive A.

    2016-06-01

    Although many techniques have been applied to protect nickel (Ni) alloys from oxidation at intermediate and high temperatures, the potential of atomic layer deposition (ALD) coatings has not been fully explored. In this paper, the application of ALD coatings (HfO2, Al2O3, SnO2, and ZnO) on Ni foils has been evaluated by electrical characterization and transmission electron microscopy analyses in order to assess their merit to increase Ni oxidation resistance; particular consideration was given to preserving Ni electrical conductivity at high temperatures. The results suggested that as long as the temperature was below 850 °C, the ALD coatings provided a physical barrier between outside oxygen and Ni metal and hindered the oxygen diffusion. It was illustrated that the barrier power of ALD coatings depends on their robustness, thicknesses, and heating rate. Among the tested ALD coatings, Al2O3 showed the maximum protection below 900 °C. However, above that temperature, the ALD coatings dissolved in the Ni substrate. As a result, they could not offer any physical barrier. The dissolution of ALD coatings doped on the NiO film, formed on the top of the Ni foils. As found by the electron energy loss spectroscopy (EELS), this doping affected the electronic transport process, through manipulating the Ni3+/Ni2+ ratio in the NiO films and the chance of polaron hopping. It was demonstrated that by using the ZnO coating, one would be able to decrease the electrical resistance of Ni foils by two orders of magnitude after exposure to 1020 °C for 4 min. In contrast, the Al2O3 coating increased the resistance of the uncoated foil by one order of magnitude, mainly due to the decrease in the ratio of Ni3+/Ni2+.

  4. Study on the behavior of atomic layer deposition coatings on a nickel substrate at high temperature.

    PubMed

    Heidary, Damoon Sohrabi Baba; Randall, Clive A

    2016-06-17

    Although many techniques have been applied to protect nickel (Ni) alloys from oxidation at intermediate and high temperatures, the potential of atomic layer deposition (ALD) coatings has not been fully explored. In this paper, the application of ALD coatings (HfO2, Al2O3, SnO2, and ZnO) on Ni foils has been evaluated by electrical characterization and transmission electron microscopy analyses in order to assess their merit to increase Ni oxidation resistance; particular consideration was given to preserving Ni electrical conductivity at high temperatures. The results suggested that as long as the temperature was below 850 °C, the ALD coatings provided a physical barrier between outside oxygen and Ni metal and hindered the oxygen diffusion. It was illustrated that the barrier power of ALD coatings depends on their robustness, thicknesses, and heating rate. Among the tested ALD coatings, Al2O3 showed the maximum protection below 900 °C. However, above that temperature, the ALD coatings dissolved in the Ni substrate. As a result, they could not offer any physical barrier. The dissolution of ALD coatings doped on the NiO film, formed on the top of the Ni foils. As found by the electron energy loss spectroscopy (EELS), this doping affected the electronic transport process, through manipulating the Ni(3+)/Ni(2+) ratio in the NiO films and the chance of polaron hopping. It was demonstrated that by using the ZnO coating, one would be able to decrease the electrical resistance of Ni foils by two orders of magnitude after exposure to 1020 °C for 4 min. In contrast, the Al2O3 coating increased the resistance of the uncoated foil by one order of magnitude, mainly due to the decrease in the ratio of Ni(3+)/Ni(2+). PMID:27152985

  5. Corrosion behavior of Ni and Ni-based alloys in concentrated NaOH solutions at high temperatures

    SciTech Connect

    Yasuda, M.; Fukumoto, K.; Ogata, Y.; Hine, F.

    1988-12-01

    Corrosion behavior of SUS 310S austenitic stainless steel, Alloy 600, Monel 400, and Ni 200 and NaOH solutions in the concentration range 30-60% at high temperatures up to 166/sup 0/C was studied. In solutions containing dissolved oxygen or under oxidizing conditions, all the specimens examined were corroded seriously due to oxygen diffusion through the porous oxide layer consisting of ..beta..-Ni(OH)/sub 2/. In hydrogen-saturated solutions, on the other hand, these Ni alloys were corrosion resistant because nickel in the alloys was active to oxidation of hydrogen. The specimens were corroded by deaerated solution at high temperatures in which hydrogen evolution took place as the counterreaction. The corrosion rate controlled by the hydrogen formation reaction increased exponentially with the decrease of the Ni content in the alloy.

  6. Experimental study of carbon materials behavior under high temperature and VUV radiation: Application to Solar Probe+ heat shield

    NASA Astrophysics Data System (ADS)

    Eck, J.; Sans, J.-L.; Balat-Pichelin, M.

    2011-02-01

    The aim of the Solar Probe Plus (SP+) mission is to understand how the solar corona is heated and how the solar wind is accelerated. To achieve these goals, in situ measurements are necessary and the spacecraft has to approach the Sun as close as 9.5 solar radii. This trajectory induces extreme environmental conditions such as high temperatures and intense Vacuum Ultraviolet radiation (VUV). To protect the measurement and communication instruments, a heat shield constituted of a carbon material is placed on the top of the probe. In this study, the physical and chemical behavior of carbon materials is experimentally investigated under high temperatures (1600-2100 K), high vacuum (10-4 Pa) and VUV radiation in conditions near those at perihelion for SP+. Thanks to several in situ and ex situ characterizations, it was found that VUV radiation induced modification of outgassing and of mass loss rate together with alteration of microstructure and morphology.

  7. Effects of high-temperature environments on flaw generation and fracture behavior of SiC/SiC composites

    SciTech Connect

    Singh, J.P.; Singh, D.

    1995-02-01

    Flaw generation and fracture behavior of Nicalon-fiber-reinforced SiC matrix composites are influenced by high temperatures. Therefore, the authors evaluated the effects of temperature by measuring the strength of these composites at several temperatures ranging from 800 to 1,300 C, and by characterizing their microstructure. While composite strength increased from {approx}400 MPa at room temperature to {approx}532 MPa at 800 C, it decreased to {approx}270 MPa at 1,300 C. Such degradation of composite strength at high temperature is believed to be partly due to fiber degradation. In-situ fiber strength of composites tested at room and elevated temperatures was estimated by fractographic techniques. The in-situ strength of fibers in composites was significantly lower than that of as-received fibers. This decrease is believed to be related to flaws that develop during processing and to exposure to elevated-temperature service environments.

  8. Creep and intergranular cracking behavior of nickel-chromium-iron-carbon alloys in 360 C water

    SciTech Connect

    Angeliu, T.M.; Paraventi, D.J.; Was, G.S.

    1995-11-01

    Mechanical testing of controlled-purity Ni-x% Cr-9% Fe-y% C alloys at 360 C revealed an environmental enhancement in intergranular (IG) cracking and time-dependent deformation in high-purity (HP) and primary water (PW) over that exhibited in argon. Dimples on the IG facets indicated a creep void nucleation and growth failure mode. IG cracking was located primarily in the interior of the specimen and was not necessarily linked to the environment. Controlled-potential constant extension rate tensile (CERT) experiments showed increases in IG cracking as the applied potential decreased, suggesting that hydrogen was detrimental to the mechanical properties. It was proposed that the environment, through the presence of hydrogen, enhanced IG cracking by enhancing the matrix dislocation mobility. This conclusion was based on observations that dislocation creep controlled IG cracking of controlled-purity Ni-x% Cr-9% Fe-y% C in argon at 360 C. Grain-boundary cavitation (GBC) and sliding (GBS) results showed environmental enhancement of the creep rate primarily resulted from an increase in matrix plastic deformation. However, controlled-potential constant load tensile (CLT) experiments did not indicate a change in the creep rate as the applied potential decreased. While this result did not support hydrogen-assisted creep, the material already may have been saturated with hydrogen at these applied potentials, and thus, no effect was realized. Chromium and carbon decreased IG cracking in HP and PW by increasing the creep resistance. The surface film did not play a significant role in the creep or IG cracking behavior under the conditions investigated.

  9. Behavior of Repeating Earthquake Sequences in Central California and the Implications for Subsurface Fault Creep

    SciTech Connect

    Templeton, D C; Nadeau, R; Burgmann, R

    2007-07-09

    Repeating earthquakes (REs) are sequences of events that have nearly identical waveforms and are interpreted to represent fault asperities driven to failure by loading from aseismic creep on the surrounding fault surface at depth. We investigate the occurrence of these REs along faults in central California to determine which faults exhibit creep and the spatio-temporal distribution of this creep. At the juncture of the San Andreas and southern Calaveras-Paicines faults, both faults as well as a smaller secondary fault, the Quien Sabe fault, are observed to produce REs over the observation period of March 1984-May 2005. REs in this area reflect a heterogeneous creep distribution along the fault plane with significant variations in time. Cumulative slip over the observation period at individual sequence locations is determined to range from 5.5-58.2 cm on the San Andreas fault, 4.8-14.1 cm on the southern Calaveras-Paicines fault, and 4.9-24.8 cm on the Quien Sabe fault. Creep at depth appears to mimic the behaviors seen of creep on the surface in that evidence of steady slip, triggered slip, and episodic slip phenomena are also observed in the RE sequences. For comparison, we investigate the occurrence of REs west of the San Andreas fault within the southern Coast Range. Events within these RE sequences only occurred minutes to weeks apart from each other and then did not repeat again over the observation period, suggesting that REs in this area are not produced by steady aseismic creep of the surrounding fault surface.

  10. Correlation between Mechanical Behavior and Actuator-type Performance of Ni-Ti-Pd High-temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen S.; Padula, Santo A., II; Garg, Anita; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory alloys in the NiTiPd system are being investigated as lower cost alternatives to NiTiPt alloys for use in compact solid-state actuators for the aerospace, automotive, and power generation industries. A range of ternary NiTiPd alloys containing 15 to 46 at.% Pd has been processed and actuator mimicking tests (thermal cycling under load) were used to measure transformation temperatures, work behavior, and dimensional stability. With increasing Pd content, the work output of the material decreased, while the amount of permanent strain resulting from each load-biased thermal cycle increased. Monotonic isothermal tension testing of the high-temperature austenite and low temperature martensite phases was used to partially explain these behaviors, where a mismatch in yield strength between the austenite and martensite phases was observed at high Pd levels. Moreover, to further understand the source of the permanent strain at lower Pd levels, strain recovery tests were conducted to determine the onset of plastic deformation in the martensite phase. Consequently, the work behavior and dimensional stability during thermal cycling under load of the various NiTiPd alloys is discussed in relation to the deformation behavior of the materials as revealed by the strain recovery and monotonic tension tests.

  11. 1300 K Creep Behavior of [001] Oriented Ni-49Al-1Hf (at.%) Single Crystals

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Locci, I. E.; Darolia, Ram; Bowman, R.

    1999-01-01

    A study of the 1300 K compressive and tensile creep properties of [001]-oriented NiAl-1Hf (D209) single crystals has been undertaken. Neither post homogenization cooling treatment, minor chemical variations within an ingot or from ingot-to-ingot, nor testing procedure had a significant effect on mechanical behavior; however a heat treatment which dissolved the initial G-phase precipitates and promoted formation of Heusler particles led to a strength reduction. Little primary creep was found utilizing direct measurement of strain, and a misorientation of 18 deg from the [001] did not reduce the creep strength. The effects of heat treatments on properties and a comparison of the flow stress-strain rate data to those predicted by the Jaswon-Cottrell solid solution hardening model indicate that the 1300 K strength in NiAl-1Hf single crystals is mainly due to precipitation hardening mechanisms.

  12. Bridging the PE lifetime under fatigue and creep conditions with its crystallization behavior

    SciTech Connect

    Kadota, K.; Chudnovsky, A. . Dept. of Civil Engineering, Mechanics and Metallurgy); Chum, S. . Polyethylene Div.)

    1993-08-01

    The service lifetime for several linear polyethylene copolymers was studied by fatigue-type accelerated tests. The material morphology and crystallization behavior were correlated with the lifetime and the failure modes. The correlation is based on the rate constant of material degradation (RCMD) recently introduced by the authors within a mathematical model for crack layer growth kinetics. RCMD is found to depend on the loading conditions (e.g., creep or fatigue) and on material morphology reflected in crystallization kinetics. The ratio of RCMDs for fatigue and creep is a scaling factor that allows one to correlate fatigue and creep lifetimes. The dependence of the RCMD's ratio on the morphological features associated with the primary and secondary crystallization kinetics is also reported in this paper.

  13. Microstructure and Creep Behavior of Fe-27Al-1Nb Alloys with Added Carbon

    NASA Astrophysics Data System (ADS)

    Dobeš, Ferdinand; Kratochvíl, Petr; Pešička, Josef; Vodičková, Věra

    2015-04-01

    The effect of Nb and C additions on the phase composition, microstructure, and creep resistance of Fe3Al-type alloys is investigated. Two alloys, which contained (at. pct) (i) 27.6 Al, 1.15 Nb and 0.19 C (Fe balance) and (ii) 27.1 Al, 1.11 Nb, and 0.76 C (Fe balance), were studied in a temperature range from 873 K to 1073 K (600 °C to 800 °C). The carbide in both alloys was identified as Nb6C5. The creep data can be rationalized by introducing a threshold stress, below which, the creep rate is negligible. The threshold stress and an effective stress exponent were found simultaneously by a numerical method. Using the obtained values of the threshold stress, the activation energy of creep was determined to be 328 kJ/mol. The effective stress exponent varied from 2.0 to 3.1. A breakdown of power-law behavior was observed at higher stresses. The transition occurred at the normalized creep rate of , which agrees with the rule suggested by Sherby and Burke and the diffusion coefficient D corresponding to the diffusion of Al in Fe-Al.

  14. Microstructural behavior of 8Cr-ODS martensitic steels during creep deformation

    NASA Astrophysics Data System (ADS)

    Shinozuka, K.; Esaka, H.; Tamura, M.; Tanigawa, H.

    2011-10-01

    Oxide dispersion strengthened (ODS) steels show a high anisotropy in their creep behavior because of the δ-ferrite grain elongated in the hot-rolled direction and the characteristic formation of creep cavities. In this work, the relationship between the δ-ferrite grain and the growth of creep cavities in 8Cr-ODS steels was investigated. The samples of two ODS steels with different δ-ferrite volume fractions were machined parallel and perpendicular to the hot-rolled direction. Creep rupture tests and interrupted tests were performed at 700 °C and about 197 MPa. Cavities formed in the martensite along δ-ferrite grains during creep deformation. The area fraction of the cavities of all specimens increased in proportion to the cube root of test time. When the volume fraction of δ-ferrite was high and δ-ferrite grains elongated parallel to the load direction, δ-ferrite then obstructed the propagation of cracks. However, when the volume fraction of δ-ferrite was low and δ-ferrite grains elongated perpendicular to the load direction, δ-ferrite grains had little effect on crack propagation.

  15. Tensile and Creep Behavior of Extruded AA6063/SiCp Al MMCs

    NASA Astrophysics Data System (ADS)

    Khalifa, Tarek A.; Mahmoud, Tamer S.

    2010-03-01

    Composites of AA6063 Al alloy reinforced with SiC particles (SiCp) were prepared by the vortex method. Hot extrusion was carried out for the as cast composites with a reduction in area of 25%. Tensile and creep behavior of as-cast and extruded composites were studied at elevated temperatures. Tensile tests carried out at room temperature showed that for the as-cast composites, the addition of SiCp up to 10% by weight improves the strength but reduces ductility. Further addition of SiCp reduces the strength and ductility of the composites. At 150 and 300° C the matrix alloy exhibits higher strength than the composites. Extrusion generally raised the strength of the composites at both room and elevated temperatures. Time rupture creep tests carried out at 300° C showed that the composites exhibit higher creep resistance as compared to the matrix alloy except at relatively low stresses where the matrix has a better creep resistance. Extrusion improved the resistance of composites to creep rupture.

  16. High temperature magnetic behavior of multiferroics Bi1-xCaxFeO3

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Su, J.; Liu, Z. Y.; Fu, Z. M.; Wang, X. W.; Song, G. L.; Chang, F. G.

    2014-04-01

    We investigate the room temperature microstructure and high temperature magnetic properties of Ca2+-substituted Bi1-xCaxFeO3 (0 ≤ x ≤ 0.2) ceramics. The Bi1-xCaxFeO3 compound transforms from rhombohedral into tetragonal structure with the phase boundary lying around x = 0.1. Based on this, the magnetic modulation becomes significant and the strongest remnant magnetization Mr is obtained at x = 0.1 compound. An important observation is the ferromagnetic-like phase transition revealed at TFM = 878 K in pure BiFeO3. The TFM of Bi1-xCaxFeO3 varies with Ca concentration and is close to the TAFM when x = 0.1. The convergence between TFM and TAFM implies the severe competition between Fe3+-O2--Fe3+ and unbalanced Fe3+-O2--Fe2+ antiferromagnetic exchange interactions, which leads to the dramatic change around TAFM in the M-T curve of x = 0.1 compound. The structure-related modulation of magnetic structure and complex interaction between Fe3+ and Fe2+ may be the driving force for the excellent magnetic properties of x = 0.1 sample.

  17. Assessment of the Oxidation Behavior of a Pt-Based Alloy for High Temperature Applications

    NASA Astrophysics Data System (ADS)

    Odusote, J. K.; Cornish, L. A.; Papo, J. M.

    2013-11-01

    Pt-based alloys are being developed as a possible future replacement for Ni-based superalloy components in the hottest section of turbine engines. The critical properties of these alloys are their ability to withstand higher thermal and mechanical stresses as well as to resist aggressive corrosive and oxidizing environments in applications. Oxidation properties of these alloys were investigated between 1150 and 1350 °C. The surface roughness of the as-polished samples was determined using atomic force microscopy, while the microstructures of both the as-polished and oxidized samples were examined using scanning electron microscopy. The alloy was found to be composed of a two-phase gamma/gamma prime microstructure, while the average surface roughness decreased from 5.78 nm after 1 μm diamond paste polishing to 4.13 nm with 0.25 μm diamond paste polishing. Microstructure examination of the oxidized alloy samples revealed the formation of compact and protective external oxide scale composed of α-alumina, as confirmed by the XRD and Raman spectroscopy. The results also showed that the oxide scale thickens with increased exposure time and temperatures according to parabolic kinetics. It was concluded from the results that the Pt-based alloys possess good oxidation resistance and thus will be suitable for high temperature applications, such as turbine engines.

  18. Self-healing of creep damage in heat resisting steels

    NASA Astrophysics Data System (ADS)

    Shinya, Norio; Kyono, Junro

    2002-07-01

    In heat resisting steels, micro holes, called creep cavities, are formed at grain boundaries by long term use at high temperatures. These creep cavities grow along grain boundaries, form grain boundary cracks by linking up each other anc cause low ductility and premature fracture as shown in Fig. 1. Therefore long term creep rupture strength and ductilities chiefly depend upon the behavior of nucleation and growth of creep cavities. If the growth of creep cavities could be suppressed, creep rupture strength and ductilities should be improved remarkably. Present work is intended to propose a self-healing process for the cavitation, and improve the creep rupture properties by the self-healing. It is thought that chemical compound of BN precipitates at inside surface of creep cavity by addition of B and N to heat resisting steels. As the BN is very stable at high temperatures, the precipitation of BN at creep cavity surface is expected to suppress the creep cavity growth and bring about the healing effect on the cavitation.

  19. The corrosion behavior of Alloy 52 weld metal in cyclic hydrogenated and oxygenated water chemistry in high temperature aqueous environment

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Shoji, Tetsuo

    2015-06-01

    The corrosion behavior of Alloy 52 weld metal in cyclic hydrogenated and oxygenated water chemistry in high temperature water is studied by in situ monitoring corrosion potential (Ecorr), contact electric resistance (CER) and electrochemical impedance measurements (EIS), and ex situ scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis. The Ecorr and film resistance show large change when the environment is changed from hydrogenated water to oxygenated water and changeable with changing environment while the morphology and composition only show obvious distinction in the first cycle. The main factor controlling the electric/electrochemical properties of the oxide film is Ecorr.

  20. Analysis of Ash Adhesion Behavior at High Temperature Condition by Using Computer controlled FE-SEM with Heat Treatment Unit

    SciTech Connect

    Hamiya, H.; Yamada, H.; Tukada, M.; Naito, M.

    2002-09-19

    The purpose of this paper is to analyze the increasing mechanism of cohesive and adhesive force of ash powders from a coal combustion system at high-temperature conditions, a new observation system, which was composed of computer controlled FE-SEM and chamber unit for the heat treatment, was developed. By using this system, the liquid phase formation on the surface of pressurized fluidized bed coal combustion ash samples was observed after heat treatment at 1123 K, which temperature was corresponding to the rapid increasing temperature of adhesion behavior of ash powder samples.

  1. Creep crack growth behavior of aluminum alloy 2519. Part 2: Numerical analysis

    SciTech Connect

    Hall, D.E.; Hamilton, B.C.; McDowell, D.L.; Saxena, A.

    1997-12-31

    The experimental analysis of high temperature fracture in Aluminum Alloy 2519-T87 presented in Part 1 of this paper highlighted the creep-brittle fracture characteristics of the material and showed reasonable correlation of crack growth rates with the stress intensity factor K. Part 2 continues this investigation numerically using growing crack finite element analyses. Experimentally observed crack growth histories of four aluminum 2519-T87 compact specimens are enforced by controlling the rate of release of finite element nodes along the crack growth path to gain insight into the relation of the crack tip fields to far field fracture parameters and to crack growth rates. A variable time-step, nodal-release algorithm is presented to model the high strain rates that occur during the initial stages of crack growth. The numerical results indicate an initial transient period of crack growth followed by a quasi-steady-state crack growth regime in which the crack tip fields change slowly with increasing crack length. Transition of crack growth to the quasi-steady-state regime, where similitude and small-scale creep conditions roughly exist, is given by a transition time t{sub g} that depends on the crack growth history and material properties. Excellent correlation of the stress intensity factor K with the crack growth rates is observed after time t{sub g}. Experimental difficulties in measuring the creep component of the load-line deflection rate are also discussed.

  2. Behavior of Au-Si droplets in Si(001) at high temperatures

    NASA Astrophysics Data System (ADS)

    Shao, Y. M.; Nie, T. X.; Jiang, Z. M.; Zou, J.

    2012-07-01

    The transport behavior of Au-Si droplets near the Si(001) surface at elevated temperatures is investigated using transmission electron microscopy. It has been found that Au-Si droplets move differently under different temperatures, which lead to the formation of SiOx surface islands on top of droplets, and result in the lateral movements of smaller droplets away from their corresponding surface islands. Since Au droplets have been widely used as catalysts to induce semiconductor nanowires, this study provides insight behavior of Au containing droplets on semiconductor surfaces, which is critical for understanding the formation mechanisms of semiconductor nanowires.

  3. Use of laboratory triaxial-creep data and finite-element analysis to predict observed creep behavior of leached salt caverns

    SciTech Connect

    Preece, D.S.; Stone, C.M.

    1982-08-01

    An increasing interest is being shown worldwide in using leached salt caverns to store oil and natural gas. A critical factor in the use of existing caverns and the design of new ones is the creep behavior of the salt surrounding the caverns. An understanding of this behavior is being gained by using laboratory triaxial creep data as material property input to finite element computer programs designed to calculate displacements and stresses due to creep. An important step in verifying these predictive methods is the comparison of field data from existing caverns with finite element analyses which incorporate the material properties and geometry of each site. This comparison has been made for caverns in the Eminence Dome (Mississippi), West Hackberry Dome (Louisiana), and Bayou Chocktaw Dome (Louisiana) with reasonably good correlation being obtained between measured and predicted volumetric response of the caverns. These comparisons are discussed in this paper.

  4. Substrate Effects on the High Temperature Oxidation Behavior of a Gold-Based Braze Filler Metal

    SciTech Connect

    Weil, K. Scott; Rice, Joseph P.

    2005-06-01

    Oxidation testing was conducted on a commercial gold-based braze alloy, Gold ABA®, and on zirconia/stainless steel couples joined using this filler metal. Preliminary results reveal that both substrates play a significant role in determining the overall oxidation behavior of the brazed joint.

  5. Tensile and creep rupture behavior of P/M processed Nb-base alloy, WC-3009

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Titran, Robert H.

    1988-01-01

    Due to its high strength at temperatures up to 1600 K, fabrication of niobium base alloy WC-3009 (Nb30Hf9W) by traditional methods is difficult. Powder metallurgy (P/M) processing offers an attractive fabrication alternative for this high strength alloy. Spherical powders of WC-3009 produced by electron beam atomizing (EBA) process were successfully consolidated into a one inch diameter rod by vacuum hot pressing and swaging techniques. Tensile strength of the fully dense P/M material at 300-1590 K were similar to the arc-melted material. Creep rupture tests in vacuum indicated that WC-3009 exhibits a class 1 solid solution (glide controlled) creep behavior in the 1480 to 1590 K temperature range and stress range of 14 to 70 MPa. The creep behavior was correlated with temperature and stress using a power law relationship. The calculated stress exponent n, was about 3.2 and the apparent activation energy, Q, was about 270 kJ/mol. The large creep ductility exhibited by WC-3009 was attributed to its high strain rate sensitivity.

  6. Air oxidation behavior of fuel for the High Temperature Engineering Test Reactor (HTTR)

    NASA Astrophysics Data System (ADS)

    Kikuchi, Hironobu; Hayashi, Kimio; Fukuda, Kousaku

    1992-08-01

    The oxidation behavior of the HTTR fuel was studied with respect to the scenario of an air ingress accident which had been assessed in the HTTR safety analysis. The coated fuel particles were heated under a sufficient air flow in the temperature range of 900-1400 C for maximum duration of 600 h (at 1300 C). Failure fractions of the SiC coating layer after the heat treatments remained within the fraction at the fuel production. And the failure behavior of the SiC layer did not depend on such heating conditions as the temperature and the duration in the present experiment. It was confirmed by scanning electron microscopy (SEM), X-ray diffraction, and laser Raman spectroscopy that a thin oxide film was formed on the SiC layer by the heat treatments.

  7. Incipient corrosion behavior of Haynes 230 under a controlled reducing atmosphere at high temperatures

    NASA Astrophysics Data System (ADS)

    Tung, Hsiao-Ming; Stubbins, James F.

    2012-08-01

    In situ thermogravimetry analysis (TGA) was used to investigate the incipient corrosion behavior of alloy 230 exposed under a reducing environment in a temperature range of 850-1000 °C. Both oxidation and loss of alloying elements of alloy 230 were observed to occur concurrently in these conditions. The surface oxide which formed on the substrate does not appear to be as effective in providing a protective layer during the incipient corrosion period.

  8. Mechanical and functional behavior of high-temperature Ni-Ti-Pt shape memory alloys

    DOE PAGESBeta

    Buchheit, Thomas E.; Susan, Donald F.; Massad, Jordan E.; McElhanon, James R.; Noebe, Ronald D.

    2016-01-22

    A series of Ti-rich Ni-Ti-Pt ternary alloys with 13 to 18 at. pct Pt were processed by vacuum arc melting and characterized for their transformation behavior to identify shape memory alloys (SMA) that undergo transformation between 448 K and 498 K (175 °C and 225 °C) and achieve recoverable strain exceeding 2 pct. From this broader set of compositions, three alloys containing 15.5 to 16.5 at. pct Pt exhibited transformation temperatures in the vicinity of 473 K (200 °C), thus were targeted for more detailed characterization. Preliminary microstructural evaluation of these three compositions revealed a martensitic microstructure with small amountsmore » of Ti2(Ni,Pt) particles. Room temperature mechanical testing gave a response characteristic of martensitic de-twinning followed by a typical work-hardening behavior to failure. Elevated mechanical testing, performed while the materials were in the austenitic state, revealed yield stresses of approximately 500 MPa and 3.5 pct elongation to failure. Thermal strain recovery characteristics were more carefully investigated with unbiased incremental strain-temperature tests across the 1 to 5 pct strain range, as well as cyclic strain-temperature tests at 3 pct strain. As a result, the unbiased shape recovery results indicated a complicated strain recovery path, dependent on prestrain level, but overall acceptable SMA behavior within the targeted temperature and recoverable strain range.« less

  9. Mechanical and Functional Behavior of High-Temperature Ni-Ti-Pt Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Buchheit, Thomas E.; Susan, Donald F.; Massad, Jordan E.; McElhanon, James R.; Noebe, Ronald D.

