Science.gov

Sample records for high-temperature mossbauer spectroscopy

  1. Mossbauer Spectroscopy.

    ERIC Educational Resources Information Center

    Stevens, John G.; Bowen, Lawrence H.

    1980-01-01

    Reviews current research in Mossbauer spectroscopy, including instrumentation and experimental techniques, spectral analysis, catalysts and surfaces, environmental studies, medical applications and atmospheric air studies. Cites 346 references. (CS)

  2. Mossbauer spectroscopy with synchrotron radiation

    SciTech Connect

    Alp, E.E.; Mooney, T.M.; Toellner, T.; Sturhahn, W.

    1993-07-01

    The principles underlying observation of the Mossbauer effect with synchrotron radiation are explained. The current status of the field is reviewed, and prospects for dedicated experimental stations on third generation machines are discussed.

  3. Holdup Measures on an SRNL Mossbauer Spectroscopy Instrument

    SciTech Connect

    Dewberry, R.; Brown, T.; Salaymeh, S.

    2010-05-05

    Gamma-ray holdup measurements of a Mossbauer spectroscopy instrument are described and modeled. In the qualitative acquisitions obtained in a low background area of Savannah River National Laboratory, only Am-241 and Np-237 activity were observed. The Am-241 was known to be the instrumental activation source, while the Np-237 is clearly observed as a source of contamination internal to the instrument. The two sources of activity are modeled separately in two acquisition configurations using two separate modeling tools. The results agree well, demonstrating a content of (1980 {+-} 150) {mu}Ci Am-241 and (110 {+-} 50) {mu}Ci of Np-237.

  4. Eu doping in multiferroic BiFeO3 ceramics studied by Mossbauer and EXAFS spectroscopy.

    PubMed

    Kothari, Deepti; Raghavendra Reddy, V; Gupta, Ajay; Meneghini, Carlo; Aquilanti, Giuliana

    2010-09-01

    Bismuth ferrite ceramics (BiFeO(3)) are multifunctional materials classified as multiferroics for their special magnetic and electric properties that can be modified by substitutional doping at the Bi and/or Fe sites. Understanding the relation between magnetoelectric response and structural/electronic modification upon doping is a relevant issue. In this work, the structure of Eu-doped multiferroic systems (Bi(1-x)Eu(x)FeO(3), x = 0, 0.5, 0.1, 0.15) as well as the valence state of Fe and Eu ions have been investigated combining Mossbauer and x-ray absorption fine structure (XAFS) spectroscopy techniques. The Eu(3+) doping at the Bi site results in better magnetic properties. High temperature (57)Fe Mossbauer data and Fe K-edge XAFS results show that FeO(6) octahedron distortions reduce with Eu(3+) doping. It is conclusively shown that the observed magnetic properties in BiFeO(3) with chemical substitution (Eu) are mainly due to the structural distortions and not due to Fe multiple valence. (151)Eu Mossbauer measurements show that the Eu(3+)(Bi(3+)) site is magnetically inactive in BiFeO(3). PMID:21403301

  5. Eu doping in multiferroic BiFeO3 ceramics studied by Mossbauer and EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Kothari, Deepti; Raghavendra Reddy, V.; Gupta, Ajay; Meneghini, Carlo; Aquilanti, Giuliana

    2010-09-01

    Bismuth ferrite ceramics (BiFeO3) are multifunctional materials classified as multiferroics for their special magnetic and electric properties that can be modified by substitutional doping at the Bi and/or Fe sites. Understanding the relation between magnetoelectric response and structural/electronic modification upon doping is a relevant issue. In this work, the structure of Eu-doped multiferroic systems (Bi1 - xEuxFeO3, x = 0, 0.5, 0.1, 0.15) as well as the valence state of Fe and Eu ions have been investigated combining Mossbauer and x-ray absorption fine structure (XAFS) spectroscopy techniques. The Eu3 + doping at the Bi site results in better magnetic properties. High temperature 57Fe Mossbauer data and Fe K-edge XAFS results show that FeO6 octahedron distortions reduce with Eu3 + doping. It is conclusively shown that the observed magnetic properties in BiFeO3 with chemical substitution (Eu) are mainly due to the structural distortions and not due to Fe multiple valence. 151Eu Mossbauer measurements show that the Eu3 + (Bi3 + ) site is magnetically inactive in BiFeO3.

  6. High temperature resonant ultrasound spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Li, Guangyan; Lamberton, Gary; Gladden, Josh

    2008-03-01

    Resonant ultrasound spectroscopy (RUS) is a technique to obtain the full elastic tensor of single crystal materials by measuring the mechanical resonances of a polished sample. Any direct resonance measurement at high temperatures is limited by the fact that most ultrasound transducers have an upper operational limit of 200-300C. High temperature RUS measurements are made possible by separating the sample, placed in a tube furnace, and the transducers with buffer rods made of low acoustic attenuation materials with good thermal stability such as ceramic alumina or fused quartz. Tests on stainless steel demonstrated that the system has the ability of acquiring resonance signals at temperatures up to 800C. Experimental issues such as additional resonance peaks introduced by the buffer rods and sample loading will be addressed. The apparatus has been used to study high temperature elastic properties of p-zintl thermoelectrics, single crystal quartz, a novel piezoelectric material kepertite, and the glass transition around 400C in bulk metallic glass compounds. Good results from these studies and high temperature test runs of aluminum and stainless steel demonstrate the potential for RUS measurements at elevated temperatures.

  7. Mossbauer spectroscopy of iron in the Luna 20 regolith

    NASA Technical Reports Server (NTRS)

    Zemcik, T.; Raclavsky, K.

    1977-01-01

    Results of the Mossbauer effect measurements on Fe-57 in the average sample of the Luna 20 regolith, and their comparison with similar measurements of the Luna 16 samples are presented. Room temperature measurements of the nonmagnetic as well as magnetic components of the spectra were performed. By careful least-squares analysis, six quadrupole doublets in the inner parts of spectra were resolved. According to their splittings, they were interpreted as four types of iron in silicates (olivine, two inequivalent pyroxene sites, and a glassy fraction) and two types of nonmagnetic iron-titanium oxides (ilmenite and a spinel). Velocity-window measurements, were used to determine the average nickel content of (2.01 plus or minus 0.84) wt. %. These results are discussed in terms of distribution of iron among different phases. In comparison with the Luna 16 sample, the Luna 20 sample contains more olivine and less ilmenite as well as metal with a slightly higher nickel content.

  8. IDENTIFICATION OF IRON PHASES IN BIOSOLIDS VIA MOSSBAUER SPECTROSCOPY

    EPA Science Inventory

    Continuous debate regarding inorganic and organic phases in biosolids as prominent sorbents of metals has yielded limited definitive data. We have demonstrated with X-ray absorption and X-ray fluorescence spectroscopies that metals in biosolids have a significant association with...

  9. Synchrotron Mossbauer spectroscopy using high-speed shutters.

    SciTech Connect

    Toellner, T. S.; Alp, E. E.; Graber, T.; Henning, R. W.; Shastri, S. D.; Shenoy, G.; Sturhahn, W.

    2011-03-01

    A new method of performing Moessbauer spectroscopy with synchrotron radiation is demonstrated that involves using a high-speed periodic shutter near the focal spot of a microfocused X-ray beam. This fast microshuttering technique operates without a high-resolution monochromator and has the potential to produce much higher signal rates. It also offers orders of magnitude more suppression of unwanted electronic charge scattering. Measurement results are shown that prove the principle of the method and improvements are discussed to deliver a very pure beam of Moessbauer photons (E/{Delta}E {approx_equal} 10{sup 12}) with previously unavailable spectral brightness. Such a source will allow both Moessbauer spectroscopy in the energy domain with the many advantageous characteristics of synchrotron radiation and new opportunities for measurements using X-rays with ultra-high energy resolution.

  10. Raman and Mossbauer spectroscopy and X-ray diffractometry studies on quenched copper-ferri-aluminates.

    PubMed

    Modi, Kunal B; Raval, Pooja Y; Shah, Suraj J; Kathad, Chetan R; Dulera, Sonal V; Popat, Mansi V; Zankat, Kiritsinh B; Saija, Kiran G; Pathak, Tushar K; Vasoya, Nimish H; Lakhani, Vinay K; Chandra, Usha; Jha, Prafulla K

    2015-02-16

    Four spinel ferrite compositions of the CuAl(x)Fe(2-x)O4, x = 0.0, 0.2, 0.4, 0.6, system prepared by usual double-sintering ceramic route and quenched (rapid thermal cooling) from final sintering temperature (1373 K) to liquid nitrogen temperature (80 K) were investigated by employing X-ray powder diffractometry, (57)Fe Mossbauer spectroscopy, and micro-Raman spectroscopy at 300 K. The Raman spectra collected in the wavenumber range of 100-1000 cm(-1) were analyzed in a systematic manner and showed five predicted modes for the spinel structure and splitting of A1g Raman mode into two/three energy values, attributed to peaks belonging to each ion (Cu(2+), Fe(3+), and Al(3+)) in the tetrahedral positions. The suppression of lower-frequency peaks was explained on the basis of weakening in magnetic coupling and reduction in ferrimagnetic behavior as well as increase in stress induced by square bond formation on Al(3+) substitution. The enhancement in intensity, random variation of line width, and blue shift for highest frequency peak corresponding to A1g mode were observed. The ferric ion (Fe(3+)) concentration for different compositions determined from Raman spectral analysis agrees well with that deduced by means of X-ray diffraction line-intensity calculations and Mossbauer spectral analysis. An attempt was made to determine elastic and thermodynamic properties from Raman spectral analysis and elastic constants from cation distribution. PMID:25594232

  11. Real-Time Noise Reduction for Mossbauer Spectroscopy through Online Implementation of a Modified Kalman Filter

    SciTech Connect

    Abrecht, David G.; Schwantes, Jon M.; Kukkadapu, Ravi K.; McDonald, Benjamin S.; Eiden, Gregory C.; Sweet, Lucas E.

    2015-02-01

    Spectrum-processing software that incorporates a gaussian smoothing kernel within the statistics of first-order Kalman filtration has been developed to provide cross-channel spectral noise reduction for increased real-time signal-to-noise ratios for Mossbauer spectroscopy. The filter was optimized for the breadth of the gaussian using the Mossbauer spectrum of natural iron foil, and comparisons between the peak broadening, signal-to-noise ratios, and shifts in the calculated hyperfine parameters are presented. The results of optimization give a maximum improvement in the signal-to-noise ratio of 51.1% over the unfiltered spectrum at a gaussian breadth of 27 channels, or 2.5% of the total spectrum width. The full-width half-maximum of the spectrum peaks showed an increase of 19.6% at this optimum point, indicating a relatively weak increase in the peak broadening relative to the signal enhancement, leading to an overall increase in the observable signal. Calculations of the hyperfine parameters showed no statistically significant deviations were introduced from the application of the filter, confirming the utility of this filter for spectroscopy applications.

  12. Atomic absorption spectroscopy with high temperature flames.

    PubMed

    Willis, J B

    1968-07-01

    An account is given of the history of the development of high temperature flames for the atomic absorption measurement of metals forming refractory oxides. The principles governing the design of premix burners for such flames, and the relative merits of different types of nebulizer burner systems are described. After a brief account of the structure and emission characteristics of the premixed oxygen-acetylene and nitrous oxide-acetylene flames, the scope and limitations of the latter flame in chemical analysis are discussed. PMID:20068790

  13. Vibrational spectroscopy in high temperature dense fluids

    SciTech Connect

    Moore, D.S.; Schmidt, S.C.

    1992-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) in conjunction with a two-stage light-gas gun has been used to obtain vibrational spectra of shock-compressed liquid N{sub 2}, O{sub 2}, CO, and their mixtures, as well as liquid N{sub 2}O. The experimental spectra are compared to spectra calculated using a semiclassical model for CARS intensities to obtain vibrational frequencies, peak Raman susceptibilities, and linewidths. The derived spectroscopic parameters suggest thermal equilibrium of the vibrational populations is established in less than a few nanoseconds after shock passage. Vibrational temperatures obtained are compared to those derived from equation-of-state calculations. The variation of the vibrational frequency shift at pressure with species concentration in mixtures is investigated.

  14. Mossbauer spectroscopy and X-ray diffraction of samples from the Santa Catharina iron meteorite

    NASA Technical Reports Server (NTRS)

    Roy-Poulsen, H.; Clarke, R. S., Jr.; Jensen, G. B.; Knudsen, J. M.; Larsen, L.; Roy-Poulsen, N. O.; Vistisen, L.

    1984-01-01

    Conversion electron Mossbauer spectroscopy (CEMS) of samples from the Santa Catharina iron meteorite shows the presence of the ordered iron-nickel phase with 50% Ni, tetrataenite, and of the paramagnetic iron-nickel phase with 25% Ni. The FeNi phase with 50% Ni amounts to 70% of the iron-nickel alloys. Futhermore, the CEM spectra show the presence of small peaks from one or more spinel compounds. These small peaks are more pronounced when regions near the rim of the samples are analyzed. The X-ray diffraction of different areas of the samples, both optically dark and optically light areas, shows the presence of a diffraction pattern from a single f.c.c. lattice with a lattice parameter of a=3.58A This means that the two different Fe-Ni phases seen in the CEMS analysis occupy the same lattice. The X-ray photographs also show the presence of super-structure reflections from the ordered FeNi phase, and that the orientation of the f.c.c. lattice is the same within the whole sample.

  15. Evaluation of fine-particle catalysts: Activity testing results and phase identification using Mossbauer spectroscopy

    SciTech Connect

    Stohl, F.V.; Diegert, K.V.; Goodnow, D.; Rao, K.R.P.M.; Huggins, F.; Huffman, G.P.

    1994-10-01

    To evaluate and compare the activities/selectivities of fine- particle size catalysts being developed in the DOE/PETC Advanced Research (AR) Coal Liquefaction program by using standard coal liquefaction activity test procedures. Previously reported results have described the standard test procedure that was developed at Sandia to evaluate fine-particle size iron catalysts being developed in DOE/PETC`s AR Coal Liquefaction Program. This test uses DECS-17 Blind Canyon Coal, phenanthrene as the reaction solvent, and a factorial experimental design that enables evaluation of a catalyst over ranges of temperature (350 to 400{degrees}C), time (20 to 60 minutes), and catalyst loading (0 to 1 wt% on a dmmf coal basis). Testing has been performed on Pacific Northwest Laboratories` (PNL) 6-line ferrihydrite catalyst. Results showed that this catalyst is more active than the University of Pittsburgh`s sulfated iron oxide catalyst that was evaluated previously. PNL has also produced two additional batches of catalyst in an effort to optimize their preparation procedures for larger batches. Sandia has observed significant differences in activities among these three catalysts; these differences might be due to particle size effects, the type of drying procedure, or the amount of moisture present. Mossbauer characterization of the iron phases in the coal, catalyst precursors, and tetrahydrofuran (THF) insoluble material from liquefaction reactions has been performed on the University of Pittsburgh`s catalyst and the first PNL catalyst that was tested at Sandia. The Mossbauer results were obtained at the University of Kentucky and will be presented. Future work will include testing additional catalysts being developed in the AR Coal Liquefaction Program, developing procedures to characterize reaction products, and determining the kinetics of the reactions.

  16. Reflectance and Mossbauer spectroscopy of ferrihydrite-montmorillonite assemblages as Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, C. M.; Burns, R. G.; Chang, S. (Principal Investigator)

    1993-01-01

    Spectroscopic analyses show that Fe(3+)-doped smectites prepared in the laboratory exhibit important similarities to the soils on Mars. Ferrihydrite has been identified as the interlayer ferric component in Fe(3+)-doped smectites by a low quadrupole splitting and magnetic field strength of approximately 48 tesla in Mossbauer spectra measured at 4.2 K, as well as a crystal field transition at 0.92 micrometer. Ferrihydrite in these smectites explains features in the visible-near infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. Clay silicates have met resistance in the past as Mars soil analogs because terrestrial clay silicates exhibit prominent hydrous spectral features at 1.4, 1.9, and 2.2 micrometers; and these are observed weakly, if at all, in reflectance spectra of Mars. However, several mechanisms can weaken or compress these features, including desiccation under low-humidity conditions. The hydration properties of the interlayer cations also effect band strengths, such that a ferrihydrite-bearing smectite in the Martian environment would exhibit a 1.9 micrometers H2O absorption that is even weaker than the 2.2 micrometers structural OH absorption. Mixing experiments demonstrate that infrared spectral features of clays can be significantly suppressed and that the reflectance can be significantly darkened by mixing with only a few percent of a strongly absorbing opaque material. Therefore, the absolute reflectance of a soil on Mars may be disproportionately sensitive to a minor component. For this reason, the shape and position of spectral features and the chemical composition of potential analogs are of utmost importance in assessing the composition of the soil on Mars. Given the remarkable similarity between visible-infrared reflectance spectra of soils in bright regions on Mars and Fe(3+)-doped montmorillonites, coupled with recent observations of smectites in SNC

  17. Spectroscopy and kinetics of combustion gases at high temperatures

    SciTech Connect

    Hanson, R.K.; Bowman, C.T.

    1993-12-01

    This program involves two complementary activities: (1) development and application of cw ring dye laser absorption methods for sensitive detection of radical species and measurement of fundamental spectroscopic parameters at high temperatures; and (2) shock tube studies of reaction kinetics relevant to combustion. Species currently under investigation in the spectroscopic portion of the research include NO and CH{sub 3}; this has necessitated the continued operated at wavelengths in the range 210-230 nm. Shock tube studies of reaction kinetics currently are focussed on reactions involving CH{sub 3} radicals.

  18. Mossbauer Studies of Some Iron

    NASA Astrophysics Data System (ADS)

    Boyd, Darwin Lee

    ^{57}Fe Mossbauer spectroscopy was used to investigate several iron(III) spin crossover systems as well as a cold cholesteric liquid crystal. Tris thioseleno- and tris diselenocarbamates were found to be similar to their corresponding tris monothio and tris dithio complexes, showing increasing magnetic moment with increasing isomer shift and decreasing magnetic moment with increasing quadrupole splitting. These observations indicate that the tris thioseleno- and tris diselenocarbamates are, like their dithio analogs, spin crossover systems. Several mixed ligand thioseleno complexes were also studied and found to be similar to the corresponding dithio complexes. A possible trihydrate of Fe(S_2CN(CH _2CH_2OH) _2)_3 was investigated. Repeated attempts to reproduce a recently published four line Mossbauer spectrum for the trihydrate failed. It was concluded that the published methods actually result in the anhydrous complex. Heating of this complex in accordance with the published methods to produce the anhydrous complex resulted in decomposition. Anhydrous preparations of Fe(S_2CN(CH _2CH_2OH) _2)_3 when recrystallized from methanol without heating produced four line Mossbauer spectra at low temperatures. The temperature dependencies of the isomer shift, quadrupole splitting, and peak area indicate that, in this case, the interconversion rate between the two spin states has slowed to below the inverse of the Mossbauer time scale. This slowing is believed to be caused by partial solvation by small, nonstoichiometric, quantities of methanol. Cholesterol-2-(2-ethoxy ethoxy) ethyl carbonate was investigated via Mossbauer spectroscopy by dissolving into it 0.16wt% ^{57 }Fe enriched 1,1^' -diacetylferrocene. A glass transition temperature of 177 K and a Mossbauer Debye temperature of 32.7 K were measured. An increase in the average half width of the resonance lines above the glass transition temperature indicates the onset of diffusion in the supercooled liquid. A lack of

  19. [Application of Mossbauer spectroscopy to the study of hemoglobinopathies. Preliminary experience].

    PubMed

    Abreu, M S; Sanchís, M E; Peñalver, J A; Kanter, F

    1989-10-01

    37Fe Moessbauer spectroscopy has been applied to the study of iron deposits in patients with altered iron metabolism. Haematological parameters were also studied in order to analyse their relationship with Moessbauer results. Within the aim of this research, 12 samples of packed red blood cells were analysed: 6 with beta-thalassaemia major, 2 with S-beta-thalassaemia, 1 with sickle cell anaemia and 3 from normal subjects used as control for Moessbauer spectroscopy. Moessbauer spectra of 6 red blood cells samples showed that besides the two components, i.e., oxy and deoxy haemoglobin present in samples of normal subjects, appears a third component with Moessbauer parameters corresponding to ferritin-like iron. Correlation of % transferrin saturation (TS %) with ferritin-like iron (r = 0.90, p less than 0.05) as well as between TS % and the ratio ferritin-like iron/Hb iron (r = 0.91, p less than 0.05) was found. A tendency to correlation of serum ferritin (SF) with ferritin-like iron (r = 0.90, p less than 0.05) as well as between TS % and the ratio ferritin-like iron/Hb iron (r = 0.91, p less than 0.05) was found. A tendency to correlation of SF with ferritin-like iron (r = 0.78) and with the ratio ferritin-like iron/Hb iron, was also observed. It can be concluded that Moessbauer spectroscopy could be a useful technique in the study of this kind of pathology. PMID:2617381

  20. Novel melting investigations of iron at high-pressure using synchrotron Mossbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Jackson, J. M.; Sturhahn, W.; Lerche, M.; Zhao, J.; Sinogeikin, S. V.; Lakshtanov, D. L.; Bass, J. D.; Murakami, M.

    2005-12-01

    Seismological observations show that Earth's iron-dominated core consists of a solid inner region surrounded by a liquid outer core. The melting temperature of iron at high-pressure therefore provides a bound on the temperature regime of the core. Previously, melting studies of iron metal at high-pressures were performed by shock-compression, resistive- and laser-heating in diamond anvil cells using visual observations or synchrotron x-ray diffraction, and theoretical methods. However, the melting curve of iron is still controversial, especially at very high pressures. Here we present a novel method of detecting the solid-liquid phase boundary of iron at high-pressure using 57Fe synchrotron Mössbauer spectroscopy (SMS). Focused synchrotron radiation with 1 meV bandwidth passes through a laser-heated sample inside a diamond anvil cell. The characteristic SMS time signature is observed by fast detectors and vanishes suddenly when melting occurs. This process is described by the Lamb-Mössbauer factor f = exp(-k2), where k is the wave number of the resonant x-rays and is the mean-square displacement of the iron atoms. We will discuss our melting results in comparison with previous data and also discuss future applications of this method to the study of melting of Earth materials under pressure. In addition to the detection of melt, the Lamb-Mössbauer factor is related to the phonon density of states (PDOS) of the material investigated. Results thus far indicate that the phonon density of states of fcc-structured iron softens with increasing temperature at high-pressure. We propose that the softening of the PDOS is related to a reduction of the shear modulus. This behavior that occurs at high-pressure near the melting point of iron should be considered when extrapolating the behavior of iron to the outermost inner core conditions.

  1. Distinguishing Na, K, and H3O+ Jarosite and Alunite on Mars using VNIR, Emittance and Mossbauer Spectroscopy on the MER and Mars Express/OMEGA Missions

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.; Rothstein, Y.; Dyar, M. D.; Lane, M. D.; Klima, R. L.; Brophy, G. P.

