Science.gov

Sample records for high-temperature solvation phenomena

  1. Thermomagnetic phenomena in the mixed state of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Meilikhov, E. Z.

    1995-01-01

    Galvano- and thermomagnetic-phenomena in high temperature superconductors, based on kinetic coefficients, are discussed, along with a connection between the electric field and the heat flow in superconductor mixed state. The relationship that determines the transport coefficients of high temperature superconductors in the mixed state based on Seebeck and Nernst effects is developed. It is shown that this relationship is true for a whole transition region of the resistive mixed state of a superconductor. Peltier, Ettingshausen and Righi-Leduc effects associated with heat conductivity as related to high temperature superconductors are also addressed.

  2. Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells

    SciTech Connect

    James E. O'Brien

    2012-03-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technology will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.

  3. Solvation Phenomena in Dilute Solutions: Formal, Experimental Evidence, and Modeling Implications

    SciTech Connect

    Chialvo, Ariel A

    2013-01-01

    We review the fundamentals underlying a general molecular-based formalism for the microscopic interpretation of the solvation phenomena involving sparingly soluble solutes in compressible media, an approach that hinges around the unambiguous splitting of the species correlation function integrals into short-(finite) and long-ranged (diverging) contributions at infinite dilution, where this condition is taken as the reference system for the derivation of composition expansions. Then, we invoke the formalism (a) to illustrate the well-behaved nature of the solvation contributions to the mechanical partial molecular properties of solutes at infinite dilution, (b) to guide the development of, and provide molecular-based support to, the macroscopic modeling of high-temperature dilute aqueous-electrolyte solutions, (c) to study solvation effects on the kinetic rate constants of reactions in near-critical solvents in an attempt to understand from a microscopic perspective the macroscopic evidence regarding the thermodynamic pressure effects, and (d) to interpret the microscopic mechanism behind synergistic solvation effects involving either co-solutes or co-solvents, and provide a molecular argument on the unsuitability of the van der Waals one-fluid (vdW-1f) mixing rules for the 2 description of weakly attractive solutes in compressible solvents. Finally, we develop thermodynamically consistent perturbation expansions, around the infinite dilution reference, for the species residual properties in binary and ternary mixtures, and discuss the theoretical and modeling implications behind ad hoc first-order truncated expansions.

  4. Solvation!

    SciTech Connect

    Ivana Adamovic

    2004-12-19

    This dissertation consists of two closely related parts: theory development and coding of correlation effects in a model potential for solvation, and study of solvent effects on chemical reactions and processes. The effective fragment potential (EFP) method has been re-parameterized, using density functional theory (DFT), more specifically, the B3LYP functional. The DFT based EFP method includes short-range correlation effects; hence it is a first step in incorporating the treatment of correlation in the EFP solvation model. In addition, the gradient of the charge penetration term in the EFP model was derived and coded. The new method has been implemented in the electronic structure code GAMESS and is in use. Formulas for the dynamic dipole polarizability, C{sub 6} dispersion coefficient and dispersion energy were derived and coded as a part of a treatment of the dispersion interactions in the general solvation model, EFP2. Preliminary results are in good agreement with experimental and other theoretical data. The DFT based EFP (EFP1/DFT) method was used in the study of microsolvation effects on the S{sub N}2 substitution reaction, between chloride and methyl bromide. Changes in the central barrier, for several lowest lying isomers of the systems with one, two, three and four waters, were studied using second order perturbation theory (MP2), DFT and mixed quantum mechanics (QM)/(EFP1/DFT) methods. EFP1/DFT is found to reproduce QM results with high accuracy, at just a fraction of the cost. Molecular structures and potential energy surfaces for IHI{sup -} {center_dot} Ar{sub n} (n=1-7) were studied using the MP2 method. Experimentally observed trends in the structural arrangement of the Ar atoms were explained through the analysis of the geometrical parameters and three-dimensional MP2 molecular electrostatic potentials.

  5. A hot tip: imaging phenomena using in situ multi-stimulus probes at high temperatures.

    PubMed

    Nonnenmann, Stephen S

    2016-02-14

    Accurate high temperature characterization of materials remains a critical challenge to the continued advancement of various important energy, nuclear, electronic, and aerospace applications. Future experimental studies must assist these communities to progress past empiricism and derive deliberate, predictable designs of material classes functioning within active, extreme environments. Successful realization of systems ranging from fuel cells and batteries to electromechanical nanogenerators and turbines requires a dynamic understanding of the excitation, surface-mediated, and charge transfer phenomena which occur at heterophase interfaces (i.e. vapor-solid, liquid-solid, solid-solid) and impact overall performance. Advancing these frontiers therefore necessitates in situ (operando) characterization methods capable of resolving, both spatially and functionally, the coherence between these complex, collective excitations, and their respective response dynamics, through studies within the operating regime. This review highlights recent developments in scanning probe microscopy in performing in situ imaging at high elevated temperatures. The influence of and evolution from vacuum-based electron and tunneling microscopy are briefly summarized and discussed. The scope includes the use of high temperature imaging to directly observe critical phase transition, electronic, and electrochemical behavior under dynamic temperature settings, thus providing key physical parameters. Finally, both challenges and directions in combined instrumentation are proposed and discussed towards the end. PMID:26795921

  6. A hot tip: imaging phenomena using in situ multi-stimulus probes at high temperatures

    NASA Astrophysics Data System (ADS)

    Nonnenmann, Stephen S.

    2016-02-01

    Accurate high temperature characterization of materials remains a critical challenge to the continued advancement of various important energy, nuclear, electronic, and aerospace applications. Future experimental studies must assist these communities to progress past empiricism and derive deliberate, predictable designs of material classes functioning within active, extreme environments. Successful realization of systems ranging from fuel cells and batteries to electromechanical nanogenerators and turbines requires a dynamic understanding of the excitation, surface-mediated, and charge transfer phenomena which occur at heterophase interfaces (i.e. vapor-solid, liquid-solid, solid-solid) and impact overall performance. Advancing these frontiers therefore necessitates in situ (operando) characterization methods capable of resolving, both spatially and functionally, the coherence between these complex, collective excitations, and their respective response dynamics, through studies within the operating regime. This review highlights recent developments in scanning probe microscopy in performing in situ imaging at high elevated temperatures. The influence of and evolution from vacuum-based electron and tunneling microscopy are briefly summarized and discussed. The scope includes the use of high temperature imaging to directly observe critical phase transition, electronic, and electrochemical behavior under dynamic temperature settings, thus providing key physical parameters. Finally, both challenges and directions in combined instrumentation are proposed and discussed towards the end.

  7. A review of basic phenomena and techniques for sputter-deposition of high temperature superconducting films

    SciTech Connect

    Auciello, O. North Carolina State Univ., Raleigh, NC . Dept. of Materials Science and Engineering); Ameen, M.S.; Kingon, A.I.; Lichtenwalner, D.J. . Dept. of Materials Science and Engineering); Krauss, A.R. )

    1990-01-01

    The processes involved in plasma and ion beam sputter-deposition of high temperature superconducting thin films are critically reviewed. Recent advances in the development of these techniques are discussed in relation to basic physical phenomena, specific to each technique, which must be understood before high quality films can be produced. Control of film composition is a major issue in sputter-deposition of multicomponent materials. Low temperature processing of films is a common goal for each technique, particularly in relation to integrating high temperature superconducting films with the current microelectronics technology. It has been understood for some time that for Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} deposition, the most intensely studied high-{Tc} compound, incorporation of sufficient oxygen into the film during deposition is necessary to produce as-deposited superconducting films at relatively substrate temperatures. Recent results have shown that with the use of suitable buffer layers, high quality Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} sputtered films can be obtained on Si substrates without the need for post-deposition anneal processing. This review is mainly focussed on issues related to sputter-deposition of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} thin films, although representative results concerning the bismuth and thallium based compounds are included. 143 refs., 11 figs.

  8. Solvation phenomena in dilute multicomponent solutions I. Formal results and molecular outlook.

    PubMed

    Chialvo, Ariel A; Chialvo, Sebastian; Simonson, J Michael; Kalyuzhnyi, Yu V

    2008-06-01

    We derive second-order thermodynamically consistent truncated composition expansions for the species residual partial molar properties--including volume, enthalpy, entropy, and Gibbs free energy--of dilute ternary systems aimed at the molecular account of solvation phenomena in compressible media. Then, we provide explicit microscopic interpretation of the expansion coefficients in terms of direct and total correlation function integrals over the microstructure of the corresponding infinite dilution reference system, as well as their pressure and temperature derivatives, allowing for the direct prediction of the species partial molar properties from the knowledge of the effective intermolecular interactions. Finally, we apply these formal results (a) to derive consistent expressions for the corresponding properties of the binary system counterparts, (b) to illustrate how the formal expressions converge, at the zero density limit, to those for multicomponent mixtures of imperfect gases obeying the virial equation of state Z = 1 + BPkT, and (c) to discuss, and highlight with examples from the literature, the thermodynamic inconsistencies encountered in the currently available first-order truncated expansions, by pinpointing the mathematical origin and physical meaning of the inconsistencies that render the first-order truncated expansions invalid. PMID:18537438

  9. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 4: High-Temperature Materials PIRTs

    SciTech Connect

    Corwin, William R; Ballinger, R.; Majumdar, S.; Weaver, K. D.

    2008-03-01

    The Phenomena Identification and Ranking Table (PIRT) technique was used to identify safety-relevant/safety-significant phenomena and assess the importance and related knowledge base of high-temperature structural materials issues for the Next Generation Nuclear Plant (NGNP), a very high temperature gas-cooled reactor (VHTR). The major aspects of materials degradation phenomena that may give rise to regulatory safety concern for the NGNP were evaluated for major structural components and the materials comprising them, including metallic and nonmetallic materials for control rods, other reactor internals, and primary circuit components; metallic alloys for very high-temperature service for heat exchangers and turbomachinery, metallic alloys for high-temperature service for the reactor pressure vessel (RPV), other pressure vessels and components in the primary and secondary circuits; and metallic alloys for secondary heat transfer circuits and the balance of plant. These materials phenomena were primarily evaluated with regard to their potential for contributing to fission product release at the site boundary under a variety of event scenarios covering normal operation, anticipated transients, and accidents. Of all the high-temperature metallic components, the one most likely to be heavily challenged in the NGNP will be the intermediate heat exchanger (IHX). Its thin, internal sections must be able to withstand the stresses associated with thermal loading and pressure drops between the primary and secondary loops under the environments and temperatures of interest. Several important materials-related phenomena related to the IHX were identified, including crack initiation and propagation; the lack of experience of primary boundary design methodology limitations for new IHX structures; and manufacturing phenomena for new designs. Specific issues were also identified for RPVs that will likely be too large for shop fabrication and transportation. Validated procedures

  10. Investigation of metallurgical phenomena related to process and product development by means of High Temperature Confocal Scanning Laser Microscopy

    NASA Astrophysics Data System (ADS)

    Diéguez-Salgado, U.; Michelic, S.; Bernhard, C.

    2016-03-01

    An increased interest for high temperature metallurgical processes appeared during the last decades, in order to achieve the high quality requirements in steel products. A defined steel cleanness and microstructure essentially influence the final product quality. The high temperatures involved in metallurgical processes and the lack of in situ observations do not only complicate the verification of simulation model predictions but also make significant conclusions regarding the industrial processes difficult. For that reason, new tools and techniques are necessary to develop. By combining the advances of a laser, confocal optics and an infrared image furnace, the High Temperature Confocal Scanning Laser Microscopy (HTCSLM) is a strong tool which enables high temperature in situ observations of different metallurgical phenomena. Next to solidification processes and phase transformations also the behavior of inclusions at different interfaces in the system steel-slag-refractory can be observed. The present study focuses on the aspects of inclusion agglomeration in the liquid steel and the inclusion behavior at the steel/refractory interface in two different steel grades. Out of the obtained experimental data, attraction forces are calculated and compared. This information provides an important basis for a better understanding of inclusion behavior in industrial processes and the therewith related process optimization, like for example the clogging phenomenon during continuous casting.

  11. Exploring high temperature phenomena related to post-detonation using an electric arc

    SciTech Connect

    Dai, Z. R. Crowhurst, J. C.; Grant, C. D.; Knight, K. B.; Tang, V.; Chernov, A. A.; Cook, E. G.; Lotscher, J. P.; Hutcheon, I. D.

    2013-11-28

    We report a study of materials recovered from a uranium-containing plasma generated by an electric arc. The device used to generate the arc is capable of sustaining temperatures of an eV or higher for up to 100 μs. Samples took the form of a 4 μm-thick film deposited onto 8 pairs of 17 μm-thick Cu electrodes supported on a 25 μm-thick Kapton backing and sandwiched between glass plates. Materials recovered from the glass plates and around the electrode tips after passage of an arc were characterized using scanning and transmission electron microscopy. Recovered materials included a variety of crystalline compounds (e.g., UO{sub 2}, UC{sub 2}, UCu{sub 5},) as well as mixtures of uranium and amorphous glass. Most of the materials collected on the glass plates took the form of spherules having a wide range of diameters from tens of nanometers to tens of micrometers. The composition and size of the spherules depended on location, indicating different chemical and physical environments. A theoretical analysis we have carried out suggests that the submicron spherules presumably formed by deposition during the arc discharge, while at the same time the glass plates were strongly heated due to absorption of plasma radiation mainly by islands of deposited metals (Cu, U). The surface temperature of the glass plates is expected to have risen to ∼2300 K thus producing a liquefied glass layer, likely diffusions of the deposited metals on the hot glass surface and into this layer were accompanied by chemical reactions that gave rise to the observed materials. These results, together with the compact scale and relatively low cost, suggest that the experimental technique provides a practical approach to investigate the complex physical and chemical processes that occur when actinide-containing material interacts with the environment at high temperature, for example, during fallout formation following a nuclear detonation.

  12. Exploring high temperature phenomena related to post-detonation using an electric arc

    NASA Astrophysics Data System (ADS)

    Dai, Z. R.; Crowhurst, J. C.; Grant, C. D.; Knight, K. B.; Tang, V.; Chernov, A. A.; Cook, E. G.; Lotscher, J. P.; Hutcheon, I. D.

    2013-11-01

    We report a study of materials recovered from a uranium-containing plasma generated by an electric arc. The device used to generate the arc is capable of sustaining temperatures of an eV or higher for up to 100 μs. Samples took the form of a 4 μm-thick U238 film deposited onto 8 pairs of 17 μm-thick Cu electrodes supported on a 25 μm-thick Kapton backing and sandwiched between glass plates. Materials recovered from the glass plates and around the electrode tips after passage of an arc were characterized using scanning and transmission electron microscopy. Recovered materials included a variety of crystalline compounds (e.g., UO2, UC2, UCu5,) as well as mixtures of uranium and amorphous glass. Most of the materials collected on the glass plates took the form of spherules having a wide range of diameters from tens of nanometers to tens of micrometers. The composition and size of the spherules depended on location, indicating different chemical and physical environments. A theoretical analysis we have carried out suggests that the submicron spherules presumably formed by deposition during the arc discharge, while at the same time the glass plates were strongly heated due to absorption of plasma radiation mainly by islands of deposited metals (Cu, U). The surface temperature of the glass plates is expected to have risen to ˜2300 K thus producing a liquefied glass layer, likely diffusions of the deposited metals on the hot glass surface and into this layer were accompanied by chemical reactions that gave rise to the observed materials. These results, together with the compact scale and relatively low cost, suggest that the experimental technique provides a practical approach to investigate the complex physical and chemical processes that occur when actinide-containing material interacts with the environment at high temperature, for example, during fallout formation following a nuclear detonation.

  13. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    SciTech Connect

    Lyons, K.D.; Honeygan, S.; Moroz, T

    2007-06-01

    The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) established an Extreme Drilling Lab to engineer effective and efficient drilling technologies viable at depths greater than 20,000 feet. This paper details the challenges of ultra-deep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL’s Research and Development activities. NETL is invested in laboratory-scale physical simulation. Their physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480 °F around a single drill cutter. This simulator will not yet be operational by the planned conference dates; therefore, the results will be limited to identification of leading hypotheses of drilling phenomena and NETL’s test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Lab’s studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.

  14. Fundamental Understanding of Ambient and High-Temperature Plasticity Phenomena in Structural Materials in Advanced Reactors

    SciTech Connect

    Deo, Chaitanya; Zhu, Ting; McDowell, David

    2013-11-17

    The goal of this research project is to develop the methods and tools necessary to link unit processes analyzed using atomistic simulations involving interaction of vacancies and interstitials with dislocations, as well as dislocation mediation at sessile junctions and interfaces as affected by radiation, with cooperative influence on higher-length scale behavior of polycrystals. These tools and methods are necessary to design and enhance radiation-induced damage-tolerant alloys. The project will achieve this goal by applying atomistic simulations to characterize unit processes of: 1. Dislocation nucleation, absorption, and desorption at interfaces 2. Vacancy production, radiation-induced segregation of substitutional Cr at defect clusters (point defect sinks) in BCC Fe-Cr ferritic/martensitic steels 3. Investigation of interaction of interstitials and vacancies with impurities (V, Nb, Ta, Mo, W, Al, Si, P, S) 4. Time evolution of swelling (cluster growth) phenomena of irradiated materials 5. Energetics and kinetics of dislocation bypass of defects formed by interstitial clustering and formation of prismatic loops, informing statistical models of continuum character with regard to processes of dislocation glide, vacancy agglomeration and swelling, climb and cross slip This project will consider the Fe, Fe-C, and Fe-Cr ferritic/martensitic material system, accounting for magnetism by choosing appropriate interatomic potentials and validating with first principles calculations. For these alloys, the rate of swelling and creep enhancement is considerably lower than that of face-centered cubic (FCC) alloys and of austenitic Fe-Cr-Mo alloys. The team will confirm mechanisms, validate simulations at various time and length scales, and improve the veracity of computational models. The proposed research?s feasibility is supported by recent modeling of radiation effects in metals and alloys, interfacial dislocation transfer reactions in nano-twinned copper, and dislocation

  15. Surface reactions, solvation and adsorption phenomena of electrolytic adlayers on metal surfaces

    NASA Astrophysics Data System (ADS)

    Lim, Seng Woon

    Fundamental understandings of electrolytic adlayers are important to areas like: batteries, ultra-capacitors, fuel cells, corrosion and atmospheric chemistry. In this dissertation, interactions of electrolytic adlayers are systematically examined using ultra-high vacuum surface analytical techniques. In particular, interactions of water with constituents of electrolytic adlayers are closely followed. On clean Ag(110), water desorbs at 165 K and adsorbs as crystalline ice at 145 K. During continuous adsorption, water initially adsorbs with its molecular plane parallel to the surface, and then gradually tilts towards the surface normal as more water adsorbs. A layer-by-layer adsorption model is proposed for crystalline ice growth on Ag(110). When water is separately coadsorbed with hydroxyl and carbonate, water is stabilized to temperatures as high as 220 and 300 K, respectively. Both anions exhibit great surface solvation. An extended bilayer model is proposed for OH interactions with water, and isotopic exchange experiments have illustrated that (1) the extent of proton mobility in the adlayers, and (2) the migration of hydroxide ion into the water-ice multilayer. On Pt(111), mutual displacement of water and methanol occurs in electrolytic adlayers. Adsorbed methanol monolayer is destabilized when it is co-adsorbed with hydrogen. However, methanol monolayer can be restabilized when water is introduced to the adlayer system. With addition of excess water, destabilization induced by hydrogen can be completely removed and methanol behaves as if it interacts only with water. Interactions of Ru-modified Pt(111) with electrolytic adlayer has been studied. Ru adlayers were deposited with a low power electron beam heated evaporation source, and Ru can be probed with molecular nitrogen. Optimum activity of Ru/Pt(111) surfaces occurs when they are thermally activated to 573 K. Water can be stabilized to temperatures as high as 250 K on these surfaces, and partial

  16. Order/disorder phenomena in Zn1-xMnxGa2Se4 ordered vacancy compounds: high temperature neutron powder diffraction experiments

    NASA Astrophysics Data System (ADS)

    Alonso-Gutiérrez, P.; Morón, M. C.; Hull, S.; Sanjuán, M. L.