    2016-04-01

    A series of Ti-rich Ni-Ti-Pt ternary alloys with 13 to 18 at. pct Pt were processed by vacuum arc melting and characterized for their transformation behavior to identify shape memory alloys (SMA) that undergo transformation between 448 K and 498 K (175 °C and 225 °C) and achieve recoverable strain exceeding 2 pct. From this broader set of compositions, three alloys containing 15.5 to 16.5 at. pct Pt exhibited transformation temperatures in the vicinity of 473 K (200 °C), thus were targeted for more detailed characterization. Preliminary microstructural evaluation of these three compositions revealed a martensitic microstructure with small amounts of Ti2(Ni,Pt) particles. Room temperature mechanical testing gave a response characteristic of martensitic de-twinning followed by a typical work-hardening behavior to failure. Elevated mechanical testing, performed while the materials were in the austenitic state, revealed yield stresses of approximately 500 MPa and 3.5 pct elongation to failure. Thermal strain recovery characteristics were more carefully investigated with unbiased incremental strain-temperature tests across the 1 to 5 pct strain range, as well as cyclic strain-temperature tests at 3 pct strain. The unbiased shape recovery results indicated a complicated strain recovery path, dependent on prestrain level, but overall acceptable SMA behavior within the targeted temperature and recoverable strain range.

  10. Modeling the creep properties of olivine by 2.5-dimensional dislocation dynamics simulations

    NASA Astrophysics Data System (ADS)

    Boioli, Francesca; Carrez, Philippe; Cordier, Patrick; Devincre, Benoit; Marquille, Matthieu

    2015-07-01

    In this work we performed 2.5-dimensional (2.5D) dislocation dynamics simulations coupling climb with the glide dislocation motion to model the creep behavior of olivine, one of the main component of the Earth's upper mantle. In particular, we present an application of this method to determine the creep strain rate in a material with high lattice resistance, such as olivine. We show that by including the climb mechanism we reach steady state creep conditions. Moreover, we find that a creep power law with a stress exponent close to 3 can be extracted from our simulations and we provide a model based on Orowan's law to predict the creep strain rates in the high temperature and low stress regime. The model presented is relevant to describe the plastic flow of olivine in the Earth's mantle deformation conditions and can be useful to derive the high temperature creep behavior of other materials.

  11. The effect of sheet processing on the microstructure, tensile, and creep behavior of INCONEL alloy 718

    NASA Astrophysics Data System (ADS)

    Boehlert, C. J.; Dickmann, D. S.; Eisinger, Ny. N. C.

    2006-01-01

    The grain size, grain boundary character distribution (GBCD), creep, and tensile behavior of INCONEL alloy 718 (IN 718) were characterized to identify processing-microstructure-property relationships. The alloy was sequentially cold rolled (CR) to 0, 10, 20, 30, 40, 60, and 80 pct followed by annealing at temperatures between 954 °C and 1050 °C and the traditional aging schedule used for this alloy. In addition, this alloy can be superplastically formed (IN 718SPF) to a significantly finer grain size and the corresponding microstructure and mechanical behavior were evaluated. The creep behavior was evaluated in the applied stress (σ a ) range of 300 to 758 MPa and the temperature range of 638 °C to 670 °C. Constant-load tensile creep experiments were used to measure the values of the steady-state creep rate and the consecutive load reduction method was used to determine the values of backstress (σ0). The values for the effective stress exponent and activation energy suggested that the transition between the rate-controlling creep mechanisms was dependent on effective stresses (σ e =σ a σ0) and the transition occurred at σ e ≅ 135 MPa. The 10 to 40 pct CR samples exhibited the greatest 650 °C strength, while IN 718SPF exhibited the greatest room-temperature (RT) tensile strength (>1550 MPa) and ductility (ɛ f >16 pct). After the 954 °C annealing treatment, the 20 pct CR and 30 pct CR microstructures exhibited the most attractive combination of elevated-temperature tensile and creep strength, while the most severely cold-rolled materials exhibited the poorest elevated-temperature properties. After the 1050 °C annealing treatment, the IN 718SPF material exhibited the greatest backstress and best creep resistance. Electron backscattered diffraction was performed to identify the GBCD as a function of CR and annealing. The data indicated that annealing above 1010 °C increased the grain size and resulted in a greater fraction of twin boundaries, which in

  12. Single-source-precursor Synthesis and High-temperature Behavior of SiC Ceramics Containing Boron

    NASA Astrophysics Data System (ADS)

    Gui, Miaomiao; Fang, Yunhui; Yu, Zhaoju

    2014-12-01

    In this paper, a hyperbranched polyborocarbosilane (HPBCS) was prepared by a one-pot synthesis with Cl2Si(CH3)CH2Cl, Cl3SiCH2Cl and BCl3 as the starting materials. The obtained HPBCS was characterized by GPC, FT-IR and NMR, and was confirmed to have hyperbranched structures. The thermal property of the resulting HPBCS was investigated by TGA. The ceramic yield of the HPBCS is about 84% and that of the counterpart hyperbranched hydridopolycarbosilane is only 45%, indicating that the introduction of boron into the preceramic polymer significantly improved the ceramic yield. With the polymer-derived ceramic route, the final ceramics were annealed at 1800 °C in argon atmosphere for 2 h in order to characterize the microstructure and to evaluate the high-temperature behavior. The final ceramic microstructure was studied by XRD and SEM, indicating that the introduction of boron dramatically inhibits SiC crystallization. The boron-containing SiC ceramic shows excellent high-temperature behavior against decomposition and crystallization at 1800 °C.

  13. X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press

    SciTech Connect

    Kono, Yoshio; Kenney-Benson, Curtis; Park, Changyong; Shen, Guoyin; Shibazaki, Yuki; Wang, Yanbin

    2015-07-15

    Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at frame rates up to ∼10{sup 5} frames/second (fps) in air and up to ∼10{sup 4} fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures.

  14. Ceria based inverse opals for thermochemical fuel production: Quantification and prediction of high temperature behavior

    NASA Astrophysics Data System (ADS)

    Casillas, Danielle Courtney

    -micron pores did not sustain ordered structures after heating, and those larger than 1microm had reinforced structural stability. Furthermore, this analysis was applied to materials which underwent isothermal hydrogen/water redox cycles. ZDC20 inverse opals having 300, 650 and 1000nm pore sizes maintained ordered porosity at 800°C, indicating a novel opportunity for use at higher temperatures. The mechanism of inverse opal degradation was investigated. Both in situ and ex situ electron microscopy studies were performed on inverse opals subjected to high temperatures. Coarsening by surface diffusion was found to be the dominant grain growth mechanism. The inverse opal grain growth mechanism was found to deviate from that of porous materials due to the high porosity and an upper limit to grain size caused by structural confinement. Furthermore, in situ experiments enabled correlation of nano-scale grain growth to micro-scale feature changes, resulting in an empirical relationship. Lastly, this dissertation presents an investigation of the effect of ordered porosity on hydrogen production rate and quantity. These results differ from those presented in literature, and an opportunity for further investigation is proposed.

  15. High temperature oxidation behavior of AISI 304L stainless steel-Effect of surface working operations

    NASA Astrophysics Data System (ADS)

    Ghosh, Swati; Kumar, M. Kiran; Kain, Vivekanand

    2013-01-01

    The oxidation behavior of grade 304L stainless steel (SS) subjected to different surface finishing (machining and grinding) operations was followed in situ by contact electric resistance (CER) and electrochemical impedance spectroscopy (EIS) measurements using controlled distance electrochemistry (CDE) technique in high purity water (conductivity < 0.1 μS cm-1) at 300 °C and 10 MPa in an autoclave connected to a recirculation loop system. The results highlight the distinct differences in the oxidation behavior of surface worked material as compared to solution annealed material in terms of specific resistivity and low frequency Warburg impedance. The resultant oxide layer was characterized for (a) elemental analyses by glow discharge optical emission spectroscopy (GDOES) and (b) morphology by scanning electron microscopy (SEM). Oxide layers with higher specific resistivity and chromium content were formed in case of machined and ground conditions. Presence of an additional ionic transport process has also been identified for the ground condition at the metal/oxide interface. These differences in electrochemical properties and distinct morphological features of the oxide layer as a result of surface working were attributed to the prevalence of heavily fragmented grain structure and presence of martensite.

  16. Behavior of oil in interactions with aqueous solutions under elevated and high temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Balitskii, V. S.; Penteley, S. V.; Balitskaya, L. V.; Bublikova, T. M.; Bondarenko, G. V.

    2009-06-01

    The behavior of oil was studied, and the solubility of its light and heavy fractions in hydrothermal solutions was evaluated at 260-700°C and pressures of 30-200 MPa. The experiments were accompanied with simultaneous growth of quartz crystals containing fluid inclusions (in the same solutions). These inclusions allowed one to trace, by means of thermobaric geochemistry, the in situ behavior of oil within a wide range of temperatures and pressures. It was shown that the oil undergoes pronounced transformations under the interactions with hydrothermal solutions. Even at 260-300°C (pressures of 30-50 MPa), the oil was enriched in light fractions. The content of these fractions was pronouncedly increased at 330-350°C (70-80 MPa pressure). This process was accompanied by the appearance of mazut-like, semisolid, and solid bitumoids in amounts that increased manifold within the 400-700°C temperature range (up to 200 MPa pressure). The oil transformations were accompanied by an ample emission of methane. At 260-300°C, the oil in the hydrothermal solution occurred mainly as liquid drops. However, at temperatures near 400°C (about 100-150 MPa pressure), the solubility of light fractions increased to about 5-6 vol % which pointed to the ability to transfer significant amounts of oil not only in the liquid-drop form but also in the dissolved form.

  17. High temperature oxidation behavior of Zr-1Nb cladding alloy E110.

    SciTech Connect

    Yan, Y.; Burtseva, T.; Billone, M. C.; Nuclear Engineering Division

    2009-09-15

    Oxidation experiments were conducted at 1000-1200 C in flowing steam with samples of as-received Zr-1Nb alloy E110 tubing and/or polished E110 tubing. The purpose was to determine the oxidation behavior of this alloy under postulated loss-of-coolant accident conditions in light water reactors. The as-received E110 tubing exhibited a high degree of susceptibility to nodular oxidation and breakaway oxidation at relatively low test times, as compared to other cladding alloys. The nodules grew much more rapidly at 1000 C than 1100 C, as did the associated hydrogen uptake. The oxidation behavior was strongly affected by the surface condition of the materials. Polishing to {approx}0.1 {micro}m roughness (the roughness of the as-received tubing was {approx}0.4 {micro}m) delayed breakaway oxidation. Polishing also removed surface impurities. For polished samples oxidized at 1100 C, no significant nodular oxidation appeared up to 1000 s. For polished samples oxidized at 1000 C, hydrogen uptake >100 wppm was delayed from {approx}300 s to >900 s. Weight-gain coefficients were determined for pre-breakaway oxidation of polished-only and machined-and-polished E110 tubing samples: 0.162 (mg/cm{sup 2})/s{sup 0.5} at 1000 C and 0.613 (mg/cm{sup 2})/s{sup 0.5} at 1100 C.

  18. High-Temperature Oxidation Behavior of Fe-Si-Ce Alloys

    NASA Astrophysics Data System (ADS)

    Su, Yong; Zhang, Shunke; Fu, Guangyan; Liu, Qun; Tang, Yuanze

    2016-02-01

    The oxidation behavior of Fe-Si-Ce alloys with different Ce content at 1,173 and 1,273 K has been studied by means of optical microscope (OM), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscope (SEM). Results show that the Ce addition refines the grain size of Fe-Si alloys, and correspondingly the grain size of the oxides decreases, which increases the grain boundary concentration and promotes the short-path diffusion of the alloying elements and oxygen. During oxidation, the positive effect of the grain refinement on the oxidation behavior of the alloy is more obvious than negative effect, so the Ce addition improves the oxidation resistances of the Fe-3Si alloys. Compared to Fe-3Si-0.5Ce alloy, Fe-3Si-5.0Ce alloy has the larger mass gain for the preferential oxidation of the excessive content of Ce exceeding its beneficial effects. The rare earth Ce changes the oxidation mechanism of Fe-Si alloys. Oxygen penetrates the oxide scales and reacts preferentially with Ce-rich phases, which results in the pinning effect and improves the adhesion of the oxide scales.

  19. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-03-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  20. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-06-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  1. High-temperature oxidation behavior of two-phase iron-manganese-aluminum alloys

    SciTech Connect

    Liu, S.Y.; Lee, C.L.; Kao, C.H.; Perng, T.P.

    2000-04-01

    Oxidation behavior of two series of two-phase Fe-Mn-Al alloys in air up to 800 C was investigated. For the first series of alloys with various ratios of ferrite-austenite, the oxidation resistance of these alloys increased as the ferrite content increased. Two layers of oxide were formed mainly on the austenite grains, and oxidation in the ferrite phase was much less severe. The other layer of the scale on austenite was enriched with Mn and Fe, while Al was concentrated in the inner layer. For the second series of alloys with nearly the same contents of ferrite and C but various contents of Cr, the addition of Cr changed the oxidation characteristics and increased the oxidation resistance. Cr assisted the formation of a dense film of alumina (Al{sub 2}O{sub 3}) to prevent further oxidation.

  2. High-temperature oxidation behavior of reaction-formed silicon carbide ceramics

    NASA Technical Reports Server (NTRS)

    Ogbuji, Linus U. J. T.; Singh, M.

    1995-01-01

    The oxidation behavior of reaction-formed silicon carbide (RFSC) ceramics was investigated in the temperature range of 1100 to 1400 C. The oxidation weight change was recorded by TGA; the oxidized materials were examined by light and electron microscopy, and the oxidation product by x-ray diffraction analysis (XRD). The materials exhibited initial weight loss, followed by passive weight gain (with enhanced parabolic rates, k(sub p)), and ending with a negative (logarithmic) deviation from the parabolic law. The weight loss arose from the oxidation of residual carbon, and the enhanced k(sub p) values from internal oxidation and the oxidation of residual silicon, while the logarithmic kinetics is thought to have resulted from crystallization of the oxide. The presence of a small amount of MoSi, in the RFSC material caused a further increase in the oxidation rate. The only solid oxidation product for all temperatures studied was silica.

  3. Tribological behavior of HM1 steel fabricated by precision spray forming under high temperature

    NASA Astrophysics Data System (ADS)

    Cheng, Y. Q.; Zhang, P.; Zhu, M. D.; Sun, Y. S.

    2015-12-01

    In this study, we investigated the tribological behavior of HM1 steel fabricated by precision spay forming (PSF). WE used block ring friction test for our investigation, at various temperature, which was compared with that of the as-cast specimen. The results indicate that the wear rate and the friction coefficient of the PSFed specimen are reduced compared to that of the as-cast specimen. Attribution to these results is the fine grain, the eliminated segregation of elements, and the uniformly distributed matrix material elements for the PSFed specimen. SEM morphology of wear scar shows that the mainly wear mechanism of the as-cast specimen is adhesive wear, while the wear mechanism of the PSFed specimen is mainly abrasive wear.

  4. High temperature damping behavior of plasma sprayed NiCoCrAlY coatings

    NASA Astrophysics Data System (ADS)

    Khor, K. A.; Chia, C. T.; Gu, Y. W.; Boey, F. Y. C.

    2002-09-01

    There is a trend to design the turbine coating and the substrate as in integral, layered, engineering assembly. Under the harsh environment of the turbine engine, a failure in one component can quickly lead to failure in other components. Materials that are used in structural applications are prone to mechanical vibration, which, when not attenuated, will lead to fatigue of components and shortening of life cycle. Therefore, it is necessary to examine the thermal stability and dynamic mechanical properties of coatings under dynamic conditions. In addition to these noise reduction and vibration amplitude control motivated objectives, however, mechanical energy dissipation processes also find intrinsic applications in cases for which a thorough understanding of the mechanisms responsible for the damping response of the material is required. This article describes the damping behavior and mechanisms that exist in plasma sprayed NiCoCrAlY coatings.

  5. Strength, fracture, and fatigue behavior of advanced high-temperature intermetallics reinforced with ductile phases

    NASA Astrophysics Data System (ADS)

    Soboyejo, W. O.; Rao, K. T. Venkateswara; Sastry, S. M. L.; Ritchie, R. O.

    1993-03-01

    The results of recent studies on the fatigue and fracture behavior of extruded Ti-48A1 + 20 vol pct TiNb and hot-isostatically pressed (“hipped”) MoSi2 + 20 vol pct Nb are presented (compositions in atomic percent unless stated otherwise). The effects of ductile phase reinforcement of Ti-48A1 and MoSi2 on the micromechanisms of fracture under monotonie and cyclic loading are elucidated. Micromechanics models are applied to the prediction of crack-tip shielding components, and the effects of temperature on tensile/compressive/flexure strengths are discussed. Ductile phase toughening under monotonie loading conditions is shown to be associated with lower fatigue crack growth resistance. The lower fatigue resistance is attributed to the absence of crack-tip shielding, higher crack opening displacements, and the effects of inelastic strains that are developed in ductile phase-reinforced composites under cyclic loading conditions.

  6. High-Temperature Compression Behavior of Cast and Homogenized IN939 Superalloy

    NASA Astrophysics Data System (ADS)

    Jahangiri, M. R.; Arabi, H.; Boutorabi, S. M. A.

    2013-04-01

    Hot deformation behavior of IN-939 superalloy was investigated in this work. Hot compression experiments were performed at temperatures of 1273 K, 1323 K, 1373 K, and 1423 K (1000 °C, 1050 °C, 1100 °C, and 1150 °C) at strain rates of 0.001, 0.01, 0.1, and 1 s-1 up to a true strain of 0.8. Then variations in stress-strain curves as well as changes in microstructures of various hot-deformed samples were studied. At 1273 K to 1323 K (1000 °C to 1050 °C), dynamic recovery (DRV), and at 1373 K to 1423 K (1100 °C to 1150 °C), dynamic recrystallization (DRX), were recognized to be the main mechanisms of the alloy softening during hot compression tests. The relationships between flow stress, strain rate, and temperature were mathematically modeled with three well-known equations, and on the basis of those equations, the activation energy of hot deformation was calculated. For improvement of the proposed models, it was necessary to conduct the investigation at two temperature ranges: 1373 K to 1423 K (1100 °C to 1150 °C), in which DRX occurred, and 1273 K to 1323 K (1000 °C to 1050 °C), where DRV as well as γ' precipitation happened. For each of the temperature ranges, a different value for activation energy was obtained, which in conjunction with the related model, can be used for simulating the deformation behavior of the alloy.

  7. High-temperature low cycle fatigue behavior of a gray cast iron

    SciTech Connect

    Fan, K.L. He, G.Q.; She, M.; Liu, X.S.; Lu, Q.; Yang, Y.; Tian, D.D.; Shen, Y.

    2014-12-15

    The strain controlled low cycle fatigue properties of the studied gray cast iron for engine cylinder blocks were investigated. At the same total strain amplitude, the low cycle fatigue life of the studied material at 523 K was higher than that at 423 K. The fatigue behavior of the studied material was characterized as cyclic softening at any given total strain amplitude (0.12%–0.24%), which was attributed to fatigue crack initiation and propagation. Moreover, this material exhibited asymmetric hysteresis loops due to the presence of the graphite lamellas. Transmission electron microscopy analysis suggested that cyclic softening was also caused by the interactions of dislocations at 423 K, such as cell structure in ferrite, whereas cyclic softening was related to subgrain boundaries and dislocation climbing at 523 K. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain amplitudes. It showed that the higher the temperature, the rougher the crack face of the examined gray cast iron at the same total strain amplitude. Additionally, the microcracks were readily blunted during growth inside the pearlite matrix at 423 K, whereas the microcracks could easily pass through pearlite matrix along with deflection at 523 K. The results of fatigue experiments consistently showed that fatigue damage for the studied material at 423 K was lower than that at 523 K under any given total strain amplitude. - Highlights: • The low cycle fatigue behavior of the HT250 for engine cylinder blocks was investigated. • TEM investigations were conducted to explain the cyclic deformation response. • The low cycle fatigue cracks of HT250 GCI were studied by SEM. • The fatigue life of the examined material at 523 K is higher than that at 423 K.

  8. Prediction and Monitoring Systems of Creep-Fracture Behavior of 9Cr-1Mo Steels for Teactor Pressure Vessels

    SciTech Connect

    Potirniche, Gabriel; Barlow, Fred D.; Charit, Indrajit; Rink, Karl

    2013-11-26

    A recent workshop on next-generation nuclear plant (NGNP) topics underscored the need for research studies on the creep fracture behavior of two materials under consideration for reactor pressure vessel (RPV) applications: 9Cr-1Mo and SA-5XX steels. This research project will provide a fundamental understanding of creep fracture behavior of modified 9Cr-1Mo steel welds for through modeling and experimentation and will recommend a design for an RPV structural health monitoring system. Following are the specific objectives of this research project: Characterize metallurgical degradation in welded modified 9Cr-1Mo steel resulting from aging processes and creep service conditions; Perform creep tests and characterize the mechanisms of creep fracture process; Quantify how the microstructure degradation controls the creep strength of welded steel specimens; Perform finite element (FE) simulations using polycrystal plasticity to understand how grain texture affects the creep fracture properties of welds; Develop a microstructure-based creep fracture model to estimate RPVs service life; Manufacture small, prototypic, cylindrical pressure vessels, subject them to degradation by aging, and measure their leak rates; Simulate damage evolution in creep specimens by FE analyses; Develop a model that correlates gas leak rates from welded pressure vessels with the amount of microstructural damage; Perform large-scale FE simulations with a realistic microstructure to evaluate RPV performance at elevated temperatures and creep strength; Develop a fracture model for the structural integrity of RPVs subjected to creep loads; and Develop a plan for a non-destructive structural health monitoring technique and damage detection device for RPVs.

  9. High temperature materials technology research for advanced thermionic systems. Final report

    SciTech Connect

    Zee, R.H.; Rose, M.F.

    1998-09-01

    Tungsten and tungsten alloys are candidate materials for the thermionic emitter in the space nuclear power convertor. In this work, the creep behavior of HfC strengthened tungsten alloys was studied. An ultrahigh vacuum, high precision creep test system was constructed for this purpose so that the samples could be heated up to 3,000 K for heat treatment and creep strain could be measured from the creep sample inside the UHV chamber. To explain the creep behavior observed in this dispersion strengthened alloy, a creep model was proposed which accounted for the presence of HfC particles in the form of a back stress generated by these particles. This model was verified by the creep test data of W-0.37 HfC alloys tested under both extruded and recrystallized microstructural conditions. According to this model, the steady state creep of this type of alloys was expected to increase with time due to coarsening of HfC particle and recrystallization of the alloys under high temperatures. In contrast, conventional simple power law creep model only predicts a constant steady state creep for these materials, which does not represent the microstructural evolution of the materials. The creep of solid solution alloys such as W-Re, W-Nb and W-Hf and Mo-Nb was also studied. These materials are expected to be more stable in creep properties due to the absence of coarsening particles. These solid solution alloys, in their single crystalline state, are reported possessing better corrosion resistance over their polycrystalline counterparts. Existing creep data of both solid solution tungsten and molybdenum alloys were re-analyzed. The data of these alloys showed two distinct different creep mechanisms: Class I and Class II. The dominating creep mechanism at low stresses could be explained by the Takuchi-Argon model (Class I). At higher stresses, the data could not be explained by any of the existing creep models. A creep model was thus proposed that contained a shift factor due to the

  10. Effect of carbide precipitation on the creep behavior of alloy 800HT in the temperature range 700 C to 900 C

    SciTech Connect

    El-Magd, E.; Nicolini, G.; Farag, M.

    1996-03-01

    The creep behavior of alloy 800HT was studied at 700 C, 800 C, and 900 C under stresses ranging from 30 to 170 MPa. Samples that were tested in the as-quenched condition after solution treatment exhibited longer creep life than those that were over aged before testing. This difference in creep life was found to increase at lower creep stresses at a given temperature. This phenomenon is attributed to the precipitation of M{sub 23}C{sub 6} carbides during the early stages of creep, which strengthen the material by exerting threshold stresses on moving dislocations and thereby reducing the creep rate. A model is developed to describe the influence of carbide precipitation during creep on the behavior of the material under different creep temperatures and stresses. Comparison with the experimental results shows that the model gives accurate predictions of the creep behavior of the material in the range of stresses and temperatures used in the present study. In addition to its predictive value, the model is useful in understanding the factors that affect the creep behavior of materials when precipitation of hard phases is taking place during creep. The strengthening effect of particle precipitation during creep, as represented by the value of the threshold stress, is shown to be a complex function of the supersaturation of the matrix, the applied creep stress, and the test temperature.

  11. Effect of carbide precipitation on the creep behavior of Alloy 800HT in the Temperature Range 700 ° to 900 °

    NASA Astrophysics Data System (ADS)

    El-Magd, E.; Nicolini, G.; Farag, M.

    1996-03-01

    The creep behavior of alloy 800HT was studied at 700 °, 800 °, and 900 ° under stresses ranging from 30 to 170 MPa. Samples that were tested in the as-quenched condition after solution treatment exhibited longer creep life than those that were overaged before testing. This difference in creep life was found to increase at lower creep stresses at a given temperature. This phenomenon is attributed to the precipitation of M23C6carbides during the early stages of creep, which strengthen the material by exerting threshold stresses on moving dislocations and thereby reducing the creep rate. A model is developed to describe the influence of carbide precipitation during creep on the behavior of the material under different creep temperatures and stresses. Comparison with the experimental results shows that the model gives accurate predictions of the creep behavior of the material in the range of stresses and temperatures used in the present study. In addition to its predictive value, the model is useful in understanding the factors that affect the creep behavior of materials when precipitation of hard phases is taking place during creep. The strengthening effect of particle precipitation during creep, as represented by the value of the threshold stress, is shown to be a complex function of the supersaturation of the matrix, the applied creep stress, and the test temperature.

  12. Effects of NaCl, pH, and Potential on the Static Creep Behavior of AA1100

    NASA Astrophysics Data System (ADS)

    Wan, Quanhe; Quesnel, David J.

    2013-03-01

    The creep rates of AA1100 are measured during exposure to a variety of aggressive environments. NaCl solutions of various concentrations have no influence on the steady-state creep behavior, producing creep rates comparable to those measured in lab air at room temperature. However, after an initial incubation period of steady strain rate, a dramatic increase of strain rate is observed on exposure to HCl solutions and NaOH solutions, as well as during cathodic polarization of specimens in NaCl solutions. Creep strain produces a continuous deformation and elongation of the sample surface that is comparable to slow strain rates at crack tips thought to control the kinetics of crack growth during stress corrosion cracking (SCC). In this experiment, we separate the strain and surface deformation from the complex geometry of the crack tip to better understand the processes at work. Based on this concept, two possible explanations for the environmental influences on creep strain rates are discussed relating to the anodic dissolution of the free surface and hydrogen influences on deformation mechanisms. Consistencies of pH dependence between corrosion creep and SCC at low pH prove a creep-involved SCC mechanism, while the discrepancies between corrosion creep behavior and previous SCC results at high pH indicate a rate-limit step change in the crack propagation of the SCC process.