    2005-12-01

    Jarosite has been identified in layered outcrops in Meridiani by the MER Mossbauer spectrometer [Klingelhofer, et al., 2004] and may be present elsewhere on Mars. We are studying VNIR, emittance and Mossbauer spectroscopy of a suite of synthetic and natural samples of jarosite and alunite from the Brophy collection [e.g. Brophy and Sheridan, 1965]. The characteristic NIR overtones and combination bands in this group differ not only depending on the trivalent cation (e.g. Al for alunite and Fe for jarosite), but also depending on the type of monovalent cation (typically K, Na and/or H3O). The VNIR spectrum of K-jarosite exhibits an OH stretching band at 1.47 um, an OH stretch + 2 bend combination doublet at 1.849 and 1.864 um, plus an OH stretch + bend combination triplet at 2.215, 2.265, and 2.300 um and additional OH and SO4 combination features near 2.40, 2.46, 2.50, 2.60 and 2.62 um. H3O- and Na-jarosite spectra exhibit broader features and the doublet is less resolvable. The spectrum of Na-jarosite contains a band at 1.48 um, a broad asymmetric band near 1.85 um and a triplet near 2.235, 2.275, and 2.310 um, plus additional features near 2.42, 2.47, 2.52, 2.62 and 2.64 um. Band assignments for jarosite and alunite spectra are from Bishop and Murad [2005]. We are in the process of comparing these spectra with the mid-IR and Mossbauer spectra of this jarosite group sample suite in order to perform coordinated analyses for this sulfate group on Mars using the MER and Mars Express datasets. References: Bishop, J. L., and E. Murad (2005), The visible and infrared spectral properties of jarosite and alunite, Am. Miner., 90, 1100-1107. Brophy, G. P., and M. F. Sheridan (1965), Sulfate studies IV: The jarosite-natrojarosite-hydronium jarosite solid solution series, Am. Miner., 50, 1595-1607. Klingelhofer, G., et al. (2004), Jarosite and hematite at Meridiani Planum from Opportunity's Mossbauer spectrometer, Science, 306, 1740-1745.

  2. Synthesis, structure, magnetic susceptibility and Mossbauer and Raman spectroscopies of the new oxyphosphate Fe{sub 0.50}TiO(PO{sub 4})

    SciTech Connect

    Benmokhtar, S. . E-mail: s.benmokhtar@univh2m.ac.ma; El Jazouli, A.; Chaminade, J.P.; Gravereau, P.; Wattiaux, A.; Fournes, L.; Grenier, J.C.; Waal, D.

    2006-12-15

    A new iron titanyl oxyphosphate Fe{sub 0.50}TiO(PO{sub 4}) was synthesized by both solid-state reaction and Cu{sup 2+}-Fe{sup 2+} ion exchange method. The material was then characterized by X-ray diffraction, Mossbauer spectroscopy, magnetic susceptibility measurements and Raman spectroscopy. The crystal structure of the compound was refined, using X-ray powder diffraction data, by Rietveld profile method; it crytallizes in the monoclinic system, space group P2{sub 1}/c (No.14), with a=7.4039(3)A, b=7.3838(3)A, c=7.4083(3)A, {beta}=120.36{sup o}(1), V=349.44(2)A{sup 3} and Z=4. The volume of the title compound is comparable to those of the M{sub 0.50}{sup II}TiO(PO{sub 4}) series, where M{sup II}=Mg, Co, Ni and Zn. The framework is built up from [TiO{sub 6}] octahedra and [PO{sub 4}] tetrahedra. [TiO{sub 6}] octahedra are linked together by corners and form infinite chains along the c-axis. Ti atoms are displaced from the center of octahedral units showing an alternating short distance (1.73A) and a long one (2.22A). These chains are linked together by [PO{sub 4}] tetrahedra. Fe{sup 2+} cations occupy a triangle-based antiprism sharing two faces with two [TiO{sub 6}] octahedra. Mossbauer and magnetic measurements show the existence of iron only in divalent state, located exclusively in octahedral sites with high spin confition (t{sub 2g}{sup 4}e{sub g}{sup 2}). Raman study confirms the existence of Ti-O-Ti chains.

  3. Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces

    NASA Astrophysics Data System (ADS)

    Blevins, Linda G.; Shaddix, Christopher R.; Sickafoose, Shane M.; Walsh, Peter M.

    2003-10-01

    Laser-induced breakdown spectroscopy (LIBS) was applied (1) near the superheater of an electric power generation boiler burning biomass, coal, or both; (2) at the exit of a glass-melting furnace burning natural gas and oxygen; and (3) near the nose arches of two paper mill recovery boilers burning black liquor. Difficulties associated with the high temperatures and high particle loadings in these environments were surmounted by use of novel LIBS probes. Echelle and linear spectrometers coupled to intensified CCD cameras were used individually and sometimes simultaneously. Elements detected include Na, K, Ca, Mg, C, B, Si, Mn, Al, Fe, Rb, Cl, and Ti.

  4. Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces.

    PubMed

    Blevins, Linda G; Shaddix, Christopher R; Sickafoose, Shane M; Walsh, Peter M

    2003-10-20

    Laser-induced breakdown spectroscopy (LIBS) was applied (1) near the superheater of an electric power generation boiler burning biomass, coal, or both; (2) at the exit of a glass-melting furnace burning natural gas and oxygen; and (3) near the nose arches of two paper mill recovery boilers burning black liquor. Difficulties associated with the high temperatures and high particle loadings in these environments were surmounted by use of novel LIBS probes. Echelle and linear spectrometers coupled to intensified CCD cameras were used individually and sometimes simultaneously. Elements detected include Na, K, Ca, Mg, C, B, Si, Mn, Al, Fe, Rb, Cl, and Ti. PMID:14594073

  5. Mossbauer spectrometer radiation detector

    NASA Technical Reports Server (NTRS)

    Singh, J. J. (Inventor)

    1973-01-01

    A Mossbauer spectrometer with high efficiencies in both transmission and backscattering techniques is described. The device contains a sodium iodide crystal for detecting radiation caused by the Mossbauer effect, and two photomultipliers to collect the radiation detected by the crystal. When used in the transmission technique, the sample or scatterer is placed between the incident radiation source and the detector. When used in a backscattering technique, the detector is placed between the incident radiation source and the sample of scatterer such that the incident radiation will pass through a hole in the crystal and strike the sample. Diagrams of the instrument are provided.

  6. The study of many body physics in high temperature superconductors using angle resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kaminski, Adam

    Angle Resolved Photoemission Spectroscopy (ARPES) is an experimental technique that has greatly contributed to our understanding of the electronic structure of the High Temperature Superconductors (HTSC). Over the last few years, it has provided vital information about the electronic structure, the Fermi Surface, gap anisotropy and it's temperature dependence, and a new phenomena known as the pseudogap. In this thesis we apply Angle Resolved Photoemission Spectroscopy to the study of electronic interactions in High Temperature Superconductors. The experimental portion of this thesis comprises three main areas, (i) participation in the construction of a new undulator beamline at the Synchrotron Radiation Center-Madison, Wisconsin, (ii) construction of a new ARPES system and (iii) collection and analysis of the data. The experimental results include precise determination of the Fermi Surface in BISCO 2212 and 2201, first observation of intrinsic ARPES lineshape at the nodal point of the Fermi Surface in BISCO 2212, detailed quantitative study of many body interactions along the nodal direction in normal and superconductive state, precise doping dependence analysis of the lineshape at the antinode.

  7. High temperature and pressure resonant ultrasound spectroscopy study of metal hydride systems

    NASA Astrophysics Data System (ADS)

    Adebisi, Rasheed

    The goal of this dissertation is to characterize the elastic properties of palladium hydride near the tri-critical point as a classic example of metal hydride systems using the resonant ultrasound spectroscopy. A high temperature and high pressure resonant ultrasound spectroscopy system which include the RUS cell and the direct contact transducer set-up was designed and constructed. The temperature and pressure dependent of elastic moduli of palladium hydride and palladium crystals were obtained at five isotherms near the critical temperature, 293 °C and for pressure range of 250--500 psi. A strong softening of the shear modulus was observed at temperature and pressure points around the critical points, 293 °C and 290 psi respectively. On the other hand, anomalous softening of the bulk modulus and the C' was observed in the same temperature and pressure region. The investigations includes study of the equilibrium dynamics of hydrogen absorption/desorption in metal hydrides. A color map of the equilibrium dynamics pattern was developed and correlation between the color map and the palladium hydride phases was established.

  8. Characterization of catalysts by Mossbauer spectroscopy: An application to the study of Fischer-Tropsch, hydrotreating and super Claus catalysts

    NASA Astrophysics Data System (ADS)

    van der Kraan, A. M.; Boellaard, E.; Crajé, M. W. J.

    1993-04-01

    Mössbauer spectroscopy is an excellent in-situ technique for the identification of phases present in catalysts. Applied to metallic iron catalysts used in the Fischer-Tropsch reaction it reveals a detailed picture of the carburization process and provides insight into the relation between the properties of the catalytic material and its activity. The influence of a support and the effect of alloying iron with an (in)active metal on the catalytic performance is discussed for Fe, CuFe and NiFe systems. In addition, Mössbauer spectroscopy is used for the identification of "Co-sulfide" species present in sulfided Co and CoMo catalysts applied in one of the largest chemical processes in the world, the hydrotreatment of crude oil. A structural model is proposed. Finally, the contribution of Mössbauer spectroscopic studies to the development of a new catalyst for cleaning of Claus tail gas via selective oxidation of hydrogen sulfide to elemental sulfur is discussed.

  9. Raman Spectroscopy and Structure of MgSiO3 High Temperature C2/c Clinoenstatite

    NASA Astrophysics Data System (ADS)

    Kusu, R.; Yoshiasa, A.; Nishiyama, T.; Akihiko, N.; Maki, O.; Hiroshi, A.; Sugiyama, K.

    2014-12-01

    The high-temperature clinoenstatite (HT-CEn) is one of the important MgSiO3 pyroxene polymorph. The single-crystal of C2/c HT-CEn endmember is firstly synthesized by rapid pressure-temperature quenching from 15-16 GPa and 900-1900 °C [1]. No report that it is produced as single crystal or large domain had been made on the MgSiO3 endmember. The HT-CEn-type modifications were observed in Ca-poor Mg-Fe clinoenstatite and pigeonite and are always found to be unquenchable in rapid cooling. The high pressure and high temperature experiments of MgSiO3 composition were carried out with a Kawai-type multi-anvil apparatus. The samples were quenched by rapidly releasing the oil pressure load and/or by blow out of anvil cell gasket. The space group of C2/c is strictly determined by Rigaku RAPID Weissenberg photographs and synchrotron radiation. HT-CEn and HP-CEn have the greatly different beta angles of 109° and 101°, respectively. Raman spectra of HT-CEn and OEn single crystals were collected at ambient conditions. The unusual bonding distances frozen in the metastable structure. The observed average Mg1-O and Si-O distances in HT-CEn [1.997 and 1.620 Å, respectively] are shorter than those in HP-CEn at 7.9GPa. The average Mg2-O distance in HT-CEn [2.311 Å] is significantly longer than that in L-CEn, providing an abnormal larger distance for the Mg2 atom. The Mg2 polyhedron in HT-CEn is more irregular than that in HP-CEn. The Debye-Waller factor of atoms in HT-CEn have abnormally larger amplitude. The static irregularity of the atomic displacement caused by the transition is frozen in the metastable state. Almost all Raman peaks are broad owing to the large statistical positional arrangement of atoms in HT-CEn. The braod patterns have the common feature which were obserbed by the high temperature Raman spectroscopy for pyroxene. The peaks have been confirmed at 108, 259, 684, and 1097 cm-1. Peak positions for HT-CEn are different from those for protoenstatite under high

  10. Trace species detection: Spectroscopy and molecular energy transfer at high temperature

    SciTech Connect

    Gray, J.A.

    1993-12-01

    Monitoring the concentration of trace species such as atomic and molecular free radicals is essential in forming predictive models of combustion processes. LIF-based techniques have the necessary sensitivity for concentration and temperature measurements but have limited accuracy due to collisional quenching in combustion applications. The goal of this program is to use spectroscopic and kinetic measurements to quantify nonradiative and collisional effects on LIF signals and to develop new background-free alternatives to LIF. The authors have measured the natural linewidth of several OH A-X (3,0) rotational transitions to determine predissociation lifetimes in the upper state, which were presumed to be short compared to quenching lifetimes, and as a result, quantitative predictions about the applicability of predissociation fluorescence methods at high pressures are made. The authors are investigating collisional energy transfer in the A-state of NO. Quenching rates which enable direct corrections to NO LIF quantum yields at high temperature were calculations. These quenching rates are now being used in studies of turbulence/chemistry interactions. The authors have measured the electric dipole moment {mu} of excited-state NO using Stark quantum-beat spectroscopy. {mu} is an essential input to a harpoon model which predicts quenching efficiencies for NO (A) by a variety of combustion-related species. The authors are developing new coherent multiphoton techniques for measurements of atomic hydrogen concentration in laboratory flames to avoid the quenching problems associated with previous multiphoton LIF schemes.

  11. Universal features in the photoemission spectroscopy of high-temperature superconductors

    PubMed Central

    Zhao, Junjing; Chatterjee, Utpal; Ai, Dingfei; Hinks, David G.; Zheng, Hong; Gu, G. D.; Castellan, John-Paul; Rosenkranz, Stephan; Claus, Helmut; Norman, Michael R.; Randeria, Mohit; Campuzano, Juan Carlos

    2013-01-01

    The energy gap for electronic excitations is one of the most important characteristics of the superconducting state, as it directly reflects the pairing of electrons. In the copper–oxide high-temperature superconductors (HTSCs), a strongly anisotropic energy gap, which vanishes along high-symmetry directions, is a clear manifestation of the d-wave symmetry of the pairing. There is, however, a dramatic change in the form of the gap anisotropy with reduced carrier concentration (underdoping). Although the vanishing of the gap along the diagonal to the square Cu–O bond directions is robust, the doping dependence of the large gap along the Cu–O directions suggests that its origin might be different from pairing. It is thus tempting to associate the large gap with a second-order parameter distinct from superconductivity. We use angle-resolved photoemission spectroscopy to show that the two-gap behavior and the destruction of well-defined electronic excitations are not universal features of HTSCs, and depend sensitively on how the underdoped materials are prepared. Depending on cation substitution, underdoped samples either show two-gap behavior or not. In contrast, many other characteristics of HTSCs, such as the dome-like dependence of on doping, long-lived excitations along the diagonals to the Cu–O bonds, and an energy gap at the Brillouin zone boundary that decreases monotonically with doping while persisting above (the pseudogap), are present in all samples, irrespective of whether they exhibit two-gap behavior or not. Our results imply that universal aspects of high- superconductivity are relatively insensitive to differences in the electronic states along the Cu–O bond directions. PMID:24101464

  12. Polarized X-Ray Absorption Spectroscopy Studies of Copper in High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Mini, Susan M.

    One can take advantage of the linearly polarized nature of the x-rays from a synchrotron to study the electronic and structural properties of single crystals or magnetically aligned powders. Since the advent of layered copper oxide compounds as high temperature superconductors (1) the structures of La_{rm 2-x}Sr _{rm x}CuO _4, Nd_{rm 2-x }Ce_{rm x}CuO _4 and YBa_2Cu _3O_{rm 7-y} have been of extreme interest. In this study, the powder samples of these compounds were magnetically aligned such that the electric vector was either perpendicular or parallel to the crystallographic c axis. The results of polarized XANES (X-ray Absorption Near Edge Spectroscopy) measurements at the copper K-edge (8979 eV) of all three structures will be presented. The EXAFS (Extended X-ray Absorption Fine Structure) of magnetically aligned YBa_2Cu _3O_{6.9} were used to characterize the local structure as well as study the structural changes of the Cu1-O4 and Cu2-O4 bonds in as a function of temperature (20 to 300 K). In this manner, the Cu1-O4 and Cu2-O4 bonds, which are thought to play a role in the superconductivity of the sample, are distinguishable. The complementary technique of XANES is used to study the electronic structure of the superconducting copper oxides as well as alkali cuprates M^{ rm I}CuO_2 (M = Na, K, Rb and Cs) and rare earth copper oxides RE _2CuO_4 (RE = Pr, Nd, Sm, Eu and Gd). A method (2) for determining the effective charge is described and applied to the copper oxides. ftn 1. J. G. Bednorz and K. A. Muller; Z Phys. B64, 189 (1986). 2. E. E. Alp, G L. Goodman, L. Soderholm, S.M. Mini, M. Ramanathan, G. K. Shenoy and A. S. Bommannavar, J.Phys. Condens, Matter 1, 6463 (1989).

  13. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    SciTech Connect

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.; Maryland Univ., College Park, MD . Dept. of Chemistry and Biochemistry; Lawrence Berkeley Lab., CA )

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeI{alpha} (584{angstrom}) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As{sub 2}, As{sub 4}, and ZnCl{sub 2} are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab.

  14. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  15. In-plane tunneling spectroscopy of the high temperature superconductor, Bi-2212

    NASA Astrophysics Data System (ADS)

    Kane, Jeffrey William

    A novel technique for tunneling into the a-b plane of the layered cuprate (copper-oxide) superconductors is described and applied to the study of the in-plane tunneling spectra of the high temperature superconductor Bisb2Srsb2CaCusb2Osb8 (Bi-2212). This technique involves using a home-built low-temperature scanning tunneling microscope to form mechanical tunneling junctions with well-prepared edges of single crystals. Our research group has pioneered the use of these cross-junctions, and the results presented in this dissertation constitute the first systematic investigation employing this technique. Using this cross-junction tunneling technique, the superconducting energy gap has been measured along various directions within the a-b plane of Bi-2212. The results show unambiguously that the in-plane energy gap is highly anisotropic. The measured energy gap Deltasbp-p is largest along the a-axis direction, with Deltasbp-p≈ 36 meV and decreases gradually with Deltasbp-p≈ 20 meV along the direction 45sp° from the a-axis. The anisotropy pattern is found to have a four-fold symmetry. Using these results, an angular mapping of the in-plane gap anisotropy is presented and compared to theoretical predictions as well as results from other experiments. Effects due to the gap anisotropy on the tunneling spectra are also discussed. In another set or experiments, the effects of Pb doping on the tunneling spectra of Bi-2212 were studied. Doping Bi-2212 with Pb causes a partial substitution of the Bi atoms between the conducting Cu-Osb2 planes, and modifies some of the electronic and structural properties of the material. In this study it was found that while Pb doping decreases Tsbc profoundly, it has a minimal effect on the in-plane energy gap, leading to a significant increase in the reduced gap, 2Delta /ksb{B}Tsb{c}. This result is consistent with other studies of the effects of in-plane dopants, but is the first evidence of such an effect attributable to defects

  16. High Temperature Line Lists For Carbon Monoxide From Microwave Discharge Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rezaie, Farnood; Figueiredo, P.; Arnold, J.; Peale, R.

    2011-05-01

    In gas giant exoplanets that orbit close to their parent stars, known as hot Jupiters, carbon is thought to be sequestered primarily in carbon monoxide and methane. The relative CO and CH4 abundances inform us about temperature and pressure conditions and also about mixing by global winds driven by intense but asymmetric heating for these tidally-locked bodies. Emission spectra collected during secondary eclipses, as the hot Jupiter passes behind its parent star, in principle allows a determination of the CO:CH4 concentration ratio. Since hot Jupiters exist at temperatures of order 1000 K, accurate model atmospheres require high temperature line lists for relevant molecules, for which existing data bases are apparently incomplete. Here we present high temperature emission spectra of CO. The spectra were obtained using a microwave discharge apparatus where the source of CO was carbon dioxide that dissociates under microwave heating. The pressure inside the discharge tube was of order 1 Torr and the microwave power applied to the cavity was 70 W. Emission exited the discharge tube via a ZnSe window and entered through a NaCl window the emission port of the evacuated Fourier spectrometer. The spectrum was measured in the range 1800-2400 cm-1 at a resolution of 0.1 cm-1 using a KBr beamsplitter and a 77 K InSb detector. Vibrational transitions V(1->0) centered at 2147 cm-1 and V(2->1) at 2120 cm-1 were clearly identified. From the J values for maximum intensity lines within the rotational fine structure we obtain a temperature estimate of 1400 K, which is comparable to the atmospheric conditions of hot-Jupiters. Obtained line lists are compared with existing information in the HITRAN database.

  17. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon

    2014-08-01

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.

  18. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy.

    PubMed

    Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon

    2014-08-01

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup. PMID:25173282

  19. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy

    SciTech Connect

    Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon

    2014-08-15

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.

  20. Applying X-ray Imaging Crystal Spectroscopy for Use as a High Temperature Plasma Diagnostic.

    PubMed

    Cao, Norman M; Mier Valdivia, Andrés M; Rice, John E

    2016-01-01

    X-ray spectra provide a wealth of information on high temperature plasmas; for example electron temperature and density can be inferred from line intensity ratios. By using a Johann spectrometer viewing the plasma, it is possible to construct profiles of plasma parameters such as density, temperature, and velocity with good spatial and time resolution. However, benchmarking atomic code modeling of X-ray spectra obtained from well-diagnosed laboratory plasmas is important to justify use of such spectra to determine plasma parameters when other independent diagnostics are not available. This manuscript presents the operation of the High Resolution X-ray Crystal Imaging Spectrometer with Spatial Resolution (HIREXSR), a high wavelength resolution spatially imaging X-ray spectrometer used to view hydrogen- and helium-like ions of medium atomic number elements in a tokamak plasma. In addition, this manuscript covers a laser blow-off system that can introduce such ions to the plasma with precise timing to allow for perturbative studies of transport in the plasma. PMID:27585305

  1. Vibration analysis utilizing Mossbauer effect

    NASA Technical Reports Server (NTRS)

    Roughton, N. A.

    1967-01-01

    Measuring instrument analyzes mechanical vibrations in transducers at amplitudes in the range of a few to 100 angstroms. This instrument utilizes the Mossbauer effect, the phenomenon of the recoil-free emission and resonant absorption of nuclear gamma rays in solids.

  2. Effects of Variable Temperature on Mossbauer Data Acquisition: Laboratory-based and MER A Results

    NASA Technical Reports Server (NTRS)

    Rothstein, Y.; Sklute, E. C.; Dyar, M. D.; Schaefer, M. W.

    2005-01-01

    Mossbauer spectrometers on the Spirit and Opportunity rovers have played a valuable role in identifying mineralogy at both the Gusev and Meridiani landing sites. Key to the application of Mossbauer results is the issue of how accurately the peak positions, on which the mineral identifications are based, can be determined. Remote Mossbauer spectroscopy has by necessity some unusual experimental constraints that may influence the confidence with which peak positions can be fit. We present here an analysis of the effects of variable temperature and short duration run times on spectral resolution.

  3. Study of high-temperature multiplex HCl coherent anti-Stokes Raman spectroscopy spectra

    SciTech Connect

    Singh, J.P.; Yueh, F.Y.; Kao, W.; Cook, R.L. )

    1993-02-20

    A feasibility study of temperature measurement with multiplex HCl coherent anti-Stokes Raman spectroscopy (CARS) is investigated. The HCl CARS spectra of a 100% HCl gas sample are recorded in a quartz sample cell placed in a furnace at 1 atm pressure and at different temperatures. The nonlinear susceptibility of HCl ([chi][sub nr][sup HCl]), which is measured with the present CARS experimental setup, is reported. The experimental spectra are fit by using a library of simulated HCl CARS spectra with a least-squares-fitting program to infer the temperature. The inferred temperatures from HCl CARS spectra are in agreement with thermocouple temperatures.