    2013-12-01

    We present a study of order-disorder phenomena in the series of tetrahedral ordered vacancy compounds Zn1-xMnxGa2Se4 by means of time-of-flight neutron diffraction at high temperature together with dc magnetic susceptibility, Raman spectroscopy, differential thermal analysis and optical absorption experiments. Samples of nominal composition x = 0, 0.24, 0.5, 0.77 and 1 have been studied. An order-disorder phase transition has been detected, with Tc ranging from 472 to 610 ° C, which involves a structural change from a defect chalcopyrite phase, with I\\bar {4} space group (s.g.) and three different cation sites, to a partially disordered defect stannite, in which Zn, Mn and half of the Ga ions share the 4d site in I\\bar {4}2 m s.g. Neither the vacancies nor the Ga ions occupying site 2a are involved in the phase transition. An additional ordering process is observed on approaching the phase transition from below, which is attributed to several factors: the activation of cation diffusion at ˜300 ° C, the partially disordered cation distribution exhibited by the as-grown single crystals and the preference of Mn atoms for the 2d crystallographic site in the I\\bar {4} structure. The reversibility of the phase transition is analysed with the aid of magnetic, optical and Raman experiments.

  17. Olanzapine solvates.

    PubMed

    Cavallari, Cristina; Santos, Beatriz Pérez-Artacho; Fini, Adamo

    2013-11-01

    Olanzapine was crystallized from 12 organic solvents alone or in mixture, by cooling in the freezer, by slow evaporation of the solvent, or by suspending olanzapine powder for some time in the solvent. All the samples thus obtained were examined by thermal analysis (differential scanning calorimetry-DSC and thermogravimetry-TG) to certify the formation of a solvate, the presence of polymorph (form 1 or 2) in the desolvated olanzapine, comparing the different profile of the thermograms, and to calculate the stoichiometry of the possible solvate. According to the DSC thermogram, the solvents can be divided into four classes: those that do not form solvates and leave olanzapine form 1 (ethyl acetate, toluene, diethyl ether, and acetone); those that form solvate and leave form 1 of olanzapine after desolvation (methanol, 1- and 2-propanol); those that after desolvation of the solvate show a polymorph transition in the thermogram indicating the presence of form 2 of olanzapine (ethanol); other solvents (tetrahydrofuran, chloroform, acetonitrile) give solvate thermograms, where this last thermal trace is only poorly evident. With few exceptions, each solvent forms solvate both when pure and in mixture (10%, v/v, in ethyl acetate). Methanol monosolvate displays complex thermogram and thermogravimetric desolvation profiles, depending on the crystallization experimental conditions, used to prepare the solvates. Dichloromethane solvate was found by X-ray diffraction analysis to be amorphous and, on heating during DSC analysis, allowed the crystallization of both form 1 and 2, with different weight ratio, according to the experimental conditions of the solvate preparation. PMID:23963777

  18. Ignition phenomena and reaction mechanisms of the self-propagating high-temperature synthesis reaction in the titanium-carbon-aluminum system

    SciTech Connect

    Lee, W.C.; Chung, S.L.

    1997-01-01

    The effect of the addition of aluminum on the ignition and self-propagating high-temperature synthesis (SHS) reaction between titanium and carbon was experimentally investigated. Although TiC was the only product compound in the final product, the reaction between titanium and aluminum was believed to occur before the ignition of the reaction between titanium and carbon, as evidenced by a hump that appeared in the temperature profile during heating. The ignition temperature of the reaction between titanium and carbon was significantly decreased by the addition of aluminum. This was explained by the fact that the aluminum provides an easier route for reactant mass transfer, thus significantly increasing the reaction rate of the reaction between titanium and carbon. As the temperature was increased to beyond the melting point of aluminum during heating, aluminum melted and titanium dissolved into it. As the temperature was increased to beyond the melting point of aluminum during heating, aluminum melted and titanium dissolved into it. As the temperature was increased further (>1,050 C), the titanium-containing aluminum spread over the carbon particles. Ignition is believed to have occurred by the reaction of titanium and carbon at the interface by the diffusion of titanium through the aluminum melt to the interface. The rate of heating and the density of the reactant compact also affected the ignition temperature. These were explained by their influence on the extent of the capillary spreading of the titanium-containing aluminum melt on the carbon particles or by the formation of a TiAl{sub x} layer at the interface between the aluminum melt and the titanium particles. Fracture surfaces of the product showed three different types of morphology. A possible reaction mechanism was proposed that describes the ignition process and explains the formation of each type of product.

  19. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  20. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-12-31

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with super-heated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200{degrees}C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220{degrees}C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: (1) At relative pressures over 0.6 the capillarity forces are very important. (2) There is no significant temperature effect. (3) Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. (4) Pores smaller than 15 {Angstrom} do not contribute to the adsorbed mass.

  1. Anion solvation in alcohols

    SciTech Connect

    Jonah, C.D.; Xujia, Zhang; Lin, Yi

    1996-03-01

    Anion solvation is measured in alcohols using pump-probe pulse radiolysis and the activation energy of solvation is determined. Solvation of an anion appears to be different than excited state solvation. The continuum dielectric model does not appear to explain the results.

  2. Production of solvated electrons

    NASA Technical Reports Server (NTRS)

    Thomas, J. K.

    1969-01-01

    Current research, both theoretical and experimental, relating to the production and kinetics of interactions of solvated electrons is reviewed. Particular attention is focused on solvated electrons generated by ionizing radiation in water, alcohols, and organic systems.

  3. High-Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  4. High temperature sensor

    DOEpatents

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  5. Experimental studies in high temperature aqueous chemistry at Oak Ridge National Laboratory

    SciTech Connect

    Mesmer, R.E.; Palmer, D.A.; Simonson, J.M.; Holmes, H.F.; Ho, P.C.; Wesolowski, D.J.; Gruszkiewicz, M.S.

    1996-01-01

    Experimental research is conducted and models developed in a long- standing program at Oak Ridge on aqueous chemistry at high temperatures of broad classes of electrolytes emphasizing thermodynamics of reaction equilibria and excess thermodynamic properties of electrolytes. Experimental methods, their capabilities, data analysis, and results are summarized. Relevance of the work to problems in power plants, natural and industrial processes as well as basic solution chemistry and geochemistry are given. Progress in potentiometry, electrical conductivity, flow calorimetry, and isopiestic research is described. Future in this field demands greater precision in measurements and significant gains in our understanding of the solvation phenomena especially in the vicinity and beyond the critical point for water. The communities who do research on scattering, spectroscopy, and computer simulations can help guide these efforts through studies at extreme conditions.

  6. High-Temperature Superconductivity

    SciTech Connect

    Peter Johnson

    2008-11-05

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors — materials that carry electrical c

  7. High-Temperature Superconductivity

    ScienceCinema

    Peter Johnson

    2010-01-08

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors ? materials that carry electrical c

  8. High-temperature electronics

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-01-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  9. High-temperature sensor

    DOEpatents

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  10. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  11. High temperature furnace

    DOEpatents

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  12. High temperature refrigerator

    DOEpatents

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  13. High-temperature electronics

    NASA Astrophysics Data System (ADS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-02-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  14. Readily Made Solvated Electrons

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; Guerra-Millan, Francisco J.; Hugerat, Muhamad; Vazquez-Olavarrieta, Jorge L.; Basheer, Ahmad; Abu-Much, Riam

    2011-01-01

    The existence of solvated electrons has been known for a long time. Key methods for their production (i.e., photoionization of reducing ions, water radiolysis, and the reaction between H[middle dot] and OH[superscript -]) are unsuitable for most school laboratories. We describe a simple experiment to produce liquid ammonia and solvated electrons…

  15. High temperature electronics technology

    NASA Astrophysics Data System (ADS)

    Dening, J. C.; Hurtle, D. E.

    1984-03-01

    This report summarizes the barrier metallization developments accomplished in a program intended to develop 300 C electronic controls capability for potential on-engine aircraft engine application. In addition, this report documents preliminary life test results at 300 C and above and discusses improved design practices required for high temperature integrated injection logic semiconductors. Previous Phase 1 activities focused on determining the viability of operating silicon semiconductor devices over the -55 C to +300 C temperature range. This feasibility was substantiated but the need for additional design work and process development was indicated. Phase 2 emphasized the development of a high temperature metallization system as the primary development need for high temperature silicon semiconductor applications.

  16. High temperature electronics

    NASA Astrophysics Data System (ADS)

    Seng, Gary T.

    1991-03-01

    In recent years, the aerospace propulsion and space power communities have acknowledged a growing need for electronic devices that are capable of sustained high-temperature operation. Aeropropulsion applications for high-temperature electronic devices include engine ground test instrumentation such as multiplexers, analog-to-digital converters, and telemetry systems capable of withstanding hot section engine temperatures in excess of 600 C. Uncooled operation of control and condition monitoring systems in advanced supersonic aircraft would subject the electronics to temperatures in excess of 300 C. Similarly, engine-mounted integrated electronic sensors could reach temperatures which exceed 500 C. In addition to aeronautics, there are many other areas that could benefit from the existence of high-temperature electronic devices. Space applications include power electronic devices for space platforms and satellites. Since power electronics require radiators to shed waste heat, electronic devices that operate at higher temperatures would allow a reduction in radiator size. Terrestrial applications include deep-well drilling instrumentation, high power electronics, and nuclear reactor instrumentation and control. To meet the needs of the applications mentioned previously, the high-temperature electronics (HTE) program at the Lewis Research Center is developing silicon carbide (SiC) as a high-temperature semiconductor material. Research is focused on developing the crystal growth, growth modeling, characterization, and device fabrication technologies necessary to produce a family of SiC devices. Interest in SiC has grown dramatically in recent years due to solid advances in the technology. Much research remains to be performed, but SiC appears ready to emerge as a useful semiconductor material.

  17. High temperature future

    SciTech Connect

    Sheinkopf, K.

    1994-09-01

    During the past few years, there have been dramatic accomplishments and success of high temperature solar thermal systems and significant development of these systems. High temperature technologies, about 500 F and higher, such as dish engines, troughs, central receiver power towers and solar process heat systems, have been tested, demonstrated and used in an array of applications, including many cost-effective utility bulk power production and demand side supply projects in the United States. Large systems provide power and hot water to prisons, schools, nursing homes and other institutions. Joint ventures with industry, utility projects, laboratory design assistance and other activities are building a solid industry of US solar thermal systems ready for use today.

  18. High temperature probe

    DOEpatents

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  19. High Temperature Thermosets

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1999-01-01

    A thermoset or network polymer is an organic material where the molecules are tied together through chemical bonds (crosslinks) and therefore they cannot move past one another. As a result, these materials exhibit a certain degree of dimensional stability. The chemical composition and the degree of crosslink density of the thermoset have a pronounced effect upon the properties. High temperature thermosets offer a favorable combination of properties that makes them attractive for many applications. Their most important features are the excellent processability particularly of the low molecular weight precusor forms, the chemical and solvent resistance and the dimensional stability. The market for high temperature thermosets will increase as new uses for them are uncovered and new thermosets with better combinations of properties are developed.

  20. High-Temperature Lubricants

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In the early 1980's, Lewis Research Center began a program to develop high-temperature lubricants for use on future aircraft flying at three or more times the speed of sound, which can result in vehicle skin temperatures as high as 1,600 degrees Fahrenheit. A material that emerged from this research is a plasma-sprayed, self-lubricating metal- glass-fluoride coating able to reduce oxidation at very high temperatures. Technology is now in commercial use under the trade name Surf-Kote C-800, marketed by Hohman Plating and Manufacturing Inc. and manufactured under a patent license from NASA. Among its uses are lubrication for sliding contact bearings, shaft seals for turbopumps, piston rings for high performance compressors and hot glass processing machinery; it is also widely used in missile and space applications.

  1. High Temperature ESP Monitoring

    SciTech Connect

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  2. HIGH TEMPERATURE THERMOCOUPLE

    DOEpatents

    Eshayu, A.M.

    1963-02-12

    This invention contemplates a high temperature thermocouple for use in an inert or a reducing atmosphere. The thermocouple limbs are made of rhenium and graphite and these limbs are connected at their hot ends in compressed removable contact. The rhenium and graphite are of high purity and are substantially stable and free from diffusion into each other even without shielding. Also, the graphite may be thick enough to support the thermocouple in a gas stream. (AEC)

  3. High-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Chin, Ken C.

    1990-01-01

    The current status of high-temperature superconductivity (HTSC) and near-term prospects are briefly reviewed with particular reference to Lockheed's experience. Emphasis is placed on an integrated approach to systems applications of HTSC thin films, which hold the greatest near-term promise. These new materials are applied in the production of smaller, more sensitive, and more efficient electronic components to meet the ever-increasing demands for higher-performance signal acquisition and processing systems, communications systems, and computers.

  4. High Temperature Capacitor Development

    SciTech Connect

    John Kosek

    2009-06-30

    The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a

  5. High temperature detonator

    DOEpatents

    Johnson, James O.; Dinegar, Robert H.

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  6. High temperature drilling fluids

    SciTech Connect

    Stong, R.E.; Walinsky, S.W.

    1986-01-28

    This patent describes an aqueous drilling fluid suitable for high-temperature use. This fluid is composed of a water base. Clay is suspended in the base and from about 0.01-25 pounds per barrel total composition of a hydrolyzed terpolymer of maleic anhydride, styrene and a third monomer selected from acrylamide, methacrylamide, acrylic acid and metacrylic acid. The molar ratio of maleic anhydride to styrene to the third monomer is from about 30:10:60 to 50:40:10, and the alkali metal, ammonium and lower aliphatic amine salts thereof, the weight-average molecular weight of the hydrolyzed terpolymer is from about 500-10,000.

  7. High Temperature Metallic Seal Development

    NASA Astrophysics Data System (ADS)

    Datta, Amit; More, D. Greg

    2002-10-01

    A high temperature static seal capable of long term operation at temperature ranging from 1400 F to 1800 F is presented. The contents include: 1) Development approach; 2) Stress relaxation curves; 3) High temperature seal test rig; 4) High temperature seal design; and 5) High temperature seal testing. This paper is in viewgraph form.

  8. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  9. High temperature thermometric phosphors

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  10. High temperature thermometric phosphors

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  11. High temperature filter materials

    SciTech Connect

    Alvin, M.A.; Lippert, T.E.; Bachovchin, D.M.; Tressler, R.E.

    1992-12-01

    Objectives of this program are to identify the potential long-term thermal/chemical effects that advanced coal-based power generating system environments have on the stability of porous ceramic filter materials, as well as to assess the influence of these effects on filter operating performance and life. We have principally focused our efforts on developing an understanding of the stability of the alumina/mullite filter material at high temperature (i.e., 870, 980, and 1100{degrees}C) under oxidizing conditions which contain gas phase alkali species. Testing has typically been performed in two continuous flow-through, high temperature test facilities at the Westinghouse Science and Technology Center, using 7 cm diameter {times} 6.4 mm thick discs. (Alvin, 1992) Each disc of ceramic filter material is exposed for periods of 100 to 3,000 hours in duration. Additional efforts have been performed at Westinghouse to broaden our understanding of the stability of cordierite, cordierite-silicon nitride, reaction and sintered silicon nitride, and clay bonded silicon carbide under similar simulated advanced coal fired process conditions. The results of these efforts are presented in this paper.

  12. High temperature filter materials

    SciTech Connect

    Alvin, M.A.; Lippert, T.E.; Bachovchin, D.M. . Science and Technology Center); Tressler, R.E. )

    1992-01-01

    Objectives of this program are to identify the potential long-term thermal/chemical effects that advanced coal-based power generating system environments have on the stability of porous ceramic filter materials, as well as to assess the influence of these effects on filter operating performance and life. We have principally focused our efforts on developing an understanding of the stability of the alumina/mullite filter material at high temperature (i.e., 870, 980, and 1100[degrees]C) under oxidizing conditions which contain gas phase alkali species. Testing has typically been performed in two continuous flow-through, high temperature test facilities at the Westinghouse Science and Technology Center, using 7 cm diameter [times] 6.4 mm thick discs. (Alvin, 1992) Each disc of ceramic filter material is exposed for periods of 100 to 3,000 hours in duration. Additional efforts have been performed at Westinghouse to broaden our understanding of the stability of cordierite, cordierite-silicon nitride, reaction and sintered silicon nitride, and clay bonded silicon carbide under similar simulated advanced coal fired process conditions. The results of these efforts are presented in this paper.

