Science.gov

Sample records for high-throughput screening assays

  1. Design and implementation of high throughput screening assays.

    PubMed

    Macarrón, Ricardo; Hertzberg, Robert P

    2011-03-01

    High throughput screening (HTS) is at the core of the drug discovery process, and so it is critical to design and implement HTS assays in a comprehensive fashion involving scientists from the disciplines of biology, chemistry, engineering, and informatics. This requires careful analysis of many variables, starting with the choice of assay target and ending with the discovery of lead compounds. At every step in this process, there are decisions to be made that can greatly impact the outcome of the HTS effort, to the point of making it a success or a failure. Although specific guidelines should be established to insure that the screening assay reaches an acceptable level of quality, many choices require pragmatism and the ability to compromise opposing forces. PMID:20865348

  2. Mining Chemical Activity Status from High-Throughput Screening Assays

    PubMed Central

    Soufan, Othman; Ba-alawi, Wail; Afeef, Moataz; Essack, Magbubah; Rodionov, Valentin; Kalnis, Panos; Bajic, Vladimir B.

    2015-01-01

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare. PMID:26658480

  3. A Colloidal Stability Assay Suitable for High-Throughput Screening.

    PubMed

    Abarca, Carla; Ali, M Monsur; Yang, Songtao; Dong, Xiaofei; Pelton, Robert H

    2016-03-01

    A library of 32 polystyrene copolymer latexes, with diameters ranging between 53 and 387 nm, was used to develop and demonstrate a high-throughput assay using a 96-well microplate platform to measure critical coagulation concentrations, a measure of colloidal stability. The most robust assay involved an automated centrifugation-decantation step to remove latex aggregates before absorbance measurements, eliminating aggregate interference with optical measurements made through the base of the multiwell plates. For smaller nanoparticles (diameter <150 nm), the centrifugation-decantation step was not required as the interference was less than with larger particles. Parallel measurements with a ChemiDoc MP plate scanner gave indications of aggregation; however, the results were less sensitive than the absorbance measurements. PMID:26857643

  4. High-throughput screening assays for antibacterial and antifungal activities of Lactobacillus species.

    PubMed

    Inglin, Raffael C; Stevens, Marc J A; Meile, Lukas; Lacroix, Christophe; Meile, Leo

    2015-07-01

    We describe high-throughput screening techniques to rapidly detect either antimicrobial activity, using an agar-well diffusion assay in microtiter plates, or antifungal activity using an agar-spot assay in 24-well plates. 504 Lactobacillus isolates were screened with minimal laboratory equipment and screening rates of 2000-5000 individual antimicrobial interactions. PMID:25937247

  5. Design and Implementation of High-Throughput Screening Assays.

    PubMed

    Powell, David J; Hertzberg, Robert P; Macarrόn, Ricardo

    2016-01-01

    HTS remains at the core of the drug discovery process, and so it is critical to design and implement HTS assays in a comprehensive fashion involving scientists from the disciplines of biology, chemistry, engineering, and informatics. This requires careful consideration of many options and variables, starting with the choice of screening strategy and ending with the discovery of lead compounds. At every step in this process, there are decisions to be made that can greatly impact the outcome of the HTS effort, to the point of making it a success or a failure. Although specific guidelines should be established to ensure that the screening assay reaches an acceptable level of quality, many choices require pragmatism and the ability to compromise opposing forces. PMID:27316985

  6. Design and implementation of high throughput screening assays.

    PubMed

    Macarrón, Ricardo; Hertzberg, Robert P

    2002-01-01

    HTS is at the core of the drug-discovery process, and so it is critical to design and implement HTS assays in a comprehensive fashion involving scientists from the disciplines of biology, chemistry, engineering, and informatics. This requires careful analysis of many variables, starting with the choice of assay target and ending with the discovery of lead compounds. At every step in this process, there are decisions to be made that can greatly impact the outcome of the HTS effort, to the point of making it a success or a failure. Although specific guidelines can be established to ensure that the screening assay reaches an acceptable level of quality, many choices require pragmatism and the ability to compromise opposing forces. PMID:12029816

  7. Design and implementation of high-throughput screening assays.

    PubMed

    Macarrón, Ricardo; Hertzberg, Robert P

    2009-01-01

    HTS is at the core of the drug discovery process, and so it is critical to design and implement HTS assays in a comprehensive fashion involving scientists from the disciplines of biology, chemistry, engineering, and informatics. This requires careful analysis of many variables, starting with the choice of assay target and ending with the discovery of lead compounds. At every step in this process, there are decisions to be made that can greatly impact the outcome of the HTS effort, to the point of making it a success or a failure. Although specific guidelines should be established to ensure that the screening assay reaches an acceptable level of quality, many choices require pragmatism and the ability to compromise opposing forces. PMID:19551355

  8. ToxCast Workflow: High-throughput screening assay data processing, analysis and management (SOT)

    EPA Science Inventory

    US EPA’s ToxCast program is generating data in high-throughput screening (HTS) and high-content screening (HCS) assays for thousands of environmental chemicals, for use in developing predictive toxicity models. Currently the ToxCast screening program includes over 1800 unique c...

  9. A click chemistry-based microRNA maturation assay optimized for high-throughput screening.

    PubMed

    Lorenz, Daniel A; Garner, Amanda L

    2016-07-01

    Catalytic enzyme-linked click-chemistry assays (cat-ELCCA) are an emerging class of biochemical assay. Herein we report on expanding the toolkit of cat-ELCCA to include the kinetically superior inverse-electron demand Diels-Alder (IEDDA) reaction. The result is a technology with improved sensitivity and reproducibility, enabling automated high-throughput screening. PMID:27284591

  10. Development of a thyroperoxidase inhibition assay for high-throughput screening

    EPA Science Inventory

    High-throughput screening (HTPS) assays to detect inhibitors of thyroperoxidase (TPO), the enzymatic catalyst for thyroid hormone (TH) synthesis, are not currently available. Herein we describe the development of a HTPS TPO inhibition assay. Rat thyroid microsomes and a fluores...

  11. A novel screening assay for hydroxynitrile lyases suitable for high-throughput screening.

    PubMed

    Krammer, B; Rumbold, K; Tschemmernegg, M; Pöchlauer, P; Schwab, H

    2007-03-30

    Hydroxynitrile lyases (Hnls) are important biocatalysts for the synthesis of optically pure cyanohydrins, which are used as precursors and building blocks for a wide range of high price fine chemicals. Although two Hnl enzymes, from the tropical rubber tree Hevea brasiliensis and from the almond tree Prunus amygdalus, are already used for large scale industrial applications, the enzymes still need to be improved and adapted to the special demands of industrial processes. In many cases directed evolution has been the method of choice to improve enzymes, which are applied as industrial biocatalysts. The screening procedure is the most crucial point in every directed evolution experiment. Herein, we describe the successful development of a novel screening assay for Hnls and its application in high-throughput screening of Escherichia coli mutant libraries. The new assay allows rapid screening of mutant libraries and facilitates the discovery of improved enzyme variants. Hnls catalyze the cleavage of cyanohydrins to hydrocyanic acid and the corresponding aldehyde or ketone. The enzyme assay is based on the detection of hydrocyanic acid produced, making it an all-purpose screening assay, without restriction to any kind of substrate. The gaseous HCN liberated within the Hnl reaction is detected by a visible colorimetric reaction. The facile, highly sensitive and reproducible screening method was validated by identifying new enzyme variants with novel substrate specificities. PMID:17157404

  12. High-throughput screening assay of hepatitis C virus helicase inhibitors using fluorescence-quenching phenomenon

    SciTech Connect

    Tani, Hidenori; Akimitsu, Nobuyoshi; Fujita, Osamu; Matsuda, Yasuyoshi; Miyata, Ryo; Tsuneda, Satoshi; Igarashi, Masayuki; Sekiguchi, Yuji; Noda, Naohiro

    2009-02-20

    We have developed a novel high-throughput screening assay of hepatitis C virus (HCV) nonstructural protein 3 (NS3) helicase inhibitors using the fluorescence-quenching phenomenon via photoinduced electron transfer between fluorescent dyes and guanine bases. We prepared double-stranded DNA (dsDNA) with a 5'-fluorescent-dye (BODIPY FL)-labeled strand hybridized with a complementary strand, the 3'-end of which has guanine bases. When dsDNA is unwound by helicase, the dye emits fluorescence owing to its release from the guanine bases. Our results demonstrate that this assay is suitable for quantitative assay of HCV NS3 helicase activity and useful for high-throughput screening for inhibitors. Furthermore, we applied this assay to the screening for NS3 helicase inhibitors from cell extracts of microorganisms, and found several cell extracts containing potential inhibitors.

  13. An Enzymatic Assay for High-Throughput Screening of Cytidine-Producing Microbial Strains

    PubMed Central

    Dong, Huina; Liu, Yongfei; Zu, Xin; Li, Ning; Li, Feiran; Zhang, Dawei

    2015-01-01

    Cytidine is an industrially useful precursor for the production of antiviral compounds and a variety of industrial compounds. Interest in the microbial production of cytidine has grown recently and high-throughput screening of cytidine over-producers is an important approach in large-scale industrial production using microorganisms. An enzymatic assay for cytidine was developed combining cytidine deaminase (CDA) and indophenol method. CDA catalyzes the cleavage of cytidine to uridine and NH3, the latter of which can be accurately determined using the indophenol method. The assay was performed in 96-well plates and had a linear detection range of cytidine of 0.058 - 10 mM. This assay was used to determine the amount of cytidine in fermentation flasks and the results were compared with that of High Perfomance Liquid Chromatography (HPLC) method. The detection range of the CDA method is not as wide as that of the HPLC, furthermore the correlation factor of CDA method is not as high as that of HPLC. However, it was suitable for the detection of large numbers of crude samples and was applied to high-throughput screening for high cytidine-producing strains using 96-well deep-hole culture plates. This assay was proved to be simple, accurate, specific and suitable for cytidine detection and high-throughput screening of cytidine-producing strains in large numbers of samples (96 well or more). PMID:25816248

  14. Identification of inhibitors of a bacterial sigma factor using a new high-throughput screening assay.

    PubMed

    El-Mowafi, S A; Sineva, E; Alumasa, J N; Nicoloff, H; Tomsho, J W; Ades, S E; Keiler, K C

    2015-01-01

    Gram-negative bacteria are formidable pathogens because their cell envelope presents an adaptable barrier to environmental and host-mediated challenges. The stress response pathway controlled by the alternative sigma factor σ(E) is critical for maintenance of the cell envelope. Because σ(E) is required for the virulence or viability of several Gram-negative pathogens, it might be a useful target for antibiotic development. To determine if small molecules can inhibit the σ(E) pathway, and to permit high-throughput screening for antibiotic lead compounds, a σ(E) activity assay that is compatible with high-throughput screening was developed and validated. The screen employs a biological assay with positive readout. An Escherichia coli strain was engineered to express yellow fluorescent protein (YFP) under negative regulation by the σ(E) pathway, such that inhibitors of the pathway increase the production of YFP. To validate the screen, the reporter strain was used to identify σ(E) pathway inhibitors from a library of cyclic peptides. Biochemical characterization of one of the inhibitory cyclic peptides showed that it binds σ(E), inhibits RNA polymerase holoenzyme formation, and inhibits σ(E)-dependent transcription in vitro. These results demonstrate that alternative sigma factors can be inhibited by small molecules and enable high-throughput screening for inhibitors of the σ(E) pathway. PMID:25331704

  15. A High Throughput Assay for Screening Host Restriction Factors and Antivirals Targeting Influenza A Virus

    PubMed Central

    Wang, Lingyan; Li, Wenjun; Li, Shitao

    2016-01-01

    Influenza A virus (IAV) is a human respiratory pathogen that causes seasonal epidemics and occasional global pandemics with devastating levels of morbidity and mortality. Currently approved treatments against influenza are losing effectiveness, as new viral strains are often refractory to conventional treatments. Thus, there is an urgent need to find new therapeutic targets with which to develop novel antiviral drugs. The common strategy to discover new drug targets and antivirals is high throughput screening. However, most current screenings for IAV rely on the engineered virus carrying a reporter, which prevents the application to newly emerging wild type flu viruses, such as 2009 pandemic H1N1 flu. Here we developed a simple and sensitive screening assay for wild type IAV by quantitatively analyzing viral protein levels using a Dot Blot Assay in combination with the LI-COR Imaging System (DBALIS). We first validated DBALIS in overexpression and RNAi assays, which are suitable methods for screening host factors regulating viral infection. More importantly, we also validated and initiated drug screening using DBALIS. A pilot compound screening identified a small molecule that inhibited IAV infection. Taken together, our method represents a reliable and convenient high throughput assay for screening novel host factors and antiviral compounds. PMID:27375580

  16. A High Throughput Assay for Screening Host Restriction Factors and Antivirals Targeting Influenza A Virus.

    PubMed

    Wang, Lingyan; Li, Wenjun; Li, Shitao

    2016-01-01

    Influenza A virus (IAV) is a human respiratory pathogen that causes seasonal epidemics and occasional global pandemics with devastating levels of morbidity and mortality. Currently approved treatments against influenza are losing effectiveness, as new viral strains are often refractory to conventional treatments. Thus, there is an urgent need to find new therapeutic targets with which to develop novel antiviral drugs. The common strategy to discover new drug targets and antivirals is high throughput screening. However, most current screenings for IAV rely on the engineered virus carrying a reporter, which prevents the application to newly emerging wild type flu viruses, such as 2009 pandemic H1N1 flu. Here we developed a simple and sensitive screening assay for wild type IAV by quantitatively analyzing viral protein levels using a Dot Blot Assay in combination with the LI-COR Imaging System (DBALIS). We first validated DBALIS in overexpression and RNAi assays, which are suitable methods for screening host factors regulating viral infection. More importantly, we also validated and initiated drug screening using DBALIS. A pilot compound screening identified a small molecule that inhibited IAV infection. Taken together, our method represents a reliable and convenient high throughput assay for screening novel host factors and antiviral compounds. PMID:27375580

  17. Fluorometric High-Throughput Screening Assay for Secreted Phospholipases A2 Using Phospholipid Vesicles.

    PubMed

    Ewing, Heather; Fernández-Vega, Virneliz; Spicer, Timothy P; Chase, Peter; Brown, Steven; Scampavia, Louis; Roush, William R; Riley, Sean; Rosen, Hugh; Hodder, Peter; Lambeau, Gerard; Gelb, Michael H

    2016-08-01

    There is interest in developing inhibitors of human group III secreted phospholipase A2 (hGIII-sPLA2) because this enzyme plays a role in mast cell maturation. There are no potent inhibitors for hGIII-sPLA2 reported to date, so we adapted a fluorescence-based enzyme activity monitoring method to a high-throughput screening format. We opted to use an assay based on phospholipid substrate present in phospholipid vesicles since this matrix more closely resembles the natural substrate of hGIII-sPLA2, as opposed to phospholipid/detergent mixed micelles. The substrate is a phospholipid analogue containing BODIPY fluorophores dispersed as a minor component in vesicles of nonfluorescent phospholipids. Action of hGIII-sPLA2 liberates a free fatty acid from the phospholipid, leading to a reduction in quenching of the fluorophore and hence an increase in fluorescence. The assay uses optical detection in a 1536-well plate format with an excitation wavelength far away from the UV range so as to minimize false-positive library hits that result from quenching of the fluorescence. The high-throughput screen was successfully carried out on a library of 370,276 small molecules. Several hits were discovered, and data have been uploaded to PubChem. This study describes the first high-throughput optical screening assay for secreted phospholipase A2 inhibitors based on a phospholipid vesicle substrate. PMID:27146384

  18. Development of fluorescence-based high-throughput screening assays: choice of appropriate instrumentation

    NASA Astrophysics Data System (ADS)

    Burns, David J.; Alder, Elisabeth; Fan, Yi-Hong; McKeegan, Evelyn; Warrior, Usha; Beutel, Bruce

    1998-04-01

    Fluorescence-based assays have become increasingly popular in high throughput screening for a variety of reasons (e.g. sensitivity). However, new screening technologies are pushing the limits of conventional fluorescence plate readers. For example, instruments that have optical sensitivities beyond most of the commercially available plate readers are required to reproducibly measure the fluorescence generated by the green fluorescent protein (GFP)--a novel reporter gene. Also, miniaturization of screening formats (with densities higher than the conventional 96-well plate) requires high resolution instrumentation to measure fluorescence. Several assays based on optical fluorescence measurements have been developed and screened in our Biological Screening group. These assays include various fluorescence-based protease assays (standard end-point and kinetic modes) and a functional cell-based screen using the green fluorescent protein as a reporter gene. The choice of instrumentation was the critical factor in the performance and success of each of these arrays. Data will be presented for the cell- based reporter assay including the type of instrumentation (fluorescence plate readers; fluorescence imaging systems) used for detection of GFP fluorescence.

  19. Development of a thyroperoxidase inhibition assay for high-throughput screening.

    PubMed

    Paul, Katie B; Hedge, Joan M; Rotroff, Daniel M; Hornung, Michael W; Crofton, Kevin M; Simmons, Steven O

    2014-03-17

    High-throughput screening (HTPS) assays to detect inhibitors of thyroperoxidase (TPO), the enzymatic catalyst for thyroid hormone (TH) synthesis, are not currently available. Herein, we describe the development of a HTPS TPO inhibition assay. Rat thyroid microsomes and a fluorescent peroxidase substrate, Amplex UltraRed (AUR), were employed in an end-point assay for comparison to the existing kinetic guaiacol (GUA) oxidation assay. Following optimization of assay metrics, including Z', dynamic range, and activity, using methimazole (MMI), the assay was tested with a 21-chemical training set. The potency of MMI-induced TPO inhibition was greater with AUR compared to GUA. The dynamic range and Z' score with MMI were as follows: 127-fold and 0.62 for the GUA assay, 18-fold and 0.86 for the 96-well AUR assay, and 11.5-fold and 0.93 for the 384-well AUR assay. The 384-well AUR assay drastically reduced animal use, requiring one-tenth of the rat thyroid microsomal protein needed for the GUA 96-well format assay. Fourteen chemicals inhibited TPO, with a relative potency ranking of MMI > ethylene thiourea > 6-propylthiouracil > 2,2',4,4'-tetrahydroxy-benzophenone > 2-mercaptobenzothiazole > 3-amino-1,2,4-triazole > genistein > 4-propoxyphenol > sulfamethazine > daidzein > 4-nonylphenol > triclosan > iopanoic acid > resorcinol. These data demonstrate the capacity of this assay to detect diverse TPO inhibitors. Seven chemicals acted as negatives: 2-hydroxy-4-methoxybenzophenone, dibutylphthalate, diethylhexylphthalate, diethylphthalate, 3,5-dimethylpyrazole-1-methanol, methyl 2-methyl-benzoate, and sodium perchlorate. This assay could be used to screen large numbers of chemicals as an integral component of a tiered TH-disruptor screening approach. PMID:24383450

  20. Optimization and validation of two miniaturized glucocerebrosidase enzyme assays for high throughput screening.

    PubMed

    Urban, Daniel J; Zheng, Wei; Goker-Alpan, Ozlem; Jadhav, Ajit; Lamarca, Mary E; Inglese, James; Sidransky, Ellen; Austin, Christopher P

    2008-12-01

    Glucocerebrosidase (GC) catalyzes the hydrolysis of beta-glucocerebroside to glucose and ceramide in lysosomes. Mutations in the glucocerebrosidase gene (GBA) result in Gaucher disease, an autosomal recessive lysosomal storage disorder. Many of the mutations encountered in patients with Gaucher disease are missense alterations that may cause misfolding, decreased stability and/or mistrafficking of this lysosomal protein. Some inhibitors of GC have been shown to act as chemical chaperones, stabilizing the conformation of mutant proteins and thus restoring their function. High throughput screening (HTS) of small molecule libraries for such compounds with potential for chaperone therapy requires an accurate, reproducible and sensitive assay method. We have adapted and optimized two fluorogenic GC enzyme assays and miniaturized them into the 1536-well plate format for HTS. The two substrates, 4-methylumbelliferyl beta-D-glucopyranoside and resorufin beta-D-glucopyranoside, have K(m) values of 768 microM and 33 microM, respectively, and different emission spectra. Paired screening with the two assays helps to eliminate false inference of activity due to autofluorescence or fluorescence quenching by the screened compounds. Test screens with the LOPAC library indicated that both assays were robust for HTS, and gave comparable results for GC inhibitor activities. These two assays can be used to identify both GC activators and inhibitors with potential therapeutic value. PMID:19075603

  1. Optimization and Validation of Two Miniaturized Glucocerebrosidase Enzyme Assays for High-Throughput Screening

    PubMed Central

    Urban, Daniel J.; Zheng, Wei; Goker-Alpan, Ozlem; Jadhav, Ajit; LaMarca, Mary E.; Inglese, James; Sidransky, Ellen; Austin, Christopher P.

    2009-01-01

    Glucocerebrosidase (GC) catalyzes the hydrolysis of β-glucocerebroside to glucose and ceramide in lysosomes. Mutations in the glucocerebrosidase gene (GBA) result in Gaucher disease, an autosomal recessive lysosomal storage disorder. Many of the mutations encountered in patients with Gaucher disease are missense alterations that may cause misfolding, decreased stability and/or mistrafficking of this lysosomal protein. Some inhibitors of GC have been shown to act as chemical chaperones, stabilizing the conformation of mutant proteins and thus restoring their function. High-throughput screening (HTS) of small molecule libraries for such compounds with potential for chaperone therapy requires an accurate, reproducible and sensitive assay method. We have adapted and optimized two fluorogenic GC enzyme assays and miniaturized them into the 1536-well plate format for HTS. The two substrates, 4-methylumbelliferyl β-D-glucopyranoside and resorufin β-D-glucopyranoside, have Km values of 768 μM and 33 μM, respectively, and different emission spectra. Paired screening with the two assays helps to eliminate false inference of activity due to autofluorescence or fluorescence quenching by the screened compounds. Test screens with the LOPAC library indicated that both assays were robust for HTS, and gave comparable results for GC inhibitor activities. These two assays can be used to identify both GC activators and inhibitors with potential therapeutic value. PMID:19075603

  2. Validating a Firefly Luciferase-Based High-Throughput Screening Assay for Antimalarial Drug Discovery

    PubMed Central

    Che, Pulin; Cui, Long; Kutsch, Olaf; Cui, Liwang

    2012-01-01

    Abstract The emergence and spread of multidrug-resistant Plasmodium falciparum and recent detection of potential artemisinin-resistant strains in Southeast Asia highlight the importance of developing novel antimalarial therapies. Using a previously generated stable transgenic P. falciparum line with high-level firefly luciferase expression, we report the adaptation, miniaturization, optimization, and validation of a high-throughput screening assay in 384-well plates. Assay conditions, including the percentage of parasitemia and hematocrit, were optimized. Parameters of assay robustness, including Z′-value, coefficient variation (CV), and signal-to-background (S/B) ratio, were determined. The LOPAC1280 small-compound library was used to validate this assay. Our results demonstrated that this assay is robust and reliable, with an average Z′-value of >0.7 and CV of <10%. Moreover, this assay showed a very low background, with the S/B ratio up to 71. Further, identified hits were selected and confirmed using a SYBR Green I-based confirmatory assay. It is evident that this assay is suitable for large-scale screening of chemical libraries for antimalarial drug discovery. PMID:22050430

  3. High-throughput functional screening using a homemade dual-glow luciferase assay.

    PubMed

    Baker, Jessica M; Boyce, Frederick M

    2014-01-01

    We present a rapid and inexpensive high-throughput screening protocol to identify transcriptional regulators of alpha-synuclein, a gene associated with Parkinson's disease. 293T cells are transiently transfected with plasmids from an arrayed ORF expression library, together with luciferase reporter plasmids, in a one-gene-per-well microplate format. Firefly luciferase activity is assayed after 48 hr to determine the effects of each library gene upon alpha-synuclein transcription, normalized to expression from an internal control construct (a hCMV promoter directing Renilla luciferase). This protocol is facilitated by a bench-top robot enclosed in a biosafety cabinet, which performs aseptic liquid handling in 96-well format. Our automated transfection protocol is readily adaptable to high-throughput lentiviral library production or other functional screening protocols requiring triple-transfections of large numbers of unique library plasmids in conjunction with a common set of helper plasmids. We also present an inexpensive and validated alternative to commercially-available, dual luciferase reagents which employs PTC124, EDTA, and pyrophosphate to suppress firefly luciferase activity prior to measurement of Renilla luciferase. Using these methods, we screened 7,670 human genes and identified 68 regulators of alpha-synuclein. This protocol is easily modifiable to target other genes of interest. PMID:24962249

  4. High-throughput Functional Screening using a Homemade Dual-glow Luciferase Assay

    PubMed Central

    Baker, Jessica M.; Boyce, Frederick M.

    2014-01-01

    We present a rapid and inexpensive high-throughput screening protocol to identify transcriptional regulators of alpha-synuclein, a gene associated with Parkinson's disease. 293T cells are transiently transfected with plasmids from an arrayed ORF expression library, together with luciferase reporter plasmids, in a one-gene-per-well microplate format. Firefly luciferase activity is assayed after 48 hr to determine the effects of each library gene upon alpha-synuclein transcription, normalized to expression from an internal control construct (a hCMV promoter directing Renilla luciferase). This protocol is facilitated by a bench-top robot enclosed in a biosafety cabinet, which performs aseptic liquid handling in 96-well format. Our automated transfection protocol is readily adaptable to high-throughput lentiviral library production or other functional screening protocols requiring triple-transfections of large numbers of unique library plasmids in conjunction with a common set of helper plasmids. We also present an inexpensive and validated alternative to commercially-available, dual luciferase reagents which employs PTC124, EDTA, and pyrophosphate to suppress firefly luciferase activity prior to measurement of Renilla luciferase. Using these methods, we screened 7,670 human genes and identified 68 regulators of alpha-synuclein. This protocol is easily modifiable to target other genes of interest. PMID:24962249

  5. Assay development and high throughput antiviral drug screening against Bluetongue virus

    PubMed Central

    Li, Qianjun; Maddox, Clinton; Rasmussen, Lynn; Hobrath, Judith V.; White, Lucile E.

    2009-01-01

    Bluetongue virus (BTV) infection is one of the most important diseases of domestic livestock. There are no antivirals available against BTV disease. In this paper, we present the development, optimization and validation of an in vitro cell-based high-throughput screening (HTS) assay using the luminescent-based CellTiter-Glo reagent to identify novel antivirals against BTV. Conditions of the cytopathic effect (CPE)-based assay were optimized at cell density of 5 000 cells/well in medium containing 1% FBS and a multiplicity of infection at 0.01 in 384-well plate, with Z'-values ≥ 0.70, Coefficient of Variations ≥ 5.68 and signal-to-background ratio ≥ 7.10. This assay was further validated using a 9 532 compound library. The fully validated assay was then used to screen the 194 950 compound collection, which identified 693 compounds with > 30% CPE inhibition. The ten-concentration dose response assay identified 185 structures with IC50 ≤ 100 μM, out of which 42 compounds were grouped into six analog series corresponding to six scaffolds enriched within the active set compared to their distribution in the library. The CPE-based assay development demonstrated its robustness and reliability, and its application in the HTS campaign will make significant contribution to the antiviral drug discovery against BTV disease. PMID:19559054

  6. A Novel High-Throughput Screening Assay for Discovery of Molecules That Increase Cellular Tetrahydrobiopterin

    PubMed Central

    LI, LI; DU, YUHONG; CHEN, WEI; FU, HAIAN; HARRISON, DAVID G.

    2015-01-01

    Tetrahydrobiopterin (BH4) is an essential cofactor for the nitric oxide (NO) synthases and the aromatic amino acid hydroxylases. Insufficient BH4 has been implicated in various cardiovascular and neurological disorders. GTP cyclohydrolase 1 (GTPCH-1) is the rate-limiting enzyme for de novo biosynthesis of BH4. The authors have recently shown that the interaction of GTPCH-1 with GTP cyclohydrolase feedback regulatory protein (GFRP) inhibits endothelial GTPCH-1 enzyme activity, BH4 levels, and NO production. They propose that agents that disrupt the GTPCH-1/GFRP interaction can increase cellular GTPCH-1 activity, BH4 levels, and NO production. They developed and optimized a novel time-resolved fluorescence resonance energy transfer (TR-FRET) assay to monitor the interaction of GTPCH-1 and GFRP. This assay is highly sensitive and stable and has a signal-to-background ratio (S/B) greater than 12 and a Z′ factor greater than 0.8. This assay was used in an ultra-high-throughput screening (uHTS) format to screen the Library of Pharmacologically Active Compounds. Using independent protein–protein interaction and cellular activity assays, the authors identified compounds that disrupt GTPCH-1/GFRP binding and increase endothelial cell biopterin levels. Thus, this TR-FRET assay could be applied in future uHTS of additional libraries to search for molecules that increase GTPCH-1 activity and BH4 levels. PMID:21693765

  7. A novel high-throughput screening assay for discovery of molecules that increase cellular tetrahydrobiopterin.

    PubMed

    Li, Li; Du, Yuhong; Chen, Wei; Fu, Haian; Harrison, David G

    2011-09-01

    Tetrahydrobiopterin (BH(4)) is an essential cofactor for the nitric oxide (NO) synthases and the aromatic amino acid hydroxylases. Insufficient BH(4) has been implicated in various cardiovascular and neurological disorders. GTP cyclohydrolase 1 (GTPCH-1) is the rate-limiting enzyme for de novo biosynthesis of BH(4). The authors have recently shown that the interaction of GTPCH-1 with GTP cyclohydrolase feedback regulatory protein (GFRP) inhibits endothelial GTPCH-1 enzyme activity, BH(4) levels, and NO production. They propose that agents that disrupt the GTPCH-1/GFRP interaction can increase cellular GTPCH-1 activity, BH(4) levels, and NO production. They developed and optimized a novel time-resolved fluorescence resonance energy transfer (TR-FRET) assay to monitor the interaction of GTPCH-1 and GFRP. This assay is highly sensitive and stable and has a signal-to-background ratio (S/B) greater than 12 and a Z' factor greater than 0.8. This assay was used in an ultra-high-throughput screening (uHTS) format to screen the Library of Pharmacologically Active Compounds. Using independent protein-protein interaction and cellular activity assays, the authors identified compounds that disrupt GTPCH-1/GFRP binding and increase endothelial cell biopterin levels. Thus, this TR-FRET assay could be applied in future uHTS of additional libraries to search for molecules that increase GTPCH-1 activity and BH(4) levels. PMID:21693765

  8. Fluorescence polarization assays in high-throughput screening and drug discovery: a review

    NASA Astrophysics Data System (ADS)

    Hall, Matthew D.; Yasgar, Adam; Peryea, Tyler; Braisted, John C.; Jadhav, Ajit; Simeonov, Anton; Coussens, Nathan P.

    2016-06-01

    The sensitivity of fluorescence polarization (FP) and fluorescence anisotropy (FA) to molecular weight changes has enabled the interrogation of diverse biological mechanisms, ranging from molecular interactions to enzymatic activity. Assays based on FP/FA technology have been widely utilized in high-throughput screening (HTS) and drug discovery due to the homogenous format, robust performance and relative insensitivity to some types of interferences, such as inner filter effects. Advancements in assay design, fluorescent probes, and technology have enabled the application of FP assays to increasingly complex biological processes. Herein we discuss different types of FP/FA assays developed for HTS, with examples to emphasize the diversity of applicable targets. Furthermore, trends in target and fluorophore selection, as well as assay type and format, are examined using annotated HTS assays within the PubChem database. Finally, practical considerations for the successful development and implementation of FP/FA assays for HTS are provided based on experience at our center and examples from the literature, including strategies for flagging interference compounds among a list of hits.

  9. A Data Analysis Pipeline Accounting for Artifacts in Tox21 Quantitative High-Throughput Screening Assays

    PubMed Central

    Hsieh, Jui-Hua; Sedykh, Alexander; Huang, Ruili; Xia, Menghang; Tice, Raymond R.

    2015-01-01

    A main goal of the U.S. Tox21 program is to profile a 10K-compound library for activity against a panel of stress-related and nuclear receptor signaling pathway assays using a quantitative high-throughput screening (qHTS) approach. However, assay artifacts, including nonreproducible signals and assay interference (e.g., autofluorescence), complicate compound activity interpretation. To address these issues, we have developed a data analysis pipeline that includes an updated signal noise–filtering/curation protocol and an assay interference flagging system. To better characterize various types of signals, we adopted a weighted version of the area under the curve (wAUC) to quantify the amount of activity across the tested concentration range in combination with the assay-dependent point-of-departure (POD) concentration. Based on the 32 Tox21 qHTS assays analyzed, we demonstrate that signal profiling using wAUC affords the best reproducibility (Pearson's r = 0.91) in comparison with the POD (0.82) only or the AC50 (i.e., half-maximal activity concentration, 0.81). Among the activity artifacts characterized, cytotoxicity is the major confounding factor; on average, about 8% of Tox21 compounds are affected, whereas autofluorescence affects less than 0.5%. To facilitate data evaluation, we implemented two graphical user interface applications, allowing users to rapidly evaluate the in vitro activity of Tox21 compounds. PMID:25904095

  10. A Data Analysis Pipeline Accounting for Artifacts in Tox21 Quantitative High-Throughput Screening Assays.

    PubMed

    Hsieh, Jui-Hua; Sedykh, Alexander; Huang, Ruili; Xia, Menghang; Tice, Raymond R

    2015-08-01

    A main goal of the U.S. Tox21 program is to profile a 10K-compound library for activity against a panel of stress-related and nuclear receptor signaling pathway assays using a quantitative high-throughput screening (qHTS) approach. However, assay artifacts, including nonreproducible signals and assay interference (e.g., autofluorescence), complicate compound activity interpretation. To address these issues, we have developed a data analysis pipeline that includes an updated signal noise-filtering/curation protocol and an assay interference flagging system. To better characterize various types of signals, we adopted a weighted version of the area under the curve (wAUC) to quantify the amount of activity across the tested concentration range in combination with the assay-dependent point-of-departure (POD) concentration. Based on the 32 Tox21 qHTS assays analyzed, we demonstrate that signal profiling using wAUC affords the best reproducibility (Pearson's r = 0.91) in comparison with the POD (0.82) only or the AC(50) (i.e., half-maximal activity concentration, 0.81). Among the activity artifacts characterized, cytotoxicity is the major confounding factor; on average, about 8% of Tox21 compounds are affected, whereas autofluorescence affects less than 0.5%. To facilitate data evaluation, we implemented two graphical user interface applications, allowing users to rapidly evaluate the in vitro activity of Tox21 compounds. PMID:25904095

  11. Development of a Fluorescent Quenching Based High Throughput Assay to Screen for Calcineurin Inhibitors.

    PubMed

    Mukherjee, Abhisek; Syeb, Kathleen; Concannon, John; Callegari, Keri; Soto, Claudio; Glicksman, Marcie A

    2015-01-01

    Currently there is no effective treatment available for major neurodegenerative disorders associated to protein misfolding, including Alzheimer's and Parkinson's disease. One of most promising therapeutic approaches under development focuses on inhibiting the misfolding and aggregation pathway. However, it is likely that by the time clinical symptoms appear, there is a large accumulation of misfolded aggregates and a very substantial damage to the brain. Thus, it seems that at the clinical stage of the disease it is necessary also to develop strategies aiming to prevent the neuronal damage produced by already formed misfolded aggregates. Chronic activation of calcineurin (CaN), a type IIB phosphatase, has been implicated as a pivotal molecule connecting synaptic loss and neuronal damage to protein misfolding. The fact that the crystal structure of CaN is also well established makes it an ideal target for drug discovery. CaN activity assays for High Throughput Screening (HTS) reported so far are based on absorbance. In this article we report the development of a fluorescent quenching based CaN activity assay suitable for robotic screening of large chemical libraries to find novel inhibitors. The assay yielded a Z score of 0.84 with coefficient of variance ≤ 15%. Our results also show that this assay can be used to identify CaN inhibitors with a wide range of potencies. PMID:26176772

  12. Development of a Fluorescent Quenching Based High Throughput Assay to Screen for Calcineurin Inhibitors

    PubMed Central

    Mukherjee, Abhisek; Syeb, Kathleen; Concannon, John; Callegari, Keri; Soto, Claudio; Glicksman, Marcie A.