  4. High temperature X-ray diffraction, Raman spectroscopy and dielectric studies on yttrium orthochromites

    NASA Astrophysics Data System (ADS)

    Mall, Ashish Kumar; Garg, Ashish; Gupta, Rajeev

    2016-05-01

    The structural, thermal and dielectric properties of YCrO3 ceramic prepared by solid state reaction method have been investigated by a combination of XRD, Raman spectroscopy and permittivity measurement. The X-ray diffraction spectra shows single phase orthorhombically distorted perovskite structure with Pnma symmetry over a wide range of temperature 300K to 1100K. Impedance spectroscopy study on the sample showed that the dielectric constant, tangent loss and ac conductivity with frequency increases on increasing the temperature. Dielectric measurement shows a relaxor like transition at about 460K. Non-Debye type relaxation is observed with activation energy of 0.25 eV extracted from ac conductivity at 11 kHz frequency. We believe that the oxygen ion vacancies play an important role in conduction processes in addition to polaron hopping at higher temperatures. Raman scattering measurements were performed over a wide temperature range from 300K to 600 K. The line width of the modes due to CrO6 bending and in-plane O2 stretching broadens with increasing temperature.

  5. Local structural studies of oriented high-temperature superconducting cuprates by polarized XAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Haskel, Daniel

    1998-07-01

    Doping (Sr,Ba) in Lasb{2-x}(Sr,Ba)sb{x}CuOsb4 induces high Tsb{c} superconductivity in addition to profound changes in structural, magnetic and normal state electronic properties. The purpose of this thesis is to investigate the structural characteristics accompanying this doping by performing orientation dependent x-ray absorption fine structure (XAFS) measurements on magnetically aligned powders. This type of measurements allowed obtaining critical information at the La/(Sr,Ba) site previously unavailable, as detailed below. The measurements show that hole carriers introduced with Sr are polaronic in nature as evident from the two site configuration found for the O(2) apical neighboring Sr and the lack of temperature dependence in the O(2) distribution, which indicates that the hole states associated with each site are not discrete but rather broader than ksb{B}T up to T = 300K. There is a good theoretical argument suggesting each O(2) site is associated with holes being doped into O(1) 2psb{x,y}-Cu 3dsb{xsp2-ysp2} in-plane and O(2) 2psb{z}-Cu 3dsb{3zsp2-rsp2} out-of-plane electronic bands resulting in two different Jahn-Teller distortions of the CuOsb6 octahedra neighboring Sr, where the doped holes are peaked. Based on this argument, the predominance of out-of-plane character for the doped holes, as evidenced from the concentration dependence of the relative population of O(2) sites, would imply that theories of high Tsb{c} relying only on in-plane character of the doped holes are not complete in describing the properties of these cuprates. Our measurements showed that all structural phase transitions in Lasb{2-x}(Sr,Ba)sb{x}CuOsb4 have a significant order-disorder component, as opposed to the purely displacive models found in crystallographic studies. The CuOsb6 octahedra are locally tilted in the high-doping, high-temperature phases but fail to order over long range resulting in the average structures of the crystallographic studies. A critical parameter in

  6. In situ high-temperature infrared emissivity spectroscopy of silicate glasses and glass-ceramics

    NASA Astrophysics Data System (ADS)

    Santos, Cristiane N.; de Sousa Meneses, Domingos; Montouillout, Valerie; Echegut, Patrick

    2011-03-01

    Glasses and glass-ceramics are materials of widespread application in industry, building, photonics, microelectronics and medicine. Glass-ceramics are obtained by controlled glass crystallization, and many efforts have been done in the last years to better understand the structural changes occurring in this process. Here we show that in situ infrared emissivity spectroscopy is also a suitable technique for this purpose and a wide spectral and temperature range could be accessed (25-16000 cm-1 and 400-1700 K, respectively). We use a home-made instrument composed of two spectrometers, and a CO2 laser for locally heat the glass samples up to the melt. A dielectric function model was applied to fit the experimental data and compute the materials optical properties. We show that using new decomposition procedure quantitative information on the distribution of the Qn tetrahedral units (n being the number of bridging oxygen) can be obtained. The results at room temperature are in good agreement with recent molecular dynamics simulations. The major changes occur during quartz crystallization, with a remarkable increase of Q4 units. Supported by ANR Postre.

  7. Vapor phase tri-methyl-indium seeding system suitable for high temperature spectroscopy and thermometry

    NASA Astrophysics Data System (ADS)

    Whiddon, R.; Zhou, B.; Borggren, J.; Aldén, M.; Li, Z. S.

    2015-09-01

    Tri-methyl-indium (TMI) is used as an indium transport molecule to introduce indium atoms to reactive hot gas flows/combustion environments for spectroscopic diagnostics. A seeding system was constructed to allow the addition of an inert TMI laden carrier gas into an air/fuel mixture burning consequently on a burner. The amount of the seeded TMI in the carrier gas can be readily varied by controlling the vapor pressure through the temperature of the container. The seeding process was calibrated using the fluorescent emission intensity from the indium 62S1/2 → 52P1/2 and 62S1/2 → 52P3/2 transitions as a function of the calculated TMI seeding concentration over a range of 2-45 ppm. The response was found to be linear over the range 3-22.5 ppm; at concentrations above 25 ppm there is a loss of linearity attributable to self-absorption or loss of saturation of TMI vapor pressure in the carrier gas flow. When TMI was introduced into a post-combustion environment via an inert carrier gas, molecular transition from InH and InOH radicals were observed in the flame emission spectrum. Combined laser-induced fluorescence and absorption spectroscopy were applied to detect indium atoms in the TMI seeded flame and the measured atomic indium concentration was found to be at the ppm level. This method of seeding organometallic vapor like TMI to a reactive gas flow demonstrates the feasibility for quantitative spectroscopic investigations that may be applicable in various fields, e.g., chemical vapor deposition applications or temperature measurement in flames with two-line atomic fluorescence.

  8. Vapor phase tri-methyl-indium seeding system suitable for high temperature spectroscopy and thermometry.

    PubMed

    Whiddon, R; Zhou, B; Borggren, J; Aldén, M; Li, Z S

    2015-09-01

    Tri-methyl-indium (TMI) is used as an indium transport molecule to introduce indium atoms to reactive hot gas flows/combustion environments for spectroscopic diagnostics. A seeding system was constructed to allow the addition of an inert TMI laden carrier gas into an air/fuel mixture burning consequently on a burner. The amount of the seeded TMI in the carrier gas can be readily varied by controlling the vapor pressure through the temperature of the container. The seeding process was calibrated using the fluorescent emission intensity from the indium 6(2)S1/2 → 5(2)P1/2 and 6(2)S1/2 → 5(2)P3/2 transitions as a function of the calculated TMI seeding concentration over a range of 2-45 ppm. The response was found to be linear over the range 3-22.5 ppm; at concentrations above 25 ppm there is a loss of linearity attributable to self-absorption or loss of saturation of TMI vapor pressure in the carrier gas flow. When TMI was introduced into a post-combustion environment via an inert carrier gas, molecular transition from InH and InOH radicals were observed in the flame emission spectrum. Combined laser-induced fluorescence and absorption spectroscopy were applied to detect indium atoms in the TMI seeded flame and the measured atomic indium concentration was found to be at the ppm level. This method of seeding organometallic vapor like TMI to a reactive gas flow demonstrates the feasibility for quantitative spectroscopic investigations that may be applicable in various fields, e.g., chemical vapor deposition applications or temperature measurement in flames with two-line atomic fluorescence. PMID:26429429

  9. Vapor phase tri-methyl-indium seeding system suitable for high temperature spectroscopy and thermometry

    SciTech Connect

    Whiddon, R.; Zhou, B.; Borggren, J.; Aldén, M.; Li, Z. S.

    2015-09-15

    Tri-methyl-indium (TMI) is used as an indium transport molecule to introduce indium atoms to reactive hot gas flows/combustion environments for spectroscopic diagnostics. A seeding system was constructed to allow the addition of an inert TMI laden carrier gas into an air/fuel mixture burning consequently on a burner. The amount of the seeded TMI in the carrier gas can be readily varied by controlling the vapor pressure through the temperature of the container. The seeding process was calibrated using the fluorescent emission intensity from the indium 6{sup 2}S{sub 1/2} → 5{sup 2}P{sub 1/2} and 6{sup 2}S{sub 1/2} → 5{sup 2}P{sub 3/2} transitions as a function of the calculated TMI seeding concentration over a range of 2–45 ppm. The response was found to be linear over the range 3–22.5 ppm; at concentrations above 25 ppm there is a loss of linearity attributable to self-absorption or loss of saturation of TMI vapor pressure in the carrier gas flow. When TMI was introduced into a post-combustion environment via an inert carrier gas, molecular transition from InH and InOH radicals were observed in the flame emission spectrum. Combined laser-induced fluorescence and absorption spectroscopy were applied to detect indium atoms in the TMI seeded flame and the measured atomic indium concentration was found to be at the ppm level. This method of seeding organometallic vapor like TMI to a reactive gas flow demonstrates the feasibility for quantitative spectroscopic investigations that may be applicable in various fields, e.g., chemical vapor deposition applications or temperature measurement in flames with two-line atomic fluorescence.

  10. High temperature fiber optic laser-induced breakdown spectroscopy sensor for analysis of molten alloy constituents

    NASA Astrophysics Data System (ADS)

    Rai, Awadhesh K.; Yueh, Fang Y.; Singh, Jagdish P.; Zhang, Hansheng

    2002-10-01

    A fiber optic (FO) laser-induced breakdown spectroscopy (LIBS) sensor that measures the on-line, in situ elemental composition of a molten alloy inside the melt in a furnace is described. This sensor has applications as a process monitor and control tool for glass, aluminum, and steel melters. The sensor is based on the transmission of laser energy through a multimode optical fiber. The laser radiation from the fiber is collimated and finally focused inside the aluminum melt in the furnace by a specially designed stainless steel holder that holds the collimating and focusing lens. Atomic emission from sparks from the laser plasma is collected by the same stainless steel lens holder and transmitted back through the optical fiber and finally fed into the entrance slit of the spectrograph. The present design of the stainless steel holder is useful for obtaining a collimated LIBS signal over a long distance (the distance between the focusing and collimated lenses is more than 200 cm). Parametric studies such as sample-to-lens distance and the effect of the angle of incidence of the laser beam on the sample surface were performed. Calibration curves for minor elements were obtained for solid Al alloys as well as for a molten Al alloy in the laboratory furnace by inserting the FO LIBS probe inside the molten material. The performance of the probe was also tested by inserting the stainless steel holder into the melt at a 45° angle, which is necessary for collecting LIBS data in an industrial furnace. LIBS spectra in different spectral regions were recorded in the pilot furnace during different tests where known amounts of minor elements were added to the melt. The results obtained from this sensor for different Al alloys demonstrate the usefulness of this sensor to monitor the concentration of different constituents of the molten Al alloy in an industrial furnace.

  11. Diagnostics of high-temperature steel pipes in industrial environment by laser-induced breakdown spectroscopy technique: the LIBSGRAIN project

    NASA Astrophysics Data System (ADS)

    Bulajic, D.; Cristoforetti, G.; Corsi, M.; Hidalgo, M.; Legnaioli, S.; Palleschi, V.; Salvetti, A.; Tognoni, E.; Green, Steve; Bates, Derek; Steiger, Adolf; Fonseca, Josè; Martins, Josè; McKay, John; Tozer, Bryan; Wells, David; Wells, Robert; Harith, M. A.

    2002-07-01

    In this paper are presented the results of the feasibility study for the application of non-destructive spectroscopic methods to the diagnostics of steel pipes in industrial environment. The activities here described are part of the LIBSGRAIN project, funded by the European Commission; the main aim of the project is correlating the probability of failure of industrial plants components with the results of space-resolved elemental analysis carried out with laser-induced breakdown spectroscopy (LIBS) technique. Several simulations have been made in order to check the detectability of dangerous deterioration of steel pipes and to optimize some experimental parameters as the laser focal spot size and the traverse scanning step of the laser head. A design of a laser head which can operate in a real plant and can overcome the problems related to high temperature and vibration is proposed. The feasibility of remote controlled measurements at high temperature has been demonstrated in laboratory tests. The accuracy of LIBS measurements on steel target has been tested on NIST certified steel samples.

  12. Phenomenological study of the normal state angle resolved photoelectron spectroscopy line shapes of high temperature superconducting cuprates

    NASA Astrophysics Data System (ADS)

    Matsuyama, Kazue; Dilip, Rohit; Gweon, G.-H.

    2015-03-01

    Understanding the normal state properties of high temperature (high-Tc) superconducting cuprates remains a central mystery in the high-Tc problem. Standing out among those mysterious properties are the anomalous angle resolved photoelectron spectroscopy (ARPES) line shapes. The extremely correlated Fermi liquid (ECFL) theory recently introduced by Shastry has renewed interest in quantitatively understanding ARPES line shapes. In this talk, we combine certain phenomenological considerations with the ECFL framework in order to describe the ARPES data. Our phenomenological models have the property of preserving the universal property of the original ECFL theory, while introducing phenomenological changes in a non-universal property. Our models describe, with unprecedented fidelity, the key aspects of the dichotomy between momentum distribution curves (MDCs) and energy distribution curves (EDCs) of high-Tc ARPES data. Therefore, our study goes well beyond the prevailing studies that discuss only MDCs and EDCs.

  13. Infrared spectroscopy at high temperature : N2- and O2-broadening coefficients in the ν4 band of CH4

    NASA Astrophysics Data System (ADS)

    Fissiaux, Laurent; Populaire, Jean-Claude; Blanquet, Ghislain; Lepère, Muriel

    2015-11-01

    In the present work, we have developed a high-temperature absorption cell for infrared spectroscopy. This absorption cell can contain gases of the room temperature up to 650 K without temperature gradient. The construction of the cell and its technical features are described in detail in this paper. In order to demonstrate the feasibility and the interest of the cell, we have measured the N2-, O2- and air-broadening coefficients of, respectively, six and three absorption lines in the ν4 band of methane at four temperatures (350, 425, 500, 575 K). The measurements of these coefficients was realized with a tunable diode-laser spectrometer. The line parameters were obtained by fitting to the experimental profile the Voigt line shape and the Rautian and Galatry models taking into account the collisional narrowing. For these lines, the n parameter of the temperature dependence has been determined.

  14. Study of high-temperature oxidation of ultrathin fe films on Pt(100) by using X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Nahm, T.-U.

    2016-05-01

    High-temperature oxidation of iron thin films deposited on Pt(100) surfaces was studied by using X-ray photoelectron spectroscopy (XPS). Upon an oxygen exposure of 300 Langmuir onto a 7.5- monolayer (ML) Fe film at 830 K, about 2 monolayers of the Fe film were oxidized as Fe3O4 while the remaining Fe atoms diffused into the substrate. For 1.25-, 2.5-, and 3.75-monolayer Fe films, only about a monolayer of the Fe film was oxidized as FeO, regardless of the number of Fe atoms. The oxide layers on the 7.5-monolayer Fe film were observed to be stable upon post-annealing at 1030 K.

  15. Auger electron spectroscopy study of oxidation of a PdCr alloy used for high-temperature sensors

    NASA Technical Reports Server (NTRS)

    Boyd, Darwin L.; Zeller, Mary V.; Vargas-Aburto, Carlos

    1993-01-01

    A Pd-13 wt. percent Cr solid solution is a promising high-temperature strain gage alloy. In bulk form it has a number of properties that are desirable in a resistance strain gage material, such as a linear electrical resistance versus temperature curve to 1000 C and stable electrical resistance in air at 1000 C. However, unprotected fine wire gages fabricated from this alloy perform well only to 600 C. At higher temperatures severe oxidation degrades their electrical performance. In this work Auger electron spectroscopy was used to study the oxidation chemistry of the alloy wires and ribbons. Results indicate that the oxidation is caused by a complex mechanism that is not yet fully understood. As expected, during oxidation, a layer of chromium oxide is formed. This layer, however, forms beneath a layer of metallic palladium. The results of this study have increased the understanding of the oxidation mechanism of Pd-13 wt. percent Cr.

  16. In Site Analysis of a High Temperature Cure Reaction in Real Time Using Modulated Fiber-Optic FT-Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Cooper, John; Aust, Jeffrey F.; Wise, Kent L.; Jensen, Brian J.

    1999-01-01

    The vibrational spectrum of a high temperature (330 C) polymerization reaction was successfully monitored in real time using a modulated fiber-optic FT-Raman spectrometer. A phenylethynyl terminated monomer was cured, and spectral evidence for two different reaction products was acquired. The products are a conjugated polyene chain and a cyclized trimer. This is the first report describing the use of FT-Raman spectroscopy to monitor a high temperature (greater than 250 C) reaction in real time.

  17. Error Analysis of Remotely-Acquired Mossbauer Spectra

    NASA Technical Reports Server (NTRS)

    Schaefer, Martha W.; Dyar, M. Darby; Agresti, David G.; Schaefer, Bradley E.

    2005-01-01

    On the Mars Exploration Rovers, Mossbauer spectroscopy has recently been called upon to assist in the task of mineral identification, a job for which it is rarely used in terrestrial studies. For example, Mossbauer data were used to support the presence of olivine in Martian soil at Gusev and jarosite in the outcrop at Meridiani. The strength (and uniqueness) of these interpretations lies in the assumption that peak positions can be determined with high degrees of both accuracy and precision. We summarize here what we believe to be the major sources of error associated with peak positions in remotely-acquired spectra, and speculate on their magnitudes. Our discussion here is largely qualitative because necessary background information on MER calibration sources, geometries, etc., have not yet been released to the PDS; we anticipate that a more quantitative discussion can be presented by March 2005.

  18. [In situ experimental study of phase transition of calcite by Raman spectroscopy at high temperature and high pressure].

    PubMed

    Liu, Chuan-jiang; Zheng, Hai-fei

    2012-02-01

    The phase transitions of calcite at high temperature and high pressure were investigated by using hydrothermal diamond anvil cell combined with Raman spectroscopy. The result showed that the Raman peak of 155 cm(-1) disappeared, the peak of 1 087 cm(-1) splited into 1083 and 1 090 cm(-1) peaks and the peak of 282 cm(-1) abruptly reduced to 231 cm(-1) at ambient temperature when the system pressure increased to 1 666 and 2 127 MPa respectively, which proved that calcite transformed to calcite-II and calcite-III. In the heating process at the initial pressure of 2 761 MPa and below 171 degrees C, there was no change in Raman characteristic peaks of calcite-III. As the temperature increased to 171 degrees C, the color of calcite crystal became opaque completely and the symmetric stretching vibration peak of 1 087 cm(-1), in-plane bending vibration peak of 713 cm(-1) and lattice vibration peaks of 155 and 282 cm(-1) began to mutate, showing that the calcite-III transformed to a new phase of calcium carbonate at the moment. When the temperature dropped to room temperature, this new phase remained stable all along. It also indicated that the process of phase transformation from calcite to the new phase of calcium carbonate was irreversible. The equation of phase transition between calcite-III and new phase of calcium carbonate can be determined by P(MPa) = 9.09T x (degrees C) +1 880. The slopes of the Raman peak (v1 087) of symmetrical stretching vibration depending on pressure and temperature are dv/dP = 5.1 (cm(-1) x GPa(-1)) and dv/dT = -0.055 3(cm(-1) x degrees C(-1)), respectively. PMID:22512172

  19. In Situ Analysis of a High-Temperature Cure Reaction in Real Time Using Modulated Fiber-Optic FT-Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Aust, Jeffrey F.; Cooper, John B.; Wise, Kent L.; Jensen, Brian J.

    1999-01-01

    The vibrational spectrum of a high-temperature (330 C) polymerization reaction was successfully monitored in real time with the use of a modulated fiber-optic Fourier transform (FT)-Raman spectrometer. A phenylethynyl-terminated monomer was cured, and spectral evidence for two different reaction products was acquired. The products are a conjugated polyene chain and a cyclized trimer. This is the first report describing the use of FT-Raman spectroscopy to monitor a high temperature (greater than 250 C) reaction in real time.

  20. A Mossbauer investigation of iron-rich terrestrial hydrothermal vent systems: lessons for Mars exploration

    NASA Technical Reports Server (NTRS)

    Wade, M. L.; Agresti, D. G.; Wdowiak, T. J.; Armendarez, L. P.; Farmer, J. D.

    1999-01-01

    Hydrothermal spring systems may well have been present on early Mars and could have served as a habitat for primitive life. The integrated instrument suite of the Athena Rover has, as a component on the robotic arm, a Mossbauer spectrometer. In the context of future Mars exploration we present results of Mossbauer analysis of a suite of samples from an iron-rich thermal spring in the Chocolate Pots area of Yellowstone National Park (YNP) and from Obsidian Pool (YNP) and Manitou Springs, Colorado. We have found that Mossbauer spectroscopy can discriminate among the iron-bearing minerals in our samples. Those near the vent and on the surface are identified as ferrihydrite, an amorphous ferric mineraloid. Subsurface samples, collected from cores, which are likely to have undergone inorganic and/or biologically mediated alteration (diagenesis), exhibit spectral signatures that include nontronite (a smectite clay), hematite (alpha-Fe2O3), small-particle/nanophase goethite (alpha-FeOOH), and siderite (FeCO3). We find for iron minerals that Mossbauer spectroscopy is at least as efficient in identification as X-ray diffraction. This observation is important from an exploration standpoint. As a planetary surface instrument, Mossbauer spectroscopy can yield high-quality spectral data without sample preparation (backscatter mode). We have also used field emission scanning electron microscopy (FESEM), in conjunction with energy-dispersive X ray (EDX) fluorescence spectroscopy, to characterize the microbiological component of surface sinters and the relation between the microbiological and the mineralogical framework. Evidence is presented that the minerals found in these deposits can have multi-billion-year residence times and thus may have survived their possible production in a putative early Martian hot spring up to the present day. Examples include the nanophase property and the Mossbauer signature for siderite, which has been identified in a 2.09-billion-year old hematite

  1. A Mossbauer investigation of iron-rich terrestrial hydrothermal vent systems: lessons for Mars exploration.

    PubMed

    Wade, M L; Agresti, D G; Wdowiak, T J; Armendarez, L P; Farmer, J D

    1999-04-25

    Hydrothermal spring systems may well have been present on early Mars and could have served as a habitat for primitive life. The integrated instrument suite of the Athena Rover has, as a component on the robotic arm, a Mossbauer spectrometer. In the context of future Mars exploration we present results of Mossbauer analysis of a suite of samples from an iron-rich thermal spring in the Chocolate Pots area of Yellowstone National Park (YNP) and from Obsidian Pool (YNP) and Manitou Springs, Colorado. We have found that Mossbauer spectroscopy can discriminate among the iron-bearing minerals in our samples. Those near the vent and on the surface are identified as ferrihydrite, an amorphous ferric mineraloid. Subsurface samples, collected from cores, which are likely to have undergone inorganic and/or biologically mediated alteration (diagenesis), exhibit spectral signatures that include nontronite (a smectite clay), hematite (alpha-Fe2O3), small-particle/nanophase goethite (alpha-FeOOH), and siderite (FeCO3). We find for iron minerals that Mossbauer spectroscopy is at least as efficient in identification as X-ray diffraction. This observation is important from an exploration standpoint. As a planetary surface instrument, Mossbauer spectroscopy can yield high-quality spectral data without sample preparation (backscatter mode). We have also used field emission scanning electron microscopy (FESEM), in conjunction with energy-dispersive X ray (EDX) fluorescence spectroscopy, to characterize the microbiological component of surface sinters and the relation between the microbiological and the mineralogical framework. Evidence is presented that the minerals found in these deposits can have multi-billion-year residence times and thus may have survived their possible production in a putative early Martian hot spring up to the present day. Examples include the nanophase property and the Mossbauer signature for siderite, which has been identified in a 2.09-billion-year old hematite

  2. Equilibrium Iron Isotope Fractionation Factors of Minerals: Reevaluation from the Data of Nuclear Inelastic Resonant X-ray Scattering and Mossbauer Spectroscopy

    SciTech Connect

    Polyakov, Dr. V. B.; Clayton, R. N.; Horita, Juske; Mineev, S. D.