  13. High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Berger, Marie-Helen; Sayir, Ali

    2007-01-01

    High Temperature Protonic Conductors (HTPC) with the perovskite structure are envisioned for electrochemical membrane applications such as H2 separation, H2 sensors and fuel cells. Successive membrane commercialization is dependent upon addressing issues with H2 permeation rate and environmental stability with CO2 and H2O. HTPC membranes are conventionally fabricated by solid-state sintering. Grain boundaries and the presence of intergranular second phases reduce the proton mobility by orders of magnitude than the bulk crystalline grain. To enhanced protonic mobility, alternative processing routes were evaluated. A laser melt modulation (LMM) process was utilized to fabricate bulk samples, while pulsed laser deposition (PLD) was utilized to fabricate thin film membranes . Sr3Ca(1+x)Nb(2-x)O9 and SrCe(1-x)Y(x)O3 bulk samples were fabricated by LMM. Thin film BaCe(0.85)Y(0.15)O3 membranes were fabricated by PLD on porous substrates. Electron microscopy with chemical mapping was done to characterize the resultant microstructures. High temperature protonic conduction was measured by impedance spectroscopy in wet air or H2 environments. The results demonstrate the advantage of thin film membranes to thick membranes but also reveal the negative impact of defects or nanoscale domains on protonic conductivity.

  14. High-temperature electronics

    NASA Astrophysics Data System (ADS)

    Seng, Gary T.

    1987-11-01

    In recent years, there was a growing need for electronics capable of sustained high-temperature operation for aerospace propulsion system instrumentation, control and condition monitoring, and integrated sensors. The desired operating temperature in some applications exceeds 600 C, which is well beyond the capability of currently available semiconductor devices. Silicon carbide displays a number of properties which make it very attractive as a semiconductor material, one of which is the ability to retain its electronic integrity at temperatures well above 600 C. An IR-100 award was presented to NASA Lewis in 1983 for developing a chemical vapor deposition process to grow single crystals of this material on standard silicon wafers. Silicon carbide devices were demonstrated above 400 C, but much work remains in the areas of crystal growth, characterization, and device fabrication before the full potential of silicon carbide can be realized. The presentation will conclude with current and future high-temperature electronics program plans. Although the development of silicon carbide falls into the category of high-risk research, the future looks promising, and the potential payoffs are tremendous.

  15. DFT solvation studies of carbohydrates: implicit and explicit solvation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solvents play a role in carbohydrate structure. Therefore, it is important to include solvation effects in calculations to allow a more realistic comparison with experimental data. A possible way to include solvation effects is to use implicit solvation models such as COSMO and PCM. Another avenu...

  16. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  17. High-temperature resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1982-01-01

    The basic chemistry, cure processes, properties, and applications of high temperature resins known as polyimides are surveyed. Condensation aromatic polymides are prepared by reacting aromatic diamines with aromatic dianhydrides, aromatic tetracarboxylic acids, or with dialkyl esters of aromatic tetracarboxylic acids, depending on the intended end use. The first is for coatings or films while the latter two are more suitable for polyimide matrix resins. Prepreg solutions are made by dissolving reactants in an aprotic solvent, and advances in the addition of a diamine on the double bond and radical polymerization of the double bond are noted to have yielded a final cure product with void-free characteristics. Attention is given to properties of the Skybond, Pyralin, and NR-150B polyimide prepreg materials and characteristics of aging in the NP-150 polyimides. Finally, features of the NASA-developed PMR polyimides are reviewed.

  18. High temperature structural silicides

    SciTech Connect

    Petrovic, J.J.

    1997-03-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi{sub 2}-based materials, which are borderline ceramic-intermetallic compounds. MoSi{sub 2} single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi{sub 2} possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi{sub 2}-Si{sub 3}N{sub 4} composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi{sub 2}-based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing.

  19. High temperature strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); You, Tao (Inventor)

    2011-01-01

    A ceramic strain gage based on reactively sputtered indium-tin-oxide (ITO) thin films is used to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500.degree. C. A scanning electron microscopy (SEM) of the thick ITO sensors reveals a partially sintered microstructure comprising a contiguous network of submicron ITO particles with well defined necks and isolated nanoporosity. Densification of the ITO particles was retarded during high temperature exposure with nitrogen thus stabilizing the nanoporosity. ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures to incorporate more nitrogen into the films. Under these conditions, sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established.

  20. High temperature hydraulic seals

    NASA Astrophysics Data System (ADS)

    Williams, K. R.

    1993-05-01

    This program investigated and evaluated high temperature hydraulic sealing technology, including seals, fluids, and actuator materials. Test limits for fluid pressure and temperature were 8000 psi and 700 F respectively. The original plan to investigate CTFE fluid at 350 F as well as other fluids at higher temperatures was reduced in scope to include only the higher temperature investigation. Seals were obtained from 11 manufacturers. Design requirements including materials, dimensions, clearances, and tolerances were established and test modules were constructed from the detail designs which were produced. Nine piston seals and one rod seal were tested at temperatures ranging from -65 to +600 F and pressures to 6000 psi. Fluid performance under these conditions was evaluated. Details of this activity and results of the effort are summarized in this report.

  1. Polar solvation and electron transfer

    SciTech Connect

    Not Available

    1993-04-13

    The report is divided into the following sections: completion of previous studies on solvation dynamics, dipole lattice studies, inertial components of solvation response, simple models of solvation dynamics, rotational dynamics and dielectric friction, intramolecular electron transfer reactions, and intermolecular donor-acceptor complexes.

  2. High Temperature Hybrid Elastomers

    NASA Astrophysics Data System (ADS)

    Drake, Kerry Anthony

    Conventional high temperature elastomers are produced by chain polymerization of olefinic or fluorinated olefinic monomers. Ultimate thermal stabilities are limited by backbone bond strengths, lower thermal stability of cross-link sites relative to backbone bonds, and depolymerization or "unzipping" at high temperatures. In order to develop elastomers with enhanced thermal stability, hybrid thermally cross-linkable polymers that consisted only of organic-inorganic and aromatic bonds were synthesized and evaluated. The addition of phenylethynyl or phenylacetylinic functional groups to these polymers resulted in conversion of the polymers into high temperature elastomers when cross-linked by thermal curing. Polyphenyoxydiphenylsilanes were synthesized via several different condensation reactions. Results of these synthetic reactions, which utilized both hydroquinone and biphenol as monomers, were systematically evaluated to determine the optimal synthetic conditions for subsequent endcapping reactions. It was determined that dichlorodiphenylsilane condensations with biphenol in toluene or THF were best suited for this work. Use of excess dichlorodiphenylsilane yielded polymers of appropriate molecular weights with terminal reactive chlorosilane groups that could be utilized for coupling with phenylethynyl reagents in a subsequent reaction. Two new synthetic routes were developed to endcap biphenoxysilanes with ethynyl containing substituents, to yield polymers with cross-linkable end groups. Endcapping by lithiumphenylacetylide and 4[(4-fluorophenylethynyl))phenol yielded two new polymers that could be thermally cross-linked on heating above 300 °C. Successful endcapping was verified chemically by 13C NMR, FTIR and Raman analysis. Exothermic peaks consistent with ethynyl curing reactions were observed in endcapped polymers by DSC. A new diacetylinic polymer was prepared through reaction of 4,4'-buta-1,3-diyne-1,4-diyldiphenol and dichlorodiphenylsilane. This

  3. High Temperature Inspection System

    SciTech Connect

    Robinson, C.W.

    1999-01-26

    The Remote and Specialty Equipment Section (RSES) of the Savannah River Technology Center has developed a High Temperature Inspection System (HTIS) for remotely viewing the interior of the Defense Waste Processing Facility (DWPF) melter pour spout. The DWPF is a vitrification facility at the Savannah River Site where radioactive waste is processed, mixed and melted with glass frit in an electrically heated melter, and poured into canisters for long-term storage. The glass mixture is transferred from the melter to the canisters via the pour spout, a vertical interface between the melter and the canisters. During initial operation of the melter, problems were experienced with wicking of the glass stream to the sides of the pour spout resulting in pluggage of the pour spout. A removable insert was developed to eliminate the wicking problem. Routine cleaning of the pour spout and replacement of the insert requires that the pour spout interior be inspected on a regular basis. The HTIS was developed to perform the inspection. The HTIS provides two video images: one view for aligning the HTIS with the pour spout and the other for inspecting the pour spout wall condition and other surfaces. The HTIS is carried into the melter cell using an overhead crane and is remotely connected to the cell's telerobotic manipulator (TRM). An operator uses the TRM to insert the HTIS into the 2-inch (5.08 cm) diameter pour spout, rotate it 360 degrees, and then remove it. This application created many challenges for the inspection device, especially regarding size and temperature. The HTIS design allows the video cameras to stay below a safe operating temperature during use in the 1100 degrees C environment. Many devices are designed to penetrate a wall and extend into a heated chamber only a few inches, but the HTIS is inserted into the heated chamber 22 inches (55.88 cm). Other devices can handle the insertion length and small diameter, but they are not designed to handle the high

  4. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  5. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 149 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  6. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Apart from the hydrogeological conditions, high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. After one year of planning, construction, and the successful drilling of a research well to 495 m b.s.l. the first large scale heat storage test in the Malm aquifer was finished just before Christmas 2014. An enormous technical challenge was the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10-50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye. Injection and production rates were 15 L/s. About 4 TJ of heat energy were necessary to achieve the desired water temperatures. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for the analysis of the concentration of the tracers and the cation concentrations at sampling intervals of down to 15 minutes. Additional water samples were taken and analyzed for major ions and trace elements in the laboratory. The disassembled heat exchanger proved that precipitation was successfully prevented by adding CO2 to the water before heating

  7. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2016-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  8. Quantifying solvated electrons' delocalization.

    PubMed

    Janesko, Benjamin G; Scalmani, Giovanni; Frisch, Michael J

    2015-07-28

    Delocalized, solvated electrons are a topic of much recent interest. We apply the electron delocalization range EDR(r;u) (J. Chem. Phys., 2014, 141, 144104) to quantify the extent to which a solvated electron at point r in a calculated wavefunction delocalizes over distance u. Calculations on electrons in one-dimensional model cavities illustrate fundamental properties of the EDR. Mean-field calculations on hydrated electrons (H2O)n(-) show that the density-matrix-based EDR reproduces existing molecular-orbital-based measures of delocalization. Correlated calculations on hydrated electrons and electrons in lithium-ammonia clusters illustrates how electron correlation tends to move surface- and cavity-bound electrons onto the cluster or cavity surface. Applications to multiple solvated electrons in lithium-ammonia clusters provide a novel perspective on the interplay of delocalization and strong correlation central to lithium-ammonia solutions' concentration-dependent insulator-to-metal transition. The results motivate continued application of the EDR to simulations of delocalized electrons. PMID:25994586

  9. Measuring transient high temperature thermal phenomena in hostile environment

    SciTech Connect

    Brenden, B.B.; Hartman, J.S.; Reich, F.R.

    1980-01-01

    The design of equipment for measuring temperature and strain in a rapidly heated and pressurized cylinder of stainless steel is discussed. Simultaneous cinematography of the full circumference of the cylinder without interference with temperature and strain measurements is also illustrated. The integrated system uses a reflective chamber for the sample and requires careful consideration of the spectral energy distribution utilized by each instrument.

  10. High-Temperature Piezoelectric Sensing

    PubMed Central

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2014-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928

  11. Interfacial solvation thermodynamics.

    PubMed

    Ben-Amotz, Dor

    2016-10-19

    Previous studies have reached conflicting conclusions regarding the interplay of cavity formation, polarizability, desolvation, and surface capillary waves in driving the interfacial adsorptions of ions and molecules at air-water interfaces. Here we revisit these questions by combining exact potential distribution results with linear response theory and other physically motivated approximations. The results highlight both exact and approximate compensation relations pertaining to direct (solute-solvent) and indirect (solvent-solvent) contributions to adsorption thermodynamics, of relevance to solvation at air-water interfaces, as well as a broader class of processes linked to the mean force potential between ions, molecules, nanoparticles, proteins, and biological assemblies. PMID:27545849

  12. Hydrophobic Solvation: Aqueous Methane Solutions

    ERIC Educational Resources Information Center

    Konrod, Oliver; Lankau, Timm

    2007-01-01

    A basic introduction to concept of a solvation shell around an apolar solute as well as its detection is presented. The hydrophobic solvation of toluene is found to be a good teaching example which connects macroscopic, phenomenological thermodynamic results with an atomistic point of view.

  13. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  14. Containerless high temperature calorimeter apparatus

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Nisen, D. B. (Inventor)

    1981-01-01

    A calorimeter apparatus for measuring high temperature thermophysical properties of materials is disclosed which includes a containerless heating apparatus in which the specimen is suspended and heated by electron bombardment.

  15. High-temperature bearing lubricants

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.; Parker, R. J.; Zaretsky, E. V.

    1968-01-01

    Synthetic paraffinic oil lubricates ball bearings at temperatures in the 600 degrees F range. The lubricant contains antiwear and antifoam additives, is thermally stable in the high temperature range, but requires protection from oxygen.

  16. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Shorey, Mark W.; Steinetz, Bruce (Technical Monitor)

    2000-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 lb payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs. During the first phase of this program the existing launch vehicle control surface sealing concepts were reviewed, the aerothermal environment for a high temperature seal design was analyzed and a mock up of an arc-jet test fixture for evaluating seal concepts was fabricated.

  17. High temperature current mirror amplifier

    DOEpatents

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  18. High-temperature ceramic receivers

    SciTech Connect

    Jarvinen, P. O.

    1980-01-01

    An advanced ceramic dome cavity receiver is discussed which heats pressurized gas to temperatures above 1800/sup 0/F (1000/sup 0/C) for use in solar Brayton power systems of the dispersed receiver/dish or central receiver type. Optical, heat transfer, structural, and ceramic material design aspects of the receiver are reported and the development and experimental demonstration of a high-temperature seal between the pressurized gas and the high-temperature silicon carbide dome material is described.

  19. Gallium phosphide high temperature diodes

    SciTech Connect

    Chaffin, R.J.; Dawson, L.R.

    1981-01-01

    The purpose of this work is to develop high temperature (> 300/sup 0/C) diodes for geothermal and other energy applications. A comparison of reverse leakage currents of Si, GaAs and GaP is made. Diodes made from GaP should be usable to > 500/sup 0/C. An LPE process for producing high quality, grown junction GaP diodes is described. This process uses low vapor pressure Mg as a dopant which allows multiple boat growth in the same LPE run. These LPE wafers have been cut into die and metallized to make the diodes. These diodes produce leakage currents below 10/sup -3/ A/cm/sup 2/ at 400/sup 0/C while exhibiting good high temperature rectification characteristics. High temperature life test data is presented which shows exceptional stability of the V-I characteristics.

  20. High temperature Seebeck coefficient metrology

    SciTech Connect

    Martin, J.; Tritt, T.; Uher, C.

    2010-12-15

    We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectric measurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

  1. Anion Solvation in Carbonate Electrolytes

    SciTech Connect

    Zhang, Zhengcheng

    2015-11-16

    With the correlation between Li+ solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. As of now, most studies are dedicated to the solvation of Li+, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. As a mirror effort to prior Li+ solvation studies, this work focuses on the interactions between carbonate-based solvents and two anions (hexafluorophosphate, PF6–, and tetrafluoroborate, BF4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.

  2. High temperature superconductor current leads

    DOEpatents

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  3. High temperature superconductor current leads

    DOEpatents

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  4. High Temperature Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    1985-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) characterization; (4) environmental effects; and (5) applications.

  5. High temperature current mirror amplifier

    DOEpatents

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  6. High temperature solar thermal technology

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.; Hanseth, E. J.; Peelgren, M. L.

    1980-01-01

    Some advanced technology concepts under development for high-temperature solar thermal energy systems to achieve significant energy cost reductions and performance gains and thus promote the application of solar thermal power technology are presented. Consideration is given to the objectives, current efforts and recent test and analysis results in the development of high-temperature (950-1650 C) ceramic receivers, thermal storage module checker stoves, and the use of reversible chemical reactions to transport collected solar energy. It is pointed out that the analysis and testing of such components will accelerate the commercial deployment of solar energy.

  7. Solvation forces between rough surfaces

    SciTech Connect

    Frink, L.J.; van Swol, F.

    1998-04-01

    We investigate the role of surface roughness on solvation forces and solvation free energies. Roughness is introduced by dividing a surface into an array of square tiles that are then randomly displaced in the direction perpendicular to the wall. The integrated wall strength of these tiled surfaces is independent of the surface roughness and hence this class of rough walls is ideally suited for isolating roughness effects. We use grand canonical Monte Carlo simulations of a Lennard-Jones fluid confined in a slit pore with rough walls to generate the solvation interactions as a function of roughness, tile size, and surface area. The simulation data are compared to a simple superposition approximation of smooth wall solvation interactions (obtained from simulation or density functional theory), based on a distribution of wall separations. We find that this approximation provides a surprisingly accurate route to the solvation interaction of rough surfaces. In general, increased roughness leads to a reduction of oscillations in the solvation forces and surface free energies. However, nonmonotonic behavior of the oscillation amplitude with roughness can be observed for finite surfaces. The washing out of the oscillations found for large surface roughness produces a solvation force that exhibits a broad repulsive peak with separation. The broad repulsion is a consequence of the resistance to squeezing out fluid from the smallest gaps between two opposing rough surfaces. It is as much a reflection of packing effects as are the solvation oscillations for perfectly smooth pores. In addition, we present results for patterned and undulating surfaces produced by an analogous modification of the one-body external field for smooth walls. Finally, we discuss the implications of our results for a number of experimental systems including self-assembled monolayers, microporous materials, protein solutions, and DNA crystals. {copyright} {ital 1998 American Institute of Physics.}

  8. High-temperature plasma physics

    SciTech Connect

    Furth, H.P.

    1988-03-01

    Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics.

  9. High-Temperature Optical Sensor

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.

    2010-01-01

    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  10. High-Temperature Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang K.

    1994-01-01

    High-temperature electrostatic levitator provides independent control of levitation and heating of sample in vacuum. Does not cause electromagnetic stirring in molten sample (such stirring causes early nucleation in undercooling). Maintenance of levitating force entails control of electrostatic field and electrical charge on sample.