  13. Creep behavior of a rabbit model of ligament laxity after electrothermal shrinkage in vivo.

    PubMed

    Wallace, Andrew L; Hollinshead, Robert M; Frank, Cyril B

    2002-01-01

    Deformation of capsular tissue under constant load (creep) may lead to recurrent laxity after thermal shrinkage for shoulder instability. We investigated the effects of thermal shrinkage in a rabbit model in which the tibial insertion of the medial collateral ligament was elevated and shifted toward the joint line to create abnormal laxity. On the right side, radiofrequency electrothermal energy was applied to the shifted ligament, while the left side served as a control. Length, laxity, mass, cross-sectional area, water content, and creep behavior of the ligament were assessed at 0 (N = 8), 3 (N = 7), and 12 (N = 6) weeks postoperatively. Laxity was reduced with thermal treatment (0.65 +/- 0.31 compared with 3.33 +/- 0.25 mm). After 3 weeks, ligament mass, area, and water content were significantly increased in the thermally treated group compared with the untreated controls. At 12 weeks, cyclic creep strain remained greater than that in controls (1.25% +/- 0.65% compared with 0.93% +/- 0.22%). Although thermal shrinkage reduced laxity, there was increased potential to creep and failure at low physiologic stresses. These findings suggest that loading of thermally treated tissues should be carefully controlled during the early phase of rehabilitation after surgery. PMID:11799003

  14. Tensile Creep and Stress-rupture Behavior of Polymer Derived Sic Fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.; Dicarlo, J. A.

    1994-01-01

    Tensile creep and stress-rupture studies were conducted on polymer derived Nicalon, Hi-Nicalon, and SiC/BN-coated Nicalon SiC fibers. Test conditions were temperatures from 1200 to 1400 C, stresses from 100 to 1600 MPa, stress application times up to 200 hours, and air, argon, and vacuum test environments. For all fibers, creep occurred predominantly in the primary stage. Hi-Nicalon had much higher 0.2 and 1 percent creep strengths than as-produced as well as-coated Nicalon fibers. The stress-rupture strength of Hi-Nicalon up to 100 hours was also higher than that of the coated and as-produced Nicalon fibers. SiC/BN coating on Nicalon increased only the short-term low-temperature rupture strength. Limited testing in argon and vacuum suggests that for all fiber types, creep and rupture resistances are reduced in comparison to the results in air. Possible mechanisms for the observed behavior are discussed.

  15. Creep of dry clinopyroxene aggregates

    NASA Astrophysics Data System (ADS)

    Bystricky, Misha; Mackwell, Stephen

    2001-01-01

    We have determined diffusional and dislocation creep rheologies for clinopyroxenite Ca1.0Mg0.8Fe0.2Si2O6 under dry conditions by deforming natural and hot-pressed samples at confining pressures of 300-430 MPa and temperatures of 1100°-1250°C with the oxygen fugacity buffered by either nickel-nickel oxide or iron-wüstite powders. The coarse-grained natural Sleaford Bay clinopyroxenite yielded a stress exponent of n = 4.7 ± 0.2 and an activation energy for creep of Q = 760 ± 40 kJ mol-1, consistent with deformation in the dislocation creep regime. The strength of the natural clinopyroxenite is consistent with previous high-temperature measurements of dislocation creep behavior of Sleaford Bay clinopyroxenite by Kirby and Kronenberg [1984] and Boland and Tullis [1986]. Fine-grained clinopyroxenite was prepared from ground powders of the natural clinopyroxenite. Hot-pressed samples were deformed under similar conditions to the natural samples. Mixed-mode deformation behavior was observed, with diffusional creep (n = 1) at lower differential stresses and dislocation creep (with n and Q similar to those of the natural samples) at higher differential stresses. Within the dislocation creep field the predried hot-pressed samples generally yielded creep rates that were about an order of magnitude faster than the natural samples. Thus, even at the highest differential stresses, a component of strain accommodation by grain boundary diffusion was present in the hot-pressed samples. Optical and electron microscope investigations of the deformation microstructures of the natural and hot-pressed samples show evidence for mechanical twinning and activation of dislocation slip systems. When extrapolated to geological conditions expected in the deep crust and upper mantle on Earth and other terrestrial planets, the strength of dry single-phase clinopyroxene aggregates is very high, exceeding that of dry olivine-rich rocks.

  16. Tensile creep and creep fracture of a fiber-reinforced SiC/SiC composite

    SciTech Connect

    Wilshire, B.; Carreno, F.; Percival, M.J.L.

    1998-08-11

    Several studies have been completed on silicon carbide fiber-reinforced silicon carbide (SiC{sub f}/SiC) composites produced with carbon-coated fibres having a 0/90{degree} architecture. Yet, while mechanical property measurements have been made at temperatures up to 1,473K in air and argon high-temperature creep tests have been carried out only under protective atmospheres. To clarify the creep behavior patterns displayed by continuous-fiber-reinforced CMCs, while simultaneously providing information relevant to aeroengine turbine design, the tensile creep and creep fracture properties of a 0/90{degree} SiC{sub f}/SiC composite have been determined over a stress range giving creep rupture lives up to approximately 2,000 hours in air at 1,573K.

  17. A Comparison of Tension and Compression Creep in a Polymeric Composite and the Effects of Physical Aging on Creep Behavior

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Veazie, David R.; Brinson, L. Catherine

    1996-01-01

    Experimental and analytical methods were used to investigate the similarities and differences of the effects of physical aging on creep compliance of IM7/K3B composite loaded in tension and compression. Two matrix dominated loading modes, shear and transverse, were investigated for two load cases, tension and compression. The tests, run over a range of sub-glass transition temperatures, provided material constants, material master curves and aging related parameters. Comparing results from the short-term data indicated that although trends in the data with respect to aging time and aging temperature are similar, differences exist due to load direction and mode. The analytical model used for predicting long-term behavior using short-term data as input worked equally as well for the tension or compression loaded cases. Comparison of the loading modes indicated that the predictive model provided more accurate long term predictions for the shear mode as compared to the transverse mode. Parametric studies showed the usefulness of the predictive model as a tool for investigating long-term performance and compliance acceleration due to temperature.

  18. Crack arrest behavior of reactor pressure vessel steels at high temperatures

    SciTech Connect

    Pugh, C.E.; Naus, D.J.; Bass, B.R.

    1988-01-01

    The Heavy-Section Steel Technology Program at the Oak Ridge National Laboratory under the sponsorship of the US Nuclear Regulatory Commission is conducting experimental and analytical studies to improve the understanding of conditions that govern the initiation, rapid propagation, arrest and ductile tearing of cracks in reactor pressure vessel (RPV) steels. In support of this objective, large-scale wide-plate experiments are performed to generate crack-arrest toughness data for RPV steels at temperatures approaching and above the onset of Charpy upper-shelf behavior. Analytical studies are addressing the role of dynamics and nonlinear rate-dependent (i.e., viscoplastic) effects in the interpretation of crack run-arrest events in these ductile materials. A summary of the wide-plate tests performed to date is presented, including details of test procedures, test data, and results of analyses performed to date. The importance of incorporating viscoplastic effects into dynamic analysis of crack run-arrest events in these strain-rate sensitive steels is examined through applications of selected proposed viscoplastic constitutive equations and fracture parameters to the interpretation of data from the wide-plate tests. The crack-arrest data are compared with those from small ASTM-type specimens and other large structural tests.

  19. Investigation of high temperature corrosion behavior on 304L austenite stainless steel in corrosive environments

    SciTech Connect

    Sahri, M. I.; Othman, N. K.; Samsu, Z.; Daud, A. R.

    2014-09-03

    In this work, 304L stainless steel samples were exposed at 700 °C for 10hrs in different corrosive environments; dry oxygen, molten salt, and molten salt + dry oxygen. The corrosion behavior of samples was analyzed using weight change measurement technique, optical microscope (OM) and Scanning Electron Microscope (SEM) equipped with Energy Dispersive X-ray (EDX). The existence phases of corroded sample were determined using X-ray Diffraction (XRD). The lowest corrosion rate was recorded in dry oxygen while the highest was in molten salt + dry oxygen environments with the value of 0.0062 mg/cm{sup 2} and −13.5225 mg/cm{sup 2} respectively. The surface morphology of sample in presence of salt mixture showed scale spallation. Oxide scales of Fe{sub 3}O{sub 4}, Fe{sub 2}O{sub 3} were the main phases developed and detected by XRD technique. Cr{sub 2}O{sub 3} was not developed in every sample as protective layers but chromate-rich oxide was developed. The cross-section analysis found the oxide scales were in porous, thick and non-adherent that would not an effective barrier to prevent from further degradation of alloy. EDX analysis also showed the Cr-element was low compared to Fe-element at the oxide scale region.

  20. Progress toward analytical description of the creep strain-time behavior of engineering alloys

    SciTech Connect

    Booker, M.K.

    1980-01-01

    Elevated-temperature design methods in the United States often require a comprehensive description of the properties of the construction materials. These descriptions include representations for creep strain-time behavior as a function of stress, temperature, and material variability. Work conducted at this laboratory in the past five years toward the development of analytical techniques to derive such representations is summarized. Results for several common elevated-temperature structural materials are presented to illustrate the techniques.

  1. Corrosion Behavior of 304 Stainless Steel in High Temperature, Hydrogenated Water

    SciTech Connect

    S.E. Ziemniak; M. Hanson

    2001-05-04

    The corrosion behavior of an austenitic stainless steel (UNS S30400) has been characterized in a 10,000 hour test conducted in hydrogenated, ammoniated water at 260 C. The corrosion kinetics were observed to follow a parabolic rate dependency, the parabolic rate constant being determined by chemical descaling to be 1.16 mg dm{sup -2} hr{sup -1/2}. X-ray photoelectron spectroscopy, in combination with argon ion milling and target factor analysis, was applied to provide an independent estimate of the rate constant that agreed with the gravimetric result. Based on the distribution of the three oxidized alloying constituents (Fe, Cr, Ni) with respect to depth and elemental state, it was found that: (a) corrosion occurs in a non-selective manner, and (b) the corrosion film consists of two spinel oxide layers--a ferrite-based outer layer (Ni{sub 0.2}Fe{sub 0.8})(Fe{sub 0.95}Cr{sub 0.05}){sub 2}O{sub 4} on top of a chromite-based inner layer (Ni{sub 0.2}Fe{sub 0.8})(Cr{sub 0.7}Fe{sub 0.3}){sub 2}O{sub 4}. These compositions agree closely with the solvi phases created by immiscibility in the Fe{sub 3}O{sub 4}-FeCr{sub 2}O{sub 4} binary, implying that immiscibility plays an important role in the phase separation process.

  2. Corrosion Behavior of NiCrFe Alloy 600 in High Temperature, Hydrogenated Water

    SciTech Connect

    SE Ziemniak; ME Hanson

    2004-11-02

    The corrosion behavior of Alloy 600 (UNS N06600) is investigated in hydrogenated water at 260 C. The corrosion kinetics are observed to be parabolic, the parabolic rate constant being determined by chemical descaling to be 0.055 mg dm{sup -2} hr{sup -1/2}. A combination of scanning and transmission electron microscopy, supplemented by energy dispersive X-ray spectroscopy and grazing incidence X-ray diffraction, are used to identify the oxide phases present (i.e., spinel) and to characterize their morphology and thickness. Two oxide layers are identified: an outer, ferrite-rich layer and an inner, chromite-rich layer. X-ray photoelectron spectroscopy with argon ion milling and target factor analysis is applied to determine spinel stoichiometry; the inner layer is (Ni{sub 0.7}Fe{sub 0.3})(Fe{sub 0.3}Cr{sub 0.7}){sub 2}O{sub 4}, while the outer layer is (Ni{sub 0.9}Fe{sub 0.1})(Fe{sub 0.85}Cr{sub 0.15}){sub 2}O{sub 4}. The distribution of trivalent iron and chromium cations in the inner and outer oxide layers is essentially the same as that found previously in stainless steel corrosion oxides, thus confirming their invariant nature as solvi in the immiscible spinel binary Fe{sub 3}O{sub 4}-FeCr{sub 2}O{sub 4} (or NiFe{sub 2}O{sub 4}-NiCr{sub 2}O{sub 4}). Although oxidation occurred non-selectively, excess quantities of nickel(II) oxide were not found. Instead, the excess nickel was accounted for as recrystallized nickel metal in the inner layer, as additional nickel ferrite in the outer layer, formed by pickup of iron ions from the aqueous phase, and by selective release to the aqueous phase.

  3. High temperature oxidation behavior of austenitic stainless steel AISI 304 in steam of nanofluids contain nanoparticle ZrO2

    SciTech Connect

    Prajitno, Djoko Hadi Syarif, Dani Gustaman

    2014-03-24

    The objective of this study is to evaluate high temperature oxidation behavior of austenitic stainless steel SS 304 in steam of nanofluids contain nanoparticle ZrO{sub 2}. The oxidation was performed at high temperatures ranging from 600 to 800°C. The oxidation time was 60 minutes. After oxidation the surface of the samples was analyzed by different methods including, optical microscope, scanning electron microscope (SEM) and X-ray diffraction (XRD). X-ray diffraction examination show that the oxide scale formed during oxidation of stainless steel AISI 304 alloys is dominated by iron oxide, Fe{sub 2}O{sub 3}. Minor element such as Cr{sub 2}O{sub 3} is also appeared in the diffraction pattern. Characterization by optical microscope showed that cross section microstructure of stainless steel changed after oxidized with the oxide scale on the surface stainless steels. SEM and x-ray diffraction examination show that the oxide of ZrO{sub 2} appeared on the surface of stainless steel. Kinetic rate of oxidation of austenite stainless steel AISI 304 showed that increasing oxidation temperature and time will increase oxidation rate.

  4. High-temperature behavior of dicesium molybdate Cs2MoO4: Implications for fast neutron reactors

    NASA Astrophysics Data System (ADS)

    Wallez, Gilles; Raison, Philippe E.; Smith, Anna L.; Clavier, Nicolas; Dacheux, Nicolas

    2014-07-01

    Dicesium molybdate (Cs2MoO4)'s thermal expansion and crystal structure have been investigated herein by high temperature X ray diffraction in conjunction with Raman spectroscopy. This first crystal-chemical insight at high temperature is aimed at predicting the thermostructural and thermomechanical behavior of this oxide formed by the accumulation of Cs and Mo fission products at the periphery of nuclear fuel rods in sodium-cooled fast reactors. Within the temperature range of the fuel's rim, Cs2MoO4 becomes hexagonal P63/mmc, with disordered MoO4 tetrahedra and 2D distribution of Cs-O bonds that makes thermal axial expansion both large (50≤αl≤70 10-6 °C-1, 500-800 °C) and highly anisotropic (αc-αa=67×10-6 °C-1, hexagonal form). The difference with the fuel's expansion coefficient is of potential concern with respect to the cohesion of the Cs2MoO4 surface film and the possible release of cesium radionuclides in accidental situations.

  5. High-Temperature Mechanical Behavior and Fracture Analysis of a Low-Carbon Steel Related to Cracking

    NASA Astrophysics Data System (ADS)

    Santillana, Begoña; Boom, Rob; Eskin, Dmitry; Mizukami, Hideo; Hanao, Masahito; Kawamoto, Masayuki

    2012-12-01

    Cracking in continuously cast steel slabs has been one of the main problems in casting for decades. In recent years, the use of computational models has led to a significant improvement in caster performance and product quality. However, these models require accurate thermomechanical properties as input data, which are either unreliable or nonexistent for many alloys of commercial interest. A major reason for this lack of reliable data is that high-temperature mechanical properties are difficult to measure. Several methods have been developed to assess the material strength during solidification, especially for light alloys. The tensile strength during solidification of a low carbon aluminum-killed (LCAK; obtained from Tata Steel Mainland Europe cast at the DSP plant in IJmuiden, the Netherlands) has been studied by a technique for high-temperature tensile testing, which was developed at Sumitomo Metal Industries in Japan. The experimental technique enables a sample to melt and solidify without a crucible, making possible the accurate measurement of load over a small solidification temperature range. In the current study, the tensile test results are analyzed and the characteristic zero-ductility and zero-strength temperatures are determined for this particular LCAK steel grade. The fracture surfaces are investigated following tensile testing, which provides an invaluable insight into the fracture mechanism and a better understanding with respect to the behavior of the steel during solidification. The role of minor alloying elements, like sulfur, in hot cracking susceptibility is also discussed.

  6. High temperature oxidation behavior of austenitic stainless steel AISI 304 in steam of nanofluids contain nanoparticle ZrO2

    NASA Astrophysics Data System (ADS)

    Prajitno, Djoko Hadi; Syarif, Dani Gustaman

    2014-03-01

    The objective of this study is to evaluate high temperature oxidation behavior of austenitic stainless steel SS 304 in steam of nanofluids contain nanoparticle ZrO2. The oxidation was performed at high temperatures ranging from 600 to 800°C. The oxidation time was 60 minutes. After oxidation the surface of the samples was analyzed by different methods including, optical microscope, scanning electron microscope (SEM) and X-ray diffraction (XRD). X-ray diffraction examination show that the oxide scale formed during oxidation of stainless steel AISI 304 alloys is dominated by iron oxide, Fe2O3. Minor element such as Cr2O3 is also appeared in the diffraction pattern. Characterization by optical microscope showed that cross section microstructure of stainless steel changed after oxidized with the oxide scale on the surface stainless steels. SEM and x-ray diffraction examination show that the oxide of ZrO2 appeared on the surface of stainless steel. Kinetic rate of oxidation of austenite stainless steel AISI 304 showed that increasing oxidation temperature and time will increase oxidation rate.

  7. In-situ tube burst testing and high-temperature deformation behavior of candidate materials for accident tolerant fuel cladding

    NASA Astrophysics Data System (ADS)

    Gussev, M. N.; Byun, T. S.; Yamamoto, Y.; Maloy, S. A.; Terrani, K. A.

    2015-11-01

    One of the most essential properties of accident tolerant fuel (ATF) for maintaining structural integrity during a loss-of-coolant accident (LOCA) is high resistance of the cladding to plastic deformation and burst failure, since the deformation and burst behavior governs the cooling efficiency of flow channels and the process of fission product release. To simulate and evaluate the deformation and burst process of thin-walled cladding, an in-situ testing and evaluation method has been developed on the basis of visual imaging and image analysis techniques. The method uses a specialized optics system consisting of a high-resolution video camera, a light filtering unit, and monochromatic light sources. The in-situ testing is performed using a 50 mm long pressurized thin-walled tubular specimen set in a programmable furnace. As the first application, ten (10) candidate cladding materials for ATF, i.e., five FeCrAl alloys and five nanostructured steels, were tested using the newly developed method, and the time-dependent images were analyzed to produce detailed deformation and burst data such as true hoop stress, strain (creep) rate, and failure stress. Relatively soft FeCrAl alloys deformed and burst below 800 °C, while negligible strain rates were measured for higher strength alloys.

  8. In-situ tube burst testing and high-temperature deformation behavior of candidate materials for accident tolerant fuel cladding

    DOE PAGESBeta

    Byun, Thak Sang; Yamamoto, Yukinori; Maloy, Stuart A.; Gussev, M. N.; Terrani, K. A.

    2015-08-25

    Here, one of the most essential properties of accident tolerant fuel (ATF) for maintaining structural integrity during a loss-of-coolant accident (LOCA) is high resistance of the cladding to plastic deformation and burst failure, since the deformation and burst behavior governs the cooling efficiency of flow channels and the process of fission product release. To simulate and evaluate the deformation and burst process of thin-walled cladding, an in-situ testing and evaluation method has been developed on the basis of visual imaging and image analysis techniques. The method uses a specialized optics system consisting of a high-resolution video camera, a light filteringmore » unit, and monochromatic light sources. The in-situ testing is performed using a 50 mm long pressurized thin-walled tubular specimen set in a programmable furnace. As the first application, ten (10) candidate cladding materials for ATF, i.e., five FeCrAl alloys and five nanostructured steels, were tested using the newly developed method, and the time-dependent images were analyzed to produce detailed deformation and burst data such as true hoop stress, strain (creep) rate, and failure stress. Relatively soft FeCrAl alloys deformed and burst below 800 °C, while negligible strain rates were measured for higher strength alloys.« less

  9. In-situ tube burst testing and high-temperature deformation behavior of candidate materials for accident tolerant fuel cladding

    SciTech Connect

    Byun, Thak Sang; Yamamoto, Yukinori; Maloy, Stuart A.; Gussev, M. N.; Terrani, K. A.

    2015-08-25

    Here, one of the most essential properties of accident tolerant fuel (ATF) for maintaining structural integrity during a loss-of-coolant accident (LOCA) is high resistance of the cladding to plastic deformation and burst failure, since the deformation and burst behavior governs the cooling efficiency of flow channels and the process of fission product release. To simulate and evaluate the deformation and burst process of thin-walled cladding, an in-situ testing and evaluation method has been developed on the basis of visual imaging and image analysis techniques. The method uses a specialized optics system consisting of a high-resolution video camera, a light filtering unit, and monochromatic light sources. The in-situ testing is performed using a 50 mm long pressurized thin-walled tubular specimen set in a programmable furnace. As the first application, ten (10) candidate cladding materials for ATF, i.e., five FeCrAl alloys and five nanostructured steels, were tested using the newly developed method, and the time-dependent images were analyzed to produce detailed deformation and burst data such as true hoop stress, strain (creep) rate, and failure stress. Relatively soft FeCrAl alloys deformed and burst below 800 °C, while negligible strain rates were measured for higher strength alloys.

  10. In-situ tube burst testing and high-temperature deformation behavior of candidate materials for accident tolerant fuel cladding

    SciTech Connect

    Gussev, Maxim N.; Byun, Thak Sang; Yamamoto, Yukinori; Maloy, Stuart A.; Terrani, Kurt A.

    2015-11-01

    The high resistance of cladding to plastic deformation and burst failure is one of the most essential properties of accident tolerant fuel (ATF) for maintaining structural integrity during a loss-of-coolant accident (LOCA) since the deformation and burst behavior governs the cooling efficiency of flow channels and process of fission product release. To simulate and evaluate such deformation and burst process of thin-walled cladding, an in-situ testing and evaluation method has been developed on the basis of visual imaging and image analysis techniques. The method uses a specialized optics system consisted of a high-resolution video camera, light filtering unit, and monochromatic light sources, and the in-situ testing is performed using a 50 mm long pressurized thin-walled tubular specimen set in a programmable furnace. In this study eleven (11) candidate cladding materials for ATF, i.e., 6 FeCrAl alloys and 5 nanostructured steels, were tested using the newly developed method, and the time-dependent images were analyzed to produce detailed deformation and burst data such as true hoop stress, strain (creep) rate, and failure stress. Relatively soft FeCrAl alloys deformed and burst below 800°C while negligible strain rates were measured for higher strength alloys and/or for relatively thick wall specimens.

  11. The Angular Performance Behavior Of Triple Junction Solar Cells With Different Antireflection Coatings For High Temperature Space Missions

    NASA Astrophysics Data System (ADS)

    Hulsheger, Tim; Brandt, Christian; Caon, Antonio; Fiebrich, Horst K.; Andreev, Thomas

    2011-10-01

    The angular behavior of GaInP2/GaAs/Ge triple junction solar cells is studied from 0° up to 86°. Angle dependent short circuit currents of cells with antireflection coatings such as TiO2/Al2O3 and Al2O3 are compared to results of uncoated cells. Performance benefits from each coating are measured before and after cover glass coverage. Related temperature effects are predicted taking into account measured absorption coefficients in order to address on the coating of choice for high temperature solar generators. The influence of the sun light intensities from 1 AM0 to 8 AM0 is put in relation with basic semiconductor properties.

  12. Constitutive Modeling of High-Temperature Flow Behavior of Al-0.62Mg-0.73Si Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Ye, W. H.; Hu, L. X.

    2016-04-01

    The high-temperature flow behavior of an aerospace structural material Al-0.62 Mg-0.73Si aluminum alloy was researched in this work. The isothermal compression tests were carried out in the temperature range of 683-783 K and strain rate range of 0.001-1 s-1. Based on the obtained true stress-true strain curves, the constitutive relationship of the alloy was revealed by establishing the Arrhenius-type constitutive model and a modified Johnson-Cook model. It was found that the flow characteristics were closely related to deformation temperature and strain rate. The activation energy of the studied material was calculated to be approximately 174 kJ mol-1. A comparative study has been conducted on the accuracy and reliability of the proposed models using statistics analysis method. It was proved by error analysis that the Arrhenius-type model had a better performance than the modified Johnson-Cook model.

  13. Development of a constitutive model for creep and life prediction of advanced silicon nitride ceramics

    SciTech Connect

    Ding, J.L.; Liu, K.C.; Brinkman, C.R.

    1992-12-31

    A constitutive model capable of describing deformation and predicting rupture life was developed for high temperature ceramic materials under general thermal-mechanical loading conditions. The model was developed based on the deformation and fracture behavior observed from a systematic experimental study on an advanced silicon nitride (Si{sub 3}N{sub 4}) ceramic material. Validity of the model was evaluated with reference to creep and creep rupture data obtained under constant and stepwise-varied loading conditions, including the effects of annealing on creep and creep rupture behavior.

  14. Endochronic theory of transient creep and creep recovery

    NASA Technical Reports Server (NTRS)

    Wu, H. C.; Chen, L.

    1979-01-01

    Short time creep and creep recovery were investigated by means of the endochronic theory of viscoplasticity. It is shown that the constitutive equations for constant-strain-rate stress-strain behavior, creep, creep recovery, and stress relaxation can all ber derived from the general constitutive equation by imposing appropriate constraints. In this unified approach, the effect of strain-hardening is naturally accounted for when describing creep and creep recovery. The theory predicts with reasonable accuracy the creep and creep recovery behaviors for Aluminum 1100-0 at 150 C. It was found that the strain-rate history at prestraining stage affects the subsequent creep. A critical stress was also established for creep recovery. The theory predicts a forward creep for creep recovery stress greater than the critical stress. For creep recovery stress less than the critical stress, the theory then predicts a normal strain recovery.

  15. Sintering and Creep Behavior of Plasma-Sprayed Zirconia and Hafnia Based Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1998-01-01

    The sintering and creep of plasma-sprayed ceramic thermal barrier coatings under high temperature conditions are complex phenomena. Changes in thermomechanical and thermophysical properties and in the stress response of these coating systems as a result of the sintering and creep processes are detrimental to coating thermal fatigue resistance and performance. In this paper, the sintering characteristics of ZrO2-8wt%y2O3, ZrO2-25wt%CeO2-2.5wt%Y2O3, ZrO2-6w%NiO- 9wt%Y2O3, ZrO2-6wt%Sc2O3-2wt%y2O3 and HfO2-27wt%y2O3 coating materials were investigated using dilatometry. It was found that the HfO2-Y2O3 and baseline ZrO2-Y2O3 exhibited the best sintering resistance, while the NiO-doped ZrO2-Y2O3 showed the highest shrinkage strain rates during the tests. Higher shrinkage strain rates of the coating materials were also observed when the specimens were tested in Ar+5%H2 as compared to in air. This phenomenon was attributed to an enhanced metal cation interstitial diffusion mechanism under the reducing conditions. It is proposed that increased chemical stability of coating materials will improve the material sintering resistance.

  16. Compressive creep behavior of Nb{sub 5}Si{sub 3}

    SciTech Connect

    Subramanian, P.R.; Parthasarathy, T.A.; Mendiratta, M.G.; Dimiduk, D.M.