    2007-01-01

    We have critically reevaluated equilibrium iron isotope fractionation factors for oxide and sulfide minerals using recently acquired data obtained by Moessbauer spectroscopy and inelastic nuclear resonant X-ray scattering (INRXS) synchrotron radiation. Good agreement was observed in the iron {beta}-factors of metallic iron ({alpha}-Fe) and hematite calculated using both Moessbauer- and INRXS-derived data, which supports the validity and reliability of the calculations. Based on this excellent agreement, we suggest the use of the present data on the iron {beta}-factors of hematite as a reference. The previous Moessbauer-derived iron {beta}-factor for magnetite has been modified significantly based on the Fe-sublattice density of states obtained from the INRXS experiments. This resolves the disagreement between naturally observed iron isotope fractionation factors for mineral pairs involving magnetite and those obtained from the calculated {beta}-factors. The correctness of iron {beta}-factor for pyrite has been corroborated by the good agreement with experimental data of sulfur isotope geothermometers of pyrite-galena and pyrite-sphalerite. A good correlation between the potential energy of the cation site, the oxidation state of iron and the iron {beta}-factor value has been established. Specifically, ferric compounds, which have a higher potential energy of iron than ferrous compounds, have higher {beta}-factors. A similar dependence of b-factors on the oxidation state and potential energy could be extended to other transition metals. Extremely low values of INRXS-derived iron {beta}-factors for troilite and Fe{sub 3}S significantly widen the range of iron b-factors for covalently bonded compounds.

  3. Feasibility Study of Using High-Temperature Raman Spectroscopy for On-Line Monitoring and Product Control of the Glass Vitrification Process

    SciTech Connect

    Windisch, C.F. Jr.; Piepel, G.F.; Li, H.; Elliott, M.L.; Su, Y.

    1999-01-04

    A pulse-gating Raman spectroscopy setup was developed in this project. The setup was capable of performing in-situ high-temperature Raman measurements for glasses at temperatures as high as 1412 C. In the literature, high-temperature Raman measurements have only been performed on thin films of glass to minimize black-body radiation effects. The pulse-gating Raman setup allows making high-temperature measurements for bulk melts while effectively minimizing black-body radiation effects. A good correlation was found between certain Raman characteristic parameters and glass melt temperature for sodium silicate glasses measured in this project. Comparisons were made between the high-temperature Raman data from this study and literature data. The results suggest that an optimization of the pulse-gating Raman setup is necessary to further improve data quality (i.e., to obtain data with a higher signal-to-noise ratio). An W confocal Raman microspectrometer with continuous wave laser excitation using a 325 nm excitation line was evaluated selectively using a transparent silicate glass ad a deep-colored high-level waste glass in a bulk quantity. The data were successfully collected at temperatures as high as approximately 1500 C. The results demonstrated that the UV excitation line can be used for high-temperature Raman measurements of molten glasses without black-body radiation interference from the melt for both transparent and deep-color glasses. Further studies are needed to select the best laser system that can be used to develop high-temperature Raman glass databases.

  4. Investigation of Aluminate and Al2O3 Crystals and Melts at High Temperature Using XANES Spectroscopy

    SciTech Connect

    Neuville, Daniel R.; Roux, Jacques; Cormier, Laurent; Henderson, Grant S.; Ligny, Dominique de; Flank, Anne-Marie; Lagarde, Pierre

    2007-02-02

    Using X-ray absorption at the Al K-edge at high temperature, structural information was determined on Al2O3, CaAl2O4 (CA), Ca3Al2O6 (C3A) and CaAl2Si2O8 (anorthite) in the crystalline and liquid states (2380 K). Important changes are observed for Al2O3 where all oscillation in the XANES spectra disappear above the liquidus temperature. For the three other compositions some modifications of the XANES spectra can be attributed to changes in the Al coordination.

  5. CARS at a "hard-to-realize conditions": lineshape spectroscopy at high temperatures in a real flame

    NASA Astrophysics Data System (ADS)

    Vereschagin, K. A.; Vereschagin, A. K.; Smirnov, V. V.; Stel'makh, O. M.; Fabelinsky, V. I.; Clauss, W.; Oschwald, M.

    2012-12-01

    On the example of the study of the collisional broadening and shift of the hydrogen Q-branch lines due to collisions with water molecules in wide temperatures range [2000 K -3000 K], we display the use of single-short CARS-spectroscopy for lineshape analisys at experimental conditions in which the object naturally does not exist, but can be created due to some physical and/or chemical processes for some time, small in comparison with the time necessary for stationary laboratory researches. Importance of light statistics as well as some specific features of CARS spectroscopy, which are the most actual from the point of view of use of CARS as a tool for lineshape spectroscopy, are discussed.

  6. 3D printed sample holder for in-operando EPR spectroscopy on high temperature polymer electrolyte fuel cells.

    PubMed

    Niemöller, Arvid; Jakes, Peter; Kayser, Steffen; Lin, Yu; Lehnert, Werner; Granwehr, Josef

    2016-08-01

    Electrochemical cells contain electrically conductive components, which causes various problems if such a cell is analyzed during operation in an EPR resonator. The optimum cell design strongly depends on the application and it is necessary to make certain compromises that need to be individually arranged. Rapid prototyping presents a straightforward option to implement a variable cell design that can be easily adapted to changing requirements. In this communication, it is demonstrated that sample containers produced by 3D printing are suitable for EPR applications, with a particular emphasis on electrochemical applications. The housing of a high temperature polymer electrolyte fuel cell (HT-PEFC) with a phosphoric acid doped polybenzimidazole membrane was prepared from polycarbonate by 3D printing. Using a custom glass Dewar, this fuel cell could be operated at temperatures up to 140°C in a standard EPR cavity. The carbon-based gas diffusion layer showed an EPR signal with a characteristic Dysonian line shape, whose evolution could be monitored in-operando in a non-invasive manner. PMID:27323280

  7. 3D printed sample holder for in-operando EPR spectroscopy on high temperature polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Niemöller, Arvid; Jakes, Peter; Kayser, Steffen; Lin, Yu; Lehnert, Werner; Granwehr, Josef

    2016-08-01

    Electrochemical cells contain electrically conductive components, which causes various problems if such a cell is analyzed during operation in an EPR resonator. The optimum cell design strongly depends on the application and it is necessary to make certain compromises that need to be individually arranged. Rapid prototyping presents a straightforward option to implement a variable cell design that can be easily adapted to changing requirements. In this communication, it is demonstrated that sample containers produced by 3D printing are suitable for EPR applications, with a particular emphasis on electrochemical applications. The housing of a high temperature polymer electrolyte fuel cell (HT-PEFC) with a phosphoric acid doped polybenzimidazole membrane was prepared from polycarbonate by 3D printing. Using a custom glass Dewar, this fuel cell could be operated at temperatures up to 140 °C in a standard EPR cavity. The carbon-based gas diffusion layer showed an EPR signal with a characteristic Dysonian line shape, whose evolution could be monitored in-operando in a non-invasive manner.

  8. Impedance spectroscopy of the oxide films formed during high temperature oxidation of a cobalt-plated ferritic alloy

    NASA Astrophysics Data System (ADS)

    Velraj, S.; Zhu, J. H.; Painter, A. S.; Du, S. W.; Li, Y. T.

    2014-02-01

    Impedance spectroscopy was used to evaluate the oxide films formed on cobalt-coated Crofer 22 APU ferritic stainless steel after thermal oxidation at 800 °C in air for different times (i.e. 2, 50, 100 and 500 h). Impedance spectra of the oxide films exhibited two or three semicircles depending on the oxidation time, which correspond to the presence of two or three individual oxide layers. Coupled with scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS) and X-ray diffraction (XRD), the individual oxide layer corresponding to each semicircle was determined unambiguously. Impedance spectrum analysis of the oxide films formed on the sample after thermal exposure at 800 °C in air for 2 h led to the identification of the low-frequency and high-frequency semicircles as being from Cr2O3 and Co3O4, respectively. SEM/EDS and XRD analysis of the 500-h sample clearly revealed the presence of three oxide layers, analyzed to be Co3-xCrxO4, CoCr2O4, and Cr2O3. Although the SEM images of the 50-h and 100-h samples did not clearly show the CoCr2O4 layer, impedance plots implied their presence. The oxide scales were assigned to their respective semicircles and the electrical properties of Co3-xCrxO4, CoCr2O4 and Cr2O3 were determined from the impedance data.

  9. High-temperature "spectrochronopotentiometry": correlating electrochemical performance with in situ Raman spectroscopy in solid oxide fuel cells.

    PubMed

    Kirtley, John D; Halat, David M; McIntyre, Melissa D; Eigenbrodt, Bryan C; Walker, Robert A

    2012-11-20

    Carbon formation or "coking" on solid oxide fuel cell (SOFC) anodes adversely affects performance by blocking catalytic sites and reducing electrochemical activity. Quantifying these effects, however, often requires correlating changes in SOFC electrochemical efficiency measured during operation with results from ex situ measurements performed after the SOFC has been cooled and disassembled. Experiments presented in this work couple vibrational Raman spectroscopy with chronopotentiometry to observe directly the relationship between graphite deposited on nickel cermet anodes and the electrochemical performance of SOFCs operating at 725 °C. Raman spectra from Ni cermet anodes at open circuit voltage exposed to methane show a strong vibrational band at 1556 cm(-1) assigned to the "G" mode of highly ordered graphite. When polarized in the absence of a gas-phase fuel, these carbon-loaded anodes operate stably, oxidizing graphite to form CO and CO(2). Disappearance of graphite intensity measured in the Raman spectra is accompanied by a steep ∼0.8 V rise in the cell potential needed to keep the SOFC operating under constant current conditions. Continued operation leads to spectroscopically observable Ni oxidation and another steep rise in cell potential. Time-dependent spectroscopic and electrochemical measurements pass through correlated equivalence points providing unequivocal, in situ evidence that identifies how SOFC performance depends on the chemical condition of its anode. Chronopotentiometric data are used to quantify the oxide flux necessary to eliminate the carbon initially present on the SOFC anode, and data show that the oxidation mechanisms responsible for graphite removal correlate directly with the electrochemical condition of the anode as evidenced by voltammetry and impedance measurements. Electrochemically oxidizing the Ni anode damages the SOFC significantly and irreversibly. Anodes that have been reconstituted following electrochemical oxidation of

  10. Performance and characteristics of a high pressure, high temperature capillary cell with facile construction for operando x-ray absorption spectroscopy

    SciTech Connect

    Bansode, Atul; Urakawa, Atsushi; Guilera, Gemma; Simonelli, Laura; Avila, Marta; Cuartero, Vera

    2014-08-15

    We demonstrate the use of commercially available fused silica capillary and fittings to construct a cell for operando X-ray absorption spectroscopy (XAS) for the study of heterogeneously catalyzed reactions under high pressure (up to 200 bars) and high temperature (up to 280 °C) conditions. As the first demonstration, the cell was used for CO{sub 2} hydrogenation reaction to examine the state of copper in a conventional Cu/ZnO/Al{sub 2}O{sub 3} methanol synthesis catalyst. The active copper component of the catalyst was shown to remain in the metallic state under supercritical reaction conditions, at 200 bars and up to 260 °C. With the coiled heating system around the capillary, one can easily change the length of the capillary and control the amount of catalyst under investigation. With precise control of reactant(s) flow, the cell can mimic and serve as a conventional fixed-bed micro-reactor system to obtain reliable catalytic data. This high comparability of the reaction performance of the cell and laboratory reactors is crucial to gain insights into the nature of actual active sites under technologically relevant reaction conditions. The large length of the capillary can cause its bending upon heating when it is only fixed at both ends because of the thermal expansion. The degree of the bending can vary depending on the heating mode, and solutions to this problem are also presented. Furthermore, the cell is suitable for Raman studies, nowadays available at several beamlines for combined measurements. A concise study of CO{sub 2} phase behavior by Raman spectroscopy is presented to demonstrate a potential of the cell for combined XAS-Raman studies.

  11. Performance and characteristics of a high pressure, high temperature capillary cell with facile construction for operando x-ray absorption spectroscopy.

    PubMed

    Bansode, Atul; Guilera, Gemma; Cuartero, Vera; Simonelli, Laura; Avila, Marta; Urakawa, Atsushi

    2014-08-01

    We demonstrate the use of commercially available fused silica capillary and fittings to construct a cell for operando X-ray absorption spectroscopy (XAS) for the study of heterogeneously catalyzed reactions under high pressure (up to 200 bars) and high temperature (up to 280 °C) conditions. As the first demonstration, the cell was used for CO2 hydrogenation reaction to examine the state of copper in a conventional Cu/ZnO/Al2O3 methanol synthesis catalyst. The active copper component of the catalyst was shown to remain in the metallic state under supercritical reaction conditions, at 200 bars and up to 260 °C. With the coiled heating system around the capillary, one can easily change the length of the capillary and control the amount of catalyst under investigation. With precise control of reactant(s) flow, the cell can mimic and serve as a conventional fixed-bed micro-reactor system to obtain reliable catalytic data. This high comparability of the reaction performance of the cell and laboratory reactors is crucial to gain insights into the nature of actual active sites under technologically relevant reaction conditions. The large length of the capillary can cause its bending upon heating when it is only fixed at both ends because of the thermal expansion. The degree of the bending can vary depending on the heating mode, and solutions to this problem are also presented. Furthermore, the cell is suitable for Raman studies, nowadays available at several beamlines for combined measurements. A concise study of CO2 phase behavior by Raman spectroscopy is presented to demonstrate a potential of the cell for combined XAS-Raman studies. PMID:25173285

  12. Performance and characteristics of a high pressure, high temperature capillary cell with facile construction for operando x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Bansode, Atul; Guilera, Gemma; Cuartero, Vera; Simonelli, Laura; Avila, Marta; Urakawa, Atsushi

    2014-08-01

    We demonstrate the use of commercially available fused silica capillary and fittings to construct a cell for operando X-ray absorption spectroscopy (XAS) for the study of heterogeneously catalyzed reactions under high pressure (up to 200 bars) and high temperature (up to 280 °C) conditions. As the first demonstration, the cell was used for CO2 hydrogenation reaction to examine the state of copper in a conventional Cu/ZnO/Al2O3 methanol synthesis catalyst. The active copper component of the catalyst was shown to remain in the metallic state under supercritical reaction conditions, at 200 bars and up to 260 °C. With the coiled heating system around the capillary, one can easily change the length of the capillary and control the amount of catalyst under investigation. With precise control of reactant(s) flow, the cell can mimic and serve as a conventional fixed-bed micro-reactor system to obtain reliable catalytic data. This high comparability of the reaction performance of the cell and laboratory reactors is crucial to gain insights into the nature of actual active sites under technologically relevant reaction conditions. The large length of the capillary can cause its bending upon heating when it is only fixed at both ends because of the thermal expansion. The degree of the bending can vary depending on the heating mode, and solutions to this problem are also presented. Furthermore, the cell is suitable for Raman studies, nowadays available at several beamlines for combined measurements. A concise study of CO2 phase behavior by Raman spectroscopy is presented to demonstrate a potential of the cell for combined XAS-Raman studies.

  13. Positron Annihilation Lifetime Spectroscopy Study of Neutron Irradiated High Temperature Superconductors YBa2Cu3O7-δ for Application in Fusion Facilities

    NASA Astrophysics Data System (ADS)

    Veterníková, J.; Chudý, M.; Slugeň, V.; Eisterer, M.; Weber, H. W.; Sojak, S.; Petriska, M.; Hinca, R.; Degmová, J.; Sabelová, V.

    2012-02-01

    This study focuses on the crystallographic defects introduced by neutron irradiation and the resulting changes of the superconducting properties in the high temperature superconductor YBa2Cu3O7-δ. This material is considered to be most promising for magnet systems in future fusion reactors. Two different bulk samples, pure non-doped YBa2Cu3O7-δ (YBCO) and multi-seed YBa2Cu3O7-δ doped by platinum (MS2F) were studied prior to and after irradiation in the TRIGA MARK II reactor in Vienna. Neutron irradiation is responsible for a significant enhancement of the critical current densities as well as for a reduction in critical temperature. The accumulation of small open volume defects (<0.5 nm) partially causes those changes. These defects were studied by positron annihilation lifetime spectroscopy at room temperature. A high concentration of Cu-O di-vacancies was found in both samples, which increased with neutron fluence. The defect concentration was significantly reduced after a heat treatment.

  14. High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Berger, Marie-Helen; Sayir, Ali

    2007-01-01

    High Temperature Protonic Conductors (HTPC) with the perovskite structure are envisioned for electrochemical membrane applications such as H2 separation, H2 sensors and fuel cells. Successive membrane commercialization is dependent upon addressing issues with H2 permeation rate and environmental stability with CO2 and H2O. HTPC membranes are conventionally fabricated by solid-state sintering. Grain boundaries and the presence of intergranular second phases reduce the proton mobility by orders of magnitude than the bulk crystalline grain. To enhanced protonic mobility, alternative processing routes were evaluated. A laser melt modulation (LMM) process was utilized to fabricate bulk samples, while pulsed laser deposition (PLD) was utilized to fabricate thin film membranes . Sr3Ca(1+x)Nb(2-x)O9 and SrCe(1-x)Y(x)O3 bulk samples were fabricated by LMM. Thin film BaCe(0.85)Y(0.15)O3 membranes were fabricated by PLD on porous substrates. Electron microscopy with chemical mapping was done to characterize the resultant microstructures. High temperature protonic conduction was measured by impedance spectroscopy in wet air or H2 environments. The results demonstrate the advantage of thin film membranes to thick membranes but also reveal the negative impact of defects or nanoscale domains on protonic conductivity.

  15. Spectroscopy of the Andreev Bound State of High-Temperature Superconductors: Measurements of Quasiparticle Scattering, Anisotropy and Broken Time-Reversal Symmetry

    NASA Astrophysics Data System (ADS)

    Greene, L. H.; Aprili, M.; Covington, M.; Badica, E.; Pugel, D. E.; Aubin, H.; Xia, Y.-M.; Salamon, M. B.; Jain, Sha; Hinks, D. G.

    2000-11-01

    Tunneling and electron paramagnetic resonance (EPR) spectroscopies are used to investigate the quasiparticle (QP) density of states (DoS) of high-temperature superconductors. Planar tunnel junctions are formed on oriented thin films of Y 1Ba 2Cu 3O 7 (YBCO) and single crystals of Ba 2Sr 2Ca 1Cu 2O 8 (BSCCO). Data are obtained as a function of crystallographic orientation, temperature, doping, damage and applied magnetic field. These data demonstrate that the observed zero bias conductance peak (ZBCP) is composed of Andreev bound states (ABS) which nucleate at an ab-plane interface of a d-wave symmetry superconductor. Tunneling into doped or ion-damaged YBCO shows that the ZBCP is weakened at the same rate as the gap-like feature, and provides a measure of the QP scattering rate below T c. An applied field causes a splitting of the ZBCP, which is due to a Doppler shift arising from the scalar product between the QP velocity and superfluid momentum, vF· Ps. The dramatic hysteresis observed with increasing and decreasing applied field is consistent with the effects of strong vortex pinning at or near the interface. The magnitude of the splitting is strongly dependent on the direction of the applied magnetic field, demonstrating the highly-anisotropic transport properties of the ABS. In-plane tunneling into single crystal BSCCO also demonstrates crystallographic orientation dependence expected for a d-wave symmetry order parameter (OP). Temperature dependence in zero applied magnetic field shows the BBCP splits below ∼8K, consistent with a phase transition into a superconducting state with spontaneously-broken time-reversal symmetry (BTRS). Electron paramagnetic resonance (EPR) experiments are used to directly detect the spontaneous formation of the magnetic moments in the BTRS state.

  16. Investigation on Crude and High-Temperature Heated Coffee Oil by ATR-FTIR Spectroscopy along with Antioxidant and Antimicrobial Properties

    PubMed Central

    Raba, Diana Nicoleta; Poiana, Mariana-Atena; Borozan, Aurica Breica; Stef, Marius; Radu, Florina; Popa, Mirela-Viorica

    2015-01-01

    The coffee oil has a promising potential to be used in food industry, but an efficient use, especially in products that required high-temperature heating, depends on its chemical composition and the changes induced by processing. Since there is little information on this topic, the aim of our study was to investigate the crude green and roasted coffee oil (GCO, RCO) and heated (HGCO, HRCO) for 1 h at 200°C, by Fourier Transform Infrared (FTIR) spectroscopy and in terms of antioxidant and antimicrobial properties. The results of FTIR spectroscopy revealed that no statistically significant differences (one-way ANOVA, p>0.05) in the oxidative status of GCO and RCO were found. The coffee oils heating induced significant spectral changes in the regions 3100–3600 cm–1, 2800–3050 cm–1 and 1680–1780 cm–1 proved by the differences in the absorbance ratios A 3009 cm−1/A 2922 cm−1, A 3009 cm−1/A 2853 cm−1, A 3009 cm−1/A 1744 cm−1, A 1744 cm−1/A 2922 cm−1. These alterations were related to the reduction of the unsaturation degree due to primary and secondary oxidation processes of the lipid fraction. The radical scavenging ability of oils investigated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay revealed that the IC50 value of GCO was significantly lower than of RCO (p<0.05). The IC50 values of crude coffee oils were lower than those of heated samples. The antioxidant activity of oils was attributed to both antioxidant compounds with free-radical scavenging capacity and to lipids oxidation products generated by heating. In the first 6 h of incubation, the inhibitory activity of crude oils against E. coli and E. faecalis was not significantly different to the control (p>0.05). Also, HGCO and HRCO showed significantly different inhibitory potential related to the control (p<0.05). The heating induced statistically significant decreases in the effectiveness of coffee oils against the tested bacteria. GCO proved to be the most effective among

  17. Investigation on Crude and High-Temperature Heated Coffee Oil by ATR-FTIR Spectroscopy along with Antioxidant and Antimicrobial Properties.