  11. High Temperature Transparent Furnace Development

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  12. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  13. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  14. A solar high temperature kiln

    NASA Astrophysics Data System (ADS)

    Huettenhoelscher, N.; Bergmann, K.

    1981-11-01

    The feasibility of using solar energy in developing countries for baking ceramic construction materials was investigated. The solar high temperature kiln is described. It uses two parabolic concentrators which direct available radiation into the baking chamber. The Sun tracker has only one axis. Preliminary test results with the prototype kiln were satisfactory.

  15. High temperature electronic gain device

    DOEpatents

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  16. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

  17. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1990-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  18. Fast estimation of solvation free energies for diverse chemical species.

    PubMed

    Boyer, Robert D; Bryan, Richard L

    2012-03-29

    The free energy of solvation can play an important or even dominant role in the accurate prediction of binding affinities and various other molecular-scale interaction phenomena critical to the study of biochemical processes. Many research applications for solvation modeling, such as fragment-based drug design, require algorithms that are both accurate and computationally inexpensive. We have developed a calculation of solvation free energy which runs fast enough for interactive applications, functions for a wide range of chemical species relevant to simulating molecules for biological and pharmaceutical applications, and is readily extended when data for new species becomes available. We have also demonstrated that the incorporation of ab initio data provides necessary access to sufficient reference data for a broad range of chemical features. Our empirical model, including an electrostatic term and a different set of atom types, demonstrates improvements over a previous, solvent-accessible surface area-only model by Wang et al. when fit to identical training sets (mean absolute error of 0.513 kcal/mol versus the 0.538 kcal/mol reported by Wang). The incorporation of ab initio solvation free energies provides a significant increase in the breadth of chemical features for which the model can be applied by introducing classes of compounds for which little or no experimental data is available. The increased breadth and the speed of this solvation model allow for conformational minimization, conformational search, and ligand binding free energy calculations that economically account for the complex interplay of bonded, nonbonded, and solvation free energies as conformations with varying solvent-accessible surfaces are sampled. PMID:22339050

  19. Solvation in supercritical water

    SciTech Connect

    Cochran, H.D. ); Cummings, P.T.; Karaborni, S. . Dept. of Chemical Engineering)

    1991-01-01

    The aim of this work is to determine the solvation structure in supercritical water composed with that in ambient water and in simple supercritical solvents. Molecular dynamics studies have been undertaken of systems that model ionic sodium and chloride, atomic argon, and molecular methanol in supercritical aqueous solutions using the simple point charge model of Berendsen for water. Because of the strong interactions between water and ions, ionic solutes are strongly attractive in supercritical water, forming large clusters of water molecules around each ion. Methanol is found to be a weakly-attractive solute in supercritical water. The cluster of excess water molecules surrounding a dissolved ion or polar molecule in supercritical aqueous solutions is comparable to the solvent clusters surrounding attractive solutes in simple supercritical fluids. Likewise, the deficit of water molecules surrounding a dissolved argon atom in supercritical aqueous solutions is comparable to that surrounding repulsive solutes in simple supercritical fluids. The number of hydrogen bonds per water molecule in supercritical water was found to be about one third the number in ambient water. The number of hydrogen bonds per water molecule surrounding a central particle in supercritical water was only mildly affected by the identify of the central particle--atom, molecule, or ion. These results should be helpful in developing a qualitative understanding of important processes that occur in supercritical water. 29 refs., 6 figs.

  20. High temperature superconductor materials and applications

    NASA Technical Reports Server (NTRS)

    Doane, George B., III. (Editor); Banks, Curtis; Golben, John

    1991-01-01

    One of the areas concerned itself with the investigation of the phenomena involved in formulating and making in the laboratory new and better superconductor material with enhanced values of critical current and temperature. Of special interest were the chemistry, physical processes, and environment required to attain these enhanced desirable characteristics. The other area concerned itself with producing high temperature superconducting thin films by pulsed laser deposition techniques. Such films are potentially very useful in the detection of very low power signals. To perform this research high vacuum is required. In the course of this effort, older vacuum chambers were maintained and used. In addition, a new facility is being brought on line. This latter activity has been replete with the usual problems of bringing a new facility into service. Some of the problems are covered in the main body of this report.

  1. Viscosity and Solvation

    ERIC Educational Resources Information Center

    Robertson, C. T.

    1973-01-01

    Discusses theories underlying the phenomena of solution viscosities, involving the Jones and Dole equation, B-coefficient determination, and flickering cluster model. Indicates that viscosity measurements provide a basis for the study of the structural effects of ions in aqueous solutions and are applicable in teaching high school chemistry. (CC)

  2. High temperature structural insulating material

    DOEpatents

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  3. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-06

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  4. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  5. Motor for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Roopnarine (Inventor)

    2013-01-01

    A high temperature motor has a stator with poles formed by wire windings, and a rotor with magnetic poles on a rotor shaft positioned coaxially within the stator. The stator and rotor are built up from stacks of magnetic-alloy laminations. The stator windings are made of high temperature magnet wire insulated with a vitreous enamel film, and the wire windings are bonded together with ceramic binder. A thin-walled cylinder is positioned coaxially between the rotor and the stator to prevent debris from the stator windings from reaching the rotor. The stator windings are wound on wire spools made of ceramic, thereby avoiding need for mica insulation and epoxy/adhesive. The stator and rotor are encased in a stator housing with rear and front end caps, and rear and front bearings for the rotor shaft are mounted on external sides of the end caps to keep debris from the motor migrating into the bearings' races.

  6. High Temperature Heat Exchanger Project

    SciTech Connect

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  7. High temperature solar thermal receiver

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A design concept for a high temperature solar thermal receiver to operate at 3 atmospheres pressure and 2500 F outlet was developed. The performance and complexity of windowed matrix, tube-header, and extended surface receivers were evaluated. The windowed matrix receiver proved to offer substantial cost and performance benefits. An efficient and cost effective hardware design was evaluated for a receiver which can be readily interfaced to fuel and chemical processes or to heat engines for power generation.

  8. High-temperature structural ceramics.

    PubMed

    Katz, R N

    1980-05-23

    The unique properties of ceramics based on silicon carbide and silicon nitride make them prime candidates for use in advanced energy conversion systems. These compounds are the bases for broad families of engineering materials, whose properties are reviewed. The relationships between processing, microstructure, and properties are discussed. A review and assessment of recent progress in the use of these materials in high-temperature engineering systems, and vehicular engines in particular, is presented. PMID:17772807

  9. High-temperature geothermal cableheads

    SciTech Connect

    Coquat, J.A.; Eifert, R.W.

    1981-11-01

    Two high-temperature, corrosion-resistant logging cableheads which use metal seals and a stable fluid to achieve proper electrical terminations and cable-sonde interfacings are described. A tensile bar provides a calibrated yield point, and a cone assembly anchors the cable armor to the head. Electrical problems of the sort generally ascribable to the cable-sonde interface were absent during demonstration hostile-environment loggings in which these cableheads were used.

  10. High Temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The majority of satellites and near-earth probes developed to date have used photovoltaic arrays for power generation. If future mission to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. In this paper, we derive the optimum bandgap as a function of the operating temperature.

  11. HIGH TEMPERATURE MICROSCOPE AND FURNACE

    DOEpatents

    Olson, D.M.

    1961-01-31

    A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

  12. Containerless high-temperature calorimeter

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Nisen, D. B.; Robinson, M. B.

    1979-01-01

    Samples are heated by electron bombardment in high-temperature calorimeter that operates from 1,000 to 3,600 C yet consumes less that 100 watts at temperatures less than 2,500 C. Contamination of samples is kept to minimum by suspending them from wire in vacuum chamber. Various sample slopes such as wires, dishs, spheres, rods, or irregular bodies can be accommodated and only about 100 nq of samples are needed for accurate measurements.

  13. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1993-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  14. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1992-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  15. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1994-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  16. Li(+) solvation in glyme-Li salt solvate ionic liquids.

    PubMed

    Ueno, Kazuhide; Tatara, Ryoichi; Tsuzuki, Seiji; Saito, Soshi; Doi, Hiroyuki; Yoshida, Kazuki; Mandai, Toshihiko; Matsugami, Masaru; Umebayashi, Yasuhiro; Dokko, Kaoru; Watanabe, Masayoshi

    2015-03-28

    Certain molten complexes of Li salts and solvents can be regarded as ionic liquids. In this study, the local structure of Li(+) ions in equimolar mixtures ([Li(glyme)]X) of glymes (G3: triglyme and G4: tetraglyme) and Li salts (LiX: lithium bis(trifluoromethanesulfonyl)amide (Li[TFSA]), lithium bis(pentafluoroethanesulfonyl)amide (Li[BETI]), lithium trifluoromethanesulfonate (Li[OTf]), LiBF4, LiClO4, LiNO3, and lithium trifluoroacetate (Li[TFA])) was investigated to discriminate between solvate ionic liquids and concentrated solutions. Raman spectra and ab initio molecular orbital calculations have shown that the glyme molecules adopt a crown-ether like conformation to form a monomeric [Li(glyme)](+) in the molten state. Further, Raman spectroscopic analysis allowed us to estimate the fraction of the free glyme in [Li(glyme)]X. The amount of free glyme was estimated to be a few percent in [Li(glyme)]X with perfluorosulfonylamide type anions, and thereby could be regarded as solvate ionic liquids. Other equimolar mixtures of [Li(glyme)]X were found to contain a considerable amount of free glyme, and they were categorized as traditional concentrated solutions. The activity of Li(+) in the glyme-Li salt mixtures was also evaluated by measuring the electrode potential of Li/Li(+) as a function of concentration, by using concentration cells against a reference electrode. At a higher concentration of Li salt, the amount of free glyme diminishes and affects the electrode reaction, leading to a drastic increase in the electrode potential. Unlike conventional electrolytes (dilute and concentrated solutions), the significantly high electrode potential found in the solvate ILs indicates that the solvation of Li(+) by the glyme forms stable and discrete solvate ions ([Li(glyme)](+)) in the molten state. This anomalous Li(+) solvation may have a great impact on the electrode reactions in Li batteries. PMID:25733406

  17. Assessing the performance of implicit solvation models at a nucleic acid surface

    PubMed Central

    Dong, Feng; Wagoner, Jason A.; Baker, Nathan A.

    2008-01-01

    Implicit solvation models are popular alternatives to explicit solvent methods due to their ability to “pre-average” solvent behavior and thus reduce the need for computationally-expensive sampling. Previously, we have demonstrated that Poisson-Boltzmann models for polar solvation and integral-based models for nonpolar solvation can reproduce explicit solvation forces in a low-charge density protein system. In the present work, we examine the ability of these continuum models to describe solvation forces at the surface of a RNA hairpin. While these models do not completely describe all of the details of solvent behavior at this highly-charged biomolecular interface, they do provide a reasonable description of average solvation forces and therefore show significant promise for developing more robust implicit descriptions of solvent around nucleic acid systems for use in biomolecular simulation and modeling. Additionally, we observe fairly good transferability in the nonpolar model parameters optimized for protein systems, suggesting its robustness for modeling general nonpolar solvation phenomena in biomolecular systems. PMID:18688533

  18. High temperature sealed electrochemical cell

    SciTech Connect

    Valentin Chung, Brice Hoani; Burke, Paul J.; Sadoway, Donald R.

    2015-10-06

    A cell for high temperature electrochemical reactions is provided. The cell includes a container, at least a portion of the container acting as a first electrode. An extension tube has a first end and a second end, the extension tube coupled to the container at the second end forming a conduit from the container to said first end. A second electrode is positioned in the container and extends out of the container via the conduit. A seal is positioned proximate the first end of the extension tube, for sealing the cell.

  19. Passivation of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  20. High temperature sorbents for oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor)

    1994-01-01

    A sorbent capable of removing trace amounts of oxygen (ppt) from a gas stream at a high temperature above 200 C comprising a porous alumina silicate support, such as zeolite, containing from 1 to 10 percent by weight of ion exchanged transition metal, such as copper or cobalt ions, and 0.05 to 1.0 percent by weight of an activator selected from a platinum group metal such as platinum is described. The activation temperature, oxygen sorption, and reducibility are all improved by the presence of the platinum activator.

  1. High Temperature Sorbents for Oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor)

    1996-01-01

    A sorbent capable of removing trace amounts of oxygen (ppt) from a gas stream at a high temperature above 200 C is introduced. The sorbent comprises a porous alumina silicate support such as zeolite containing from 1 to 10 percent by weight of ion exchanged transition metal such as copper or cobalt ions and 0.05 to 1.0 percent by weight of an activator selected from a platinum group metal such as platinum. The activation temperature, oxygen sorption and reducibility are all improved by the presence of the platinum activator.

  2. CONFINEMENT OF HIGH TEMPERATURE PLASMA

    DOEpatents

    Koenig, H.R.

    1963-05-01

    The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

  3. "Green" High-Temperature Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    1998-01-01

    PMR-15 is a processable, high-temperature polymer developed at the NASA Lewis Research Center in the 1970's principally for aeropropulsion applications. Use of fiber-reinforced polymer matrix composites in these applications can lead to substantial weight savings, thereby leading to improved fuel economy, increased passenger and payload capacity, and better maneuverability. PMR-15 is used fairly extensively in military and commercial aircraft engines components seeing service temperatures as high as 500 F (260 C), such as the outer bypass duct for the F-404 engine. The current world-wide market for PMR-15 materials (resins, adhesives, and composites) is on the order of $6 to 10 million annually.

  4. High-Temperature Rocket Engine

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Rosenberg, Sanders D.; Chazen, Melvin L.

    1994-01-01

    Two rocket engines that operate at temperature of 2,500 K designed to provide thrust for station-keeping adjustments of geosynchronous satellites, for raising and lowering orbits, and for changing orbital planes. Also useful as final propulsion stages of launch vehicles delivering small satellites to low orbits around Earth. With further development, engines used on planetary exploration missions for orbital maneuvers. High-temperature technology of engines adaptable to gas-turbine combustors, ramjets, scramjets, and hot components of many energy-conversion systems.

  5. High temperature drilling mud composition

    SciTech Connect

    Alexander, W.

    1988-10-18

    This patent describes a composition having improved rheological properties and improved stability at high temperatures and pressure for use in a water-based drilling mud comprising a high-yield bentonite, a low-yield bentonite and leonardite, wherein the weight ratio of the high-yield bentonite to the low-yield bentonites in the range of about 10:1 to about 1:1, and the leonardite is present in the amount of about 0.1% to 1.0% by total dry weight of the composition.

  6. Preparation of cerium halide solvate complexes

    DOEpatents

    Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E

    2013-08-06

    Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.

  7. Structure and dynamics of solvated hydrogenoxalate and oxalate anions: a theoretical study.

    PubMed

    Kroutil, Ondřej; Minofar, Babak; Kabeláč, Martin

    2016-09-01

    Hydrogenoxalate (charge -1) and oxalate (charge -2) anions and their solvated forms were studied by various computational techniques. Ab initio quantum chemical calculations in gas phase, in implicit solvent and microsolvated (up to 32 water molecules) environment were performed in order to explore a potential energy surface of both anions. The solvation envelope of water molecules around them and the role of water on the conformation of the anions was revealed by means of Born-Oppenheimer molecular dynamics simulations and optimization procedures. The structure of the anions was found to be dependent on the number of water molecules in the solvation shell. A subtle interplay between intramolecular and intermolecular hydrogen bonding dictates the final conformation and thus an explicit solvent model is necessary for a proper description of this phenomena. Graphical Abstract Solvated hydrogenoxalate and oxalate anions. PMID:27538930

  8. Containerless high temperature property measurements

    NASA Technical Reports Server (NTRS)

    Nordine, Paul C.; Weber, J. K. Richard; Krishnan, Shankar; Anderson, Collin D.

    1991-01-01

    Containerless processing in the low gravity environment of space provides the opportunity to increase the temperature at which well controlled processing of and property measurements on materials is possible. This project was directed towards advancing containerless processing and property measurement techniques for application to materials research at high temperatures in space. Containerless high temperature material property studies include measurements of the vapor pressure, melting temperature, optical properties, and spectral emissivities of solid boron. The reaction of boron with nitrogen was also studied by laser polarimetric measurement of boron nitride film growth. The optical properties and spectral emissivities were measured for solid and liquid silicon, niobium, and zirconium; liquid aluminum and titanium; and liquid Ti-Al alloys of 5 to 60 atomic pct. titanium. Alternative means for noncontact temperature measurement in the absence of material emissivity data were evaluated. Also, the application of laser induced fluorescence for component activity measurements in electromagnetic levitated liquids was studied, along with the feasibility of a hybrid aerodynamic electromagnetic levitation technique.

  9. NSTX High Temperature Sensor Systems

    SciTech Connect

    B.McCormack; H.W. Kugel; P. Goranson; R. Kaita; et al

    1999-11-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed.

  10. Paranormal phenomena

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    1996-08-01

    Critical analysis is given of some paranormal phenomena events (UFO, healers, psychokinesis (telekinesis))reported in Moldova. It is argued that correct analysis of paranormal phenomena should be made in the framework of electromagnetism.

  11. HIgh Temperature Photocatalysis over Semiconductors

    NASA Astrophysics Data System (ADS)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  12. High-temperature-measuring device

    DOEpatents

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  13. HITCAN: High temperature composite analyzer

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Lackney, Joseph J.; Chamis, Christos C.; Murthy, Pappu L. N.

    1990-01-01

    A computer code, HITCAN (High Temperature Composite Analyzer) was developed to analyze/design metal matrix composite structures. HITCAN is based on composite mechanics theories and computer codes developed at NASA LeRC over the last two decades. HITCAN is a general purpose code for predicting the global structural and local stress-strain response of multilayered (arbitrarily oriented) metal matrix structures both at the constituent (fiber, matrix, and interphase) and the structure level and including the fabrication process effects. The thermomechanical properties of the constituents are considered to be nonlinearly dependent on several parameters including temperature, stress, and stress rate. The computational procedure employs an incremental iterative nonlinear approach utilizing a multifactor-interaction material behavior model. HITCAN features and analysis capabilities (static, load stepping, modal, and buckling) are demonstrated through typical example problems.