    2015-01-01

    Currently there is no effective treatment available for major neurodegenerative disorders associated to protein misfolding, including Alzheimer’s and Parkinson's disease. One of most promising therapeutic approaches under development focuses on inhibiting the misfolding and aggregation pathway. However, it is likely that by the time clinical symptoms appear, there is a large accumulation of misfolded aggregates and a very substantial damage to the brain. Thus, it seems that at the clinical stage of the disease it is necessary also to develop strategies aiming to prevent the neuronal damage produced by already formed misfolded aggregates. Chronic activation of calcineurin (CaN), a type IIB phosphatase, has been implicated as a pivotal molecule connecting synaptic loss and neuronal damage to protein misfolding. The fact that the crystal structure of CaN is also well established makes it an ideal target for drug discovery. CaN activity assays for High Throughput Screening (HTS) reported so far are based on absorbance. In this article we report the development of a fluorescent quenching based CaN activity assay suitable for robotic screening of large chemical libraries to find novel inhibitors. The assay yielded a Z score of 0.84 with coefficient of variance ≤ 15%. Our results also show that this assay can be used to identify CaN inhibitors with a wide range of potencies. PMID:26176772

  13. Robust ridge regression estimators for nonlinear models with applications to high throughput screening assay data.

    PubMed

    Lim, Changwon

    2015-03-30

    Nonlinear regression is often used to evaluate the toxicity of a chemical or a drug by fitting data from a dose-response study. Toxicologists and pharmacologists may draw a conclusion about whether a chemical is toxic by testing the significance of the estimated parameters. However, sometimes the null hypothesis cannot be rejected even though the fit is quite good. One possible reason for such cases is that the estimated standard errors of the parameter estimates are extremely large. In this paper, we propose robust ridge regression estimation procedures for nonlinear models to solve this problem. The asymptotic properties of the proposed estimators are investigated; in particular, their mean squared errors are derived. The performances of the proposed estimators are compared with several standard estimators using simulation studies. The proposed methodology is also illustrated using high throughput screening assay data obtained from the National Toxicology Program. PMID:25490981

  14. A high-throughput screening assay to identify bacterial antagonists against Fusarium verticillioides.

    PubMed

    Figueroa-López, Alejandro Miguel; Cordero-Ramírez, Jesús Damián; Quiroz-Figueroa, Francisco Roberto; Maldonado-Mendoza, Ignacio Eduardo

    2014-07-01

    A high-throughput antagonistic assay was developed to screen for bacterial isolates capable of controlling the maize fungal phytopathogen Fusarium verticillioides. This assay combines a straightforward methodology, in which the fungus is challenged with bacterial isolates in liquid medium, with a novel approach that uses the plant lectin wheat germ agglutinin (WGA) coupled to a fluorophore (Alexa-Fluor® 488) under the commercial name of WGA, Alexa Fluor® 488 conjugate. The assay is performed in a 96-well plate format, which reduces the required laboratory space and streamlines quantitation and automation of the process, making it fast and accurate. The basis of our assay is that fungal biomass can be assessed by WGA, Alexa Fluor® 488 conjugate staining, which recognizes the chitin in the fungal cell wall and thus permits the identification of potential antagonistic bacteria that inhibit fungal growth. This principle was validated by chitin-competition binding assays against WGA, Alexa Fluor® 488 conjugate; confocal laser microscopy confirmed that the fluorescent WGA, Alexa Fluor® 488 conjugate binds to the chitin of the fungal cell wall. The majority of bacterial isolates did not bind to the WGA, Alexa Fluor® 488 conjugate. Furthermore, including washing steps significantly reduced any bacterial staining to background levels, even in the rare cases where bacterial isolates were capable of binding to WGA. Confirmatory conventional agar plate antagonistic assays were also conducted to validate our technique. We are now successfully employing this large-scale antagonistic assay as a pre-screening step for potential fungal antagonists in extensive bacteria collections (on the order of thousands of isolates). PMID:23787812

  15. Quantitative microtiter fibronectin fibrillogenesis assay: use in high throughput screening for identification of inhibitor compounds

    PubMed Central

    Tomasini-Johansson, Bianca R.; Johnson, Ian A.; Hoffmann, F. Michael; Mosher, Deane F.

    2012-01-01

    Fibronectin (FN) is a plasma glycoprotein that circulates in the near micromolar concentration range and is deposited along with locally produced FN in the extracellular matrices of many tissues. Control of FN deposition is tightly controlled by cells. Agents that modulate FN assembly may be useful therapeutically in conditions characterized by excessive FN deposition, such as fibrosis, inflammatory diseases, and malignancies. To identify such agents by high throughput screening (HTS), we developed a microtiter assay of FN deposition by human fibroblasts. The assay provides a robust read-out of FN assembly. Alexa 488-FN (A488-FN) was added to cell monolayers, and the total fluorescence intensity of deposited A488-FN was quantified. The fluorescence intensity of deposited A488-FN correlated with the presence of FN fibrils visualized by fluorescence microscopy. The assay Z’ values were 0.67 or 0.54, respectively, when using background values of fluorescence either with no added A488-FN or with A488-FN added together with a known inhibitor of FN deposition. The assay was used to screen libraries comprising 4160 known bioactive compounds. Nine compounds were identified as non- or low-cytotoxic inhibitors of FN assembly. Four (ML-9, HA-100, tyrphostin and imatinib mesylate) are kinase inhibitors, a category of compounds known to inhibit FN assembly; two (piperlongumine and cantharidin) are promoters of cancer cell apoptosis; and three (maprotiline, CGS12066B, and aposcopolamine) are modulators of biogenic amine signaling. The latter six compounds have not been recognized heretofore as affecting FN assembly. The assay is straight-forward, adapts to 96- and 384-well formats, and should be useful for routine measurement of FN deposition and HTS. Screening of more diverse chemical libraries and identification of specific and efficient modulators of FN fibrillogenesis may result in therapeutics to control excessive connective tissue deposition. PMID:22986508

  16. Evaluating the Impact of Uncertainties in Clearance and Exposure When Prioritizing Chemicals Screened in High-Throughput Assays

    EPA Science Inventory

    The toxicity-testing paradigm has evolved to include high-throughput (HT) methods for addressing the increasing need to screen hundreds to thousands of chemicals rapidly. Approaches that involve in vitro screening assays, in silico predictions of exposure concentrations, and phar...

  17. Development of a Novel Phosphorylated AMPK Protection Assay for High-Throughput Screening Using TR-FRET Assay.

    PubMed

    Xu, Yazhou; Wang, Yunjie; Xu, Yuan; Li, Jia; Liao, Hong; Zhang, Luyong; Pang, Tao

    2015-08-01

    AMP-activated protein kinase (AMPK), a conserved heterotrimeric kinase, serves as an energy sensor maintaining energy balance at both cellular and whole-body levels and plays multiple beneficial roles in carbohydrate and lipid metabolism, which makes AMPK an attractive target for diabetes and other metabolic disorders. To date, establishment of the physiologically relevant biochemical assay for AMPK has not been reported. Here we developed a phosphorylated AMPK protection assay based on a time-resolved fluorescence resonance energy transfer (TR-FRET) assay, using the protein phosphatase 2A (PP2A) to dephosphorylate AMPK. The partially dephosphorylated AMPK by PP2A had lower activity than phosphorylated AMPK. This specific TR-FRET assay for AMPK was optimized in the 384-well format and produced similar EC(50) values for AMPK activators AMP and A769662 and a similar IC(50) value for AMPK inhibitor compound C, as previously reported. Under the optimized conditions, the assay Z' factor calculated over 160 data points has an optimal value greater than 0.5, which is suitable for high-throughput screening. In conclusion, this phosphorylated AMPK protection assay we developed is very robust, sensitive, and simple to perform and may be useful as a high-throughput assay for identifying AMPK activators with the ability of preventing activated AMPK against dephosphorylation by phosphatase in the physiological conditions. PMID:25956678

  18. A High-Throughput Screening Assay to Identify Kidney Toxic Compounds.

    PubMed

    Ramm, Susanne; Adler, Melanie; Vaidya, Vishal S

    2016-01-01

    Kidney toxicity due to drugs and chemicals poses a significant health burden for patients and a financial risk for pharmaceutical companies. However, currently no sensitive and high-throughput in vitro method exists for predictive nephrotoxicity assessment. Primary human proximal tubular epithelial cells (HPTECs) possess characteristics of differentiated epithelial cells, making them a desirable model to use in in vitro screening systems. Additionally, heme oxygenase 1 (HO-1) protein expression is upregulated as a protective mechanism during kidney toxicant-induced oxidative stress or inflammation in HPTECs and can therefore be used as a biomarker for nephrotoxicity. In this article, we describe two different methods to screen for HO-1 increase: A homogeneous time resolved fluorescence (HTRF) assay and an immunofluorescence assay. The latter provides lower throughput but higher sensitivity due to the combination of two readouts, HO-1 intensity and cell number. The methods described in the protocol are amendable for other cell types as well. © 2016 by John Wiley & Sons, Inc. PMID:27479365

  19. Hematin Polymerization Assay as a High-Throughput Screen for Identification of New Antimalarial Pharmacophores

    PubMed Central

    Kurosawa, Yae; Dorn, Arnulf; Kitsuji-Shirane, Michiko; Shimada, Hisao; Satoh, Tomoko; Matile, Hugues; Hofheinz, Werner; Masciadri, Raffaello; Kansy, Manfred; Ridley, Robert G.

    2000-01-01

    Hematin polymerization is a parasite-specific process that enables the detoxification of heme following its release in the lysosomal digestive vacuole during hemoglobin degradation, and represents both an essential and a unique pharmacological drug target. We have developed a high-throughput in vitro microassay of hematin polymerization based on the detection of 14C-labeled hematin incorporated into polymeric hemozoin (malaria pigment). The assay uses 96-well filtration microplates and requires 12 h and a Wallac 1450 MicroBeta liquid scintillation counter. The robustness of the assay allowed the rapid screening and evaluation of more than 100,000 compounds. Random screening was complemented by the development of a pharmacophore hypothesis using the “Catalyst” program and a large amount of data available on the inhibitory activity of a large library of 4-aminoquinolines. Using these methods, we identified “hit” compounds belonging to several chemical structural classes that had potential antimalarial activity. Follow-up evaluation of the antimalarial activity of these compounds in culture and in the Plasmodium berghei murine model further identified compounds with actual antimalarial activity. Of particular interest was a triarylcarbinol (Ro 06-9075) and a related benzophenone (Ro 22-8014) that showed oral activity in the murine model. These compounds are chemically accessible and could form the basis of a new antimalarial medicinal chemistry program. PMID:10991837

  20. Hematin polymerization assay as a high-throughput screen for identification of new antimalarial pharmacophores.

    PubMed

    Kurosawa, Y; Dorn, A; Kitsuji-Shirane, M; Shimada, H; Satoh, T; Matile, H; Hofheinz, W; Masciadri, R; Kansy, M; Ridley, R G

    2000-10-01

    Hematin polymerization is a parasite-specific process that enables the detoxification of heme following its release in the lysosomal digestive vacuole during hemoglobin degradation, and represents both an essential and a unique pharmacological drug target. We have developed a high-throughput in vitro microassay of hematin polymerization based on the detection of (14)C-labeled hematin incorporated into polymeric hemozoin (malaria pigment). The assay uses 96-well filtration microplates and requires 12 h and a Wallac 1450 MicroBeta liquid scintillation counter. The robustness of the assay allowed the rapid screening and evaluation of more than 100, 000 compounds. Random screening was complemented by the development of a pharmacophore hypothesis using the "Catalyst" program and a large amount of data available on the inhibitory activity of a large library of 4-aminoquinolines. Using these methods, we identified "hit" compounds belonging to several chemical structural classes that had potential antimalarial activity. Follow-up evaluation of the antimalarial activity of these compounds in culture and in the Plasmodium berghei murine model further identified compounds with actual antimalarial activity. Of particular interest was a triarylcarbinol (Ro 06-9075) and a related benzophenone (Ro 22-8014) that showed oral activity in the murine model. These compounds are chemically accessible and could form the basis of a new antimalarial medicinal chemistry program. PMID:10991837

  1. BioAssay Ontology (BAO): a semantic description of bioassays and high-throughput screening results

    PubMed Central

    2011-01-01

    Background High-throughput screening (HTS) is one of the main strategies to identify novel entry points for the development of small molecule chemical probes and drugs and is now commonly accessible to public sector research. Large amounts of data generated in HTS campaigns are submitted to public repositories such as PubChem, which is growing at an exponential rate. The diversity and quantity of available HTS assays and screening results pose enormous challenges to organizing, standardizing, integrating, and analyzing the datasets and thus to maximize the scientific and ultimately the public health impact of the huge investments made to implement public sector HTS capabilities. Novel approaches to organize, standardize and access HTS data are required to address these challenges. Results We developed the first ontology to describe HTS experiments and screening results using expressive description logic. The BioAssay Ontology (BAO) serves as a foundation for the standardization of HTS assays and data and as a semantic knowledge model. In this paper we show important examples of formalizing HTS domain knowledge and we point out the advantages of this approach. The ontology is available online at the NCBO bioportal http://bioportal.bioontology.org/ontologies/44531. Conclusions After a large manual curation effort, we loaded BAO-mapped data triples into a RDF database store and used a reasoner in several case studies to demonstrate the benefits of formalized domain knowledge representation in BAO. The examples illustrate semantic querying capabilities where BAO enables the retrieval of inferred search results that are relevant to a given query, but are not explicitly defined. BAO thus opens new functionality for annotating, querying, and analyzing HTS datasets and the potential for discovering new knowledge by means of inference. PMID:21702939

  2. High-Throughput/High-Content Screening Assays with Engineered Nanomaterials in ToxCast

    EPA Science Inventory

    High-throughput and high-content screens are attractive approaches for prioritizing nanomaterial hazards and informing targeted testing due to the impracticality of using traditional toxicological testing on the large numbers and varieties of nanomaterials. The ToxCast program a...

  3. Adapting High-Throughput Screening Methods and Assays for Biocontainment Laboratories

    PubMed Central

    Tigabu, Bersabeh; White, E. Lucile; Bostwick, Robert; Tower, Nichole; Bukreyev, Alexander; Rockx, Barry; LeDuc, James W.; Noah, James W.

    2015-01-01

    Abstract High-throughput screening (HTS) has been integrated into the drug discovery process, and multiple assay formats have been widely used in many different disease areas but with limited focus on infectious agents. In recent years, there has been an increase in the number of HTS campaigns using infectious wild-type pathogens rather than surrogates or biochemical pathogen-derived targets. Concurrently, enhanced emerging pathogen surveillance and increased human mobility have resulted in an increase in the emergence and dissemination of infectious human pathogens with serious public health, economic, and social implications at global levels. Adapting the HTS drug discovery process to biocontainment laboratories to develop new drugs for these previously uncharacterized and highly pathogenic agents is now feasible, but HTS at higher biosafety levels (BSL) presents a number of unique challenges. HTS has been conducted with multiple bacterial and viral pathogens at both BSL-2 and BSL-3, and pilot screens have recently been extended to BSL-4 environments for both Nipah and Ebola viruses. These recent successful efforts demonstrate that HTS can be safely conducted at the highest levels of biological containment. This review outlines the specific issues that must be considered in the execution of an HTS drug discovery program for high-containment pathogens. We present an overview of the requirements for HTS in high-level biocontainment laboratories. PMID:25710545

  4. A high-throughput in vivo micronucleus assay for genome instability screening in mice

    PubMed Central

    Balmus, Gabriel; Karp, Natasha A; Ng, Bee Ling; Jackson, Stephen P; Adams, David J; McIntyre, Rebecca E

    2016-01-01

    We describe a sensitive, robust, high-throughput method for quantifying the formation of micronuclei, markers of genome instability, in mouse erythrocytes. Micronuclei are whole chromosomes or chromosome segments that have been separated from the nucleus. Other methods of detection rely on labour-intensive, microscopy-based techniques. Here, we describe a 2-d, 96-well plate-based flow cytometric method of micronucleus scoring that is simple enough for a research technician experienced in flow cytometry to perform. The assay detects low levels of genome instability that cannot be readily identified by classic phenotyping, using 25 μl of blood. By using this assay, we have screened >10,000 blood samples and discovered novel genes that contribute to vertebrate genome maintenance, as well as novel disease models and mechanisms of genome instability disorders. We discuss experimental design considerations, including statistical power calculation, we provide troubleshooting tips, and we discuss factors that contribute to a false-positive increase in the number of micronucleated red blood cells and to experimental variability. PMID:25551665

  5. Using adverse outcome pathway analysis to guide development of high-throughput screening assays for thyroid-disruptors

    EPA Science Inventory

    Using Adverse Outcome Pathway Analysis to Guide Development of High-Throughput Screening Assays for Thyroid-Disruptors Katie B. Paul1,2, Joan M. Hedge2, Daniel M. Rotroff4, Kevin M. Crofton4, Michael W. Hornung3, Steven O. Simmons2 1Oak Ridge Institute for Science Education Post...

  6. A High Throughput Screening Assay System for the Identification of Small Molecule Inhibitors of gsp

    PubMed Central

    Bhattacharyya, Nisan; Hu, Xin; Chen, Catherine Z.; Mathews Griner, Lesley A.; Zheng, Wei; Inglese, James; Austin, Christopher P.; Marugan, Juan J.; Southall, Noel; Neumann, Susanne; Northup, John K.; Ferrer, Marc; Collins, Michael T.

    2014-01-01

    Mis-sense mutations in the α-subunit of the G-protein, Gsα, cause fibrous dysplasia of bone/McCune-Albright syndrome. The biochemical outcome of these mutations is constitutively active Gsα and increased levels of cAMP. The aim of this study was to develop an assay system that would allow the identification of small molecule inhibitors specific for the mutant Gsα protein, the so-called gsp oncogene. Commercially available Chinese hamster ovary cells were stably transfected with either wild-type (WT) or mutant Gsα proteins (R201C and R201H). Stable cell lines with equivalent transfected Gsα protein expression that had relatively lower (WT) or higher (R201C and R201H) cAMP levels were generated. These cell lines were used to develop a fluorescence resonance energy transfer (FRET)–based cAMP assay in 1536-well microplate format for high throughput screening of small molecule libraries. A small molecule library of 343,768 compounds was screened to identify modulators of gsp activity. A total of 1,356 compounds with inhibitory activity were initially identified and reconfirmed when tested in concentration dose responses. Six hundred eighty-six molecules were selected for further analysis after removing cytotoxic compounds and those that were active in forskolin-induced WT cells. These molecules were grouped by potency, efficacy, and structural similarities to yield 22 clusters with more than 5 of structurally similar members and 144 singleton molecules. Seven chemotypes of the major clusters were identified for further testing and analyses. PMID:24667240

  7. Development and Optimization of a Novel 384-Well Anti-Malarial Imaging Assay Validated for High-Throughput Screening

    PubMed Central

    Duffy, Sandra; Avery, Vicky M.

    2012-01-01

    With the increasing occurrence of drug resistance in the malaria parasite, Plasmodium falciparum, there is a great need for new and novel anti-malarial drugs. We have developed a 384-well, high-throughput imaging assay for the detection of new anti-malarial compounds, which was initially validated by screening a marine natural product library, and subsequently used to screen more than 3 million data points from a variety of compound sources. Founded on another fluorescence-based P. falciparum growth inhibition assay, the DNA-intercalating dye 4′,6-diamidino-2-phenylindole, was used to monitor changes in parasite number. Fluorescent images were acquired on the PerkinElmer Opera High Throughput confocal imaging system and analyzed with a spot detection algorithm using the Acapella data processing software. Further optimization of this assay sought to increase throughput, assay stability, and compatibility with our high-throughput screening equipment platforms. The assay typically yielded Z'-factor values of 0.5–0.6, with signal-to-noise ratios of 12. PMID:22232455

  8. Using constitutive activity to define appropriate high-throughput screening assays for orphan g protein-coupled receptors.

    PubMed

    Ngo, Tony; Coleman, James L J; Smith, Nicola J

    2015-01-01

    Orphan G protein-coupled receptors represent an underexploited resource for drug discovery but pose a considerable challenge for assay development because their cognate G protein signaling pathways are often unknown. In this methodological chapter, we describe the use of constitutive activity, that is, the inherent ability of receptors to couple to their cognate G proteins in the absence of ligand, to inform the development of high-throughput screening assays for a particular orphan receptor. We specifically focus on a two-step process, whereby constitutive G protein coupling is first determined using yeast Gpa1/human G protein chimeras linked to growth and β-galactosidase generation. Coupling selectivity is then confirmed in mammalian cells expressing endogenous G proteins and driving accumulation of transcription factor-fused luciferase reporters specific to each of the classes of G protein. Based on these findings, high-throughput screening campaigns can be performed on the already miniaturized mammalian reporter system. PMID:25563179

  9. Large-scale drug screening against Babesia divergens parasite using a fluorescence-based high-throughput screening assay.

    PubMed

    Rizk, Mohamed Abdo; El-Sayed, Shimaa Abd El-Salam; AbouLaila, Mahmoud; Tuvshintulga, Bumduuren; Yokoyama, Naoaki; Igarashi, Ikuo

    2016-08-30

    The validation of a fluorescence-based high-throughput screening (HTS) assay for determining the efficacies of large chemical libraries against Babesia divergens (bovine strain) in in vitro cultures was evaluated in this study. Hematocrits (HCTs) of 2.5%, 5%, and 10% were used for the in vitro culture at 1% parasitemia without daily replacement of the medium. Linearity and HTS assay results revealed that the best HCTs were 5% and 10%. The obtained IC50 values of diminazene aceturate, either by fluorescence-based HTS assay with and without daily replacement of medium or by fluorescence- and microscopy-based methods, did not differ significantly at 5% HCT. Actinonin and chloroquine diphosphate were the most effective drugs against the in vitro growth of B. divergens, followed by pyronaridine tetraphosphate- and luteolin-treated cultures. On contrary, tetracycline hydrochloride and (-)-epigallocatechin-3-gallate from green tea exhibited poor activity as compared with diminazene aceturate (positive control drug). The data indicated that 5% HCT without daily replacement of the culture medium mixed with bovine serum in vitro using a fluorescence-based HTS assay creates the best conditions for large-scale drug screening against B. divergens that infect cattle. PMID:27523944

  10. Development and Implementation of a High-Throughput Compound Screening Assay for Targeting Disrupted ER Calcium Homeostasis in Alzheimer's Disease

    PubMed Central

    Honarnejad, Kamran; Daschner, Alexander; Giese, Armin; Zall, Andrea; Schmidt, Boris; Szybinska, Aleksandra; Kuznicki, Jacek; Herms, Jochen

    2013-01-01

    Disrupted intracellular calcium homeostasis is believed to occur early in the cascade of events leading to Alzheimer's disease (AD) pathology. Particularly familial AD mutations linked to Presenilins result in exaggerated agonist-evoked calcium release from endoplasmic reticulum (ER). Here we report the development of a fully automated high-throughput calcium imaging assay utilizing a genetically-encoded FRET-based calcium indicator at single cell resolution for compound screening. The established high-throughput screening assay offers several advantages over conventional high-throughput calcium imaging technologies. We employed this assay for drug discovery in AD by screening compound libraries consisting of over 20,000 small molecules followed by structure-activity-relationship analysis. This led to the identification of Bepridil, a calcium channel antagonist drug in addition to four further lead structures capable of normalizing the potentiated FAD-PS1-induced calcium release from ER. Interestingly, it has recently been reported that Bepridil can reduce Aβ production by lowering BACE1 activity. Indeed, we also detected lowered Aβ, increased sAPPα and decreased sAPPβ fragment levels upon Bepridil treatment. The latter findings suggest that Bepridil may provide a multifactorial therapeutic modality for AD by simultaneously addressing multiple aspects of the disease. PMID:24260442

  11. High-throughput microsomal stability assay for screening new chemical entities in drug discovery.

    PubMed

    Fonsi, Massimiliano; Orsale, Maria V; Monteagudo, Edith

    2008-10-01

    In this work, the authors present a novel, robotic, automated protocol for assessing a metabolic stability protocol assembled on a Hamilton platform and a new strategy for pooling samples (cassette analysis). To increase the high throughput of the liquid chromatography (LC) step, fast chromatography and automated liquid chromatography tandem mass spectrometry (LC/MS/MS) analytical methods were also developed, and a rapid data analysis system was generated that converts peak areas obtained by LC/MS/MS in intrinsic clearance values. All of the steps of the microsomal stability assay were carefully studied and optimized. Standard errors and confidence intervals of the measured clearances were also automatically generated in the process to allow an immediate evaluation of the significance of observed values. Methods based on pooling analysis of 2 and 4 different analytes were compared with a standard method without pooling. A simple statistical treatment was used to show their equivalence. The different protocols developed were analyzed in terms of the best compromise between accuracy and high-throughput capabilities. PMID:18812573

  12. Integrated Model of Chemical Perturbations of a Biological PathwayUsing 18 In Vitro High Throughput Screening Assays for the Estrogen Receptor

    EPA Science Inventory

    We demonstrate a computational network model that integrates 18 in vitro, high-throughput screening assays measuring estrogen receptor (ER) binding, dimerization, chromatin binding, transcriptional activation and ER-dependent cell proliferation. The network model uses activity pa...

  13. Development of a scintillation proximity binding assay for high-throughput screening of hematopoietic prostaglandin D2 synthase.

    PubMed

    Meleza, Cesar; Thomasson, Bobbie; Ramachandran, Chidambaram; O'Neill, Jason W; Michelsen, Klaus; Lo, Mei-Chu

    2016-10-15

    Prostaglandin D2 synthase (PGDS) catalyzes the isomerization of prostaglandin H2 (PGH2) to prostaglandin D2 (PGD2). PGD2 produced by hematopoietic prostaglandin D2 synthase (H-PGDS) in mast cells and Th2 cells is proposed to be a mediator of allergic and inflammatory responses. Consequently, inhibitors of H-PGDS represent potential therapeutic agents for the treatment of inflammatory diseases such as asthma. Due to the instability of the PGDS substrate PGH2, an in-vitro enzymatic assay is not feasible for large-scale screening of H-PGDS inhibitors. Herein, we report the development of a competition binding assay amenable to high-throughput screening (HTS) in a scintillation proximity assay (SPA) format. This assay was used to screen an in-house compound library of approximately 280,000 compounds for novel H-PGDS inhibitors. The hit rate of the H-PGDS primary screen was found to be 4%. This high hit rate suggests that the active site of H-PGDS can accommodate a large diversity of chemical scaffolds. For hit prioritization, these initial hits were rescreened at a lower concentration in SPA and tested in the LAD2 cell assay. 116 compounds were active in both assays with IC50s ranging from 6 to 807 nM in SPA and 82 nM to 10 μM in the LAD2 cell assay. PMID:27485270

  14. A high-throughput fluorescence resonance energy transfer (FRET)-based endothelial cell apoptosis assay and its application for screening vascular disrupting agents

    SciTech Connect

    Zhu, Xiaoming; Fu, Afu; Luo, Kathy Qian

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer An endothelial cell apoptosis assay using FRET-based biosensor was developed. Black-Right-Pointing-Pointer The fluorescence of the cells changed from green to blue during apoptosis. Black-Right-Pointing-Pointer This method was developed into a high-throughput assay in 96-well plates. Black-Right-Pointing-Pointer This assay was applied to screen vascular disrupting agents. -- Abstract: In this study, we developed a high-throughput endothelial cell apoptosis assay using a fluorescence resonance energy transfer (FRET)-based biosensor. After exposure to apoptotic inducer UV-irradiation or anticancer drugs such as paclitaxel, the fluorescence of the cells changed from green to blue. We developed this method into a high-throughput assay in 96-well plates by measuring the emission ratio of yellow fluorescent protein (YFP) to cyan fluorescent protein (CFP) to monitor the activation of a key protease, caspase-3, during apoptosis. The Z Prime factor for this assay was above 0.5 which indicates that this assay is suitable for a high-throughput analysis. Finally, we applied this functional high-throughput assay for screening vascular disrupting agents (VDA) which could induce endothelial cell apoptosis from our in-house compounds library and dioscin was identified as a hit. As this assay allows real time and sensitive detection of cell apoptosis, it will be a useful tool for monitoring endothelial cell apoptosis in living cell situation and for identifying new VDA candidates via a high-throughput screening.

  15. Readout technologies for highly miniaturized kinase assays applicable to high-throughput screening in a 1536-well format.

    PubMed

    Klumpp, Martin; Boettcher, Andreas; Becker, Damaris; Meder, Gabriele; Blank, Jutta; Leder, Lukas; Forstner, Michael; Ottl, Johannes; Mayr, Lorenz M

    2006-09-01

    This article discusses the development of homogeneous, miniaturized assays for the identification of novel kinase inhibitors from very large compound collections. In particular, the suitability of time-resolved fluorescence resonance energy transfer (TR-RET) based on phospho-specific antibodies, an antibody-independent fluorescence polarization (FP) approach using metal-coated beads (IMAP technology), and the determination of adenosine triphosphate consumption through chemiluminescence is evaluated. These readouts are compared with regard to assay sensitivity, compound interference, reagent consumption, and performance in a 1536-well format, and practical considerations for their application in primary screening or in the identification of kinase substrates are discussed. All of the tested technologies were found to be suitable for miniaturized high-throughput screening (HTS) in principle, but each of them has distinct limitations and advantages. Therefore, the target-specific selection of the most appropriate readout technology is recommended to ensure maximal relevance of HTS campaigns. PMID:16760365

  16. A yellow fluorescent protein-based assay for high-throughput screening of glycine and GABAA receptor chloride channels.

    PubMed

    Kruger, Wade; Gilbert, Daniel; Hawthorne, Rebecca; Hryciw, Deanne H; Frings, Stephan; Poronnik, Philip; Lynch, Joseph W

    2005-06-01

    There is a significant clinical need to identify novel ligands with high selectivity and potency for GABA(A), GABA(C) and glycine receptor Cl- channels. Two recently developed, yellow fluorescent protein variants (YFP-I152L and YFP-V163S) are highly sensitive to quench by small anions and are thus suited to reporting anionic influx into cells. The aim of this study was to establish the optimal conditions for using these constructs for high-throughput screening of GABA(A), GABA(C) and glycine receptors transiently expressed in HEK293 cells. We found that a 70% fluorescence reduction was achieved by quenching YFP-I152L with a 10 s influx of I- ions, driven by an external I- concentration of at least 50 mM. The fluorescence quench was rapid, with a mean time constant of 3 s. These responses were similar for all anion receptor types studied. We also show the assay is sufficiently sensitive to measure agonist and antagonist concentration-responses using either imaging- or photomultiplier-based detection systems. The robustness, sensitivity and low cost of this assay render it suited for high-throughput screening of transiently expressed anionic ligand-gated channels. PMID:15862914

  17. Development of FRET assay into quantitative and high-throughput screening technology platforms for protein-protein interactions.

    PubMed

    Song, Yang; Madahar, Vipul; Liao, Jiayu

    2011-04-01

    Förster resonance energy transfer (FRET) technology has been widely used in biological and biomedical research and is a very powerful tool in elucidating protein interactions in many cellular processes. Ubiquitination and SUMOylation are multi-step cascade reactions, involving multiple enzymes and protein-protein interactions. Here we report the development of dissociation constant (K (d)) determination for protein-protein interaction and cell-based high-throughput screening (HTS) assay in SUMOylation cascade using FRET technology. These developments are based on steady state and high efficiency of fluorescent energy transfer between CyPet and YPet fused with SUMO1 and Ubc9, respectively. The developments in theoretical and experimental procedures for protein interaction K (d) determination and cell-based HTS provide novel tools in affinity measurement and protein interaction inhibitor screening. The K (d) determined by FRET between SUMO1 and Ubc9 is compatible with those determined with other traditional approaches, such as isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR). The FRET-based HTS is pioneer in cell-based HTS. Both K (d) determination and cell-based HTS, carried out in 384-well plate format, provide powerful tools for large-scale and high-throughput applications. PMID:21174150

  18. Luciferase-Based, High-Throughput Assay for Screening and Profiling Transmission-Blocking Compounds against Plasmodium falciparum Gametocytes.

    PubMed

    Lucantoni, Leonardo; Fidock, David A; Avery, Vicky M

    2016-04-01

    The discovery of new antimalarial drugs able to target both the asexual and gametocyte stages ofPlasmodium falciparumis critical to the success of the malaria eradication campaign. We have developed and validated a robust, rapid, and cost-effective high-throughput reporter gene assay to identify compounds active against late-stage (stage IV and V) gametocytes. The assay, which is suitable for testing compound activity at incubation times up to 72 h, demonstrates excellent quality and reproducibility, with averageZ' values of 0.85 ± 0.01. We used the assay to screen more than 10,000 compounds from three chemically diverse libraries. The screening outcomes highlighted the opportunity to use collections of compounds with known activity against the asexual stages of the parasites as a starting point for gametocytocidal activity detection in order to maximize the chances of identifying gametocytocidal compounds. This assay extends the capabilities of our previously reported luciferase assay, which tested compounds against early-stage gametocytes, and opens possibilities to profile the activities of gametocytocidal compounds over the entire course of gametocytogenesis. PMID:26787698

  19. A Cell-based PDE4 Assay in 1536-well Plate format for High Throughput Screening

    PubMed Central

    Titus, Steven A.; Li, Xiao; Southall, Noel; Lu, Jianming; Inglese, James; Brasch, Michael; Austin, Christopher P.; Zheng, Wei

    2009-01-01

    The cyclic nucleotide phosphodiesterases (PDEs) are intracellular enzymes that catalyze the hydrolysis of 3', 5'-cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), to their corresponding 5'-nucleotide monophosphates. These enzymes play an important role in controlling cellular concentrations of cyclic nucleotides and thus regulate a variety of cellular signaling events. PDEs are emerging as drug targets for several diseases including asthma, cardiovascular disease, ADHD, Parkinson’s disease, and Alzheimer’s disease. Though biochemical assays with purified recombinant PDE enzymes and cAMP or cGMP substrate are commonly used for compound screening, cell-based assays would provide a better assessment of compound activity in a more physiological context. Here we report the development and validation of a new cell-based PDE4 assay using a constitutively active GPCR as a driving force for cAMP production and a cyclic nucleotide gated (CNG) cation channel as a biosensor in 1536-well plates. PMID:18591513

  20. Quantitative High Throughput Screening Using a Live Cell cAMP Assay Identifies Small Molecule Agonists of the TSH Receptor

    PubMed Central

    Titus, Steve; Neumann, Susanne; Zheng, Wei; Southall, Noel; Michael, Sam; Klumpp, Carleen; Yasgar, Adam; Shinn, Paul; Thomas, Craig J.; Inglese, Jim; Gershengorn, Marvin C.; Austin, Christopher P.