    PubMed

    Raba, Diana Nicoleta; Poiana, Mariana-Atena; Borozan, Aurica Breica; Stef, Marius; Radu, Florina; Popa, Mirela-Viorica

    2015-01-01

    The coffee oil has a promising potential to be used in food industry, but an efficient use, especially in products that required high-temperature heating, depends on its chemical composition and the changes induced by processing. Since there is little information on this topic, the aim of our study was to investigate the crude green and roasted coffee oil (GCO, RCO) and heated (HGCO, HRCO) for 1 h at 200°C, by Fourier Transform Infrared (FTIR) spectroscopy and in terms of antioxidant and antimicrobial properties. The results of FTIR spectroscopy revealed that no statistically significant differences (one-way ANOVA, p>0.05) in the oxidative status of GCO and RCO were found. The coffee oils heating induced significant spectral changes in the regions 3100-3600 cm(-1), 2800-3050 cm(-1) and 1680-1780 cm(-1) proved by the differences in the absorbance ratios A 3009 cm(-1)/A 2922 cm(-1), A 3009 cm(-1)/A 2853 cm(-1), A 3009 cm(-1)/A 1744 cm(-1), A 1744 cm(-1)/A 2922 cm(-1). These alterations were related to the reduction of the unsaturation degree due to primary and secondary oxidation processes of the lipid fraction. The radical scavenging ability of oils investigated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay revealed that the IC50 value of GCO was significantly lower than of RCO (p<0.05). The IC50 values of crude coffee oils were lower than those of heated samples. The antioxidant activity of oils was attributed to both antioxidant compounds with free-radical scavenging capacity and to lipids oxidation products generated by heating. In the first 6 h of incubation, the inhibitory activity of crude oils against E. coli and E. faecalis was not significantly different to the control (p>0.05). Also, HGCO and HRCO showed significantly different inhibitory potential related to the control (p<0.05). The heating induced statistically significant decreases in the effectiveness of coffee oils against the tested bacteria. GCO proved to be the most effective among investigated

  18. High-Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  19. High temperature behavior of multi-region direct current current-voltage spectroscopy and relationship with shallow-trench-isolation-based high-voltage laterally diffused metal-oxide-semiconductor field-effect-transistors reliability

    NASA Astrophysics Data System (ADS)

    He, Yandong; Zhang, Ganggang; Zhang, Xing

    2014-01-01

    With the process compatibility with the mainstream standard complementary metal-oxide-semiconductor (CMOS), shallow trench isolation (STI) based laterally diffused metal-oxide-semiconductor (LDMOS) devices have become popular for its better tradeoff between breakdown voltage and performance, especially for smart power applications. A multi-region direct current current-voltage (MR-DCIV) technique with spectroscopic features was demonstrated to map the interface state generation in the channel, accumulation and STI drift regions. High temperature behavior of MR-DCIV spectroscopy was analyzed and a physical model was verified. Degradation of STI-based LDMOS transistors under high temperature reverse bias (HTRB) stress is experimentally studied by MR-DCIV spectroscopy. The impact of interface state location on device electrical characteristics was investigated. Our results show that the major contribution to HTRB degradation, in term of the on-resistance degradation, was attributed to interface state generation under STI drift region.

  20. High temperature sensor

    DOEpatents

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  1. High-Temperature Superconductivity

    SciTech Connect

    Peter Johnson

    2008-11-05

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors — materials that carry electrical c

  2. High-Temperature Superconductivity

    ScienceCinema

    Peter Johnson

    2010-01-08

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors ? materials that carry electrical c

  3. High-temperature electronics

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-01-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  4. High-temperature sensor

    DOEpatents

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  5. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  6. High temperature furnace

    DOEpatents

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  7. High temperature refrigerator

    DOEpatents

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  8. High-temperature electronics

    NASA Astrophysics Data System (ADS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-02-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  9. Manganese Tetraboride, MnB4: High-Temperature Crystal Structure, p-n Transition, (55)Mn NMR Spectroscopy, Solid Solutions, and Mechanical Properties.

    PubMed

    Knappschneider, Arno; Litterscheid, Christian; Brgoch, Jakoah; George, Nathan C; Henke, Sebastian; Cheetham, Anthony K; Hu, Jerry G; Seshadri, Ram; Albert, Barbara

    2015-05-26

    The structural and electronic properties of MnB4 were studied by high-temperature powder X-ray diffraction and measurements of the conductivity and Seebeck coefficient on spark-plasma-sintered samples. A transition from the room-temperature monoclinic structure (space group P2(1)/c) to a high-temperature orthorhombic structure (space group Pnnm) was observed at about 650 K. The material remained semiconducting after the transition, but its behavior changed from p-type to n-type. (55)Mn NMR measurements revealed an isotropic chemical shift of -1315 ppm, confirming an oxidation state of Mn close to I. Solid solutions of Cr(1-x)Mn(x)B4 (two phases in space groups Pnnm and P2(1)/c) were synthesized for the first time. In addition, nanoindentation studies yielded values of (496±26) and (25.3±1.7) GPa for the Young's modulus and hardness, respectively, compared to values of 530 and 37 GPa obtained by DFT calculations. PMID:25891681

  10. High temperature electronics technology

    NASA Astrophysics Data System (ADS)

    Dening, J. C.; Hurtle, D. E.

    1984-03-01

    This report summarizes the barrier metallization developments accomplished in a program intended to develop 300 C electronic controls capability for potential on-engine aircraft engine application. In addition, this report documents preliminary life test results at 300 C and above and discusses improved design practices required for high temperature integrated injection logic semiconductors. Previous Phase 1 activities focused on determining the viability of operating silicon semiconductor devices over the -55 C to +300 C temperature range. This feasibility was substantiated but the need for additional design work and process development was indicated. Phase 2 emphasized the development of a high temperature metallization system as the primary development need for high temperature silicon semiconductor applications.

  11. Feasibility of Mossbauer survey meter for hydrocarbon and mineral reserves

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1975-01-01

    The feasibility of developing a Mossbauer survey meter for geophysical prospecting was investigated. Various critical requirements that will have to be met by the source and absorber crystals in such an instrument were identified. It was concluded that a survey meter based on (Rh-103 resonance (40 kev) yields Rh-103) isomeric transition is feasible and should be developed.

  12. Optical (diffuse reflectance) and Mossbauer spectroscopic study of nontronite and related Fe-bearing smectites

    USGS Publications Warehouse

    Sherman, David M.; Vergo, N.

    1988-01-01

    Near-ultraviolet to near-infrared optical (diffuse reflectance) spectra of several nontronites and related Fe-bearing smectites [(Fe2+,Fe3+)-bearing saponite and (Fe2+,Fe3+)-bearing montmorillonite] are presented and interpreted. Mossbauer spectra at 298 K are also presented to help interpret the optical spectra. The optical spectra of nontronites are dominated by the ligand field transitions of Fe3+ in octahedral coordination sites. In addition to the ligand field transitions of single Fe3+ cations, a broad absorption band centered near 22000 cm-1 is observed that may be due to the simultaneous excitation of two Fe3+ cations to the 4T1g (4G) state. Alternatively, this band may represent excitations to the 2A2g and 2T1g ligand field states. For most samples, the amount of tetrahedrally coordinated Fe3+ was below that detectable by Mossbauer spectroscopy (1-3% of total Fe). However, the optical spectra of all of the nontronites show an absorption band near 23000 cm-1. This band is assigned to the 6A1 ??? 4E,4A1 transition of tetrahedrally coordinated Fe3+. The optical spectra of mixed-valence Fe-bearing smectites show a broad absorption band at 14000-15000 cm-1 owing to Fe2+ ??? Fe3+ charge transfer. -from Authors

  13. Mossbauer research of Fe/Co nanotubes based on track membranes

    NASA Astrophysics Data System (ADS)

    Kozlovskiy, A.; Zhanbotin, A.; Zdorovets, M.; Manakova, I.; Ozernoy, A.; Kiseleva, T.; Kadyrzhanov, K.; Rusakov, V.; Kanyukov, E.

    2016-08-01

    Fe/Co nanostructures obtained by template synthesis have been researched in this study. It was shown that the obtained nanostructures are single-phase Fe/Co nanotubes with a high degree of polycrystallinity and body-centered cubic structure with a length of 12 μm, possessing diameter of 110 ± 5 nm, and wall thickness of 18-20 nm. The direction of easy magnetization axis lies along the nanotubes axis due to the anisotropy shape of the nanotubes. Mossbauer spectroscopy showed that the hyperfine magnetic field (Hn) values on 57Fe nuclei increase with increasing number of Co atoms near Fe atoms. Substitution of one Fe atom on Co atom leads to an increase of (Hn) to approximately 9.0 ± 0.4 KOe, herewith shift of the Mossbauer line decreasing to about 0.004 ± 0.002 mm/s. The local magnetic texture along the nanotubes axis was found with the average angle between magnetic moment and the nanotubes axis ϑ bar = 25 - 29 ° .

  14. The influence of particle size and structure on the Mossbauer spectra of iron carbides formed during Fischer-Tropsch synthesis

    SciTech Connect

    Gatte, R.R.; Phillips, J.

    1986-01-01

    Characterization of the active and stable phase of iron-based Fischer-Tropsch catalysts has been a topic of investigation for several years. Yet, a great deal of controversy still surrounds the identity of the phase(s) present during synthesis. This stems from the fact that neither X-ray nor Mossbauer studies have proven capable of unambiguously characterizing the metastable carbides formed. Investigations of the metastable, octahedral carbides (as they have been termed) have been going on for many years, dating back to at least 1949. The iron structure has been assigned as HCP (or 'nearly' HCP) with the carbon atoms occupying the octahedral holes. The most notable of these are the epsilon and epsilon' carbides. X-ray results have, however, been rather unsatisfactory for many reasons. For instance, the commercial catalysts studied contained many metallic additives and in most cases the small crystallite sizes gave rise to broad, poorly resolved lines. In recent years, emphasis has shifted toward the use of Mossbauer spectroscopy for in-situ studies of the carburization behavior. It is shown that if spectra are collected for a single sample over a range of temperatures, and if relaxation effects are properly accounted for, the Mossbauer results can give not only accurate identification of the phase(s) present but also quantitative particle size information and qualitative information regarding particle structure and the nature of particle/support interaction.

  15. High temperature electronics

    NASA Astrophysics Data System (ADS)

    Seng, Gary T.

    1991-03-01

    In recent years, the aerospace propulsion and space power communities have acknowledged a growing need for electronic devices that are capable of sustained high-temperature operation. Aeropropulsion applications for high-temperature electronic devices include engine ground test instrumentation such as multiplexers, analog-to-digital converters, and telemetry systems capable of withstanding hot section engine temperatures in excess of 600 C. Uncooled operation of control and condition monitoring systems in advanced supersonic aircraft would subject the electronics to temperatures in excess of 300 C. Similarly, engine-mounted integrated electronic sensors could reach temperatures which exceed 500 C. In addition to aeronautics, there are many other areas that could benefit from the existence of high-temperature electronic devices. Space applications include power electronic devices for space platforms and satellites. Since power electronics require radiators to shed waste heat, electronic devices that operate at higher temperatures would allow a reduction in radiator size. Terrestrial applications include deep-well drilling instrumentation, high power electronics, and nuclear reactor instrumentation and control. To meet the needs of the applications mentioned previously, the high-temperature electronics (HTE) program at the Lewis Research Center is developing silicon carbide (SiC) as a high-temperature semiconductor material. Research is focused on developing the crystal growth, growth modeling, characterization, and device fabrication technologies necessary to produce a family of SiC devices. Interest in SiC has grown dramatically in recent years due to solid advances in the technology. Much research remains to be performed, but SiC appears ready to emerge as a useful semiconductor material.

  16. Metallic stripes in high-temperature superconductors

    SciTech Connect

    Salkola, M.I.; Emery, V.J.; Kivelson, S.A.

    1995-11-23

    A phenomenological approach is applied to explore signatures of disordered charge stripes and antiphase spin domains in single-particle properties of the high-temperature superconductors. Stripe phases are shown to explain many experimentally observed unusual features measured in angle-resolved photoemission and optical spectroscopy. It is argued that disordered and fluctuating stripe phases are a common feature of high-temperature superconductors, supported by the additional evidence from neutron scattering and NMR.

  17. Mossbauer Spectra of Weathered H5 Ordinary Chondrites from Reg EL Acfer, Algeria

    NASA Astrophysics Data System (ADS)

    Berry, F.; Oates, G.; Bland, P.; Pillinger, C. T.

    1992-07-01

    Approximately 380 meteorite specimens have been retrieved from the Acfer region of the Sahara desert, Algeria. To date, 26 of these have been classified H5 (Bischoff et al., 1990, 1991, 1992). Being the most common meteorite type and having a tightly constrained mineralogy (Mason, 1965), H5 chondrites are ideal candidates for investigating terrestrial weathering products in meteorites. Arid climate, uniform topography, and lack of a concentration/movement mechanism makes it likely that meteorites throughout Reg el Acfer were weathered by a common mechanism. Jull et al. (1991) showed a correlation in meteorites from Roosevelt County between terrestrial ^14C ages and a qualitative weathering scale. An aim of the present study is to provide a quantitative measure of weathering for the Acfer region that might allow an estimate of terrestrial age, as well as information on pairing. Meteorite Specimens: Approximately 1 g of sample was used, prepared by grinding under acetone to prevent oxidation during crushing, until a homogenized powder was produced. Mossbauer spectra were recorded at 298 degrees K with a microprocessor controlled Mossbauer spectrometer using a ^57Co/Rh source. Drive velocity was calibrated with the same source and a metallic iron foil. Results: The H5 chondrite Acfer 146 (Bischoff, forthcoming Meteoritical Bulletin) was found on 19/11/90 at coordinates 27 degrees 38'N, 4 degrees 05'E. This meteorite gave a spectrum dominated by quadrupole split absorption characteristics of Fe^2+ in a forsteritic olivine structure. A sample of the outer crust showed the additional presence of Fe^3+. XRD was insensitive to the unequivocal identification of the phases present in the two samples and given that the Mossbauer parameters of the hydrolyzed Fe^3+ species and ferric oxyhydroxides are very similar it is not possible at this stage to identify the oxidized phase. Clearly, however, the results demonstrate the sensitivity of Mossbauer spectroscopy to the products

  18. High temperature future

    SciTech Connect

    Sheinkopf, K.

    1994-09-01

    During the past few years, there have been dramatic accomplishments and success of high temperature solar thermal systems and significant development of these systems. High temperature technologies, about 500 F and higher, such as dish engines, troughs, central receiver power towers and solar process heat systems, have been tested, demonstrated and used in an array of applications, including many cost-effective utility bulk power production and demand side supply projects in the United States. Large systems provide power and hot water to prisons, schools, nursing homes and other institutions. Joint ventures with industry, utility projects, laboratory design assistance and other activities are building a solid industry of US solar thermal systems ready for use today.

  19. High temperature probe

    DOEpatents

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  20. High Temperature Thermosets

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1999-01-01

    A thermoset or network polymer is an organic material where the molecules are tied together through chemical bonds (crosslinks) and therefore they cannot move past one another. As a result, these materials exhibit a certain degree of dimensional stability. The chemical composition and the degree of crosslink density of the thermoset have a pronounced effect upon the properties. High temperature thermosets offer a favorable combination of properties that makes them attractive for many applications. Their most important features are the excellent processability particularly of the low molecular weight precusor forms, the chemical and solvent resistance and the dimensional stability. The market for high temperature thermosets will increase as new uses for them are uncovered and new thermosets with better combinations of properties are developed.

  1. High-Temperature Lubricants

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In the early 1980's, Lewis Research Center began a program to develop high-temperature lubricants for use on future aircraft flying at three or more times the speed of sound, which can result in vehicle skin temperatures as high as 1,600 degrees Fahrenheit. A material that emerged from this research is a plasma-sprayed, self-lubricating metal- glass-fluoride coating able to reduce oxidation at very high temperatures. Technology is now in commercial use under the trade name Surf-Kote C-800, marketed by Hohman Plating and Manufacturing Inc. and manufactured under a patent license from NASA. Among its uses are lubrication for sliding contact bearings, shaft seals for turbopumps, piston rings for high performance compressors and hot glass processing machinery; it is also widely used in missile and space applications.

  2. High Temperature ESP Monitoring

    SciTech Connect

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  3. HIGH TEMPERATURE THERMOCOUPLE

    DOEpatents

    Eshayu, A.M.

    1963-02-12

    This invention contemplates a high temperature thermocouple for use in an inert or a reducing atmosphere. The thermocouple limbs are made of rhenium and graphite and these limbs are connected at their hot ends in compressed removable contact. The rhenium and graphite are of high purity and are substantially stable and free from diffusion into each other even without shielding. Also, the graphite may be thick enough to support the thermocouple in a gas stream. (AEC)

  4. High-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Chin, Ken C.

    1990-01-01

    The current status of high-temperature superconductivity (HTSC) and near-term prospects are briefly reviewed with particular reference to Lockheed's experience. Emphasis is placed on an integrated approach to systems applications of HTSC thin films, which hold the greatest near-term promise. These new materials are applied in the production of smaller, more sensitive, and more efficient electronic components to meet the ever-increasing demands for higher-performance signal acquisition and processing systems, communications systems, and computers.

  5. High Temperature Capacitor Development

    SciTech Connect

    John Kosek

    2009-06-30

    The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a

  6. a Mossbauer Effect Study of Iron(iii) Dithiocarbamates.

    NASA Astrophysics Data System (ADS)

    Fiddy, Judith Mary

    Available from UMI in association with The British Library. Ever since the pioneering work of Cambi iron(III) trisdithiocarbamates, which have the formula Fe(R _2NCS_2]_3 where R is an alkyl or an aryl group, have formed the basis for understanding spin-state equilibria in iron(III) complexes. Magnetic and infrared studies clearly indicate equilibrium between the high-spin and low-spin states. The Mossbauer spectra, however, show only a single component, indicating rapid relaxation between the two spin states on the Mossbauer timescale. It has been assumed that the spectral parameters are therefore a function of the relative spin-state populations. In this thesis, the results of Mossbauer experiments carried out on a series of iron(III) trisdithiocarbamates with various organic substituents, known to give a range of high-spin and low-spin state populations at room temperature, are presented. An iron(III) bisdithiocarbamate complex, Fe^{57} ((C_5 H_{10})_2NCS _2]_2NCS, was also investigated. The samples were studied at temperatures from 1.3K to 295K, and at pressures between atmospheric pressure and 80kbar at room temperature only. It was found that, in fact, the spin-equilibrium plays only a minor role in determining the Mossbauer spectra of the trisdithiocarbamate compounds. The effects of spin -state relaxation on the temperature dependence of the spectra are, in general, masked by those of slow paramagnetic relaxation which, in contrast to the effects of the spin-equilibrium, are marked and different for each compound. By fitting the spectra to models of paramagnetic relaxation the temperature dependence of the relaxation rates and possible directions of the magnetic hyperfine field relative to the major axis of the electric field gradient were found. The pressure dependence of the spectra was found to be rather similar for all the compounds, the main differences being in the widths and in the asymmetry of the areas of the spectral lines. Both these effects can

  7. High temperature detonator

    DOEpatents

    Johnson, James O.; Dinegar, Robert H.

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  8. High temperature drilling fluids

    SciTech Connect

    Stong, R.E.; Walinsky, S.W.

    1986-01-28

    This patent describes an aqueous drilling fluid suitable for high-temperature use. This fluid is composed of a water base. Clay is suspended in the base and from about 0.01-25 pounds per barrel total composition of a hydrolyzed terpolymer of maleic anhydride, styrene and a third monomer selected from acrylamide, methacrylamide, acrylic acid and metacrylic acid. The molar ratio of maleic anhydride to styrene to the third monomer is from about 30:10:60 to 50:40:10, and the alkali metal, ammonium and lower aliphatic amine salts thereof, the weight-average molecular weight of the hydrolyzed terpolymer is from about 500-10,000.

  9. High Temperature Elastic Properties of Single Crystal Mullite (Approximately 2.5Al2O3.SiO2) by Brillouin Spectroscopy

    NASA Technical Reports Server (NTRS)

    Palko, James W.; Sayir, Ali; Sinogeikin, Stanislav V.; Kriven, Waltraud M.; Bass, Jay D.; Farmer, Serene C. (Technical Monitor)

    2001-01-01

    The complete elastic tensor of mullite has been determined by brillouin spectroscopy at room temperature and elevated temperatures up to 1200C. Equivalent, isotropic moduli (bulk, shear, and Young's) have been calculated. The room temperature values obtained using Voigt-Reuss-Hill averaging are: K(sub VRH) = 173.5 + 6.9 GPa, G(sub VRH) = 88.0 + 3.5 GPa, E(sub VRH) = 225.9 + 9.0 GPa. All moduli show relatively gradual decreases with temperature. The temperature derivatives obtained for the equivalent, isotropic moduli are: dK(sub VRH)/dT = - 17.5 + 2.5 MPa/deg. C, dG(sub VRH)/dT = -8.8 + 1.4 MPa/deg. C, dE(sub VRH)/dT = -22.6 + 2.8 MPa/deg C. Substantial differences between bulk properties calculated from the single crystal measurements in this study and the properties reported in the literature for polycrystalline sintered mullite are identified, indicating the importance of factors such as microstructure, intergranular phases, and composition to the elasticity of mullite ceramics.

  10. High Temperature Metallic Seal Development

    NASA Astrophysics Data System (ADS)

    Datta, Amit; More, D. Greg

    2002-10-01

    A high temperature static seal capable of long term operation at temperature ranging from 1400 F to 1800 F is presented. The contents include: 1) Development approach; 2) Stress relaxation curves; 3) High temperature seal test rig; 4) High temperature seal design; and 5) High temperature seal testing. This paper is in viewgraph form.

  11. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  12. High temperature thermometric phosphors

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  13. High temperature thermometric phosphors

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  14. High temperature filter materials

    SciTech Connect

    Alvin, M.A.; Lippert, T.E.; Bachovchin, D.M.; Tressler, R.E.

    1992-12-01

    Objectives of this program are to identify the potential long-term thermal/chemical effects that advanced coal-based power generating system environments have on the stability of porous ceramic filter materials, as well as to assess the influence of these effects on filter operating performance and life. We have principally focused our efforts on developing an understanding of the stability of the alumina/mullite filter material at high temperature (i.e., 870, 980, and 1100{degrees}C) under oxidizing conditions which contain gas phase alkali species. Testing has typically been performed in two continuous flow-through, high temperature test facilities at the Westinghouse Science and Technology Center, using 7 cm diameter {times} 6.4 mm thick discs. (Alvin, 1992) Each disc of ceramic filter material is exposed for periods of 100 to 3,000 hours in duration. Additional efforts have been performed at Westinghouse to broaden our understanding of the stability of cordierite, cordierite-silicon nitride, reaction and sintered silicon nitride, and clay bonded silicon carbide under similar simulated advanced coal fired process conditions. The results of these efforts are presented in this paper.

  15. High temperature filter materials

    SciTech Connect

    Alvin, M.A.; Lippert, T.E.; Bachovchin, D.M. . Science and Technology Center); Tressler, R.E. )

    1992-01-01

    Objectives of this program are to identify the potential long-term thermal/chemical effects that advanced coal-based power generating system environments have on the stability of porous ceramic filter materials, as well as to assess the influence of these effects on filter operating performance and life. We have principally focused our efforts on developing an understanding of the stability of the alumina/mullite filter material at high temperature (i.e., 870, 980, and 1100[degrees]C) under oxidizing conditions which contain gas phase alkali species. Testing has typically been performed in two continuous flow-through, high temperature test facilities at the Westinghouse Science and Technology Center, using 7 cm diameter [times] 6.4 mm thick discs. (Alvin, 1992) Each disc of ceramic filter material is exposed for periods of 100 to 3,000 hours in duration. Additional efforts have been performed at Westinghouse to broaden our understanding of the stability of cordierite, cordierite-silicon nitride, reaction and sintered silicon nitride, and clay bonded silicon carbide under similar simulated advanced coal fired process conditions. The results of these efforts are presented in this paper.

  16. High-temperature electronics

    NASA Astrophysics Data System (ADS)

    Seng, Gary T.

    1987-11-01

    In recent years, there was a growing need for electronics capable of sustained high-temperature operation for aerospace propulsion system instrumentation, control and condition monitoring, and integrated sensors. The desired operating temperature in some applications exceeds 600 C, which is well beyond the capability of currently available semiconductor devices. Silicon carbide displays a number of properties which make it very attractive as a semiconductor material, one of which is the ability to retain its electronic integrity at temperatures well above 600 C. An IR-100 award was presented to NASA Lewis in 1983 for developing a chemical vapor deposition process to grow single crystals of this material on standard silicon wafers. Silicon carbide devices were demonstrated above 400 C, but much work remains in the areas of crystal growth, characterization, and device fabrication before the full potential of silicon carbide can be realized. The presentation will conclude with current and future high-temperature electronics program plans. Although the development of silicon carbide falls into the category of high-risk research, the future looks promising, and the potential payoffs are tremendous.