    1995-04-15

    Advanced intermetallic materials, such as refractory silicides, exhibit high melting points, high stiffness, low densities, and good strength retention at elevated temperatures. Further, some of these silicides are in equilibrium with terminal refractory solid solution (beta) phases, and therefore, offer the potential for ductile phase toughening. Studies were conducted to elucidate the compressive creep behavior of monolithic Nb{sub 5}Si{sub 3} and to generate the constitutive creep law. This, in turn, is required for modeling the creep behavior of the Nb/Nb{sub 5}Si{sub 3} two-phase system. Nb{sub 5}Si{sub 3} has the ordered tetragonal structure with 32 atoms/cell in both its allotropic forms: {alpha}Nb{sub 5}Si{sub 3} (D8{sub l} Cr{sub 5}Si{sub 3}-type; a {approximately} 0.656 nm; c = 1.187 nm) and {beta}Nb{sub 5}Si{sub 3} (D8{sub m} W{sub 5}Si{sub 3}-type; a = 1.000 nm; c = 0.507 nm). {alpha}Nb{sub 5}Si{sub 3} is stable below 1,935 C, while {beta}Nb{sub 5}Si{sub 3} is stable above 1,645 C. The large lattice parameters as well as the large number of atoms in the unit cell suggest that dislocation creep is unlikely to occur in Nb{sub 5}Si{sub 3}, because large Burgers vectors and complex dislocation core structures are expected in this material.

  17. The influence of magnesium on carbide characteristics and creep behavior of the Mar-M247 superalloy

    SciTech Connect

    Bor, H.Y.; Chao, C.G.; Ma, C.Y.

    1997-12-22

    In recent investigations, it has been shown that the microaddition of Mg in wrought superalloys significantly enhances stress rupture life, ductility and fatigue endurance at elevated temperatures. These improvements are mainly associated with carbide refinement arising from segregation of Mg to GB and carbide/matrix interface. Although, some studies related to Mg segregation phenomenon have been carried out, the true mechanisms are not fully understood. Furthermore, little work has been reported in introducing Mg as a microalloying element in cast superalloys which are normally poor in ductility and toughness at both room and elevated temperatures. On this basis, Mar-M247 superalloy was chosen for the first time in this work for studying the influence of Mg microaddition on high temperature properties. The objectives of present study were to determine the microstructural characteristics and to investigate the creep behavior of Mar-M247 superalloy due to the microaddition of Mg, particularly in ductility. In addition, some available mechanisms associated with the microstructure change and property enhancement were discussed in this paper.

  18. Elevated temperature tension, compression and creep-rupture behavior of (001)-oriented single crystal superalloy PWA 1480

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Miner, Robert V.

    1987-01-01

    Tensile and compressive flow behavior at various temperatures and strain rates, and tensile creep rupture behavior at 850 and 1050 C and various stresses were studied for (001)-oriented single crystals of the Ni-base superalloy PWA 1480. At temperatures up to 760 C, the flow stress is insensitive to strain rate and of greater magnitude in tension than in compression. At temperatures of 800 C and above, the flow stress decreases continuously with decreasing strain rate and the tension/compression anisotropy diminishes. The second stage creep rate and rupture time exhibited power law relationships with the applied stress for both 850 and 1050 C, however with different stress dependencies. The stress exponent for the steady state creep rate was about 7 at 1050 C, but much higher at 850 C, about 12. Directional coarsening of the gamma' phase occurred during creep at 1050 C, but not at 850 C.

  19. Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K

    NASA Astrophysics Data System (ADS)

    Zhong, Boyu; Huang, Bo; Li, Chunjing; Liu, Shaojun; Xu, Gang; Zhao, Yanyun; Huang, Qunying

    2014-12-01

    China Low Activation Martensitic (CLAM) steel is selected as the candidate structural material in Fusion Design Study (FDS) series fusion reactor conceptual designs. The creep property of CLAM steel has been studied in this paper. Creep tests have been carried out at 823 K and 873 K over a stress range of 150-230 MPa. The creep curves showed three creep regimes, primary creep, steady-state creep and tertiary creep. The relationship between minimum creep rate (ε˙min) and the applied stress (σ) could be described by Norton power law, and the stress exponent n was decreased with the increase of the creep temperature. The creep mechanism was analyzed with the fractographes of the rupture specimens which were examined by scanning electron microscopy (SEM). The coarsening of precipitates observed with transmission electron microscope (TEM) indicated the microstructural degradation after creep test.

  20. Different variation behaviors of resistivity for high-temperature-grown and low-temperature-grown p-GaN films

    NASA Astrophysics Data System (ADS)

    Jing, Yang; De-Gang, Zhao; De-Sheng, Jiang; Ping, Chen; Zong-Shun, Liu; Jian-Jun, Zhu; Ling-Cong, Le; Xiao-Jing, Li; Xiao-Guang, He; Li-Qun, Zhang; Hui, Yang

    2016-02-01

    Two series of p-GaN films grown at different temperatures are obtained by metal organic chemical vapor deposition (MOCVD). And the different variation behaviors of resistivity with growth condition for high- temperature(HT)-grown and low-temperature(LT)-grown p-GaN films are investigated. It is found that the resistivity of HT-grown p-GaN film is nearly unchanged when the NH3 flow rate or reactor pressure increases. However, it decreases largely for LT-grown p-GaN film. These different variations may be attributed to the fact that carbon impurities are easy to incorporate into p-GaN film when the growth temperature is low. It results in a relatively high carbon concentration in LT-grown p-GaN film compared with HT-grown one. Therefore, carbon concentration is more sensitive to the growth condition in these samples, ultimately, leading to the different variation behaviors of resistivity for HT- and LT-grown ones. Project supported by the National Natural Science Foundation of China (Grant Nos. 61474110, 61377020, 61376089, 61223005, and 61176126), the National Natural Science Fund for Distinguished Young Scholars, China (Grant No. 60925017), the One Hundred Person Project of the Chinese Academy of Sciences, and the Basic Research Project of Jiangsu Province, China (Grant No. BK20130362).

  1. High Temperature Tensile Properties and Fatigue Behavior of a Melt-Infiltrated SiC/SiC Composite

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Calomino, Anthony M.; Brewer, David N.; Kiraly, Louis J. (Technical Monitor)

    2002-01-01

    High temperature fatigue behavior of a woven, SiC/SiC ceramic matrix composite (CMC) was investigated in air at two temperatures. The reinforcement for the CMC consisted of 5HS Sylramic(Trademark) fabric with a [0deg/90deg]4s lay-up. The SiC matrix material was infiltrated into the fiber-preform with a slurry-cast, melt-infiltration process. Tensile and fatigue test specimens were machined from the CMC plates. Initially tensile tests were conducted to obtain the average values of tensile properties at 1038 and 1204 C. Subsequently, low-cycle fatigue (LCF) tests with zero and two-hour hold-times at the maximum stress were conducted at the same two temperatures. Fatigue life data generated in the LCF tests were used to determine the geometric mean fatigue lives. In this paper, the tensile behavior and the fatigue durability of the CMC determined under different loading conditions are documented. In addition, reductions observed in the cyclic lives of the composite due to the two hour hold-time at maximum tensile stress are discussed.

  2. Dynamic behaviors of various volume rate steel-fiber reinforced reactive powder concrete after high temperature burnt

    NASA Astrophysics Data System (ADS)

    Pang, Baojun; Wang, Liwen; Yang, Zhenqi; Chi, Runqiang

    2009-06-01

    Dynamic strain-stress curves of reactive powder concrete under high strain rate (10/s-100/s) were determined by improved split Hopkinson pressure bar (SHPB) system. A plumbum pulse shaper was used to ensure the symmetrical stress in the specimens before fracture and avoid the fluctuation of test data due to input shaky stress pulse. A time modified method was induced for data processing in order to get accurate SHPB results. The results of experiment showed after high temperature burnt, different volume rate (0.0%, 0.5%, 1.0%, 1.5%) steel-fiber reinforced reactive power concrete had the same changing tendency of residual mechanics behaviors, e.g. after 400 centigrade burnt, the residual compression strength was about 70% of material strength without burnt under 100/s. After 800 centigrade burnt, the compression strength is about 30% under 100/s while the deformation ability increased. At meanwhile, steel fiber had improved the mechanism of reinforcing effect and toughening effect of concrete material after burnt. With increasing of steel fiber volume rate, dynamic residual behavior of samples was improved. Microcosmic characteristics and energy absorption were induced for explaining the experiment results.

  3. Oxidation and creep behavior of Mo*5*Si*3* based materials

    SciTech Connect

    Meyer, M.

    1995-06-19

    Mo{sub 5}Si{sub 3} shows promise as a high temperature creep resistant material. The high temperature oxidation resistance of Mo{sub 5}Si{sub 3} has been found to be poor, however, limiting its use in oxidizing atmospheres. Undoped Mo{sub 5}Si{sub 3} exhibits mass loss in the temperature range 800{degrees}-1200{degrees}C due to volatilization of molybdenum oxide, indicating that the silica scale does not provide a passivating layer. The addition of boron results in protective scale formation and parabolic oxidation kinetics in the temperature range of 1050{degrees}-1300{degrees}C. The oxidation rate of Mo{sub 5}Si{sub 3} was decreased by 5 orders of magnitude at 1200{degrees}C by doping with less than two weight percent boron. Boron doping eliminates catastrophic {open_quote}pest{close_quote} oxidation at 800{degrees}C. The mechanism for improved oxidation resistance of boron doped Mo{sub 5}Si{sub 3} is due to scale modification by boron.

  4. Propagating episodic creep and the aseismic slip behavior of the Calaveras fault north of Hollister, California

    SciTech Connect

    Evans, K.F.; Burford, R.O.; King, G.C.P.

    1981-05-10

    A detailed kinematic study of fault slip occurring from the surface to a depth of about 7 km on the Calaveras fault north of Hollister was conducted during the summer of 1977. The observations coincided with a period of propagating episodic fault creep activity sensed along the fault trace. Data used in the investigation consist of creepmeter records, near-field strainmeter observations, and high-resolution geodetic measurements, all collected contemporaneously over a period of 4 months. Detailed descriptions and analyses of the creepmeter and geodetic data have been presented elsewhere. The near-field strain measurements are here reported in detail, and their analysis draws upon the previous two data sets for support. The strainmeter observations are most sensitive to slip occurring in the upper 2 km; hence the emphasis of the paper is placed upon the role of propagating episode creep in the broad-scale behavior of the fault. The results suggest that propagating episodic fault creep as sensed along the fault trace is confined to the upper kilometer or so of the crust and represents the response of the surface layers to a longer-term form of episode aseismic slip occurring below. The mean form of the advancing rupture front within the upper kilometer is ostensibly the same as that indicated by records from the surface creepmeters. Evidence is presented, however, which suggests that propagating creep events may not always break the surface and may propagate at velocities much slower and at amplitudes significantly larger than those generally observed at the surface.

  5. Analysis of Creep Rupture Behavior of Cr-Mo Ferritic Steels in the Presence of Notch

    NASA Astrophysics Data System (ADS)

    Goyal, Sunil; Laha, K.; Das, C. R.; Mathew, M. D.

    2015-01-01

    Effect of notch on creep rupture behavior of 2.25Cr-1Mo, 9Cr-1Mo, and modified 9Cr-1Mo ferritic steels has been assessed. Creep tests were carried out on smooth and notched specimens of the steels in the stress ranging 90 to 300 MPa at 873 K (600 °C). Creep rupture lives of the steels increased in the presence of notch over those of smooth specimens, thus exhibiting notch strengthening. The strengthening was comparable for the 9Cr-1Mo and 2.25Cr-1Mo steels and appreciably more in modified 9Cr-1Mo steel. The strengthening effect was found to decrease with the decrease in applied stress and increase in rupture life for all the steels. The presence of notch decreased the creep rupture ductility of the steels significantly and the 2.25Cr-1Mo steel suffered more reduction than in the other two 9Cr-steels. Finite element analysis of stress distribution across the notch was carried out to understand the notch strengthening and its variation in the steels. The variation in fracture appearance has also been corroborated based on finite element analysis. Reduction in von-Mises stress across the notch throat plane resulted in strengthening in the steels. Higher reduction in von-Mises stress in modified 9Cr-1Mo steel than that in 2.25Cr-1Mo and 9Cr-1Mo steels induced more strengthening in modified 9Cr-1Mo steel under multiaxial state of stress.

  6. Study on the Indentation Creep Behavior of Mg-4Al-RE-0.8Ca Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yaocheng; Yang, Li; Huang, Zedong; Dai, Jun

    2015-11-01

    The indentation creep behavior of Mg-4Al-RE-0.8Ca (AEC4108) alloy was investigated with a homemade apparatus. The microstructure of the AEC4108 alloy and the chemical composition of the precipitation phases in the alloy before and after creep test were investigated by scanning electron microscope and energy-dispersive spectroscopy. The results reveal that the steady-state indentation creep rate of the AEC4108 alloy is increased with increasing temperature and applied stress. The logarithm of the steady-state creep rates is linearly related to the logarithm of the stress and the reciprocal of the absolute temperature. The indentation creep parameters of AEC4108 alloy are correlated using an empirical equation dot{\\varepsilon }_{s} = 1.253 × 10^{ - 8} × \\upsigma^{3.2} { exp }[ { - 33.89/( {RT} )} ]. The thin acicular Al11La3 and the bone-shaped Al2Ca are precipitated along the grain boundaries, and the granular Al2La is formed within the grain. The indentation creep rate of AEC4108 alloy is controlled by the grain boundary slipping led by viscous dislocation movement. The indentation creep resistance of the AEC4108 alloy under temperature 398-448 K and stress 55-95 MPa is guaranteed by the precipitated phases with high thermal stability pinning at the grain boundary and within the grain.

  7. Mechanisms for tertiary creep of single crystal superalloy

    NASA Astrophysics Data System (ADS)

    Staroselsky, Alexander; Cassenti, Brice

    2008-12-01

    During the thermal-mechanical loading of high temperature single crystal turbine components, all three creep—stages: primary, secondary and tertiary, manifest themselves and, hence, none of them can be neglected. The development of a creep law that includes all three stages is especially important in the case of non-homogeneous thermal loading of the component where significant stress redistribution and relaxation will result. Thus, local creep analysis is crucial for proper design of damage tolerant airfoils. We have developed a crystallographic-based constitutive model and fully coupled it with damage kinetics. The model extends existing approaches for cyclic and thermal-cyclic loading of anisotropic elasto-viscoplastic deformation behavior and damage kinetics of single-crystal materials, allowing prediction of tertiary creep and failure initiation of high temperature components. Our damage model bridges the gap between dislocation dynamics and the continuum mechanics scales and can be used to represent tertiary as well as primary and secondary creep.

  8. Compressive creep behavior of alloys based on B2 FeAl

    NASA Technical Reports Server (NTRS)

    Mantravadi, N.; Vedula, K.; Gaydosh, D.; Titran, R. H.

    1986-01-01

    Alloys based on FeAl are attractive alternate materials for environmental resistance at intermediate temperatures. Addition of small amounts of Nb, Hf, Ta, Mo, Zr, and B were shown to improve the compressive creep of this alloy at 1100 K. Boron, in particular, was found to have a synergistic effect along with Zr in providing properties substantially better than the binary alloy. This improvement seems to be related to the higher activation energy found for this alloy, suggesting a modification in the diffusion behavior due to the alloying additions.

  9. Compressive creep behavior of alloys based on B2 FeAl

    NASA Technical Reports Server (NTRS)

    Mantravadi, N.; Vedula, K.; Gaydosh, D.; Titran, R. H.

    1987-01-01

    Alloys based on FeAl are attractive alternative materials for environmental resistance at intermediate temperatures. Addition of small amounts of Nb, Hf, Ta, Mo, Zr, and B were shown to improve the compressive creep of this alloy at 1100 K. Boron, in particular, was found to have a synergistic effect along with Zr in providing properties substantially better than the binary alloy. This improvement seems to be related to the higher activation energy found for this alloy, suggesting a modification in the diffusion behavior due to the alloying additions.

  10. On the behavior of dissipative systems in contact with a heat bath: Application to Andrade creep

    NASA Astrophysics Data System (ADS)

    Sullivan, T.; Koslowski, M.; Theil, F.; Ortiz, M.

    2009-07-01

    We develop a theory of statistical mechanics for dissipative systems governed by equations of evolution that assigns probabilities to individual trajectories of the system. The theory is made mathematically rigorous and leads to precise predictions regarding the behavior of dissipative systems at finite temperature. Such predictions include the effect of temperature on yield phenomena and rheological time exponents. The particular case of an ensemble of dislocations moving in a slip plane through a random array of obstacles is studied numerically in detail. The numerical results bear out the analytical predictions regarding the mean response of the system, which exhibits Andrade creep.

  11. A creep model for metallic composites based on matrix testing: Application to Kanthal composites

    NASA Technical Reports Server (NTRS)

    Binienda, W. K.; Robinson, D. N.; Arnold, S. M.; Bartolotta, Paul A.

    1990-01-01

    An anisotropic creep model is formulated for metallic composites with strong fibers and low to moderate fiber volume percent (less than 40 percent). The idealization admits no creep in the local fiber direction and assumes equal creep strength in longitudinal and transverse shear. Identification of the matrix behavior with that of the isotropic limit of the theory permits characterization of the composite through uniaxial creep tests on the matrix material. Constant and step-wise creep tests are required as a data base. The model provides an upper bound on the transverse creep strength of a composite having strong fibers embedded in a particular matrix material. Comparison of the measured transverse strength with the upper bound gives an assessment of the integrity of the composite. Application is made to a Kanthal composite, a model high-temperature composite system. Predictions are made of the creep response of fiber reinforced Kanthal tubes under interior pressure.

  12. Microstructure and High-Temperature Oxidation Behavior of Cold Gas-sprayed Ni-Al2O3 Coatings

    NASA Astrophysics Data System (ADS)

    Sirvent, P.; Cruz, D.; Múnez, C. J.; Poza, P.

    2016-04-01

    Cermet coatings are widely used for high-temperature industrial applications. This study investigates the effect of high-temperature oxidation on cold gas dynamic-sprayed Ni-Al2O3 coatings. For this purpose, high-temperature oxidation tests were performed at 520 and 640 °C. The selected exposure times were 24, 48, 72, 168, and 336 h. The microstructural evolution during exposure at high temperature was analyzed by scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), and x-ray diffraction (XRD). The oxidation kinetics was estimated by thickness measurements. The results show that the coatings protect the substrates against oxidation. In order to study possible changes in the mechanical properties of the system, Vickers microhardness experiments on the coatings and on the 10CrMo9-10 steel substrates were conducted. It was observed that hardness decreased by exposing the specimens to high temperature.

  13. Accelerator-Based Irradiation Creep of Pyrolytic Carbon Used in TRISO Fuel Particles for the (VHTR) Very Hight Temperature Reactors

    SciTech Connect

    Lumin Wang; Gary Was

    2010-07-30

    Pyrolytic carbon (PyC) is one of the important structural materials in the TRISO fuel particles which will be used in the next generation of gas-cooled very-high-temperature reactors (VHTR). When the TRISO particles are under irradiation at high temperatures, creep of the PyC layers may cause radial cracking leading to catastrophic particle failure. Therefore, a fundamental understanding of the creep behavior of PyC during irradiation is required to predict the overall fuel performance.

  14. Tensile behavior and cyclic creep of continuous fiber-reinforced glass matrix composites at room and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Boccaccini, A. R.; West, G.; Janczak, J.; Lewis, M. H.; Kern, H.

    1997-06-01

    In this study we investigated the stress-strain behavior at room and elevated temperatures and the tensile creep and cyclic creep response of a unidirectional SiC fiber-reinforced aluminosilicate glass matrix composite. The interfacial condition of the as-received material was measured by a push-out indentation technique. The stress-strain behavior was that expected for this kind of composite, i.e. “pseudoductile” behavior with extensive fiber “pull-out” at room temperature and brittle failure at intermediate temperatures (750 °C) due to oxidation embrittlement. The stiffness of the composite at 750°C was analyzed for different loading rates, highlighing the influence of the loading rate on apparent composite stiffness, due to matrix softening. The creep studies were conducted at temperatures above and below the softening temperature of the glass (T g, 745 °C) in air. The cyclic creep experiments showed the existence of extensive viscous strain recovery during the unloading period. The creep strain recovery was quantified using strain recovery ratios. These ratios showed a slight dependence on the temperatures investigated (700 and 750 °C). The crept composites retained their “graceful” fracture behavior only partially after testing, indicating that oxidation of the fiber/matrix interface due to oxygen diffusion through the matrix occurred in the peripheral area of the samples.

  15. Creep behavior of tantalum alloy T-222 at 1365 to 1700 K

    NASA Technical Reports Server (NTRS)

    Titran, R. H.

    1974-01-01

    High vacuum creep tests on the tantalum T-222 alloy at 0.42 to 0.52 T sub m show that the major portion of the creep curves, up to at least 1 percent strain, can be best described by an increasing creep rate, with strain varying linearly with time. Correlation and extrapolation of the creep curves on the basis of increasing creep rates results in more accurate engineering design data than would use of approximated linear rates. Based on increasing creep rates, the stress for 1 percent strain in 10,000 hours for T-222 is about four times greater than for the Ta-10W alloy. Increasing the grain size results in increased creep strength. Thermal aging prior to testing caused precipitation of the hexagonal close packed (Hf,Ta) sub 2 C, which initially increased creep strength. However, this dimetal carbide was converted during creep testing to face-centered cubic (Hf,Ta)C.

  16. A nonlinear high temperature fracture mechanics basis for strainrange partitioning

    NASA Technical Reports Server (NTRS)

    Kitamura, Takayuki; Halford, Gary R.

    1989-01-01

    A direct link was established between Strainrange Partitioning (SRP) and high temperature fracture mechanics by deriving the general SRP inelastic strain range versus cyclic life relationships from high temperature, nonlinear, fracture mechanics considerations. The derived SRP life relationships are in reasonable agreement based on the experience of the SRP behavior of many high temperature alloys. In addition, fracture mechanics has served as a basis for derivation of the Ductility-Normalized SRP life equations, as well as for examination of SRP relations that are applicable to thermal fatigue life prediction. Areas of additional links between nonlinear fracture mechanics and SRP were identified for future exploration. These include effects of multiaxiality as well as low strain, nominally elastic, long life creep fatigue interaction.

  17. Experimental study of thermo-mechanical behavior of SiC composite tubing under high temperature gradient using solid surrogate

    NASA Astrophysics Data System (ADS)

    Alva, Luis; Shapovalov, Kirill; Jacobsen, George M.; Back, Christina A.; Huang, Xinyu

    2015-11-01

    Nuclear grade silicon carbide fiber (SiCf) reinforced silicon carbide matrix (SiCm) composite is a promising candidate material for accident tolerance fuel (ATF) cladding. A major challenge is ensuring the mechanical robustness of the ceramic cladding under accident conditions. In this work the high temperature mechanical response of a SiCf-SiCm composite tubing is studied using a novel thermo-mechanical test method. A solid surrogate tube is placed within and bonded to the SiCf-SiCm sample tube using a ceramic adhesive. The bonded tube pair is heated from the center using a ceramic glower. During testing, the outer surface temperature of the SiC sample tube rises up to 1274 K, and a steep temperature gradient develops through the thickness of the tube pair. Due to CTE mismatch and the temperature gradient, the solid surrogate tube induces high tensile stress in the SiC sample. During testing, 3D digital image correlation (DIC) method is used to map the strains on the outer surface of the SiC-composite, and acoustic emissions (AE) are monitored to detect the onset and progress of material damage. The thermo-mechanical behavior of SiC-composite sample is compared with that of monolithic SiC samples. Finite element models are developed to estimate stress-strain distribution within the tube assembly. Model predicted surface strain matches the measured surface strain using the DIC method. AE activities indicated a progressive damage process for SiCf-SiCm composite samples. For the composites tested in this study, the threshold mechanical hoop strain for matrix micro-cracking to initiate in SiCf-SiCm sample is found to be ∼300 microstrain.

  18. Experimental study of thermo-mechanical behavior of SiC composite tubing under high temperature gradient using solid surrogate

    NASA Astrophysics Data System (ADS)

    Alva, Luis; Shapovalov, Kirill; Jacobsen, George M.; Back, Christina A.; Huang, Xinyu

    2015-11-01

    Nuclear grade silicon carbide fiber (SiCf) reinforced silicon carbide matrix (SiCm) composite is a promising candidate material for accident tolerance fuel (ATF) cladding. A major challenge is ensuring the mechanical robustness of the ceramic cladding under accident conditions. In this work the high temperature mechanical response of a SiCf-SiCm composite tubing is studied using a novel thermo-mechanical test method. A solid surrogate tube is placed within and bonded to the SiCf-SiCm sample tube using a ceramic adhesive. The bonded tube pair is heated from the center using a ceramic glower. During testing, the outer surface temperature of the SiC sample tube rises up to 1274 K, and a steep temperature gradient develops through the thickness of the tube pair. Due to CTE mismatch and the temperature gradient, the solid surrogate tube induces high tensile stress in the SiC sample. During testing, 3D digital image correlation (DIC) method is used to map the strains on the outer surface of the SiC-composite, and acoustic emissions (AE) are monitored to detect the onset and progress of material damage. The thermo-mechanical behavior of SiC-composite sample is compared with that of monolithic SiC samples. Finite element models are developed to estimate stress-strain distribution within the tube assembly. Model predicted surface strain matches the measured surface strain using the DIC method. AE activities indicated a progressive damage process for SiCf-SiCm composite samples. For the composites tested in this study, the threshold mechanical hoop strain for matrix micro-cracking to initiate in SiCf-SiCm sample is found to be ˜300 microstrain.

  19. Formation behavior of basal texture under the high temperature plane strain compression deformation in AZ80 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Kim, K.; Okayasu, K.; Fukutomi, H.

    2015-04-01

    The formation behavior of basal texture during high temperature deformation of AZ80 magnesium alloys in single phase was investigated by plane strain compression deformation. Three kinds of specimens with different initial textures were machined out from an extruded bar having a <101¯0> texture. Plane strain compression tests were conducted at temperatures of 623K and 723K and a strain rate of 5.0×10-2s-1, with a strain range of between - 0.4 and -1.0. After deformation, the specimens were immediately quenched in oil. Texture measurement was carried out on the compression planes by the Schulz reflection method using nickel filtered Cu Kα radiation. Electron backscatter diffraction (EBSD) measurements were also conducted in order to examine the spatial distribution of orientations. Three kinds of specimens named A, B and C were prepared from the same extruded bar. In the specimens A, B and C, {0001} was distributed preferentially parallel to ND, TD, and RD, respectively. After deformation, texture evaluation was conducted on the mid-plane section. At the plane strain compression deformation, peaks appeared in the true stress-true strain curves irrespective of the kinds of specimen used. It was found that the main components and the pole densities of the textures vary depending on deformation condition and initial texture. Six kinds of texture components were observed after deformation. The (0001)<101¯0> has formed regardless of the initial texture. There are two types of texture components; one exists before the deformation, and the other does not. Either types are considered to have stable orientations for plane strain compression. Also, the basal texture is composed of two crystal orientation components - (0001)<101¯0> and (0001)<112¯0>. When (0001) existed before deformation, an extremely sharp (0001) (compression plane) texture is formed.

  20. Effects of Thermal Treatment on Tensile Creep and Stress-Rupture Behavior of Hi-Nicalon SiC Fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.; Dicarlo, J. A.

    1995-01-01

    Tensile creep and stress-rupture studies were conducted on Hi-Nicalon SiC fibers at 1200 and 1400 C in argon and air. Examined were as-received fibers as well as fibers annealed from 1400 to 1800 C for 1 hour in argon before testing. The creep and rupture results for these annealed fibers were compared to those of the as-received fibers to determine the effects of annealing temperature, test temperature, and test environment. Argon anneals up to 1500 C degrade room temperature strength of Hi-Nicalon fibers, but improve fiber creep resistance in argon or air by as much as 100% with no significant degradation in rupture strength. Argon anneals above 1500 C continue to improve fiber creep resistance when tested in argon, but significantly degrade creep resistance and rupture strength when tested in air. Decrease in creep resistance in air is greater at 1200 C than at 1400 C. Mechanisms are suggested for the observed behavior.