    2009-01-01

    The thyroid stimulating hormone receptor (TSHR) belongs to the glycoprotein hormone receptor subfamily of seven-transmembrane spanning receptors. TSHR is expressed in thyroid follicular cells and is activated by TSH, which regulates growth and function of these cells. Recombinant TSH is used in diagnostic screens for thyroid cancer, especially in patients after thyroid cancer surgery. Currently, no selective small molecule agonist of the TSHR is available. To screen for novel TSHR agonists, we miniaturized a cell-based cAMP assay into 1536-well plate format. This assay uses a HEK293 cell line stably expressing the TSHR and a cyclic nucleotide gated ion channel (CNG), which functions as a biosensor. From a quantitative high-throughput screen of 73,180 compounds in parallel with a parental cell line (without the TSHR), 276 primary active compounds were identified. The activities of the selected active compounds were further confirmed in an orthogonal HTRF cAMP-based assay. 49 compounds in several structural classes have been confirmed as small molecule TSHR agonists that will serve as starting compounds for chemical optimization and studies of thyroid physiology in health and disease. PMID:18216391

  1. A Phenotypic High Throughput Screening Assay for the Identification of Pharmacoperones for the Gonadotropin Releasing Hormone Receptor

    PubMed Central

    Smith, Emery; Spicer, Timothy; Chase, Peter; Scampavia, Louis; Janovick, Jo Ann

    2014-01-01

    Abstract We describe a phenotypic high throughput screening (HTS) calcium flux assay designed to identify pharmacoperones for the gonadotropin releasing hormone receptor (GnRHR). Pharmacoperones are target-specific, small molecules that diffuse into cells, rescue misfolded protein mutants, and restore them to function. Rescue is based on correcting the trafficking of mutants that would otherwise be retained in the endoplasmic reticulum and unable to function correctly. This approach identifies drugs with a significant degree of novelty, relying on cellular mechanisms that are not currently exploited. Development of such assays is important, since the extensive use of agonist/antagonist screens alone means that useful chemical structures may be present in existing libraries but have not been previously identified using existing methods. Our assay utilizes cell lines stably expressing a GnRHR mutant under the control of a tetracycline (OFF) transactivator. This allows us to quantitate the level of functional and properly trafficked G protein coupled receptors present in each test well. Furthermore, since we are able to turn receptor expression on and off, we can rapidly eliminate the majority of false positives from our screening results. Our data show that this approach is likely to be successful in identifying hits from large chemical libraries. PMID:24831790

  2. High throughput screening technologies for ion channels

    PubMed Central

    Yu, Hai-bo; Li, Min; Wang, Wei-ping; Wang, Xiao-liang

    2016-01-01

    Ion channels are involved in a variety of fundamental physiological processes, and their malfunction causes numerous human diseases. Therefore, ion channels represent a class of attractive drug targets and a class of important off-targets for in vitro pharmacological profiling. In the past decades, the rapid progress in developing functional assays and instrumentation has enabled high throughput screening (HTS) campaigns on an expanding list of channel types. Chronologically, HTS methods for ion channels include the ligand binding assay, flux-based assay, fluorescence-based assay, and automated electrophysiological assay. In this review we summarize the current HTS technologies for different ion channel classes and their applications. PMID:26657056

  3. Risk-based high-throughput chemical screening and prioritization using exposure models and in vitro bioactivity assays

    SciTech Connect

    Shin, Hyeong -Moo; Ernstoff, Alexi; Arnot, Jon A.; Wetmore, Barbara A.; Csiszar, Susan A.; Fantke, Peter; Zhang, Xianming; McKone, Thomas E.; Jolliet, Olivier; Bennett, Deborah H.

    2015-05-01

    We present a risk-based high-throughput screening (HTS) method to identify chemicals for potential health concerns or for which additional information is needed. The method is applied to 180 organic chemicals as a case study. We first obtain information on how the chemical is used and identify relevant use scenarios (e.g., dermal application, indoor emissions). For each chemical and use scenario, exposure models are then used to calculate a chemical intake fraction, or a product intake fraction, accounting for chemical properties and the exposed population. We then combine these intake fractions with use scenario-specific estimates of chemical quantity to calculate daily intake rates (iR; mg/kg/day). These intake rates are compared to oral equivalent doses (OED; mg/kg/day), calculated from a suite of ToxCast in vitro bioactivity assays using in vitro-to-in vivo extrapolation and reverse dosimetry. Bioactivity quotients (BQs) are calculated as iR/OED to obtain estimates of potential impact associated with each relevant use scenario. Of the 180 chemicals considered, 38 had maximum iRs exceeding minimum OEDs (i.e., BQs > 1). For most of these compounds, exposures are associated with direct intake, food/oral contact, or dermal exposure. The method provides high-throughput estimates of exposure and important input for decision makers to identify chemicals of concern for further evaluation with additional information or more refined models.

  4. Risk-based high-throughput chemical screening and prioritization using exposure models and in vitro bioactivity assays

    DOE PAGESBeta

    Shin, Hyeong -Moo; Ernstoff, Alexi; Arnot, Jon A.; Wetmore, Barbara A.; Csiszar, Susan A.; Fantke, Peter; Zhang, Xianming; McKone, Thomas E.; Jolliet, Olivier; Bennett, Deborah H.

    2015-05-01

    We present a risk-based high-throughput screening (HTS) method to identify chemicals for potential health concerns or for which additional information is needed. The method is applied to 180 organic chemicals as a case study. We first obtain information on how the chemical is used and identify relevant use scenarios (e.g., dermal application, indoor emissions). For each chemical and use scenario, exposure models are then used to calculate a chemical intake fraction, or a product intake fraction, accounting for chemical properties and the exposed population. We then combine these intake fractions with use scenario-specific estimates of chemical quantity to calculate dailymore » intake rates (iR; mg/kg/day). These intake rates are compared to oral equivalent doses (OED; mg/kg/day), calculated from a suite of ToxCast in vitro bioactivity assays using in vitro-to-in vivo extrapolation and reverse dosimetry. Bioactivity quotients (BQs) are calculated as iR/OED to obtain estimates of potential impact associated with each relevant use scenario. Of the 180 chemicals considered, 38 had maximum iRs exceeding minimum OEDs (i.e., BQs > 1). For most of these compounds, exposures are associated with direct intake, food/oral contact, or dermal exposure. The method provides high-throughput estimates of exposure and important input for decision makers to identify chemicals of concern for further evaluation with additional information or more refined models.« less

  5. Risk-Based High-Throughput Chemical Screening and Prioritization using Exposure Models and in Vitro Bioactivity Assays.

    PubMed

    Shin, Hyeong-Moo; Ernstoff, Alexi; Arnot, Jon A; Wetmore, Barbara A; Csiszar, Susan A; Fantke, Peter; Zhang, Xianming; McKone, Thomas E; Jolliet, Olivier; Bennett, Deborah H

    2015-06-01

    We present a risk-based high-throughput screening (HTS) method to identify chemicals for potential health concerns or for which additional information is needed. The method is applied to 180 organic chemicals as a case study. We first obtain information on how the chemical is used and identify relevant use scenarios (e.g., dermal application, indoor emissions). For each chemical and use scenario, exposure models are then used to calculate a chemical intake fraction, or a product intake fraction, accounting for chemical properties and the exposed population. We then combine these intake fractions with use scenario-specific estimates of chemical quantity to calculate daily intake rates (iR; mg/kg/day). These intake rates are compared to oral equivalent doses (OED; mg/kg/day), calculated from a suite of ToxCast in vitro bioactivity assays using in vitro-to-in vivo extrapolation and reverse dosimetry. Bioactivity quotients (BQs) are calculated as iR/OED to obtain estimates of potential impact associated with each relevant use scenario. Of the 180 chemicals considered, 38 had maximum iRs exceeding minimum OEDs (i.e., BQs > 1). For most of these compounds, exposures are associated with direct intake, food/oral contact, or dermal exposure. The method provides high-throughput estimates of exposure and important input for decision makers to identify chemicals of concern for further evaluation with additional information or more refined models. PMID:25932772

  6. A High-Throughput Radiometric Kinase Assay.

    PubMed

    Duong-Ly, Krisna C; Peterson, Jeffrey R

    2016-01-01

    Aberrant kinase signaling has been implicated in a number of diseases. While kinases have become attractive drug targets, only a small fraction of human protein kinases have validated inhibitors. Screening of libraries of compounds against a kinase or kinases of interest is routinely performed during kinase inhibitor development to identify promising scaffolds for a particular target and to identify kinase targets for compounds of interest. Screening of more focused compound libraries may also be conducted in the later stages of inhibitor development to improve potency and optimize selectivity. The dot blot kinase assay is a robust, high-throughput kinase assay that can be used to screen a number of small-molecule compounds against one kinase of interest or several kinases. Here, a protocol for a dot blot kinase assay used for measuring insulin receptor kinase activity is presented. This protocol can be readily adapted for use with other protein kinases. PMID:26501904

  7. High-throughput screening assay for the environmental water samples using cellular response profiles.

    PubMed

    Pan, Tianhong; Li, Haoran; Khare, Swanand; Huang, Biao; Yu Huang, Dorothy; Zhang, Weiping; Gabos, Stephan

    2015-04-01

    Chemical and physical analyses are commonly used as screening methods for the environmental water. However, these methods can only look for the targeted substance but may miss unexpected toxicants. Furthermore, the synergistic effects of mixture cannot be detected. In order to set up the assay criteria for determining various biological activities at a cellular level that could potentially lead to toxicity of environmental water samples, a novel test based on cellular response by using Real-Time Cellular Analyzer (RTCA) is proposed in this study. First, the water sample is diluted to a series of strengths (80%, 60%, 40%, 30%, 20% and 10%) to get the multi-concentration cellular response profile. Then, the area under the cellular response profile (AUCRP) is calculated. Comparing to the normal cell growth of negative control, a new biological activity index named Percentage of Effect (PoE) has been presented which reflects the cumulative inhibitory activity of cell growth over the log-phase. Finally, a synthetical index PoE50 is proposed to evaluate the intensity of biological activities in water samples. The biological experiment demonstrates the effectiveness of the proposed method. PMID:25637748

  8. A novel, sensitive assay for high-throughput molecular detection of plasmodia for active screening of malaria for elimination.

    PubMed

    Cheng, Zhibin; Sun, Xiaodong; Yang, Ye; Wang, Heng; Zheng, Zhi

    2013-01-01

    Although malaria remains one of the leading infectious diseases in the world, the decline in malaria transmission in some area makes it possible to consider elimination of the disease. As countries approach elimination, malaria diagnosis needs to change from diagnosing ill patients to actively detecting infections in all carriers, including asymptomatic and low-parasite-load patients. However, few of the current diagnostic methods have both the throughput and the sensitivity required. We adopted a sandwich RNA hybridization assay to detect genus Plasmodium 18S rRNA directly from whole-blood samples from Plasmodium falciparum and Plasmodium vivax patients without RNA isolation. We tested the assay with 202 febrile patients from areas where malaria is endemic, using 20 μl of each blood sample in a 96-well plate format with a 2-day enzyme-linked immunosorbent assay (ELISA)-like work flow. The results were compared with diagnoses obtained using microscopy, a rapid diagnostic test (RDT), and genus-specific real-time PCR. Our assay identified all 66 positive samples diagnosed by microscopy, including 49 poorly stored samples that underwent multiple freeze-thaw cycles due to resource limitation. The assay uncovered three false-negative samples by microscopy and four false-negative samples by RDT and agreed completely with real-time PCR diagnosis. There was no negative sample by our assay that would show a positive result when tested with other methods. The detection limit of our assay for P. falciparum was 0.04 parasite/μl. The assay's simple work flow, high throughput, and sensitivity make it suitable for active malaria screening. PMID:23100347

  9. Adaptation of the bivalve embryotoxicity assay for the high throughput screening of emerging contaminants in Mytilus galloprovincialis.

    PubMed

    Fabbri, Rita; Montagna, Michele; Balbi, Teresa; Raffo, Enrico; Palumbo, Franca; Canesi, Laura

    2014-08-01

    Emerging contaminants (such as Endocrine disrupting chemicals-EDCs, brominated and perfluorinated compounds-BFRs and PFCs, pharmaceuticals) are chemicals currently not included in regulatory monitoring programs, and whose fate and biological impacts are poorly understood. Assessment of ecosystem health with respect to these chemicals is of particular concern also in the marine environment: in this respect, data on the effects on early life stages are important to establish the sensitivity of marine species. In this work, the acute (48 h) bivalve embryo toxicity test was applied for screening the developmental effects of different emerging contaminants in the Mediterranean mussel Mytilus galloprovincialis. The assay was adapted to 96-microwell plates, and standardized in order to obtain to normal D-shaped larvae with acceptability of test results based on negative control and positive control (copper) comparable with those reported in literature for Mytilus spp. The effects of different model compounds representative of EDCs (Nonylphenol-NP and Bisphenol A-BPA), BFRs (Tetrabromobisphenol A-TBBPA), PFCs (perfluorooctanoid acid-PFOA and perfluorooctane sulphonate-PFOAS) and pharmaceuticals (Ibuprofen-IBU, Diclofenac-DCF, Bezafibrate-BEZA) in a wide concentration range (0.01-0.1-1-10-100-1000 μg/L) were evaluated. The assay proved as a sensitive tool for high throughput screening of emerging contaminants in a marine species, leading to production of significant amounts of data that may be useful for regulatory purposes. PMID:25081847

  10. A High-Throughput Fluorescence-Based Assay System for Appetite-Regulating Gene and Drug Screening

    PubMed Central

    Shimada, Yasuhito; Hirano, Minoru; Nishimura, Yuhei; Tanaka, Toshio

    2012-01-01

    The increasing number of people suffering from metabolic syndrome and obesity is becoming a serious problem not only in developed countries, but also in developing countries. However, there are few agents currently approved for the treatment of obesity. Those that are available are mainly appetite suppressants and gastrointestinal fat blockers. We have developed a simple and rapid method for the measurement of the feeding volume of Danio rerio (zebrafish). This assay can be used to screen appetite suppressants and enhancers. In this study, zebrafish were fed viable paramecia that were fluorescently-labeled, and feeding volume was measured using a 96-well microplate reader. Gene expression analysis of brain-derived neurotrophic factor (bdnf), knockdown of appetite-regulating genes (neuropeptide Y, preproinsulin, melanocortin 4 receptor, agouti related protein, and cannabinoid receptor 1), and the administration of clinical appetite suppressants (fluoxetine, sibutramine, mazindol, phentermine, and rimonabant) revealed the similarity among mechanisms regulating appetite in zebrafish and mammals. In combination with behavioral analysis, we were able to evaluate adverse effects on locomotor activities from gene knockdown and chemical treatments. In conclusion, we have developed an assay that uses zebrafish, which can be applied to high-throughput screening and target gene discovery for appetite suppressants and enhancers. PMID:23300705

  11. A high-throughput fluorescence resonance energy transfer (FRET)-based endothelial cell apoptosis assay and its application for screening vascular disrupting agents.

    PubMed

    Zhu, Xiaoming; Fu, Afu; Luo, Kathy Qian

    2012-02-24

    In this study, we developed a high-throughput endothelial cell apoptosis assay using a fluorescence resonance energy transfer (FRET)-based biosensor. After exposure to apoptotic inducer UV-irradiation or anticancer drugs such as paclitaxel, the fluorescence of the cells changed from green to blue. We developed this method into a high-throughput assay in 96-well plates by measuring the emission ratio of yellow fluorescent protein (YFP) to cyan fluorescent protein (CFP) to monitor the activation of a key protease, caspase-3, during apoptosis. The Z' factor for this assay was above 0.5 which indicates that this assay is suitable for a high-throughput analysis. Finally, we applied this functional high-throughput assay for screening vascular disrupting agents (VDA) which could induce endothelial cell apoptosis from our in-house compounds library and dioscin was identified as a hit. As this assay allows real time and sensitive detection of cell apoptosis, it will be a useful tool for monitoring endothelial cell apoptosis in living cell situation and for identifying new VDA candidates via a high-throughput screening. PMID:22290227

  12. Functional screening of enzymes and bacteria for the dechlorination of hexachlorocyclohexane by a high-throughput colorimetric assay.

    PubMed

    Sharma, Pooja; Jindal, Swati; Bala, Kiran; Kumari, Kirti; Niharika, Neha; Kaur, Jasvinder; Pandey, Gunjan; Pandey, Rinku; Russell, Robyn J; Oakeshott, John G; Lal, Rup

    2014-04-01

    Two distinct microbial dehalogenases are involved in the first steps of degradation of hexachlorocyclohexane (HCH) isomers. The enzymes, LinA and LinB, catalyze dehydrochlorination and dechlorination reactions of HCH respectively, each with distinct isomer specificities. The two enzymes hold great promise for use in the bioremediation of HCH residues in contaminated soils, although their kinetics and isomer specificities are currently limiting. Here we report the functional screening of a library of 700 LinA and LinB clones generated from soil DNA for improved dechlorination activity by means of a high throughput colorimetric assay. The assay relies upon visual colour change of phenol red in an aqueous medium, due to the pH drop associated with the dechlorination reactions. The assay is performed in a microplate format using intact cells, making it quick and simple to perform and it has high sensitivity, dynamic range and reproducibility. The method has been validated with quantitative gas chromatographic analysis of promising clones, revealing some novel variants of both enzymes with superior HCH degrading activities. Some sphingomonad isolates with potentially superior activities were also identified. PMID:23740574

  13. Origin and evolution of high throughput screening

    PubMed Central

    Pereira, D A; Williams, J A

    2007-01-01

    This article reviews the origin and evolution of high throughput screening (HTS) through the experience of an individual pharmaceutical company, revealing some of the mysteries of the early stages of drug discovery to the wider pharmacology audience. HTS in this company (Pfizer, Groton, USA) had its origin in natural products screening in 1986, by substituting fermentation broths with dimethyl sulphoxide solutions of synthetic compounds, using 96-well plates and reduced assay volumes of 50-100μl. A nominal 30mM source compound concentration provided high μM assay concentrations. Starting at 800 compounds each week, the process reached a steady state of 7200 compounds per week by 1989. Screening in the Applied Biotechnology and Screening Group was centralized with screens operating in lock-step to maximize efficiency. Initial screens were full files run in triplicate. Autoradiography and image analysis were introduced for 125I receptor ligand screens. Reverse transcriptase (RT) coupled with quantitative PCR and multiplexing addressed several targets in a single assay. By 1992 HTS produced ‘hits' as starting matter for approximately 40% of the Discovery portfolio. In 1995, the HTS methodology was expanded to include ADMET targets. ADME targets required each compound to be physically detected leading to the development of automated high throughput LC-MS. In 1996, 90 compounds/week were screened in microsomal, protein binding and serum stability assays. Subsequently, the mutagenic Ames assay was adapted to a 96-well plate liquid assay and novel algorithms permitted automated image analysis of the micronucleus assay. By 1999 ADME HTS was fully integrated into the discovery cycle. PMID:17603542

  14. Using in Vitro High Throughput Screening Assays to Identify Potential Endocrine-Disrupting Chemicals

    EPA Science Inventory

    Over the past 20 years, an increased focus on detecting environmental chemicals posing a risk of adverse effects due to endocrine disruption has driven the creation of the U.S. EPA Endocrine Disruptor Screening Program (EDSP). Thousands of chemicals are subject to the EDSP, whic...

  15. High-Throughput Cell Toxicity Assays.

    PubMed

    Murray, David; McWilliams, Lisa; Wigglesworth, Mark

    2016-01-01

    Understanding compound-driven cell toxicity is vitally important for all drug discovery approaches. With high-throughput screening (HTS) being the key strategy to find hit and lead compounds for drug discovery projects in the pharmaceutical industry [1], an understanding of the cell toxicity profile of hit molecules from HTS activities is fundamentally important. Recently, there has been a resurgence of interest in phenotypic drug discovery and these cell-based assays are now being run in HTS labs on ever increasing numbers of compounds. As the use of cell assays increases the ability to measure toxicity of compounds on a large scale becomes increasingly important to ensure that false hits are not progressed and that compounds do not carry forward a toxic liability that may cause them to fail at later stages of a project. Here we describe methods employed in the AstraZeneca HTS laboratory to carry out very large scale cell toxicity screening. PMID:27317000

  16. Characterization of Diversity in Toxicity Mechanism Using In Vitro Cytotoxicity Assays in Quantitative High Throughput Screening

    PubMed Central

    Huang, Ruili; Southall, Noel; Cho, Ming-Hsuang; Xia, Menghang; Inglese, James; Austin, Christopher P.

    2009-01-01

    Assessing the potential health risks of environmental chemical compounds is an expensive undertaking which has motivated the development of new alternatives to traditional in vivo toxicological testing. One approach is to stage the evaluation, beginning with less expensive and higher throughput in vitro testing before progressing to more definitive trials. In vitro testing can be used to generate a hypothesis about a compound's mechanism of action, which can then be used to design an appropriate in vivo experiment. Here we begin to address the question of how to design such a battery of in vitro cell-based assays by combining data from two different types of assays, cell viability and caspase activation, with the aim of elucidating mechanism of action. Because caspase activation is a transient event during apoptosis, it is not possible to design a single end-point assay protocol that would identify all instances of compound-induced caspase activation. Nevertheless, useful information about compound mechanism of action can be obtained from these assays in combination with cell viability data. Unsupervised clustering in combination with Dunn's cluster validity index is a robust method for identifying mechanisms of action without requiring any a priori knowledge about mechanisms of toxicity. The performance of this clustering method is evaluated by comparing the clustering results against literature annotations of compound mechanisms. PMID:18281954

  17. A Call for Nominations of Quantitative High-Throughput Screening Assays from Relevant Human Toxicity Pathways

    EPA Science Inventory

    The National Research Council of the United States National Academies of Science has recently released a document outlining a long-range vision and strategy for transforming toxicity testing from largely whole animal-based testing to one based on in vitro assays. “Toxicity Testin...

  18. High-throughput assay comparison and standardization for metal chelating capacity screening: A proposal and application.

    PubMed

    Santos, Jânio Sousa; Alvarenga Brizola, Vitor Rafael; Granato, Daniel

    2017-01-01

    Aiming to standardize the experimental protocols to assess the ability to chelate Fe(2+) and Cu(2+) using 96-well microplates, we analyzed Brazilian coffees (n=20) as a study-case in relation to their antioxidant activity using conventional methods (DPPH and FRAP assays) and correlated the results with the total phenolic content (TPC) using bivariate and multivariate statistical approaches. Complementarily, we assessed the repeatability, reproducibility, recovery, and linearity of both methods. Data showed that the proposed assays presented a good repeatability and reproducibility (<7% RSD) and mean recovery values of 96.66% and 98.91% for the iron and copper assays, respectively. Both methods were linear in the range of 0-100mg EDTA equivalents/L. Cu(2+)-chelating ability was significantly correlated to FRAP, DPPH, and TPC, while sparse (p<0.05) correlations were obtained with Fe(2+)-chelating ability. Overall, both micro assays can be used to assess the ability of plant-based extracts to chelate Fe(2+) and Cu(2+)in vitro. PMID:27507505

  19. Evaluation of Compatibility of ToxCast High-Throughput/High-Content Screening Assays with Engineered Nanomaterials

    EPA Science Inventory

    High-throughput and high-content screens are attractive approaches for prioritizing nanomaterial hazards and informing targeted testing due to the impracticality of using traditional toxicological testing on the large numbers and varieties of nanomaterials. The ToxCast program a...

  20. Evaluating the Impact of Uncertainties in Clearance and Exposure When Prioritizing Chemicals Screened in High-Throughput Assays.

    PubMed

    Leonard, Jeremy A; Sobel Leonard, Ashley; Chang, Daniel T; Edwards, Stephen; Lu, Jingtao; Scholle, Steven; Key, Phillip; Winter, Maxwell; Isaacs, Kristin; Tan, Yu-Mei

    2016-06-01

    The toxicity-testing paradigm has evolved to include high-throughput (HT) methods for addressing the increasing need to screen hundreds to thousands of chemicals rapidly. Approaches that involve in vitro screening assays, in silico predictions of exposure concentrations, and pharmacokinetic (PK) characteristics provide the foundation for HT risk prioritization. Underlying uncertainties in predicted exposure concentrations or PK behaviors can significantly influence the prioritization of chemicals, though the impact of such influences is unclear. In the current study, a framework was developed to incorporate absorbed doses, PK properties, and in vitro dose-response data into a PK/pharmacodynamic (PD) model to allow for placement of chemicals into discrete priority bins. Literature-reported or predicted values for clearance rates and absorbed doses were used in the PK/PD model to evaluate the impact of their uncertainties on chemical prioritization. Scenarios using predicted absorbed doses resulted in a larger number of bin misassignments than those scenarios using predicted clearance rates, when comparing to bin placement using literature-reported values. Sensitivity of parameters on the model output of toxicological activity was examined across possible ranges for those parameters to provide insight into how uncertainty in their predicted values might impact uncertainty in activity. PMID:27124219

  1. High throughput assay for cytochrome P450 BM3 for screening libraries of substrates and combinatorial mutants.

    PubMed

    Tsotsou, Georgia Eleni; Cass, Anthony Edward George; Gilardi, Gianfranco

    2002-01-01

    A rapid method for identifying compounds that are potential substrates for the drug metabolising enzyme cytochrome P450 is described. The strategy is based on the detection of a degradation product of NAD(P)H oxidation during substrate turnover by the enzyme expressed in Escherichia coli cells spontaneously lysed under the experimental conditions. The performance of the method has been tested on two known substrates of the wild-type cytochrome P450 BM3, arachidonic (AA) and lauric (LA) acids, and two substrates with environmental significance, the anionic surfactant sodium dodecyl sulfate (SDS), and the solvent 1,1,2,2-tetrachloroethane (TCE). The minimal background signal given from cells expressing cytochrome P450 BM3 in the absence of added substrate is only 3% of the signal in the presence of saturating substrate. Control experiments have proven that this method is specifically detecting NADPH oxidation by catalytic turnover of P450 BM3. The assay has been adapted to a microtitre plate format and used to screen a series of furazan derivatives as potential substrates. Three derivatives were identified as substrates. The method gave a significant different signal for two isomeric furazan derivatives. All results found on the cell lysate were verified and confirmed with the purified enzyme. This strategy opens the way to automated high throughput screening of NAD(P)H-linked enzymatic activity of molecules of pharmacological and biotechnological interest and libraries of random mutants of NAD(P)H-dependent biocatalysts. PMID:11742743

  2. Bringing the light to high throughput screening: use of optogenetic tools for the development of recombinant cellular assays

    NASA Astrophysics Data System (ADS)

    Agus, Viviana; Di Silvio, Alberto; Rolland, Jean Francois; Mondini, Anna; Tremolada, Sara; Montag, Katharina; Scarabottolo, Lia; Redaelli, Loredana; Lohmer, Stefan

    2015-03-01

    The use of light-activated proteins represents a powerful tool to control biological processes with high spatial and temporal precision. These so called "optogenetic" technologies have been successfully validated in many recombinant systems, and have been widely applied to the study of cellular mechanisms in intact tissues or behaving animals; to do that, complex, high-intensity, often home-made instrumentations were developed to achieve the optimal power and precision of light stimulation. In our study we sought to determine if this optical modulation can be obtained also in a miniaturized format, such as a 384-well plate, using the instrumentations normally dedicated to fluorescence analysis in High Throughput Screening (HTS) activities, such as for example the FLIPR (Fluorometric Imaging Plate Reader) instrument. We successfully generated optogenetic assays for the study of different ion channel targets: the CaV1.3 calcium channel was modulated by the light-activated Channelrhodopsin-2, the HCN2 cyclic nucleotide gated (CNG) channel was modulated by the light activated bPAC adenylyl cyclase, and finally the genetically encoded voltage indicator ArcLight was efficiently used to measure potassium, sodium or chloride channel activity. Our results showed that stable, robust and miniaturized cellular assays can be developed using different optogenetic tools, and efficiently modulated by the FLIPR instrument LEDs in a 384-well format. The spatial and temporal resolution delivered by this technology might enormously advantage the early stages of drug discovery, leading to the identification of more physiological and effective drug molecules.

  3. A high-throughput differential filtration assay to screen and select detergents for membrane proteins

    PubMed Central

    Vergis, James M.; Purdy, Michael D.; Wiener, Michael C.

    2015-01-01

    Structural studies on integral membrane proteins are routinely performed on protein–detergent complexes (PDCs) consisting of purified protein solubilized in a particular detergent. Of all the membrane protein crystal structures solved to date, a subset of only four detergents has been used in more than half of these structures. Unfortunately, many membrane proteins are not well behaved in these four detergents and/or fail to yield well-diffracting crystals. Identification of detergents that maintain the solubility and stability of a membrane protein is a critical step and can be a lengthy and “protein-expensive” process. We have developed an assay that characterizes the stability and size of membrane proteins exchanged into a panel of 94 commercially available and chemically diverse detergents. This differential filtration assay (DFA), using a set of filtered microplates, requires sub-milligram quantities of purified protein and small quantities of detergents and other reagents and is performed in its entirety in several hours. PMID:20667442

  4. High-throughput Screening of ToxCast™ Phase I Chemicals in a Mouse Embryonic Stem Cell (mESC) Assay Reveals Disruption of Potential Toxicity Pathways

    EPA Science Inventory

    Little information is available regarding the potential for many commercial chemicals to induce developmental toxicity. The mESC Adherent Cell Differentiation and Cytoxicity (ACDC) assay is a high-throughput screen used to close this data gap. Thus, ToxCast™ Phase I chemicals wer...

  5. Application of Targeted Functional Assays to Assess a Putative Vascular Disruption Developmental Toxicity Pathway Informed By ToxCast High-Throughput Screening Data

    EPA Science Inventory

    Chemical perturbation of vascular development is a putative toxicity pathway which may result in developmental toxicity. EPA’s high-throughput screening (HTS) ToxCast program contains assays which measure cellular signals and biological processes critical for blood vessel develop...

  6. New high-throughput screening protease assay based upon supramolecular self-assembly.

    SciTech Connect

    Whitten, David G.; Tang, Yanli; Zhou, Zhijun; Achyuthan, Komandoor E.

    2008-11-01

    We previously demonstrated that the supramolecular self-assembly of cyanines could be useful for developing fluorescent enzymatic assays. We took that concept a step further by synthesizing a covalent adduct of the tetrapeptide Asp-Glu-Val-Asp (DEVD) and a cyanine (DEVD-cyanine). The DEVD-cyanine due to its canonical sequence was recognized and hydrolyzed by the proteases, Caspase-3 and -7 in 96- or 384-microwell plate reactions. The catalytically liberated cyanine self-assembled upon scaffolds of carboxymethylamylose (CMA), carboxymethylcellulose (CMC), or a mixture of CMA and CMC resulting in a J aggregate exhibiting bright fluorescence at a 470 nm emission wavelength (optimum signal/background using excitation wavelengths of 415-440 nm). The fluorescence intensity increased with enzyme and substrate concentrations or reaction time and exhibited classical saturation profiles of a rectangular hyperbola. Saturation of the reaction was at 30 U/mL (1 {micro}g/mL) Caspase-3 and 250 {micro}M DEVD-cyanine. The reaction kinetics was linear between 1 and 20 min and saturated at 60 min. The affinity constant (Km) for DEVD-cyanine was 23 {micro}M, similar to those of previously reported values for other DEVD substrates of Caspase-3. Maximal fluorescence emission was observed by using a mixture of CMA and CMC scaffolds at 65 and 35 {micro}M, respectively. The reaction kinetics of Caspase-7 executed in a 384-well plate was similar to the reaction kinetics of Caspase-3 conducted in a 96-well plate. We believe that this is the first demonstration of a cyanine liberated from a covalent adduct due to protease action, leading to supramolecular self-assembly and the detection of protease activity.

  7. Big Data in Chemical Toxicity Research: The Use of High-Throughput Screening Assays To Identify Potential Toxicants

    PubMed Central

    2015-01-01

    High-throughput screening (HTS) assays that measure the in vitro toxicity of environmental compounds have been widely applied as an alternative to in vivo animal tests of chemical toxicity. Current HTS studies provide the community with rich toxicology information that has the potential to be integrated into toxicity research. The available in vitro toxicity data is updated daily in structured formats (e.g., deposited into PubChem and other data-sharing web portals) or in an unstructured way (papers, laboratory reports, toxicity Web site updates, etc.). The information derived from the current toxicity data is so large and complex that it becomes difficult to process using available database management tools or traditional data processing applications. For this reason, it is necessary to develop a big data approach when conducting modern chemical toxicity research. In vitro data for a compound, obtained from meaningful bioassays, can be viewed as a response profile that gives detailed information about the compound’s ability to affect relevant biological proteins/receptors. This information is critical for the evaluation of complex bioactivities (e.g., animal toxicities) and grows rapidly as big data in toxicology communities. This review focuses mainly on the existing structured in vitro data (e.g., PubChem data sets) as response profiles for compounds of environmental interest (e.g., potential human/animal toxicants). Potential modeling and mining tools to use the current big data pool in chemical toxicity research are also described. PMID:25195622

  8. Big data in chemical toxicity research: the use of high-throughput screening assays to identify potential toxicants.

    PubMed

    Zhu, Hao; Zhang, Jun; Kim, Marlene T; Boison, Abena; Sedykh, Alexander; Moran, Kimberlee

    2014-10-20

    High-throughput screening (HTS) assays that measure the in vitro toxicity of environmental compounds have been widely applied as an alternative to in vivo animal tests of chemical toxicity. Current HTS studies provide the community with rich toxicology information that has the potential to be integrated into toxicity research. The available in vitro toxicity data is updated daily in structured formats (e.g., deposited into PubChem and other data-sharing web portals) or in an unstructured way (papers, laboratory reports, toxicity Web site updates, etc.). The information derived from the current toxicity data is so large and complex that it becomes difficult to process using available database management tools or traditional data processing applications. For this reason, it is necessary to develop a big data approach when conducting modern chemical toxicity research. In vitro data for a compound, obtained from meaningful bioassays, can be viewed as a response profile that gives detailed information about the compound's ability to affect relevant biological proteins/receptors. This information is critical for the evaluation of complex bioactivities (e.g., animal toxicities) and grows rapidly as big data in toxicology communities. This review focuses mainly on the existing structured in vitro data (e.g., PubChem data sets) as response profiles for compounds of environmental interest (e.g., potential human/animal toxicants). Potential modeling and mining tools to use the current big data pool in chemical toxicity research are also described. PMID:25195622

  9. Development of multicellular tumor spheroid (MCTS) culture from breast cancer cell and a high throughput screening method using the MTT assay.

    PubMed

    Ho, Wan Yong; Yeap, Swee Keong; Ho, Chai Ling; Rahim, Raha Abdul; Alitheen, Noorjahan Banu

    2012-01-01

    In comparison to monolayer cells, MCTS has been claimed as more suitable candidate for studying drug penetration due to the high resemblance to solid tumors. However, the cultivation of MCTS is cumbersome, time consuming, and most technique fail to generate spheroids with uniform sizes. Therefore, the application of spheroid cultures in high throughput screening has been rather limiting. Besides, the lack of a well established screening protocol method that is applicable to spheroid could also be attributed to this limitation. Here we report a simple way of cultivating homogenous MCTS cultures with compact and rigid structure from the MCF-7 cells. Besides, we had also made some modifications to the standard MTT assay to realize high throughput screening of these spheroids. Using the modified protocol, tamoxifen showed cytotoxicity effect towards MCTS cultures from MCF-7 with high consistency. The results correlated well with the cultures' response assessed by LDH release assay but the latter assay was not ideal for detecting a wide range of cytotoxicity due to high basal background reading. The MTT assay emerged as a better indicator to apoptosis event in comparison to the LDH release assay. Therefore, the method for spheroid generation and the modified MTT assay we reported here could be potentially applied to high throughput screening for response of spheroid cultures generated from MCF-7 as well as other cancer cell lines towards cytotoxic stimuli. PMID:22970274

  10. High throughput protein production screening

    DOEpatents

    Beernink, Peter T.; Coleman, Matthew A.; Segelke, Brent W.

    2009-09-08

    Methods, compositions, and kits for the cell-free production and analysis of proteins are provided. The invention allows for the production of proteins from prokaryotic sequences or eukaryotic sequences, including human cDNAs using PCR and IVT methods and detecting the proteins through fluorescence or immunoblot techniques. This invention can be used to identify optimized PCR and WT conditions, codon usages and mutations. The methods are readily automated and can be used for high throughput analysis of protein expression levels, interactions, and functional states.

  11. Fully Bayesian Analysis of High-throughput Targeted Metabolomics Assays

    EPA Science Inventory

    High-throughput metabolomic assays that allow simultaneous targeted screening of hundreds of metabolites have recently become available in kit form. Such assays provide a window into understanding changes to biochemical pathways due to chemical exposure or disease, and are usefu...