  17. Theoretical investigation of hyperfine field parameters through mossbauer gamma ray

    SciTech Connect

    Ali, Sikander; Hashim, Mohd

    2012-06-05

    When a Mossbauer gamma-ray emitting or absorbing nucleus is placed in a crystalline environment, the quadrupole moment of the nucleus interacts with the electric field gradient set up by the ligands around it. In the transition |7/2>{yields}|5/2> twelve lines are obtained. Applying the multipole radiation field theory and density matrix formalism, the determinant of coherency matrix, intensity and degree of polarization have been calculated for each line.

  18. Internally consistent elasticity measurements of mantle minerals at high-pressure and high-temperature by Brillouin spectroscopy and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Marquardt, H.; Kurnosov, A.; Boffa Ballaran, T.; Marquardt, K.; Frost, D. J.; Buchen, J.; Schulze, K.

    2015-12-01

    Elasticity is a material property that reflects the atomic structure and interatomic forces in crystalline materials. As a result, elastic properties are strongly affected by changes in pressure and temperature. In Earth Sciences, knowledge of the elastic behavior of geomaterials at pressure and temperature conditions of the Earth's interior is key to constrain our planet's inner structure and dynamics through forward modelling of seismic observables. Here, we will discuss internally consistent single-crystal elasticity measurements that combine the opportunities emerging from the recent development of combined Brillouin scattering (to derive acoustic wave velocities) and x-ray diffraction (XRD) systems (for structure and unit-cell parameter determination) with the advantages of sophisticated sample preparation using the focused ion beam (FIB) technique [1]. We will show results of experiments on mantle minerals that were performed using the combined Brillouin scattering and rotating anode XRD system at the Bayerisches Geoinstitut BGI. Multiple single-crystals, FIB-tailored in size and shape, were loaded in the single sample chambers of resistively-heated diamond-anvil cells (DAC). Such a multi-sample approach allows for internally consistent determinations of all independent elastic constants from low-symmetry crystals by Brillouin spectroscopy and x-ray diffraction measurements. Furthermore, the multi-sample approach facilitates direct quantification of the effects of chemical substitution on the structure and elasticity of high-symmetry crystals at non-ambient conditions. Our experimental approach eliminates uncertainties arising from the combination of data collected under (potentially) different conditions in several DAC runs, in different laboratories and/or from using different pressure-temperature sensors. We will also discuss the possibility to derive pressure independent from a secondary pressure scale. [1] H. Marquardt, K. Marquardt, Am. Mineral. 97, 299

  19. High-Temperature Optical Window Design

    NASA Technical Reports Server (NTRS)

    Roeloffs, Norman; Taranto, Nick

    1995-01-01

    A high-temperature optical window is essential to the optical diagnostics of high-temperature combustion rigs. Laser Doppler velocimetry, schlieren photography, light sheet visualization, and laser-induced fluorescence spectroscopy are a few of the tests that require optically clear access to the combustor flow stream. A design was developed for a high-temperature window that could withstand the severe environment of the NASA Lewis 3200 F Lean Premixed Prevaporized (LPP) Flame Tube Test Rig. The development of this design was both time consuming and costly. This report documents the design process and the lessons learned, in an effort to reduce the cost of developing future designs for high-temperature optical windows.

  20. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  1. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-12-31

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with super-heated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200{degrees}C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220{degrees}C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: (1) At relative pressures over 0.6 the capillarity forces are very important. (2) There is no significant temperature effect. (3) Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. (4) Pores smaller than 15 {Angstrom} do not contribute to the adsorbed mass.

  2. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  3. High-temperature resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1982-01-01

    The basic chemistry, cure processes, properties, and applications of high temperature resins known as polyimides are surveyed. Condensation aromatic polymides are prepared by reacting aromatic diamines with aromatic dianhydrides, aromatic tetracarboxylic acids, or with dialkyl esters of aromatic tetracarboxylic acids, depending on the intended end use. The first is for coatings or films while the latter two are more suitable for polyimide matrix resins. Prepreg solutions are made by dissolving reactants in an aprotic solvent, and advances in the addition of a diamine on the double bond and radical polymerization of the double bond are noted to have yielded a final cure product with void-free characteristics. Attention is given to properties of the Skybond, Pyralin, and NR-150B polyimide prepreg materials and characteristics of aging in the NP-150 polyimides. Finally, features of the NASA-developed PMR polyimides are reviewed.

  4. High temperature structural silicides

    SciTech Connect

    Petrovic, J.J.

    1997-03-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi{sub 2}-based materials, which are borderline ceramic-intermetallic compounds. MoSi{sub 2} single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi{sub 2} possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi{sub 2}-Si{sub 3}N{sub 4} composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi{sub 2}-based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing.

  5. High temperature strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); You, Tao (Inventor)

    2011-01-01

    A ceramic strain gage based on reactively sputtered indium-tin-oxide (ITO) thin films is used to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500.degree. C. A scanning electron microscopy (SEM) of the thick ITO sensors reveals a partially sintered microstructure comprising a contiguous network of submicron ITO particles with well defined necks and isolated nanoporosity. Densification of the ITO particles was retarded during high temperature exposure with nitrogen thus stabilizing the nanoporosity. ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures to incorporate more nitrogen into the films. Under these conditions, sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established.

  6. High temperature hydraulic seals

    NASA Astrophysics Data System (ADS)

    Williams, K. R.

    1993-05-01

    This program investigated and evaluated high temperature hydraulic sealing technology, including seals, fluids, and actuator materials. Test limits for fluid pressure and temperature were 8000 psi and 700 F respectively. The original plan to investigate CTFE fluid at 350 F as well as other fluids at higher temperatures was reduced in scope to include only the higher temperature investigation. Seals were obtained from 11 manufacturers. Design requirements including materials, dimensions, clearances, and tolerances were established and test modules were constructed from the detail designs which were produced. Nine piston seals and one rod seal were tested at temperatures ranging from -65 to +600 F and pressures to 6000 psi. Fluid performance under these conditions was evaluated. Details of this activity and results of the effort are summarized in this report.

  7. High Temperature Hybrid Elastomers

    NASA Astrophysics Data System (ADS)

    Drake, Kerry Anthony

    Conventional high temperature elastomers are produced by chain polymerization of olefinic or fluorinated olefinic monomers. Ultimate thermal stabilities are limited by backbone bond strengths, lower thermal stability of cross-link sites relative to backbone bonds, and depolymerization or "unzipping" at high temperatures. In order to develop elastomers with enhanced thermal stability, hybrid thermally cross-linkable polymers that consisted only of organic-inorganic and aromatic bonds were synthesized and evaluated. The addition of phenylethynyl or phenylacetylinic functional groups to these polymers resulted in conversion of the polymers into high temperature elastomers when cross-linked by thermal curing. Polyphenyoxydiphenylsilanes were synthesized via several different condensation reactions. Results of these synthetic reactions, which utilized both hydroquinone and biphenol as monomers, were systematically evaluated to determine the optimal synthetic conditions for subsequent endcapping reactions. It was determined that dichlorodiphenylsilane condensations with biphenol in toluene or THF were best suited for this work. Use of excess dichlorodiphenylsilane yielded polymers of appropriate molecular weights with terminal reactive chlorosilane groups that could be utilized for coupling with phenylethynyl reagents in a subsequent reaction. Two new synthetic routes were developed to endcap biphenoxysilanes with ethynyl containing substituents, to yield polymers with cross-linkable end groups. Endcapping by lithiumphenylacetylide and 4[(4-fluorophenylethynyl))phenol yielded two new polymers that could be thermally cross-linked on heating above 300 °C. Successful endcapping was verified chemically by 13C NMR, FTIR and Raman analysis. Exothermic peaks consistent with ethynyl curing reactions were observed in endcapped polymers by DSC. A new diacetylinic polymer was prepared through reaction of 4,4'-buta-1,3-diyne-1,4-diyldiphenol and dichlorodiphenylsilane. This

  8. High Temperature Inspection System

    SciTech Connect

    Robinson, C.W.

    1999-01-26

    The Remote and Specialty Equipment Section (RSES) of the Savannah River Technology Center has developed a High Temperature Inspection System (HTIS) for remotely viewing the interior of the Defense Waste Processing Facility (DWPF) melter pour spout. The DWPF is a vitrification facility at the Savannah River Site where radioactive waste is processed, mixed and melted with glass frit in an electrically heated melter, and poured into canisters for long-term storage. The glass mixture is transferred from the melter to the canisters via the pour spout, a vertical interface between the melter and the canisters. During initial operation of the melter, problems were experienced with wicking of the glass stream to the sides of the pour spout resulting in pluggage of the pour spout. A removable insert was developed to eliminate the wicking problem. Routine cleaning of the pour spout and replacement of the insert requires that the pour spout interior be inspected on a regular basis. The HTIS was developed to perform the inspection. The HTIS provides two video images: one view for aligning the HTIS with the pour spout and the other for inspecting the pour spout wall condition and other surfaces. The HTIS is carried into the melter cell using an overhead crane and is remotely connected to the cell's telerobotic manipulator (TRM). An operator uses the TRM to insert the HTIS into the 2-inch (5.08 cm) diameter pour spout, rotate it 360 degrees, and then remove it. This application created many challenges for the inspection device, especially regarding size and temperature. The HTIS design allows the video cameras to stay below a safe operating temperature during use in the 1100 degrees C environment. Many devices are designed to penetrate a wall and extend into a heated chamber only a few inches, but the HTIS is inserted into the heated chamber 22 inches (55.88 cm). Other devices can handle the insertion length and small diameter, but they are not designed to handle the high

  9. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  10. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 149 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  11. Micro Raman, Mossbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: Role of Mn

    NASA Astrophysics Data System (ADS)

    Thota, Suneetha; Kashyap, Subhash C.; Sharma, Shiv K.; Reddy, V. R.

    2016-04-01

    A series of Mn-Zn Ferrite nanoparticles (<15 nm) with formula MnxZn1-xFe2O4 (where x=0.00, 0.35, 0.50, 0.65) were successfully prepared by citrate-gel method at low temperature (400 °C). X-ray diffraction analysis confirmed the formation of single cubic spinel phase in these nanoparticles. The FESEM and TEM micrographs revealed the nanoparticles to be nearly spherical in shape and of fairly uniform size. The fractions of Mn2+, Zn2+ and Fe3+ cations occupying tetrahedral sites along with Fe occupying octahedral sites within the unit cell of different ferrite samples are estimated by room temperature micro-Raman spectroscopy. Low temperature Mossbauer measurement on Mn0.5Zn0.5Fe2O4 has reconfirmed the mixed spinel phase of these nanoparticles. Room temperature magnetization studies (PPMS) of Mn substituted samples showed superparamagnetic behavior. Manganese substitution for Zn in the ferrite caused the magnetization to increase from 04 to18 emu/g and Lande's g factor (estimated from ferromagnetic resonance measurement) from 2.02 to 2.12 when x was increased up to 0.50. The FMR has shown that higher Mn cationic substitution leads to increase in dipolar interaction and decrease in super exchange interaction. Thermomagnetic (M-T) and magnetization (M-H) measurements have shown that the increase in Mn concentration (up to x=0.50) enhances the spin ordering temperature up to 150 K (blocking temperature). Magnetocrystalline anisotropy in the nanoparticles was established by Mossbauer, ferromagnetic resonance and thermomagnetic measurements. The optimized substitution of manganese for zinc improves the magnetic properties and makes these nanoparticles a potential candidate for their applications in microwave region and biomedical field.

  12. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Apart from the hydrogeological conditions, high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. After one year of planning, construction, and the successful drilling of a research well to 495 m b.s.l. the first large scale heat storage test in the Malm aquifer was finished just before Christmas 2014. An enormous technical challenge was the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10-50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye. Injection and production rates were 15 L/s. About 4 TJ of heat energy were necessary to achieve the desired water temperatures. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for the analysis of the concentration of the tracers and the cation concentrations at sampling intervals of down to 15 minutes. Additional water samples were taken and analyzed for major ions and trace elements in the laboratory. The disassembled heat exchanger proved that precipitation was successfully prevented by adding CO2 to the water before heating

  13. A computer program for analyzing unresolved Mossbauer hyperfine spectra

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Singh, J. J.

    1978-01-01

    The program for analyzing unresolved Mossbauer hyperfine spectra was written in FORTRAN 4 language for the Control Data CYBER 170 series digital computer system with network operating system 1.1. With the present dimensions, the program requires approximately 36,000 octal locations of core storage. A typical case involving two innermost coordination shells in which the amplitudes and the peak positions of all three components were estimated in 25 iterations requires 30 seconds on CYBER 173. The program was applied to determine the effects of various near neighbor impurity shells on hyperfine fields in dilute FeAl alloys.

  14. Mossbauer effect studies in iron containing nonmagnetic impurities

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1977-01-01

    Mossbauer parameters of dilute quaternary (Fe-XYZ) alloys where X, Y, Z, are Al, Ge, and La, respectively were studied. A comparison between the computed and the observed values indicates that changes in effective hyperfine field, outer peak widths and the isomer shift predicted on the basis of binary alloys of the individual impurities are equal, within experimental errors, to those obtained in quaternary (Fe-XYZ) alloys. The effects of simultaneously present dilute impurities are shown to be additive, independent of their respective electronic configurations.

  15. Characteristic temperatures of the Mossbauer fraction and thermal-shift measurements in iron and iron salts.

    NASA Technical Reports Server (NTRS)

    Lafleur, L. D.; Goodman, C.

    1971-01-01

    Measurement of Mossbauer spectra in metallic iron, sodium nitroprusside, sodium ferrocyanide, and potassium ferrocyanide absorbers between 78 and 293 K. The temperature dependences of the Mossbauer fraction and the resonant velocity were fitted to Einstein and Debye lattice-vibration models. The characteristic temperatures of the models fitted to the Mossbauer fraction are consistently lower than those fitted to the resonant velocity showing the sensitivity of the Mossbauer fraction to low-frequency modes of vibration. The characteristic temperatures obtained from the resonant velocity are higher for the salts than for the metal, indicating the presence of higher-frequency modes in the salts. This interpretation is verified semiquantitatively by comparing the thermal-shift Debye temperatures of the salts to their infrared absorption frequencies. The Mossbauer fraction of potassium ferrocyanide shows a weaker temperature dependence than that expected for a harmonic solid, which suggests that potassium ferrocyanide is anharmonic in the temperature range studied.

  16. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2016-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  17. High-Temperature Piezoelectric Sensing

    PubMed Central

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2014-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928

  18. Synchrotron x-ray spectroscopy of EuHNO3 aqueous solutions at high temperatures and pressures and Nb-bearing silicate melt phases coexisting with hydrothermal fluids using a modified hydrothermal diamond anvil cell and rail assembly.

    PubMed

    Mayanovic, Robert A; Anderson, Alan J; Bassett, William A; Chou, I-Ming

    2007-05-01

    A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to approximately 900 degrees C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly. PMID:17552838

  19. Synchrotron x-ray spectroscopy of EuHN O3 aqueous solutions at high temperatures and pressures and Nb-bearing silicate melt phases coexisting with hydrothermal fluids using a modified hydrothermal diamond anvil cell and rail assembly

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2007-01-01

    A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to ???900??C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly. ?? 2007 American Institute of Physics.

  20. High temperature suppression of dioxins.

    PubMed

    Zhan, Ming-Xiu; Chen, Tong; Fu, Jian-Ying; Lin, Xiao-Qing; Lu, Sheng-Yong; Li, Xiao-Dong; Yan, Jian-Hua; Buekens, Alfons

    2016-03-01

    Combined Sulphur-Nitrogen inhibitors, such as sewage sludge decomposition gases (SDG), thiourea and amidosulphonic acid have been observed to suppress the de novo synthesis of dioxins effectively. In this study, the inhibition of PCDD/Fs formation from model fly ash was investigated at unusually high temperatures (650 °C and 850 °C), well above the usual range of de novo tests (250-400 °C). At 650 °C it was found that SDG evolving from dried sewage sludge could suppress the formation of 2,3,7,8-substituted PCDD/Fs with high efficiency (90%), both in weight units and in I-TEQ units. Additionally, at 850 °C, three kinds of sulphur-amine or sulphur-ammonium compounds were tested to inhibit dioxins formation during laboratory-scale tests, simulating municipal solid waste incineration. The suppression efficiencies of PCDD/Fs formed through homogeneous gas phase reactions were all above 85% when 3 wt. % of thiourea (98.7%), aminosulphonic acid (96.0%) or ammonium thiosulphate (87.3%) was added. Differences in the ratio of PCDFs/PCDDs, in weight average chlorination level and in the congener distribution of the 17 toxic PCDD/Fs indicated that the three inhibitors tested followed distinct suppression pathways, possibly in relation to their different functional groups of nitrogen. Furthermore, thiourea reduced the (weight) average chlorinated level. In addition, the thermal decomposition of TUA was studied by means of thermogravimetry-fourier transform infrared spectroscopy (TG-FTIR) and the presence of SO2, SO3, NH3 and nitriles (N≡C bonds) was shown in the decomposition gases; these gaseous inhibitors might be the primary dioxins suppressants. PMID:26716881

  1. Structural, magnetic and Mossbauer studies of TI doped Gd2Fe17-xTix and Gd2Fe16Ga1-xTix (0≤x≤1)

    NASA Astrophysics Data System (ADS)

    Pokharel, G.; Syed Ali, K. S.; Mishra, S. R.

    2015-05-01

    Magnetic compounds of the type Gd2Fe17-xTix and Gd2Fe16Ga1-xTix (x=0.0-1.0) were prepared by arc melting and their structural and magnetic properties were studied by X-ray diffraction (XRD), magnetometery and Mossbauer spectroscopy. The Rietveld analysis of X-ray data shows that these α-Fe free solid-solutions crystallize with Th2Ni17-type structure as main phase along with GdFe2 and TiFe2 as additional phases at higher, x≥0.5 contents. The unit cell volume expands with Ga and Ti content. The Rietveld analysis indicate that both Ti and Ga atoms prefer 12j and 12k sites in both compounds. The effect of Ti and co-substituted Ga-Ti on the bond length are quite different. The saturation magnetization Ms, at 300 K for Gd2Fe17-xTix and Gd2Fe16Ga1-xTix was found to decrease linearly with increasing Ti content. The Ms in both compounds at x=1 reduced by 9% as compared to their parent compounds at x=0. The Curie temperature, Tc, for Gd2Fe17-xTix increased from 513 K (x=0) to 544 K (x=1) while Tc for Gd2Fe16Ga1-xTix reduced from 560 (x=0) to 544 K (x=1) with increase in Ti content. Thus the observed variation in Tc follows Gd2Fe17Mossbauer results indicate decrease in hyperfine fields and increase in the isomer shifts with the increase in Ti content. Overall co-substituted Ga-Ti, Gd2Fe16Ga1-xTix show high Tc with marginal decline in saturation magnetization. Thus α-Fe free Gd2Fe16Ga1-xTix compounds can be potential candidate for high temperature permanent magnet industrial applications.

  2. Impurity channels of the long-lived Mossbauer effect

    PubMed Central

    Liu, Yao-Yuan; Cheng, Yao

    2015-01-01

    Recent reports have suggested that the nuclear resonant absorption of a long-lived Mossbauer state e.g., 93mNb is mediated by an entangled photon pair (biphoton) rather than by a single photon. Multipolar nuclear excitation in crystals of a single isotope with a natural abundance of 100% spreads in a region containing billions of identical nuclei. As a consequence of the delocalisation, additional decay channels via the impurities, the crystal defects, and the sample boundary, give rise to a density- and temperature-dependent decay. In this letter we report our discovery of impurity channels, the intensity of which is proportional to the square of the 93mNb density. PMID:26503613

  3. A versatile Mossbauer spectrometer and its applications in vibration measurement

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Howser, L. M.

    1972-01-01

    A Fe-57 Mossbauer spectrometer, equally efficient in transmission and reflection geometries, is described. The radiation detector consists of a 1.524- by 5.08 by 5.08-cm rectangular NaI(Tl) crystal with a hole 1.524 cm in diameter. The front and back faces of the crystal are covered with beryllium windows 0.0127 cm thick and 3.81 cm in diameter. The energy of the radiation accepted for counting ranges from 6.3 keV conversion X-rays to the 14.4 keV reemitted gamma rays. The spectrometer was used to measure various types of low frequency (10 Hz) and low amplitude (0.254 mm) periodic motion of steel specimens.

  4. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  5. Applications of the Mossbauer effect: Applications in other fields. Volume 5

    SciTech Connect

    Kagan, Y.M.; Lyubutin, I.S.

    1985-01-01

    This book explores the many areas in which the Mossbauer effect has had a great impact. Collected in several volumes, these findings show how nuclear gamma resonance has resolved many questions in the physical and chemical sciences, metallurgy, geology, biology, medicine, and engineering - ranging in intricacy from the measurements of nuclear parameters to the study of the basic structural properties of materials. Topics considered include molecular orbital approach to interpretation of Mossbauer quadrupole splitting in model bisimidazole-ironporphyrins; the study of low-temperature reduction of methemoglobin of insects; electron relaxation and EFG orientation in crocidolite; coherent excitation of Mossbauer nuclei by synchrotron radiation; suppression of conversion electron yield in the Bragg scattering of Mossbauer rays; and properties of the oriented transformer tin.

  6. Containerless high temperature calorimeter apparatus

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Nisen, D. B. (Inventor)

    1981-01-01

    A calorimeter apparatus for measuring high temperature thermophysical properties of materials is disclosed which includes a containerless heating apparatus in which the specimen is suspended and heated by electron bombardment.

  7. High-temperature bearing lubricants

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.; Parker, R. J.; Zaretsky, E. V.

    1968-01-01

    Synthetic paraffinic oil lubricates ball bearings at temperatures in the 600 degrees F range. The lubricant contains antiwear and antifoam additives, is thermally stable in the high temperature range, but requires protection from oxygen.

  8. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Shorey, Mark W.; Steinetz, Bruce (Technical Monitor)

    2000-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 lb payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs. During the first phase of this program the existing launch vehicle control surface sealing concepts were reviewed, the aerothermal environment for a high temperature seal design was analyzed and a mock up of an arc-jet test fixture for evaluating seal concepts was fabricated.

  9. High temperature current mirror amplifier

    DOEpatents

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  10. High-temperature ceramic receivers

    SciTech Connect

    Jarvinen, P. O.

    1980-01-01

    An advanced ceramic dome cavity receiver is discussed which heats pressurized gas to temperatures above 1800/sup 0/F (1000/sup 0/C) for use in solar Brayton power systems of the dispersed receiver/dish or central receiver type. Optical, heat transfer, structural, and ceramic material design aspects of the receiver are reported and the development and experimental demonstration of a high-temperature seal between the pressurized gas and the high-temperature silicon carbide dome material is described.

  11. Modified apparatus for low temperature/high pressure Mossbauer absorber studies.

    PubMed

    Liu, C M; Ingalls, R

    1978-12-01

    A method is described in which a system designed to study Mossbauer sources as a function of pressure and temperature is modified to include absorbers as well. This is accomplished by coupling the Mossbauer source, mounted inside a cryostat, to an external transducer by means of a bellows. In addition, a simple modification has converted an existing helium Dewar to a dynamic gas flow cryostat. Temperature can be continuously varied from 300 to 20 K at pressures up to 200 kilobars. PMID:18699030

  12. Gallium phosphide high temperature diodes

    SciTech Connect

    Chaffin, R.J.; Dawson, L.R.