  14. Compensated High Temperature Strain Gage

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A device for measuring strain in substrates at high temperatures in which the thermally induced apparent strain is nulled is described. Two gages are used, one active gage and one compensating gage. Both gages are placed on the substrate to be gaged; the active gage is attached such that it responds to mechanical and thermally induced apparent strain while the compensating gage is attached such that it does not respond to mechanical strain and and measures only thermally induced apparent strain. A thermal blanket is placed over the two gages to maintain the gages at the same temperature. The two gages are wired as adjacent arms of a wheatstone bridge which nulls the thermally induced apparent strain giving a true reading of the mechanical strain in the substrate.

  15. High Temperature Transfer Molding Resins

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2000-01-01

    High temperature resins containing phenylethynyl groups that are processable by transfer molding have been prepared. These phenylethynyl containing oligomers were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynlphthalic anhydride in glacial acetic acid to form a mixture of imide compounds in one step. This synthetic approach is advantageous since the products are a mixture of compounds and consequently exhibit a relatively low melting temperature. In addition, these materials exhibit low melt viscosities which are stable for several hours at 210-275 C, and since the thermal reaction of the phenylethynyl group does not occur to any appreciable extent at temperatures below 300 C, these materials have a broad processing window. Upon thermal cure at approximately 300-350 C, the phenylethynyl groups react to provide a crosslinked resin system. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  16. Faraday imaging at high temperatures

    DOEpatents

    Hackel, L.A.; Reichert, P.

    1997-03-18

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.

  17. Faraday imaging at high temperatures

    DOEpatents

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  18. High temperature control rod assembly

    DOEpatents

    Vollman, Russell E.

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  19. Solute strengthening at high temperatures

    NASA Astrophysics Data System (ADS)

    Leyson, G. P. M.; Curtin, W. A.

    2016-08-01

    The high temperature behavior of solute strengthening has previously been treated approximately using various scaling arguments, resulting in logarithmic and power-law scalings for the stress-dependent energy barrier Δ E(τ ) versus stress τ. Here, a parameter-free solute strengthening model is extended to high temperatures/low stresses without any a priori assumptions on the functional form of Δ E(τ ) . The new model predicts that the well-established low-temperature, with energy barrier Δ {{E}\\text{b}} and zero temperature flow stress {τy0} , transitions to a near-logarithmic form for stresses in the regime 0.2<τ /{τy0}≤slant 0.5 and then transitions to a power-law form at even lower stresses τ /{τy0}<0.03 . Δ {{E}\\text{b}} and {τy0} remains as the reference energy and stress scales over the entire range of stresses. The model is applied to literature data on solution strengthening in Cu alloys and captures the experimental results quantitatively and qualitatively. Most importantly, the model accurately captures the transition in strength from the low-temperature to intermediate-temperature and the associated transition for the activation volume. Overall, the present analysis unifies the different qualitative models in the literature and, when coupled with the previous parameter-free solute strengthening model, provides a single predictive model for solute strengthening as a function of composition, temperature, and strain rate over the full range of practical utility.

  20. High temperature size selective membranes

    SciTech Connect

    Yates, S.F.; Swamikannu, A.X.

    1993-09-01

    The high temperature membrane, capable of operation above 550{degree}C, is designed to be a composite membrane composed of a thin layer of a size selective membrane supported by a microporous ceramic support. The kinetic diameters of H{sub 2} and CO{sub 2} are 2.96 {Angstrom} and 4.00 {Angstrom}. The thin layer will be made from CMS whose pore size will be controlled to be less than 4 {Angstrom}. The membrane will be truly size selective and be impermeable to carbon dioxide. The membrane will have higher selectivity than membranes which operate on Knudsen diffusion mechanism. The ceramic support will be fabricated from Allied Signal`s proprietary Blackglas{trademark} resin. The ceramic material, noted for its high thermal and oxidative resistance, has a coefficient of thermal expansion which matches closely that of CMS. The close match will insure mechanical integrity when the membrane is subjected to thermal cycles. The CMS layer will be produced by controlled pyrolysis of polymeric precursors. Pore size will be suitably modified by post-treatments to the carbon. The composite membrane will be tested for its permeation properties at 550{degree}C or higher. Thermal, mechanical and chemical stability of the membrane will be assessed. We have produced several samples of CMS from polymeric precursors. We have initiated work also on the preparation of microporous supports from Blackglas{trademark} resin. We have completed the design of the high temperature membrane pilot plant. The membrane cell was fabricated out of two kinds of stainless steel. The inner parts are made of SS 316 and the outer ring made of SS 420. The greater thermal expansion of the SS 316 will help obtain a leak free seal at the operating temperatures.

  1. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1976-01-01

    The physical processes occurring in plasma focus devices were studied. These devices produce dense high temperature plasmas, which emit X rays of hundreds of KeV energy and one to ten billion neutrons per pulse. The processes in the devices seem related to solar flare phenomena, and would also be of interest for controlled thermonuclear fusion applications. The high intensity, short duration bursts of X rays and neutrons could also possibly be used for pumping nuclear lasers.

  2. Radiolytic yields of solvated electrons in ionic liquid and its solvation dynamics at low temperature

    NASA Astrophysics Data System (ADS)

    Musat, Raluca M.; Kondoh, Takafumi; Gohdo, Masao; Yoshida, Yoichi; Takahashi, Kenji

    2016-07-01

    We present an investigation of the solvated electron in the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (P14NTf2) using pulse radiolytic techniques. Temperature-dependent studies reveal that the yield of the solvated electron decreases with decreasing temperature. The lower initial yield measured indicates that we have a loss of some electrons before they become fully solvated. There may be a high probability that the excess dry electrons (pre-solvated electron) react before the electron solvation is completed because the solvation dynamics is slowing down with decreasing temperature.

  3. High Temperature Superconducting Underground Cable

    SciTech Connect

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  4. High-temperature ceramic superconductors

    NASA Astrophysics Data System (ADS)

    Mazdiyasni, K. S.

    1990-11-01

    The principal goals of this program are (1) to demonstrate fabrication of high-temperature ceramic superconductors via sol-gel method that can operate at or above 90 K with appropriate current density, J(sub c), in forms useful for application in resonant cavities, magnets, motors, sensors, computers, and other devices; and (2) to fabricate and demonstrate selected components made of these materials, including microwave cavities and magnetic shields. Chemical pathways for synthesis of 123 identified, process parameters window for sol-gel derived 123 fibers established, continuous flexible fibers 15 to 200 microns in diameter producted, fibers with T(sub c) is approximate or equal to 92.5 K, Delta T = 1.5 K, J(sub c) = 2000 A/sqcm at 77 K, 0 field; 4000 at 57K, 100 Oe was produced, formed adherent 123 oriented films on metals and ceramic substrates, achieved film T(sub c) is approximate or equal to 92 K, Delta T = 4 k, J(sub c) = 400 A/sq cm at 40 K, O field.

  5. High-temperature gas filtration

    SciTech Connect

    Schiffer, H.P.; Laux, S.; Renz, U. . Lehrstuhl fuer Waermeuebertragung und Klimatechnik)

    1992-10-01

    High-temperature, high-pressure filtration is important to the development of fluidized-bed combustion (FBC) technology. This volume describes the commissioning and testing of a pilot-scale filter module rated at 1 to 4 bar pressure and up to 900[degrees]C. The module consists of an array of six porous sintered silicon carbide filter elements, designed to be cleaned on-line by jet pulses of compressed air. More than 2000 hours of exposure were achieved with FBC combustion gas with inlet dust concentrations of 500 to 40,000 ppM[sub w] at 200 to 650[degrees]C. Another 3500 hours of operation were achieved with simulated gas and injected dust. The filter elements were subjected to 60,000 cleaning cycles. No dust penetration through the filter modules was detected. After an initial stabilizing period, pressure drop remained moderate at less that 50 mbar (0.7 psi). The energy expended in pulse cleaning was negligible. No crusty deposits of dust were found on the filter elements during inspections, and no irreversible blinding occurred.

  6. High temperature two component explosive

    DOEpatents

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  7. High-temperature containerless calorimeter

    NASA Technical Reports Server (NTRS)

    Robinson, M. B.; Lacy, L. L.

    1985-01-01

    A high-temperature (greater than 1500 K) containerless calorimeter is described and its usefulness demonstrated. The calorimeter uses the technique of omnidirectional electron bombardment of pendant drops to achieve an isothermal test environment. The small heat input into the sample (i.e., 15-50 W) can be controlled and measured. The apparatus can be used to determine the total hemispherical emissivity, specific heat, heat of fusion, surface tension, and equilibrium melting temperature of small molten drops in the temperature range of 1500 to 3500 K. The total hemispherical emissivity and specific heat of pure niobium and two alloys of niobium-germanium have been measured in the temperature range of 1700 to 2400 K. As reported in the literature, the total hemispherical emissivity varied as a function of temperature. However, specific heat values for both the pure metal and alloys seem to be independent of temperature. Specific heat for the liquid alloy phase was also measured and compared to the solid phase.

  8. Sialons as high temperature insulators

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Kuo, Y. S.

    1978-01-01

    Sialons were evaluated for application as high temperature electrical insulators in contact with molybdenum and tungsten components in hard vacuum applications. Both D.C. and variable frequency A.C. resistivity data indicate the sialons to have electrical resistivity similar to common oxide in the 1000 C or higher range. Metallographic evaluations indicate good bonding of the type 15R ALN polytype to molybdenum and tungsten. The beta prime or modified silicon nitride phase was unacceptable in terms of vacuum stability. Additives effect on electrical resistivity. Similar resistivity decreases were produced by additions of molybdenum or tungsten to form cermets. The use of hot pressing at 1800 C with ALN, Al2 O3 and Si3N4 starting powders produced a better product than did a combination of SiO2 and AIN staring powders. It was indicated that sialons will be suitable insulators in the 1600K range in contact with molybdenum or tungsten if they are produced as a pure ceramic and subsequently bonded to the metal components at temperatures in the 1600K range.

  9. High-temperature thermocouples and related methods

    DOEpatents

    Rempe, Joy L.; Knudson, Darrell L.; Condie, Keith G.; Wilkins, S. Curt

    2011-01-18

    A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

  10. High temperature power electronics for space

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad N.; Baumann, Eric D.; Myers, Ira T.; Overton, Eric

    1991-01-01

    A high temperature electronics program at NASA Lewis Research Center focuses on dielectric and insulating materials research, development and testing of high temperature power components, and integration of the developed components and devices into a demonstrable 200 C power system, such as inverter. An overview of the program and a description of the in-house high temperature facilities along with experimental data obtained on high temperature materials are presented.

  11. Physical Modeling of Aqueous Solvation

    PubMed Central

    Fennell, Christopher J.

    2014-01-01

    We consider the free energies of solvating molecules in water. Computational modeling usually involves either detailed explicit-solvent simulations, or faster computations, which are based on implicit continuum approximations or additivity assumptions. These simpler approaches often miss microscopic physical details and non-additivities present in experimental data. We review explicit-solvent modeling that identifies the physical bases for the errors in the simpler approaches. One problem is that water molecules that are shared between two substituent groups often behave differently than waters around each substituent individually. One manifestation of non-additivities is that solvation free energies in water can depend not only on surface area or volume, but on other properties, such as the surface curvature. We also describe a new computational approach, called Semi-Explicit Assembly, that aims to repair these flaws and capture more of the physics of explicit water models, but with computational efficiencies approaching those of implicit-solvent models. PMID:25143658

  12. High Temperature Chemistry at NASA: Hot Topics

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  13. High temperature suppression of dioxins.

    PubMed

    Zhan, Ming-Xiu; Chen, Tong; Fu, Jian-Ying; Lin, Xiao-Qing; Lu, Sheng-Yong; Li, Xiao-Dong; Yan, Jian-Hua; Buekens, Alfons

    2016-03-01

    Combined Sulphur-Nitrogen inhibitors, such as sewage sludge decomposition gases (SDG), thiourea and amidosulphonic acid have been observed to suppress the de novo synthesis of dioxins effectively. In this study, the inhibition of PCDD/Fs formation from model fly ash was investigated at unusually high temperatures (650 °C and 850 °C), well above the usual range of de novo tests (250-400 °C). At 650 °C it was found that SDG evolving from dried sewage sludge could suppress the formation of 2,3,7,8-substituted PCDD/Fs with high efficiency (90%), both in weight units and in I-TEQ units. Additionally, at 850 °C, three kinds of sulphur-amine or sulphur-ammonium compounds were tested to inhibit dioxins formation during laboratory-scale tests, simulating municipal solid waste incineration. The suppression efficiencies of PCDD/Fs formed through homogeneous gas phase reactions were all above 85% when 3 wt. % of thiourea (98.7%), aminosulphonic acid (96.0%) or ammonium thiosulphate (87.3%) was added. Differences in the ratio of PCDFs/PCDDs, in weight average chlorination level and in the congener distribution of the 17 toxic PCDD/Fs indicated that the three inhibitors tested followed distinct suppression pathways, possibly in relation to their different functional groups of nitrogen. Furthermore, thiourea reduced the (weight) average chlorinated level. In addition, the thermal decomposition of TUA was studied by means of thermogravimetry-fourier transform infrared spectroscopy (TG-FTIR) and the presence of SO2, SO3, NH3 and nitriles (N≡C bonds) was shown in the decomposition gases; these gaseous inhibitors might be the primary dioxins suppressants. PMID:26716881

  14. Picosecond dynamics of benzophenone anion solvation

    SciTech Connect

    Lin, Y.; Jonah, C.D. )

    1993-01-14

    The dynamics of benzophenone anion solvation in alcohols are studied by pulse-radiolysis techniques. The solvation process is characterized by the blue shift of the transient absorption spectrum of the anion and is faster for the smaller alcohols. The anion is solvated more slowly than the electron in the same solvent, but the solvation times of both are similar to [tau][sub 2], the solvent dielectric relaxation time. The familiar phenomenological two-state model of solvation was found to be inappropriate for describing the anion solvation process. A multistate process appears to be a more appropriate description. The authors modeled the kinetics of the spectral relaxation. In most cases, nearly quantitative agreement between the calculated and observed spectra is achieved. The characteristic relaxation times for the alcohol solvents around the anions were also reproduced. 50 refs., 8 figs., 3 tabs.

  15. Theory of competitive solvation of polymers by two solvents and entropy-enthalpy compensation in the solvation free energy upon dilution with the second solvent

    NASA Astrophysics Data System (ADS)

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.

    2015-06-01

    We develop a statistical mechanical lattice theory for polymer solvation by a pair of relatively low molar mass solvents that compete for binding to the polymer backbone. A theory for the equilibrium mixture of solvated polymer clusters {AiBCj} and free unassociated molecules A, B, and C is formulated in the spirit of Flory-Huggins mean-field approximation. This theoretical framework enables us to derive expressions for the boundaries for phase stability (spinodals) and other basic properties of these polymer solutions: the internal energy U, entropy S, specific heat CV, extent of solvation Φsolv, average degree of solvation , and second osmotic virial coefficient B 2 as functions of temperature and the composition of the mixture. Our theory predicts many new phenomena, but the current paper applies the theory to describe the entropy-enthalpy compensation in the free energy of polymer solvation, a phenomenon observed for many years without theoretical explanation and with significant relevance to liquid chromatography and other polymer separation methods.

  16. Theory of competitive solvation of polymers by two solvents and entropy-enthalpy compensation in the solvation free energy upon dilution with the second solvent.

    PubMed

    Dudowicz, Jacek; Freed, Karl F; Douglas, Jack F

    2015-06-01

    We develop a statistical mechanical lattice theory for polymer solvation by a pair of relatively low molar mass solvents that compete for binding to the polymer backbone. A theory for the equilibrium mixture of solvated polymer clusters {AiBCj} and free unassociated molecules A, B, and C is formulated in the spirit of Flory-Huggins mean-field approximation. This theoretical framework enables us to derive expressions for the boundaries for phase stability (spinodals) and other basic properties of these polymer solutions: the internal energy U, entropy S, specific heat CV, extent of solvation Φsolv, average degree of solvation 〈Nsolv〉, and second osmotic virial coefficient B2 as functions of temperature and the composition of the mixture. Our theory predicts many new phenomena, but the current paper applies the theory to describe the entropy-enthalpy compensation in the free energy of polymer solvation, a phenomenon observed for many years without theoretical explanation and with significant relevance to liquid chromatography and other polymer separation methods. PMID:26049523

  17. Solvates of Dasatinib: Diversity and Isostructurality.

    PubMed

    Sarceviča, Inese; Grante, Ilze; Belyakov, Sergey; Rekis, Toms; Bērziņš, Kārlis; Actiņš, Andris; Orola, Liāna

    2016-04-01

    A series of dasatinib crystalline forms were obtained, and a hierarchical cluster analysis of their powder X-ray diffraction patterns was performed. The resulting dendrogram implies 3 structural groups. The crystal structures of several solvates representing 2 of these groups were determined. The crystal structure analysis confirms the isostructurality of solvates within structural group I and suggests a correlation between solvent molecule size and trends in crystal structures within this group. In addition, the formation relationships in 2-solvent media between different dasatinib solvate groups were determined. The formation preference of solvates was found to follow the ranking group I > group III > group II. PMID:27019962

  18. DFT Solvation Studies of Carbohydrates: Solvation effects in alpha-linked carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the current paper we address the effect of solvation on the landscape of alpha-linked glucose residues. The solvent is introduced via the implicit solvation models COSMO and PCM. Geometry optimizations, at the B3LYP/6-311++G** level of theory with and without implicit solvation were carried out...

  19. Directions for High-Temperature Shape Memory Alloys' Improvement: Straight Way to High-Entropy Materials?

    NASA Astrophysics Data System (ADS)

    Firstov, G. S.; Kosorukova, T. A.; Koval, Yu N.; Verhovlyuk, P. A.

    2015-10-01

    Nowadays, all thermo-mechanical effects, associated with the martensitic structural phase transitions, are still in the focus of scientists and engineers, especially once these phenomena are taking place at elevated temperatures. The list of the materials, undergoing high-temperature martensitic transformation, is constantly widening. Still, industrial application of these materials, called high-temperature shape memory alloys, is far enough due to the lack of understanding of the peculiarities of the high-temperature martensitic transformation and shape memory effect. The present work attempts to show how the development of the proper directions for high-temperature shape memory alloys' improvement might lead to the creation of essentially new functional materials.