  12. A High-Throughput Assay for Arylamine Halogenation Based on a Peroxidase-Mediated Quinone–Amine Coupling with Applications in the Screening of Enzymatic Halogenations

    PubMed Central

    Hosford, Joseph; Shepherd, Sarah A; Micklefield, Jason; Wong, Lu Shin

    2014-01-01

    Arylhalides are important building blocks in many fine chemicals, pharmaceuticals and agrochemicals, and there has been increasing interest in the development of more “green” halogenation methods based on enzyme catalysis. However, the screening and development of new enzymes for biohalogenation has been hampered by a lack of high-throughput screening methods. Described herein is the development of a colorimetric assay for detecting both chemical and enzymatic arylamine halogenation reactions in an aqueous environment. The assay is based on the unique UV/Vis spectrum created by the formation of an ortho-benzoquinone-amine adduct, which is produced by the peroxidase-catalysed benzoquinone generation, followed by Michael addition of either a halogenated or non-halogenated arylamine. This assay is sensitive, rapid and amenable to high-throughput screening platforms. We have also shown this assay to be easily coupled to a flavin-dependent halogenase, which currently lacks any convenient colorimetric assay, in a “one-pot” workflow. PMID:25319801

  13. The Design, Synthesis and Potential Utility of Fluorescence Probes that Target DFG-out Conformation of p38[alpha] for High Throughput Screening Binding Assay

    SciTech Connect

    Tecle, Haile; Feru, Frederic; Liu, Hu; Kuhn, Cyrille; Rennie, Glen; Morris, Mark; Shao, Jiangxing; Cheng, Alan C.; Gikunju, Diana; Miret, Juan; Coli, Rocco; Xi, Simon; Clugston, Susan L.; Low, Simon; Kazmirski, Steven; Ding, Yuan-Hua; Cao, Qing; Johnson, Theresa L.; Deshmukh, Gayatri D.; DiNitto, Jonathan P.; Wu, Joe C.; English, Jessie M.; Pfizer

    2010-10-18

    The design, synthesis and utility of fluorescence probes that bind to the DFG-out conformation of p38{alpha} kinase are described. Probes that demonstrate good affinity for p38{alpha}, have been identified and one of the probes, PF-04438255, has been successfully used in an high throughput screening (HTS) assay to identify two novel non-classical p38{alpha} inhibitors. In addition, a cascade activity assay was utilized to validate the selective binding of these non-classical kinase inhibitors to the unactive form of the enzyme.

  14. Chemoenzymatic Synthesis of a Type 2 Blood Group A Tetrasaccharide and Development of High-throughput Assays Enables a Platform for Screening Blood Group Antigen-cleaving Enzymes.

    PubMed

    Kwan, David H; Ernst, Sabrina; Kötzler, Miriam P; Withers, Stephen G

    2015-08-01

    A facile enzymatic synthesis of the methylumbelliferyl β-glycoside of the type 2 A blood group tetrasaccharide in good yields is reported. Using this compound, we developed highly sensitive fluorescence-based high-throughput assays for both endo-β-galactosidase and α-N-acetylgalactosaminidase activity specific for the oligosaccharide structure of the blood group A antigen. We further demonstrate the potential to use this assay to screen the expressed gene products of metagenomic libraries in the search for efficient blood group antigen-cleaving enzymes. PMID:25964111

  15. High-Throughput Screening Using a Whole-Cell Virus Replication Reporter Gene Assay to Identify Inhibitory Compounds against Rift Valley Fever Virus Infection.

    PubMed

    Islam, Md Koushikul; Baudin, Maria; Eriksson, Jonas; Öberg, Christopher; Habjan, Matthias; Weber, Friedemann; Överby, Anna K; Ahlm, Clas; Evander, Magnus

    2016-04-01

    Rift Valley fever virus (RVFV) is an emerging virus that causes serious illness in humans and livestock. There are no approved vaccines or treatments for humans. The purpose of the study was to identify inhibitory compounds of RVFV infection without any preconceived idea of the mechanism of action. A whole-cell-based high-throughput drug screening assay was developed to screen 28,437 small chemical compounds targeting RVFV infection. To accomplish both speed and robustness, a replication-competent NSs-deleted RVFV expressing a fluorescent reporter gene was developed. Inhibition of fluorescence intensity was quantified by spectrophotometry and related to virus infection in human lung epithelial cells (A549). Cell toxicity was assessed by the Resazurin cell viability assay. After primary screening, 641 compounds were identified that inhibited RVFV infection by ≥80%, with ≥50% cell viability at 50 µM concentration. These compounds were subjected to a second screening regarding dose-response profiles, and 63 compounds with ≥60% inhibition of RVFV infection at 3.12 µM compound concentration and ≥50% cell viability at 25 µM were considered hits. Of these, six compounds with high inhibitory activity were identified. In conclusion, the high-throughput assay could efficiently and safely identify several promising compounds that inhibited RVFV infection. PMID:26762502

  16. High-Throughput Screening in Primary Neurons

    PubMed Central

    Sharma, Punita; Ando, D. Michael; Daub, Aaron; Kaye, Julia A.; Finkbeiner, Steven

    2013-01-01

    Despite years of incremental progress in our understanding of diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), there are still no disease-modifying therapeutics. The discrepancy between the number of lead compounds and approved drugs may partially be a result of the methods used to generate the leads and highlights the need for new technology to obtain more detailed and physiologically relevant information on cellular processes in normal and diseased states. Our high-throughput screening (HTS) system in a primary neuron model can help address this unmet need. HTS allows scientists to assay thousands of conditions in a short period of time which can reveal completely new aspects of biology and identify potential therapeutics in the span of a few months when conventional methods could take years or fail all together. HTS in primary neurons combines the advantages of HTS with the biological relevance of intact, fully differentiated neurons which can capture the critical cellular events or homeostatic states that make neurons uniquely susceptible to disease-associated proteins. We detail methodologies of our primary neuron HTS assay workflow from sample preparation to data reporting. We also discuss our adaptation of our HTS system into high-content screening (HCS), a type of HTS that uses multichannel fluorescence images to capture biological events in situ, and is uniquely suited to study dynamical processes in living cells. PMID:22341232

  17. High-throughput screening in primary neurons.

    PubMed

    Sharma, Punita; Ando, D Michael; Daub, Aaron; Kaye, Julia A; Finkbeiner, Steven

    2012-01-01

    Despite years of incremental progress in our understanding of diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), there are still no disease-modifying therapeutics. The discrepancy between the number of lead compounds and approved drugs may partially be a result of the methods used to generate the leads and highlights the need for new technology to obtain more detailed and physiologically relevant information on cellular processes in normal and diseased states. Our high-throughput screening (HTS) system in a primary neuron model can help address this unmet need. HTS allows scientists to assay thousands of conditions in a short period of time which can reveal completely new aspects of biology and identify potential therapeutics in the span of a few months when conventional methods could take years or fail all together. HTS in primary neurons combines the advantages of HTS with the biological relevance of intact, fully differentiated neurons which can capture the critical cellular events or homeostatic states that make neurons uniquely susceptible to disease-associated proteins. We detail methodologies of our primary neuron HTS assay workflow from sample preparation to data reporting. We also discuss the adaptation of our HTS system into high-content screening (HCS), a type of HTS that uses multichannel fluorescence images to capture biological events in situ, and is uniquely suited to study dynamical processes in living cells. PMID:22341232

  18. Development of a high-throughput screening for nerve agent detoxifying materials using a fully-automated robot-assisted biological assay.

    PubMed

    Wille, T; Thiermann, H; Worek, F

    2010-04-01

    Developing improved medical countermeasures against chemical warfare agents (nerve agents) is urgently needed but time-consuming and costly. Here we introduce a robot-assisted liquid handling system with warming, cooling and incubating facilities to screen the detoxifying properties of biological and chemical materials against nerve agents. Two biological tests were established and plasma from various species, DFPase and three cyclodextrins were used as test materials. In test 1, plasma was mixed with sarin or VX and the inhibitory potency of the incubate was determined with human acetylcholinesterase (AChE) at 0, 30 and 60 min. In test 2, test materials and nerve agents were mixed and incubated. Between 0 and 40 min samples were taken and incubated for 3 min with AChE and the residual AChE inhibition was determined to enable the semi-quantitative evaluation of the detoxification kinetics. The automated assays proved to be highly reproducible. It was possible to pre-select detoxifying reagents with test 1 and to determine more detailed detoxifying kinetics with test 2. In conclusion, the automated assay may be considered as a versatile tool for the high-throughput screening of potential detoxifying materials against different nerve agents. With this two-step assay it is possible to screen effectively for detoxifying materials in a high-throughput system. PMID:19961920

  19. Quantitative RT-PCR assay for high-throughput screening (HTS) of drugs against the growth of Cryptosporidium parvum in vitro

    PubMed Central

    Zhang, Haili; Zhu, Guan

    2015-01-01

    Our laboratory has previously developed a qRT-PCR assay to assess drug efficacy on the growth of Cryptosporidium parvum in vitro by detecting the levels of parasite 18S rRNA. This approach displayed up to four orders of magnitude of linear dynamic range and was much less labor-intensive than the traditional microscopic methods. However, conventional qRT-PCR protocol is not very amendable to high-throughput analysis when total RNA needs to be purified by lengthy, multi-step procedures. Recently, several commercial reagents are available for preparing cell lysates that could be directly used in downstream qRT-PCR analysis (e.g., Ambion Cell-to-cDNA kit and Bio-Rad iScript sample preparation reagent). Using these reagents, we are able to adapt the qRT-PCR assay into high-throughput screening of drugs in vitro (i.e., 96-well and 384-well formats for the cultivation of parasites and qRT-PCR detection, respectively). This qRT-PCR protocol is able to give a >150-fold linear dynamic range using samples isolated from cells infected with various numbers of parasites. The new assay is also validated by the NIH-recommended intra-plate, inter-plate, and inter-day uniformity tests. The robustness and effectiveness of the assay are also confirmed by evaluating the anti-cryptosporidial efficacy of paromomycin and by a small scale screening of compounds. PMID:26441920

  20. High-Throughput Screening for Small Molecule Inhibitors of LARG-Stimulated RhoA Nucleotide Binding via a Novel Fluorescence Polarization Assay

    PubMed Central

    Evelyn, Chris R.; Ferng, Timothy; Rojas, Rafael J.; Larsen, Martha J.; Sondek, John; Neubig, Richard R.

    2009-01-01

    Guanine nucleotide-exchange factors (GEFs) stimulate guanine nucleotide exchange and the subsequent activation of Rho-family proteins in response to extracellular stimuli acting upon cytokine, tyrosine kinase, adhesion, integrin, and G-protein coupled receptors (GPCRs). Upon Rho activation, several downstream events occur, such as morphological and cytokskeletal changes, motility, growth, survival, and gene transcription. The RhoGEF Leukemia-Associated RhoGEF (LARG) is a member of the Regulators of G-protein Signaling Homology Domain (RH) family of GEFs originally identified as a result of chromosomal translocation in acute myeloid leukemia. Using a novel fluorescence polarization guanine nucleotide binding assay utilizing BODIPY-Texas Red-GTPγS (BODIPY-TR-GTPγS), we performed a ten-thousand compound high-throughput screen for inhibitors of LARG-stimulated RhoA nucleotide binding. Five compounds identified from the high-throughput screen were confirmed in a non-fluorescent radioactive guanine nucleotide binding assay measuring LARG-stimulated [35S] GTPγS binding to RhoA, thus ruling out non-specific fluorescent effects. All five compounds selectively inhibited LARG-stimulated RhoA [35S] GTPγS binding, but had little to no effect upon RhoA or Gαo [35S] GTPγS binding. Therefore, these five compounds should serve as promising starting points for the development of small molecule inhibitors of LARG-mediated nucleotide exchange as both pharmacological tools and therapeutics. In addition, the fluorescence polarization guanine nucleotide binding assay described here should serve as a useful approach for both high-throughput screening and general biological applications. PMID:19196702

  1. A Quantitative Toxicogenomics Assay for High-throughput and Mechanistic Genotoxicity Assessment and Screening of Environmental Pollutants.

    PubMed

    Lan, Jiaqi; Gou, Na; Rahman, Sheikh Mokhles; Gao, Ce; He, Miao; Gu, April Z

    2016-03-15

    The ecological and health concern of mutagenicity and carcinogenicity potentially associated with an overwhelmingly large and ever-increasing number of chemicals demands for cost-effective and feasible method for genotoxicity screening and risk assessment. This study proposed a genotoxicity assay using GFP-tagged yeast reporter strains, covering 38 selected protein biomarkers indicative of all the seven known DNA damage repair pathways. The assay was applied to assess four model genotoxic chemicals, eight environmental pollutants and four negative controls across six concentrations. Quantitative molecular genotoxicity end points were derived based on dose response modeling of a newly developed integrated molecular effect quantifier, Protein Effect Level Index (PELI). The molecular genotoxicity end points were consistent with multiple conventional in vitro genotoxicity assays, as well as with in vivo carcinogenicity assay results. Further more, the proposed genotoxicity end point PELI values quantitatively correlated with both comet assay in human cell and carcinogenicity potency assay in mice, providing promising evidence for linking the molecular disturbance measurements to adverse outcomes at a biological relevant level. In addition, the high-resolution DNA damaging repair pathway alternated protein expression profiles allowed for chemical clustering and classification. This toxicogenomics-based assay presents a promising alternative for fast, efficient and mechanistic genotoxicity screening and assessment of drugs, foods, and environmental contaminants. PMID:26855253

  2. High-throughput micro-plate HCL-vanillin assay for screening tannin content in sorghum grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum contains tannin which is a phenolic compound that offers health promoting antioxidant capacity. The HCl-vanillin assay is a common and time consuming method for determining tannin content, but is not efficient for screening large sample sets as seen in association mapping panels or breeding ...

  3. A novel cell-based duplex high-throughput screening assay combining fluorescent Ca(2+) measurement with homogeneous time-resolved fluorescence technology.

    PubMed

    Kiss, László; Cselenyák, Attila; Varga, Ágnes; Visegrády, András

    2016-08-15

    Cell-based assays for G-protein-coupled receptor (GPCR) activation applied in high-throughput screening (HTS) monitor various readouts for second messengers or intracellular effectors. Recently, our understanding of diverging signaling pathways downstream of receptor activation and the capability of small molecules to selectively modulate signaling routes has increased substantially, underlining the importance of selecting appropriate readouts in cellular functional screens. To minimize the rate of false negatives in large-scale screening campaigns, it is crucial to maximize the chance of a ligand being detected, and generally applicable methods for detecting multiple analytes from a single well might serve this purpose. The few assays developed so far based on multiplexed GPCR readouts are limited to only certain applications and usually rely on genetic manipulations hindering screening in native or native-like cellular systems. Here we describe a more generally applicable and HTS-compatible homogeneous assay based on the combination of fluorometric detection of [Ca(2+)] with subsequent homogeneous time-resolved fluorescence (HTRF) cAMP readout in the same well. Besides describing development and validation of the assay, using a cell line recombinantly expressing the human PTH1 receptor screening of a small library is also presented, demonstrating the robustness and HTS compatibility of the novel paradigm. PMID:27235172

  4. A high-throughput three-dimensional cell migration assay for toxicity screening with mobile device-based macroscopic image analysis

    NASA Astrophysics Data System (ADS)

    Timm, David M.; Chen, Jianbo; Sing, David; Gage, Jacob A.; Haisler, William L.; Neeley, Shane K.; Raphael, Robert M.; Dehghani, Mehdi; Rosenblatt, Kevin P.; Killian, T. C.; Tseng, Hubert; Souza, Glauco R.

    2013-10-01

    There is a growing demand for in vitro assays for toxicity screening in three-dimensional (3D) environments. In this study, 3D cell culture using magnetic levitation was used to create an assay in which cells were patterned into 3D rings that close over time. The rate of closure was determined from time-lapse images taken with a mobile device and related to drug concentration. Rings of human embryonic kidney cells (HEK293) and tracheal smooth muscle cells (SMCs) were tested with ibuprofen and sodium dodecyl sulfate (SDS). Ring closure correlated with the viability and migration of cells in two dimensions (2D). Images taken using a mobile device were similar in analysis to images taken with a microscope. Ring closure may serve as a promising label-free and quantitative assay for high-throughput in vivo toxicity in 3D cultures.

  5. A high-throughput three-dimensional cell migration assay for toxicity screening with mobile device-based macroscopic image analysis

    PubMed Central

    Timm, David M.; Chen, Jianbo; Sing, David; Gage, Jacob A.; Haisler, William L.; Neeley, Shane K.; Raphael, Robert M.; Dehghani, Mehdi; Rosenblatt, Kevin P.; Killian, T. C.; Tseng, Hubert; Souza, Glauco R.

    2013-01-01

    There is a growing demand for in vitro assays for toxicity screening in three-dimensional (3D) environments. In this study, 3D cell culture using magnetic levitation was used to create an assay in which cells were patterned into 3D rings that close over time. The rate of closure was determined from time-lapse images taken with a mobile device and related to drug concentration. Rings of human embryonic kidney cells (HEK293) and tracheal smooth muscle cells (SMCs) were tested with ibuprofen and sodium dodecyl sulfate (SDS). Ring closure correlated with the viability and migration of cells in two dimensions (2D). Images taken using a mobile device were similar in analysis to images taken with a microscope. Ring closure may serve as a promising label-free and quantitative assay for high-throughput in vivo toxicity in 3D cultures. PMID:24141454

  6. Novel Cell-Based Hepatitis C Virus Infection Assay for Quantitative High-Throughput Screening of Anti-Hepatitis C Virus Compounds

    PubMed Central

    Hu, Zongyi; Lan, Keng-Hsin; He, Shanshan; Swaroop, Manju; Hu, Xin; Southall, Noel; Zheng, Wei

    2014-01-01

    Therapy for hepatitis C virus (HCV) infection has advanced with the recent approval of direct-acting antivirals in combination with peginterferon and ribavirin. New antivirals with novel targets are still needed to further improve the treatment of hepatitis C. Previously reported screening methods for HCV inhibitors either are limited to a virus-specific function or apply a screening method at a single dose, which usually leads to high false-positive or -negative rates. We developed a quantitative high-throughput screening (qHTS) assay platform with a cell-based HCV infection system. This highly sensitive assay can be miniaturized to a 1,536-well format for screening of large chemical libraries. All candidates are screened over a 7-concentration dose range to give EC50s (compound concentrations at 50% efficacy) and dose-response curves. Using this assay format, we screened a library of pharmacologically active compounds (LOPAC). Based on the profile of dose-dependent curves of HCV inhibition and cytotoxicity, 22 compounds with adequate curves and EC50s of <10 μM were selected for validation. In two additional independent assays, 17 of them demonstrated specific inhibition of HCV infection. Ten potential candidates with efficacies of >70% and CC50s (compound concentrations at 50% cytotoxicity) of <30 μM from these validated hits were characterized for their target stages in the HCV replication cycle. In this screen, we identified both known and novel hits with diverse structural and functional features targeting various stages of the HCV replication cycle. The pilot screen demonstrates that this assay system is highly robust and effective in identifying novel HCV inhibitors and that it can be readily applied to large-scale screening of small-molecule libraries. PMID:24277038

  7. Multiplexing spheroid volume, resazurin and acid phosphatase viability assays for high-throughput screening of tumour spheroids and stem cell neurospheres.

    PubMed

    Ivanov, Delyan P; Parker, Terry L; Walker, David A; Alexander, Cameron; Ashford, Marianne B; Gellert, Paul R; Garnett, Martin C

    2014-01-01

    Three-dimensional cell culture has many advantages over monolayer cultures, and spheroids have been hailed as the best current representation of small avascular tumours in vitro. However their adoption in regular screening programs has been hindered by uneven culture growth, poor reproducibility and lack of high-throughput analysis methods for 3D. The objective of this study was to develop a method for a quick and reliable anticancer drug screen in 3D for tumour and human foetal brain tissue in order to investigate drug effectiveness and selective cytotoxic effects. Commercially available ultra-low attachment 96-well round-bottom plates were employed to culture spheroids in a rapid, reproducible manner amenable to automation. A set of three mechanistically different methods for spheroid health assessment (Spheroid volume, metabolic activity and acid phosphatase enzyme activity) were validated against cell numbers in healthy and drug-treated spheroids. An automated open-source ImageJ macro was developed to enable high-throughput volume measurements. Although spheroid volume determination was superior to the other assays, multiplexing it with resazurin reduction and phosphatase activity produced a richer picture of spheroid condition. The ability to distinguish between effects on malignant and the proliferating component of normal brain was tested using etoposide on UW228-3 medulloblastoma cell line and human neural stem cells. At levels below 10 µM etoposide exhibited higher toxicity towards proliferating stem cells, whereas at concentrations above 10 µM the tumour spheroids were affected to a greater extent. The high-throughput assay procedures use ready-made plates, open-source software and are compatible with standard plate readers, therefore offering high predictive power with substantial savings in time and money. PMID:25119185

  8. Multiplexing Spheroid Volume, Resazurin and Acid Phosphatase Viability Assays for High-Throughput Screening of Tumour Spheroids and Stem Cell Neurospheres

    PubMed Central

    Ivanov, Delyan P.; Parker, Terry L.; Walker, David A.; Alexander, Cameron; Ashford, Marianne B.; Gellert, Paul R.; Garnett, Martin C.

    2014-01-01

    Three-dimensional cell culture has many advantages over monolayer cultures, and spheroids have been hailed as the best current representation of small avascular tumours in vitro. However their adoption in regular screening programs has been hindered by uneven culture growth, poor reproducibility and lack of high-throughput analysis methods for 3D. The objective of this study was to develop a method for a quick and reliable anticancer drug screen in 3D for tumour and human foetal brain tissue in order to investigate drug effectiveness and selective cytotoxic effects. Commercially available ultra-low attachment 96-well round-bottom plates were employed to culture spheroids in a rapid, reproducible manner amenable to automation. A set of three mechanistically different methods for spheroid health assessment (Spheroid volume, metabolic activity and acid phosphatase enzyme activity) were validated against cell numbers in healthy and drug-treated spheroids. An automated open-source ImageJ macro was developed to enable high-throughput volume measurements. Although spheroid volume determination was superior to the other assays, multiplexing it with resazurin reduction and phosphatase activity produced a richer picture of spheroid condition. The ability to distinguish between effects on malignant and the proliferating component of normal brain was tested using etoposide on UW228-3 medulloblastoma cell line and human neural stem cells. At levels below 10 µM etoposide exhibited higher toxicity towards proliferating stem cells, whereas at concentrations above 10 µM the tumour spheroids were affected to a greater extent. The high-throughput assay procedures use ready-made plates, open-source software and are compatible with standard plate readers, therefore offering high predictive power with substantial savings in time and money. PMID:25119185

  9. High-throughput screening methods for nitrilases.

    PubMed

    Xue, Ya-Ping; Yang, Yue-Kai; Lv, Sheng-Zhi; Liu, Zhi-Qiang; Zheng, Yu-Guo

    2016-04-01

    Nitrilases have been widely acknowledged as important alternatives to chemical catalysts, as they have been proved to transform an immense variety of nitriles under mild conditions and often in a stereoselective or regioselective manner. In the discovery of new nitrilases to establish viable industrial processes, screening plays an important role in identifying which subset of candidates contains a nitrilase of interest from a collection of organisms, clone banks, or enzyme libraries. However, the traditional methods for evaluating the nitrilases are a time-consuming, laborious, and costly process and have been regarded as a bottleneck in developing these nitrilases as industrial biocatalysts. In the past few years, a number of high-throughput screening methods have been developed for rapid evaluation and identification of nitrilases. Here, we review the various methodologies developed for high-throughput screening of nitrilases and focus on their advantages and limitations. PMID:26894402

  10. Imaging-Based High-Throughput Screening Assay To Identify New Molecules with Transmission-Blocking Potential against Plasmodium falciparum Female Gamete Formation

    PubMed Central

    Miguel-Blanco, Celia; Lelièvre, Joël; Delves, Michael J.; Bardera, Ana I.; Presa, Jesús L.; López-Barragán, María José; Ruecker, Andrea; Marques, Sara; Sinden, Robert E.

    2015-01-01

    In response to a call for the global eradication of malaria, drug discovery has recently been extended to identify compounds that prevent the onward transmission of the parasite, which is mediated by Plasmodium falciparum stage V gametocytes. Lately, metabolic activity has been used in vitro as a surrogate for gametocyte viability; however, as gametocytes remain relatively quiescent at this stage, their ability to undergo onward development (gamete formation) may be a better measure of their functional viability. During gamete formation, female gametocytes undergo profound morphological changes and express translationally repressed mRNA. By assessing female gamete cell surface expression of one such repressed protein, Pfs25, as the readout for female gametocyte functional viability, we developed an imaging-based high-throughput screening (HTS) assay to identify transmission-blocking compounds. This assay, designated the P. falciparum female gametocyte activation assay (FGAA), was scaled up to a high-throughput format (Z′ factor, 0.7 ± 0.1) and subsequently validated using a selection of 50 known antimalarials from diverse chemical families. Only a few of these agents showed submicromolar 50% inhibitory concentrations in the assay: thiostrepton, methylene blue, and some endoperoxides. To determine the best conditions for HTS, a robustness test was performed with a selection of the GlaxoSmithKline Tres Cantos Antimalarial Set (TCAMS) and the final screening conditions for this library were determined to be a 2 μM concentration and 48 h of incubation with gametocytes. The P. falciparum FGAA has been proven to be a robust HTS assay faithful to Plasmodium transmission-stage cell biology, and it is an innovative useful tool for antimalarial drug discovery which aims to identify new molecules with transmission-blocking potential. PMID:25801574

  11. A high-throughput screening-compatible homogeneous time-resolved fluorescence assay measuring the glycohydrolase activity of human poly(ADP-ribose) glycohydrolase.

    PubMed

    Stowell, Alexandra I J; James, Dominic I; Waddell, Ian D; Bennett, Neil; Truman, Caroline; Hardern, Ian M; Ogilvie, Donald J

    2016-06-15

    Poly(ADP-ribose) (PAR) polymers are transient post-translational modifications, and their formation is catalyzed by poly(ADP-ribose) polymerase (PARP) enzymes. A number of PARP inhibitors are in advanced clinical development for BRCA-mutated breast cancer, and olaparib has recently been approved for BRCA-mutant ovarian cancer; however, there has already been evidence of developed resistance mechanisms. Poly(ADP-ribose) glycohydrolase (PARG) catalyzes the hydrolysis of the endo- and exo-glycosidic bonds within the PAR polymers. As an alternative strategy, PARG is a potentially attractive therapeutic target. There is only one PARG gene, compared with 17 known PARP family members, and therefore a PARG inhibitor may have wider application with fewer compensatory mechanisms. Prior to the initiation of this project, there were no known existing cell-permeable small molecule PARG inhibitors for use as tool compounds to assess these hypotheses and no suitable high-throughput screening (HTS)-compatible biochemical assays available to identify start points for a drug discovery project. The development of this newly described high-throughput homogeneous time-resolved fluorescence (HTRF) assay has allowed HTS to proceed and, from this, the identification and advancement of multiple validated series of tool compounds for PARG inhibition. PMID:27036617

  12. A Microscopic Phenotypic Assay for the Quantification of Intracellular Mycobacteria Adapted for High-throughput/High-content Screening

    PubMed Central

    Iantomasi, Raffaella; Veyron-Churlet, Romain; Deboosère, Nathalie; Landry, Valérie; Baulard, Alain; Brodin, Priscille

    2014-01-01

    Despite the availability of therapy and vaccine, tuberculosis (TB) remains one of the most deadly and widespread bacterial infections in the world. Since several decades, the sudden burst of multi- and extensively-drug resistant strains is a serious threat for the control of tuberculosis. Therefore, it is essential to identify new targets and pathways critical for the causative agent of the tuberculosis, Mycobacterium tuberculosis (Mtb) and to search for novel chemicals that could become TB drugs. One approach is to set up methods suitable for the genetic and chemical screens of large scale libraries enabling the search of a needle in a haystack. To this end, we developed a phenotypic assay relying on the detection of fluorescently labeled Mtb within fluorescently labeled host cells using automated confocal microscopy. This in vitro assay allows an image based quantification of the colonization process of Mtb into the host and was optimized for the 384-well microplate format, which is proper for screens of siRNA-, chemical compound- or Mtb mutant-libraries. The images are then processed for multiparametric analysis, which provides read out inferring on the pathogenesis of Mtb within host cells. PMID:24473237

  13. High throughput screening (HTS) for phototoxicity hazard using the in vitro 3T3 neutral red uptake assay.

    PubMed

    Jones, P A; King, A V

    2003-01-01

    Testing for phototoxic hazard is usually carried out for product ingredients intended for use on skin, which may be exposed to sunlight. Unilever currently uses the validated in vitro 3T3 Neutral Red Uptake phototoxicity test (NRU PT). This protocol involves 2-3 experiments, each taking 3 days to perform. One person can test up to seven test materials plus positive control at any one time, requiring approximately 0.5 g test material. Higher throughput is required where libraries of potential actives are being generated and screening for potential phototoxicants is required. A proposed HTS protocol would use the NRU PT, but only one concentration (10 microg/ml) in a single experiment. The validity of the HTS protocol was investigated by a retrospective examination of data from 86 materials previously tested. Phototoxic hazard predictions made using the conventional NRU PT were compared with those obtained if only data at 10 microg/ml were considered. A majority of 73 materials (84.9%) gave agreement in predictions between the two protocols; for 13 materials (15.1%) the assessments did not agree. There were no false positives; however, there were some false negatives, i.e., predicted as phototoxic from the conventional assay, but non-phototoxic at 10 microg/ml. As this protocol is intended for screening purposes only it is considered that this would be acceptable at this stage in material selection. One person could screen 128 test materials in 3 days, requiring <1 mg test material, giving a substantial increase in productivity. Any material selected for further development and inclusion in a formulation may require further confirmatory testing, e.g. using a human skin model assay for phototoxicity. PMID:14599466

  14. Cell-based assay system for high-throughput screening of anti-photo-aging agents in fibroblast transfectants.

    PubMed

    Lee, S; Shin, S; Jung, E; Park, D

    2016-08-01

    The matricellular protein CCN1 is significantly elevated in acutely ultraviolet-irradiated human skin and negatively regulates collagen homeostasis by suppressing collagen synthesis and increasing collagen degradation. In this study, we established a stable cell line, termed CCN1-GFs, by transfection of the pAcGFP1-1-CCN1 promoter plasmid and examined its usefulness as a cell-based assay system for screening anti-aging ingredients. The promoter of the reporter plasmid pAcGFP1-1-CCN1 promoter was transfected into NIH3T3 cells using the Lipofectamine reagent. G418-resistant cells were selected and further cloned. To confirm whether AcGFP1-1-CCN1 promoter plasmid recombined in the NIH3T3 cells, the level of AcGFP1-1-CCN1 was measured by PCR analysis. To determine if NIH3T3 cells expressed the gene encoding green fluorescence protein in a CCN1 promoter-dependent manner, the reporter enzyme activities were assayed using a fluorimeter and flow cytometer. To determine if CCN1 inhibitor, which was selected through this system, exerted a direct effect on the downstream signal, mRNA expression of collagen1 and MMP1A was checked by using real-time PCR. UVB irradiation of CCN1-GFs resulted in increased CCN1 promoter activity. Treatment with retinoic acid, a CCN1 inhibitor, inhibited UV-induced CCN1 promoter activity. Subsequent use of this assay system to screen anti-aging ingredients revealed that CCN1-GFs treated with sclareol showed decreased levels of UVB-induced CCN1 expression. Sclareol attenuated UVB-induced photo-aging by an increase in collagen synthesis and decrease in MMP-1 activity. PMID:26281901

  15. Development of a differential scanning fluorimetry based high throughput screening assay for the discovery of affinity binders against an anthrax protein.

    PubMed

    Sorrell, Fiona J; Greenwood, Gemma K; Birchall, Kristian; Chen, Beining

    2010-09-01

    The anthrax protein protective antigen (PA) is responsible for cell-surface recognition and aids the delivery of the toxic anthrax enzymes into host cells. By targeting PA and preventing it from binding to host cells, it is hoped that the delivery of toxins into the cell will be inhibited. The current assay reported for PA is a low throughput functional assay. Here, the high throughput screening method using differential scanning fluorimetry (DSF) was developed and optimized to screen a number of libraries from various sources including a selection of FDA-approved drugs as well as hits selected by a virtual screening campaign. DSF is a rapid technique that uses fluorescence to monitor the thermal unfolding of proteins using a standard QPCR instrument. A positive shift in the calculated melting temperature (Tm), of the protein in the presence of a compound, relative to the Tm of the unbound protein, indicates that stabilization of the protein by ligand binding may have occurred. Optimization of the melting assay showed SYPRO Orange to be an ideal dye as a marker and lead to the reduction of DMSO concentration to <1% (v/v) in the final assay. The final assay volume was minimized to 25 L with 5 g protein per well of 96-well plate. In addition, a buffer, salt and additive screen lead to the selection of 10 mM HEPES-NaOH pH 7.5, 100 mM NaCl as the assay buffer. This method has been shown here to be useful as a primary method for the detection of small-molecule PA ligands, giving a hit rate of approximately 7%. These ligands can then be studied further using PA functional assays to confirm their biological activities before being selected as lead compounds for the treatment of anthrax. PMID:20376913

  16. Microscopy-based Assays for High-throughput Screening of Host Factors Involved in Brucella Infection of Hela Cells.

    PubMed

    Casanova, Alain; Low, Shyan H; Emmenlauer, Mario; Conde-Alvarez, Raquel; Salcedo, Suzana P; Gorvel, Jean-Pierre; Dehio, Christoph

    2016-01-01

    Brucella species are facultative intracellular pathogens that infect animals as their natural hosts. Transmission to humans is most commonly caused by direct contact with infected animals or by ingestion of contaminated food and can lead to severe chronic infections. Brucella can invade professional and non-professional phagocytic cells and replicates within endoplasmic reticulum (ER)-derived vacuoles. The host factors required for Brucella entry into host cells, avoidance of lysosomal degradation, and replication in the ER-like compartment remain largely unknown. Here we describe two assays to identify host factors involved in Brucella entry and replication in HeLa cells. The protocols describe the use of RNA interference, while alternative screening methods could be applied. The assays are based on the detection of fluorescently labeled bacteria in fluorescently labeled host cells using automated wide-field microscopy. The fluorescent images are analyzed using a standardized image analysis pipeline in CellProfiler which allows single cell-based infection scoring. In the endpoint assay, intracellular replication is measured two days after infection. This allows bacteria to traffic to their replicative niche where proliferation is initiated around 12 hr after bacterial entry. Brucella which have successfully established an intracellular niche will thus have strongly proliferated inside host cells. Since intracellular bacteria will greatly outnumber individual extracellular or intracellular non-replicative bacteria, a strain constitutively expressing GFP can be used. The strong GFP signal is then used to identify infected cells. In contrast, for the entry assay it is essential to differentiate between intracellular and extracellular bacteria. Here, a strain encoding for a tetracycline-inducible GFP is used. Induction of GFP with simultaneous inactivation of extracellular bacteria by gentamicin enables the differentiation between intracellular and extracellular

  17. A high throughput glucocerebrosidase assay using the natural substrate glucosylceramide.

    PubMed

    Motabar, Omid; Goldin, Ehud; Leister, William; Liu, Ke; Southall, Noel; Huang, Wenwei; Marugan, Juan J; Sidransky, Ellen; Zheng, Wei

    2012-01-01

    Glucocerebrosidase is a lysosomal enzyme that catalyzes the hydrolysis of glucosylceramide to form ceramide and glucose. A deficiency of lysosomal glucocerebrosidase due to genetic mutations results in Gaucher disease, in which glucosylceramide accumulates in the lysosomes of certain cell types. Although enzyme replacement therapy is currently available for the treatment of type 1 Gaucher disease, the neuronopathic forms of Gaucher disease are still not treatable. Small molecule drugs that can penetrate the blood-brain barrier, such as pharmacological chaperones and enzyme activators, are new therapeutic approaches for Gaucher disease. Enzyme assays for glucocerebrosidase are used to screen compound libraries to identify new lead compounds for drug development for the treatment of Gaucher disease. But the current assays use artificial substrates that are not physiologically relevant. We developed a glucocerebrosidase assay using the natural substrate glucosylceramide coupled to an Amplex-red enzyme reporting system. This assay is in a homogenous assay format and has been miniaturized in a 1,536-well plate format for high throughput screening. The assay sensitivity and robustness is similar to those seen with other glucocerebrosidase fluorescence assays. Therefore, this new glucocerebrosidase assay is an alternative approach for high throughput screening. PMID:22033823

  18. A high throughput glucocerebrosidase assay using the natural substrate glucosylceramide

    PubMed Central

    Motabar, Omid; Goldin, Ehud; Leister, William; Liu, Ke; Southall, Noel; Huang, Wenwei; Marugan, Juan J.; Sidransky, Ellen

    2012-01-01

    Glucocerebrosidase is a lysosomal enzyme that catalyzes the hydrolysis of glucosylceramide to form ceramide and glucose. A deficiency of lysosomal glucocerebrosidase due to genetic mutations results in Gaucher disease, in which glucosylceramide accumulates in the lysosomes of certain cell types. Although enzyme replacement therapy is currently available for the treatment of type 1 Gaucher disease, the neuronopathic forms of Gaucher disease are still not treatable. Small molecule drugs that can penetrate the blood-brain barrier, such as pharmacological chaperones and enzyme activators, are new therapeutic approaches for Gaucher disease. Enzyme assays for glucocerebrosidase are used to screen compound libraries to identify new lead compounds for drug development for the treatment of Gaucher disease. But the current assays use artificial substrates that are not physiologically relevant. We developed a glucocerebrosidase assay using the natural substrate glucosylceramide coupled to an Amplex-red enzyme reporting system. This assay is in a homogenous assay format and has been miniaturized in a 1,536-well plate format for high throughput screening. The assay sensitivity and robustness is similar to those seen with other glucocerebrosidase fluorescence assays. Therefore, this new glucocerebrosidase assay is an alternative approach for high throughput screening. PMID:22033823

  19. High throughput assays for analyzing transcription factors.

    PubMed

    Li, Xianqiang; Jiang, Xin; Yaoi, Takuro

    2006-06-01

    Transcription factors are a group of proteins that modulate the expression of genes involved in many biological processes, such as cell growth and differentiation. Alterations in transcription factor function are associated with many human diseases, and therefore these proteins are attractive potential drug targets. A key issue in the development of such therapeutics is the generation of effective tools that can be used for high throughput discovery of the critical transcription factors involved in human diseases, and the measurement of their activities in a variety of disease or compound-treated samples. Here, a number of innovative arrays and 96-well format assays for profiling and measuring the activities of transcription factors will be discussed. PMID:16834538

  20. High-throughput micro plate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid, 96-well microtiter assays were compared to conventional assays for quantifying total phenolic content, flavonoid content, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) in sorghum grain. The 96-well assays exhibited a correlation of >0.9 to the conventional assays. The 96-well assays allowed for ...