    1981-01-01

    The purpose of this work is to develop high temperature (> 300/sup 0/C) diodes for geothermal and other energy applications. A comparison of reverse leakage currents of Si, GaAs and GaP is made. Diodes made from GaP should be usable to > 500/sup 0/C. An LPE process for producing high quality, grown junction GaP diodes is described. This process uses low vapor pressure Mg as a dopant which allows multiple boat growth in the same LPE run. These LPE wafers have been cut into die and metallized to make the diodes. These diodes produce leakage currents below 10/sup -3/ A/cm/sup 2/ at 400/sup 0/C while exhibiting good high temperature rectification characteristics. High temperature life test data is presented which shows exceptional stability of the V-I characteristics.

  13. High temperature Seebeck coefficient metrology

    SciTech Connect

    Martin, J.; Tritt, T.; Uher, C.

    2010-12-15

    We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectric measurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

  14. High temperature superconductor current leads

    DOEpatents

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  15. High temperature superconductor current leads

    DOEpatents

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  16. High Temperature Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    1985-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) characterization; (4) environmental effects; and (5) applications.

  17. High temperature current mirror amplifier

    DOEpatents

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  18. High temperature solar thermal technology

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.; Hanseth, E. J.; Peelgren, M. L.

    1980-01-01

    Some advanced technology concepts under development for high-temperature solar thermal energy systems to achieve significant energy cost reductions and performance gains and thus promote the application of solar thermal power technology are presented. Consideration is given to the objectives, current efforts and recent test and analysis results in the development of high-temperature (950-1650 C) ceramic receivers, thermal storage module checker stoves, and the use of reversible chemical reactions to transport collected solar energy. It is pointed out that the analysis and testing of such components will accelerate the commercial deployment of solar energy.

  19. High-temperature plasma physics

    SciTech Connect

    Furth, H.P.

    1988-03-01

    Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics.

  20. High-Temperature Optical Sensor

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.

    2010-01-01

    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  1. High-Temperature Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang K.

    1994-01-01

    High-temperature electrostatic levitator provides independent control of levitation and heating of sample in vacuum. Does not cause electromagnetic stirring in molten sample (such stirring causes early nucleation in undercooling). Maintenance of levitating force entails control of electrostatic field and electrical charge on sample.

  2. High Temperature Transparent Furnace Development

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  3. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  4. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  5. A solar high temperature kiln

    NASA Astrophysics Data System (ADS)

    Huettenhoelscher, N.; Bergmann, K.

    1981-11-01

    The feasibility of using solar energy in developing countries for baking ceramic construction materials was investigated. The solar high temperature kiln is described. It uses two parabolic concentrators which direct available radiation into the baking chamber. The Sun tracker has only one axis. Preliminary test results with the prototype kiln were satisfactory.

  6. High temperature electronic gain device

    DOEpatents

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  7. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

  8. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1990-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  9. Self-propagating high-temperature synthesis of metal oxides; Reactions in external magnetic fields

    NASA Astrophysics Data System (ADS)

    Aguas, Marco Diogo

    The preparation of metal oxides by Self-Propagating High-Temperature Synthesis is reported. The reactions are started with a point source of ignition; typically a hot wire. A synthesis wave is observed moving out from the point source and reactions terminate in seconds. Products obtained can be classified into ferrites (magnetic applications) and stannates (gas sensing applications). Ferrites were synthesised under variable external magnetic fields. The synthesis wave is hotter in the presence of an external magnetic field for hard ferrite synthesis. For spinel ferrites the opposite was observed. Materials synthesised in the field show differences in their bulk magnetic properties (coercivity and saturation magnetisation), structures and microstructures. Combustion reactions in large fields revealed changes in unit cell volume (shrinkage was observed for hard ferrites while expansion was observed for spinel ferrites). SHS synthesised hard ferrites show two distinct components; one has large grain structure consisting of 50% acicular particles of 100 mum and another that has a finer microstructure. The ferrites studied were BaFe12O19, SrFe12O19, MgFe2O4, and Mg0.5Zn0.5Fe2O4. Formation of ferrites by SHS was also studied by time resolved X-ray diffraction. Patterns were successfully recorded at up to 0.8 s intervals. These showed that synthesis of ferrites is in some cases through intermediates. TRXRD has also helped form theories for the mechanistic pathways of the reactions. Work carried out has shown that magnetic fields act on SHS reactions in 3 stages; before, during and after reactions. BaSnO3 was prepared by SHS from various barium and tin reagents. Sintering of the SHS prepared powders at 800 °C for 2-72 h produced phase pure BaSnO3. Powders obtained showed sensitivity towards CO2. All products were analysed by X-ray powder diffraction, SEM/ED AX, electron microprobe, and FT-IR. The ferrites were also analysed by 57Fe Mossbauer spectroscopy, VSM, thermal

  10. High temperature structural insulating material

    DOEpatents

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  11. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-06

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  12. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  13. Motor for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Roopnarine (Inventor)

    2013-01-01

    A high temperature motor has a stator with poles formed by wire windings, and a rotor with magnetic poles on a rotor shaft positioned coaxially within the stator. The stator and rotor are built up from stacks of magnetic-alloy laminations. The stator windings are made of high temperature magnet wire insulated with a vitreous enamel film, and the wire windings are bonded together with ceramic binder. A thin-walled cylinder is positioned coaxially between the rotor and the stator to prevent debris from the stator windings from reaching the rotor. The stator windings are wound on wire spools made of ceramic, thereby avoiding need for mica insulation and epoxy/adhesive. The stator and rotor are encased in a stator housing with rear and front end caps, and rear and front bearings for the rotor shaft are mounted on external sides of the end caps to keep debris from the motor migrating into the bearings' races.

  14. High Temperature Heat Exchanger Project

    SciTech Connect

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  15. High temperature solar thermal receiver

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A design concept for a high temperature solar thermal receiver to operate at 3 atmospheres pressure and 2500 F outlet was developed. The performance and complexity of windowed matrix, tube-header, and extended surface receivers were evaluated. The windowed matrix receiver proved to offer substantial cost and performance benefits. An efficient and cost effective hardware design was evaluated for a receiver which can be readily interfaced to fuel and chemical processes or to heat engines for power generation.

  16. High-temperature structural ceramics.

    PubMed

    Katz, R N

    1980-05-23

    The unique properties of ceramics based on silicon carbide and silicon nitride make them prime candidates for use in advanced energy conversion systems. These compounds are the bases for broad families of engineering materials, whose properties are reviewed. The relationships between processing, microstructure, and properties are discussed. A review and assessment of recent progress in the use of these materials in high-temperature engineering systems, and vehicular engines in particular, is presented. PMID:17772807

  17. High-temperature geothermal cableheads

    SciTech Connect

    Coquat, J.A.; Eifert, R.W.

    1981-11-01

    Two high-temperature, corrosion-resistant logging cableheads which use metal seals and a stable fluid to achieve proper electrical terminations and cable-sonde interfacings are described. A tensile bar provides a calibrated yield point, and a cone assembly anchors the cable armor to the head. Electrical problems of the sort generally ascribable to the cable-sonde interface were absent during demonstration hostile-environment loggings in which these cableheads were used.

  18. High Temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The majority of satellites and near-earth probes developed to date have used photovoltaic arrays for power generation. If future mission to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. In this paper, we derive the optimum bandgap as a function of the operating temperature.

  19. HIGH TEMPERATURE MICROSCOPE AND FURNACE

    DOEpatents

    Olson, D.M.

    1961-01-31

    A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

  20. Containerless high-temperature calorimeter

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Nisen, D. B.; Robinson, M. B.

    1979-01-01

    Samples are heated by electron bombardment in high-temperature calorimeter that operates from 1,000 to 3,600 C yet consumes less that 100 watts at temperatures less than 2,500 C. Contamination of samples is kept to minimum by suspending them from wire in vacuum chamber. Various sample slopes such as wires, dishs, spheres, rods, or irregular bodies can be accommodated and only about 100 nq of samples are needed for accurate measurements.

  1. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1993-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  2. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1992-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  3. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1994-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  4. Mossbauer effect in the ion-implanted iron-carbon alloys

    NASA Technical Reports Server (NTRS)

    Han, K. S.

    1976-01-01

    The concentration dependence of Mossbauer effect in four carbon ion-implanted iron absorbers, which contain carbon as the solute atoms, has been investigated over the range of concentration 0.05 through 1 atomic percent. The specimens were prepared by implanting carbon atoms on each reference iron foil with four different bombarding energies of 250 keV, 160 keV, 140 keV and 80 keV, respectively. Thus, the specimen contains a uniform dosage of carbon atoms which penetrated up to 3,000 A depth of the reference iron. In the measurement of Mossbauer spectra, the backscattering conversion electron counting geometry was used. Typical results of Mossbauer parameters of iron-carbon alloys show that the isomer shift, quadrupole shift, the effective hyperfine splitting of Fe-57, and the intensity ratio exhibit a large variation with the increase of carbon concentration in the environment of iron atoms.

  5. Ordering and oxygen content effects in YBa sub 2 (Cu sub 1 minus x Fe sub x ) sub 3 O sub 7 samples observed by high-temperature Moessbauer spectroscopy

    SciTech Connect

    Saitovitch, E.B.; Scorzelli, R.B.; Azevedo, I.S.; dos Santos, C.A. )

    1990-05-01

    We report here {ital in} {ital situ} high-temperature {sup 57}Fe Moessbauer measurements on YBa{sub 2}(Cu{sub 1{minus}{ital x}}Fe{sub {ital x}}){sub 3}O{sub 7} samples in controlled oxygen atmosphere, in air, or in vacuum. In these conditions, fundamental information can be obtained related to the thermal stability of the different Fe species, as well as the mechanism of oxygen loss.

  6. High temperature sealed electrochemical cell

    SciTech Connect

    Valentin Chung, Brice Hoani; Burke, Paul J.; Sadoway, Donald R.

    2015-10-06

    A cell for high temperature electrochemical reactions is provided. The cell includes a container, at least a portion of the container acting as a first electrode. An extension tube has a first end and a second end, the extension tube coupled to the container at the second end forming a conduit from the container to said first end. A second electrode is positioned in the container and extends out of the container via the conduit. A seal is positioned proximate the first end of the extension tube, for sealing the cell.

  7. Passivation of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  8. High temperature sorbents for oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor)

    1994-01-01

    A sorbent capable of removing trace amounts of oxygen (ppt) from a gas stream at a high temperature above 200 C comprising a porous alumina silicate support, such as zeolite, containing from 1 to 10 percent by weight of ion exchanged transition metal, such as copper or cobalt ions, and 0.05 to 1.0 percent by weight of an activator selected from a platinum group metal such as platinum is described. The activation temperature, oxygen sorption, and reducibility are all improved by the presence of the platinum activator.

  9. High Temperature Sorbents for Oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor)

    1996-01-01

    A sorbent capable of removing trace amounts of oxygen (ppt) from a gas stream at a high temperature above 200 C is introduced. The sorbent comprises a porous alumina silicate support such as zeolite containing from 1 to 10 percent by weight of ion exchanged transition metal such as copper or cobalt ions and 0.05 to 1.0 percent by weight of an activator selected from a platinum group metal such as platinum. The activation temperature, oxygen sorption and reducibility are all improved by the presence of the platinum activator.

  10. CONFINEMENT OF HIGH TEMPERATURE PLASMA

    DOEpatents

    Koenig, H.R.

    1963-05-01

    The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

  11. "Green" High-Temperature Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    1998-01-01

    PMR-15 is a processable, high-temperature polymer developed at the NASA Lewis Research Center in the 1970's principally for aeropropulsion applications. Use of fiber-reinforced polymer matrix composites in these applications can lead to substantial weight savings, thereby leading to improved fuel economy, increased passenger and payload capacity, and better maneuverability. PMR-15 is used fairly extensively in military and commercial aircraft engines components seeing service temperatures as high as 500 F (260 C), such as the outer bypass duct for the F-404 engine. The current world-wide market for PMR-15 materials (resins, adhesives, and composites) is on the order of $6 to 10 million annually.

  12. High-Temperature Rocket Engine

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Rosenberg, Sanders D.; Chazen, Melvin L.

    1994-01-01

    Two rocket engines that operate at temperature of 2,500 K designed to provide thrust for station-keeping adjustments of geosynchronous satellites, for raising and lowering orbits, and for changing orbital planes. Also useful as final propulsion stages of launch vehicles delivering small satellites to low orbits around Earth. With further development, engines used on planetary exploration missions for orbital maneuvers. High-temperature technology of engines adaptable to gas-turbine combustors, ramjets, scramjets, and hot components of many energy-conversion systems.

  13. High temperature drilling mud composition

    SciTech Connect

    Alexander, W.

    1988-10-18

    This patent describes a composition having improved rheological properties and improved stability at high temperatures and pressure for use in a water-based drilling mud comprising a high-yield bentonite, a low-yield bentonite and leonardite, wherein the weight ratio of the high-yield bentonite to the low-yield bentonites in the range of about 10:1 to about 1:1, and the leonardite is present in the amount of about 0.1% to 1.0% by total dry weight of the composition.

  14. High temperature intermetallic binders for HVOF carbides

    SciTech Connect

    Shaw, K.G.; Gruninger, M.F.; Jarosinski, W.J.

    1994-12-31

    Gas turbines technology has a long history of employing the desirable high temperature physical attributes of ceramic-metallic (cermet) materials. The most commonly used coatings incorporate combinations of WC-Co and Cr{sub 3}C{sub 2}-NiCr, which have also been successfully utilized in other non-turbine coating applications. Increased turbine operating temperatures and other high temperature service conditions have made apparent the attractive notion of increasing the temperature capability and corrosion resistance of these coatings. In this study the intermetallic binder NiAl has been used to replace the cobalt and NiCr constituents of conventional WC and Cr{sub 3}C{sub 2} cermet powders. The composite carbide thermal spray powders were fabricated for use in the HVOF coating process. The structure of HVOF deposited NiAl-carbide coatings are compared directly to the more familiar WC-Co and Cr{sub 3}C{sub 2}-NiCr coatings using X-ray diffraction, back-scattered electron imaging (BEI) and electron dispersive spectroscopy (EDS). Hardness variations with temperature are reported and compared between the NiAl and Co/NiCr binders.

  15. Containerless high temperature property measurements

    NASA Technical Reports Server (NTRS)

    Nordine, Paul C.; Weber, J. K. Richard; Krishnan, Shankar; Anderson, Collin D.

    1991-01-01

    Containerless processing in the low gravity environment of space provides the opportunity to increase the temperature at which well controlled processing of and property measurements on materials is possible. This project was directed towards advancing containerless processing and property measurement techniques for application to materials research at high temperatures in space. Containerless high temperature material property studies include measurements of the vapor pressure, melting temperature, optical properties, and spectral emissivities of solid boron. The reaction of boron with nitrogen was also studied by laser polarimetric measurement of boron nitride film growth. The optical properties and spectral emissivities were measured for solid and liquid silicon, niobium, and zirconium; liquid aluminum and titanium; and liquid Ti-Al alloys of 5 to 60 atomic pct. titanium. Alternative means for noncontact temperature measurement in the absence of material emissivity data were evaluated. Also, the application of laser induced fluorescence for component activity measurements in electromagnetic levitated liquids was studied, along with the feasibility of a hybrid aerodynamic electromagnetic levitation technique.

  16. NSTX High Temperature Sensor Systems

    SciTech Connect

    B.McCormack; H.W. Kugel; P. Goranson; R. Kaita; et al

    1999-11-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed.

  17. HIgh Temperature Photocatalysis over Semiconductors

    NASA Astrophysics Data System (ADS)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  18. High-temperature-measuring device

    DOEpatents

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  19. HITCAN: High temperature composite analyzer

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Lackney, Joseph J.; Chamis, Christos C.; Murthy, Pappu L. N.

    1990-01-01

    A computer code, HITCAN (High Temperature Composite Analyzer) was developed to analyze/design metal matrix composite structures. HITCAN is based on composite mechanics theories and computer codes developed at NASA LeRC over the last two decades. HITCAN is a general purpose code for predicting the global structural and local stress-strain response of multilayered (arbitrarily oriented) metal matrix structures both at the constituent (fiber, matrix, and interphase) and the structure level and including the fabrication process effects. The thermomechanical properties of the constituents are considered to be nonlinearly dependent on several parameters including temperature, stress, and stress rate. The computational procedure employs an incremental iterative nonlinear approach utilizing a multifactor-interaction material behavior model. HITCAN features and analysis capabilities (static, load stepping, modal, and buckling) are demonstrated through typical example problems.

  20. Compensated High Temperature Strain Gage

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A device for measuring strain in substrates at high temperatures in which the thermally induced apparent strain is nulled is described. Two gages are used, one active gage and one compensating gage. Both gages are placed on the substrate to be gaged; the active gage is attached such that it responds to mechanical and thermally induced apparent strain while the compensating gage is attached such that it does not respond to mechanical strain and and measures only thermally induced apparent strain. A thermal blanket is placed over the two gages to maintain the gages at the same temperature. The two gages are wired as adjacent arms of a wheatstone bridge which nulls the thermally induced apparent strain giving a true reading of the mechanical strain in the substrate.

  1. High Temperature Transfer Molding Resins

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2000-01-01

    High temperature resins containing phenylethynyl groups that are processable by transfer molding have been prepared. These phenylethynyl containing oligomers were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynlphthalic anhydride in glacial acetic acid to form a mixture of imide compounds in one step. This synthetic approach is advantageous since the products are a mixture of compounds and consequently exhibit a relatively low melting temperature. In addition, these materials exhibit low melt viscosities which are stable for several hours at 210-275 C, and since the thermal reaction of the phenylethynyl group does not occur to any appreciable extent at temperatures below 300 C, these materials have a broad processing window. Upon thermal cure at approximately 300-350 C, the phenylethynyl groups react to provide a crosslinked resin system. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  2. Faraday imaging at high temperatures

    DOEpatents

    Hackel, L.A.; Reichert, P.

    1997-03-18

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.

  3. Faraday imaging at high temperatures

    DOEpatents

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  4. High temperature control rod assembly

    DOEpatents

    Vollman, Russell E.

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  5. Solute strengthening at high temperatures

    NASA Astrophysics Data System (ADS)

    Leyson, G. P. M.; Curtin, W. A.

    2016-08-01

    The high temperature behavior of solute strengthening has previously been treated approximately using various scaling arguments, resulting in logarithmic and power-law scalings for the stress-dependent energy barrier Δ E(τ ) versus stress τ. Here, a parameter-free solute strengthening model is extended to high temperatures/low stresses without any a priori assumptions on the functional form of Δ E(τ ) . The new model predicts that the well-established low-temperature, with energy barrier Δ {{E}\\text{b}} and zero temperature flow stress {τy0} , transitions to a near-logarithmic form for stresses in the regime 0.2<τ /{τy0}≤slant 0.5 and then transitions to a power-law form at even lower stresses τ /{τy0}<0.03 . Δ {{E}\\text{b}} and {τy0} remains as the reference energy and stress scales over the entire range of stresses. The model is applied to literature data on solution strengthening in Cu alloys and captures the experimental results quantitatively and qualitatively. Most importantly, the model accurately captures the transition in strength from the low-temperature to intermediate-temperature and the associated transition for the activation volume. Overall, the present analysis unifies the different qualitative models in the literature and, when coupled with the previous parameter-free solute strengthening model, provides a single predictive model for solute strengthening as a function of composition, temperature, and strain rate over the full range of practical utility.

  6. High temperature size selective membranes

    SciTech Connect

    Yates, S.F.; Swamikannu, A.X.

    1993-09-01

    The high temperature membrane, capable of operation above 550{degree}C, is designed to be a composite membrane composed of a thin layer of a size selective membrane supported by a microporous ceramic support. The kinetic diameters of H{sub 2} and CO{sub 2} are 2.96 {Angstrom} and 4.00 {Angstrom}. The thin layer will be made from CMS whose pore size will be controlled to be less than 4 {Angstrom}. The membrane will be truly size selective and be impermeable to carbon dioxide. The membrane will have higher selectivity than membranes which operate on Knudsen diffusion mechanism. The ceramic support will be fabricated from Allied Signal`s proprietary Blackglas{trademark} resin. The ceramic material, noted for its high thermal and oxidative resistance, has a coefficient of thermal expansion which matches closely that of CMS. The close match will insure mechanical integrity when the membrane is subjected to thermal cycles. The CMS layer will be produced by controlled pyrolysis of polymeric precursors. Pore size will be suitably modified by post-treatments to the carbon. The composite membrane will be tested for its permeation properties at 550{degree}C or higher. Thermal, mechanical and chemical stability of the membrane will be assessed. We have produced several samples of CMS from polymeric precursors. We have initiated work also on the preparation of microporous supports from Blackglas{trademark} resin. We have completed the design of the high temperature membrane pilot plant. The membrane cell was fabricated out of two kinds of stainless steel. The inner parts are made of SS 316 and the outer ring made of SS 420. The greater thermal expansion of the SS 316 will help obtain a leak free seal at the operating temperatures.

  7. Pigmenting agents in Martian soils: inferences from spectral, Mossbauer, and magnetic properties of nanophase and other iron oxides in Hawaiian palagonitic soil PN-9

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Golden, D. C.; Lauer, H. V. Jr; Adams, J. B.

    1993-01-01

    We have examined a Hawaiian palagonitic tephra sample (PN-9) that has spectroscopic similarities to Martian bright regions using a number of analytical techniques, including Mossbauer and reflectance spectroscopy, X-ray diffraction, instrumental neutron activation analysis, electron probe microanalysis, transmission electron microscopy, and dithionite-citrate-bicarbonate extraction. Chemically, PN-9 has a Hawaiitic composition with alkali (and presumably silica) loss resulting from leaching by meteoric water during palagonitization; no Ce anomaly is present in the REE pattern. Mineralogically, our results show that nanophase ferric oxide (np-Ox) particles (either nanophase hematite (np-Hm) or a mixture of ferrihydrite and np-Hm) are responsible for the distinctive ferric doublet and visible-wavelength ferric absorption edge observed in Mossbauer and reflectivity spectra, respectively, for this and other spectrally similar palagonitic samples. The np-Ox particles appear to be imbedded in a hydrated aluminosilicate matrix material; no evidence was found for phyllosilicates. Other iron-bearing phases observed are titanomagnetite, which accounts for the magnetic nature of the sample; olivine; pyroxene; and glass. By analogy, np-Ox is likely the primary pigmenting agent of the bright soils and dust of Mars.

  8. High Temperature Superconducting Underground Cable

    SciTech Connect

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  9. High-temperature ceramic superconductors

    NASA Astrophysics Data System (ADS)

    Mazdiyasni, K. S.

    1990-11-01

    The principal goals of this program are (1) to demonstrate fabrication of high-temperature ceramic superconductors via sol-gel method that can operate at or above 90 K with appropriate current density, J(sub c), in forms useful for application in resonant cavities, magnets, motors, sensors, computers, and other devices; and (2) to fabricate and demonstrate selected components made of these materials, including microwave cavities and magnetic shields. Chemical pathways for synthesis of 123 identified, process parameters window for sol-gel derived 123 fibers established, continuous flexible fibers 15 to 200 microns in diameter producted, fibers with T(sub c) is approximate or equal to 92.5 K, Delta T = 1.5 K, J(sub c) = 2000 A/sqcm at 77 K, 0 field; 4000 at 57K, 100 Oe was produced, formed adherent 123 oriented films on metals and ceramic substrates, achieved film T(sub c) is approximate or equal to 92 K, Delta T = 4 k, J(sub c) = 400 A/sq cm at 40 K, O field.