  20. Multifunctional, High-Temperature Nanocomposites

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Smith, Joseph G.; Siochi, Emilie J.; Working, Dennis C.; Criss, Jim M.; Watson, Kent A.; Delozier, Donavon M.; Ghose, Sayata

    2007-01-01

    In experiments conducted as part of a continuing effort to incorporate multifunctionality into advanced composite materials, blends of multi-walled carbon nanotubes and a resin denoted gPETI-330 h (wherein gPETI h is an abbreviation for gphenylethynyl-terminated imide h) were prepared, characterized, and fabricated into moldings. PETI-330 was selected as the matrix resin in these experiments because of its low melt viscosity (<10 poise at a temperature of 280 C), excellent melt stability (lifetime >2 hours at 280 C), and high temperature performance (>1,000 hours at 288 C). The multi-walled carbon nanotubes (MWCNTs), obtained from the University of Kentucky, were selected because of their electrical and thermal conductivity and their small diameters. The purpose of these experiments was to determine the combination of thermal, electrical, and mechanical properties achievable while still maintaining melt processability. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight-percent of MWCNTs by dry mixing of the constituents in a ball mill using zirconia beads. The resulting powders were characterized for degree of mixing and thermal and rheological properties. The neat resin was found to have melt viscosity between 5 and 10 poise. At 280 C and a fixed strain rate, the viscosity was found to increase with time. At this temperature, the phenylethynyl groups do not readily react and so no significant curing of the resin occurred. For MWCNT-filled samples, melt viscosity was reasonably steady at 280 C and was greater in samples containing greater proportions of MWCNTs. The melt viscosity for 20 weightpercent of MWCNTs was found to be .28,000 poise, which is lower than the initial estimated allowable maximum value of 60,000 poise for injection molding. Hence, MWCNT loadings of as much as 20 percent were deemed to be suitable compositions for scale-up. High-resolution scanning electron microscopy (HRSEM) showed the MWCNTs to be well

  1. Structure prediction, disorder and dynamics in a DMSO solvate of carbamazepine.

    PubMed

    Cruz-Cabeza, Aurora J; Day, Graeme M; Jones, William

    2011-07-28

    We have applied crystal structure prediction methods to understand and predict the formation of a DMSO solvate of the anti-convulsant drug carbamazepine (CBZ), in which the DMSO molecules are disordered. Crystal structure prediction calculations on the 1:1 CBZ:DMSO solvate revealed the generation of two similar low energy structures which differ only in the orientation of the DMSO molecules. Analysis of crystal energy landscapes generated at 0 K suggests the possibility of solvent disorder. A combined computational and experimental study of the changes in the orientation of the DMSO within the crystal structure revealed that the nature of the disorder changes with temperature. At low temperature, the DMSO disorder is static whilst at high temperature the DMSO configurations can interconvert by a 180° rotation of the DMSO molecules within the lattice. This 180° rotation of the DMSO molecules drives a phase change from a high temperature dynamically disordered phase to a low temperature phase with static disorder. Crystallisation of a DMSO solvate of the related molecule epoxycarbamazepine resulted in a different degree of DMSO disorder in the crystal structure, despite the similarity of the carbamazepine and epoxycarbamazepine molecules. We believe consideration of disorder and its contribution to entropy and crystal free energies at temperature other than 0 K is fundamental for the accuracy of future energy rankings in crystal structure prediction calculations of similar solvated structures. PMID:21670828

  2. Solvatochromism and the solvation structure of benzophenone.

    PubMed

    Elenewski, Justin E; Hackett, John C

    2013-06-14

    Many complex molecular phenomena, including macromolecular association, protein folding, and chemical reactivity, are determined by the nuances of their electrostatic landscapes. The measurement of such electrostatic effects is nonetheless difficult, and is typically accomplished by exploiting a spectroscopic probe within the system of interest, such as through the vibrational Stark effect. Raman spectroscopy and solvatochromism afford an alternative to this method, circumventing the limitations of infrared spectroscopy, providing a lower detection limit, and permitting measurement in a native chemical environment. To explore this possibility, the solvatochromism of the C=O and aromatic C-H stretching modes of benzophenone are investigated using Raman spectroscopy. In conjunction with density functional theory calculations, these observations are sufficient to determine the probe electrostatic environment as well as contributions from halogen and hydrogen bonding. Further analysis using a detailed Kubo-Anderson lineshape model permits the detailed assignment of distinct hydrogen bonding configurations for water in the benzophenone solvation shell. These observations reinforce the use of benzophenone as an effective electrostatic probe for complex chemical systems. PMID:23781796

  3. Solvatochromism and the solvation structure of benzophenone

    NASA Astrophysics Data System (ADS)

    Elenewski, Justin E.; C Hackett, John

    2013-06-01

    Many complex molecular phenomena, including macromolecular association, protein folding, and chemical reactivity, are determined by the nuances of their electrostatic landscapes. The measurement of such electrostatic effects is nonetheless difficult, and is typically accomplished by exploiting a spectroscopic probe within the system of interest, such as through the vibrational Stark effect. Raman spectroscopy and solvatochromism afford an alternative to this method, circumventing the limitations of infrared spectroscopy, providing a lower detection limit, and permitting measurement in a native chemical environment. To explore this possibility, the solvatochromism of the C=O and aromatic C-H stretching modes of benzophenone are investigated using Raman spectroscopy. In conjunction with density functional theory calculations, these observations are sufficient to determine the probe electrostatic environment as well as contributions from halogen and hydrogen bonding. Further analysis using a detailed Kubo-Anderson lineshape model permits the detailed assignment of distinct hydrogen bonding configurations for water in the benzophenone solvation shell. These observations reinforce the use of benzophenone as an effective electrostatic probe for complex chemical systems.

  4. High-temperature discrete dislocation plasticity

    NASA Astrophysics Data System (ADS)

    Keralavarma, S. M.; Benzerga, A. A.

    2015-09-01

    A framework for solving problems of dislocation-mediated plasticity coupled with point-defect diffusion is presented. The dislocations are modeled as line singularities embedded in a linear elastic medium while the point defects are represented by a concentration field as in continuum diffusion theory. Plastic flow arises due to the collective motion of a large number of dislocations. Both conservative (glide) and nonconservative (diffusion-mediated climb) motions are accounted for. Time scale separation is contingent upon the existence of quasi-equilibrium dislocation configurations. A variational principle is used to derive the coupled governing equations for point-defect diffusion and dislocation climb. Superposition is used to obtain the mechanical fields in terms of the infinite-medium discrete dislocation fields and an image field that enforces the boundary conditions while the point-defect concentration is obtained by solving the stress-dependent diffusion equations on the same finite-element grid. Core-level boundary conditions for the concentration field are avoided by invoking an approximate, yet robust kinetic law. Aspects of the formulation are general but its implementation in a simple plane strain model enables the modeling of high-temperature phenomena such as creep, recovery and relaxation in crystalline materials. With emphasis laid on lattice vacancies, the creep response of planar single crystals in simple tension emerges as a natural outcome in the simulations. A large number of boundary-value problem solutions are obtained which depict transitions from diffusional to power-law creep, in keeping with long-standing phenomenological theories of creep. In addition, some unique experimental aspects of creep in small scale specimens are also reproduced in the simulations.

  5. Colloidal Phenomena.

    ERIC Educational Resources Information Center

    Russel, William B.; And Others

    1979-01-01

    Described is a graduate level engineering course offered at Princeton University in colloidal phenomena stressing the physical and dynamical side of colloid science. The course outline, reading list, and requirements are presented. (BT)

  6. A high-temperature heat sensitive element

    NASA Technical Reports Server (NTRS)

    Oguro, M.

    1986-01-01

    This invention concerns the high-temperature heat sensitive element which is stable at high temperatures. A solid solution of the main component MgO-Al2O3-Cr2O3-Fe2O3 which contains spinel crystal structure is mixed with the secondary component ZrO2 at the mol ratio of 100 : 0.1 to 5.0 and sintered to prepare a high-temperature heat sensitive element.

  7. Deep Trek High Temperature Electronics Project

    SciTech Connect

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  8. Dynamic, High-Temperature, Flexible Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Sirocky, Paul J.

    1989-01-01

    New seal consists of multiple plies of braided ceramic sleeves filled with small ceramic balls. Innermost braided sleeve supported by high-temperature-wire-mesh sleeve that provides both springback and preload capabilities. Ceramic balls reduce effect of relatively high porosity of braided ceramic sleeves by acting as labyrinth flow path for gases and thereby greatly increasing pressure gradient seal can sustain. Dynamic, high-temperature, flexible seal employed in hypersonic engines, two-dimensional convergent/divergent and vectorized-thrust exhaust nozzles, reentry vehicle airframes, rocket-motor casings, high-temperature furnaces, and any application requiring non-asbestos high-temperature gaskets.

  9. Solvated Electrons in Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Ilich, Predrag-Peter; McCormick, Kathleen R.; Atkins, Adam D.; Mell, Geoffrey J.; Flaherty, Timothy J.; Bruck, Martin J.; Goodrich, Heather A.; Hefel, Aaron L.; Juranic, Nenad; Seleem, Suzanne

    2010-01-01

    A novel experiment is described in which solvated electrons in liquid ammonia reduce a benzyl alcohol carbon without affecting the aromatic ring. The reductive activity of solvated electrons can be partially or completely quenched through the addition of electron scavengers to the reaction mixture. The effectiveness of these scavengers was found…

  10. Performance of HT9 clad metallic fuel at high temperature

    SciTech Connect

    Pahl, R.G.; Lahm, C.E.; Hayes, S.L.

    1992-12-01

    Steady-state testing of HT9 clad metallic fuel at high temperatures was initiated in EBR-II in November of 1987. At that time U-10 wt. % Zr fuel clad with the low-swelling ferritic/martensitic alloy HT9 was being considered as driver fuel options for both EBR-II and FFTF. The objective of the X447 test described here was to determine the lifetime of HT9 cladding when operated with metallic fuel at beginning of life inside wall temperatures approaching {approximately}660{degree}C. Though stress-temperature design limits for HT9 preclude its use for high burnup applications under these conditions due to excessive thermal creep, the X447 test was carried out to obtain data on high temperature breach phenomena involving metallic fuel since little data existed in that area.

  11. Performance of HT9 clad metallic fuel at high temperature

    SciTech Connect

    Pahl, R.G.; Lahm, C.E.; Hayes, S.L.

    1992-01-01

    Steady-state testing of HT9 clad metallic fuel at high temperatures was initiated in EBR-II in November of 1987. At that time U-10 wt. % Zr fuel clad with the low-swelling ferritic/martensitic alloy HT9 was being considered as driver fuel options for both EBR-II and FFTF. The objective of the X447 test described here was to determine the lifetime of HT9 cladding when operated with metallic fuel at beginning of life inside wall temperatures approaching [approximately]660[degree]C. Though stress-temperature design limits for HT9 preclude its use for high burnup applications under these conditions due to excessive thermal creep, the X447 test was carried out to obtain data on high temperature breach phenomena involving metallic fuel since little data existed in that area.

  12. Variational approach for nonpolar solvation analysis

    PubMed Central

    Chen, Zhan; Zhao, Shan; Chun, Jaehun; Thomas, Dennis G.; Baker, Nathan A.; Bates, Peter W.; Wei, G. W.

    2012-01-01

    Solvation analysis is one of the most important tasks in chemical and biological modeling. Implicit solvent models are some of the most popular approaches. However, commonly used implicit solvent models rely on unphysical definitions of solvent-solute boundaries. Based on differential geometry, the present work defines the solvent-solute boundary via the variation of the nonpolar solvation free energy. The solvation free energy functional of the system is constructed based on a continuum description of the solvent and the discrete description of the solute, which are dynamically coupled by the solvent-solute boundaries via van der Waals interactions. The first variation of the energy functional gives rise to the governing Laplace-Beltrami equation. The present model predictions of the nonpolar solvation energies are in an excellent agreement with experimental data, which supports the validity of the proposed nonpolar solvation model. PMID:22938212

  13. Studies of ion solvation using pulse radiolysis

    SciTech Connect

    Jonah, C.D.; Lin, Yi.

    1991-01-01

    In this paper we describe our measurements of ion solvation in a series of alcohols. Benzophenone is dissolved in an alcohol at a sufficiently high concentration so that the electrons formed by radiation will react with the benzophenone molecule to form the anion. The spectrum of the anion is then observed as a function of time. As the benzophenone anion solvates, the spectrum shifts to the blue. The results of our measurements clearly show that both the size of the solvent molecules and their shapes are important in the solvation process. Different spectral relaxation processes are observed for ions than are observed for electron solvation, the simple'' ion system that has been most heavily studied. In addition, these results suggest that the rate of solvation may be different for ions in solution than for dipoles in solution. 26 refs., 3 figs.

  14. Solvated Electrons on Metal Oxide Surfaces

    SciTech Connect

    Zhao, Jin; Li, Bin; Onda, Ken; Feng, Min; Petek, Hrvoje

    2006-09-13

    An electron added to a solvent polarizes its surrounding medium to minimize the free energy. Such an electron with its polarization cloud, which we refer to as the solvated electron, is one of the most fundamental chemical reagents of significant experimental and theoretical interest. The structure and dynamics of solvated electrons in protic solvents have been explored ever since the discovery of intense blue coloration in solutions of alkali metals in ammonia.1-3 Because solvated electrons are the most fundamental chemical reagents as well as carriers of negative charge, substantial experimental and theoretical efforts have focused on elucidating their equilibrium structure and solvation dynamics in a variety of neat liquids.4,5 One of the most important but least explored environments for solvated electrons, namely, the two-dimensional liquid/solid and liquid/vacuum interfaces, is the subject of this review.

  15. Ultrafast Decay of the Solvated Electron in a Neat Polar Solvent: The Unusual Case of Propylene Carbonate.

    PubMed

    Le Caër, Sophie; Ortiz, Daniel; Marignier, Jean-Louis; Schmidhammer, Uli; Belloni, Jacqueline; Mostafavi, Mehran

    2016-01-01

    The behavior of carbonates is critical for a detailed understanding of aging phenomena in Li-ion batteries. Here we study the first reaction stages of propylene carbonate (PC), a cyclical carbonate, by picosecond pulse radiolysis. An absorption band with a maximum around 1360 nm is observed at 20 ps after the electron pulse and is shifted to 1310 nm after 50 ps. This band presents the features of a solvated electron absorption band, the solvation lasting up to 50 ps. Surprisingly, in this polar solvent, the solvated electron follows an ultrafast decay and disappears with a half time of 360 ps. This is attributed to the formation of a radical anion PC(-•). The yield of the solvated electron is low, suggesting that the radical anions are mainly directly produced from presolvated electrons. These results demonstrate that the initial electron transfers mechanisms are strongly different in linear compared with cyclical carbonates. PMID:26706441

  16. IONIC LIQUIDS: RADIATION CHEMISTRY, SOLVATION DYNAMICS AND REACTIVITY PATTERNS.

    SciTech Connect

    WISHART,J.F.

    2007-10-01

    energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate the influence of ILs on charge transport processes. Methods. Picosecond pulse radiolysis studies at BNL

  17. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    SciTech Connect

    Wishart,J.F.

    2008-09-29

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate

  18. High-Temperature, Bellows Hybrid Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Sirocky, Paul J. (Inventor)

    1994-01-01

    A high-temperature hybrid seal is constructed of multiple elements to meet the many demands placed on the seal. The primary elements are: a central high-temperature bellows, a braided ceramic sheath covering the bellows, an outer abrasion resistant sheath covering the ceramic sheath, and a structurally-sound seal-end termination.

  19. High temperature superconducting fault current limiter

    DOEpatents

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  20. High temperature superconducting fault current limiter

    DOEpatents

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  1. Advanced high temperature heat flux sensors

    NASA Technical Reports Server (NTRS)

    Atkinson, W.; Hobart, H. F.; Strange, R. R.

    1983-01-01

    To fully characterize advanced high temperature heat flux sensors, calibration and testing is required at full engine temperature. This required the development of unique high temperature heat flux test facilities. These facilities were developed, are in place, and are being used for advanced heat flux sensor development.

  2. Evaluation of high temperature pressure sensors.

    PubMed

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-03-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 °C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis. PMID:21456794

  3. Evaluation of high temperature pressure sensors

    SciTech Connect

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-03-15

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  4. High-Temperature Passive Power Electronics

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In many future NASA missions - such as deep-space exploration, the National AeroSpace Plane, minisatellites, integrated engine electronics, and ion or arcjet thrusters - high-power electrical components and systems must operate reliably and efficiently in high-temperature environments. The high-temperature power electronics program at the NASA Lewis Research Center focuses on dielectric and insulating material research, the development and characterization of high-temperature components, and the integration of the developed components into a demonstrable 200 C power system - such as an inverter. NASA Lewis has developed high-temperature power components through collaborative efforts with the Air Force Wright Laboratory, Northrop Grumman, and the University of Wisconsin. Ceramic and film capacitors, molypermalloy powder inductors, and a coaxially wound transformer were designed, developed, and evaluated for high-temperature operation.

  5. Protonation enthalpies of metal oxides from high temperature electrophoresis

    SciTech Connect

    Rodriguez-Santiago, V; Fedkin, Mark V.; Lvov, Serguei N.

    2012-01-01

    Surface protonation reactions play an important role in the behavior of mineral and colloidal systems, specifically in hydrothermal aqueous environments. However, studies addressing the reactions at the solid/liquid interface at temperatures above 100 C are scarce. In this study, newly and previously obtained high temperature electrophoresis data (up to 260 C) zeta potentials and isoelectric points for metal oxides, including SiO2, SnO2, ZrO2, TiO2, and Fe3O4, were used in thermodynamic analysis to derive the standard enthalpies of their surface protonation. Two different approaches were used for calculating the protonation enthalpy: one is based on thermodynamic description of the 1-pKa model for surface protonation, and another one on a combination of crystal chemistry and solvation theories which link the relative permittivity of the solid phase and the ratio of the Pauling bond strength and bond length to standard protonation enthalpy. From this analysis, two expressions relating the protonation enthalpy to the relative permittivity of the solid phase were obtained.

  6. Protonation enthalpies of metal oxides from high temperature electrophoresis.

    SciTech Connect

    Rodriguez-Santiago, V; Fedkin, Mark V; Lvov, Serguei N.