  1. Screening assay of angiotensin-converting enzyme inhibitory activity from complex natural colourants and foods using high-throughput LC-MS/MS.

    PubMed

    Inoue, Koichi; Kitade, Marie; Hino, Tomoaki; Oka, Hisao

    2011-06-15

    Inhibition of angiotensin-converting enzyme (ACE) by various foods decreases the blood pressure. ACE inhibitors derived from natural components may be of therapeutic value in preventive medicine. In this study, we report a novel screening assay of ACE inhibitors from complex natural colourants and foods that employ solid phase extraction (SPE), high-throughput liquid chromatography (LC) separation, and stable isotope dilution electrospray tandem mass spectrometry (SID-ESI-MS/MS). When a target sample was subjected to N-Hippuryl-His-Leu (HHL) and ACE in phosphate buffer (pH 7.4), generated hippuric acid (HA) was extracted by SPE. LC/SID-ESI-MS/MS detection of HA allowed us to accurately identify the effects of complex substances such natural colourants and foods that inhibit the ACE of HHL. The major HA and HA-d5 fragment ions at m/z 180→105 and 185→110 in the multiple reaction monitoring (MRM) mode can quantify levels that are lower than other methods. The LC/SID-ESI-MS/MS method described here is a rapid, selective, sensitive, and highly reproducible method for the determination of HA in various samples. Based on the assay developed, all samples such as natural colourants, infant formula, soy paste, ketchup, mayonnaise, wheat flour, orange juice, supplement drink, tea, and coffee could be accurately measured for ACE inhibition in various matrices. High-throughput LC/SID-ESI-MS/MS assay has no limitations in the evaluation of inhibition activity in various natural samples such as colour, high-matrix, and processed foods. PMID:25213976

  2. High Throughput Screen for Escherichia coli Heat Shock Protein 70 (Hsp70/DnaK): ATPase Assay in Low Volume By Exploiting Energy Transfer

    PubMed Central

    Miyata, Yoshinari; Chang, Lyra; Bainor, Anthony; McQuade, Thomas J.; Walczak, Christopher P.; Zhang, Yaru; Larsen, Martha J.; Kirchhoff, Paul; Gestwicki, Jason E.

    2011-01-01

    Members of the heat shock protein 70 (Hsp70) family of molecular chaperones are emerging as potential therapeutic targets. Their ATPase activity has classically been measured using colorimetric phosphate-detection reagents, such as quinaldine red (QR). While such assays are suitable for 96-well plate formats, they typically lose sensitivity when attempted in lower volume due to path length and meniscus effects. These limitations and Hsp70’s weak enzymatic activity have combined to create significant challenges in high throughput screening. To overcome these difficulties, we have adopted an energy transfer strategy that was originally reported by Zuck et al. (Anal. Biochem. 2005, 342:254–259). Briefly, white 384-well plates emit fluorescence when irradiated at 430 nm. In turn, this intrinsic fluorescence can be quenched by energy transfer with the QR-based chromophore. Using this more sensitive approach, we tested 55,400 compounds against DnaK, a prokaryotic member of the Hsp70 family. The assay performance was good (Z′ ~ 0.6, CV ~8%) and at least one promising new inhibitor was identified. In secondary assays, this compound specifically blocked stimulation of DnaK by its co-chaperone, DnaJ. Thus, this simple and inexpensive adaptation of a colorimetric method might be suitable for screening against Hsp70-family members. PMID:20926844

  3. High-throughput Screening of ToxCast" Phase I Chemicals in an Embryonic Stem Cell Assay Reveals Potential Disruption of a Critical Developmental Signaling Pathway

    EPA Science Inventory

    Little is known about the developmental toxicity of the expansive chemical landscape in existence today. Significant efforts are being made to apply novel methods to predict developmental activity of chemicals utilizing high-throughput screening (HTS) and high-content screening (...

  4. HIGH-THROUGHPUT SCREENING ASSAY FOR THE IDENTIFICATION OF COMPOUNDS REGULATING SELF-RENEWAL AND DIFFERENTIATION IN HUMAN EMBRYONIC STEM CELLS

    PubMed Central

    Desbordes, Sabrina C.; Placantonakis, Dimitris G.; Ciro, Anthony; Socci, Nicholas D.; Lee, Gabsang; Djaballah, Hakim; Studer, Lorenz

    2009-01-01

    Summary High-throughput screening (HTS) of chemical libraries has become a critical tool in basic biology and drug discovery. However, its implementation and the adaptation of high content assays to human embryonic stem cells (hESCs) have been hampered by multiple technical challenges. Here we present a strategy to adapt hESCs to HTS conditions, resulting in an assay suitable for the discovery of small molecules that drive hESC self-renewal or differentiation. Use of this new assay has led to the identification of several marketed drugs and natural compounds promoting short-term hESC maintenance and compounds directing early lineage choice during differentiation. Global gene expression analysis upon drug treatment defines known and novel pathways correlated to hESC self-renewal and differentiation. Our results demonstrate feasibility of hESC-based HTS and enhance the repertoire of chemical compounds for manipulating hESC fate. The availability of high content assays should accelerate progress in basic and translational hESC biology. PMID:18522853

  5. High throughput adjustable 96-well plate assay for androgen receptor binding: a practical approach for EDC screening using the chimpanzee AR.

    PubMed

    Hartig, P C; Cardon, M C; Blystone, C R; Gray, L E; Wilson, V S

    2008-09-26

    The issue as to whether natural and man-made chemicals interfere with endocrine function has raised concerns. This interference could be biologically significant even at very low doses if the chemicals interact deleteriously with hormone receptors at low concentrations. Therefore, the United States Environmental Protection Agency (USEPA) Office of Coordination and Policy (OSCP) requested that a nonhuman mammalian androgen receptor binding assay be developed for possible use in their Endocrine Disruptor Screening Program (EDSP). Ideally, this assay would be high throughput, not use animals as a source of receptor protein, easily deployed throughout the scientific community, utilize reagents available to both the public and private sector, and have the potential for future automation. We developed a highly modified 96-well plate assay which meets these criteria. It employs a baculovirus expressed recombinant primate androgen receptor which is publically available and exploits the unique ability of some mammalian androgen receptors to remain biologically active after guanidine hydrochloride (GdnHCl) solubilization. This GdnHCl treated receptor remains soluble and requires no additional purification prior to use. We provide a very detailed description of the assay protocol itself, and similarly detailed method for producing and solubilizing the receptor. PMID:18691642

  6. High-throughput screening using the differential radial capillary action of ligand assay identifies ebselen as an inhibitor of diguanylate cyclases.

    PubMed

    Lieberman, Ori J; Orr, Mona W; Wang, Yan; Lee, Vincent T

    2014-01-17

    The rise of bacterial resistance to traditional antibiotics has motivated recent efforts to identify new drug candidates that target virulence factors or their regulatory pathways. One such antivirulence target is the cyclic-di-GMP (cdiGMP) signaling pathway, which regulates biofilm formation, motility, and pathogenesis. Pseudomonas aeruginosa is an important opportunistic pathogen that utilizes cdiGMP-regulated polysaccharides, including alginate and pellicle polysaccharide (PEL), to mediate virulence and antibiotic resistance. CdiGMP activates PEL and alginate biosynthesis by binding to specific receptors including PelD and Alg44. Mutations that abrogate cdiGMP binding to these receptors prevent polysaccharide production. Identification of small molecules that can inhibit cdiGMP binding to the allosteric sites on these proteins could mimic binding defective mutants and potentially reduce biofilm formation or alginate secretion. Here, we report the development of a rapid and quantitative high-throughput screen for inhibitors of protein-cdiGMP interactions based on the differential radial capillary action of ligand assay (DRaCALA). Using this approach, we identified ebselen as an inhibitor of cdiGMP binding to receptors containing an RxxD domain including PelD and diguanylate cyclases (DGC). Ebselen reduces diguanylate cyclase activity by covalently modifying cysteine residues. Ebselen oxide, the selenone analogue of ebselen, also inhibits cdiGMP binding through the same covalent mechanism. Ebselen and ebselen oxide inhibit cdiGMP regulation of biofilm formation and flagella-mediated motility in P. aeruginosa through inhibition of diguanylate cyclases. The identification of ebselen provides a proof-of-principle that a DRaCALA high-throughput screening approach can be used to identify bioactive agents that reverse regulation of cdiGMP signaling by targeting cdiGMP-binding domains. PMID:24134695

  7. High-throughput screening using the differential radial capillary action of ligand assay identifies ebselen as an inhibitor of diguanylate cyclases

    PubMed Central

    Lieberman, Ori J.; Orr, Mona W.; Wang, Yan; Lee, Vincent T.

    2013-01-01

    The rise of bacterial resistance to traditional antibiotics has motivated recent efforts to identify new drug candidates that target virulence factors or their regulatory pathways. One such antivirulence target is the cyclic-di-GMP (cdiGMP) signaling pathway, which regulates biofilm formation, motility, and pathogenesis. Pseudomonas aeruginosa is an important opportunistic pathogen that utilizes cdiGMP-regulated polysaccharides, including alginate and pellicle polysaccharide (PEL), to mediate virulence and antibiotic resistance. CdiGMP activates PEL and alginate biosynthesis by binding to specific receptors including PelD and Alg44. Mutations that abrogate cdiGMP binding to these receptors prevent polysaccharide production. Identification of small molecules that can inhibit cdiGMP binding to the allosteric sites on these proteins could mimic binding defective mutants and potentially reduce biofilm formation or alginate secretion. Here, we report the development of a rapid and quantitative high-throughput screen for inhibitors of protein-cdiGMP interactions based on the differential radial capillary action of ligand assay (DRaCALA). Using this approach, we identified ebselen as an inhibitor of cdiGMP binding to receptors containing an RxxD domain including PelD and diguanylate cyclases (DGC). Ebselen reduces diguanylate cyclase activity by covalently modifying cysteine residues. Ebselen oxide, the selenone analogue of ebselen, also inhibits cdiGMP binding through the same covalent mechanism. Ebselen and ebselen oxide inhibit cdiGMP regulation of biofilm formation and flagella-mediated motility in P. aeruginosa through inhibition of diguanylate cyclases. The identification of ebselen provides a proof-of-principle that a DRaCALA high-throughput screening approach can be used to identify bioactive agents that reverse regulation of cdiGMP signaling by targeting cdiGMP-binding domains. PMID:24134695

  8. Development and Implementation of a High-Throughput High-Content Screening Assay to Identify Inhibitors of Androgen Receptor Nuclear Localization in Castration-Resistant Prostate Cancer Cells.

    PubMed

    Johnston, Paul A; Nguyen, Minh M; Dar, Javid A; Ai, Junkui; Wang, Yujuan; Masoodi, Khalid Z; Shun, Tongying; Shinde, Sunita; Camarco, Daniel P; Hua, Yun; Huryn, Donna M; Wilson, Gabriela Mustata; Lazo, John S; Nelson, Joel B; Wipf, Peter; Wang, Zhou

    2016-05-01

    Patients with castration-resistant prostate cancer (CRPC) can be treated with abiraterone, a potent inhibitor of androgen synthesis, or enzalutamide, a second-generation androgen receptor (AR) antagonist, both targeting AR signaling. However, most patients relapse after several months of therapy and a majority of patients with relapsed CRPC tumors express the AR target gene prostate-specific antigen (PSA), suggesting that AR signaling is reactivated and can be targeted again to inhibit the relapsed tumors. Novel small molecules capable of inhibiting AR function may lead to urgently needed therapies for patients resistant to abiraterone, enzalutamide, and/or other previously approved antiandrogen therapies. Here, we describe a high-throughput high-content screening (HCS) campaign to identify small-molecule inhibitors of AR nuclear localization in the C4-2 CRPC cell line stably transfected with GFP-AR-GFP (2GFP-AR). The implementation of this HCS assay to screen a National Institutes of Health library of 219,055 compounds led to the discovery of 3 small molecules capable of inhibiting AR nuclear localization and function in C4-2 cells, demonstrating the feasibility of using this cell-based phenotypic assay to identify small molecules targeting the subcellular localization of AR. Furthermore, the three hit compounds provide opportunities to develop novel AR drugs with potential for therapeutic intervention in CRPC patients who have relapsed after treatment with antiandrogens, such as abiraterone and/or enzalutamide. PMID:27187604

  9. Staphylococcus aureus DNA ligase: characterization of its kinetics of catalysis and development of a high-throughput screening compatible chemiluminescent hybridization protection assay

    PubMed Central

    2004-01-01

    DNA ligases are key enzymes involved in the repair and replication of DNA. Prokaryotic DNA ligases uniquely use NAD+ as the adenylate donor during catalysis, whereas eukaryotic enzymes use ATP. This difference in substrate specificity makes the bacterial enzymes potential targets for therapeutic intervention. We have developed a homogeneous chemiluminescence-based hybridization protection assay for Staphylococcus aureus DNA ligase that uses novel acridinium ester technology and demonstrate that it is an alternative to the commonly used radiometric assays for ligases. The assay has been used to determine a number of kinetic constants for S. aureus DNA ligase catalysis. These included the Km values for NAD+ (2.75±0.1 μM) and the acridinium-ester-labelled DNA substrate (2.5±0.2 nM). A study of the pH-dependencies of kcat, Km and kcat/Km has revealed values of kinetically influential ionizations within the enzyme–substrate complexes (kcat) and free enzyme (kcat/Km). In each case, the curves were shown to be composed of one kinetically influential ionization, for kcat, pKa=6.6±0.1 and kcat/Km, pKa=7.1±0.1. Inhibition characteristics of the enzyme against two Escherichia coli DNA ligase inhibitors have also been determined with IC50 values for these being 3.30±0.86 μM for doxorubicin and 1.40±0.07 μM for chloroquine diphosphate. The assay has also been successfully miniaturized to a sufficiently low volume to allow it to be utilized in a high-throughput screen (384-well format; 20 μl reaction volume), enabling the assay to be used in screening campaigns against libraries of compounds to discover leads for further drug development. PMID:15283677

  10. A cAMP Biosensor-Based High-Throughput Screening Assay for Identification of Gs-Coupled GPCR Ligands and Phosphodiesterase Inhibitors.

    PubMed

    Vedel, Line; Bräuner-Osborne, Hans; Mathiesen, Jesper Mosolff

    2015-08-01

    Cyclic adenosine 3',5'-monophosphate (cAMP) is an important second messenger, and quantification of intracellular cAMP levels is essential in studies of G protein-coupled receptors (GPCRs). The intracellular cAMP levels are regulated by the adenylate cyclase (AC) upon activation of either Gs- or Gi-coupled GPCRs, which leads to increased or decreased cAMP levels, respectively. Here we describe a real-time Förster resonance energy transfer (FRET)-based cAMP high-throughput screening (HTS) assay for identification and characterization of Gs-coupled GPCR ligands and phosphodiesterase (PDE) inhibitors in living cells. We used the β2-adrenergic receptor (β(2)AR) as a representative Gs-coupled receptor and characterized two cell lines with different expression levels. Low receptor expression allowed detection of desensitization kinetics and delineation of partial agonism, whereas high receptor expression resulted in prolonged signaling and enabled detection of weak partial agonists and/or ligands with low potency, which is highly advantageous in large HTS settings and hit identification. In addition, the assay enabled detection of β(2)AR inverse agonists and PDE inhibitors. High signal-to-noise ratios were also observed for the other representative Gs-coupled GPCRs tested, GLP-1R and GlucagonR. The FRET-based cAMP biosensor assay is robust, reproducible, and inexpensive with good Z factors and is highly applicable for HTS. PMID:25851033

  11. High Throughput Screening For Hazard and Risk of Environmental Contaminants

    EPA Science Inventory

    High throughput toxicity testing provides detailed mechanistic information on the concentration response of environmental contaminants in numerous potential toxicity pathways. High throughput screening (HTS) has several key advantages: (1) expense orders of magnitude less than an...

  12. Time-correlated single photon counting: an advancing technique in a plate reader for assay development and high throughput screening

    NASA Astrophysics Data System (ADS)

    Näther, Dirk U.; Fenske, Roger; Hurteaux, Reynald; Majno, Sandra; Smith, S. Desmond

    2006-10-01

    A new plate reader (Nanotaurus) has been developed by Edinburgh Instruments that has the principle design features of a confocal microscope and utilises the technique of Time Correlated Single Photon Counting for data acquisition. The advantages of Fluorescence Lifetime Measurements in the nanosecond time scale and analysis methods to recover lifetime parameters are discussed based on experimental data. First working assays using changes of lifetime parameters are presented that clearly demonstrate the advantages of the new instrument for biochemical assays and show strong promise for cell-based assays, by utilising the independence of lifetime parameters from sample volume and concentration.

  13. High Throughput siRNA Screening Using Reverse Transfection.

    PubMed

    von Schantz, Carina; Saarela, Jani

    2016-01-01

    RNA interference (RNAi) is a commonly used technique to knockdown gene function. Here, we describe a high throughput screening method for siRNA mediated gene silencing of the breast cancer cell line MDA-MB-231 using reverse transfection. Furthermore, we describe the setup for two separate methods for detecting viable and dead cells using either homogenous assays or image-based analysis. PMID:27581282

  14. A high-throughput chemically induced inflammation assay in zebrafish

    PubMed Central

    2010-01-01

    Background Studies on innate immunity have benefited from the introduction of zebrafish as a model system. Transgenic fish expressing fluorescent proteins in leukocyte populations allow direct, quantitative visualization of an inflammatory response in vivo. It has been proposed that this animal model can be used for high-throughput screens aimed at the identification of novel immunomodulatory lead compounds. However, current assays require invasive manipulation of fish individually, thus preventing high-content screening. Results Here we show that specific, noninvasive damage to lateral line neuromast cells can induce a robust acute inflammatory response. Exposure of fish larvae to sublethal concentrations of copper sulfate selectively damages the sensory hair cell population inducing infiltration of leukocytes to neuromasts within 20 minutes. Inflammation can be assayed in real time using transgenic fish expressing fluorescent proteins in leukocytes or by histochemical assays in fixed larvae. We demonstrate the usefulness of this method for chemical and genetic screens to detect the effect of immunomodulatory compounds and mutations affecting the leukocyte response. Moreover, we transformed the assay into a high-throughput screening method by using a customized automated imaging and processing system that quantifies the magnitude of the inflammatory reaction. Conclusions This approach allows rapid screening of thousands of compounds or mutagenized zebrafish for effects on inflammation and enables the identification of novel players in the regulation of innate immunity and potential lead compounds toward new immunomodulatory therapies. We have called this method the chemically induced inflammation assay, or ChIn assay. See Commentary article: http://www.biomedcentral.com/1741-7007/8/148. PMID:21176202

  15. Validation of a High-Throughput Screening Assay for Identification of Adjunctive and Directly Acting Antimicrobials Targeting Carbapenem-Resistant Enterobacteriaceae.

    PubMed

    Smith, Kenneth P; Kirby, James E

    2016-04-01

    We describe development and validation of a high-throughput screen (HTS) for identifying small molecules that restore the efficacy of carbapenems (adjunctives) and/or directly inhibit growth of carbapenem-resistant Enterobacteriaceae (CRE). Our HTS assay is based on a screen-counterscreen approach using a representative multidrug-resistant CRE strain, Klebsiella pneumoniae BIDMC12A. Specifically, we tested the ability of small molecules to inhibit bacterial growth in the presence (screen) or absence (counterscreen) of meropenem, a representative carbapenem antibiotic. Primary screening of 11,698 known bioactive compounds identified 14 with adjunctive activity and 79 with direct antimicrobial effect. Secondary screening identified triclosan as a strongly synergistic meropenem adjunctive (fractional inhibitory concentration = 0.48) and confirmed azidothymidine (AZT) (minimal inhibitory concentration [MIC] = 4 μg mL(-1)), NH125 (MIC = 4 μg mL(-1)), diphenyleneiodonium chloride (MIC = 8 μg mL(-1)), and spectinomycin (MIC = 32 μg mL(-1)) as potent direct antimicrobials. Spectrum of activity of AZT and spectinomycin was tested against a collection of 103 representative Enterobacteriaceae strains (≈50% CRE). AZT, a nucleoside analog used to treat human immunodeficiency virus, demonstrated an MIC50 of 2 μg mL(-1). Spectinomycin, an antibiotic used to treat gonorrhea, had an MIC50 of 32 μg mL(-1). Therefore, a significant percentage of CRE strains appeared relatively susceptible to these antimicrobials. These data identified AZT and spectinomycin as available agents warranting further study for potential treatment of multidrug-resistant CRE infection. Our results provide proof of principle and impetus for performing a large-scale HTS for discovery of novel, small-molecule adjunctives and antibacterial agents directly targeting CRE. PMID:27045615

  16. High throughput screening and structure-activity relationship study of potential α2A-adrenoceptor agonists by LANCETM cAMP assay.

    PubMed

    Yang, Huan; He, Ling; Yan, Ming; He, Jian-Guo; Yu, Tao

    2013-06-28

    G protein-coupled receptors (GPCRs) are signaling molecules with a wide variety of skills. Members of this large family of membrane protein have been shown to regulate the activities of the different signaling pathways of the ligand specific manner. α2-adrenoceptors (α2-ARs) are one of the GPCRs and the stimulation of them could modulate many classical effects such as hypotension, bradycardia, etc. Recently, α2A-AR is more and more important for its role in the therapeutic applications in central nervous system (CNS) diseases.High throughput screening of α2A-AR agonists was established by LANCETM cAMP assay from a compound library of 80,000 small-molecule compounds to find out potential human α2A-adrenoceptor (α2A-AR) agonists that might have therapeutic effect in CNS diseases. From the preliminary and secondary screening, 37 compounds were identified as α2AAR agonists, and six compounds among them presented more pronounced α2A-AR stimulating activity than guanfacine, a selective α2A-AR agonist. The study provided referred data for the development of potent α2A-AR agonists and suggested that the existence of the parent structure (1, 2, 4-benzothiadiazine 1, 1-dioxide) bodes well for pharmaceutical development of α2A-AR agonists. PMID:23514320

  17. Setting Up a Bioluminescence Resonance Energy Transfer High throughput Screening Assay to Search for Protein/Protein Interaction Inhibitors in Mammalian Cells

    PubMed Central

    Couturier, Cyril; Deprez, Benoit

    2012-01-01

    Each step of the cell life and its response or adaptation to its environment are mediated by a network of protein/protein interactions termed “interactome.” Our knowledge of this network keeps growing due to the development of sensitive techniques devoted to study these interactions. The bioluminescence resonance energy transfer (BRET) technique was primarily developed to allow the dynamic monitoring of protein/protein interactions (PPI) in living cells, and has widely been used to study receptor activation by intra- or extra-molecular conformational changes within receptors and activated complexes in mammal cells. Some interactions are described as crucial in human pathological processes, and a new class of drugs targeting them has recently emerged. The BRET method is well suited to identify inhibitors of PPI and here is described why and how to set up and optimize a high throughput screening assay based on BRET to search for such inhibitory compounds. The different parameters to take into account when developing such BRET assays in mammal cells are reviewed to give general guidelines: considerations on the targeted interaction, choice of BRET version, inducibility of the interaction, kinetic of the monitored interaction, and of the BRET reading, influence of substrate concentration, number of cells and medium composition used on the Z′ factor, and expected interferences from colored or fluorescent compounds. PMID:22973258

  18. High-throughput fluorescence screening assay for the identification and comparison of antimicrobial peptides' activity on various yeast species.

    PubMed

    Kodedová, Marie; Sychrová, Hana

    2016-09-10

    New antifungal compounds that circumvent the resistance of the pathogen by directly damaging yeast cell surface structures are promising agents for the treatment of fungal infections, due to their different mechanism of action from current clinically used antifungal drugs. We present here a rapid and cost-effective fluorescence method suitable for identifying new potent drugs that directly target yeast cell surface structures, causing cell permeabilization and thus bypassing the multidrug resistance mechanisms of pathogens. The fluorescence assay enabled us to detect with high sensitivity damage to the Candida plasma membrane (its hyperpolarization and permeabilization) as a result of short-term exposure to the antifungal compounds. Results can be obtained in 1-2h with minimal effort and consumption of the tested compounds, also 96 samples can be analysed simultaneously. We used this method to study antimicrobial peptides isolated from the venom of bees and their synthetic analogs, compare the potency of the peptides and determine their minimal effective concentrations. The antimicrobial peptides were able to kill yeast cells at low concentrations within a 15-min treatment, the LL-III peptide exhibited a broad spectrum of antifungal activity on various Saccharomyces, pathogenic Candida and osmotolerant yeast species. PMID:27369550

  19. Development and Validation of a Novel Leishmania donovani Screening Cascade for High-Throughput Screening Using a Novel Axenic Assay with High Predictivity of Leishmanicidal Intracellular Activity.

    PubMed

    Nühs, Andrea; De Rycker, Manu; Manthri, Sujatha; Comer, Eamon; Scherer, Christina A; Schreiber, Stuart L; Ioset, Jean-Robert; Gray, David W

    2015-09-01

    Visceral leishmaniasis is an important parasitic disease of the developing world with a limited arsenal of drugs available for treatment. The existing drugs have significant deficiencies so there is an urgent need for new and improved drugs. In the human host, Leishmania are obligate intracellular parasites which poses particular challenges in terms of drug discovery. To achieve sufficient throughput and robustness, free-living parasites are often used in primary screening assays as a surrogate for the more complex intracellular assays. We and others have found that such axenic assays have a high false positive rate relative to the intracellular assays, and that this limits their usefulness as a primary platform for screening of large compound collections. While many different reasons could lie behind the poor translation from axenic parasite to intracellular parasite, we show here that a key factor is the identification of growth slowing and cytostatic compounds by axenic assays in addition to the more desirable cytocidal compounds. We present a screening cascade based on a novel cytocidal-only axenic amastigote assay, developed by increasing starting density of cells and lowering the limit of detection, and show that it has a much improved translation to the intracellular assay. We propose that this assay is an improved primary platform in a new Leishmania screening cascade designed for the screening of large compound collections. This cascade was employed to screen a diversity-oriented-synthesis library, and yielded two novel antileishmanial chemotypes. The approach we have taken may have broad relevance to anti-infective and anti-parasitic drug discovery. PMID:26407168

  20. Development and Validation of a Novel Leishmania donovani Screening Cascade for High-Throughput Screening Using a Novel Axenic Assay with High Predictivity of Leishmanicidal Intracellular Activity

    PubMed Central

    Nühs, Andrea; De Rycker, Manu; Manthri, Sujatha; Comer, Eamon; Scherer, Christina A.; Schreiber, Stuart L.; Ioset, Jean-Robert; Gray, David W.

    2015-01-01

    Visceral leishmaniasis is an important parasitic disease of the developing world with a limited arsenal of drugs available for treatment. The existing drugs have significant deficiencies so there is an urgent need for new and improved drugs. In the human host, Leishmania are obligate intracellular parasites which poses particular challenges in terms of drug discovery. To achieve sufficient throughput and robustness, free-living parasites are often used in primary screening assays as a surrogate for the more complex intracellular assays. We and others have found that such axenic assays have a high false positive rate relative to the intracellular assays, and that this limits their usefulness as a primary platform for screening of large compound collections. While many different reasons could lie behind the poor translation from axenic parasite to intracellular parasite, we show here that a key factor is the identification of growth slowing and cytostatic compounds by axenic assays in addition to the more desirable cytocidal compounds. We present a screening cascade based on a novel cytocidal-only axenic amastigote assay, developed by increasing starting density of cells and lowering the limit of detection, and show that it has a much improved translation to the intracellular assay. We propose that this assay is an improved primary platform in a new Leishmania screening cascade designed for the screening of large compound collections. This cascade was employed to screen a diversity-oriented-synthesis library, and yielded two novel antileishmanial chemotypes. The approach we have taken may have broad relevance to anti-infective and anti-parasitic drug discovery. PMID:26407168

  1. Data Analysis for High-Throughput RNAi Screening.

    PubMed

    Azorsa, David O; Turnidge, Megan A; Arora, Shilpi

    2016-01-01

    High-throughput RNA interference (HT-RNAi) screening is an effective technology to help identify important genes and pathways involved in a biological process. Analysis of high-throughput RNAi screening data is a critical part of this technology, and many analysis methods have been described. Here, we summarize the workflow and types of analyses commonly used in high-throughput RNAi screening. PMID:27581298

  2. A High-Throughput Cidality Screen for Mycobacterium Tuberculosis

    PubMed Central

    Kaur, Parvinder; Ghosh, Anirban; Krishnamurthy, Ramya Vadageri; Bhattacharjee, Deepa Gagwani; Achar, Vijayashree; Datta, Santanu; Narayanan, Shridhar; Anbarasu, Anand; Ramaiah, Sudha

    2015-01-01

    Exposure to Mycobacterium tuberculosis (Mtb) aerosols is a major threat to tuberculosis (TB) researchers, even in bio-safety level-3 (BSL-3) facilities. Automation and high-throughput screens (HTS) in BSL3 facilities are essential for minimizing manual aerosol-generating interventions and facilitating TB research. In the present study, we report the development and validation of a high-throughput, 24-well ‘spot-assay’ for selecting bactericidal compounds against Mtb. The bactericidal screen concept was first validated in the fast-growing surrogate Mycobacterium smegmatis (Msm) and subsequently confirmed in Mtb using the following reference anti-tubercular drugs: rifampicin, isoniazid, ofloxacin and ethambutol (RIOE, acting on different targets). The potential use of the spot-assay to select bactericidal compounds from a large library was confirmed by screening on Mtb, with parallel plating by the conventional gold standard method (correlation, r2 = 0.808). An automated spot-assay further enabled an MBC90 determination on resistant and sensitive Mtb clinical isolates. The implementation of the spot-assay in kinetic screens to enumerate residual Mtb after either genetic silencing (anti-sense RNA, AS-RNA) or chemical inhibition corroborated its ability to detect cidality. This relatively simple, economical and quantitative HTS considerably minimized the bio-hazard risk and enabled the selection of novel vulnerable Mtb targets and mycobactericidal compounds. Thus, spot-assays have great potential to impact the TB drug discovery process. PMID:25693161

  3. High Throughput Danio Rerio Energy Expenditure Assay.

    PubMed

    Williams, Savannah Y; Renquist, Benjamin J

    2016-01-01

    Zebrafish are an important model organism with inherent advantages that have the potential to make zebrafish a widely applied model for the study of energy homeostasis and obesity. The small size of zebrafish allows for assays on embryos to be conducted in a 96- or 384-well plate format, Morpholino and CRISPR based technologies promote ease of genetic manipulation, and drug treatment by bath application is viable. Moreover, zebrafish are ideal for forward genetic screens allowing for novel gene discovery. Given the relative novelty of zebrafish as a model for obesity, it is necessary to develop tools that fully exploit these benefits. Herein, we describe a method to measure energy expenditure in thousands of embryonic zebrafish simultaneously. We have developed a whole animal microplate platform in which we use 96-well plates to isolate individual fish and we assess cumulative NADH2 production using the commercially available cell culture viability reagent alamarBlue. In poikilotherms the relationship between NADH2 production and energy expenditure is tightly linked. This energy expenditure assay creates the potential to rapidly screen pharmacological or genetic manipulations that directly alter energy expenditure or alter the response to an applied drug (e.g. insulin sensitizers). PMID:26863590

  4. High Throughput Screening and Selection Methods for Directed Enzyme Evolution

    PubMed Central

    2015-01-01

    Successful evolutionary enzyme engineering requires a high throughput screening or selection method, which considerably increases the chance of obtaining desired properties and reduces the time and cost. In this review, a series of high throughput screening and selection methods are illustrated with significant and recent examples. These high throughput strategies are also discussed with an emphasis on compatibility with phenotypic analysis during directed enzyme evolution. Lastly, certain limitations of current methods, as well as future developments, are briefly summarized. PMID:26074668

  5. Identification of novel anti-hepatitis C virus agents by a quantitative high throughput screen in a cell-based infection assay.

    PubMed

    Hu, Zongyi; Hu, Xin; He, Shanshan; Yim, Hyung Joon; Xiao, Jingbo; Swaroop, Manju; Tanega, Cordelle; Zhang, Ya-qin; Yi, Guanghui; Kao, C Cheng; Marugan, Juan; Ferrer, Marc; Zheng, Wei; Southall, Noel; Liang, T Jake

    2015-12-01

    Hepatitis C virus (HCV) poses a major health threat to the world. The recent development of direct-acting antivirals (DAAs) against HCV has markedly improved the response rate of HCV and reduced the side effects in comparison to the interferon-based therapy. Despite this therapeutic advance, there is still a need to develop new inhibitors that target different stages of the HCV life cycle because of various limitations of the current regimens. In this study, we performed a quantitative high throughput screening of the Molecular Libraries Small Molecule Repository (MLSMR) of ∼350,000 chemicals for novel HCV inhibitors using our previously developed cell-based HCV infection assay. Following confirmation and structural clustering analysis, we narrowed down to 158 compounds from the initial ∼3000 molecules that showed inhibitory activity for further structural and functional analyses. We were able to assign the majority of these compounds to specific stage(s) in the HCV life cycle. Three of them are direct inhibitors of NS3/4A protease. Most of the compounds appear to act on novel targets in HCV life cycle. Four compounds with novel structure and excellent drug-like properties, three targeting HCV entry and one targeting HCV assembly/secretion, were advanced for further development as lead hits. These compounds represent diverse chemotypes that are potential lead compounds for further optimization and may offer promising candidates for the development of novel therapeutics against HCV infection. In addition, they represent novel molecular probes to explore the complex interactions between HCV and the cells. PMID:26515788

  6. High-Throughput Screening Uncovers Novel Botulinum Neurotoxin Inhibitor Chemotypes.

    PubMed

    Bompiani, Kristin M; Caglič, Dejan; Krutein, Michelle C; Benoni, Galit; Hrones, Morgan; Lairson, Luke L; Bian, Haiyan; Smith, Garry R; Dickerson, Tobin J

    2016-08-01

    Botulism is caused by potent and specific bacterial neurotoxins that infect host neurons and block neurotransmitter release. Treatment for botulism is limited to administration of an antitoxin within a short time window, before the toxin enters neurons. Alternatively, current botulism drug development targets the toxin light chain, which is a zinc-dependent metalloprotease that is delivered into neurons and mediates long-term pathology. Several groups have identified inhibitory small molecules, peptides, or aptamers, although no molecule has advanced to the clinic due to a lack of efficacy in advanced models. Here we used a homogeneous high-throughput enzyme assay to screen three libraries of drug-like small molecules for new chemotypes that modulate recombinant botulinum neurotoxin light chain activity. High-throughput screening of 97088 compounds identified numerous small molecules that activate or inhibit metalloprotease activity. We describe four major classes of inhibitory compounds identified, detail their structure-activity relationships, and assess their relative inhibitory potency. A previously unreported chemotype in any context of enzyme inhibition is described with potent submicromolar inhibition (Ki = 200-300 nM). Additional detailed kinetic analyses and cellular cytotoxicity assays indicate the best compound from this series is a competitive inhibitor with cytotoxicity values around 4-5 μM. Given the potency and drug-like character of these lead compounds, further studies, including cellular activity assays and DMPK analysis, are justified. PMID:27314875

  7. Integration of Dosimetry, Exposure and High-Throughput Screening Data in Chemical Toxicity Assessment

    EPA Science Inventory

    High-throughput in vitro toxicity screening can provide an efficient way to identify potential biological targets for chemicals. However, relying on nominal assay concentrations may misrepresent potential in vivo effects of these chemicals due to differences in bioavailability, c...