  10. High-temperature gas filtration

    SciTech Connect

    Schiffer, H.P.; Laux, S.; Renz, U. . Lehrstuhl fuer Waermeuebertragung und Klimatechnik)

    1992-10-01

    High-temperature, high-pressure filtration is important to the development of fluidized-bed combustion (FBC) technology. This volume describes the commissioning and testing of a pilot-scale filter module rated at 1 to 4 bar pressure and up to 900[degrees]C. The module consists of an array of six porous sintered silicon carbide filter elements, designed to be cleaned on-line by jet pulses of compressed air. More than 2000 hours of exposure were achieved with FBC combustion gas with inlet dust concentrations of 500 to 40,000 ppM[sub w] at 200 to 650[degrees]C. Another 3500 hours of operation were achieved with simulated gas and injected dust. The filter elements were subjected to 60,000 cleaning cycles. No dust penetration through the filter modules was detected. After an initial stabilizing period, pressure drop remained moderate at less that 50 mbar (0.7 psi). The energy expended in pulse cleaning was negligible. No crusty deposits of dust were found on the filter elements during inspections, and no irreversible blinding occurred.

  11. High temperature two component explosive

    DOEpatents

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  12. High-temperature containerless calorimeter

    NASA Technical Reports Server (NTRS)

    Robinson, M. B.; Lacy, L. L.

    1985-01-01

    A high-temperature (greater than 1500 K) containerless calorimeter is described and its usefulness demonstrated. The calorimeter uses the technique of omnidirectional electron bombardment of pendant drops to achieve an isothermal test environment. The small heat input into the sample (i.e., 15-50 W) can be controlled and measured. The apparatus can be used to determine the total hemispherical emissivity, specific heat, heat of fusion, surface tension, and equilibrium melting temperature of small molten drops in the temperature range of 1500 to 3500 K. The total hemispherical emissivity and specific heat of pure niobium and two alloys of niobium-germanium have been measured in the temperature range of 1700 to 2400 K. As reported in the literature, the total hemispherical emissivity varied as a function of temperature. However, specific heat values for both the pure metal and alloys seem to be independent of temperature. Specific heat for the liquid alloy phase was also measured and compared to the solid phase.

  13. Sialons as high temperature insulators

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Kuo, Y. S.

    1978-01-01

    Sialons were evaluated for application as high temperature electrical insulators in contact with molybdenum and tungsten components in hard vacuum applications. Both D.C. and variable frequency A.C. resistivity data indicate the sialons to have electrical resistivity similar to common oxide in the 1000 C or higher range. Metallographic evaluations indicate good bonding of the type 15R ALN polytype to molybdenum and tungsten. The beta prime or modified silicon nitride phase was unacceptable in terms of vacuum stability. Additives effect on electrical resistivity. Similar resistivity decreases were produced by additions of molybdenum or tungsten to form cermets. The use of hot pressing at 1800 C with ALN, Al2 O3 and Si3N4 starting powders produced a better product than did a combination of SiO2 and AIN staring powders. It was indicated that sialons will be suitable insulators in the 1600K range in contact with molybdenum or tungsten if they are produced as a pure ceramic and subsequently bonded to the metal components at temperatures in the 1600K range.

  14. High-temperature thermocouples and related methods

    DOEpatents

    Rempe, Joy L.; Knudson, Darrell L.; Condie, Keith G.; Wilkins, S. Curt

    2011-01-18

    A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

  15. High temperature power electronics for space

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad N.; Baumann, Eric D.; Myers, Ira T.; Overton, Eric

    1991-01-01

    A high temperature electronics program at NASA Lewis Research Center focuses on dielectric and insulating materials research, development and testing of high temperature power components, and integration of the developed components and devices into a demonstrable 200 C power system, such as inverter. An overview of the program and a description of the in-house high temperature facilities along with experimental data obtained on high temperature materials are presented.

  16. High Temperature Chemistry at NASA: Hot Topics

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  17. Multifunctional, High-Temperature Nanocomposites

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Smith, Joseph G.; Siochi, Emilie J.; Working, Dennis C.; Criss, Jim M.; Watson, Kent A.; Delozier, Donavon M.; Ghose, Sayata

    2007-01-01

    In experiments conducted as part of a continuing effort to incorporate multifunctionality into advanced composite materials, blends of multi-walled carbon nanotubes and a resin denoted gPETI-330 h (wherein gPETI h is an abbreviation for gphenylethynyl-terminated imide h) were prepared, characterized, and fabricated into moldings. PETI-330 was selected as the matrix resin in these experiments because of its low melt viscosity (<10 poise at a temperature of 280 C), excellent melt stability (lifetime >2 hours at 280 C), and high temperature performance (>1,000 hours at 288 C). The multi-walled carbon nanotubes (MWCNTs), obtained from the University of Kentucky, were selected because of their electrical and thermal conductivity and their small diameters. The purpose of these experiments was to determine the combination of thermal, electrical, and mechanical properties achievable while still maintaining melt processability. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight-percent of MWCNTs by dry mixing of the constituents in a ball mill using zirconia beads. The resulting powders were characterized for degree of mixing and thermal and rheological properties. The neat resin was found to have melt viscosity between 5 and 10 poise. At 280 C and a fixed strain rate, the viscosity was found to increase with time. At this temperature, the phenylethynyl groups do not readily react and so no significant curing of the resin occurred. For MWCNT-filled samples, melt viscosity was reasonably steady at 280 C and was greater in samples containing greater proportions of MWCNTs. The melt viscosity for 20 weightpercent of MWCNTs was found to be .28,000 poise, which is lower than the initial estimated allowable maximum value of 60,000 poise for injection molding. Hence, MWCNT loadings of as much as 20 percent were deemed to be suitable compositions for scale-up. High-resolution scanning electron microscopy (HRSEM) showed the MWCNTs to be well

  18. High temperature behavior of zirconium germanates

    SciTech Connect

    Utkin, A.V.; Baklanova, N.I.; Vasilyeva, I.G.

    2013-05-01

    The high temperature behavior of zirconium germanates ZrGeO₄ and Zr₃GeO₈ up to 2300 °C has been studied using the original photoemission thermal analysis technique with the comprehensive physicochemical study of solid and gaseous intermediate and final products. The two-stage process of incongruent sublimation of GeO₂ was established and the phase boundary of the homogeneity range for ZrGeO₄ and Zr₃GeO₈ were deduced from the thermal analysis, X-ray diffraction and Raman spectroscopy studies. A high tendency to sintering of the final ZrO₂ product is discussed. - Graphical abstract: The decomposition of zirconium germanates leads to the formation of gaseous GeO₂ and solid sintered ZrO₂ and occurs via two stages with the formation of intermediate ZrO₂-rich solid solution. Highlights: •Thermal behavior of ZrGeO₄ and Zr₃GeO₈ was studied using the original thermal analysis technique in wide temperature range. •The decomposition occurs via two stages with the formation of intermediate ZrO₂-rich solid solution. •The decomposition of zirconium germanates leads to the formation of gaseous GeO₂ and solid sintered ZrO₂. •The temperature of decomposition is strongly depended on the total gas pressure.

  19. High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Tuissi, A.

    2014-10-01

    In this paper, an experimental study of laser micro-processing on a Cu-Zr-based shape memory alloy (SMA), which is suitable for high-temperature (HT) applications, is discussed. A first evaluation of the interaction between a laser beam and Zr50Cu28Ni7Co15 HT SMA is highlighted. Single laser pulses at various levels of power and pulse duration were applied to evaluate their effect on the sample surfaces. Blind and through microholes were produced with sizes on the order of a few hundreds of microns; the results were characterized from the morphological viewpoint using a scanning electron microscope. The high beam quality allows the holes to be created with good circularity and little melted material around the hole periphery. An analysis of the chemical composition was performed using energy dispersive spectroscopy, revealing that compositional changes were limited, while important oxidation occurred on the hole surfaces. Additionally, laser micro-cutting tests were also proposed to evaluate the cut edge morphology and dimensions. The main result of this paper concerned the good behavior of the material upon interaction with the laser beam, which suggests that microfeatures can be successfully produced in this alloy.

  20. M"ossbauer study of corrosion and abrasion products in oil transporting pipes

    NASA Astrophysics Data System (ADS)

    Gomez, Raul W.; Perez Mazariego, Jose Luis; Marquina, Vivianne; Marquina, Ma. Luisa; Ridaura, Rosalia; Martinez, Lorenzo

    2012-02-01

    It is known that one of the main technological problems in carbon steel oleoducts is the corrosion produced by different substances, such as water, carbon dioxide, sulfur, and microorganisms. In addition, if in such mixture there is sand, aggressive sludge can be form that abrasions material from the oleoduct. A room temperature M"ossbauer study of corroded material taken from different sites of oleoducts is presented. Most of the M"ossbauer spectra reveal the presence of nanoparticles, indicating that in these pipes the abrasion problem is severe. A preliminary identification of the oxidized samples suggests the presence of magnetite, and some Iron hydroxides. Further studies are in course in order to identify unambiguously the products present in the corroded materials.

  1. Improved controlled atmosphere high temperature scanning probe microscope

    NASA Astrophysics Data System (ADS)

    Hansen, K. V.; Wu, Y.; Jacobsen, T.; Mogensen, M. B.; Theil Kuhn, L.

    2013-07-01

    To locally access electrochemical active surfaces and interfaces in operando at the sub-micron scale at high temperatures in a reactive gas atmosphere is of great importance to understand the basic mechanisms in new functional materials, for instance, for energy technologies, such as solid oxide fuel cells and electrolyzer cells. Here, we report on advanced improvements of our original controlled atmosphere high temperature scanning probe microscope, CAHT-SPM. The new microscope can employ a broad range of the scanning probe techniques including tapping mode, scanning tunneling microscopy, scanning tunneling spectroscopy, conductive atomic force microscopy, and Kelvin probe force microscopy. The temperature of the sample can be as high as 850 °C. Both reducing and oxidizing gases such as oxygen, hydrogen, and nitrogen can be added in the sample chamber and the oxygen partial pressure (pO2) is monitored by an oxygen sensor. We present here some examples of its capabilities demonstrated by high temperature topography with simultaneously ac electrical conductance measurements during atmosphere changes, electrochemical impedance spectroscopy at various temperatures, and measurements of the surface potential. The improved CAHT-SPM, therefore, holds a great potential for local sub-micron analysis of high-temperature and gas induced changes of a wide range of materials.

  2. A high-temperature heat sensitive element

    NASA Technical Reports Server (NTRS)

    Oguro, M.

    1986-01-01

    This invention concerns the high-temperature heat sensitive element which is stable at high temperatures. A solid solution of the main component MgO-Al2O3-Cr2O3-Fe2O3 which contains spinel crystal structure is mixed with the secondary component ZrO2 at the mol ratio of 100 : 0.1 to 5.0 and sintered to prepare a high-temperature heat sensitive element.

  3. Deep Trek High Temperature Electronics Project

    SciTech Connect

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  4. Use of d-{sup 3}He proton spectroscopy as a diagnostic of shell {rho}r in capsule implosion experiments with {approx}0.2 NIF scale high temperature Hohlraums at Omega

    SciTech Connect

    Delamater, N. D.; Wilson, D. C.; Kyrala, G. A.; Seifter, A.; Hoffman, N. M.; Dodd, E.; Singleton, R.; Glebov, V.; Stoeckl, C.; Li, C. K.; Petrasso, R.; Frenje, J.

    2008-10-15

    We present the calculations and preliminary results from experiments on the Omega laser facility using d-{sup 3}He filled plastic capsule implosions in gold Hohlraums. These experiments aim to develop a technique to measure shell {rho}r and capsule unablated mass with proton spectroscopy and will be applied to future National Ignition Facility (NIF) experiments with ignition scale capsules. The Omega Hohlraums are 1900 {mu}m lengthx1200 {mu}m diameter and have a 70% laser entrance hole. This is approximately a 0.2 NIF scale ignition Hohlraum and reaches temperatures of 265-275 eV similar to those during the peak of the NIF drive. These capsules can be used as a diagnostic of shell {rho}r, since the d-{sup 3}He gas fill produces 14.7 MeV protons in the implosion, which escape through the shell and produce a proton spectrum that depends on the integrated {rho}r of the remaining shell mass. The neutron yield, proton yield, and spectra change with capsule shell thickness as the unablated mass or remaining capsule {rho}r changes. Proton stopping models are used to infer shell unablated mass and shell {rho}r from the proton spectra measured with different filter thicknesses. The experiment is well modeled with respect to Hohlraum energetics, neutron yields, and x-ray imploded core image size, but there are discrepancies between the observed and simulated proton spectra.

  5. Study of high-temperature hydrogen reduced Pt0/TiO2 by X-ray photoelectron spectroscopy combined with argon ion sputtering—Diffusion-encapsulation effect in relation to strong metal-support interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Jingwei; Zhang, Min; Jin, Zhensheng; Wang, Jingju; Zhang, Zhijun

    2012-02-01

    X-ray photoelectron spectroscopy combined with Ar+ ion sputtering has been used to analyze the variation in the valence and concentration of Pt, Ti, and O of Pt0/TiO2 reduced by H2 at elevated temperature. It is confirmed that titanium oxide of low-valence is transferred onto the surface of Pt0 particulates to encapsulate the surface via a strong metal-support interaction under reducing atmosphere. It is also found for the first time that Pt0 atom is diffused into the lattice of TiO2 to occupy the oxygen vacancy (VOrad rad ) and accept one electron from adjacent Ti3+ forming a localized Pt-sbnd Ti4+ bond. This differs from the strong metal-support interaction under oxidizing atmosphere. Namely, although the Pt0 atom is also diffused into the lattice of TiO2 under oxidizing atmosphere, it replaces Ti atom and forms a Pt2+sbnd O2- bond. Moreover, the strong metal-support interaction under oxidizing atmosphere results in increased photocatalytic activity of Pt0/TiO2, while the strong metal-support interaction under reducing atmosphere leads to decreased photocatalytic activity of Pt0/TiO2.

  6. Dynamic, High-Temperature, Flexible Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Sirocky, Paul J.

    1989-01-01

    New seal consists of multiple plies of braided ceramic sleeves filled with small ceramic balls. Innermost braided sleeve supported by high-temperature-wire-mesh sleeve that provides both springback and preload capabilities. Ceramic balls reduce effect of relatively high porosity of braided ceramic sleeves by acting as labyrinth flow path for gases and thereby greatly increasing pressure gradient seal can sustain. Dynamic, high-temperature, flexible seal employed in hypersonic engines, two-dimensional convergent/divergent and vectorized-thrust exhaust nozzles, reentry vehicle airframes, rocket-motor casings, high-temperature furnaces, and any application requiring non-asbestos high-temperature gaskets.

  7. Investigation of Radiation Affected High Temperature Superconductors - YBCO

    NASA Astrophysics Data System (ADS)

    Veterníková, J.; Chudý, M.; Slugeň, V.; Sojak, S.; Degmová, J.; Snopek, J.

    In this paper, high temperature superconductors are studied in terms of radiation stability, which is necessary for application in fusion reactors. Perspective superconducting materials based on YBCO (Perkovskite structure) were measured by positron annihilation lifetime spectroscopy. Measurements were performed for samples prior to and after fast neutron irradiation in TRIGA MARK II reactor in Vienna. The samples demonstrated accumulation of Cu-O di-vacancies due to the irradiation. Nevertheless, the structure showed regeneration during thermal treatment by defects recombination. Positron spectroscopy results were complemented with values of critical temperature, which also showed changes of superconducting properties after the irradiation and the annealing.

  8. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOEpatents

    Westerfield, Curtis L.; Morris, John S.; Agnew, Stephen F.

    1997-01-01

    Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear.

  9. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOEpatents

    Westerfield, C.L.; Morris, J.S.; Agnew, S.F.

    1997-01-14

    Diamond anvil cell is described for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear. 4 figs.

  10. High-Temperature, Bellows Hybrid Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Sirocky, Paul J. (Inventor)

    1994-01-01

    A high-temperature hybrid seal is constructed of multiple elements to meet the many demands placed on the seal. The primary elements are: a central high-temperature bellows, a braided ceramic sheath covering the bellows, an outer abrasion resistant sheath covering the ceramic sheath, and a structurally-sound seal-end termination.

  11. High temperature superconducting fault current limiter

    DOEpatents

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  12. High temperature superconducting fault current limiter

    DOEpatents

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  13. Advanced high temperature heat flux sensors

    NASA Technical Reports Server (NTRS)

    Atkinson, W.; Hobart, H. F.; Strange, R. R.

    1983-01-01

    To fully characterize advanced high temperature heat flux sensors, calibration and testing is required at full engine temperature. This required the development of unique high temperature heat flux test facilities. These facilities were developed, are in place, and are being used for advanced heat flux sensor development.

  14. Evaluation of high temperature pressure sensors.

    PubMed

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-03-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 °C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis. PMID:21456794

  15. Evaluation of high temperature pressure sensors

    SciTech Connect

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-03-15

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  16. High-Temperature Passive Power Electronics

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In many future NASA missions - such as deep-space exploration, the National AeroSpace Plane, minisatellites, integrated engine electronics, and ion or arcjet thrusters - high-power electrical components and systems must operate reliably and efficiently in high-temperature environments. The high-temperature power electronics program at the NASA Lewis Research Center focuses on dielectric and insulating material research, the development and characterization of high-temperature components, and the integration of the developed components into a demonstrable 200 C power system - such as an inverter. NASA Lewis has developed high-temperature power components through collaborative efforts with the Air Force Wright Laboratory, Northrop Grumman, and the University of Wisconsin. Ceramic and film capacitors, molypermalloy powder inductors, and a coaxially wound transformer were designed, developed, and evaluated for high-temperature operation.

  17. Mossbauer studies of complex materials: energy versus time domain.

    SciTech Connect

    Planckaert, N.; Callens, R.; Demeter, J.; Laenens, B.; Sturhahn, W.; Kharlamova, S.; Temst, K.; Vantomme, A.

    2009-06-01

    We present a critical comparison between conventional Moessbauer spectroscopy on the one hand and energy and time resolved nuclear resonant scattering on the other hand. The three Moessbauer techniques are evaluated by the characterization of the complex magnetic structure of an Fe{sub 3}Al alloy. It is shown how the different scattering processes and detection schemes, which are involved in the respective configurations, determine the specific strengths of the three techniques and how they are optimally suited for the characterization of materials of varying complexity and reduced sizes.

  18. Symposium on high temperature and materials chemistry

    SciTech Connect

    Not Available

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  19. The high temperature superconductivity space experiment

    NASA Technical Reports Server (NTRS)

    Webb, Denis C.; Nisenoff, M.

    1991-01-01

    The history and the current status of the high temperature superconductivity space experiment (HTSSE) initiated in 1988 are briefly reviewed. The goal of the HTSSE program is to demonstrate the feasibility of incorporating high temperature superconductivity (HTS) technology into space systems. The anticipated payoffs include the development of high temperature superconductor devices for space systems; preparation and space qualification of a cryogenically cooled experimental package containing HTS devices and components; and acquisition of data for future space experiments using more complex HTS devices and subsystems. The principal HTSSE systems and devices are described.

  20. Dimensionality of high temperature superconductivity in oxides

    NASA Technical Reports Server (NTRS)

    Chu, C. W.

    1989-01-01

    Many models have been proposed to account for the high temperature superconductivity observed in oxide systems. Almost all of these models proposed are based on the uncoupled low dimensional carrier Cu-O layers of the oxides. Results of several experiments are presented and discussed. They suggest that the high temperature superconductivity observed cannot be strictly two- or one-dimensional, and that the environment between the Cu-O layers and the interlayer coupling play an important role in the occurrence of such high temperature superconductivity. A comment on the very short coherence length reported is also made.

  1. A high-temperature wideband pressure transducer

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1975-01-01

    Progress in the development of a pressure transducer for measurement of the pressure fluctuations in the high temperature environment of a jet exhaust is reported. A condenser microphone carrier system was adapted to meet the specifications. A theoretical analysis is presented which describes the operation of the condenser microphone in terms of geometry, materials, and other physical properties. The analysis was used as the basis for design of a prototype high temperature microphone. The feasibility of connecting the microphone to a converter over a high temperature cable operating as a half-wavelength transmission line was also examined.

  2. High temperature resistant cermet and ceramic compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  3. Effects of Palagonitic Dust Coatings on Visible, Near-IR, and Mossbauer Spectra of Rocks and Minerals: Implication for Mineralogical Remote Sensing of Mars

    NASA Technical Reports Server (NTRS)

    Morris, R.; Graff, T. G.; Shelfer, T. D.; Bell, J. F., III

    2001-01-01

    Visible, near-IR, and Mossbauer measurements on dust coated rocks and minerals show that a 300 5m thick layer is required to obscure the substrate for VNIR measurements and that a greater than 2000-micron-thick layer is required to obscure the substrate for Mossbauer measurements. Additional information is contained in the original extended abstract.

  4. Silicon carbide, an emerging high temperature semiconductor

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  5. Specimen for high-temperature tensile tests

    NASA Technical Reports Server (NTRS)

    Coulbert, C. D.

    1972-01-01

    Split nut with internal taper to hold specially formed specimen composed of filaments of refractory material provides means for holding at high temperature and under tension so that performance evaluations may be made.

  6. Altering high temperature subterranean formation permeability

    SciTech Connect

    Moradi-Araghi, A.

    1991-02-19

    This patent describes a delayed acrylamide containing polymer crosslinker having stability in an aqueous solution at high temperatures. It comprises: a combination of an aldehyde and a salicylic acid derivative selected from salicylamide and acetysalicylic acid.

  7. Sky-High Temperatures Inside 'Bounce Houses'

    MedlinePlus

    ... medlineplus.gov/news/fullstory_160408.html Sky-High Temperatures Inside 'Bounce Houses' Hot party toys may pose ... similar to closed cars. During hot summer weather, temperatures inside these play structures may climb to levels ...

  8. HIGH TEMPERATURE CONDENSED PHASE MASS SPECTROMETRIC ANALYSIS

    EPA Science Inventory

    Our current studies with high temperature ion emitting materials have demonstrated a significant lack of methods for determining chemical species in condensed phase materials in general, and at elevated temperatures in particular. We have developed several new research techniques...

  9. High-temperature superconductivity: A conventional conundrum

    DOE PAGESBeta

    Božović, Ivan

    2016-01-07

    High-temperature superconductivity in ultrathin films of iron selenide deposited on strontium titanate has been attributed to various exotic mechanisms, and new experiments indicate that it may be conventional, with broader implications.

  10. High-temperature superconductivity in perspective

    NASA Astrophysics Data System (ADS)

    1990-04-01

    The technology of superconductivity and its potential applications are discussed; it is warned that U.S companies are investing less than their main foreign competitors in both low- and high-temperature superconductivity R and D. This is by far the most critical issue affecting the future U.S. competitive position in superconductivity, and in many other emerging technologies. The major areas covered include: Executive summary; High-temperature superconductivity - A progress report; Applications of superconductivity; The U.S. response to high-temperature superconductivity; High-temperature superconductivity programs in other countries; Comparison of industrial superconductivity R and D efforts in the United States and Japan - An OTA survey; Policy issues and options.