    2012-01-01

    Surface protonation reactions play an important role in the behavior of mineral and colloidal systems, specifically in hydrothermal aqueous environments. However, studies addressing the reactions at the solid/liquid interface at temperatures above 100 C are scarce. In this study, newly and previously obtained high temperature electrophoresis data (up to 260 C) - zeta potentials and isoelectric points - for metal oxides, including SiO{sub 2}, SnO{sub 2}, ZrO{sub 2}, TiO{sub 2}, and Fe{sub 3}O{sub 4}, were used in thermodynamic analysis to derive the standard enthalpies of their surface protonation. Two different approaches were used for calculating the protonation enthalpy: one is based on thermodynamic description of the 1-pKa model for surface protonation, and another one - on a combination of crystal chemistry and solvation theories which link the relative permittivity of the solid phase and the ratio of the Pauling bond strength and bond length to standard protonation enthalpy. From this analysis, two expressions relating the protonation enthalpy to the relative permittivity of the solid phase were obtained.

  7. Chemical vapor deposition modeling for high temperature materials

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.

    1992-01-01

    The formalism for the accurate modeling of chemical vapor deposition (CVD) processes has matured based on the well established principles of transport phenomena and chemical kinetics in the gas phase and on surfaces. The utility and limitations of such models are discussed in practical applications for high temperature structural materials. Attention is drawn to the complexities and uncertainties in chemical kinetics. Traditional approaches based on only equilibrium thermochemistry and/or transport phenomena are defended as useful tools, within their validity, for engineering purposes. The role of modeling is discussed within the context of establishing the link between CVD process parameters and material microstructures/properties. It is argued that CVD modeling is an essential part of designing CVD equipment and controlling/optimizing CVD processes for the production and/or coating of high performance structural materials.

  8. Transport Phenomena.

    ERIC Educational Resources Information Center

    McCready, Mark J.; Leighton, David T.

    1987-01-01

    Discusses the problems created in graduate chemical engineering programs when students enter with a wide diversity of understandings of transport phenomena. Describes a two-semester graduate transport course sequence at the University of Notre Dame which focuses on fluid mechanics and heat and mass transfer. (TW)

  9. Solvation of fullerene and fulleride ion in liquid ammonia: structure and dynamics of the solvation shells.

    PubMed

    Rana, Malay Kumar; Chandra, Amalendu

    2012-10-01

    Molecular dynamics simulations have been performed to investigate the solvation characteristics of neutral fullerene (C(60)) and charged fulleride anion (C(60)(5-)) in liquid ammonia. Potassium ions are present as counterions in the system containing fulleride ion. In addition to solvation characteristics, dynamical properties of solvation shells are also found out for both the neutral and anionic solutes. Our results reveal the presence of a rather large solvation shell of ammonia molecules around the C(60)(5-) ion. It is found that the ammonia molecules are more closely packed in the first solvation shell of C(60)(5-) than that of C(60). The distributions of ammonia molecules in the solvation shells of C(60) and C(60)(5-) solutes together with hydrogen bonding characteristics of the solvent in different solvation shells are investigated. It is found that the solvation of the small counterions (K(+)) in liquid ammonia is affected very little by the presence of the large C(60)(5-) anion. Regarding the dynamics of ammonia in solvation shells, it is found that the residence, translational and rotational dynamics of ammonia molecules differ significantly between the solvation shells of the neutral and charged fullerene solutes, especially in the first solvation shells. The average lifetimes of ammonia-ammonia hydrogen bonds are calculated from both continuous and intermittent hydrogen bond correlation functions. The calculations of binding energies reveal that the hydrogen bonds are weaker, hence short lived in the solvation shell of C(60)(5-) compared to those in the solvation shell of neutral C(60) and also in bulk liquid ammonia. PMID:23039601

  10. Solvation of fullerene and fulleride ion in liquid ammonia: Structure and dynamics of the solvation shells

    NASA Astrophysics Data System (ADS)

    Rana, Malay Kumar; Chandra, Amalendu

    2012-10-01

    Molecular dynamics simulations have been performed to investigate the solvation characteristics of neutral fullerene (C_{60}) and charged fulleride anion (C_{60}^{5-}) in liquid ammonia. Potassium ions are present as counterions in the system containing fulleride ion. In addition to solvation characteristics, dynamical properties of solvation shells are also found out for both the neutral and anionic solutes. Our results reveal the presence of a rather large solvation shell of ammonia molecules around the C_{60}^{5-} ion. It is found that the ammonia molecules are more closely packed in the first solvation shell of C_{60}^{5-} than that of C_{60}. The distributions of ammonia molecules in the solvation shells of C_{60} and C_{60}^{5-} solutes together with hydrogen bonding characteristics of the solvent in different solvation shells are investigated. It is found that the solvation of the small counterions (K+) in liquid ammonia is affected very little by the presence of the large C_{60}^{5-} anion. Regarding the dynamics of ammonia in solvation shells, it is found that the residence, translational and rotational dynamics of ammonia molecules differ significantly between the solvation shells of the neutral and charged fullerene solutes, especially in the first solvation shells. The average lifetimes of ammonia-ammonia hydrogen bonds are calculated from both continuous and intermittent hydrogen bond correlation functions. The calculations of binding energies reveal that the hydrogen bonds are weaker, hence short lived in the solvation shell of C_{60}^{5-} compared to those in the solvation shell of neutral C60 and also in bulk liquid ammonia.

  11. Proton solvation in protic and aprotic solvents.

    PubMed

    Rossini, Emanuele; Knapp, Ernst-Walter

    2016-05-01

    Protonation pattern strongly affects the properties of molecular systems. To determine protonation equilibria, proton solvation free energy, which is a central quantity in solution chemistry, needs to be known. In this study, proton affinities (PAs), electrostatic energies of solvation, and pKA values were computed in protic and aprotic solvents. The proton solvation energy in acetonitrile (MeCN), methanol (MeOH), water, and dimethyl sulfoxide (DMSO) was determined from computed and measured pKA values for a specially selected set of organic compounds. pKA values were computed with high accuracy using a combination of quantum chemical and electrostatic approaches. Quantum chemical density functional theory computations were performed evaluating PA in the gas-phase. The electrostatic contributions of solvation were computed solving the Poisson equation. The computations yield proton solvation free energies with high accuracy, which are in MeCN, MeOH, water, and DMSO -255.1, -265.9, -266.3, and -266.4 kcal/mol, respectively, where the value for water is close to the consensus value of -265.9 kcal/mol. The pKA values of MeCN, MeOH, and DMSO in water correlates well with the corresponding proton solvation energies in these liquids, indicating that the solvated proton was attached to a single solvent molecule. © 2016 Wiley Periodicals, Inc. PMID:26786747

  12. Symposium on high temperature and materials chemistry

    SciTech Connect

    Not Available

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  13. The high temperature superconductivity space experiment

    NASA Technical Reports Server (NTRS)

    Webb, Denis C.; Nisenoff, M.

    1991-01-01

    The history and the current status of the high temperature superconductivity space experiment (HTSSE) initiated in 1988 are briefly reviewed. The goal of the HTSSE program is to demonstrate the feasibility of incorporating high temperature superconductivity (HTS) technology into space systems. The anticipated payoffs include the development of high temperature superconductor devices for space systems; preparation and space qualification of a cryogenically cooled experimental package containing HTS devices and components; and acquisition of data for future space experiments using more complex HTS devices and subsystems. The principal HTSSE systems and devices are described.

  14. Dimensionality of high temperature superconductivity in oxides

    NASA Technical Reports Server (NTRS)

    Chu, C. W.

    1989-01-01

    Many models have been proposed to account for the high temperature superconductivity observed in oxide systems. Almost all of these models proposed are based on the uncoupled low dimensional carrier Cu-O layers of the oxides. Results of several experiments are presented and discussed. They suggest that the high temperature superconductivity observed cannot be strictly two- or one-dimensional, and that the environment between the Cu-O layers and the interlayer coupling play an important role in the occurrence of such high temperature superconductivity. A comment on the very short coherence length reported is also made.

  15. A high-temperature wideband pressure transducer

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1975-01-01

    Progress in the development of a pressure transducer for measurement of the pressure fluctuations in the high temperature environment of a jet exhaust is reported. A condenser microphone carrier system was adapted to meet the specifications. A theoretical analysis is presented which describes the operation of the condenser microphone in terms of geometry, materials, and other physical properties. The analysis was used as the basis for design of a prototype high temperature microphone. The feasibility of connecting the microphone to a converter over a high temperature cable operating as a half-wavelength transmission line was also examined.

  16. High temperature resistant cermet and ceramic compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  17. Solvation dynamics in a protein surfactant complex

    NASA Astrophysics Data System (ADS)

    Dutta, Partha; Sen, Pratik; Halder, Arnab; Mukherjee, Saptarshi; Sen, Sobhan; Bhattacharyya, Kankan

    2003-08-01

    Solvation dynamics in the denatured state of a protein, lysozyme (denatured by sodium dodecyl sulfate, SDS) is markedly slower than that in the native state. For coumarin 153 bound to lysozyme, the average solvation time, < τs> is 330 ps. In the lysozyme-SDS complex, the solvation dynamics is markedly slower with < τs>=7250 ps. On addition of dithiothreitol (DTT) to the lysozyme-SDS complex, when the di-sulfide bonds are destroyed, < τs> is found to be 1140 ps. The slow dynamics in the denatured protein is attributed to the polymer chain dynamics and the exchange of bound and free water molecules.

  18. Polymorphs and Versatile Solvates of 7-Hydroxyisoflavone.

    PubMed

    Gong, Ningbo; Zhang, Guoshun; Jin, Guimin; Du, Guanhua; Lu, Yang

    2016-04-01

    7-hydroxyisoflavone has been crystallized, identified, and characterized as 2 solvent-free conformational polymorphs and 5 solvates, which differ from each other in the mode of packing and in molecular conformation. All the 7 crystal structures were previously unreported. The conformational polymorphs and solvates were compared by Hirshfeld surface and fingerprint plot analysis and were spectroscopically characterized by powder X-ray diffraction, differential scanning calorimetry, and thermal gravimetric analysis. Hydrogen bond played an important role in the formation of polymorphs. From this study, we can predict that more solvates could be cultivated in other polarity solvents such as isopropanol or 2-butanol at appropriate conditions. PMID:26935882

  19. Segue between Favorable and Unfavorable Solvation

    SciTech Connect

    Maibaum, Lutz; Chandler, David

    2007-03-21

    Solvation of small and large clusters are studied by simulation, considering a range of solvent-solute attractive energy strengths. Over a wide range of conditions, both for solvation in the Lennard-Jones liquid and in the SPC model of water, it is shown that the mean solvent density varies linearly with changes in solvent-solute adhesion or attractive energy strength. This behavior is understood from the perspective of Weeks theory of solvation [Ann. Rev. Phys. Chem. 2002, 53, 533] and supports theories based upon that perspective.

  20. Silicon carbide, an emerging high temperature semiconductor

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  1. Specimen for high-temperature tensile tests

    NASA Technical Reports Server (NTRS)

    Coulbert, C. D.

    1972-01-01

    Split nut with internal taper to hold specially formed specimen composed of filaments of refractory material provides means for holding at high temperature and under tension so that performance evaluations may be made.

  2. Altering high temperature subterranean formation permeability

    SciTech Connect

    Moradi-Araghi, A.

    1991-02-19

    This patent describes a delayed acrylamide containing polymer crosslinker having stability in an aqueous solution at high temperatures. It comprises: a combination of an aldehyde and a salicylic acid derivative selected from salicylamide and acetysalicylic acid.

  3. High-Temperature Optical Window Design

    NASA Technical Reports Server (NTRS)

    Roeloffs, Norman; Taranto, Nick

    1995-01-01

    A high-temperature optical window is essential to the optical diagnostics of high-temperature combustion rigs. Laser Doppler velocimetry, schlieren photography, light sheet visualization, and laser-induced fluorescence spectroscopy are a few of the tests that require optically clear access to the combustor flow stream. A design was developed for a high-temperature window that could withstand the severe environment of the NASA Lewis 3200 F Lean Premixed Prevaporized (LPP) Flame Tube Test Rig. The development of this design was both time consuming and costly. This report documents the design process and the lessons learned, in an effort to reduce the cost of developing future designs for high-temperature optical windows.

  4. Sky-High Temperatures Inside 'Bounce Houses'

    MedlinePlus

    ... medlineplus.gov/news/fullstory_160408.html Sky-High Temperatures Inside 'Bounce Houses' Hot party toys may pose ... similar to closed cars. During hot summer weather, temperatures inside these play structures may climb to levels ...

  5. HIGH TEMPERATURE CONDENSED PHASE MASS SPECTROMETRIC ANALYSIS

    EPA Science Inventory

    Our current studies with high temperature ion emitting materials have demonstrated a significant lack of methods for determining chemical species in condensed phase materials in general, and at elevated temperatures in particular. We have developed several new research techniques...

  6. High-temperature superconductivity: A conventional conundrum

    DOE PAGESBeta

    Božović, Ivan

    2016-01-07

    High-temperature superconductivity in ultrathin films of iron selenide deposited on strontium titanate has been attributed to various exotic mechanisms, and new experiments indicate that it may be conventional, with broader implications.

  7. High-temperature superconductivity in perspective

    NASA Astrophysics Data System (ADS)

    1990-04-01

    The technology of superconductivity and its potential applications are discussed; it is warned that U.S companies are investing less than their main foreign competitors in both low- and high-temperature superconductivity R and D. This is by far the most critical issue affecting the future U.S. competitive position in superconductivity, and in many other emerging technologies. The major areas covered include: Executive summary; High-temperature superconductivity - A progress report; Applications of superconductivity; The U.S. response to high-temperature superconductivity; High-temperature superconductivity programs in other countries; Comparison of industrial superconductivity R and D efforts in the United States and Japan - An OTA survey; Policy issues and options.

  8. MILLIMETER-WAVE HIGH TEMPERATURE PROCESS MONITORING

    EPA Science Inventory

    This poster illustrates the benefits of millimeter-wave high temperature monitoring. The new technique demonstrates (1)improved process efficiencies, (2) improved product quality impacts, and (3)reduced environmental impact.

  9. Design criteria for high temperature filters

    SciTech Connect

    Peukert, W.

    1995-12-31

    In power generation systems, overall efficiency can be increased if the hot and eventually pressurized gases from a coal combustor or a gasifier are cleaned at high temperatures so that a gas turbine can be operated with the off-gases. Overall efficiencies might be increased from 38% to above 50%. In numerous other applications in the metal, ceramic and process industry hot gases have to be cleaned. This is often done by quenching with subsequent conventional scrubbing or filter technology. In order to use the heat content efficiently dust particles have to be separated at elevated temperature with the additional advantage of avoiding possible corrosion and plugging due to cooling. At elevated temperature, also gaseous pollutants can be collected simultaneously together with particulate matter in a high temperature dry scrubber or granular bed. The paper describes high-temperature filter media, regeneration of filter medium, testing essential for high-temperature applications, and design of the baghouse.

  10. High-temperature glass and glass coatings

    NASA Technical Reports Server (NTRS)

    Goldstein, H. E.; Katvala, V. E.; Leiser, D. B.

    1977-01-01

    Reaction-cured glasses resist thermal shock and maintain properties over range of -100 degrees Centrigrade to +1,480 degrees Centigrade. Stability makes these excellent materials for high-temperature glassware and tubing or as coatings for porous materials.

  11. The Conference on High Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Hamilton, D. J.; Mccormick, J. B.; Kerwin, W. J.; Narud, J. A.

    1981-01-01

    The status of and directions for high temperature electronics research and development were evaluated. Major objectives were to (1) identify common user needs; (2) put into perspective the directions for future work; and (3) address the problem of bringing to practical fruition the results of these efforts. More than half of the presentations dealt with materials and devices, rather than circuits and systems. Conference session titles and an example of a paper presented in each session are (1) User requirements: High temperature electronics applications in space explorations; (2) Devices: Passive components for high temperature operation; (3) Circuits and systems: Process characteristics and design methods for a 300 degree QUAD or AMP; and (4) Packaging: Presently available energy supply for high temperature environment.

  12. Silicon carbide, an emerging high temperature semiconductor

    NASA Astrophysics Data System (ADS)

    Matus, Lawrence G.; Powell, J. Anthony

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  13. High temperature thermal properties for metals used in LWR vessels

    NASA Astrophysics Data System (ADS)

    Rempe, J. L.; Knudson, D. L.

    2008-01-01

    Because of the impact that melt relocation and vessel failure has on subsequent progression and associated consequences of a light water reactor (LWR) accident, it is important to accurately predict the heatup and relocation of materials within the reactor vessel and heat transfer to and from the reactor vessel. Accurate predictions of such heat transfer phenomena require high temperature thermal properties. However, a review of vessel and structural steel material properties in severe accident analysis codes reveals that the required high temperature material properties are extrapolated with little, if any, data above 700 °C. To reduce uncertainties in predictions relying upon this extrapolated high temperature data, INL obtained data using laser-flash thermal diffusivity techniques for two metals used in LWR vessels: SA 533 Grade B, Class 1 (SA533B1) low alloy steel, which is used to fabricate most US LWR reactor vessels; and Type 304 Stainless Steel SS304, which is used in LWR vessel piping, penetration tubes, and internal structures. This paper summarizes the new data, compares it to existing data in the literature, and provides recommended correlations for thermal properties based on this data.

  14. High temperature tensile testing of ceramic composites

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Hemann, John H.

    1988-01-01

    The various components of a high temperature tensile testing system are evaluated. The objective is the high temperature tensile testing of SiC fiber reinforced reaction bonded Si3N4 specimens at test temperatures up to 1650 C (3000 F). Testing is to be conducted in inert gases and air. Gripping fixtures, specimen configurations, furnaces, optical strain measuring systems, and temperature measurement techniques are reviewed. Advantages and disadvantages of the various techniques are also noted.

  15. High-temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Merritt, Danielle; Raffaelle, Ryne P.; Scheiman, David

    2005-01-01

    The vast majority of space probes to date have relied upon photovoltaic power generation. If future missions designed to probe environments close to the sun (Figure 1) will be able to use such power generation, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. The significant problem is that solar cells lose performance at high temperatures.