  8. High-Throughput RNA Interference Screening: Tricks of the Trade

    PubMed Central

    Nebane, N. Miranda; Coric, Tatjana; Whig, Kanupriya; McKellip, Sara; Woods, LaKeisha; Sosa, Melinda; Sheppard, Russell; Rasmussen, Lynn; Bjornsti, Mary-Ann; White, E. Lucile

    2016-01-01

    The process of validating an assay for high-throughput screening (HTS) involves identifying sources of variability and developing procedures that minimize the variability at each step in the protocol. The goal is to produce a robust and reproducible assay with good metrics. In all good cell-based assays, this means coefficient of variation (CV) values of less than 10% and a signal window of fivefold or greater. HTS assays are usually evaluated using Z′ factor, which incorporates both standard deviation and signal window. A Z′ factor value of 0.5 or higher is acceptable for HTS. We used a standard HTS validation procedure in developing small interfering RNA (siRNA) screening technology at the HTS center at Southern Research. Initially, our assay performance was similar to published screens, with CV values greater than 10% and Z′ factor values of 0.51 ± 0.16 (average ± standard deviation). After optimizing the siRNA assay, we got CV values averaging 7.2% and a robust Z′ factor value of 0.78 ± 0.06 (average ± standard deviation). We present an overview of the problems encountered in developing this whole-genome siRNA screening program at Southern Research and how equipment optimization led to improved data quality. PMID:23616418

  9. Towards high throughput screening of nanoparticle flotation collectors.

    PubMed

    Abarca, Carla; Yang, Songtao; Pelton, Robert H

    2015-12-15

    To function as flotation collectors for mineral processing, polymeric nanoparticles require a delicate balance of surface properties to give mineral-specific deposition and colloidal stability in high ionic strength alkaline media, while remaining sufficiently hydrophobic to promote flotation. Combinatorial nanoparticle surface modification, in conjunction with high throughput screening, is a promising approach for nanoparticle development. However, efficient automated screening assays are required to reject ineffective particles without having to undergo time consuming flotation testing. Herein we demonstrate that determining critical coagulation concentrations of sodium carbonate in combination with measuring the advancing water contact angle of nanoparticle-saturated glass surfaces can be used to screen ineffective nanoparticles. Finally, none of our first nanoparticle library based on poly(ethylene glycol) methyl ether methacrylate (PEG-methacrylate) were effective flotation collectors because the nanoparticles were too hydrophilic. PMID:26319325

  10. A High-Throughput Yeast Halo Assay for Bioactive Compounds.

    PubMed

    Bray, Walter; Lokey, R Scott

    2016-01-01

    When a disk of filter paper is impregnated with a cytotoxic or cytostatic drug and added to solid medium seeded with yeast, a visible clear zone forms around the disk whose size depends on the concentration and potency of the drug. This is the traditional "halo" assay and provides a convenient, if low-throughput, read-out of biological activity that has been the mainstay of antifungal and antibiotic testing for decades. Here, we describe a protocol for a high-throughput version of the halo assay, which uses an array of 384 pins to deliver ∼200 nL of stock solutions from compound plates onto single-well plates seeded with yeast. Using a plate reader in the absorbance mode, the resulting halos can be quantified and the data archived in the form of flat files that can be connected to compound databases with standard software. This assay has the convenience associated with the visual readout of the traditional halo assay but uses far less material and can be automated to screen thousands of compounds per day. PMID:27587777

  11. A Robotic Platform for Quantitative High-Throughput Screening

    PubMed Central

    Michael, Sam; Auld, Douglas; Klumpp, Carleen; Jadhav, Ajit; Zheng, Wei; Thorne, Natasha; Austin, Christopher P.; Inglese, James

    2008-01-01

    Abstract High-throughput screening (HTS) is increasingly being adopted in academic institutions, where the decoupling of screening and drug development has led to unique challenges, as well as novel uses of instrumentation, assay formulations, and software tools. Advances in technology have made automated unattended screening in the 1,536-well plate format broadly accessible and have further facilitated the exploration of new technologies and approaches to screening. A case in point is our recently developed quantitative HTS (qHTS) paradigm, which tests each library compound at multiple concentrations to construct concentration-response curves (CRCs) generating a comprehensive data set for each assay. The practical implementation of qHTS for cell-based and biochemical assays across libraries of > 100,000 compounds (e.g., between 700,000 and 2,000,000 sample wells tested) requires maximal efficiency and miniaturization and the ability to easily accommodate many different assay formats and screening protocols. Here, we describe the design and utilization of a fully integrated and automated screening system for qHTS at the National Institutes of Health's Chemical Genomics Center. We report system productivity, reliability, and flexibility, as well as modifications made to increase throughput, add additional capabilities, and address limitations. The combination of this system and qHTS has led to the generation of over 6 million CRCs from > 120 assays in the last 3 years and is a technology that can be widely implemented to increase efficiency of screening and lead generation. PMID:19035846

  12. High-throughput screening of microbial adaptation to environmental stress.

    PubMed

    Bélanger, Pier-Anne; Beaudin, Julie; Roy, Sébastien

    2011-05-01

    We developed a microwell plate, high-throughput, screening method aimed at quantitating the tolerance of a panel of Gram-positive and Gram-negative bacteria to metals (Frankia sp., Escherichia coli, Cupriavidus metallidurans, Rhizobium leguminosarum, and Streptomyces scabies). Microbial viability was quantified using MTS; a tetrazolium salt converted to a water-soluble formazan through microbial reduction. In this paper, we present the stepwise development of the method, highlighting the main elements underlying its reliability, and compare results obtained with literature. We conclude the method is well suited to efficiently screen bacteria, including those that are filamentous and slow-growing, without the need for large amounts of inoculum which may not always be available. The method allows testing of compound gradients with sufficient replicates to generate statistically robust results, and is transposable to other types of cell proliferation assays such as those for antimicrobial susceptibility, and chemoresistance. PMID:21315114

  13. Perspectives on Validation of High-Throughput Assays Supporting 21st Century Toxicity Testing

    EPA Science Inventory

    In vitro high-throughput screening (HTS) assays are seeing increasing use in toxicity testing. HTS assays can simultaneously test many chemicals but have seen limited use in the regulatory arena, in part because of the need to undergo rigorous, time-consuming formal validation. ...

  14. High Throughput Assays and Exposure Science (ISES annual meeting)

    EPA Science Inventory

    High throughput screening (HTS) data characterizing chemical-induced biological activity has been generated for thousands of environmentally-relevant chemicals by the US inter-agency Tox21 and the US EPA ToxCast programs. For a limited set of chemicals, bioactive concentrations r...

  15. Quantitative High-Throughput Luciferase Screening in Identifying CAR Modulators.

    PubMed

    Lynch, Caitlin; Zhao, Jinghua; Wang, Hongbing; Xia, Menghang

    2016-01-01

    The constitutive androstane receptor (CAR, NR1I3) is responsible for the transcription of multiple drug metabolizing enzymes and transporters. There are two possible methods of activation for CAR, direct ligand binding and a ligand-independent method, which makes this a unique nuclear receptor. Both of these mechanisms require translocation of CAR from the cytoplasm into the nucleus. Interestingly, CAR is constitutively active in immortalized cell lines due to the basal nuclear location of this receptor. This creates an important challenge in most in vitro assay models because immortalized cells cannot be used without inhibiting the high basal activity. In this book chapter, we go into detail of how to perform quantitative high-throughput screens to identify hCAR1 modulators through the employment of a double stable cell line. Using this line, we are able to identify activators, as well as deactivators, of the challenging nuclear receptor, CAR. PMID:27518621

  16. Evolving the EPA Endocrine Disruptor Screening Program: The case for and against using high-throughput screening assays in EDSP Tier 1

    EPA Science Inventory

    Testing has begun as part of the EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 battery of 11 in vitro and in vivo tests. A recognized issue with the EDSP is that the current Tier 1 screening battery is highly resource intensive in terms of cost, time and animal usage fo...

  17. High-throughput screening for modulators of cellular contractile force†

    PubMed Central

    Park, Chan Young; Zhou, Enhua H.; Tambe, Dhananjay; Chen, Bohao; Lavoie, Tera; Dowell, Maria; Simeonov, Anton; Maloney, David J.; Marinkovic, Aleksandar; Tschumperlin, Daniel J.; Burger, Stephanie; Frykenberg, Matthew; Butler, James P.; Stamer, W. Daniel; Johnson, Mark; Solway, Julian; Fredberg, Jeffrey J.

    2015-01-01

    When cellular contractile forces are central to pathophysiology, these forces comprise a logical target of therapy. Nevertheless, existing high-throughput screens are limited to upstream signalling intermediates with poorly defined relationships to such a physiological endpoint. Using cellular force as the target, here we report a new screening technology and demonstrate its applications using human airway smooth muscle cells in the context of asthma and Schlemm's canal endothelial cells in the context of glaucoma. This approach identified several drug candidates for both asthma and glaucoma. We attained rates of 1000 compounds per screening day, thus establishing a force-based cellular platform for high-throughput drug discovery. PMID:25953078

  18. A High-Throughput Screen for Antibiotic Drug Discovery

    PubMed Central

    Scanlon, Thomas C.; Dostal, Sarah M.; Griswold, Karl E.

    2014-01-01

    We describe an ultra-high-throughput screening platform enabling discovery and/or engineering of natural product antibiotics. The methodology involves creation of hydrogel-in-oil emulsions in which recombinant microorganisms are co-emulsified with bacterial pathogens; antibiotic activity is assayed by use of a fluorescent viability dye. We have successfully utilized both bulk emulsification and microfluidic technology for the generation of hydrogel microdroplets that are size-compatible with conventional flow cytometry. Hydrogel droplets are ~25 pL in volume, and can be synthesized and sorted at rates exceeding 3,000 drops/s. Using this technique, we have achieved screening throughputs exceeding 5 million clones/day. Proof-of-concept experiments demonstrate efficient selection of antibiotic-secreting yeast from a vast excess of negative controls. In addition, we have successfully used this technique to screen a metagenomic library for secreted antibiotics that kill the human pathogen Staphylococcus aureus. Our results establish the practical utility of the screening platform, and we anticipate that the accessible nature of our methods will enable others seeking to identify and engineer the next generation of antibacterial biomolecules. PMID:23955804

  19. Cheminformatics Aspects of High Throughput Screening: from Robots to Models: Symposium Summary

    PubMed Central

    Tseng, Y. Jane; Martin, Eric; Bologa, Cristian; Shelat, Anang A.

    2014-01-01

    The “Cheminformatics aspects of high throughput screening (HTS): from robots to models” symposium was part of the Computers in Chemistry (COMP) technical program at the American Chemical Society National Meeting in Denver, Colorado during the fall of 2011. This symposium brought together researchers from high throughput screening centersand molecular modelers from academia and industry to discuss the integration of currently available high throughput screening data and assays with computational analysis. The topics discussed at this symposium covered the data-infrastructure at various academic, hospital, and NIH-funded high throughput screening centers, the cheminformatics and molecular modeling methods used in real world examples to guide screening and hit-finding, and how academic and non-profit organizations can benefit from current high throughput screening cheminformatics resources. Specifically, this article also covers the remarks and discussions in the open panel discussion in thesymposium and summarizes the following talks on “Accurate Kinase virtual screening: biochemical, cellular and selectivity”, “Selective, privileged and promiscuous chemical patterns in high-throughput screening” and “Visualizing and exploring relationships among HTS hits using network graphs”. PMID:23636795

  20. Workflow for High Throughput Screening of Gas Sensing Materials

    PubMed Central

    Koplin, Tobias J.; Siemons, Maike; Océn-Valéntin, César; Sanders, Daniel; Simon, Ulrich

    2006-01-01

    The workflow of a high throughput screening setup for the rapid identification of new and improved sensor materials is presented. The polyol method was applied to prepare nanoparticular metal oxides as base materials, which were functionalised by surface doping. Using multi-electrode substrates and high throughput impedance spectroscopy (HT-IS) a wide range of materials could be screened in a short time. Applying HT-IS in search of new selective gas sensing materials a NO2-tolerant NO sensing material with reduced sensitivities towards other test gases was identified based on iridium doped zinc oxide. Analogous behaviour was observed for iridium doped indium oxide.

  1. Substrate independent ATPase activity may complicate high throughput screening.

    PubMed

    Tuntland, Micheal L; Fung, L W-M

    2016-10-01

    Inorganic phosphate release, [Pi], is often measured in an enzymatic reaction in a high throughput setting. Based on the published mechanism, we designed a protocol for our screening for inhibitors of SAICAR synthetase (PurC), and we found a gradual increase in [Pi] in positive control samples over the course of the day. Further investigation indicated that hydrolysis of ATP catalyzed by PurC, rather than substrate-related phosphate release, was responsible for a partial contribution to the signals in the control samples. Thus substrate-independent ATPase activity may complicate high throughput screening. PMID:27430931

  2. Compound Management for Quantitative High-Throughput Screening

    PubMed Central

    Yasgar, Adam; Shinn, Paul; Jadhav, Ajit; Auld, Douglas; Michael, Sam; Zheng, Wei; Austin, Christopher P.; Inglese, James; Simeonov, Anton

    2008-01-01

    An efficient and versatile Compound Management operation is essential for the success of all downstream processes in high-throughput screening (HTS) and small molecule lead development. Staff, equipment, and processes need to be not only reliable, but remain flexible and prepared to incorporate paradigm changes. In the present report, we describe a system and associated processes which enable handling of compounds for both screening and follow-up purposes at the NIH Chemical Genomics Center (NCGC), a recently-established HTS and probe development center within the Molecular Libraries Initiative of the NIH Roadmap. Our screening process, termed quantitative HTS (qHTS), involves assaying the complete compound library, currently containing >200,000 members, at a series of dilutions to construct a full concentration-response profile. As such, Compound Management at the NCGC has been uniquely tasked to prepare, store, register, and track a vertically-developed plate dilution series (i.e., inter-plate titrations) in the 384-well format. These are compressed into a series of 1,536-well plates and are registered to track all subsequent plate storage. Here, we present details on the selection of equipment to enable automated, reliable and parallel compound manipulation in 384- and 1,536-well formats, protocols for preparation of inter-plate dilution series for qHTS, as well as qHTS-specific processes and issues. PMID:18496600

  3. Development and Validation of an Automated High-Throughput System for Zebrafish In Vivo Screenings

    PubMed Central

    Virto, Juan M.; Holgado, Olaia; Diez, Maria; Izpisua Belmonte, Juan Carlos; Callol-Massot, Carles

    2012-01-01

    The zebrafish is a vertebrate model compatible with the paradigms of drug discovery. The small size and transparency of zebrafish embryos make them amenable for the automation necessary in high-throughput screenings. We have developed an automated high-throughput platform for in vivo chemical screenings on zebrafish embryos that includes automated methods for embryo dispensation, compound delivery, incubation, imaging and analysis of the results. At present, two different assays to detect cardiotoxic compounds and angiogenesis inhibitors can be automatically run in the platform, showing the versatility of the system. A validation of these two assays with known positive and negative compounds, as well as a screening for the detection of unknown anti-angiogenic compounds, have been successfully carried out in the system developed. We present a totally automated platform that allows for high-throughput screenings in a vertebrate organism. PMID:22615792

  4. ToxCast Assay Network (TCAN) Viewer: A Visualization Tool for High-throughput Assay Chemical Data (SOT)

    EPA Science Inventory

    USEPA’s ToxCast program has generated high-throughput bioactivity screening (HTS) data on thousands of chemicals. The ToxCast program has described and annotated the HTS assay battery with respect to assay design and target information (e.g., gene target). Recent stakeholder and ...

  5. A Protocol for a High-Throughput Multiplex Cell Viability Assay.

    PubMed

    Gilbert, Daniel F; Boutros, Michael

    2016-01-01

    High-throughput cell viability assays are broadly used in RNAi and small molecule screening experiments to identify compounds that selectively kill cancer cells or as counter screens to exclude the compounds that have a generic effect on cell growth. While there are several assaying techniques available, cellular fitness is often assessed on the basis of one single and often rather indirect physiological indicator. This can lead to inconsistencies and poor correspondence between cell viability screening experiments, conducted under comparable conditions but with different viability indicators. Multiplexing, i.e., the combination of different individual assaying techniques in one experiment and subsequent comparative analysis of multiparametric data can decrease inter-assay variability and increase dataset concordance. Here, we describe a protocol for a multiplexing approach for high-throughput cell viability screening to address the issues encountered in the classical strategy using a single fitness indicator described above. The method combines a biochemical, luminescence-based approach and two fluorescence-based assay types. The biochemical method assesses cellular fitness by quantifying intracellular ATP concentration. Calcein labeling reflects cell fitness through membrane integrity and indirect measurement of ATP-dependent enzymatic esterase activity. Hoechst DNA stain correlates cell fitness with cellular DNA content. The presented multiplexing approach is suitable for low, medium and high-throughput screening and has the potential to decrease inter-assay variability and increase dataset concordance as well as reproducibility of experimental results. PMID:27581285

  6. In Vitro High Throughput Screening, What Next? Lessons from the Screening for Aurora Kinase Inhibitors

    PubMed Central

    Hoang, Thi-My-Nhung; Vu, Hong-Lien; Le, Ly-Thuy-Tram; Nguyen, Chi-Hung; Molla, Annie

    2014-01-01

    Based on in vitro assays, we performed a High Throughput Screening (HTS) to identify kinase inhibitors among 10,000 small chemical compounds. In this didactic paper, we describe step-by-step the approach to validate the hits as well as the major pitfalls encountered in the development of active molecules. We propose a decision tree that could be adapted to most in vitro HTS. PMID:24833340

  7. Environmental Impact on Vascular Development Predicted by High Throughput Screening

    EPA Science Inventory

    Understanding health risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. High throughput screening (HTS) in EPA’s ToxCastTM project provides vast d...

  8. High-throughput screening, predictive modeling and computational embryology

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to profile thousands of chemical compounds for biological activity and potential toxicity. EPA’s ToxCast™ project, and the broader Tox21 consortium, in addition to projects worldwide,...

  9. High-throughput screening, predictive modeling and computational embryology - Abstract

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to chemical profiling to address sensitivity and specificity of molecular targets, biological pathways, cellular and developmental processes. EPA’s ToxCast project is testing 960 uniq...

  10. High-throughput assays for DNA gyrase and other topoisomerases.

    PubMed

    Maxwell, Anthony; Burton, Nicolas P; O'Hagan, Natasha

    2006-01-01

    We have developed high-throughput microtitre plate-based assays for DNA gyrase and other DNA topoisomerases. These assays exploit the fact that negatively supercoiled plasmids form intermolecular triplexes more efficiently than when they are relaxed. Two assays are presented, one using capture of a plasmid containing a single triplex-forming sequence by an oligonucleotide tethered to the surface of a microtitre plate and subsequent detection by staining with a DNA-specific fluorescent dye. The other uses capture of a plasmid containing two triplex-forming sequences by an oligonucleotide tethered to the surface of a microtitre plate and subsequent detection by a second oligonucleotide that is radiolabelled. The assays are shown to be appropriate for assaying DNA supercoiling by Escherichia coli DNA gyrase and DNA relaxation by eukaryotic topoisomerases I and II, and E.coli topoisomerase IV. The assays are readily adaptable to other enzymes that change DNA supercoiling (e.g. restriction enzymes) and are suitable for use in a high-throughput format. PMID:16936317

  11. High-throughput automated refolding screening of inclusion bodies

    PubMed Central

    Vincentelli, Renaud; Canaan, Stéphane; Campanacci, Valérie; Valencia, Christel; Maurin, Damien; Frassinetti, Frédéric; Scappucini-Calvo, Loréna; Bourne, Yves; Cambillau, Christian; Bignon, Christophe

    2004-01-01

    One of the main stumbling blocks encountered when attempting to express foreign proteins in Escherichia coli is the occurrence of amorphous aggregates of misfolded proteins, called inclusion bodies (IB). Developing efficient protein native structure recovery procedures based on IB refolding is therefore an important challenge. Unfortunately, there is no “universal” refolding buffer: Experience shows that refolding buffer composition varies from one protein to another. In addition, the methods developed so far for finding a suitable refolding buffer suffer from a number of weaknesses. These include the small number of refolding formulations, which often leads to negative results, solubility assays incompatible with high-throughput, and experiment formatting not suitable for automation. To overcome these problems, it was proposed in the present study to address some of these limitations. This resulted in the first completely automated IB refolding screening procedure to be developed using a 96-well format. The 96 refolding buffers were obtained using a fractional factorial approach. The screening procedure is potentially applicable to any nonmembrane protein, and was validated with 24 proteins in the framework of two Structural Genomics projects. The tests used for this purpose included the use of quality control methods such as circular dichroism, dynamic light scattering, and crystallogenesis. Out of the 24 proteins, 17 remained soluble in at least one of the 96 refolding buffers, 15 passed large-scale purification tests, and five gave crystals. PMID:15388864

  12. Characterization of multiple platelet activation pathways in patients with bleeding as a high-throughput screening option: use of 96-well Optimul assay

    PubMed Central

    Lordkipanidzé, Marie; Lowe, Gillian C.; Kirkby, Nicholas S.; Chan, Melissa V.; Lundberg, Martina H.; Morgan, Neil V.; Bem, Danai; Nisar, Shaista P.; Leo, Vincenzo C.; Jones, Matthew L.; Mundell, Stuart J.; Daly, Martina E.; Mumford, Andrew D.; Warner, Timothy D.; Watson, Steve P.; Watson, Steve P.; Mumford, Andrew D.; Mundell, Stuart J.; Gissen, Paul; Daly, Martina E.; Lester, Will; Clark, Justin; Williams, Mike; Motwani, Jayashree; Marshall, Dianne; Nyatanga, Priscilla; Mann, Pat; Kirwan, Julie; Wilde, Jonathan; Dunkley, Tracey; Greenway, April; Makris, Michael; Pavord, Sue; Dattani, Rashesh; Grimley, Gerry Dolan Charlotte; Stokley, Simone; Astwood, Emma; Chang, Cherry; Foros, Merri; Trower, Linda; Thachil, Jecko; Hay, Charlie; Pike, Gill; Will, Andrew; Grainger, John; Foulkes, Matt; Fareh, Mona; Talks, Kate; Biss, Tina; Kesteven, Patrick; Hanley, John; Vowles, Julie; Basey, Lesley; Barnes, Michelle; Collins, Peter; Rayment, Rachel; Alikhan, Raza; Morris, Ana Guerrero Rebecca; Mansell, Dianne; Toh, Cheng Hock; Martlew, Vanessa; Murphy, Elaine; Lachmann, Robin; Rose, Peter; Chapman, Oliver; Lokare, Anand; Marshall, Kathryn; Khan, Naseem; Keeling, David; Giangrande, Paul; Austin, Steve; Bevan, David; Alamelu, Jayanthi

    2014-01-01

    Up to 1% of the population have mild bleeding disorders, but these remain poorly characterized, particularly with regard to the roles of platelets. We have compared the usefulness of Optimul, a 96-well plate-based assay of 7 distinct pathways of platelet activation to characterize inherited platelet defects in comparison with light transmission aggregometry (LTA). Using Optimul and LTA, concentration-response curves were generated for arachidonic acid, ADP, collagen, epinephrine, Thrombin receptor activating-peptide, U46619, and ristocetin in samples from (1) healthy volunteers (n = 50), (2) healthy volunteers treated with antiplatelet agents in vitro (n = 10), and (3) patients with bleeding of unknown origin (n = 65). The assays gave concordant results in 82% of cases (κ = 0.62, P < .0001). Normal platelet function results were particularly predictive (sensitivity, 94%; negative predictive value, 91%), whereas a positive result was not always substantiated by LTA (specificity, 67%; positive predictive value, 77%). The Optimul assay was significantly more sensitive at characterizing defects in the thromboxane pathway, which presented with normal responses with LTA. The Optimul assay is sensitive to mild platelet defects, could be used as a rapid screening assay in patients presenting with bleeding symptoms, and detects changes in platelet function more readily than LTA. This trial was registered at www.isrctn.org as #ISRCTN 77951167. PMID:24408324

  13. Characterization of multiple platelet activation pathways in patients with bleeding as a high-throughput screening option: use of 96-well Optimul assay.

    PubMed

    Lordkipanidzé, Marie; Lowe, Gillian C; Kirkby, Nicholas S; Chan, Melissa V; Lundberg, Martina H; Morgan, Neil V; Bem, Danai; Nisar, Shaista P; Leo, Vincenzo C; Jones, Matthew L; Mundell, Stuart J; Daly, Martina E; Mumford, Andrew D; Warner, Timothy D; Watson, Steve P

    2014-02-20

    Up to 1% of the population have mild bleeding disorders, but these remain poorly characterized, particularly with regard to the roles of platelets. We have compared the usefulness of Optimul, a 96-well plate-based assay of 7 distinct pathways of platelet activation to characterize inherited platelet defects in comparison with light transmission aggregometry (LTA). Using Optimul and LTA, concentration-response curves were generated for arachidonic acid, ADP, collagen, epinephrine, Thrombin receptor activating-peptide, U46619, and ristocetin in samples from (1) healthy volunteers (n = 50), (2) healthy volunteers treated with antiplatelet agents in vitro (n = 10), and (3) patients with bleeding of unknown origin (n = 65). The assays gave concordant results in 82% of cases (κ = 0.62, P < .0001). Normal platelet function results were particularly predictive (sensitivity, 94%; negative predictive value, 91%), whereas a positive result was not always substantiated by LTA (specificity, 67%; positive predictive value, 77%). The Optimul assay was significantly more sensitive at characterizing defects in the thromboxane pathway, which presented with normal responses with LTA. The Optimul assay is sensitive to mild platelet defects, could be used as a rapid screening assay in patients presenting with bleeding symptoms, and detects changes in platelet function more readily than LTA. This trial was registered at www.isrctn.org as #ISRCTN 77951167. PMID:24408324

  14. Developing High-Throughput HIV Incidence Assay with Pyrosequencing Platform

    PubMed Central

    Park, Sung Yong; Goeken, Nolan; Lee, Hyo Jin; Bolan, Robert; Dubé, Michael P.

    2014-01-01

    ABSTRACT Human immunodeficiency virus (HIV) incidence is an important measure for monitoring the epidemic and evaluating the efficacy of intervention and prevention trials. This study developed a high-throughput, single-measure incidence assay by implementing a pyrosequencing platform. We devised a signal-masking bioinformatics pipeline, which yielded a process error rate of 5.8 × 10−4 per base. The pipeline was then applied to analyze 18,434 envelope gene segments (HXB2 7212 to 7601) obtained from 12 incident and 24 chronic patients who had documented HIV-negative and/or -positive tests. The pyrosequencing data were cross-checked by using the single-genome-amplification (SGA) method to independently obtain 302 sequences from 13 patients. Using two genomic biomarkers that probe for the presence of similar sequences, the pyrosequencing platform correctly classified all 12 incident subjects (100% sensitivity) and 23 of 24 chronic subjects (96% specificity). One misclassified subject's chronic infection was correctly classified by conducting the same analysis with SGA data. The biomarkers were statistically associated across the two platforms, suggesting the assay's reproducibility and robustness. Sampling simulations showed that the biomarkers were tolerant of sequencing errors and template resampling, two factors most likely to affect the accuracy of pyrosequencing results. We observed comparable biomarker scores between AIDS and non-AIDS chronic patients (multivariate analysis of variance [MANOVA], P = 0.12), indicating that the stage of HIV disease itself does not affect the classification scheme. The high-throughput genomic HIV incidence marks a significant step toward determining incidence from a single measure in cross-sectional surveys. IMPORTANCE Annual HIV incidence, the number of newly infected individuals within a year, is the key measure of monitoring the epidemic's rise and decline. Developing reliable assays differentiating recent from chronic

  15. Yeast-based assays for the high-throughput screening of inhibitors of coronavirus RNA cap guanine-N7-methyltransferase.

    PubMed

    Sun, Ying; Wang, Zidao; Tao, Jiali; Wang, Yi; Wu, Andong; Yang, Ziwen; Wang, Kaimei; Shi, Liqiao; Chen, Yu; Guo, Deyin

    2014-04-01

    The 5'-cap structure is a distinct feature of eukaryotic mRNAs and is important for RNA stability and protein translation by providing a molecular signature for the distinction of self or non-self mRNA. Eukaryotic viruses generally modify the 5'-end of their RNAs to mimic the cellular mRNA structure, thereby facilitating viral replication in host cells. However, the molecular organization and biochemical mechanisms of the viral capping apparatus typically differ from its cellular counterpart, which makes viral capping enzymes attractive targets for drug discovery. Our previous work showed that SARS coronavirus (SARS-CoV) non-structural protein 14 represents a structurally novel and unique guanine-N7-methyltransferase (N7-MTase) that is able to functionally complement yeast cellular N7-MTase. In the present study, we developed a yeast-based system for identifying and screening inhibitors against coronavirus N7-MTase using both 96-well and 384-well microtiter plates. The MTase inhibitors previously identified by in vitro biochemical assays were tested, and some, such as sinefungin, effectively suppressed N7-MTase in the yeast system. However, other compounds, such as ATA and AdoHcy, did not exert an inhibitory effect within a cellular context. These results validated the yeast assay system for inhibitor screening yet also demonstrated the difference between cell-based and in vitro biochemical assays. The yeast system was applied to the screening of 3000 natural product extracts, and three were observed to more potently inhibit the activity of coronavirus than human N7-MTase. PMID:24530452

  16. Promises and Pitfalls of High-Throughput Biological Assays.

    PubMed

    Finak, Greg; Gottardo, Raphael

    2016-01-01

    This chapter discusses some of the pitfalls encountered when performing biomedical research involving high-throughput "omics" data and presents some strategies and guidelines that researchers should follow when undertaking such studies. We discuss common errors in experimental design and data analysis that lead to irreproducible and non-replicable research and provide some guidelines to avoid these common mistakes so that researchers may have confidence in study outcomes, even if the results are negative. We discuss the importance of ranking and prespecifying hypotheses, performing power analysis, careful experimental design, and preplanning of statistical analyses in order to avoid the "fishing expedition" data analysis strategy, which is doomed to fail. The impact of multiple testing on false-positive rates is discussed, particularly in the context of the analysis of high-throughput data, and methods to correct for it are presented, as well as approaches to detect and correct for experimental biases and batch effects, which often plague high-throughput assays. We highlight the importance of sharing data and analysis code to facilitate reproducibility and present tools and software that are appropriate for this purpose. PMID:27115636

  17. A scintillation proximity assay for the Raf/MEK/ERK kinase cascade: high-throughput screening and identification of selective enzyme inhibitors.

    PubMed

    McDonald, O B; Chen, W J; Ellis, B; Hoffman, C; Overton, L; Rink, M; Smith, A; Marshall, C J; Wood, E R

    1999-03-15

    We have developed a quantitative scintillation proximity assay (SPA) that reproduces the Raf/MEK/ERK signal transduction pathway. The components of this assay include human cRaf1, MEK1, and ERK2 and a biotinylated peptide substrate for ERK2. cRaf1 was expressed as a his-tagged protein in insect cells in an active form. MEK1 and ERK2 were expressed in Escherichia coli as glutathione S-transferase (GST)-fusion proteins in their inactive forms. ERK2 was removed from the GST portion of the fusion protein by cleavage with thrombin protease. When the purified components are incubated together, cRaf-1 phosphorylates and activates MEK1, MEK1 phosphorylates and activates ERK2, and ERK2 phosphorylates the peptide, biotin-AAATGPLSPGPFA. Phosphorylation of the peptide using [gamma-33P]ATP is detected following binding to streptavidin-coated SPA beads. The assay detects inhibitors of cRaf1, MEK1, or ERK2, and has been used to screen large numbers of compounds. The specific target of inhibition was subsequently identified with secondary assays described herein. PMID:10075822

  18. Development of resazurin-based assay in 384-well format for high throughput whole cell screening of Trypanosoma brucei rhodesiense strain STIB 900 for the identification of potential anti-trypanosomal agents.

    PubMed

    Lim, Kah Tee; Zahari, Zuriati; Amanah, Azimah; Zainuddin, Zafarina; Adenan, Mohd Ilham

    2016-03-01

    To accelerate the discovery of novel leads for the treatment of Human African Trypanosomiasis (HAT), it is necessary to have a simple, robust and cost-effective assay to identify positive hits by high throughput whole cell screening. Most of the fluorescence assay was made in black plate however in this study the HTS assay developed in 384-well format using clear plate and black plate, for comparison. The HTS assay developed is simple, sensitive, reliable and reproducible in both types of plates. Assay robustness and reproducibility were determined under the optimized conditions in 384-well plate was well tolerated in the HTS assay, including percentage of coefficient of variation (% CV) of 4.68% and 4.74% in clear and black 384-well plate, signal-to-background ratio (S/B) of 12.75 in clear 384-well plate and 12.07 in black 384-well plate, Z' factor of 0.79 and 0.82 in clear 384-well plate and black 384-well plate, respectively and final concentration of 0.30% dimethylsulfoxide (DMSO) in both types of plate. Drug sensitivity was found to be comparable to the reported anti-trypanosomal assay in 96-well format. The reproducibility and sensitivity of this assay make it compliant to automated liquid handler use in HTS applications. PMID:26772786

  19. Virtual High-Throughput Screening To Identify Novel Activin Antagonists

    PubMed Central

    Zhu, Jie; Mishra, Rama K.; Schiltz, Gary E.; Makanji, Yogeshwar; Scheidt, Karl A.; Mazar, Andrew P.; Woodruff, Teresa K.