  1. Bend stress relaxation and tensile primary creep of a polycrystalline alpha-SiC fiber

    NASA Technical Reports Server (NTRS)

    Hee Man, Yun; Goldsby, Jon C.; Morscher, Gregory N.

    1995-01-01

    Understanding the thermomechanical behavior (creep and stress relaxation) of ceramic fibers is of both practical and basic interest. On the practical level, ceramic fibers are the reinforcement for ceramic matrix composites which are being developed for use in high temperature applications. It is important to understand and model the total creep of fibers at low strain levels where creep is predominantly in the primary stage. In addition, there are many applications where the component will only be subjected to thermal strains. Therefore, the stress relaxation of composite consituents in such circumstances will be an important factor in composite design and performance. The objective of this paper is to compare and analyze bend stress relaxation and tensile creep data for alpha-SiC fibers produced by the Carborundum Co. (Niagara Falls, NY). This fiber is of current technical interest and is similar in composition to bulk alpha-SiC which has been studied under compressive creep conditions. The temperature, time, and stress dependences will be discussed for the stress relaxation and creep results. In addition, some creep and relaxation recovery experiments were performed in order to understand the complete viscoelastic behavior, i.e. both recoverable and nonrecoverable creep components of these materials. The data will be presented in order to model the deformation behavior and compare relaxation and/or creep behavior for relatively low deformation strain conditions of practical concern. Where applicable, the tensile creep results will be compared to bend stress relaxation data.

  2. Polycrystal plasticity modeling of nickel-based superalloy IN 617 subjected to cyclic loading at high temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Oskay, Caglar

    2016-06-01

    A crystal plasticity finite element (CPFE) model considering isothermal, large deformation and cyclic loading conditions has been formulated and employed to investigate the mechanical response of a nickel-based alloy at high temperature. The investigations focus on fatigue and creep-fatigue hysteresis response of IN 617 subjected to fatigue and creep-fatigue cycles. A new slip resistance evolution equation is proposed to account for cyclic transient features induced by solute drag creep that occur in IN 617 at 950 °C. The crystal plasticity model parameters are calibrated against the experimental fatigue and creep-fatigue data based on an optimization procedure that relies on a surrogate modeling (i.e. Gaussian process) technique to accelerate multi-parameter optimizations. The model predictions are validated against experimental data, which demonstrates the capability of the proposed model in capturing the hysteresis behavior for various hold times and strain ranges in the context of fatigue and creep-fatigue loading.

  3. Probabilistic models for creep-fatigue in a steel alloy

    NASA Astrophysics Data System (ADS)

    Ibisoglu, Fatmagul

    In high temperature components subjected to long term cyclic operation, simultaneous creep and fatigue damage occur. A new methodology for creep-fatigue life assessment has been adopted without the need to separate creep and fatigue damage or expended life. Probabilistic models, described by hold times in tension and total strain range at temperature, have been derived based on the creep rupture behavior of a steel alloy. These models have been validated with the observed creep-fatigue life of the material with a scatter band close to a factor of 2. Uncertainties of the creep-fatigue model parameters have been estimated with WinBUGS which is an open source Bayesian analysis software tool that uses Markov Chain Monte Carlo method to fit statistical models. Secondly, creep deformation in stress relaxation data has been analyzed. Well performing creep equations have been validated with the observed data. The creep model with the highest goodness of fit among the validated models has been used to estimate probability of exceedance at 0.6% strain level for the steel alloy.

  4. In Situ Observation of Creep and Fatigue Failure Behavior for Plasma-Sprayed Thermal Barrier Coating Systems

    NASA Astrophysics Data System (ADS)

    Takahashi, Satoru; Harada, Yoshio

    In order to investigate crack initiation sites and the crack propagation behavior in connection with the microstructure of thermal barrier coating (TBC) systems under creep and fatigue loadings, the failure behavior was observed in situ for plasma-sprayed TBC systems by optical microscopy, as a first step for elucidating the thermo-mechanical failure mechanism. Two types of TBC systems with differing top-coat (TC) microstructures were prepared by changing the processing conditions. The mechanical failure behavior of TBC system was found to depend strongly on the loading conditions. Under static creep loading, many segmentation cracks in the TC widened with increasing creep strain in the substrate. However, the propagation of these cracks into the bond-coat (BC) and alloy substrate was prevented due to the stress relief induced by plastic flow in the BC layer at elevated temperatures. As a result, the TBC system exhibited typical creep rupture behavior with nucleation and coalescence of microcracks in the alloy substrate interior regardless of the TC microstructure. Under dynamic fatigue loading, on the other hand, many fatigue cracks initiated not only from the tips of segmentation cracks in the TC layer but also from the TC/BC interface. Furthermore, it was found that the fatigue cracks propagated into the BC and alloy substrate even at elevated temperatures above the ductile-brittle transition temperature of the BC; the fatigue failure behavior under dynamic fatigue loading was dependent on the TC microstructure and the properties of the TC/BC interface.

  5. Transformation-induced plasticity in high-temperature shape memory alloys: a one-dimensional continuum model

    NASA Astrophysics Data System (ADS)

    Sakhaei, Amir Hosein; Lim, Kian-Meng

    2016-07-01

    A constitutive model based on isotropic plasticity consideration is presented in this work to model the thermo-mechanical behavior of high-temperature shape memory alloys. In high-temperature shape memory alloys (HTSMAs), both martensitic transformation and rate-dependent plasticity (creep) occur simultaneously at high temperatures. Furthermore, transformation-induced plasticity is another deformation mechanism during martensitic transformation. All these phenomena are considered as dissipative processes to model the mechanical behavior of HTSMAs in this study. The constitutive model was implemented for one-dimensional cases, and the results have been compared with experimental data from thermal cycling test for actuator applications.

  6. High temperature oxidation behavior of gamma-nickel+gamma'-nickel aluminum alloys and coatings modified with platinum and reactive elements

    NASA Astrophysics Data System (ADS)

    Mu, Nan

    Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000°C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455°C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedes the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain beta-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al2O3 scale at elevated temperatures. The drawbacks to the currently-used beta-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt+Hf-modified gamma-Ni+gamma'-Ni 3Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase gamma-Ni and gamma'-Ni3Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al 2O3 formation by suppressing the NiO growth on both gamma-Ni and gamma'-Ni3Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at lower temperatures (˜970°C) in the very early stage of oxidation. It

  7. Crack growth behavior of warm-rolled 316L austenitic stainless steel in high-temperature hydrogenated water

    NASA Astrophysics Data System (ADS)

    Choi, Kyoung Joon; Yoo, Seung Chang; Jin, Hyung-Ha; Kwon, Junhyun; Choi, Min-Jae; Hwang, Seong Sik; Kim, Ji Hyun

    2016-08-01

    To investigate the effects of warm rolling on the crack growth of 316L austenitic stainless steel, the crack growth rate was measured and the oxide structure was characterized in high-temperature hydrogenated water. The warm-rolled specimens showed a higher crack growth rate compared to the as-received specimens because the slip bands and dislocations produced during warm rolling served as paths for corrosion and cracking. The crack growth rate increased with the dissolved hydrogen concentration. This may be attributed to the decrease in performance and stability of the protective oxide layer formed on the surface of stainless steel in high-temperature water.

  8. The 100,000-hour cyclic oxidation behavior at 815C (1500 F) of 33 high-temperature alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1977-01-01

    Commercial high-temperature Fe-, Ni-, and Co-base alloys were oxidized in air at 815 deg C for ten 1000-hour cycles. Specific weight change versus time curves were derived and the 10,000-hour surface oxides were analyzed by X-ray diffraction. The alloys were ranked by a combination of appearance and metal loss estimates derived from gravimetric data.

  9. SiC Die Attach for High-Temperature Applications

    NASA Astrophysics Data System (ADS)

    Drevin-Bazin, A.; Lacroix, F.; Barbot, J.-F.

    2013-11-01

    Eutectic solders AuIn19 and AuGe12 and nanosilver paste were investigated for SiC die attach in high-temperature (300°C) applications. The soldering or sintering conditions were optimized through die shear tests performed at room temperature. In particular, application of static pressure (3.5 MPa) during sintering resulted in greatly improved mechanical behavior of the nanosilver-based joint. Microstructural study of the eutectic solders showed formation of Au-rich grains in AuGe die attach and significant diffusion of Au and In through the Ni layer in AuIn19 die attach, which could lead to formation of intermetallic compounds. Die shear tests versus temperature showed that the behaviors of the studied die attaches are different; nevertheless they present suitable shear strengths required for high-temperature applications. The mechanical behavior of joints under various levels of thermal and mechanical stress was also studied. Creep experiments were carried out on the eutectic solders to describe the thermomechanical behavior of the complete module; only one creep mechanism was observed in the working range.

  10. High-temperature alloys for high-power thermionic systems

    SciTech Connect

    Shin, Kwang S.; Jacobson, D.L.; D'cruz, L.; Luo, Anhua; Chen, Bor-Ling.

    1990-08-01

    The need for structural materials with useful strength above 1600 k has stimulated interest in refractory-metal alloys. Tungsten possesses an extreme high modulus of elasticity as well as the highest melting temperature among metals, and hence is being considered as one of the most promising candidate materials for high temperature structural applications such as space nuclear power systems. This report is divided into three chapters covering the following: (1) the processing of tungsten base alloys; (2) the tensile properties of tungsten base alloys; and (3) creep behavior of tungsten base alloys. Separate abstracts were prepared for each chapter. (SC)

  11. Biaxial creep-fatigue behavior of materials for solar thermal systems

    SciTech Connect

    Majumdar, S.

    1980-05-01

    Biaxial creep-fatigue data for Incoloy 800 and Type 316H stainless steel at elevated temperatures are presented. Tubular specimens were subjected to constant internal pressure and strain-controlled axial cycling with and without hold times in tension as well as in compression. The results show that the internal pressure affects diametral ratchetting and axial stress range significantly. However, the effect of a relatively small and steady hoop stress on the cyclic life of the materials is minimal. A 1-min compressive hold per cycle does not seriously reduce the fatigue life of either material; a tensile hold of equal duration causes a significant reduction in life for Type 316H stainless steel, but none for Incoloy 800. Fracture surfaces of specimens made of both materials were studied by scanning electron microscopy to determine the reason for the difference in behavior.

  12. The creep and intergranular cracking behavior of Ni-Cr-Fe-C alloys in 360{degree}C water

    SciTech Connect

    Angeliu, T.M.; Paraventi, D.J.; Was, G.S.

    1995-09-01

    Mechanical testing of controlled-purity Ni-xCr-9Fe-yC alloys at 360 C revealed an environmental enhancement in IG cracking and time-dependent deformation in high purity and primary water over that exhibited in argon. Dimples on the IG facets indicate a creep void nucleation and growth failure mode. IG cracking was primarily located at the interior of the specimen and not necessarily linked to direct contact with the environment. Controlled potential CERT experiments showed increases in IG cracking as the applied potential decreased, suggesting that hydrogen is detrimental to the mechanical properties. It is proposed that the environment, through the presence of hydrogen, enhances IG cracking by enhancing the matrix dislocation mobility. This is based on observations that dislocation-controlled creep controls the IG cracking of controlled-purity Ni-xCr-9Fe-yC in argon at 360 C and grain boundary cavitation and sliding results that show the environmental enhancement of the creep rate is primarily due to an increase in matrix plastic deformation. However, controlled potential CLT experiments did not exhibit a change in the creep rate as the applied potential decreased. While this does not clearly support hydrogen assisted creep, the material may already be saturated with hydrogen at these applied potentials and thus no effect was realized. Chromium and carbon decrease the IG cracking in high purity and primary water by increasing the creep resistance. The surface film does not play a significant role in the creep or IG cracking behavior under the conditions investigated.

  13. Creep/Rupture Behavior of Melt-Infiltrated SiC/SiC Composites Being Investigated

    NASA Technical Reports Server (NTRS)

    Hurst, Janet B.

    2001-01-01

    The failure behavior of melt-infiltrated SiC/SiC ceramic matrix composites is under investigation at the NASA Glenn Research Center as part of NASA's Ultra-Efficient Engine Technology Program. This material was originally developed under the High Speed Research Office's Enabling Propulsion Materials Program. Creep and rupture data provide accelerated testing information to predict material behavior under engine use situations (1500 to 2400 F). This information gives insights into various material development paths to improve composites as well as improve understanding of failure mechanisms. The left figure shows the fracture surface of a CMC material following over 200 hr of testing at 2400 F. This surface demonstrates the kind of fibrous pullout desirable for maximum crack deflection, hence non-brittle failure. Microscopy suggests that creep and rupture of these materials can best be considered as a probabilistic property, rather than a material property. Fiber failure occurs first in isolated regions, while stronger adjacent fibers remain intact. The right figure shows a region where oxide deposits blur and round the fiber images. Because the oxidation kinetics of SiC are well understood, this oxide scale can be used as a measure of the length of time various regions of the composites have been exposed to the environment, hence providing vital information regarding the sequence of failure. The oxide scale in the right figure indicates an early failure of this tow of fibers, whereas adjacent tows remain oxide free, suggesting failure much later in time. The path of various cracks can be followed throughout the composite in this manner, suggesting failure mechanisms.

  14. Three-Dimensional Visualization of the Crack-Growth Behavior of Nano-Silver Joints During Shear Creep

    NASA Astrophysics Data System (ADS)

    Tan, Yansong; Li, Xin; Chen, Gang; Mei, Yunhui; Chen, Xu

    2015-02-01

    Evolution of creep damage in nano-silver sintered lap shear joints was investigated at 325°C. Non-destructive x-ray three-dimensional (3D) visualization clearly revealed the crack-growth behavior of the joint; this could be divided into three stages. In the initial stage, little development of cracks occurred. In the second stage, cracks propagated at a consistent rate. In the final stage, rapid extension of the cracks led directly to fracture of the joint. Three-dimensional volume-rendered images and fractographic analysis showed that the growth of macroscopic initial cracks at the interfaces dominated the creep fracture process. Initial failure of nano-silver sintered lap shear joints often occurred at interfacial nano-silver paste layers. Both the size and position of the initial interfacial cracks had significant effects on the final creep failure of the joints, and higher stresses led to greater porosity and earlier failure.

  15. Biaxial thermal creep of Inconel 617 and Haynes 230 at 850 and 950 °C

    NASA Astrophysics Data System (ADS)

    Tung, Hsiao-Ming; Mo, Kun; Stubbins, James F.

    2014-04-01

    The biaxial thermal creep behavior of Inconel 617 and Haynes 230 at 850 and 950 °C was investigated. Biaxial stresses were generated using the pressurized tube technique. The detailed creep deformation and fracture mechanism have been studied. Creep curves for both alloys showed that tertiary creep accounts for a greater portion of the materials' life, while secondary creep only accounts for a small portion. Fractographic examinations of the two alloys indicated that nucleation, growth, and coalescence of creep voids are the dominant micro-mechanisms for creep fracture. At 850 °C, alloy 230 has better creep resistance than alloy 617. When subjected to the biaxial stress state, the creep rupture life of the two alloys was considerably reduced when compared to the results obtained by uniaxial tensile creep tests. The Monkman-Grant relation proves to be a promising method for estimating the long-term creep life for alloy 617, whereas alloy 230 does not follow the relation. This might be associated with the significant changes in the microstructure of alloy 230 at high temperatures.

  16. First-principles study of high temperature and high-pressure behavior of carbides and nitrides of group IVB elements

    NASA Astrophysics Data System (ADS)

    Mishra, Vinayak; Chaturvedi, Shashank

    2016-01-01

    Full potential linearized augmented plane wave method combined with quasi-harmonic approximation, has been used to perform the calculations of thermophysical properties of carbides and nitrides of the group IVB elements at high temperature and pressure. Relative accuracy of linear density approximation (LDA) and generalized gradient approximation (GGA) exchange correlation potentials have been tested. Specific heat (?) obtained through LDA and GGA agrees with experimental data up to 1500 K. Above 1500 K, GGA gives better agreement whereas LDA under-estimates the specific heat. LDA overestimates the bulk modulus, GGA gives better agreement with the experimental data. High-temperature bulk modulus follows the Wachtman formula. Calculated ? isotherms agree with published experimental results. The transformation pressures (?) from NaCl-type structure (B? phase) to CsCl-type structure (B? phase), and collapsed volumes (?) at (?) have been predicted. The stability and hardness of these compounds are related with the calculated density of states.

  17. Creep-Rupture Behavior and Recrystallization in HR6W and Haynes Alloy 230 Cold-Bent Boiler Tubing for Ultrasupercritical (USC) Steam Boiler Applications

    SciTech Connect

    Shingledecker, John P

    2007-01-01

    Creep-rupture experiments were conducted on HR6W and Haynes 230, candidate Ultrasupercritical (USC) alloys, tubes to evaluate the effects of cold-work and recrystallization during high-temperature service. These creep tests were performed by internally pressurizing cold-bent boiler tubes at 775 C for times up to 8000 hours. The bends were fabricated with cold-work levels beyond the current ASME Boiler and Pressure Vessel (ASME B&PV) Code Section I limits for austenitic stainless steels. Destructive metallographic evaluation of the crept tube bends was used to determine the effects of cold-work and the degree of recrystallization. The metallographic analysis combined with an evaluation of the creep and rupture data suggest that solid-solution strengthened nickel-based alloys can be fabricated for high-temperature service at USC conditions utilizing levels of cold-work higher than the current allowed levels for austenitic stainless steels.

  18. Analysis of the Creep Behavior of P92 Steel Welded Joint

    NASA Astrophysics Data System (ADS)

    An, Junchao; Jing, Hongyang; Xiao, Guangchun; Zhao, Lei; Xu, Lianyong

    2011-11-01

    Different regions of heat-affected zone (HAZ) were simulated by heat treatment to investigate the mechanisms of the Type IV fracture of P92 (9Cr-2W) steel weldments. Creep deformation of simulated HAZ specimens with uniform microstructures was investigated and compared with those of the base metal (BM) and the weld metal (WM) specimens. The results show that the creep strain rate of the fine-grained HAZ (FGHAZ) is much higher than that of the BM, WM, the coarse-grained HAZ (CGHAZ), and the inter-critical HAZ (ICHAZ). According to the metallurgical investigation of stress-rupture, the FGHAZ and the ICHAZ have the most severely cavitated zones. During creep process, carbides become coarser, and form on grain boundaries again, leading to the deterioration of creep property and the decline of creep strength. In addition, the crack grows along the FGHAZ adjacent to the BM in the creep crack growth test (CCG) of HAZ.

  19. The effects of molecular weight on the single lap shear creep and constant strain rate behavior of thermoplastic polyimidesulfone adhesive

    NASA Technical Reports Server (NTRS)

    Dembosky, Stanley K.; Sancaktar, Erol

    1985-01-01

    The bonded shear creep and constant strain rate behaviors of zero, one, and three percent endcapped thermoplastic polyimidesulfone adhesive were examined at room and elevated temperatures. Endcapping was accomplished by the addition of phthalic anhydrides. The primary objective was to determine the effects of molecular weight on the mechanical properties of the adhesive. Viscoelastic and nonlinear elastic constitutive equations were utilized to model the adhesive. Ludwik's and Crochet's relations were used to describe the experimental failure data. The effects of molecular weight changes on the above mentioned mechanical behavior were assessed. The viscoelastic Chase-Goldsmith and elastic nonlinear relations gave a good fit to the experimental stress strain behavior. Crochet's relations based on Maxwell and Chase-Goldsmith models were fit to delayed failure data. Ludwik's equations revealed negligible rate dependence. Ultimate stress levels and the safe levels for creep stresses were found to decrease as molecular weight was reduced.

  20. Creep deformation and fracture behavior of types 316 and 316L(N) stainless steels and their weld metals

    SciTech Connect

    Sasikala, G.; Mathew, M.D.; Bhanu Sankara Rao, K.; Mannan, S.L.

    2000-04-01

    The creep properties of a nuclear-grade type 316(L) stainless steel (SS) alloyed with nitrogen (316L(N)SS) and its weld metal were studied at 873 and 923 K in the range of applied stresses from 100 to 335 MPa. The results were compared with those obtained on a nuclear-grade type 316 SS, which is lean in nitrogen. The creep rupture lives of the weld metals were found to be lower than those of the respective base metals by a factor of 5 to 10. Both the base and weld metals of 314L(N)SS exhibited better resistance to creep deformation compared to their 316SS counterparts at identical test conditions. A power-law relationship between the minimum creep rate and applied stress was found to be obeyed for both the base and weld metals. Both the weld metals generally exhibited lower rupture elongation than the respective base metals; however, at 873 K, the 316 SS base and weld metals had similar rupture elongation at identical applied stresses. Comparison of the rupture lives of the two steels to the ASME curves for the expected minimum stress to rupture for 316 Ss base and weld metals showed that, for 316L(N) SS, the specifications for maximum allowable stresses based on data for 316 SS could prove overconservative. The influence of nitrogen on the creep deformation and fracture behavior, especially in terms of its modifying the precipitation kinetics, is discussed in light of the microstructural observations. In welds containing {delta} ferrite, the kinetics of its transformation and the nature of the transformation products control the deformation and fracture behavior. The influence of nitrogen on the {delta} ferrite transformation behavior and coarsening kinetics is also discussed, on the basis of extensive characterization by metallographic techniques.

  1. Creep deformation and fracture behavior of types 316 and 316L(N) stainless steels and their weld metals

    NASA Astrophysics Data System (ADS)

    Sasikala, G.; Mannan, S. L.; Mathew, M. D.; Rao, K. Bhanu

    2000-04-01

    The creep properties of a nuclear-grade type 316(L) stainless steel (SS) alloyed with nitrogen (316L(N) SS) and its weld metal were studied at 873 and 923 K in the range of applied stresses from 100 to 335 MPa. The results were compared with those obtained on a nuclear-grade type 316 SS, which is lean in nitrogen. The creep rupture lives of the weld metals were found to be lower than those of the respective base metals by a factor of 5 to 10. Both the base and weld metals of 316L(N) SS exhibited better resistance to creep deformation compared to their 316 SS counterparts at identical test conditions. A power-law relationship between the minimum creep rate and applied stress was found to be obeyed for both the base and weld metals. Both the weld metals generally exhibited lower rupture elongation than the respective base metals; however, at 873 K, the 316 SS base and weld metals had similar rupture elongation at identical applied stresses. Comparison of the rupture lives of the two steels to the ASME curves for the expected minimum stress to rupture for 316 SS base and weld metals showed that, for 316L(N) SS, the specifications for maximum allowable stresses based on data for 316 SS could prove overconservative. The influence of nitrogen on the creep deformation and fracture behavior, especially in terms of its modifying the precipitation kinetics, is discussed in light of the microstructural observations. In welds containing δ ferrite, the kinetics of its transformation and the nature of the transformation products control the deformation and fracture behavior. The influence of nitrogen on the δ ferrite transformation behavior and coarsening kinetics is also discussed, on the basis of extensive characterization by metallographic techniques.

  2. Development of a steady state creep behavior model of polycrystalline tungsten for bimodal space reactor application

    SciTech Connect

    Purohit, A.; Hanan, N.A.; Bhattacharyya, S.K.; Gruber, E.E.

    1995-02-01

    The fuel element for one of the many reactor concepts being currently evaluated for bimodal applications in space consists of spherical fuel particles clad with tungsten or alloys of tungsten. The fuel itself consists of stabilized UO{sub 2}. One of the life limiting phenomena for the fuel element is failure of the cladding because of creep deformation. This report summarizes the information available in literature regarding the creep deformation of tungsten and its alloys and proposes a relation to be used for calculating the creep strains for elevated temperatures in the low stress region ({sigma} {le} 20 MPa). Also, results of the application of this creep relation to one of the reactor design concepts (NEBA-3) are discussed. Based on the traditional definition of creep deformation, the temperatures of 1500 K to 2900 K for tungsten and its alloys are considered to be in the {open_quotes}high{close_quotes} temperature range. In this temperature range, the rate controlling mechanisms for creep deformation are believed to be non-conservative motion of screw dislocations and short circuit diffusional paths. Extensive theoretical work on creep and in particular for creep of tungsten and its alloys have been reported in the literature. These theoretical efforts have produced complex mathematical models that require detailed materials properties. These relations, however, are not presently suitable for the creep analysis because of lack of consistent material properties required for their use. Variations in material chemistry and thermomechanical pre-treatment of tungsten have significant effects on creep and the mechanical properties. Analysis of the theoretical models and limited data indicates that the following empirical relation originally proposed by M. Jacox of INEL and the Air Force Phillips Laboratory, for calculating creep deformation of tungsten cladding, can be used for the downselection of preliminary bimodal reactor design concepts.

  3. Grain growth behavior and high-temperature high-strain-rate tensile ductility of iridium alloy DOP-26

    SciTech Connect

    McKamey, C.G.; Gubbi, A.N.; Lin, Y.; Cohron, J.W.; Lee, E.H.; George, E.P.

    1998-04-01

    This report summarizes results of studies conducted to date under the Iridium Alloy Characterization and Development subtask of the Radioisotope Power System Materials Production and Technology Program to characterize the properties of the new-process iridium-based DOP-26 alloy used for the Cassini space mission. This alloy was developed at Oak Ridge National Laboratory (ORNL) in the early 1980`s and is currently used by NASA for cladding and post-impact containment of the radioactive fuel in radioisotope thermoelectric generator (RTG) heat sources which provide electric power for interplanetary spacecraft. Included within this report are data generated on grain growth in vacuum or low-pressure oxygen environments; a comparison of grain growth in vacuum of the clad vent set cup material with sheet material; effect of grain size, test temperature, and oxygen exposure on high-temperature high-strain-rate tensile ductility; and grain growth in vacuum and high-temperature high-strain-rate tensile ductility of welded DOP-26. The data for the new-process material is compared to available old-process data.

  4. MODELING THE EFFECT OF WATER VAPOR ON THE INTERFACIAL BEHAVIOR OF HIGH-TEMPERATURE AIR IN CONTACT WITH Fe20Cr SURFACES

    SciTech Connect

    Chialvo, Ariel A; Brady, Michael P; Keiser, James R; Cole, David R

    2011-01-01

    The purpose of this communication is to provide an atomistic view, via molecular dynamic simulation, of the contrasting interfacial behavior between high temperature dry- and (10-40 vol%) wet-air in contact with stainless steels as represented by Fe20Cr. It was found that H2O preferentially adsorbs and displaces oxygen at the metal/fluid interface. Comparison of these findings with experimental studies reported in the literature is discussed. Keywords: Fe-Cr alloys, metal-fluid interfacial behavior, wet-air, molecular simulation

  5. Creep deformation mechanisms in modified 9Cr-1Mo steel

    NASA Astrophysics Data System (ADS)

    Shrestha, Triratna; Basirat, Mehdi; Charit, Indrajit; Potirniche, Gabriel P.; Rink, Karl K.; Sahaym, Uttara

    2012-04-01

    Modified 9Cr-1Mo (Grade 91) steel is currently considered as a candidate material for reactor pressure vessels (RPVs) and reactor internals for the Very High Temperature Reactor (VHTR). The tensile creep behavior of modified 9Cr-1Mo steel (Grade 91) was studied in the temperature range of 873-1023 K and stresses between 35 MPa and 350 MPa. Analysis of creep results yielded stress exponents of ∼9-11 in the higher stress regime and ∼1 in the lower stress regime. The high stress exponent in the power-law creep regime was rationalized by invoking the concept of threshold stress, which represents the lattice diffusion controlled dislocation climb process. Without threshold stress compensation, the activation energy was 510 ± 51 kJ/mol, while after correcting for the threshold stress, the activation energy decreased to 225 ± 24 kJ/mol. This value is close to the activation energy for lattice self-diffusion in α-Fe. Threshold stress calculations were performed for the high stress regime at all test temperatures. The calculated threshold stress showed a strong dependence on temperature. The creep behavior of Grade 91 steel was described by the modified Bird-Mukherjee-Dorn relation. The rate controlling creep deformation mechanism in the high stress regime was identified as the edge dislocation climb with a stress exponent of n = 5. On the other hand, the deformation mechanism in the Newtonian viscous creep regime (n = 1) was identified as the Nabarro-Herring creep.