  16. PLA recycling by hydrolysis at high temperature

    NASA Astrophysics Data System (ADS)

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari; Fausto, Gironi

    2016-05-01

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  17. Metallic stripes in high-temperature superconductors

    SciTech Connect

    Salkola, M.I.; Emery, V.J.; Kivelson, S.A.

    1995-11-23

    A phenomenological approach is applied to explore signatures of disordered charge stripes and antiphase spin domains in single-particle properties of the high-temperature superconductors. Stripe phases are shown to explain many experimentally observed unusual features measured in angle-resolved photoemission and optical spectroscopy. It is argued that disordered and fluctuating stripe phases are a common feature of high-temperature superconductors, supported by the additional evidence from neutron scattering and NMR.

  18. Materials for high-temperature thermoelectric conversion

    NASA Technical Reports Server (NTRS)

    Feigelson, R. S.; Elwell, D.; Auld, B. A.

    1984-01-01

    The development of materials for high temperature thermoelectric energy conversion devices was investigated. The development of new criteria for the selection of materials which is based on understanding of the fundamental principles governing the behavior of high temperature thermoelectric materials is discussed. The synthesis and characterization of promising new materials and the growth of single crystals to eliminate possible problems associated with grain boundaries and other defects in polycrystalline materials are outlined.

  19. Materials for high-temperature catalytic combustion

    SciTech Connect

    Ramesh, K.S.; Cox, J.L.; Parks, W.P. Jr.

    1994-04-01

    Catalytic combustion systems for gas turbines must operate at temperatures of at least 1200{degrees}C. Support structure material must retain its integrity under prolonged exposure to high temperature, thermal cycling, and severe chemical conditions; and the material must be capable of being formed into thin sections. The performance requirements of a high-temperature stable ceramic support must be balanced with reasonable costs of preparation. An increasing number of materials have potential for successful exposure to high-temperature conditions. Two major problems of high-temperature catalyst systems are loss of surface area and catalytic activity. Incorporation of the catalytic component into the host lattice can circumvent this problem. Use of supporting active metal oxides on carrier materials with high thermal resistance appears to be a very promising way to make stable catalysts. The challenge will be to provide sufficient low-temperature activity and high-temperature stability; therefore, there exists a need to engineer catalytic materials for high-temperature combustion environments. Developments in catalytic materials and preparation procedures are reviewed. Future areas of research are discussed.

  20. Self-diffusion coefficients for water and organic solvents at high temperatures along the coexistence curve

    NASA Astrophysics Data System (ADS)

    Yoshida, Ken; Matubayasi, Nobuyuki; Nakahara, Masaru

    2008-12-01

    The self-diffusion coefficients D for water, benzene, and cyclohexane are determined by using the pulsed-field-gradient spin echo method in high-temperature conditions along the liquid branch of the coexistence curve: 30-350 °C (1.0-0.58 g cm-3), 30-250 °C (0.87-0.56 g cm-3), and 30-250 °C (0.77-0.48 g cm-3) for water, benzene, and cyclohexane, respectively. The temperature and density effects are separated and their origins are discussed by examining the diffusion data over a wide range of thermodynamic states. The temperature dependence of the self-diffusion coefficient for water is larger than that for organic solvents due to the large contribution of the attractive hydrogen-bonding interaction in water. The density dependence is larger for organic solvents than for water. The difference is explained in terms of the van der Waals picture that the structure of nonpolar organic solvents is determined by the packing effect due to the repulsion or exclusion volumes. The dynamic solvation shell scheme [K. Yoshida et al., J. Chem. Phys. 127, 174509 (2007)] is applied for the molecular interpretation of the translational dynamics with the aid of molecular dynamics simulation. In water at high temperatures, the velocity relaxation is not completed before the relaxation of the solvation shell (mobile-shell type) as a result of the breakdown of the hydrogen-bonding network. In contrast, the velocity relaxation of benzene is rather confined within the solvation shell (in-shell type).

  1. Investigations into High Temperature Components and Packaging

    SciTech Connect

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  2. Sandia_HighTemperatureComponentEvaluation_2015.

    SciTech Connect

    Cashion, Avery T.

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  3. The solvation structure of alprazolam.

    PubMed

    Sridhar, Akshay; Johnston, Andrew J; Varathan, Luxmmi; McLain, Sylvia E; Biggin, Philip C

    2016-08-10

    Alprazolam is a benzodiazepine that is commonly prescribed for the treatment of anxiety and other related disorders. Like other benzodiazepines, it is thought to exert its effect through interaction with GABAA receptors. However, it has also been described as a potent and selective protein interaction inhibitor of bromodomain and extra-terminal (BET) proteins. Indeed, the only crystal structure of alprazolam bound to a protein is a complex between alprazolam and the BRD4 bromodomain. The structure shows that the complex also involves many water interactions that mediate contacts between the drug and the protein, a scenario that exists in many drug-protein complexes. How such waters relate to solvation patterns of small molecules may improve our understanding of what dictates their appearance or absence in bridging positions within complexes and thus will be important in terms of future rational drug-design. Here, we use neutron diffraction in conjunction with molecular dynamics simulations to provide a detailed analysis of how water molecules interact with alprazolam in methanol/water mixtures. The agreement between the neutron diffraction and the molecular dynamics is extremely good. We discuss the results in the context of drug design. PMID:27465367

  4. High temperature thrust chamber for spacecraft

    NASA Technical Reports Server (NTRS)

    Chazen, Melvin L. (Inventor); Mueller, Thomas J. (Inventor); Kruse, William D. (Inventor)

    1998-01-01

    A high temperature thrust chamber for spacecraft (20) is provided herein. The high temperature thrust chamber comprises a hollow body member (12) having an outer surface and an internal surface (16) defining the high temperature chamber (10). The body member (12) is made substantially of rhenium. An alloy (18) consisting of iridium and at least alloying metal selected of the group consisting of rhodium, platinum and palladium is deposited on at least a portion of the internal surface (16) of the body member (12). The iridium and the alloying metal are electrodeposited onto the body member (12). A HIP cycle is performed upon the body member (12) to cause the coating of iridium and the alloying metal to form the alloy (18) which protects the body member (12) from oxidation.

  5. Nuclear fuels for very high temperature applications

    SciTech Connect

    Lundberg, L.B.; Hobbins, R.R.

    1992-08-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO{sub 2} or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.

  6. Nuclear fuels for very high temperature applications

    SciTech Connect

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO{sub 2} or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.

  7. High temperature structural fibers: Status and needs

    NASA Technical Reports Server (NTRS)

    Dicarlo, James A.

    1991-01-01

    The key to high temperature structural composites is the selection and incorporation of continuous fiber reinforcement with optimum mechanical, physical, and chemical properties. Critical fiber property needs are high strength, high stiffness, and retention of these properties during composite fabrication and use. However, unlike polymeric composites where all three requirements are easily achieved with a variety of commercially available carbon-based fibers, structural fibers with sufficient stiffness and strength retention for high temperature metal, intermetallic, and ceramic composites are not available. The objective here is to discuss in a general manner the thermomechanical stability problem for current high performance fibers which are based on silicon and alumina compositions. This is accomplished by presenting relevant fiber property data with a brief discussion of potential underlying mechanisms. From this general overview, some possible materials engineering approaches are suggested which may lead to minimization and/or elimination of this critical stability problem for current high temperature fibers.

  8. Structural characterization of high temperature composites

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.; Grande, D. H.

    1991-01-01

    Glass, ceramic, and carbon matrix composite materials have emerged in recent years with potential properties and temperature resistance which make them attractive for high temperature applications such as gas turbine engines. At the outset of this study, only flexural tests were available to evaluate brittle matrix composites at temperatures in the 600 to 1000 C range. The results are described of an ongoing effort to develop appropriate tensile, compression, and shear test methods for high temperature use. A tensile test for unidirectional composites was developed and used to evaluate the properties and behavior of ceramic fiber reinforced glass and glass-ceramic matrix composites in air at temperatures up to 1000 C. The results indicate generally efficient fiber reinforcement and tolerance to matrix cracking similar to polymer matrix composites. Limiting properties in these materials may be an inherently very low transverse strain to failure, and high temperature embrittlement due to fiber/matrix interface oxidation.

  9. High Temperature Membrane & Advanced Cathode Catalyst Development

    SciTech Connect

    Protsailo, Lesia

    2006-04-20

    Current project consisted of three main phases and eighteen milestones. Short description of each phase is given below. Table 1 lists program milestones. Phase 1--High Temperature Membrane and Advanced Catalyst Development. New polymers and advanced cathode catalysts were synthesized. The membranes and the catalysts were characterized and compared against specifications that are based on DOE program requirements. The best-in-class membranes and catalysts were downselected for phase 2. Phase 2--Catalyst Coated Membrane (CCM) Fabrication and Testing. Laboratory scale catalyst coated membranes (CCMs) were fabricated and tested using the down-selected membranes and catalysts. The catalysts and high temperature membrane CCMs were tested and optimized. Phase 3--Multi-cell stack fabrication. Full-size CCMs with the down-selected and optimized high temperature membrane and catalyst were fabricated. The catalyst membrane assemblies were tested in full size cells and multi-cell stack.

  10. High temperature environmental effects on metals

    NASA Technical Reports Server (NTRS)

    Grisaffe, S. J.; Lowell, C. E.; Stearns, C. A.

    1977-01-01

    The current status of knowledge and ability to predict high-temperature environmental attack of metals is reviewed with particular reference to the gas turbine engine. Environmental attack is caused by high temperatures, combustion products, and impurities. A schematic representation of life-limiting factors of turbine components shows that environmental attack can lead to very early failures. Attention is given to high-temperature oxidation with prevailing modes of oxidation attack, and to hot corrosion and other impurity effects. Erosion attack results from the direct mechanical removal of component material by impact of hard substances like ash, sand, or dirt. Solutions to hot-corrosion problems can be found semiempirically by using improved alloys or ceramics, protective surface coatings, additives to the engine environment, and air/fuel cleanup to eliminate detrimental impurities.

  11. High Temperature, Wireless Seismometer Sensor for Venus

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  12. High temperature environmental effects on metals

    NASA Technical Reports Server (NTRS)

    Grisaffe, S. J.; Lowell, C. E.; Stearns, C. A.

    1977-01-01

    The gas turbine engine was used as an example to predict high temperature environmental attack on metals. Environmental attack in a gas turbine engine derives from high temperature, combustion products of the air and fuel burned, and impurities. Of all the modes of attack associated with impurity effects, hot corrosion was the most complicated mechanistically. Solutions to the hot corrosion problem were sought semi-empirically in: (1) improved alloys or ceramics; (2) protective surface coating; (3) use of additives to the engine environment; and (4) air/fuel cleanup to eliminate harmful impurities.

  13. High-temperature superconducting vector switch

    SciTech Connect

    Chelluri, B.; Barber, J.; Clements, N.; Johnson, D. ); Spyker, R.; Sarkar, A.K.; Kozlowoski, G. )

    1991-04-15

    The feasibility of a high-temperature superconducting switch based on the principle of the superconducting vector switch (SVS) is discussed. This switch exploits the anisotropy in electrical conductivities of the high-temperature superconductors. Underlying the SVS mechanism is the ability to turn on/off large superconducting currents confined to the CuO{sub 2} planes that characterize these materials using lower currents flowing normal to the planes. The required conditions to optimize the switch and increase the gain are presented.

  14. Development of high temperature strain gages

    NASA Technical Reports Server (NTRS)

    Lemcoe, M. M.

    1973-01-01

    High temperature electric resistance wire strain gages were developed and evaluated for use at temperatures exceeding 922 K (1200 F). A special high temperature strain gage alloy (Fe-25Cr-7.5A1), designated BCL-3, was used to fabricate the gages. Pertinent gage characteristics were determined at temperatures up to 1255 K (1800 F). The results of the evaluation were reported in graphical and tabular form. It was concluded that the gages will perform satisfactorily at temperatures to at least 1089 K (1500 F) for at least one hour.

  15. High temperature crystalline superconductors from crystallized glasses

    DOEpatents

    Shi, Donglu

    1992-01-01

    A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

  16. Insulation Blankets for High-Temperature Use

    NASA Technical Reports Server (NTRS)

    Goldstein, H.; Leiser, D.; Sawko, P. M.; Larson, H. K.; Estrella, C.; Smith, M.; Pitoniak, F. J.

    1986-01-01

    Insulating blanket resists temperatures up to 1,500 degrees F (815 degrees C). Useful where high-temperature resistance, flexibility, and ease of installation are important - for example, insulation for odd-shaped furnaces and high-temperature ducts, curtains for furnace openings and fire control, and conveyor belts in hot processes. Blanket is quilted composite consisting of two face sheets: outer one of silica, inner one of silica or other glass cloth with center filling of pure silica glass felt sewn together with silica glass threads.

  17. High temperature solid state storage cell

    SciTech Connect

    Rea, Jesse R.; Kallianidis, Milton; Kelsey, G. Stephen

    1983-01-01

    A completely solid state high temperature storage cell comprised of a solid rechargeable cathode such as TiS.sub.2, a solid electrolyte which remains solid at the high temperature operating conditions of the cell and which exhibits high ionic conductivity at such elevated temperatures such as an electrolyte comprised of lithium iodide, and a solid lithium or other alkali metal alloy anode (such as a lithium-silicon alloy) with 5-50% by weight of said anode being comprised of said solid electrolyte.

  18. Micromechanics of high temperature deformation and failure

    NASA Technical Reports Server (NTRS)

    Nasser, S. N.; Weertman, J. R.

    1985-01-01

    The micromechanics of the constitutive behavior of elastoplastic materials at high temperatures was examined. The experimental work focused on the development of microscopic defects in superalloys (Waspaloy), especially the formation of voids at grain boundary carbides, and slip induced surface cracks within grains upon cyclic loading at high temperatures. The influence of these defects on the life expectancy of the material was examined. The theoretical work consists of two parts: (1) analytical description of the mechanisms that lead to defects observed experimentally; and (2) development of macroscopic elastoplastic nonlinear constitutive relations based on mechanical modeling.

  19. Enamel for high-temperature superalloys

    NASA Technical Reports Server (NTRS)

    Levin, H.; Lent, W. E.

    1977-01-01

    Desired optical and high temperature enamel properties are obtained with glasses prepared from the system Li2O-ZrO2-nSiO2. Molar compositions range from n=4 to n=1.3, to which are added minor amounts in varying combinations of alumina, alkali fluorides, boric oxide, alkali oxides, and akaline earth oxides.

  20. High temperature pressure coupled ultrasonic waveguide

    DOEpatents

    Caines, Michael J.

    1983-01-01

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  1. High temperature resonant ultrasound spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Li, Guangyan; Lamberton, Gary; Gladden, Josh

    2008-03-01

    Resonant ultrasound spectroscopy (RUS) is a technique to obtain the full elastic tensor of single crystal materials by measuring the mechanical resonances of a polished sample. Any direct resonance measurement at high temperatures is limited by the fact that most ultrasound transducers have an upper operational limit of 200-300C. High temperature RUS measurements are made possible by separating the sample, placed in a tube furnace, and the transducers with buffer rods made of low acoustic attenuation materials with good thermal stability such as ceramic alumina or fused quartz. Tests on stainless steel demonstrated that the system has the ability of acquiring resonance signals at temperatures up to 800C. Experimental issues such as additional resonance peaks introduced by the buffer rods and sample loading will be addressed. The apparatus has been used to study high temperature elastic properties of p-zintl thermoelectrics, single crystal quartz, a novel piezoelectric material kepertite, and the glass transition around 400C in bulk metallic glass compounds. Good results from these studies and high temperature test runs of aluminum and stainless steel demonstrate the potential for RUS measurements at elevated temperatures.

  2. Thermal disconnect for high-temperature batteries

    DOEpatents

    Jungst, Rudolph George; Armijo, James Rudolph; Frear, Darrel Richard

    2000-01-01

    A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

  3. High-Temperature Resistance Strain Gauges

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1994-01-01

    Resistance strain gauges developed for use at high temperatures in demanding applications like testing aircraft engines and structures. Measures static strains at temperatures up to 800 degrees C. Small and highly reproducible. Readings corrected for temperature within small tolerances, provided temperatures measured simultaneously by thermocouples or other suitable devices. Connected in wheatstone bridge.

  4. Progress in advanced high temperature materials technology

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ault, G. M.

    1976-01-01

    Significant progress has recently been made in many high temperature material categories pertinent to such applications by the industrial community. These include metal matrix composites, superalloys, directionally solidified eutectics, coatings, and ceramics. Each of these material categories is reviewed and the current state-of-the-art identified, including some assessment, when appropriate, of progress, problems, and future directions.

  5. High Temperature Adhesives for Bonding Kapton

    NASA Technical Reports Server (NTRS)

    Stclair, A. K.; Slemp, W. S.; Stclair, T. L.

    1978-01-01

    Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575K (575 F) in vacuum. Glass transition temperatures of the polyimide/Kapton bondlines were monitored by thermomechanical analysis.

  6. High temperature oxidation resistant cermet compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1976-01-01

    Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.

  7. Mechanism of high temperature adaptation in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High temperature (HT) stress severely limits plant productivity and causes extensive economic loss to US agriculture. Understanding HT adaptation mechanisms in crop plants is crucial to the success of developing HT tolerant varieties to alleviate the negative impact of HT stress on plant growth and...

  8. Broadband, High-Temperature Ultrasonic Transducer

    NASA Technical Reports Server (NTRS)

    Parker, F. Raymond; Winfree, William P.; Barrows, Danny A.

    1995-01-01

    Materials chosen for endurance at high temperatures and acoustic coupling and damping. Acoustic transducer designed to exhibit broad frequency response and to survive temperatures close to melting points of brazing alloys. Attached directly and continuously to hot object monitored ultrasonically: for example, it can be attached to relatively cool spot on workpiece during brazing for taking ultrasonic quality-control measurements.

  9. 10.3 High-temperature Instrumentation

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony

    2008-01-01

    This viewgraph presentation describes high temperature instrumentation development from 1960-1970, 1980-1990 and 2000-present. The contents include: 1) Background; 2) Objective; 3) Application and Sensor; 4) Attachment Techniques; 5) Evaluation/Characterization Testing; and 6) Future testing.

  10. High temperature ceramic/metal joint structure

    DOEpatents

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.