    2015-01-01

    Activin belongs to the TGFβ superfamily, which is associated with several disease conditions, including cancer-related cachexia, preterm labor with delivery, and osteoporosis. Targeting activin and its related signaling pathways holds promise as a therapeutic approach to these diseases. A small-molecule ligand-binding groove was identified in the interface between the two activin βA subunits and was used for a virtual high-throughput in silico screening of the ZINC database to identify hits. Thirty-nine compounds without significant toxicity were tested in two well-established activin assays: FSHβ transcription and HepG2 cell apoptosis. This screening workflow resulted in two lead compounds: NUCC-474 and NUCC-555. These potential activin antagonists were then shown to inhibit activin A-mediated cell proliferation in ex vivo ovary cultures. In vivo testing showed that our most potent compound (NUCC-555) caused a dose-dependent decrease in FSH levels in ovariectomized mice. The Blitz competition binding assay confirmed target binding of NUCC-555 to the activin A:ActRII that disrupts the activin A:ActRII complex’s binding with ALK4-ECD-Fc in a dose-dependent manner. The NUCC-555 also specifically binds to activin A compared with other TGFβ superfamily member myostatin (GDF8). These data demonstrate a new in silico-based strategy for identifying small-molecule activin antagonists. Our approach is the first to identify a first-in-class small-molecule antagonist of activin binding to ALK4, which opens a completely new approach to inhibiting the activity of TGFβ receptor superfamily members. in addition, the lead compound can serve as a starting point for lead optimization toward the goal of a compound that may be effective in activin-mediated diseases. PMID:26098096

  20. Virtual High-Throughput Screening To Identify Novel Activin Antagonists.

    PubMed

    Zhu, Jie; Mishra, Rama K; Schiltz, Gary E; Makanji, Yogeshwar; Scheidt, Karl A; Mazar, Andrew P; Woodruff, Teresa K

    2015-07-23

    Activin belongs to the TGFβ superfamily, which is associated with several disease conditions, including cancer-related cachexia, preterm labor with delivery, and osteoporosis. Targeting activin and its related signaling pathways holds promise as a therapeutic approach to these diseases. A small-molecule ligand-binding groove was identified in the interface between the two activin βA subunits and was used for a virtual high-throughput in silico screening of the ZINC database to identify hits. Thirty-nine compounds without significant toxicity were tested in two well-established activin assays: FSHβ transcription and HepG2 cell apoptosis. This screening workflow resulted in two lead compounds: NUCC-474 and NUCC-555. These potential activin antagonists were then shown to inhibit activin A-mediated cell proliferation in ex vivo ovary cultures. In vivo testing showed that our most potent compound (NUCC-555) caused a dose-dependent decrease in FSH levels in ovariectomized mice. The Blitz competition binding assay confirmed target binding of NUCC-555 to the activin A:ActRII that disrupts the activin A:ActRII complex's binding with ALK4-ECD-Fc in a dose-dependent manner. The NUCC-555 also specifically binds to activin A compared with other TGFβ superfamily member myostatin (GDF8). These data demonstrate a new in silico-based strategy for identifying small-molecule activin antagonists. Our approach is the first to identify a first-in-class small-molecule antagonist of activin binding to ALK4, which opens a completely new approach to inhibiting the activity of TGFβ receptor superfamily members. in addition, the lead compound can serve as a starting point for lead optimization toward the goal of a compound that may be effective in activin-mediated diseases. PMID:26098096

  1. High-throughput screening to identify inhibitors of lysine demethylases

    PubMed Central

    Gale, Molly; Yan, Qin

    2015-01-01

    Lysine demethylases (KDMs) are epigenetic regulators whose dysfunction is implicated in the pathology of many human diseases including various types of cancer, inflammation and X-linked intellectual disability. Particular demethylases have been identified as promising therapeutic targets, and tremendous efforts are being devoted toward developing suitable small-molecule inhibitors for clinical and research use. Several high-throughput screening strategies have been developed to screen for small-molecule inhibitors of KDMs, each with advantages and disadvantages in terms of time, cost, effort, reliability and sensitivity. In this Special Report, we review and evaluate the high-throughput screening methods utilized for discovery of novel small-molecule KDM inhibitors. PMID:25687466

  2. Creation of a small high-throughput screening facility.

    PubMed

    Flak, Tod

    2009-01-01

    The creation of a high-throughput screening facility within an organization is a difficult task, requiring a substantial investment of time, money, and organizational effort. Major issues to consider include the selection of equipment, the establishment of data analysis methodologies, and the formation of a group having the necessary competencies. If done properly, it is possible to build a screening system in incremental steps, adding new pieces of equipment and data analysis modules as the need grows. Based upon our experience with the creation of a small screening service, we present some guidelines to consider in planning a screening facility. PMID:19551356

  3. Development of a Multiplex Assay for Studying Functional Selectivity of Human Serotonin 5-HT2A Receptors and Identification of Active Compounds by High-Throughput Screening.

    PubMed

    Iglesias, Alba; Lage, Sonia; Cadavid, Maria Isabel; Loza, Maria Isabel; Brea, José

    2016-09-01

    G protein-coupled receptors (GPCRs) exist as collections of conformations in equilibrium, and the efficacy of drugs has been proposed to be associated with their absolute and relative affinities for these different conformations. The serotonin 2A (5-HT2A) receptor regulates multiple physiological functions, is involved in the pathophysiology of schizophrenia, and serves as an important target of atypical antipsychotic drugs. This receptor was one of the first GPCRs for which the functional selectivity phenomenon was observed, with its various ligands exerting differential effects on the phospholipase A2 (PLA2) and phospholipase C (PLC) signaling pathways. We aimed to develop a multiplex functional assay in 96-well plates for the simultaneous measurement of the PLA2 and PLC pathways coupled to 5-HT2A receptors; this approach enables the detection of either functional selectivity or cooperativity phenomena in early drug screening stages. The suitability of the method for running screening campaigns was tested using the Prestwick Chemical Library, and 22 confirmed hits with activities of more than 90% were identified; 11 of these hits produced statistically significant differences between the two effector pathways. Thus, we have developed a miniaturized multiplex assay in 96-well plates to measure functional selectivity for 5-HT2A receptors in the early stages of the drug discovery process. PMID:27095818

  4. A new homogeneous high-throughput screening assay for profiling compound activity on the human ether-a-go-go-related gene channel

    PubMed Central

    Titus, Steven A.; Beacham, Daniel; Shahane, Sampada A.; Southall, Noel; Xia, Menghang; Huang, Ruili; Hooten, Elizabeth; Zhao, Yong; Shou, Louie; Austin, Christopher P.; Zheng, Wei

    2009-01-01

    Long QT syndrome, either inherited or acquired from drug treatments, can result in ventricular arrhythmia (torsade de pointes) and sudden death. Human ether-a-go-go-related gene (hERG) channel inhibition by drugs is now recognized as a common reason for the acquired form of long QT syndrome. It has been reported that more than 100 known drugs inhibit the activity of the hERG channel. Since 1997, several drugs have been withdrawn from the market due to the long QT syndrome caused by hERG inhibition. Food and Drug Administration regulations now require safety data on hERG channels for investigative new drug (IND) applications. The assessment of compound activity on the hERG channel has now become an important part of the safety evaluation in the process of drug discovery. During the past decade, several in vitro assay methods have been developed and significant resources have been used to characterize hERG channel activities. However, evaluation of compound activities on hERG have not been performed for large compound collections due to technical difficulty, lack of throughput, and/or lack of biological relevance to function. Here we report a modified form of the FluxOR thallium flux assay, capable of measuring hERG activity in a homogeneous 1536-well plate format. To validate the assay, we screened a 7-point dilution series of the LOPAC 1280 library collection and reported rank order potencies of ten common hERG inhibitors. A correlation was also observed for the hERG channel activities of 10 known hERG inhibitors determined in this thallium flux assay and in the patch clamp experiment. Our findings indicate that this thallium flux assay can be used as an alternative method to profile large-volume compound libraries for compound activity on the hERG channel. PMID:19583963

  5. High-Throughput Screening Based Identification of Paramyxovirus Inhibitors

    PubMed Central

    Yoon, Jeong-Jeong; Chawla, Dhruv; Paal, Tanja; Ndungu, Maina; Du, Yuhong; Kurtkaya, Serdar; Sun, Aiming; Snyder, James P; Plemper, Richard K

    2008-01-01

    Paramyxoviruses are negative strand non-segmented RNA viruses. Several members of this family constitute major human pathogens that, collectively, are responsible for major morbidity and mortality worldwide. In an effort to ultimately develop novel therapeutics against measles virus (MV), a prominent member of the paramyxovirus family, we report a high-throughput screening protocol that allows hit identification using non-recombinant primary MV strains as targets. Implementation of the assay has yielded 60 hit candidates from a 137,500-entry library. Counterscreening and generation of dose-response curves narrows this pool to 35 compounds with active concentrations ≤15.3 μM against the MV-Alaska strain and specificity indices ranging from 36 to >500. Library mining for structural analogs of several confirmed hits combined with re-testing of identified candidates reveals a low false-negative rate and, thus, a high accuracy of primary hit identification. Eleven of the confirmed hits were found to interfere with the viral entry machinery, while the remaining 24 compounds target post-entry steps of the viral life cycle. Activity testing against selected members of the paramyxovirus family reveals three patterns of activity: 1) exclusively MV-specific blockers; 2) inhibitors of MV and related viruses of the same genus; 3) broader-range inhibitors with activity against a different paramyxovirinae genus. Representatives of the last class may open avenues for the development of broad-range paramyxovirus inhibitors through hit-to-lead chemistry. PMID:18626114

  6. High-throughput screening of phosphodiesterase activity in living cells.

    PubMed

    Rich, Thomas C; Karpen, Jeffrey W

    2005-01-01

    Phosphodiesterases (PDEs) hydrolyze the second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine 5'-monophosphate (cGMP) and play a crucial role in the termination and spatial segregation of cyclic nucleotide signals. Despite a wealth of molecular information, very little is known about how PDEs regulate cAMP and cGMP signals in living cells because conventional methods lack the necessary spatial and temporal resolution. We present here a sensitive optical method for monitoring cAMP levels and PDE activity near the membrane, using cyclic nucleotide-gated (CNG) ion channels as sensors. These channels are directly opened by the binding of cyclic nucleotides and allow cations to cross the membrane. The olfactory channel A subunit (CNGA2) has been genetically modified to improve its cAMP sensitivity and specificity. Channel activity is assessed by measuring Ca2+ influx using standard fluorometric techniques. In addition to studying PDEs in their native setting, the approach should be particularly useful in high-throughput screening assays to test for compounds that affect PDE activity, as well as the activities of the many G protein-coupled receptors that cause changes in intracellular cAMP. PMID:15988054

  7. A Sensitive and Robust High-Throughput Screening Assay for Inhibitors of the Chikungunya Virus nsP1 Capping Enzyme

    PubMed Central

    Bullard-Feibelman, Kristen M.; Fuller, Benjamin P.; Geiss, Brian J.

    2016-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne Alphavirus that causes severe and debilitating disease symptoms. Alarmingly, transmission rates of CHIKV have increased dramatically over the last decade resulting in 1.7 million suspected cases in the Western hemisphere alone. There are currently no antivirals for treatment of CHIKV infection and novel anti-alphaviral compounds are badly needed. nsP1 is the alphavirus protein responsible for the methyltransferase and guanylyltransferase activities necessary for formation of the 5’ type 0 cap structure added to newly formed viral RNA. Formation of this cap depends on nsP1 binding GTP and transferring a methylated GMP to nascent viral RNA. We have developed a fluorescence polarization-based assay that monitors displacement of a fluorescently-labeled GTP analog in real time. Determining the relative affinities of 15 GTP analogs for nsP1 GTP revealed important structural aspects of GTP that will inform identification of inhibitors able to outcompete GTP for the nsP1 binding site. Validation of the assay for HTS was completed and a secondary orthogonal assay that measures guanylation activity was developed in order to evaluate hits from future drug screens. This platform provides an avenue for identification of potent nsP1 inhibitors, which would potentially provide compounds capable of treating disease caused by CHIKV infection. PMID:27427769

  8. Reconfigurable microfluidic dilution for high-throughput quantitative assays.

    PubMed

    Fan, Jinzhen; Li, Baoqing; Xing, Siyuan; Pan, Tingrui

    2015-06-21

    This paper reports a reconfigurable microfluidic dilution device for high-throughput quantitative assays, which can easily produce discrete logarithmic/binary concentration profiles ranging from 1 to 100-fold dilution in parallel from a fixed sample volume (e.g., 10 μL) without any assistance of continuous fluidic pump or robotic automation. The integrated dilution generation chip consists of switchable distribution and collection channels, metering reservoirs, reaction chambers, and pressure-activatable Laplace valves. Following the sequential loading of a sample, a diluent, and a detection reagent into their individual metering chambers, the top microfluidic layer can be reconfigured to collect the metered chemicals into the reaction chambers in parallel, where detection will be conducted. To facilitate mixing and reaction in the microchambers, two acoustic microstreaming actuation mechanisms have been investigated for easy integrability and accessibility. Furthermore, the microfluidic dilution generator has been characterized by both colorimetric and fluorescent means. A further demonstration of the generic usage of the quantitative dilution chip has utilized the commonly available bicinchoninic acid (BCA) assay to analyse the protein concentrations of human tissue extracts. In brief, the microfluidic dilution generator offers a high-throughput high-efficiency quantitative analytical alternative to conventional quantitative assay platforms, by simple manipulation of a minute amount of chemicals in a compact microfluidic device with minimal equipment requirement, which can serve as a facile tool for biochemical and biological analyses in regular laboratories, point-of-care settings and low-resource environments. PMID:25994379

  9. Image-based high-throughput screening for inhibitors of angiogenesis.

    PubMed

    Evensen, Lasse; Link, Wolfgang; Lorens, James B

    2013-01-01

    Automated multicolor fluorescence microscopy facilitates high-throughput quantitation of cellular parameters of complex, organotypic systems. In vitro co-cultured vascular cells form capillary-like networks that model facets of angiogenesis, making it an attractive alternative for anti-angiogenic drug discovery. We have adapted this angiogenesis assay system to a high-throughput format to enable automated image-based high-throughput screening of live primary human vascular cell co-cultures with chemical libraries for anti-angiogenic drug discovery. Protocols are described for setup of a fluorescence-based co-culture assay, live cell image acquisition, image analysis of morphological parameters, and screening data handling. PMID:23027002

  10. Development and Application of a High Throughput Protein Unfolding Kinetic Assay

    PubMed Central

    Wang, Qiang; Waterhouse, Nicklas; Feyijinmi, Olusegun; Dominguez, Matthew J.; Martinez, Lisa M.; Sharp, Zoey; Service, Rachel; Bothe, Jameson R.; Stollar, Elliott J.

    2016-01-01

    The kinetics of folding and unfolding underlie protein stability and quantification of these rates provides important insights into the folding process. Here, we present a simple high throughput protein unfolding kinetic assay using a plate reader that is applicable to the studies of the majority of 2-state folding proteins. We validate the assay by measuring kinetic unfolding data for the SH3 (Src Homology 3) domain from Actin Binding Protein 1 (AbpSH3) and its stabilized mutants. The results of our approach are in excellent agreement with published values. We further combine our kinetic assay with a plate reader equilibrium assay, to obtain indirect estimates of folding rates and use these approaches to characterize an AbpSH3-peptide hybrid. Our high throughput protein unfolding kinetic assays allow accurate screening of libraries of mutants by providing both kinetic and equilibrium measurements and provide a means for in-depth ϕ-value analyses. PMID:26745729

  11. Self-Assembled Cell Microarray (SAMcell) for High-Throughput RNAi Screening.

    PubMed

    Zhang, Hanshuo; Li, Juan

    2016-01-01

    RNAi has now become a valuable research tool for cell-based high-throughput screening. However, traditional RNAi high-throughput methods are based on multi-well plates, relying on expensive instruments and complicated operations. In this chapter, we describe a method termed self-assembled cell microarray (SAMcell), which integrates micro-fabrication, reverse transfection, and RNAi technologies and allows for cell behavior investigations to be performed directly on the cell chip. This method has been successfully employed to perform large-scale functional screening assays to identify gene modulators of cell migration, cell proliferation, and cellular apoptosis. PMID:27581287

  12. Predictive Model of Rat Reproductive Toxicity from ToxCast High Throughput Screening

    EPA Science Inventory

    The EPA ToxCast research program uses high throughput screening for bioactivity profiling and predicting the toxicity of large numbers of chemicals. ToxCast Phase‐I tested 309 well‐characterized chemicals in over 500 assays for a wide range of molecular targets and cellular respo...

  13. Three-Dimensional Spheroid Cell Culture Model for Target Identification Utilizing High-Throughput RNAi Screens.

    PubMed

    Iles, LaKesla R; Bartholomeusz, Geoffrey A

    2016-01-01

    The intrinsic limitations of 2D monolayer cell culture models have prompted the development of 3D cell culture model systems for in vitro studies. Multicellular tumor spheroid (MCTS) models closely simulate the pathophysiological milieu of solid tumors and are providing new insights into tumor biology as well as differentiation, tissue organization, and homeostasis. They are straightforward to apply in high-throughput screens and there is a great need for the development of reliable and robust 3D spheroid-based assays for high-throughput RNAi screening for target identification and cell signaling studies highlighting their potential in cancer research and treatment. In this chapter we describe a stringent standard operating procedure for the use of MCTS for high-throughput RNAi screens. PMID:27581289

  14. High throughput screening of starch structures using carbohydrate microarrays.

    PubMed

    Tanackovic, Vanja; Rydahl, Maja Gro; Pedersen, Henriette Lodberg; Motawia, Mohammed Saddik; Shaik, Shahnoor Sultana; Mikkelsen, Maria Dalgaard; Krunic, Susanne Langgaard; Fangel, Jonatan Ulrik; Willats, William George Tycho; Blennow, Andreas

    2016-01-01

    In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated maltooligosaccharides, pure starch samples including a variety of different structures with variations in the amylopectin branching pattern, amylose content and phosphate content, enzymatically modified starches and glycogen were included. Using this technique, different important structures, including amylose content and branching degrees could be differentiated in a high throughput fashion. The screening method was validated using transgenic barley grain analysed during development and subjected to germination. Typically, extreme branching or linearity were detected less than normal starch structures. The method offers the potential for rapidly analysing resistant and slowly digested dietary starches. PMID:27468930

  15. High throughput screening of starch structures using carbohydrate microarrays

    PubMed Central

    Tanackovic, Vanja; Rydahl, Maja Gro; Pedersen, Henriette Lodberg; Motawia, Mohammed Saddik; Shaik, Shahnoor Sultana; Mikkelsen, Maria Dalgaard; Krunic, Susanne Langgaard; Fangel, Jonatan Ulrik; Willats, William George Tycho; Blennow, Andreas

    2016-01-01

    In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated maltooligosaccharides, pure starch samples including a variety of different structures with variations in the amylopectin branching pattern, amylose content and phosphate content, enzymatically modified starches and glycogen were included. Using this technique, different important structures, including amylose content and branching degrees could be differentiated in a high throughput fashion. The screening method was validated using transgenic barley grain analysed during development and subjected to germination. Typically, extreme branching or linearity were detected less than normal starch structures. The method offers the potential for rapidly analysing resistant and slowly digested dietary starches. PMID:27468930

  16. A high-throughput assay for DNA topoisomerases and other enzymes, based on DNA triplex formation.

    PubMed

    Burrell, Matthew R; Burton, Nicolas P; Maxwell, Anthony

    2010-01-01

    We have developed a rapid, high-throughput assay for measuring the catalytic activity (DNA supercoiling or relaxation) of topoisomerase enzymes that is also capable of monitoring the activity of other enzymes that alter the topology of DNA. The assay utilises intermolecular triplex formation to resolve supercoiled and relaxed forms of DNA, the principle being the greater efficiency of a negatively supercoiled plasmid to form an intermolecular triplex with an immobilised oligonucleotide than the relaxed form. The assay provides a number of advantages over the standard gel-based methods, including greater speed of analysis, reduced sample handling, better quantitation and improved reliability and accuracy of output data. The assay is performed in microtitre plates and can be adapted to high-throughput screening of libraries of potential inhibitors of topoisomerases including bacterial DNA gyrase. PMID:19997889

  17. Development of a high throughput screen for allosteric modulators of melanocortin-4 receptor signaling using a real time cAMP assay.

    PubMed

    Pantel, Jacques; Williams, Savannah Y; Mi, Dehui; Sebag, Julien; Corbin, Jackie D; Weaver, C David; Cone, Roger D

    2011-06-11

    The melanocortin MC(4) receptor is a potential target for the development of drugs for both obesity and cachexia. Melanocortin MC(4) receptor ligands known thus far are orthosteric agonists or antagonists, however the agonists, in particular, have generally exhibited unwanted side effects. For some receptors, allosteric modulators are expected to reduce side-effect profiles. To identify allosteric modulators of the melanocortin MC(4) receptor, we created HEK293 cell lines coexpressing the human melanocortin MC(4) receptor and a modified luciferase-based cAMP sensor. Monitoring luminescence as a readout of real-time intracellular cAMP concentration, we demonstrate that this cell line is able to report melanocortin agonist responses, as well as inverse agonist response to the physiological AgRP peptide. Based on the MC4R-GLO cell line, we developed an assay that was shown to meet HTS standards (Z'=0.50). A pilot screen run on the Microsource Spectrum compound library (n=2000) successfully identified 62 positive modulators. This screen identified predicted families of compounds: β(2)AR agonists - the β(2)AR being endogenously expressed in HEK293 cells, an adenylyl cyclase activator and finally a distribution of phosphodiesterase (PDE) inhibitors well characterized or recently identified. In this last category, we identified a structural family of coumarin-derived compounds (imperatorin, osthol and prenyletin), along with deracoxib, a drug in veterinary use for its COX2 inhibitory properties. This latter finding unveiled a new off-target mechanism of action for deracoxib as a PDE inhibitor. Overall, these data are the first report of a HTS for allosteric modulators for a Gs protein coupled receptor. PMID:21296065

  18. Development of a high throughput screen for allosteric modulators of melanocortin-4 receptor signaling using a real time cAMP assay

    PubMed Central

    Pantel, Jacques; Williams, Savannah Y.; Mi, Dehui; Sebag, Julien; Corbin, Jackie D.; Weaver, C. David; Cone, Roger D.

    2011-01-01

    The melanocortin MC4 receptor is a potential target for the development of drugs for both obesity and cachexia. Melanocortin MC4 receptor ligands known thus far are orthosteric agonists or antagonists, however the agonists, in particular, have generally exhibited unwanted side effects. For some receptors, allosteric modulators are expected to reduce side-effect profiles. To identify allosteric modulators of the melanocortin MC4 receptor, we created HEK293 cell lines coexpressing the human melanocortin MC4 receptor and a modified luciferase-based cAMP sensor. Monitoring luminescence as a readout of real-time intracellular cAMP concentration, we demonstrate this cell line is able to report melanocortin agonist responses, as well as inverse agonist response to the physiological AgRP peptide. Based on the MC4R-GLO cell line, we developed an assay that was shown to meet HTS standards (Z’=0.50). A pilot screen run on the Microsource Spectrum compound library (n= 2,000) successfully identified 62 positive modulators. This screen identified predicted families of compounds: β2AR agonists –the β2AR being endogenously expressed in HEK293 cells-, an adenylyl cyclase activator and finally a distribution of phosphodiesterase (PDE) inhibitors well characterized or recently identified. In this last category, we identified a structural family of coumarin-derived compounds (imperatorin, osthol and prenyletin), along with deracoxib, a drug in veterinary use for its COX2 inhibitory properties. This latter finding unveiled a new off-target mechanism of action for deracoxib as a PDE inhibitor. Overall, these data are the first report of an HTS for allosteric modulators for a Gs protein coupled receptor. PMID:21296065

  19. High-throughput protein analysis integrating bioinformatics and experimental assays.

    PubMed

    del Val, Coral; Mehrle, Alexander; Falkenhahn, Mechthild; Seiler, Markus; Glatting, Karl-Heinz; Poustka, Annemarie; Suhai, Sandor; Wiemann, Stefan

    2004-01-01

    The wealth of transcript information that has been made publicly available in recent years requires the development of high-throughput functional genomics and proteomics approaches for its analysis. Such approaches need suitable data integration procedures and a high level of automation in order to gain maximum benefit from the results generated. We have designed an automatic pipeline to analyse annotated open reading frames (ORFs) stemming from full-length cDNAs produced mainly by the German cDNA Consortium. The ORFs are cloned into expression vectors for use in large-scale assays such as the determination of subcellular protein localization or kinase reaction specificity. Additionally, all identified ORFs undergo exhaustive bioinformatic analysis such as similarity searches, protein domain architecture determination and prediction of physicochemical characteristics and secondary structure, using a wide variety of bioinformatic methods in combination with the most up-to-date public databases (e.g. PRINTS, BLOCKS, INTERPRO, PROSITE SWISSPROT). Data from experimental results and from the bioinformatic analysis are integrated and stored in a relational database (MS SQL-Server), which makes it possible for researchers to find answers to biological questions easily, thereby speeding up the selection of targets for further analysis. The designed pipeline constitutes a new automatic approach to obtaining and administrating relevant biological data from high-throughput investigations of cDNAs in order to systematically identify and characterize novel genes, as well as to comprehensively describe the function of the encoded proteins. PMID:14762202

  20. High-throughput screening with micro-x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Havrilla, George J.; Miller, Thomasin C.

    2005-06-01

    Micro-x-ray fluorescence (MXRF) is a useful characterization tool for high-throughput screening of combinatorial libraries. Due to the increasing threat of use of chemical warfare (CW) agents both in military actions and against civilians by terrorist extremists, there is a strong push to improve existing methods and develop means for the detection of a broad spectrum of CW agents in a minimal amount of time to increase national security. This paper describes a combinatorial high-throughput screening technique for CW receptor discovery to aid in sensor development. MXRF can screen materials for elemental composition at the mesoscale level (tens to hundreds of micrometers). The key aspect of this work is the use of commercial MXRF instrumentation coupled with the inherent heteroatom elements within the target molecules of the combinatorial reaction to provide rapid and specific identification of lead species. The method is demonstrated by screening an 11-mer oligopeptide library for selective binding of the degradation products of the nerve agent VX. The identified oligopeptides can be used as selective molecular receptors for sensor development. The MXRF screening method is nondestructive, requires minimal sample preparation or special tags for analysis, and the screening time depends on the desired sensitivity.

  1. High-throughput screening with micro-x-ray fluorescence

    SciTech Connect

    Havrilla, George J.; Miller, Thomasin C.

    2005-06-15

    Micro-x-ray fluorescence (MXRF) is a useful characterization tool for high-throughput screening of combinatorial libraries. Due to the increasing threat of use of chemical warfare (CW) agents both in military actions and against civilians by terrorist extremists, there is a strong push to improve existing methods and develop means for the detection of a broad spectrum of CW agents in a minimal amount of time to increase national security. This paper describes a combinatorial high-throughput screening technique for CW receptor discovery to aid in sensor development. MXRF can screen materials for elemental composition at the mesoscale level (tens to hundreds of micrometers). The key aspect of this work is the use of commercial MXRF instrumentation coupled with the inherent heteroatom elements within the target molecules of the combinatorial reaction to provide rapid and specific identification of lead species. The method is demonstrated by screening an 11-mer oligopeptide library for selective binding of the degradation products of the nerve agent VX. The identified oligopeptides can be used as selective molecular receptors for sensor development. The MXRF screening method is nondestructive, requires minimal sample preparation or special tags for analysis, and the screening time depends on the desired sensitivity.

  2. Evaluation of high-throughput assays for in vitro drug susceptibility testing of Tritrichomonas foetus trophozoites.

    PubMed

    Bader, Chris; Jesudoss Chelladurai, Jeba; Thompson, Kylie; Hall, Cindy; Carlson, Steve A; Brewer, Matthew T

    2016-06-15

    Tritrichomonas foetus is a sexually transmitted protozoan parasite that causes abortions in cattle and results in severe economic losses. In the United States, there are no safe and effective treatments for this parasite and infected animals are typically culled. In order to expedite drug discovery efforts, we investigated in vitro trophozoite killing assays amenable to high-throughput screening in 96 well plate formats. We evaluated the reduction of resorufin, incorporation of propidium iodide, and a luminescence-based ATP detection assay. Of these methods, reduction of resorufin was found to be the most reliable predictor of trophozoite concentrations. We further validated this method by conducting dose-response experiments suitable for calculation of EC50 values for two established compounds with known activity against trophozoites in vitro, namely, metronidazole and ronidazole. Our results demonstrate that the resorufin method is suitable for high-throughput screening and could be used to enhance efforts targeting new treatments for bovine trichomoniasis. PMID:27198774

  3. High throughput screening to investigate the interaction of stem cells with their extracellular microenvironment

    PubMed Central

    Ankam, Soneela; Teo, Benjamin KK; Kukumberg, Marek; Yim, Evelyn KF

    2013-01-01

    Stem cells in vivo are housed within a functional microenvironment termed the “stem cell niche.” As the niche components can modulate stem cell behaviors like proliferation, migration and differentiation, evaluating these components would be important to determine the most optimal platform for their maintenance or differentiation. In this review, we have discussed methods and technologies that have aided in the development of high throughput screening assays for stem cell research, including enabling technologies such as the well-established multiwell/microwell plates and robotic spotting, and emerging technologies like microfluidics, micro-contact printing and lithography. We also discuss the studies that utilized high throughput screening platform to investigate stem cell response to extracellular matrix, topography, biomaterials and stiffness gradients in the stem cell niche. The combination of the aforementioned techniques could lay the foundation for new perspectives in further development of high throughput technology and stem cell research. PMID:23899508

  4. Development of a High-Throughput Functional Screen Using Nanowell-Assisted Cell Patterning.

    PubMed

    Ozkumur, Ayca Yalcin; Goods, Brittany A; Love, J Christopher

    2015-09-01

    Living-cell-based screens can facilitate lead discovery of functional therapeutics of interest. A versatile and scalable method is reported that uses dense arrays of nanowells for imparting defined patterns on monolayers of cells. It is shown that this approach can coordinate a multi-component biological assay by designing and implementing a high-throughput, functional nanoliter-scale neutralization assay to identify neutralizing antibodies against HIV. PMID:26121321

  5. Microfluidic cell chips for high-throughput drug screening.

    PubMed

    Chi, Chun-Wei; Ahmed, Ah Rezwanuddin; Dereli-Korkut, Zeynep; Wang, Sihong

    2016-05-01

    The current state of screening methods for drug discovery is still riddled with several inefficiencies. Although some widely used high-throughput screening platforms may enhance the drug screening process, their cost and oversimplification of cell-drug interactions pose a translational difficulty. Microfluidic cell-chips resolve many issues found in conventional HTS technology, providing benefits such as reduced sample quantity and integration of 3D cell culture physically more representative of the physiological/pathological microenvironment. In this review, we introduce the advantages of microfluidic devices in drug screening, and outline the critical factors which influence device design, highlighting recent innovations and advances in the field including a summary of commercialization efforts on microfluidic cell chips. Future perspectives of microfluidic cell devices are also provided based on considerations of present technological limitations and translational barriers. PMID:27071838

  6. High Throughput Screening Identifies Novel Lead Compounds with Activity against Larval, Juvenile and Adult Schistosoma mansoni.

    PubMed

    Mansour, Nuha R; Paveley, Ross; Gardner, J Mark F; Bell, Andrew S; Parkinson, Tanya; Bickle, Quentin

    2016-04-01

    An estimated 600 million people are affected by the helminth disease schistosomiasis caused by parasites of the genus Schistosoma. There is currently only one drug recommended for treating schistosomiasis, praziquantel (PZQ), which is effective against adult worms but not against the juvenile stage. In an attempt to identify improved drugs for treating the disease, we have carried out high throughput screening of a number of small molecule libraries with the aim of identifying lead compounds with balanced activity against all life stages of Schistosoma. A total of almost 300,000 compounds were screened using a high throughput assay based on motility of worm larvae and image analysis of assay plates. Hits were screened against juvenile and adult worms to identify broadly active compounds and against a mammalian cell line to assess cytotoxicity. A number of compounds were identified as promising leads for further chemical optimization. PMID:27128493

  7. High Throughput Screening Identifies Novel Lead Compounds with Activity against Larval, Juvenile and Adult Schistosoma mansoni

    PubMed Central

    Gardner, J. Mark F.; Bell, Andrew S.; Parkinson, Tanya; Bickle, Quentin

    2016-01-01

    An estimated 600 million people are affected by the helminth disease schistosomiasis caused by parasites of the genus Schistosoma. There is currently only one drug recommended for treating schistosomiasis, praziquantel (PZQ), which is effective against adult worms but not against the juvenile stage. In an attempt to identify improved drugs for treating the disease, we have carried out high throughput screening of a number of small molecule libraries with the aim of identifying lead compounds with balanced activity against all life stages of Schistosoma. A total of almost 300,000 compounds were screened using a high throughput assay based on motility of worm larvae and image analysis of assay plates. Hits were screened against juvenile and adult worms to identify broadly active compounds and against a mammalian cell line to assess cytotoxicity. A number of compounds were identified as promising leads for further chemical optimization. PMID:27128493

  8. High-throughput screening to enhance oncolytic virus immunotherapy

    PubMed Central

    Allan, KJ; Stojdl, David F; Swift, SL

    2016-01-01

    High-throughput screens can rapidly scan and capture large amounts of information across multiple biological parameters. Although many screens have been designed to uncover potential new therapeutic targets capable of crippling viruses that cause disease, there have been relatively few directed at improving the efficacy of viruses that are used to treat disease. Oncolytic viruses (OVs) are biotherapeutic agents with an inherent specificity for treating malignant disease. Certain OV platforms – including those based on herpes simplex virus, reovirus, and vaccinia virus – have shown success against solid tumors in advanced clinical trials. Yet, many of these OVs have only undergone minimal engineering to solidify tumor specificity, with few extra modifications to manipulate additional factors. Several aspects of the interaction between an OV and a tumor-bearing host have clear value as targets to improve therapeutic outcomes. At the virus level, these include delivery to the tumor, infectivity, productivity, oncolysis, bystander killing, spread, and persistence. At the host level, these include engaging the immune system and manipulating the tumor microenvironment. Here, we review the chemical- and genome-based high-throughput screens that have been performed to manipulate such parameters during OV infection and analyze their impact on therapeutic efficacy. We further explore emerging themes that represent key areas of focus for future research. PMID:27579293

  9. High-throughput screening to enhance oncolytic virus immunotherapy.

    PubMed

    Allan, K J; Stojdl, David F; Swift, S L

    2016-01-01

    High-throughput screens can rapidly scan and capture large amounts of information across multiple biological parameters. Although many screens have been designed to uncover potential new therapeutic targets capable of crippling viruses that cause disease, there have been relatively few directed at improving the efficacy of viruses that are used to treat disease. Oncolytic viruses (OVs) are biotherapeutic agents with an inherent specificity for treating malignant disease. Certain OV platforms - including those based on herpes simplex virus, reovirus, and vaccinia virus - have shown success against solid tumors in advanced clinical trials. Yet, many of these OVs have only undergone minimal engineering to solidify tumor specificity, with few extra modifications to manipulate additional factors. Several aspects of the interaction between an OV and a tumor-bearing host have clear value as targets to improve therapeutic outcomes. At the virus level, these include delivery to the tumor, infectivity, productivity, oncolysis, bystander killing, spread, and persistence. At the host level, these include engaging the immune system and manipulating the tumor microenvironment. Here, we review the chemical- and genome-based high-throughput screens that have been performed to manipulate such parameters during OV infection and analyze their impact on therapeutic efficacy. We further explore emerging themes that represent key areas of focus for future research. PMID:27579293

  10. A novel high-throughput nematicidal assay using embryo cells and larvae of Caenorhabditis elegans.

    PubMed

    Lai, Yiling; Xiang, Meichun; Liu, Shuchun; Li, Erwei; Che, Yongsheng; Liu, Xingzhong

    2014-04-01

    Human health safety and environmental concerns have resulted in the widespread deregistration of several agronomic important nematicides. New and safer nematicides are urgently needed. However, a high-throughput bioassay for screening potential nematicides has not been established. We developed a two-step high-throughput nematicidal screening method to combine a cell-based MTS colorimetric assay with Caenorhabditis elegans embryo cells for preliminary cytotoxicity screening (step 1) followed by in vitro larval assay for nematicidal activity (step 2). Based on three conventional nematicides' test, high correlations were obtained between cell viability and larval viability and "r" values were 0.78 for Avermectin, 0.95 for Fosthiazate, and 0.65 for Formaldehyde solution. Further assays with 60 fungal secondary metabolites (extracts, fractions and pure compounds) also demonstrated the high correlation between cell viability and larval viability (r=0.60) and between the C. elegans cell viability and the juvenile viability of soybean cyst nematode Heterodera glycines (r=0.48) and pine wood nematode Bursaphelenchus xylophilus (r=0.56). Six metabolites with high cytotoxicity have performed high larval mortality with a LC50 range of 6.8-500μg/ml. These results indicate that the proposed two-step screening assay represents an efficient and labor-saving method for screening natural nematicidal products. PMID:24594258

  11. A high-throughput assay of NK cell activity in whole blood and its clinical application

    SciTech Connect

    Lee, Saet-byul; Cha, Junhoe; Kim, Im-kyung; Yoon, Joo Chun; Lee, Hyo Joon; Park, Sang Woo; Cho, Sunjung; Youn, Dong-Ye; Lee, Heyja; Lee, Choong Hwan; Lee, Jae Myun; Lee, Kang Young; Kim, Jongsun

    2014-03-14

    Graphical abstract: - Highlights: • We demonstrated a simple assay of NK cell activity from whole blood. • The measurement of secreted IFN-γ from NK cell enables high-throughput screening. • The NKA assay was validated by clinical results of colorectal cancer patients. - Abstract: Natural killer (NK) cells are lymphocytes of the innate immune system and have the ability to kill tumor cells and virus-infected cells without prior sensitization. Malignant tumors and viruses have developed, however, strategies to suppress NK cells to escape from their responses. Thus, the evaluation of NK cell activity (NKA) could be invaluable to estimate the status and the outcome of cancers, viral infections, and immune-mediated diseases. Established methods that measure NKA, such as {sup 51}Cr release assay and CD107a degranulation assay, may be used to determine NK cell function, but they are complicated and time-consuming because they require isolation of peripheral blood mononuclear cells (PBMC) or NK cells. In some cases these assays require hazardous material such as radioactive isotopes. To overcome these difficulties, we developed a simple assay that uses whole blood instead of PBMC or isolated NK cells. This novel assay is suitable for high-throughput screening and the monitoring of diseases, because it employs serum of ex vivo stimulated whole blood to detect interferon (IFN)-γ secreted from NK cells as an indicator of NKA. After the stimulation of NK cells, the determination of IFNγ concentration in serum samples by enzyme-linked immunosorbent assay (ELISA) provided a swift, uncomplicated, and high-throughput assay of NKA ex vivo. The NKA results microsatellite stable (MSS) colorectal cancer patients was showed significantly lower NKA, 263.6 ± 54.5 pg/mL compared with healthy subjects, 867.5 ± 50.2 pg/mL (p value <0.0001). Therefore, the NKA could be utilized as a supportive diagnostic marker for microsatellite stable (MSS) colorectal cancer.