  6. Intervertebral disc creep behavior assessment through an open source finite element solver.

    PubMed

    Castro, A P G; Wilson, W; Huyghe, J M; Ito, K; Alves, J L

    2014-01-01

    Degenerative Disc Disease (DDD) is one of the largest health problems faced worldwide, based on lost working time and associated costs. By means of this motivation, this work aims to evaluate a biomimetic Finite Element (FE) model of the Intervertebral Disc (IVD). Recent studies have emphasized the importance of an accurate biomechanical modeling of the IVD, as it is a highly complex multiphasic medium. Poroelastic models of the disc are mostly implemented in commercial finite element packages with limited access to the algorithms. Therefore, a novel poroelastic formulation implemented on a home-developed open source FE solver is briefly addressed throughout this paper. The combination of this formulation with biphasic osmotic swelling behavior is also taken into account. Numerical simulations were devoted to the analysis of the non-degenerated human lumbar IVD time-dependent behavior. The results of the tests performed for creep assessment were inside the scope of the experimental data, with a remarkable improvement of the numerical accuracy when compared with previously published results obtained with ABAQUS(®). In brief, this in-development open-source FE solver was validated with literature experimental data and aims to be a valuable tool to study the IVD biomechanics and DDD mechanisms. PMID:24210477

  7. Oscillatory, creep and steady flow behavior of xanthan-thickened oil-in-water emulsions

    SciTech Connect

    Pal, R.

    1995-04-01

    In the handling, mixing, storage, and pipeline transportation of emulsions, knowledge of rheological properties is required for the design, selection, and operation of the equipment involved. The rheological behavior of xanthan gum-thickened oil-in-water emulsions is studied with a cone-and-plate system using a constant-stress rheometer. Xanthan gum solutions and xanthan-thickened oil-in-water emulsions are strongly shear-thinning and viscoelastic in nature. The effects of polymer and oil concentrations on the rheological behavior of emulsions are investigated. The relative viscosity for the thickened emulsions, at any given oil concentration, increases with an increase in the shear rate, whereas the unthickened emulsions show the opposite trend. The theoretical models give reasonable predictions for the relative viscosity, storage modulus, and loss modulus of xanthan-thickened emulsions. The ratio of storage to loss moduli increases considerably with the increase in polymer and oil concentrations. The creep/recovery experiments confirm that the xanthan-thickened emulsions are highly viscoelastic in nature and that the degree of elasticity increases with the increase in polymer and oil concentrations.

  8. Creep behavior in SiC whisker-reinforced alumina composite

    SciTech Connect

    Lin, H.T.; Becher, P.F.

    1994-10-01

    Grain boundary sliding (often accompanied by cavitation) is a major contributor to compressive and tensile creep deformation in fine-grained aluminas, both with and without whisker-reinforcement. Studies indicate that the creep response of alumina composites reinforced with SiC whiskers can be tailored by controlling the composite microstructure and composition. The addition of SiC whiskers (< 30 vol%) significantly increases the creep resistance of fine-grained (1--2 {mu}m) alumina in air at temperatures of 1,200 and 1,300 C. However, at higher whisker contents (30 and 50 vol%), the creep resistance is degraded due to enhanced surface oxidation reactions accompanied by extensive creep cavitation. Densification aids (i.e., Y{sub 2}O{sub 3}), which facilitate silica glass formation and thus liquid phase densification of the composites, can also result in degradation of creep resistance. On the other hand, increasing the matrix grain size or decreasing the whisker aspect ratio (increased whisker number density) results in raising the creep resistance of the composites. These observations not only explain the variability in the creep response of various SiC whisker-reinforced alumina composites but also indicate factors that can be used to enhance the elevated temperature performance.

  9. Creep Behavior of Near-Stoichiometric Polycrystalline Binary NiAl

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2002-01-01

    New and published constant load creep and constant engineering strain rate data on near-stoichiometric binary NiAl in the intermediate temperature range 700 to 1300 K are reviewed. Both normal and inverse primary creep curves are observed depending on stress and temperature. Other characteristics relating to creep of NiAl involving grain size, stress and temperature dependence are critically examined and discussed. At stresses below 25 MPa and temperatures above 1000 K, a new grain boundary sliding mechanism was observed with n approx. 2, Qc approx. 100 kJ/ mol and a grain size exponent of about 2. It is demonstrated that Coble creep and accommodated grain boundary sliding models fail to predict the experimental creep rates by several orders of magnitude.

  10. Effects of Microstructure and Processing Methods on Creep Behavior of AZ91 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Shahbeigi Roodposhti, Peiman; Sarkar, Apu; Murty, Korukonda L.; Scattergood, Ronald O.

    2016-07-01

    This review sheds light on the creep properties of AZ91 magnesium alloys with a major emphasis on the influence of microstructure on the creep resistance and underlying creep deformation mechanism based on stress exponent and activation energy. Effects of processing routes such as steel mold casting, die casting, and thixoforming are considered. Roles of a wide range of additional alloying elements such as Si, Sb, Bi, Ca, Sn, REs, and combined addition of them on the microstructure modification were investigated. The reaction between these elements and the Mg or Al in the matrix develops some thermally stable intermetallic phases which improves the creep resistance at elevated temperatures, however does not influence the creep mechanism.

  11. Creep Behavior and Degradation of Subgrain Structures Pinned by Nanoscale Precipitates in Strength-Enhanced 5 to 12 Pct Cr Ferritic Steels

    NASA Astrophysics Data System (ADS)

    Ghassemi Armaki, Hassan; Chen, Ruiping; Maruyama, Kouichi; Igarashi, Masaaki

    2011-10-01

    Creep behavior and degradation of subgrain structures and precipitates of Gr. 122 type xCr-2W-0.4Mo-1Cu-VNb ( x = 5, 7, 9, 10.5, and 12 pct) steels were evaluated during short-term and long-term static aging and creep with regard to the Cr content of steel. Creep rupture life increased from 5 to 12 pct Cr in the short-term creep region, whereas in the long-term creep region, it increased up to 9 pct Cr and then decreased with the addition of Cr from 9 to 12 pct. Behavior of creep rupture life was attributed to the size of elongated subgrains. In the short-term creep region, subgrain size decreased from 5 to 12 pct Cr, corresponding to the longer creep strength. However, in the long-term creep region after 104 hours, subgrain size increased up to 9 pct Cr and then decreased from 9 to 12 pct, corresponding to the behavior of creep rupture life. M23C6 and MX precipitates had the highest number fraction among all of the precipitates present in the studied steels. Cr concentration dependence of spacing of M23C6 and MX precipitates exhibited a V-like shape during short-term as well as long-term aging at 923 K (650 °C), and the minimum spacing of precipitates belonged to 9 pct Cr steel, corresponding to the lowest recovery speed of subgrain structures. In the short-term creep region, subgrain coarsening during creep was controlled by strain and proceeded slower with the addition of Cr, whereas in long-term creep region, subgrain coarsening was controlled by the stability of precipitates rather than due to the creep plastic deformation and took place faster from 9 to 12 pct and 9 to 5 pct Cr. However, M23C6 precipitates played a more important role than MX precipitates in the control of subgrain coarsening, and there was a closer correlation between spacing of M23C6 precipitates and subgrain size during static aging and long-term creep region.

  12. Modification of tribology and high-temperature behavior of Ti 48Al 2Cr 2Nb intermetallic alloy by laser cladding

    NASA Astrophysics Data System (ADS)

    Liu, Xiu-Bo; Wang, Hua-Ming

    2006-06-01

    In order to improve the tribology and high-temperature oxidation properties of the Ti-48Al-2Cr-2Nb intermetallic alloy simultaneously, mixed NiCr-Cr 3C 2 precursor powders had been investigated for laser cladding treatment to modify wear and high-temperature oxidation resistance of the material. The alloy samples were pre-placed with NiCr-80, 50 and 20%Cr 3C 2 (wt.%), respectively, and laser treated at the same parameters, i.e., laser output power 2.8 kW, beam scanning speed 2.0 mm/s, beam dimension 1 mm × 18 mm. The treated samples underwent tests of microhardness, wear and high-temperature oxidation. The results showed that laser cladding with different constitution of mixed precursor NiCr-Cr 3C 2 powders improved surface hardness in all cases. Laser cladding with NiCr-50%Cr 3C 2 resulted in the best modification of tribology and high-temperature oxidation behavior. X-ray diffraction (XRD), optical microscope (OM), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS) analyses indicated that the formation of reinforced Cr 7C 3, TiC and both continuous and dense Al 2O 3, Cr 2O 3 oxide scales were supposed to be responsible for the modification of the relevant properties. As a result, the present work had laid beneficial surface engineering foundation for TiAl alloy applied as future light weight and high-temperature structural candidate materials.

  13. High cycle fatigue behavior of Incoloy 800H in a simulated high-temperature gas-cooled reactor helium environment

    SciTech Connect

    Soo, P.; Sabatini, R.L.; Epel, L.G.; Hare, J.R. Sr.

    1980-01-01

    The current study was an attempt to evaluate the high cycle fatigue strength of Incoloy 800H in a High-Temperature Gas-Cooled Reactor helium environment containing significant quantities of moisture. As-heat-treated and thermally-aged materials were tested to determine the effects of long term corrosion in the helium test gas. Results from in-helium tests were compared to those from a standard air environment. It was found that the mechanisms of fatigue failure were very complex and involved recovery/recrystallization of the surface ground layer on the specimens, sensitization, hardness changes, oxide scale integrity, and oxidation at the tips of propagation cracks. For certain situations a corrosion-fatigue process seems to be controlling. However, for the helium environment studied, there was usually no aging or test condition for which air gave a higher fatigue strength.

  14. Failure behavior of internally pressurized flawed and unflawed steam generator tubing at high temperatures -- Experiments and comparison with model predictions

    SciTech Connect

    Majumdar, S.; Shack, W.J.; Diercks, D.R.; Mruk, K.; Franklin, J.; Knoblich, L.

    1998-03-01

    This report summarizes experimental work performed at Argonne National Laboratory on the failure of internally pressurized steam generator tubing at high temperatures ({le} 700 C). A model was developed for predicting failure of flawed and unflawed steam generator tubes under internal pressure and temperature histories postulated to occur during severe accidents. The model was validated by failure tests on specimens with part-through-wall axial and circumferential flaws of various lengths and depths, conducted under various constant and ramped internal pressure and temperature conditions. The failure temperatures predicted by the model for two temperature and pressure histories, calculated for severe accidents initiated by a station blackout, agree very well with tests performed on both flawed and unflawed specimens.

  15. Observation of the density threshold behavior for the onset of stimulated Raman scattering in high-temperature hohlraum plasmas.

    PubMed

    Froula, D H; Divol, L; London, R A; Berger, R L; Döppner, T; Meezan, N B; Ross, J S; Suter, L J; Sorce, C; Glenzer, S H

    2009-07-24

    We show that the measured stimulated Raman scattering (SRS) in a large-scale high-temperature plasma scales strongly with the plasma density, increasing by an order of magnitude when the electron density is increased by 20%. This is consistent with linear theory, including pump depletion, in a uniform plasma and, as the density is typically constrained by other processes, this effect will set a limit on drive laser beam intensity for forthcoming ignition experiments at the National Ignition Facility. Control of SRS at laser intensities consistent with 285 eV ignition hohlraums is achieved by using polarization smoothing which increases the intensity threshold for the onset of SRS by 1.6 +/- 0.2. These results were quantitatively predicted by full beam three-dimensional numerical laser-plasma interaction simulations. PMID:19659366

  16. Analytical study of the liquid phase transient behavior of a high temperature heat pipe. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Roche, Gregory Lawrence

    1988-01-01

    The transient operation of the liquid phase of a high temperature heat pipe is studied. The study was conducted in support of advanced heat pipe applications that require reliable transport of high temperature drops and significant distances under a broad spectrum of operating conditions. The heat pipe configuration studied consists of a sealed cylindrical enclosure containing a capillary wick structure and sodium working fluid. The wick is an annular flow channel configuration formed between the enclosure interior wall and a concentric cylindrical tube of fine pore screen. The study approach is analytical through the solution of the governing equations. The energy equation is solved over the pipe wall and liquid region using the finite difference Peaceman-Rachford alternating direction implicit numerical method. The continuity and momentum equations are solved over the liquid region by the integral method. The energy equation and liquid dynamics equation are tightly coupled due to the phase change process at the liquid-vapor interface. A kinetic theory model is used to define the phase change process in terms of the temperature jump between the liquid-vapor surface and the bulk vapor. Extensive auxiliary relations, including sodium properties as functions of temperature, are used to close the analytical system. The solution procedure is implemented in a FORTRAN algorithm with some optimization features to take advantage of the IBM System/370 Model 3090 vectorization facility. The code was intended for coupling to a vapor phase algorithm so that the entire heat pipe problem could be solved. As a test of code capabilities, the vapor phase was approximated in a simple manner.

  17. Creep induced substructures in titanium aluminide

    NASA Astrophysics Data System (ADS)

    Cerreta, Ellen Kathleen

    Many investigations have examined the creep properties of titanium aluminides. Attempts to classify observed behaviors with existing models for high temperature deformation have been met with limited success. Several researchers have shown that an understanding of substructural evolution in the early stages of the creep curve may offer insight into the mechanisms, which control the rate of deformation. Creep deformation has been shown to include twinning, recrystallization, grain boundary sliding, ordinary and super dislocation activity, and faulting depending on the microstructure of the alloy and testing conditions. However, the environments that these alloys are likely to be exposed to are not similar to the test conditions in the literature. Furthermore the emphasis of much of the research into this group of alloys has been on the effects of microstructure particularly, the volume fraction of lamellar phase and ternary elemental additions. With all of these studies little information is available on the deformation behavior of the gamma phase. The alloys in these studies are mostly composed of the gamma phase and yet its creep behavior is not well understood. For this reason single phase binary gamma titanium aluminides were investigated in this study. To understand the effects of aluminum, interstitial oxygen content, and stress on creep, five alloys of varying Al concentrations and interstitial oxygen contents were deformed at temperatures ranging from 700--800°C and at stresses of 150, 200, and 250MPa. Full creep curves were developed under these conditions and phenomenological parameters for creep were calculated from these data. Additional tests were interrupted during primary and secondary creep at 760°C. Specimens from the interrupted tests as well as from the as-processed materials were examined optically and by TEM. Creep data and the microscopy were analyzed in concert to determine rate-controlling mechanisms for creep. Evolution of the substructure

  18. Effect of fiber-matrix adhesion on the creep behavior of CF/PPS composites: temperature and physical aging characterization

    NASA Astrophysics Data System (ADS)

    Motta Dias, M. H.; Jansen, K. M. B.; Luinge, J. W.; Bersee, H. E. N.; Benedictus, R.

    2016-06-01

    The influence of fiber-matrix adhesion on the linear viscoelastic creep behavior of `as received' and `surface modified' carbon fibers (AR-CF and SM-CF, respectively) reinforced polyphenylene sulfide (PPS) composite materials was investigated. Short-term tensile creep tests were performed on ±45° specimens under six different isothermal conditions, 40, 50, 60, 65, 70 and 75 °C. Physical aging effects were evaluated on both systems using the short-term test method established by Struik. The results showed that the shapes of the curves were affected neither by physical aging nor by the test temperature, allowing then superposition to be made. A unified model was proposed with a single physical aging and temperature-dependent shift factor, a_{T,te}. It was suggested that the surface treatment carried out in SM-CF/PPS had two major effects on the creep response of CF/PPS composites at a reference temperature of 40 °C: a lowering of the initial compliance of about 25 % and a slowing down of the creep response of about 1.1 decade.

  19. Effect of fiber-matrix adhesion on the creep behavior of CF/PPS composites: temperature and physical aging characterization

    NASA Astrophysics Data System (ADS)

    Motta Dias, M. H.; Jansen, K. M. B.; Luinge, J. W.; Bersee, H. E. N.; Benedictus, R.

    2016-02-01

    The influence of fiber-matrix adhesion on the linear viscoelastic creep behavior of `as received' and `surface modified' carbon fibers (AR-CF and SM-CF, respectively) reinforced polyphenylene sulfide (PPS) composite materials was investigated. Short-term tensile creep tests were performed on ±45° specimens under six different isothermal conditions, 40, 50, 60, 65, 70 and 75 °C. Physical aging effects were evaluated on both systems using the short-term test method established by Struik. The results showed that the shapes of the curves were affected neither by physical aging nor by the test temperature, allowing then superposition to be made. A unified model was proposed with a single physical aging and temperature-dependent shift factor, a_{T,te}. It was suggested that the surface treatment carried out in SM-CF/PPS had two major effects on the creep response of CF/PPS composites at a reference temperature of 40 °C: a lowering of the initial compliance of about 25 % and a slowing down of the creep response of about 1.1 decade.

  20. Creep Behavior of Hafnia and Ytterbium Silicate Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis J.; Harder, Bryan

    2011-01-01

    Environmental barrier coatings will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability and stability of SiC/SiC ceramic matrix composite (CMC) engine components, thus improving the engine performance. In order to develop high performance, robust coating systems for engine components, appropriate test approaches simulating operating temperature gradient and stress environments for evaluating the critical coating properties must be established. In this paper, thermal gradient mechanical testing approaches for evaluating creep and fatigue behavior of environmental barrier coated SiC/SiC CMC systems will be described. The creep and fatigue behavior of Hafnia and ytterbium silicate environmental barrier coatings on SiC/SiC CMC systems will be reported in simulated environmental exposure conditions. The coating failure mechanisms will also be discussed under the heat flux and stress conditions.

  1. High-Temperature Deformation of Dry Diabase with Application to Tectonics on Venus

    NASA Technical Reports Server (NTRS)

    Mackwell, S. J.; Zimmerman, M. E.; Kohlstedt, D. L.

    1998-01-01

    We have performed an experimental study to quantify the high-temperature creep behavior of natural diabase rocks under dry deformation conditions. Samples of both Maryland diabase and Columbia diabase were investigated to measure the effects of temperature, oxygen fugacity, and plagioclase-to-pyroxene ratio on creep strength. Flow laws determined for creep of these diabases were characterized by an activation energy of Q = 485 +/- 30 kJ/mol and a stress exponent of n = 4.7 +/- 0.6, indicative of deformation dominated by dislocation creep processes. Although n and Q are the same for the two rocks within experimental error, the Maryland diabase, which has the lower plagioclase content, is significantly stronger than the Columbia diabase. Thus the modal abundance of the various minerals plays an important role in defining rock strength. Within the s ample-to-sample variation, no clear influence of oxygen fugacity on creep strength could be discerned for either rock. The dry creep strengths of both rocks are significantly greater than values previously measured on diabase under "as-received" or wet conditions. Application of these results to the present conditions in the lithosphere on Venus predicts a high viscosity crust with strong dynamic coupling between mantle convection and crustal deformation, consistent with measurements of topography and gravity for that planet.

  2. High-temperature behavior of dicesium molybdate Cs{sub 2}MoO{sub 4}: Implications for fast neutron reactors

    SciTech Connect

    Wallez, Gilles; Raison, Philippe E.; Smith, Anna L.; Clavier, Nicolas

    2014-07-01

    Dicesium molybdate (Cs{sub 2}MoO{sub 4})'s thermal expansion and crystal structure have been investigated herein by high temperature X ray diffraction in conjunction with Raman spectroscopy. This first crystal-chemical insight at high temperature is aimed at predicting the thermostructural and thermomechanical behavior of this oxide formed by the accumulation of Cs and Mo fission products at the periphery of nuclear fuel rods in sodium-cooled fast reactors. Within the temperature range of the fuel's rim, Cs{sub 2}MoO{sub 4} becomes hexagonal P6{sub 3}/mmc, with disordered MoO{sub 4} tetrahedra and 2D distribution of Cs–O bonds that makes thermal axial expansion both large (50≤α{sub l}≤70 10{sup −6} °C{sup −1}, 500–800 °C) and highly anisotropic (α{sub c}−α{sub a}=67×10{sup −6} °C{sup −1}, hexagonal form). The difference with the fuel's expansion coefficient is of potential concern with respect to the cohesion of the Cs{sub 2}MoO{sub 4} surface film and the possible release of cesium radionuclides in accidental situations. - Graphical abstract: The weakness of the Cs–O bonds and the disordering of the MoO{sub 4} tetrahedra array in the high-temperature form are responsible for the huge thermal expansion of Cs{sub 2}MoO{sub 4} along the c-axis. - Highlights: • Thermomechanical behavior of Cs{sub 2}MoO{sub 4} fission products compound is studied. • High-temperature form of Cs{sub 2}MoO{sub 4} is characterized by XRD and Raman. • Thermal expansion appears very high and anisotropic. • Cohesion between Cs{sub 2}MoO{sub 4} and nuclear fuel seems questionable, and Cs release is expected.

  3. Prediction and verification of creep behavior in metallic materials and components, for the space shuttle thermal protection system. Volume 1, phase 1: Cyclic materials creep predictions

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Cramer, B. A.

    1974-01-01

    Cyclic creep response was investigated and design methods applicable to thermal protection system structures were developed. The steady-state (constant temperature and load) and cyclic creep response characteristics of four alloys were studied. Steady-state creep data were gathered through a literature survey to establish reference data bases. These data bases were used to develop empirical equations describing creep as a function of time, temperature, and stress and as a basis of comparison for test data. Steady-state creep tests and tensile cyclic tests were conducted. The following factors were investigated: material thickness and rolling direction; material cyclic creep response under varying loads and temperatures; constant stress and temperature cycles representing flight conditions; changing stresses present in a creeping beam as a result of stress redistribution; and complex stress and temperature profiles representative of space shuttle orbiter trajectories. A computer program was written, applying creep hardening theories and empirical equations for creep, to aid in analysis of test data. Results are considered applicable to a variety of structures which are cyclicly exposed to creep producing thermal environments.

  4. High temperature life prediction of monolithic silicon carbide heat exchanger tubes

    SciTech Connect

    Sandifer, J.B.; Edwards, M.J.; Brown, T.S. III; Duffy, S.F.

    1994-01-01

    The need for improved performance in high temperature environments is prompting industry to consider the use of structural ceramic materials in heat exchanger tubes and other high temperature components. ln recognition of this need the U. S. Department of Energy has supported work for the development of nondestructive methods for evaluating flaws in monolithic ceramic components and the associated establishment of criteria for the acceptance of flawed components. Under this development of flaw assessment criteria DOE supported the work being presented in this paper. The approach to developing the life prediction model combines finite element predictions considering creep behavior with continuum damage mechanics and Weibull reliability statistics. ABAQUS is used to predict time dependent creep response of the component based on experimental creep data. A continuity parameter is then calculated at each time step following continuum damage mechanics methods. Finally Weibull statistics are used with the resulting continuity parameter to predict the reliability at each time step through the use of the NASA-Lewis computer program CARES interfaced to ABAQUS with ABACARES. There is very limited data available to characterize the creep continuum damage and reliability behavior of the material. For the life prediction model reported it is assumed that the material damages isotropically. Directional effects of the damage can be added as material databases improve.

  5. Microstructural Evolution and Creep-Rupture Behavior of Fusion Welds Involving Alloys for Advanced Ultrasupercritical Power Generation

    NASA Astrophysics Data System (ADS)

    Bechetti, Daniel H., Jr.

    Projections for large increases in the global demand for electric power produced by the burning of fossil fuels, in combination with growing environmental concerns surrounding these fuel sources, have sparked initiatives in the United States, Europe, and Asia aimed at developing a new generation of coal fired power plant, termed Advanced Ultrasupercritical (A-USC). These plants are slated to operate at higher steam temperatures and pressures than current generation plants, and in so doing will offer increased process cycle efficiency and reduced greenhouse gas emissions. Several gamma' precipitation strengthened Ni-based superalloys have been identified as candidates for the hottest sections of these plants, but the microstructural instability and poor creep behavior (compared to wrought products) of fusion welds involving these alloys present significant hurdles to their implementation and a gap in knowledge that must be addressed. In this work, creep testing and in-depth microstructural characterization have been used to provide insight into the long-term performance of these alloys. First, an investigation of the weld metal microstructural evolution as it relates to creep strength reductions in A-USC alloys INCONELRTM 740, NIMONICRTM 263 (INCONEL and NIMONIC are registered trademarks of Special Metals Corporation), and HaynesRTM 282RTM (Haynes and 282 are registered trademarks of Haynes International) was performed. gamma'-precipitate free zones were identified in two of these three alloys, and their development was linked to the evolution of phases that precipitate at the expense of gamma'. Alloy 282 was shown to avoid precipitate free zone formation because the precipitates that form during long term aging in this alloy are poor in the gamma'-forming elements. Next, the microstructural evolution of INCONELRTM 740H (a compositional variant of alloy 740) during creep was investigated. Gleeble-based interrupted creep and creep-rupture testing was used to

  6. Long-time creep behavior of Nb-1Zr alloy containing carbon

    NASA Technical Reports Server (NTRS)

    Titran, R. H.

    1986-01-01

    Creep tests were conducted on the Nb-1Zr base alloy with and without carbon. Testing was performed at 10 to the -6 MPa in the 1350 to 1400 K range. Creep times, to 1 percent strain, ranged from 60 to 6000 hr. All 1 percent creep data were filled by linear regression to a temperature compensating rate equation. The Nb-1Zr-0.06C alloy, tested in a weakened aged condition, appears to be four times as strong as the Nb-1Zr alloy.

  7. Generation of long time creep data on refractory alloys at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.; Ebert, R. R.

    1973-01-01

    Four separate studies of various aspects of the vacuum creep behavior of two tantalum alloys (T-111 and ASTAR 811C) and of pure CVD tungsten are reported. The first part of the program involved a study of the influence of high temperature pre-exposure to vacuum or to liquid lithium on the subsequent creep behavior T-111 alloy. Results of this study revealed significant effects of pre-exposure on the 1% creep life of T-111, with life reductions of about 3 orders of magnitude being observed in extreme cases. The second part of this study involved an investigation of the creep behavior of T-111 under conditions of continuously increasing stress and decreasing temperature which simulated the conditions anticipated in radioisotope capsule service. Results of this study showed that such test conditions produced a creep curve having a very unusual shape, and led to the identification of a new creep design parameter for this type of service. The third area of investigation was a study of the influence of heat treatment on the microstructure and creep behavior of ASTAR 811C. The fourth part of the program was directed toward a preliminary characterization of the 1% creep life of CVD tungsten as obtained from two different sources.

  8. High-temperature flaw assessment procedure: A state-of-the-art survey

    SciTech Connect

    Ruggles, M.B.; Takahashi, Y.

    1989-05-01

    High-temperature crack growth under cyclic, static, and combined loading is received with an emphasis on fracture mechanics aspects. Experimental studies of the effects of loading history, microstructure, temperature, and environment on crack growth behavior are described and interpreted. The experimental evidence is used to examine crack growth parameters and theoretical models for fatigue, creep, and creep-fatigue crack propagation at elevated temperatures. The limitations of both elastic and elastic-plastic fracture mechanics for high-temperature subcritical crack growth are assessed. Existing techniques for modeling critical crack growth/ligament instability failure are also presented. Related topics of defect modeling and engineering flaw assessment procedures, nondestructive evaluation methods, and probabilistic failure analysis are briefly discussed. 142 refs., 33 figs.

  9. The Effect of Creep on the Residual Stresses Generated During Silicon Sheet Growth

    NASA Technical Reports Server (NTRS)

    Hutchinson, J. W.; Lambropoulos, J. C.

    1984-01-01

    The modeling of stresses generated during the growth of thin silicon sheets at high speeds is an important part of the EFG technique since the experimental measurement of the stresses is difficult and prohibitive. The residual stresses which arise in such a growth process lead to serious problems which make thin Si ribbons unsuitable for fabrication. The constitutive behavior is unrealistic because at high temperature (close to the melting point) Si exhibits considerable creep which significantly relaxes the residual stresses. The effect of creep on the residual stresses generated during the growth of Si sheets at high speeds was addressed and the basic qualitative effect of creep are reported.

  10. Effect of Double Aging Heat Treatment on the Short-Term Creep Behavior of the Inconel 718

    NASA Astrophysics Data System (ADS)

    Caliari, Felipe Rocha; Candioto, Kátia Cristiane Gandolpho; Couto, Antônio Augusto; Nunes, Carlos Ângelo; Reis, Danieli Aparecida Pereira

    2016-04-01

    This research studies the effect of double aging heat treatment on the short-term creep behavior of the superalloy Inconel 718. The superalloy, received in the solution treated state, was subjected to an aging treatment which comprises a solid solution at 1095 °C for 1 h, a first aging step of 955 °C for 1 h, then aged at 720 and 620 °C, 8 h each step. Creep tests at constant load mode, under temperatures of 650, 675, 700 °C and stress of 510, 625 and 700 MPa, were performed before and after heat treatment. The results indicate that after the double aging heat treatment creep resistance is increased, influenced by the presence of precipitates γ' and γ″ and its interaction with the dislocations, by grain size growth (from 8.20 to 7.23 ASTM) and the increase of hardness by approximately 98%. Creep parameters of primary and secondary stages have been determined. There is a breakdown relationship between dot{\\upvarepsilon }_{s} and stress at 650 °C of Inconel 718 as received, around 600 MPa. By considering the internal stress values, effective stress exponent, effective activation energy, and TEM images of Inconel 718 double aged, it is suggested that the creep mechanism is controlled by the interaction of dislocations with precipitates. The fracture mechanism of Inconel 718 as received is transgranular (coalescence of dimples) and mixed (transgranular-intergranular), whereas the Inconel 718 double aged condition crept surfaces evidenced the intergranular fracture mechanism.

  11. Effect of Double Aging Heat Treatment on the Short-Term Creep Behavior of the Inconel 718

    NASA Astrophysics Data System (ADS)

    Caliari, Felipe Rocha; Candioto, Kátia Cristiane Gandolpho; Couto, Antônio Augusto; Nunes, Carlos Ângelo; Reis, Danieli Aparecida Pereira

    2016-06-01

    This research studies the effect of double aging heat treatment on the short-term creep behavior of the superalloy Inconel 718. The superalloy, received in the solution treated state, was subjected to an aging treatment which comprises a solid solution at 1095 °C for 1 h, a first aging step of 955 °C for 1 h, then aged at 720 and 620 °C, 8 h each step. Creep tests at constant load mode, under temperatures of 650, 675, 700 °C and stress of 510, 625 and 700 MPa, were performed before and after heat treatment. The results indicate that after the double aging heat treatment creep resistance is increased, influenced by the presence of precipitates γ' and γ″ and its interaction with the dislocations, by grain size growth (from 8.20 to 7.23 ASTM) and the increase of hardness by approximately 98%. Creep parameters of primary and secondary stages have been determined. There is a breakdown relationship between dot{\\upvarepsilon }_{{s}} and stress at 650 °C of Inconel 718 as received, around 600 MPa. By considering the internal stress values, effective stress exponent, effective activation energy, and TEM images of Inconel 718 double aged, it is suggested that the creep mechanism is controlled by the interaction of dislocations with precipitates. The fracture mechanism of Inconel 718 as received is transgranular (coalescence of dimples) and mixed (transgranular-intergranular), whereas the Inconel 718 double aged condition crept surfaces evidenced the intergranular fracture mechanism.

  12. Fractal and probability analysis of creep crack growth behavior in 2.25Cr-1.6W steel incorporating residual stresses

    NASA Astrophysics Data System (ADS)

    Xu, Mengjia; Xu, Jijin; Lu, Hao; Chen, Jieshi; Chen, Junmei; Wei, Xiao

    2015-12-01

    In order to clarify creep crack growth behavior in 2.25Cr-1.6W steel incorporating residual stresses, creep crack tests were carried out on the tension creep specimens, in which the residual stresses were generated by local remelting and cooling. Residual stresses in the specimens were measured using Synchrotron X-ray diffraction techniques. The fracture surface of the creep specimen was analyzed using statistical methods and fractal analysis. The relation between fractal dimension of the fracture surface and fracture mode of the creep specimen was discussed. Due to different fracture mechanisms, the probability density functions of the height coordinates vary with the intergranular crack percentage. Good fitting was found between Gaussian distribution and the probability function of height coordinates of the high percentage intergranular crack surface.

  13. CREEP AND CREEP-FATIGUE OF ALLOY 617 WELDMENTS

    SciTech Connect

    Wright, Jill; Carroll, Laura; Wright, Richard

    2014-08-01

    The Very High Temperature Reactor (VHTR) Intermediate Heat Exchanger (IHX) may be joined to piping or other components by welding. Creep-fatigue deformation is expected to be a predominant failure mechanism of the IHX1 and thus weldments used in its fabrication will experience varying cyclic stresses interrupted by periods of elevated temperature deformation. These periods of elevated temperature deformation are greatly influenced by a materials’ creep behavior. The nickel-base solid solution strengthened alloy, Alloy 617, is the primary material candidate for a VHTR-type IHX, and it is expected that Alloy 617 filler metal will be used for welds. Alloy 617 is not yet been integrated into Section III of the Boiler and Pressure Vessel Code, however, nuclear component design with Alloy 617 requires ASME (American Society of Mechanical Engineers) Code qualification. The Code will dictate design for welded construction through significant performance reductions. Despite the similar compositions of the weldment and base material, significantly different microstructures and mechanical properties are inevitable. Experience of nickel alloy welds in structural applications suggests that most high temperature failures occur at the weldments or in the heat-affected zone. Reliably guarding against this type of failure is particularly challenging at high temperatures due to the variations in the inelastic response of the constituent parts of the weldment (i.e., weld metal, heat-affected zone, and base metal) [ref]. This work focuses on the creep-fatigue behavior of nickel-based weldments, a need noted during the development of the draft Alloy 617 ASME Code Case. An understanding of Alloy 617 weldments when subjected to this important deformation mode will enable determination of the appropriate design parameters associated with their use. Specifically, the three main areas emphasized are the performance reduction due to a weld discontinuity in terms of the reduced number of

  14. The Microstructure, Creep, and Tensile Behavior for Ti-5Al-45Nb (Atomic Percent) Fully- β Alloy

    NASA Astrophysics Data System (ADS)

    Cowen, C. J.; Boehlert, C. J.

    2007-11-01

    The microstructure, tensile, and creep behavior of a Ti-5Al-45Nb (at. pct) alloy was evaluated. The main objective of processing and characterizing this alloy was to obtain the constituent properties of a fully- β Ti-Al-Nb alloy to aid in modeling the tensile and creep properties of two-phase orthorhombic + body-centered-cubic (O + bcc) alloys. A second objective was to compare the tensile and creep behavior of this fully- β alloy to that for two-phase O + bcc alloys. This alloy exhibited a single-phase microstructure, containing the disordered bcc phase ( β), after all the processing and heat treatments performed. This alloy was easily fabricated and workable; however, its creep resistance was significantly worse than that for fully-O and two-phase O + bcc alloys. The alloy exhibited little strain hardening along with a room-temperature yield strength (YS) of 545 MPa, an ultimate tensile stress (UTS) of 559 MPa, a Young’s modulus (E) of 86 GPa, and a tensile elongation to failure of 25 pct. Extensive surface slip was evident on the deformed material. Its room-temperature tensile properties were quite similar to those for a fully- β Ti-12Al-38Nb microstructure (YS = 553 MPa, UTS = 566 MPa, E = 84, and ɛ f > 27 pct). Thus, the room-temperature tensile properties and behavior of fully- β Ti-Al-Nb microstructures containing 50 at. pct Ti are not sensitive to compositional variations between 5 to 12 at. pct Al and 38 to 45 at. pct Nb.

  15. Methods for very high temperature design

    SciTech Connect

    Blass, J.J.; Corum, J.M.; Chang, S.J.

    1989-01-01

    Design rules and procedures for high-temperature, gas-cooled reactor components are being formulated as an ASME Boiler and Pressure Vessel Code Case. A draft of the Case, patterned after Code Case N-47, and limited to Inconel 617 and temperatures of 982/degree/C (1800/degree/F) or less, will be completed in 1989 for consideration by relevant Code committees. The purpose of this paper is to provide a synopsis of the significant differences between the draft Case and N-47, and to provide more complete accounts of the development of allowable stress and stress rupture values and the development of isochronous stress vs strain curves, in both of which Oak Ridge National Laboratory (ORNL) played a principal role. The isochronous curves, which represent average behavior for many heats of Inconel 617, were based in part on a unified constitutive model developed at ORNL. Details are also provided of this model of inelastic deformation behavior, which does not distinguish between rate-dependent plasticity and time-dependent creep, along with comparisons between calculated and observed results of tests conducted on a typical heat of Inconel 617 by the General Electric Company for the Department of Energy. 4 refs., 15 figs., 1 tab.

  16. Novel Experiments to Characterize Creep-Fatigue Degradation in VHTR Alloys

    SciTech Connect

    J. K. Wright; J. A. Simpson; L. J. Carroll; R. N. Wright; T.-L. Sham

    2013-10-01

    It is well known in energy systems that the creep lifetime of high temperature alloys is significantly degraded when a cyclic load is superimposed on components operating in the creep regime. A test method has been developed in an attempt to characterize creep-fatigue behavior of alloys at high temperature. The test imposes a hold time during the tensile phase of a fully reversed strain-controlled low cycle fatigue test. Stress relaxation occurs during the strain-controlled hold period. This type of fatigue stress relaxation test tends to emphasize the fatigue portion of the total damage and does not necessarily represent the behavior of a component in-service well. Several different approaches to laboratory testing of creep-fatigue at 950°C have been investigated for Alloy 617, the primary candidate for application in VHTR heat exchangers. The potential for mode switching in a cyclic test from strain control to load control, to allow specimen extension by creep, has been investigated to further emphasize the creep damage. In addition, tests with a lower strain rate during loading have been conducted to examine the influence of creep damage occurring during loading. Very short constant strain hold time tests have also been conducted to examine the influence of the rapid stress relaxation that occurs at the beginning of strain holds.

  17. A novel on chip test method to characterize the creep behavior of metallic layers under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Lapouge, P.; Onimus, F.; Vayrette, R.; Raskin, J.-P.; Pardoen, T.; Bréchet, Y.

    2016-08-01

    An on chip test method has been developed to characterize the irradiation creep behavior of thin freestanding films under uniaxial tension. The method is based on the use of a long beam involving large internal stress protected from the irradiation flux that imposes a spring like deformation to a specimen beam. These elementary freestanding structures fabricated using a combination of deposition, lithography and release steps are multiplied with different dimensions in order to test different levels of stress and of initial plastic deformation. The method has been validated on 200 and 500 nm thick copper films under heavy copper ions irradiation. The irradiation creep rate is shown to be at least one order of magnitude larger than in the absence of irradiation.

  18. Redistribution of a grain-boundary glass phase during creep of silicon nitride ceramics

    SciTech Connect

    Jin, Q.; Ning, X.G.; Wilkinson, D.S.; Weatherly, G.C.

    1997-03-01

    The compressive creep behavior of a high-purity silicon nitride ceramic with and without the addition of Ba was studied at 1,400 C. Two distinct creep stages were observed during high-temperature deformation of both materials. Transmission electron microscopy (TEM) has been used to characterize the intergranular glass film thickness. Statistical analysis of a number of grain-boundary films indicates that the film thickness is confined to a narrow range in the as-sintered materials. However, the mean thickness is greater in the Ba-doped ceramic than in the undoped material. The standard deviation of the film thickness of a given material is considerably larger after creep than before. The authors conclude that the grain-boundary glass phase is redistributed during creep, suggesting that viscous flow of the glass phase is responsible for the first stage of the creep process.

  19. Fundamental Processes of Coupled Radiation Damage and Mechanical Behavior in Nuclear Fuel Materials for High Temperature Reactors

    SciTech Connect

    Phillpot, Simon; Tulenko, James

    2011-09-08

    The objective of this work has been to elucidate the relationship among microstructure, radiation damage and mechanical properties for nuclear fuel materials. As representative nuclear materials, we have taken an hcp metal (Mg as a generic metal, and Ti alloys for fast reactors) and UO2 (representing fuel). The degradation of the thermo-mechanical behavior of nuclear fuels under irradiation, both the fissionable material itself and its cladding, is a longstanding issue of critical importance to the nuclear industry. There are experimental indications that nanocrystalline metals and ceramics may be more resistant to radiation damage than their coarse-grained counterparts. The objective of this project look at the effect of microstructure on radiation damage and mechanical behavior in these materials. The approach to be taken was state-of-the-art, large-scale atomic-level simulation. This systematic simulation program of the effects of irradiation on the structure and mechanical properties of polycrystalline Ti and UO2 identified radiation damage mechanisms. Moreover, it will provided important insights into behavior that can be expected in nanocrystalline microstructures and, by extension, nanocomposites. The fundamental insights from this work can be expected to help in the design microstructures that are less susceptible to radiation damage and thermomechanical degradation.

  20. The Effect of Thermomechanical Processing on the Tensile, Fatigue, and Creep Behavior of Magnesium Alloy AM60

    SciTech Connect

    Chen, Zhe; Huang, J; Decker, R; Lebeau, S; Walker, Larry R; Cavin, Odis Burl; Watkins, Thomas R; Boehlert, C. J.

    2011-01-01

    Tensile, fatigue, fracture toughness, and creep experiments were performed on a commercially available magnesium-aluminum alloy (AM60) after three processing treatments: (1) as-THIXOMOLDED (as-molded), (2) THIXOMOLDED then thermomechanically processed (TTMP), and (3) THIXOMOLDED then TTMP then annealed (annealed). The TTMP procedure resulted in a significantly reduced grain size and a tensile yield strength greater than twice that of the as-molded material without a debit in elongation to failure ({epsilon}{sub f}). The as-molded material exhibited the lowest strength, while the annealed material exhibited an intermediate strength but the highest {epsilon}{sub f} (>1 pct). The TTMP and annealed materials exhibited fracture toughness values almost twice that of the as-molded material. The as-molded material exhibited the lowest fatigue threshold values and the lowest fatigue resistance. The annealed material exhibited the greatest fatigue resistance, and this was suggested to be related to its balance of tensile strength and ductility. The fatigue lives of each material were similar at both room temperature (RT) and 423 K (150 C). The tensile-creep behavior was evaluated for applied stresses ranging between 20 and 75 MPa and temperatures between 373 and 473 K (100 and 200 C). During both the fatigue and creep experiments, cracking preferentially occurred at grain boundaries. Overall, the results indicate that thermomechanical processing of AM60 dramatically improves the tensile, fracture toughness, and fatigue behavior, making this alloy attractive for structural applications. The reduced creep resistance after thermomechanical processing offers an opportunity for further research and development.

  1. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  2. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-12-31

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with super-heated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200{degrees}C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220{degrees}C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: (1) At relative pressures over 0.6 the capillarity forces are very important. (2) There is no significant temperature effect. (3) Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. (4) Pores smaller than 15 {Angstrom} do not contribute to the adsorbed mass.

  3. Constitutive Modeling of High-Temperature Flow Behavior of an Nb Micro-alloyed Hot Stamping Steel

    NASA Astrophysics Data System (ADS)

    Zhang, Shiqi; Feng, Ding; Huang, Yunhua; Wei, Shizhong; Mohrbacher, Hardy; Zhang, Yue

    2016-03-01

    The thermal deformation behavior and constitutive models of an Nb micro-alloyed 22MnB5 steel were investigated by conducting isothermal uniaxial tensile tests at the temperature range of 873-1223 K with strain rates of 0.1-10 s-1. The results indicated that the investigated steel showed typical work hardening and dynamic recovery behavior during hot deformation, and the flow stress decreased with a decrease in strain rate and/or an increase in temperature. On the basis of the experimental data, the modified Johnson-Cook (modified JC), modified Norton-Hoff (modified NH), and Arrhenius-type (AT) constitutive models were established for the subject steel. However, the flow stress values predicted by these three models revealed some remarkable deviations from the experimental values for certain experimental conditions. Therefore, a new combined modified Norton-Hoff and Arrhenius-type constitutive model (combined modified NH-AT model), which accurately reflected both the work hardening and dynamic recovery behavior of the subject steel, was developed by introducing the modified parameter k ɛ. Furthermore, the accuracy of these constitutive models was assessed by the correlation coefficient, the average absolute relative error, and the root mean square error, which indicated that the flow stress values computed by the combined modified NH-AT model were highly consistent with the experimental values (R = 0.998, AARE = 1.63%, RMSE = 3.85 MPa). The result confirmed that the combined modified NH-AT model was suitable for the studied Nb micro-alloyed hot stamping steel. Additionally, the practicability of the new model was also verified using finite element simulations in ANSYS/LS-DYNA, and the results confirmed that the new model was practical and highly accurate.

  4. Silicon carbide as an oxidation-resistant high-temperature material. 1: Oxidation and heat corrosion behavior

    NASA Technical Reports Server (NTRS)

    Schlichting, J.

    1981-01-01

    The oxidation and corrosion behavior of SiC (in the form of a SiC powder) and hot-pressed and reaction-bound material were studied. The excellent stability of SiC in an oxidizing atmosphere is due to the development of protective SiO2 coatings. Any changes in these protective layers (e.g., due to impurities, reaction with corrosive media, high porosity of SiC, etc.) lead in most cases to increased rates of oxidation and thus restrict the field of SiC application.

  5. Influences of Cr content and PWHT on microstructure and oxidation behavior of stainless steel weld overlay cladding materials in high temperature water

    NASA Astrophysics Data System (ADS)

    Cao, X. Y.; Ding, X. F.; Lu, Y. H.; Zhu, P.; Shoji, T.

    2015-12-01

    Influences of Cr content and post weld heat treatment (PWHT) on microstructure and oxidation behavior of stainless steel cladding materials in high temperature water were investigated. The amounts of metal oxidized and dissolved were estimated to compare the oxidation behaviors of cladding materials with different Cr contents and PWHT. The results indicated that higher Cr content led to formation of more ferrite content, and carbides were found along δ/γ phase interface after PWHT. Higher Cr content enhanced the pitting resistance and compactness of the oxide film to reduce metal amount oxidized and dissolved, which mitigated the weight changes and the formation of Fe-rich oxides. PWHT promoted more and deeper pitting holes along the δ/γ phase interface due to formation of carbides, which resulted in an increase in metal amount oxidized and dissolved, and were also responsible for more Fe-rich oxides and higher weight changes.

  6. High-temperature corrosion behavior of coatings and ODS alloys based on Fe{sub 3}Al

    SciTech Connect

    Tortorelli, P.F.; Pint, B.A.; Wright, I.G.

    1996-08-01

    Iron-aluminide coatings were prepared by gas tungsten arc and gas metal arc weld-overlay techniques. All the weld overlays showed good oxidation/sulfidation behavior under isothermal conditions, including a gas metal arc deposit with only 21 at.% Al. A rapid degradation in corrosion resistance was observed under thermal cycling conditions when the initially grown scales spalled and the subsequent rate of reaction was not controlled by the formation of slowly growing aluminum oxides. Higher starting aluminum concentrations (>{approximately}25 at.%) are needed to assure adequate oxidation/sulfidation lifetimes of the weld overlays. A variety of stable oxides was added to a base Fe-28 at.% Al-2 % Cr alloy to assess the effect of these dopants on the oxidation behavior at 1200{degrees}C. A Y{sub 2}O{sub 3} dispersion improved the scale adhesion relative to a Zr alloy addition, but wasn`t as effective as it is in other alumina-forming alloys. Preliminary data for powder-processed Fe-28 at.% Al-2% Cr exposed to the H{sub 2}S-H{sub 2}-H{sub 2}O-Ar gas at 800{degrees}C showed that the oxidation/sulfidation rate was similar to that of many Fe{sub 3}Al alloys produced by ingot metallurgy routes.

  7. Investigation of the oxidation behavior of dispersion stabilized alloys when exposed to a dynamic high temperature environment

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.

    1974-01-01

    The oxidation behavior of TD-NiCr and TD-NiCrAlY alloys have been studied at 2000 and 2200 F in static and high speed flowing air environments. The TD-NiCrAlY alloys preoxidized to produce an Al2O3 scale on the surface showed good oxidation resistance in both types of environments. The TD-NiCr alloy which had a Cr2O3 oxide scale after preoxidation was found to oxidize more than an order of magnitude faster under the dynamic test conditions than at comparable static test conditions. Although Cr2O3 normally provides good oxidation protection, it was rapidly lost due to formation of volatile CrO3 when exposed to the high speed air stream. The preferred oxide arrangement for the dynamic test consisted of an external layer of NiO with a porous mushroom type morphology, an intermediate duplex layer of NiO and Cr2O3, and a continuous inner layer of Cr2O3 in contact with the alloy substrate. An oxidation model has been developed to explain the observed microstructure and overall oxidation behavior of all alloys.

  8. Diffusion creep of enstatite at high pressures

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Mei, S.; Kohlstedt, D. L.

    2014-12-01

    Deformation behavior of fine-grained enstatite (g.s. ~ 8 μm) was investigated with triaxial compressive creep experiments at high pressures (4.2 - 6.9 GPa) and high temperatures (1373 - 1573 K) using a deformation-DIA apparatus. Experiments were carried out under anhydrous conditions. In each experiment, a sample column composed of a sample and alumina pistons was assembled with a boron nitride sleeve and graphite resistance heater into a 6.2-mm edge length cubic pressure medium. Experiments were carried out at the National Synchrotron Light Source at Brookhaven National Laboratory. In a run, differential stress and sample displacement were monitored in-situ using synchrotron x-ray diffraction and radiography, respectively. Based on results from this study, the deformation behavior of enstatite under anhydrous conditions has been quantitatively presented in the form of a flow law that describes the dependence of deformation rate on stress, temperature, and pressure. Specifically, data fitting yields the dependence of creep rate on stress with an exponent of n ≈ 1; indicating samples were deformed in the regime of diffusion creep. Experimental results also yield the dependences of creep rate on temperature and pressure with an activation energy of ~250 kJ/mol and activation volume of ~3.5×10-6 m3/mol, respectively. The flow laws for enstatite, one important constituent component for the upper mantle, quantified from this study provides a necessary constraint for modeling the dynamic activities occurring within Earth's interior.

  9. Stress-strain behavior under static loading in Gd123 high-temperature superconductors at 77 K

    NASA Astrophysics Data System (ADS)

    Fujimoto, Hiroyuki; Murakami, Akira; Teshima, Hidekazu; Morita, Mitsuru

    2013-10-01

    Mechanical properties of melt-growth GdBa2Cu3Ox (Gd123) superconducting samples with 10 wt.% Ag2O and 0.5 wt.% Pt were evaluated at 77 K through flexural tests for specimens cut from the samples in order to estimate the mechanical properties of the Gd123 material without metal substrates, buffer layers or stabilization layers. We discuss the mechanical properties; the Young's modulus and flexural strength with stress-strain behavior at 77 K. The results show that the flexural strength and fracture strain of Gd123 at 77 K are approximately 100 MPa and 0.1%, respectively, and that the origin of the fracture is defects such as pores, impurities and non-superconducting compounds. We also show that the Young's modulus of Gd123 is estimated to be 160-165 GPa.

  10. Computational and Experimental Development of Novel High Temperature Alloys

    SciTech Connect

    Kramer, M.J.; Ray, P.K.; and Akinc, M.

    2010-06-29

    The work done in this paper is based on our earlier work on developing an extended Miedema model and then using it to downselect potential alloy systems. Our approach is to closely couple the semi-empirical methodologies to more accurate ab initio methods to dentify the best candidates for ternary alloying additions. The architectural framework for our material's design is a refractory base metal with a high temperature intermetallic which provides both high temperature creep strength and a source of oxidatively stable elements. Potential refractory base metals are groups IIIA, IVA and VA. For Fossil applications, Ni-Al appears to be the best choice to provide the source of oxidatively stable elements but this system requires a 'boost' in melting temperatures to be a viable candidate in the ultra-high temperature regime (> 1200C). Some late transition metals and noble elements are known to increase the melting temperature of Ni-Al phases. Such an approach suggested that a Mo-Ni-Al system would be a good base alloy system that could be further improved upon by dding Platinum group metals (PGMs). In this paper, we demonstrate the variety of microstructures that can be synthesized for the base alloy system, its oxidation behavior as well as the oxidation behavior of the PGM substituted oxidation resistant B2 NiAl phase.

  11. Creep Behavior and Damage of Ni-Base Superalloys PM 1000 and PM 3030

    NASA Astrophysics Data System (ADS)

    Nganbe, M.; Heilmaier, M.

    2009-12-01

    Two oxide dispersion strengthening (ODS) nickel-base superalloys, a solely dispersion-strengthened alloy (PM 1000) and an additionally γ'-strengthened alloy (PM 3030) are investigated regarding creep resistance at temperatures between 600 °C and 1000 °C. The creep strength advantage of PM 3030 over PM 1000 decreases as the temperature increases due to the thermal instability of the γ' phase. The particle strengthening contribution in both alloys increases linearly with load. However, solid solution softening leads to an apparent drop in particle strengthening in PM 1000. Deformation concentration in slip bands is more accentuated in PM 3030-R34 due to additional γ' strengthening combined with strongly textured coarse and elongated grain structure. Finer, equiaxed grains reduce creep strength at higher temperatures due to grain boundary deformation processes and premature pore formation, but have only minor impact at low and intermediate temperatures.

  12. Effects of cold rolling deformation on microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Cheng; Sun, Gui-Xun; Jiang, Zhong-Hao; Ji, Chang-Tao; Liu, Jia-An; Lian, Jian-She

    2014-02-01

    Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolling deformation results in significant refinement of the microstructure of this steel, with its average twin thickness reducing from 6.4 μm to 14 nm. Nanoindentation tests at different strain rates demonstrate that the hardness of the steel with nano-scale twins (nt-HNASS) is about 2 times as high as that of steel with micro-scale twins (mt-HNASS). The hardness of nt-HNASS exhibits a pronounced strain rate dependence with a strain rate sensitivity (m value) of 0.0319, which is far higher than that of mt-HNASS (m = 0.0029). nt-HNASS shows more significant load plateaus and a higher creep rate than mt-HNASS. Analysis reveals that higher hardness and larger m value of nt-HNASS arise from stronger strain hardening role, which is caused by the higher storage rate of dislocations and the interactions between dislocations and high density twins. The more significant load plateaus and higher creep rates of nt-HNASS are due to the rapid relaxation of the dislocation structures generated during loading.

  13. Peculiarities of the Rheological Behavior for the Al-Mg-Sc-Zr Alloy Under High-Temperature Deformation

    NASA Astrophysics Data System (ADS)

    Smirnov, A. S.; Konovalov, A. V.; Pushin, V. G.; Uksusnikov, A. N.; Zvonkov, A. A.; Zajcev, I. M.

    2014-09-01

    The paper deals with a peculiar rheological behavior of the Al-Mg-Sc-Zr alloy at deformation temperatures of 330 and 360 °C and a strain rate of 0.05 s-1. It has been found that the strain resistance curve for this material consists of several portions. First there is material hardening, then softening, and again hardening. The application of the electron backscatter diffraction technique and transmission electron microscopy has elucidated that in-situ recrystallization is the main process of softening at the temperatures studied. The appearance of the second portion of hardening on the strain resistance curve results from inhibited in-situ recrystallization. At the deformation temperature of 330 °C, as distinct from the temperature of 360 °C, a small number of grains are formed on the boundaries of original grains because of insufficiently active dynamic polygonization. The presence of abounding intermetallics in the microstructure causes the development of the barrier effect of blocking free dislocations, grain and subgrain boundaries by intermetallics, thus enhancing material hardening.

  14. Deformation Behavior of Laser Welds in High Temperature Oxidation Resistant Fe-Cr-Al Alloys for Fuel Cladding Applications

    SciTech Connect

    Field, Kevin G; Gussev, Maxim N; Yamamoto, Yukinori; Snead, Lance Lewis

    2014-11-01

    Ferritic-structured Fe-Cr-Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability of three model alloys in a range of Fe-(13-17.5)Cr-(3-4.4)Al in weight percent with a minor addition of yttrium using laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds has been carried out to determine the performance of welds as a function of alloy composition. Laser welding resulted in a defect free weld devoid of cracking or inclusions for all alloys studied. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. No significant correlation was found between the deformation behavior/mechanical performance of welds and the level of Cr or Al in the alloy ranges studied.

  15. Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications

    NASA Astrophysics Data System (ADS)

    Field, Kevin G.; Gussev, Maxim N.; Yamamoto, Yukinori; Snead, Lance L.

    2014-11-01

    Ferritic-structured Fe-Cr-Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability and post-weld mechanical behavior of three model alloys in a range of Fe-(13-17.5)Cr-(3-4.4)Al (wt.%) with a minor addition of yttrium using modern laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds using sub-sized, flat dog-bone tensile specimens and digital image correlation (DIC) has been carried out to determine the performance of welds as a function of alloy composition. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. For all proposed alloys, laser welding resulted in a defect free weld devoid of cracking or inclusions.

  16. Recession Behavior of Yb2Si2O7 Phase Under High Speed Steam Jet at High Temperatures

    SciTech Connect

    Ueno, Shunkichi; Ohji, Tatsuki; Lin, Hua-Tay

    2008-01-01

    Recession behavior of Yb2Si2O7 phase was examined under high speed steam jet environment between 1300 C and 1500 C. Yb2SiO5 phase was formed on the bulk surface by the decomposition of Yb2Si2O7 phase and the elimination of silica component at elevated temperatures. The phase ratio of Yb2SiO5/Yb2Si2O7 increased up to 1400 C and then decreased above 1400 C. The relative intensity of 220 peak for Yb2Si2O7 phase increased with increasing the temperatures. Fine grains were generated on the bulk surface at 1300 C. The phase decomposition caused on the grain interior. A porous structure was formed on the bulk surface during the test at 1400 C. Surface cracks were generated for 1400 C test sample. A smooth surface was generated on the surface of 1500 C test sample. The triple points of the grains were bridged with a glassy phase.

  17. Peculiarities of the Rheological Behavior for the Al-Mg-Sc-Zr Alloy Under High-Temperature Deformation

    NASA Astrophysics Data System (ADS)

    Smirnov, A. S.; Konovalov, A. V.; Pushin, V. G.; Uksusnikov, A. N.; Zvonkov, A. A.; Zajcev, I. M.

    2014-12-01

    The paper deals with a peculiar rheological behavior of the Al-Mg-Sc-Zr alloy at deformation temperatures of 330 and 360 °C and a strain rate of 0.05 s-1. It has been found that the strain resistance curve for this material consists of several portions. First there is material hardening, then softening, and again hardening. The application of the electron backscatter diffraction technique and transmission electron microscopy has elucidated that in-situ recrystallization is the main process of softening at the temperatures studied. The appearance of the second portion of hardening on the strain resistance curve results from inhibited in-situ recrystallization. At the deformation temperature of 330 °C, as distinct from the temperature of 360 °C, a small number of grains are formed on the boundaries of original grains because of insufficiently active dynamic polygonization. The presence of abounding intermetallics in the microstructure causes the development of the barrier effect of blocking free dislocations, grain and subgrain boundaries by intermetallics, thus enhancing material hardening.

  18. Recession behavior of Lu2SiO5 under a high speed steam jet at high temperatures

    SciTech Connect

    Ueno, Akira; Ohji, Tatsuki; Lin, Hua-Tay

    2011-01-01

    Study of recession behavior of Lu{sub 2}SiO{sub 5} bulk was performed in high speed steam jet with a velocity of {approx}50 m/s temperature range between 1300 and 1500 C for 100 h. X-ray results showed that no phase change was observed for all samples after steam exposure. Detailed scanning electron microscopy examinations showed some cracks formation was observed on the bulk surface for the samples of 1400 and 1500 C. Also, porous structure was formed on the bulk surface for the samples of 1300 and 1400 C. As for 1500 C sample, the porous structure disappeared after exposure test. The high magnification images of 1300 C sample showed the depletion of grain boundary glassy phase. However, for 1400 C sample, boundary phase was formed again, and the grain growth can be identified for the sample of 1500 C. The recession mechanism can be explained by a mass transfer of evaporated species from the bulk surface and the weight loss rate measured can be expressed by Arrhenius plot.

  19. Investigation of Three Analytical Hypothesis for Determining Material Creep Behavior under Varied Loads, with an Application to 2024-T3 Aluminum-Alloy Sheet in Tension at 400 F

    NASA Technical Reports Server (NTRS)

    Berkovits, Avraham

    1961-01-01

    Three existing hypotheses are formulated mathematically to estimate tensile creep strain under varied loads and constant temperature from creep data obtained under constant load and constant temperature. hypotheses investigated include the time-hardening, strain-hardening, and life-fraction rules. Predicted creep behavior is compared with data obtained from tensile creep tests of 2024-T3 aluminum-alloy sheet at 400 F under cyclic-load conditions. creep strain under varied loads is presented on the basis of an equivalent stress, derived from the life-fraction rule, which reduces the varied-load case to a constant-load problem. Creep strain in the region of interest for structural design and rupture times, determined from the hypotheses investigated, are in fair agreement with data in most cases, although calculated values of creep strain are generally greater than the experimental values because creep recovery is neglected in the calculations.

  20. High-pressure high-temperature behavior of iron silicide (Fe5Si3) to 58 GPa and 2400K

    NASA Astrophysics Data System (ADS)

    McGuire, C. P.; Kavner, A.; Santamaria, D.

    2015-12-01

    Silicon is an important candidate for the light element in the outer core. Here we present new measurements of the equation-of-state, thermal expansion, melting temperature, and thermal conductivity of iron silicide (Fe5Si3) at high pressures and temperatures. We performed a series of X-ray diffraction experiments in the laser-heated diamond anvil cell on Fe5Si3 at ALS beamline 12.2.2. Diffraction patterns and temperature-versus-laser power curves were measured in situ at pressures up to 58 GPa and temperatures up to 2300 K. In one set of experiments both NaCl and Ne were used as the pressure transmitting, thermal insulator and pressure calibrant. In a second set of experiments, only NaCl was present and served those three purposes. The measurements yield a new thermoelastic equation of state for Fe5Si3, including bulk modulus, high-pressure thermal expansion, and the Grüneisen parameter. In addition, we have determined a lower bound on the melting behavior up to 58 GPa. This information helps constrain compositionally-sensitive models describing the density, compressibility, and dynamics of Earth's core. The temperature-versus-laser power measurements provide information about the heat flow environment in the diamond anvil cell. A comparison of the temperature-versus-laser power measurements for pure iron and Fe5Si3 yields a measure of how the presence of Si influences the thermal conductivity of iron at high pressures and temperatures. Our measurements also show a jump in thermal conductivity of NaCl across the B1- B2 phase transition. This information is important for interpreting thermal conductivity values in the present work and also has broader implications for experimental design and data interpretation in laser-heated diamond anvil cell experiments.

  1. Oxidation, Creep And Fatigue Properties of Bare and Coated 31V alloy

    SciTech Connect

    Dryepondt, Sebastien N.; Jones, Samuel J.; Zhang, Ying; Maziasz, Philip J.; Pint, Bruce A.

    2014-12-06

    Increasing the efficiency of natural gas reciprocating engines will require materials with better mechanical and corrosion resistance at high temperatures. One solution to increase the lifetime of exhaust valves is to apply an aluminide coating to prevent corrosion assisted fatigue cracking, but the impact of the coating on the valve material mechanical properties needs to be assessed. Creep and high cycle fatigue (HCF) testing were conducted at 816°C on bare and slurry or pack-coated 31V alloy. After annealing according to the 31V standard heat treatment, the coated and bare creep specimens exhibited very similar creep rupture lives. The HCF behavior of the pack-coated alloy was close to the behavior of the bar alloy, but fatigue lifetimes of slurry-coated 31V specimens had higher variability. Aluminide coatings have the potential to improve the valve performance at high temperature, but the coating deposition process needs to be tailored for the substrate standard heat treatment.

  2. 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni- Base Alloys Evaluated at 982 deg. C (1800 deg. F)

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    1999-01-01

    Power systems with operating temperatures in the range of 815 to 982 C (1500 to 1800 F) frequently require alloys that can operate for long times at these temperatures. A critical requirement is that these alloys have adequate oxidation resistance. The alloys used in these power systems require thousands of hours of operating life with intermittent shutdown to room temperature. Intermittent power plant shutdowns, however, offer the possibility that the protective scale will tend to spall (i.e., crack and flake off) upon cooling, increasing the rate of oxidative attack in subsequent heating cycles. Thus, it is critical that candidate alloys be evaluated for cyclic oxidation behavior. It was determined that exposing test alloys to ten 1000-hr cycles in static air at 982 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni-Base Alloys Evaluated at 982 C (1800 F) could give a reasonable simulation of long-time power plant operation. Iron- (Fe-), nickel- (Ni-), and cobalt- (Co-) based high-temperature alloys with sufficient chromium (Cr) and/or aluminum (Al) content can exhibit excellent oxidation resistance. The protective oxides formed by these classes of alloys are typically Cr2O3 and/or Al2O3, and are usually influenced by their Cr, or Cr and Al, content. Sixty-eight Co-, Fe-, and Ni-base high-temperature alloys, typical of those used at this temperature or higher, were used in this study. At the NASA Lewis Research Center, the alloys were tested and compared on the basis of their weight change as a function of time, x-ray diffraction of the protective scale composition, and the physical appearance of the exposed samples. Although final appearance and x-ray diffraction of the final scale products were two factors used to evaluate the oxidation resistance of each alloy, the main criterion was the oxidation kinetics inferred from the specific weight change versus time data. These data indicated a range of oxidation behavior including parabolic

  3. Synthesis, crystal structure, high-temperature behavior and magnetic properties of CoBiO(AsO4), a Co analogue of paganoite

    NASA Astrophysics Data System (ADS)

    Aliev, Almaz; Kozin, Michael S.; Colmont, Marie; Siidra, Oleg I.; Krivovichev, Sergey V.; Mentré, Olivier

    2015-09-01

    Single crystals and powder samples of Co analogue of paganoite CoBiO(AsO4) have been obtained by high-temperature solid-state reactions. Crystal structure [triclinic, , a = 5.2380(3), b = 6.8286(4), c = 7.6150(4) Å, α = 111.631(2), β = 108.376(2), γ = 108.388(2)°, V = 209.55(2) Å3] has been refined to R 1 = 0.018 on the basis of 1524 unique observed reflections. CoBiO(AsO4) is isotypic to paganoite, NiBiO(AsO4). The crystal structure can be described as based upon [OCoBi]3+ chains of edge-sharing (OBi2Co2) tetrahedra linked via (AsO4) groups. Differential thermal analysis reveals no phase decomposition till 850 °C, when the compound starts to melt. A small endothermic peak is observed near 330 °C. Thermal expansion has been studied by high-temperature powder X-ray diffraction. Thermal expansion coefficients ( α a = 10.1 × 10-6, α b = 12.6 × 10-6, α c = 10.5 × 10-6 K-1) indicate a relatively isotropic behavior with the less intense expansion direction parallel to the direction of the chains of oxocentered tetrahedra. Magnetic susceptibility of CoBiO(AsO4) reveals the presence of an antiferromagnetic ordering at T N = 15.4 K.

  4. Creep behavior and in-depth microstructural characterization of dissimilar joints

    NASA Astrophysics Data System (ADS)

    Kauffmann, F.; Klein, T.; Klenk, A.; Maile, K.

    2013-02-01

    The 700 °C power plants currently under development will utilize Ni-base alloys such as alloy 617 for components to be operated at temperatures >650 °C. Due to economic reasons for components or parts of components which are subjected to temperatures <650 °C, 2% Cr or 9-12% Cr steels is used, depending on the required mechanical properties. This makes the dissimilar joining of Ni-base alloys and Cr steels a necessity in these plants. Experimental investigations show that these joints have to be identified as weak points with regard to damage development under creep and creep-fatigue loading. The present investigation focuses on welds between the alloy 617 and 2% Cr steel. Under creep load the fracture occurs near the fusion line between the 2% Cr steel base metal and alloy 617 weld metal. To explain the reasons for this fracture location, the microstructure of this fusion line was investigated using TEM and FIB techniques after welding and after creep loading. The TEM investigations have shown a small zone in the weld metal near the fusion line exhibiting chromium depletion and clearly reduced amounts of chromium carbides, leading to a weakening of this zone.

  5. A finite element model of the effects of primary creep in an Al-SiC metal matrix composite

    NASA Astrophysics Data System (ADS)

    Atkins, Steven L.; Gibeling, Jeffery C.

    1995-12-01

    A two dimensional axisymmetric finite element model has been developed to study the creep behavior of a high-temperature aluminum alloy matrix (alloy 8009) reinforced with 11 vol pct silicon carbide paniculate. Because primary creep represents a significant portion of the total creep strain for this matrix alloy, the emphasis of the present investigation is on the influence of primary creep on the high-temperature behavior of the composite. The base alloy and composite are prepared by rapid solidification processing, resulting in a very fine grain size and the absence of precipitates that may complicate modeling of the composite. Because the matrix microstructure is unaffected by the presence of the SiC paniculate, this material is particularly well suited to continuum finite element modeling. Stress contours, strain contours, and creep curves are presented for the model. While the final distribution of stresses and strains is unaffected by the inclusion of primary creep, the overall creep response of the model reveals a significant primary strain transient. The effects of true primary creep are more significant than the primary-like transient introduced by the redistribution of stresses after loading. Examination of the stress contours indicates that the matrix axial and shear components become less uniform while the effective stress becomes more homogeneous as creep progresses and that the distribution of stresses do not change significantly with time after the strain rate reaches a steady state. These results also confirm that load transfer from the matrix to reinforcement occurs primarily through the shear stress. It is concluded that inclusion of matrix primary creep is essential to obtaining accurate representations of the creep response of metal matrix composites.

  6. 10,000-Hour Cyclic Oxidation Behavior at 982 C (1800 F) of 68 High-Temperature Co-, Fe-, and Ni-Base Alloys

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    1997-01-01

    Sixty-eight high temperature Co-, Fe-, and Ni-base alloys were tested for 10-one thousand hour cycles in static air at 982 C (1800 F). The oxidation behavior of the test samples was evaluated by specific weight change/time data, x-ray diffraction of the post-test samples, and their final appearance. The gravimetric and appearance data were combined into a single modified oxidation parameter, KB4 to rank the cyclic oxidation resistance from excellent to catastrophic. The alloys showing the 'best' resistance with no significant oxidation attack were the alumina/aluminate spinel forming Ni-base turbine alloys: U-700, NASA-VIA and B-1900; the Fe-base ferritic alloys with Al: TRW-Valve, HOS-875, NASA-18T, Thermenol and 18SR; and the Ni-base superalloy IN-702.

  7. Development of the novel ferrous-based stainless steel for biomedical applications, part I: high-temperature microstructure, mechanical properties and damping behavior.

    PubMed

    Wu, Ching-Zong; Chen, Shih-Chung; Shih, Yung-Hsun; Hung, Jing-Ming; Lin, Chia-Cheng; Lin, Li-Hsiang; Ou, Keng-Liang

    2011-10-01

    This research investigated the high-temperature microstructure, mechanical properties, and damping behavior of Fe-9 Al-30 Mn-1C-5 Co (wt.%) alloy by means of electron microscopy, experimental model analysis, and hardness and tensile testing. Subsequent microstructural transformation occurred when the alloy under consideration was subjected to heat treatment in the temperature range of 1000-1150 °C: γ → (γ+κ). The κ-phase carbides had an ordered L'1(2)-type structure with lattice parameter a = 0.385 nm. The maximum yield strength (σ(y)), hardness, elongation, and damping coefficient of this alloy are 645 MPa, Hv 292, ~54%, and 178.5 × 10(-4), respectively. These features could be useful in further understanding the relationship between the biocompatibility and the wear and corrosion resistance of the alloy, so as to allow the development of a promising biomedical material. PMID:21783164

  8. High-Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  9. Microstructural Evolution and Creep-Rupture Behavior of A-USC Alloy Fusion Welds

    NASA Astrophysics Data System (ADS)

    Bechetti, Daniel H.; DuPont, John N.; Siefert, John A.; Shingledecker, John P.

    2016-06-01

    Characterization of the microstructural evolution of fusion welds in alloys slated for use in advanced ultrasupercritical (A-USC) boilers during creep has been performed. Creep-rupture specimens involving INCONEL® 740, NIMONIC® 263 (INCONEL and NIMONIC are registered trademarks of Special Metals Corporation), and Haynes® 282® (Haynes and 282 are registered trademarks of Haynes International) have been analyzed via light optical microscopy, scanning electron microscopy, X-ray diffraction, and thermodynamic and kinetic modeling. Focus has been given to the microstructures that develop along the grain boundaries in these alloys during creep at temperatures relevant to the A-USC process cycle, and particular attention has been paid to any evidence of the formation of local γ'-denuded or γ'-free zones. This work has been performed in an effort to understand the microstructural changes that lead to a weld strength reduction factor (WSRF) in these alloys as compared to solution annealed and aged alloy 740 base metal. γ' precipitate-free zones have been identified in alloy 740 base metal, solution annealed alloy 740 weld metal, and alloy 263 weld metal after creep. Their development during long-term thermal exposure is correlated with the stabilization of phases that are rich in γ'-forming elements (e.g., η and G) and is suppressed by precipitation of phases that do not contain the γ' formers (e.g., M23C6 and μ). The location of failure and creep performance in terms of rupture life and WSRF for each welded joint is presented and discussed.

  10. Microstructural Evolution and Creep-Rupture Behavior of A-USC Alloy Fusion Welds

    NASA Astrophysics Data System (ADS)

    Bechetti, Daniel H.; DuPont, John N.; Siefert, John A.; Shingledecker, John P.

    2016-09-01

    Characterization of the microstructural evolution of fusion welds in alloys slated for use in advanced ultrasupercritical (A-USC) boilers during creep has been performed. Creep-rupture specimens involving INCONEL® 740, NIMONIC® 263 (INCONEL and NIMONIC are registered trademarks of Special Metals Corporation), and Haynes® 282® (Haynes and 282 are registered trademarks of Haynes International) have been analyzed via light optical microscopy, scanning electron microscopy, X-ray diffraction, and thermodynamic and kinetic modeling. Focus has been given to the microstructures that develop along the grain boundaries in these alloys during creep at temperatures relevant to the A-USC process cycle, and particular attention has been paid to any evidence of the formation of local γ'-denuded or γ'-free zones. This work has been performed in an effort to understand the microstructural changes that lead to a weld strength reduction factor (WSRF) in these alloys as compared to solution annealed and aged alloy 740 base metal. γ' precipitate-free zones have been identified in alloy 740 base metal, solution annealed alloy 740 weld metal, and alloy 263 weld metal after creep. Their development during long-term thermal exposure is correlated with the stabilization of phases that are rich in γ'-forming elements ( e.g., η and G) and is suppressed by precipitation of phases that do not contain the γ' formers ( e.g., M23C6 and μ). The location of failure and creep performance in terms of rupture life and WSRF for each welded joint is presented and discussed.

  11. Creep Behavior at 1273 K (1000 °C) in Nb-Bearing Austenitic Heat-Resistant Cast Steels Developed for Exhaust Component Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Yinhui; Li, Mei; Godlewski, Larry A.; Zindel, Jacob W.; Feng, Qiang

    2016-05-01

    ABSTRACT A series of Nb-bearing austenitic heat-resistant cast steels with variations of N/C ratios were investigated, and the morphological change of Nb(C,N) from faceted blocks, mixed flake-blocks to "Chinese-script" was observed as N/C ratios decreased. The creep behavior of these alloys was studied at 1273 K (1000 °C), and the longest creep life and lowest creep rate occurred in model alloys with script Nb(C,N). Residual δ-ferrites and (Cr,Fe)23C6 were adverse to creep properties. This work indicates that the control of N/C ratio is required for the as-cast microstructural strengthening.

  12. Creep Behavior at 1273 K (1000 °C) in Nb-Bearing Austenitic Heat-Resistant Cast Steels Developed for Exhaust Component Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Yinhui; Li, Mei; Godlewski, Larry A.; Zindel, Jacob W.; Feng, Qiang

    2016-07-01

    A series of Nb-bearing austenitic heat-resistant cast steels with variations of N/C ratios were investigated, and the morphological change of Nb(C,N) from faceted blocks, mixed flake-blocks to "Chinese-script" was observed as N/C ratios decreased. The creep behavior of these alloys was studied at 1273 K (1000 °C), and the longest creep life and lowest creep rate occurred in model alloys with script Nb(C,N). Residual δ-ferrites and (Cr,Fe)23C6 were adverse to creep properties. This work indicates that the control of N/C ratio is required for the as-cast microstructural strengthening.

  13. Stress rupture and creep behavior of a low pressure plasma-sprayed NiCoCrAlY coating alloy in air and vacuum

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Miner, R. V.

    1987-01-01

    The creep behavior of a NiCoCrAlY coating alloy in air and vacuum at 660 and 850 C is studied. The microstructure of the coating alloy is described. Analysis of the creep curves reveal that the secondary creep rates, the transition from secondary to tertiary creep, and the strain-to-failure are affected by the environment, preexposure, stress, and temperature. It is observed that the rupture lives of the NiCoCrAlY alloy at 660 and 850 C are greater in air than in vacuum. Several mechanisms that may explain the lack of crack growth from surface-connected pores during tests in air are proposed.

  14. Kinetics and mechanisms of primary and steady state creep in B- and Al-containing alpha silicon carbide

    NASA Astrophysics Data System (ADS)

    Davis, Robert F.; Carter, Calvin H., Jr.

    1989-07-01

    The steady state creep behavior of a number of high temperature structural ceramics has been measured and the results analyzed to determine the controlling mechanism. Pure polycrystalline silicon carbide, devoid of sintering aids, creeps by dislocation motion and climb. Silicon carbide containing B- and Al- sintering aids, creeps by grain boundary sliding controlled by diffusion mechanisms (grain boundary diffusion - Coble creep - below 1920 K; lattice diffusion - Nabarro-Herring creep-above 1920 K). The difference in behavior is attributed to the high concentration of vacancies accompanying impurity substitution in the sintered silicon carbide. Experimental measurements of grain boundary sliding offsets on polycrystalline silicon carbide have shown that the primary, transient, creep stage in this material is primarily due to plastic strain within the grains, and that the secondary, steady state, creep stage is primarily due to grain boundary sliding between the grains. The creep of a single crystal and polycrystalline niobium carbide in the 1570 to 1850 K range is controlled by dislocation glide and climb. The creep of hot pressed silicon nitrate and mullite in the 1470 to 1800 K range is controlled by grain boundary sliding due to the amorphous phase present as a consequence of Y2O3 and Al2O3 sintering aids.

  15. A New Local Debonding Model with Application to the Transverse Tensile and Creep Behavior of Continuously Reinforced Titanium Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2000-01-01

    A new, widely applicable model for local interfacial debonding in composite materials is presented. Unlike its direct predecessors, the new model allows debonding to progress via unloading of interfacial stresses even as global loading of the composite continues. Previous debonding models employed for analysis of titanium matrix composites are surpassed by the accuracy, simplicity, and efficiency demonstrated by the new model. The new model was designed to operate seamlessly within NASA Glenn's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), which was employed to simulate the time- and rate-dependent (viscoplastic) transverse tensile and creep behavior of SiC/Ti composites. MAC/GMC's ability to simulate the transverse behavior of titanium matrix composites has been significantly improved by the new debonding model. Further, results indicate the need for a more accurate constitutive representation of the titanium matrix behavior in order to enable predictions of the composite transverse response, without resorting to recalibration of the debonding model parameters.

  16. Effect of Hf-Rich Particles on the Creep Life of a High-strength Nial Single Crystal Alloy

    NASA Technical Reports Server (NTRS)

    Garg, A.; Raj, S. V.; Darolia, R.

    1995-01-01

    Additions of small amounts of Hf and Si to NiAl single crystals significantly improve their high-temperature strength and creep properties. However, if large Hf-rich dendritic particles formed during casting of the alloyed single crystals are not dissolved completely during homogenization heat treatment, a large variation in creep rupture life can occur. This behavior, observed in five samples of a Hf containing NiAl single crystal alloy tested at 1144 K under an initial stress of 241.4 MPa, is described in detail highlighting the role of interdendritic Hf-rich particles in limiting creep rupture life.

  17. High temperature sensor

    DOEpatents

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  18. Creep of Structural Nuclear Composites

    SciTech Connect

    Will Windes; R.W. Lloyd

    2005-09-01

    A research program has been established to investigate fiber reinforced ceramic composites to be used as control rod components within a Very High Temperature Reactor (VHTR) design. Two candidate systems have been identified, carbon fiber reinforced carbon (Cf/C) and silicon carbide fiber reinforced silicon carbide (SiCf/SiC) composites. One of the primary degradation mechanisms anticipated for these core components is high temperature thermal and irradiation enhanced creep. As a consequence, high temperature test equipment, testing methodologies, and test samples for very high temperature (up to 1600º C) tensile strength and long duration creep studies have been established. Actual testing of both tubular and flat, "dog-bone"-shaped tensile composite specimens will begin next year. Since there is no precedence for using ceramic composites within a nuclear reactor, ASTM standard test procedures are currently being established from these high temperature mechanical tests.

  19. High Temperature Oxidation Behavior of gamma-Ni+gamma'-Ni3Al Alloys and Coatings Modified with Pt and Reactive Elements

    SciTech Connect

    Mu, Nan

    2007-12-01

    Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000 C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455 C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedes the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain β-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al2O3 scale at elevated temperatures. The drawbacks to the currently-used {beta}-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt + Hf-modified γ-Ni + γ-Ni3Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase γ-Ni and γ'-Ni3Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al2O3 formation by suppressing the NiO growth on both γ-Ni and γ'Ni3Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at lower

  20. Development of high temperature diffusion technology for edge termination and switching behavior improvement of silicon carbide p-i-n diodes

    NASA Astrophysics Data System (ADS)

    Bolotnikov, Alexander V.

    forward voltage drop (3.3 V at 100 A/cm2) and high blocking voltage (more than 2500 V). A fabrication technology of p-i-n diodes with reduced switching losses through the incorporation of deep recombination centers via diffusion of boron was developed. The improvement of reverse recovery characteristic is attributed to the effect of localized lifetime control by recombination centers created by diffused boron. It is demonstrated that p-i-n diodes produced by high temperature diffusion exhibit better switching capability compared to epi-grown p-i-n diodes. The improved behavior is attributed to the reduced lifetime region created by the diffused boron layer. The good performance of SiC devices fabricated with diffusion implementation confirmed the viability of this process.