  12. Application of a High-throughput Fluorescent Acetyltransferase Assay to Identify Inhibitors of Homocitrate Synthase

    PubMed Central

    Bulfer, Stacie L.; McQuade, Thomas J.; Larsen, Martha J.; Trievel, Raymond C.

    2011-01-01

    Homocitrate synthase (HCS) catalyzes the first step of L-lysine biosynthesis in fungi by condensing acetyl-Coenzyme A and 2-oxoglutarate to form 3R-homocitrate and Coenzyme A. Due to its conservation in pathogenic fungi, HCS has been proposed as a candidate for antifungal drug design. Here we report the development and validation of a robust, fluorescent assay for HCS that is amenable to high-throughput screening for inhibitors in vitro. Using this assay, Schizosaccharomyces pombe HCS was screened against a diverse library of ~41,000 small molecules. Following confirmation, counter screens, and dose-response analysis, we prioritized over 100 compounds for further in vitro and in vivo analysis. This assay can be readily adapted to screen for small molecule modulators of other acyl-CoA-dependent acyltransferases or enzymes that generate a product with a free sulfhydryl group, including histone acetyltransferases, aminoglycoside N-acetyltransferases, thioesterases and enzymes involved in lipid metabolism. PMID:21073853

  13. Droplet microfluidic technology for single-cell high-throughput screening

    PubMed Central

    Brouzes, Eric; Medkova, Martina; Savenelli, Neal; Marran, Dave; Twardowski, Mariusz; Hutchison, J. Brian; Rothberg, Jonathan M.; Link, Darren R.; Perrimon, Norbert; Samuels, Michael L.

    2009-01-01

    We present a droplet-based microfluidic technology that enables high-throughput screening of single mammalian cells. This integrated platform allows for the encapsulation of single cells and reagents in independent aqueous microdroplets (1 pL to 10 nL volumes) dispersed in an immiscible carrier oil and enables the digital manipulation of these reactors at a very high-throughput. Here, we validate a full droplet screening workflow by conducting a droplet-based cytotoxicity screen. To perform this screen, we first developed a droplet viability assay that permits the quantitative scoring of cell viability and growth within intact droplets. Next, we demonstrated the high viability of encapsulated human monocytic U937 cells over a period of 4 days. Finally, we developed an optically-coded droplet library enabling the identification of the droplets composition during the assay read-out. Using the integrated droplet technology, we screened a drug library for its cytotoxic effect against U937 cells. Taken together our droplet microfluidic platform is modular, robust, uses no moving parts, and has a wide range of potential applications including high-throughput single-cell analyses, combinatorial screening, and facilitating small sample analyses. PMID:19617544

  14. Droplet microfluidic technology for single-cell high-throughput screening.

    PubMed

    Brouzes, Eric; Medkova, Martina; Savenelli, Neal; Marran, Dave; Twardowski, Mariusz; Hutchison, J Brian; Rothberg, Jonathan M; Link, Darren R; Perrimon, Norbert; Samuels, Michael L

    2009-08-25

    We present a droplet-based microfluidic technology that enables high-throughput screening of single mammalian cells. This integrated platform allows for the encapsulation of single cells and reagents in independent aqueous microdroplets (1 pL to 10 nL volumes) dispersed in an immiscible carrier oil and enables the digital manipulation of these reactors at a very high-throughput. Here, we validate a full droplet screening workflow by conducting a droplet-based cytotoxicity screen. To perform this screen, we first developed a droplet viability assay that permits the quantitative scoring of cell viability and growth within intact droplets. Next, we demonstrated the high viability of encapsulated human monocytic U937 cells over a period of 4 days. Finally, we developed an optically-coded droplet library enabling the identification of the droplets composition during the assay read-out. Using the integrated droplet technology, we screened a drug library for its cytotoxic effect against U937 cells. Taken together our droplet microfluidic platform is modular, robust, uses no moving parts, and has a wide range of potential applications including high-throughput single-cell analyses, combinatorial screening, and facilitating small sample analyses. PMID:19617544

  15. A High Throughput Mechanical Screening Device for Cartilage Tissue Engineering

    PubMed Central

    Mohanraj, Bhavana; Hou, Chieh; Meloni, Greg R.; Cosgrove, Brian D.; Dodge, George R.; Mauck, Robert L.

    2014-01-01

    Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying ‘hits’, or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput. PMID:24275442

  16. Evaluation of High-throughput Genotoxicity Assays Used in Profiling the US EPA ToxCast Chemicals

    EPA Science Inventory

    Three high-throughput screening (HTS) genotoxicity assays-GreenScreen HC GADD45a-GFP (Gentronix Ltd.), CellCiphr p53 (Cellumen Inc.) and CellSensor p53RE-bla (Invitrogen Corp.)-were used to analyze the collection of 320 predominantly pesticide active compounds being tested in Pha...

  17. High Throughput Screening Method to Explore Protein Interactions with Nanoparticles.

    PubMed

    Nasir, Irem; Fatih, Warda; Svensson, Anja; Radu, Dennis; Linse, Sara; Cabaleiro Lago, Celia; Lundqvist, Martin

    2015-01-01

    The interactions of biological macromolecules with nanoparticles underlie a wide variety of current and future applications in the fields of biotechnology, medicine and bioremediation. The same interactions are also responsible for mediating potential biohazards of nanomaterials. Some applications require that proteins adsorb to the nanomaterial and that the protein resists or undergoes structural rearrangements. This article presents a screening method for detecting nanoparticle-protein partners and conformational changes on time scales ranging from milliseconds to days. Mobile fluorophores are used as reporters to study the interaction between proteins and nanoparticles in a high-throughput manner in multi-well format. Furthermore, the screening method may reveal changes in colloidal stability of nanomaterials depending on the physicochemical conditions. PMID:26313757

  18. High Throughput Screening Method to Explore Protein Interactions with Nanoparticles

    PubMed Central

    Nasir, Irem; Fatih, Warda; Svensson, Anja; Radu, Dennis; Linse, Sara; Cabaleiro Lago, Celia; Lundqvist, Martin

    2015-01-01

    The interactions of biological macromolecules with nanoparticles underlie a wide variety of current and future applications in the fields of biotechnology, medicine and bioremediation. The same interactions are also responsible for mediating potential biohazards of nanomaterials. Some applications require that proteins adsorb to the nanomaterial and that the protein resists or undergoes structural rearrangements. This article presents a screening method for detecting nanoparticle-protein partners and conformational changes on time scales ranging from milliseconds to days. Mobile fluorophores are used as reporters to study the interaction between proteins and nanoparticles in a high-throughput manner in multi-well format. Furthermore, the screening method may reveal changes in colloidal stability of nanomaterials depending on the physicochemical conditions. PMID:26313757

  19. Fully automatized high-throughput enzyme library screening using a robotic platform.

    PubMed

    Dörr, Mark; Fibinger, Michael P C; Last, Daniel; Schmidt, Sandy; Santos-Aberturas, Javier; Böttcher, Dominique; Hummel, Anke; Vickers, Clare; Voss, Moritz; Bornscheuer, Uwe T

    2016-07-01

    A fully automatized robotic platform has been established to facilitate high-throughput screening for protein engineering purposes. This platform enables proper monitoring and control of growth conditions in the microtiter plate format to ensure precise enzyme production for the interrogation of enzyme mutant libraries, protein stability tests and multiple assay screenings. The performance of this system has been exemplified for four enzyme classes important for biocatalysis such as Baeyer-Villiger monooxygenase, transaminase, dehalogenase and acylase in the high-throughput screening of various mutant libraries. This allowed the identification of novel enzyme variants in a sophisticated and highly reliable manner. Furthermore, the detailed optimization protocols should enable other researchers to adapt and improve their methods. Biotechnol. Bioeng. 2016;113: 1421-1432. © 2016 Wiley Periodicals, Inc. PMID:26724475

  20. Identification of Adiponectin Receptor Agonist Utilizing a Fluorescence Polarization Based High Throughput Assay

    PubMed Central

    Sun, Yiyi; Zang, Zhihe; Zhong, Ling; Wu, Min; Su, Qing; Gao, Xiurong; Zan, Wang; Lin, Dong; Zhao, Yan; Zhang, Zhonglin

    2013-01-01

    Adiponectin, the adipose-derived hormone, plays an important role in the suppression of metabolic disorders that can result in type 2 diabetes, obesity, and atherosclerosis. It has been shown that up-regulation of adiponectin or adiponectin receptor has a number of therapeutic benefits. Given that it is hard to convert the full size adiponectin protein into a viable drug, adiponectin receptor agonists could be designed or identified using high-throughput screening. Here, we report on the development of a two-step screening process to identify adiponectin agonists. First step, we developed a high throughput screening assay based on fluorescence polarization to identify adiponectin ligands. The fluorescence polarization assay reported here could be adapted to screening against larger small molecular compound libraries. A natural product library containing 10,000 compounds was screened and 9 hits were selected for validation. These compounds have been taken for the second-step in vitro tests to confirm their agonistic activity. The most active adiponectin receptor 1 agonists are matairesinol, arctiin, (-)-arctigenin and gramine. The most active adiponectin receptor 2 agonists are parthenolide, taxifoliol, deoxyschizandrin, and syringin. These compounds may be useful drug candidates for hypoadiponectin related diseases. PMID:23691032

  1. Identification of adiponectin receptor agonist utilizing a fluorescence polarization based high throughput assay.

    PubMed

    Sun, Yiyi; Zang, Zhihe; Zhong, Ling; Wu, Min; Su, Qing; Gao, Xiurong; Zan, Wang; Lin, Dong; Zhao, Yan; Zhang, Zhonglin

    2013-01-01

    Adiponectin, the adipose-derived hormone, plays an important role in the suppression of metabolic disorders that can result in type 2 diabetes, obesity, and atherosclerosis. It has been shown that up-regulation of adiponectin or adiponectin receptor has a number of therapeutic benefits. Given that it is hard to convert the full size adiponectin protein into a viable drug, adiponectin receptor agonists could be designed or identified using high-throughput screening. Here, we report on the development of a two-step screening process to identify adiponectin agonists. First step, we developed a high throughput screening assay based on fluorescence polarization to identify adiponectin ligands. The fluorescence polarization assay reported here could be adapted to screening against larger small molecular compound libraries. A natural product library containing 10,000 compounds was screened and 9 hits were selected for validation. These compounds have been taken for the second-step in vitro tests to confirm their agonistic activity. The most active adiponectin receptor 1 agonists are matairesinol, arctiin, (-)-arctigenin and gramine. The most active adiponectin receptor 2 agonists are parthenolide, taxifoliol, deoxyschizandrin, and syringin. These compounds may be useful drug candidates for hypoadiponectin related diseases. PMID:23691032

  2. NanoLuc Luciferase – A Multifunctional Tool for High Throughput Antibody Screening

    PubMed Central

    Boute, Nicolas; Lowe, Peter; Berger, Sven; Malissard, Martine; Robert, Alain; Tesar, Michael

    2016-01-01

    Based on the recent development of NanoLuc luciferase (Nluc), a small (19 kDa), highly stable, ATP independent, bioluminescent protein, an extremely robust and ultra high sensitivity screening system has been developed whereby primary hits of therapeutic antibodies and antibody fragments could be characterized and quantified without purification. This system is very versatile allowing cellular and solid phase ELISA but also homogeneous BRET based screening assays, relative affinity determinations with competition ELISA and direct Western blotting. The new Nluc protein fusion represents a “swiss army knife solution” for today and future high throughput antibody drug screenings. PMID:26924984

  3. NanoLuc Luciferase - A Multifunctional Tool for High Throughput Antibody Screening.

    PubMed

    Boute, Nicolas; Lowe, Peter; Berger, Sven; Malissard, Martine; Robert, Alain; Tesar, Michael

    2016-01-01

    Based on the recent development of NanoLuc luciferase (Nluc), a small (19 kDa), highly stable, ATP independent, bioluminescent protein, an extremely robust and ultra high sensitivity screening system has been developed whereby primary hits of therapeutic antibodies and antibody fragments could be characterized and quantified without purification. This system is very versatile allowing cellular and solid phase ELISA but also homogeneous BRET based screening assays, relative affinity determinations with competition ELISA and direct Western blotting. The new Nluc protein fusion represents a "swiss army knife solution" for today and future high throughput antibody drug screenings. PMID:26924984

  4. High-throughput screening of binary catalysts for oxygen electroreduction

    NASA Astrophysics Data System (ADS)

    Liu, Jing Hua; Jeon, Min Ku; Woo, Seong Ihl

    2006-01-01

    A series of Pt based and non-Pt catalysts for proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) have been evaluated towards oxygen reduction, by high-throughput optical screening. Fluorescein was first used as pH indicator for detecting pH change of the electrolyte in the vicinity of cathode caused by oxygen reduction. Arrays of catalyst spot comprised of binary catalysts and pure Pt were prepared by using robotic micro-dispenser. The analysis of fluorescence images has showed that some of Pt based catalysts including PtBi, PtCu, PtSe, PtTe and PtIr, as well as RuFe, as a non-Pt catalyst, exhibited higher activities and methanol tolerance than pure Pt. Moreover, acceptable stability of these catalysts at high potential in acid environment suits them to the requirements of cathode catalyst in PEMFC or DMFC.

  5. Multi-enzyme Screening Using a High-throughput Genetic Enzyme Screening System.

    PubMed

    Kim, Haseong; Kwon, Kil Koang; Seong, Wonjae; Lee, Seung-Goo

    2016-01-01

    The recent development of a high-throughput single-cell assay technique enables the screening of novel enzymes based on functional activities from a large-scale metagenomic library(1). We previously proposed a genetic enzyme screening system (GESS) that uses dimethylphenol regulator activated by phenol or p-nitrophenol. Since a vast amount of natural enzymatic reactions produce these phenolic compounds from phenol deriving substrates, this single genetic screening system can be theoretically applied to screen over 200 different enzymes in the BRENDA database. Despite the general applicability of GESS, applying the screening process requires a specific procedure to reach the maximum flow cytometry signals. Here, we detail the developed screening process, which includes metagenome preprocessing with GESS and the operation of a flow cytometry sorter. Three different phenolic substrates (p-nitrophenyl acetate, p-nitrophenyl-β-D-cellobioside, and phenyl phosphate) with GESS were used to screen and to identify three different enzymes (lipase, cellulase, and alkaline phosphatase), respectively. The selected metagenomic enzyme activities were confirmed only with the flow cytometry but DNA sequencing and diverse in vitro analysis can be used for further gene identification. PMID:27584951

  6. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    SciTech Connect

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.

    2014-11-15

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication.

  7. High-throughput Saccharification assay for lignocellulosic materials.

    PubMed

    Gomez, Leonardo D; Whitehead, Caragh; Roberts, Philip; McQueen-Mason, Simon J

    2011-01-01

    Polysaccharides that make up plant lignocellulosic biomass can be broken down to produce a range of sugars that subsequently can be used in establishing a biorefinery. These raw materials would constitute a new industrial platform, which is both sustainable and carbon neutral, to replace the current dependency on fossil fuel. The recalcitrance to deconstruction observed in lignocellulosic materials is produced by several intrinsic properties of plant cell walls. Crystalline cellulose is embedded in matrix polysaccharides such as xylans and arabinoxylans, and the whole structure is encased by the phenolic polymer lignin, that is also difficult to digest (1). In order to improve the digestibility of plant materials we need to discover the main bottlenecks for the saccharification of cell walls and also screen mutant and breeding populations to evaluate the variability in saccharification (2). These tasks require a high throughput approach and here we present an analytical platform that can perform saccharification analysis in a 96-well plate format. This platform has been developed to allow the screening of lignocellulose digestibility of large populations from varied plant species. We have scaled down the reaction volumes for gentle pretreatment, partial enzymatic hydrolysis and sugar determination, to allow large numbers to be assessed rapidly in an automated system. This automated platform works with milligram amounts of biomass, performing ball milling under controlled conditions to reduce the plant materials to a standardised particle size in a reproducible manner. Once the samples are ground, the automated formatting robot dispenses specified and recorded amounts of material into the corresponding wells of 96 deep well plate (Figure 1). Normally, we dispense the same material into 4 wells to have 4 replicates for analysis. Once the plates are filled with the plant material in the desired layout, they are manually moved to a liquid handling station (Figure 2

  8. A Quantitative High-Throughput Screening Data Analysis Pipeline for Activity Profiling.

    PubMed

    Huang, Ruili

    2016-01-01

    The US Tox21 program has developed in vitro assays to test large collections of environmental chemicals in a quantitative high-throughput screening (qHTS) format, using triplicate 15-dose titrations to generate over 50 million data points to date. Counter screens are also employed to minimize interferences from non-target-specific assay artifacts, such as compound auto fluorescence and cytotoxicity. New data analysis approaches are needed to integrate these data and characterize the activities observed from these assays. Here, we describe a complete analysis pipeline that evaluates these qHTS data for technical quality in terms of signal reproducibility. We integrate signals from repeated assay runs, primary readouts, and counter screens to produce a final call on on-target compound activity. PMID:27518629

  9. High-throughput receptor-based assay for the detection of spirolides by chemiluminescence.

    PubMed

    Rodríguez, Laura P; Vilariño, Natalia; Molgó, Jordi; Aráoz, Rómulo; Botana, Luis M

    2013-12-01

    The spirolides are marine toxins that belong to a new class of macrocyclic imines produced by dinoflagellates. In this study a previously described solid-phase receptor-based assay for the detection of spirolides was optimized for high-throughput screening and prevalidated. This method is based on the competition between 13-desmethyl spirolide C and biotin-α-bungarotoxin immobilized on a streptavidin-coated surface, for binding to nicotinic acetylcholine receptors. In this inhibition assay the amount of nAChR bound to the well surface is quantified using a specific antibody, followed by a second anti-mouse IgG antibody labeled with horseradish peroxidase (HRP). The assay protocol was optimized for 384-well microplates, which allowed a reduction of the amount of reagents per sample and an increase of the number of samples per plate versus previously published receptor-based assays. The sensitivity of the assay for 13-desmethyl spirolide C ranged from 5 to 150 ng mL(-1). The performance of the assay in scallop extracts was adequate, with an estimated detection limit for 13-desmethyl spirolide C of 50 μg kg(-1) of shellfish meat. The recovery rate of 13-desmethyl spirolide C for spiked samples with this assay was 80% and the inter-assay coefficient of variation was 8%. This 384-well microplate, chemiluminescence method can be used as a high-throughput screening assay to detect 13-desmethyl spirolide C in shellfish meat in order to reduce the number of samples to be processed through bioassays or analytical methods. PMID:23827412

  10. High-throughput screening of solid-state catalyst libraries

    NASA Astrophysics Data System (ADS)

    Senkan, Selim M.

    1998-07-01

    Combinatorial synthesis methods allow the rapid preparation and processing of large libraries of solid-state materials. The use of these methods, together with the appropriate screening techniques, has recently led to the discovery of materials with promising superconducting, magnetoresistive, luminescent and dielectric properties. Solid-state catalysts, which play an increasingly important role in the chemical and oil industries, represent another class of material amenable to combinatorial synthesis. Yet typically, catalyst discovery still involves inefficient trial-and-error processes, because catalytic activity is inherently difficult to screen. In contrast to superconductivity, magnetoresistivity and dielectric properties, which can be tested by contact probes, or luminescence, which can be observed directly, the assessment of catalytic activity requires the unambiguous detection of a specific product molecule above a small catalyst site on a large library. Screening by in situ infrared thermography and microprobe sampling mass spectrometry, have been suggested, but the first method, while probing activity, provides no information on reaction products, whereas the second is difficult to implement because it requires the transport of minute gas samples from each library site to the detection system. Here I describe the use of laser-induced resonance-enhanced multiphoton ionization for sensitive, selective and high-throughput screening of a library of solid-state catalysts that activate the dehydrogenation of cyclohexane to benzene. I show that benzene, the product molecule, can be selectively photoionized in the vicinity of the catalytic sites, and that the detection of the resultant photoions by an array of microelectrodes provides information on the activity of individual sites. Adaptation of this technique for the screening of other catalytic reactions and larger libraries with smaller site size seems feasible, thus opening up the possibility of exploiting

  11. High-Throughput Screening of Myometrial Calcium-Mobilization to Identify Modulators of Uterine Contractility

    PubMed Central

    Herington, Jennifer L.; Swale, Daniel R.; Brown, Naoko; Shelton, Elaine L.; Choi, Hyehun; Williams, Charles H.; Hong, Charles C.; Paria, Bibhash C.; Denton, Jerod S.; Reese, Jeff

    2015-01-01

    The uterine myometrium (UT-myo) is a therapeutic target for preterm labor, labor induction, and postpartum hemorrhage. Stimulation of intracellular Ca2+-release in UT-myo cells by oxytocin is a final pathway controlling myometrial contractions. The goal of this study was to develop a dual-addition assay for high-throughput screening of small molecular compounds, which could regulate Ca2+-mobilization in UT-myo cells, and hence, myometrial contractions. Primary murine UT-myo cells in 384-well plates were loaded with a Ca2+-sensitive fluorescent probe, and then screened for inducers of Ca2+-mobilization and inhibitors of oxytocin-induced Ca2+-mobilization. The assay exhibited robust screening statistics (Z´ = 0.73), DMSO-tolerance, and was validated for high-throughput screening against 2,727 small molecules from the Spectrum, NIH Clinical I and II collections of well-annotated compounds. The screen revealed a hit-rate of 1.80% for agonist and 1.39% for antagonist compounds. Concentration-dependent responses of hit-compounds demonstrated an EC50 less than 10μM for 21 hit-antagonist compounds, compared to only 7 hit-agonist compounds. Subsequent studies focused on hit-antagonist compounds. Based on the percent inhibition and functional annotation analyses, we selected 4 confirmed hit-antagonist compounds (benzbromarone, dipyridamole, fenoterol hydrobromide and nisoldipine) for further analysis. Using an ex vivo isometric contractility assay, each compound significantly inhibited uterine contractility, at different potencies (IC50). Overall, these results demonstrate for the first time that high-throughput small-molecules screening of myometrial Ca2+-mobilization is an ideal primary approach for discovering modulators of uterine contractility. PMID:26600013

  12. Silicon microphysiometer for high-throughput drug screening

    NASA Astrophysics Data System (ADS)

    Verhaegen, Katarina; Baert, Christiaan; Puers, Bob; Sansen, Willy; Simaels, Jeannine; Van Driessche, Veerle; Hermans, Lou; Mertens, Robert P.

    1999-06-01

    We report on a micromachined silicon chip that is capable of providing a high-throughput functional assay based on calorimetry. A prototype twin microcalorimeter based on the Seebeck effect has been fabricated by IC technology and micromachined postprocessing techniques. A biocompatible liquid rubber membrane supports two identical 0.5 X 2 cm2 measurement chambers, situated at the cold and hot junction of a 666-junction aluminum/p+-polysilicon thermopile. The chambers can house up to 106 eukaryotic cells cultured to confluence. The advantage of the device over microcalorimeters on the market, is the integration of the measurement channels on chip, rendering microvolume reaction vessels, ranging from 10 to 600 (mu) l, in the closest possible contact with the thermopile sensor (no springs are needed). Power and temperature sensitivity of the sensor are 23 V/W and 130 mV/K, respectively. The small thermal inertia of the microchannels results in the short response time of 70 s, when filled with 50 (mu) l of water. Biological experiments were done with cultured kidney cells of Xenopus laevis (A6). The thermal equilibration time of the device is 45 min. Stimulation of transport mechanisms by reducing bath osmolality by 50% increased metabolism by 20%. Our results show that it is feasible to apply this large-area, small- volume whole-cell biosensor for drug discovery, where the binding assays that are commonly used to provide high- throughput need to be complemented with a functional assay. Solutions are brought onto the sensor by a simple pipette, making the use of an industrial microtiterplate dispenser feasible on a nx96-array of the microcalorimeter biosensor. Such an array of biosensors has been designed based on a new set of requirements as set forth by people in the field as this project moved on. The results obtained from the prototype large-area sensor were used to obtain an accurate model of the calorimeter, checked for by the simulation software ANSYS. At

  13. High-throughput optical screening of cellular mechanotransduction.

    PubMed

    Compton, Jonathan L; Luo, Justin C; Ma, Huan; Botvinick, Elliot; Venugopalan, Vasan

    2014-09-01

    We introduce an optical platform for rapid, high-throughput screening of exogenous molecules that affect cellular mechanotransduction. Our method initiates mechanotransduction in adherent cells using single laser-microbeam generated micro-cavitation bubbles (μCBs) without requiring flow chambers or microfluidics. These μCBs expose adherent cells to a microTsunami, a transient microscale burst of hydrodynamic shear stress, which stimulates cells over areas approaching 1mm(2). We demonstrate microTsunami-initiated mechanosignalling in primary human endothelial cells. This observed signalling is consistent with G-protein-coupled receptor stimulation resulting in Ca(2+) release by the endoplasmic reticulum. Moreover, we demonstrate the dose-dependent modulation of microTsunami-induced Ca(2+) signalling by introducing a known inhibitor to this pathway. The imaging of Ca(2+) signalling, and its modulation by exogenous molecules, demonstrates the capacity to initiate and assess cellular mechanosignalling in real-time. We utilize this capability to screen the effects of a set of small molecules on cellular mechanotransduction in 96-well plates using standard imaging cytometry. PMID:25309621

  14. High-throughput optical screening of cellular mechanotransduction

    PubMed Central

    Compton, Jonathan L.; Luo, Justin C.; Ma, Huan; Botvinick, Elliot; Venugopalan, Vasan

    2014-01-01

    We introduce an optical platform for rapid, high-throughput screening of exogenous molecules that affect cellular mechanotransduction. Our method initiates mechanotransduction in adherent cells using single laser-microbeam generated micro-cavitation bubbles (μCBs) without requiring flow chambers or microfluidics. These μCBs expose adherent cells to a microTsunami, a transient microscale burst of hydrodynamic shear stress, which stimulates cells over areas approaching 1mm2. We demonstrate microTsunami-initiated mechanosignalling in primary human endothelial cells. This observed signalling is consistent with G-protein-coupled receptor stimulation resulting in Ca2+ release by the endoplasmic reticulum. Moreover, we demonstrate the dose-dependent modulation of microTsunami-induced Ca2+ signalling by introducing a known inhibitor to this pathway. The imaging of Ca2+ signalling, and its modulation by exogenous molecules, demonstrates the capacity to initiate and assess cellular mechanosignalling in real-time. We utilize this capability to screen the effects of a set of small molecules on cellular mechanotransduction in 96-well plates using standard imaging cytometry. PMID:25309621

  15. High-throughput optical screening of cellular mechanotransduction

    NASA Astrophysics Data System (ADS)

    Compton, Jonathan L.; Luo, Justin C.; Ma, Huan; Botvinick, Elliot; Venugopalan, Vasan

    2014-09-01

    We introduce an optical platform for rapid, high-throughput screening of exogenous molecules that affect cellular mechanotransduction. Our method initiates mechanotransduction in adherent cells using single laser-microbeam generated microcavitation bubbles without requiring flow chambers or microfluidics. These microcavitation bubbles expose adherent cells to a microtsunami, a transient microscale burst of hydrodynamic shear stress, which stimulates cells over areas approaching 1 mm2. We demonstrate microtsunami-initiated mechanosignalling in primary human endothelial cells. This observed signalling is consistent with G-protein-coupled receptor stimulation, resulting in Ca2+ release by the endoplasmic reticulum. Moreover, we demonstrate the dose-dependent modulation of microtsunami-induced Ca2+ signalling by introducing a known inhibitor to this pathway. The imaging of Ca2+ signalling and its modulation by exogenous molecules demonstrates the capacity to initiate and assess cellular mechanosignalling in real time. We utilize this capability to screen the effects of a set of small molecules on cellular mechanotransduction in 96-well plates using standard imaging cytometry.

  16. Towards Prebiotic Catalytic Amyloids Using High Throughput Screening

    PubMed Central

    Friedmann, Michael P.; Torbeev, Vladimir; Zelenay, Viviane; Sobol, Alexander; Greenwald, Jason; Riek, Roland

    2015-01-01

    Enzymes are capable of directing complex stereospecific transformations and of accelerating reaction rates many orders of magnitude. As even the simplest known enzymes comprise thousands of atoms, the question arises as to how such exquisite catalysts evolved. A logical predecessor would be shorter peptides, but they lack the defined structure and size that are apparently necessary for enzyme functions. However, some very short peptides are able to assemble into amyloids, thereby forming a well-defined tertiary structure called the cross-β-sheet, which bestows unique properties upon the peptides. We have hypothesized that amyloids could have been the catalytically active precursor to modern enzymes. To test this hypothesis, we designed an amyloid peptide library that could be screened for catalytic activity. Our approach, amenable to high-throughput methodologies, allowed us to find several peptides and peptide mixtures that form amyloids with esterase activity. These results indicate that amyloids, with their stability in a wide range of conditions and their potential as catalysts with low sequence specificity, would indeed be fitting precursors to modern enzymes. Furthermore, our approach can be efficiently expanded upon in library size, screening conditions, and target activity to yield novel amyloid catalysts with potential applications in aqueous-organic mixtures, at high temperature and in other extreme conditions that could be advantageous for industrial applications. PMID:26650386

  17. Filtration improves the performance of a high-throughput screen for anti-mycobacterial compounds.

    PubMed

    Cheng, Nancy; Porter, Melissa A; Frick, Lloyd W; Nguyen, Yvonne; Hayden, Jennifer D; Young, Ellen F; Braunstein, Miriam S; Hull-Ryde, Emily A; Janzen, William P

    2014-01-01

    The tendency for mycobacteria to aggregate poses a challenge for their use in microplate based assays. Good dispersions have been difficult to achieve in high-throughput screening (HTS) assays used in the search for novel antibacterial drugs to treat tuberculosis and other related diseases. Here we describe a method using filtration to overcome the problem of variability resulting from aggregation of mycobacteria. This method consistently yielded higher reproducibility and lower variability than conventional methods, such as settling under gravity and vortexing. PMID:24788852

  18. Institutional Profile: The Sheffield RNAi screening facility: a service for high-throughput, genome-wide Drosophila RNAi screens.

    PubMed

    Brown, Stephen

    2010-12-01

    The Sheffield RNAi Screening Facility (SRSF) was established in November 2008, as Britain's first Drosophila RNAi screening centre, funded by the University of Sheffield, Biomedical Sciences Department and the Wellcome Trust. The SRSF was formed to service the needs of research groups wanting to carry out high-throughput RNAi screens with Drosophila cells. The rationale for the SRSF is to provide RNAi libraries and the specialist equipment and expertise to do such screens. The facility supports both plate reader assays, high-content microscopy as well as the equipment needed to process these samples in a high-throughput fashion. The SRSF can either be used to identify genes involved in disease representing future drug targets, or to identify genes involved in drug resistance and efficacy. PMID:21428803

  19. High throughput screening of electrocatalysts for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Prochaska, Mark; Jin, Jing; Rochefort, Dominic; Zhuang, Lin; DiSalvo, Francis J.; Abruña, Héctor D.; van Dover, R. B.

    2006-05-01

    We describe methodologies for the generation and screening of combinatorial libraries of electrocatalyst materials for fuel cell applications, generated by cosputtering of three elements onto a Si substrate coated with a Ta adhesion underlayer. Screening was carried out via a fluorescence assay as well as by scanning electrochemical microscopy. Whereas the former provided rapid qualitative screening with limited spatial resolution, the latter provided high spatial resolution. The fluorescence screening method was tested on Pt, PtBi, PtPb, and PtRu nanoparticles, while both methods were tested on a film containing a Pt-Bi-Pb ternary composition spread.

  20. High throughput assay of diffusion through Cx43 gap junction channels with a microfluidic chip.

    PubMed

    Bathany, Cédric; Beahm, Derek; Felske, James D; Sachs, Frederick; Hua, Susan Z

    2011-02-01

    This paper describes a microfluidic-based assay capable of measuring gap-junction mediated dye diffusion in cultured cells. The technique exploits multistream laminar flow to selectively expose cells to different environments, enabling continuous loading of cells in one compartment while monitoring, in real time, dye diffusion into cells of a neighboring compartment. A simple one-dimensional diffusion model fit to the data extracted the diffusion coefficient of four different dyes, 5-(6)-carboxyfluorescein, 5-chloromethylfluorescein, Oregon green 488 carboxylic acid, and calcein. Different inhibitors were assayed for their ability to reduce dye coupling. The chip can screen multiple inhibitors in parallel in the same cell preparation, demonstrating its potential for high throughput. The technique provides a convenient method to measure gap junction mediated diffusion and a screen for drugs that affect gap junction communication. PMID:21182279

  1. Towards high throughput screening of electrochemical stability of battery electrolytes.

    PubMed

    Borodin, Oleg; Olguin, Marco; Spear, Carrie E; Leiter, Kenneth W; Knap, Jaroslaw

    2015-09-01

    High throughput screening of solvents and additives with potential applications in lithium batteries is reported. The initial test set is limited to carbonate and phosphate-based compounds and focused on their electrochemical properties. Solvent stability towards first and second reduction and oxidation is reported from density functional theory (DFT) calculations performed on isolated solvents surrounded by implicit solvent. The reorganization energy is estimated from the difference between vertical and adiabatic redox energies and found to be especially important for the accurate prediction of reduction stability. A majority of tested compounds had the second reduction potential higher than the first reduction potential indicating that the second reduction reaction might play an important role in the passivation layer formation. Similarly, the second oxidation potential was smaller for a significant subset of tested molecules than the first oxidation potential. A number of potential sources of errors introduced during screening of the electrolyte electrochemical properties were examined. The formation of lithium fluoride during reduction of semifluorinated solvents such as fluoroethylene carbonate and the H-transfer during oxidation of solvents were found to shift the electrochemical potential by 1.5-2 V and could shrink the electrochemical stability window by as much as 3.5 V when such reactions are included in the screening procedure. The initial oxidation reaction of ethylene carbonate and dimethyl carbonate at the surface of the completely de-lithiated LiNi0.5Mn1.5O4 high voltage spinel cathode was examined using DFT. Depending on the molecular orientation at the cathode surface, a carbonate molecule either exhibited deprotonation or was found bound to the transition metal via its carbonyl oxygen. PMID:26266636

  2. Towards high throughput screening of electrochemical stability of battery electrolytes

    NASA Astrophysics Data System (ADS)

    Borodin, Oleg; Olguin, Marco; Spear, Carrie E.; Leiter, Kenneth W.; Knap, Jaroslaw

    2015-09-01

    High throughput screening of solvents and additives with potential applications in lithium batteries is reported. The initial test set is limited to carbonate and phosphate-based compounds and focused on their electrochemical properties. Solvent stability towards first and second reduction and oxidation is reported from density functional theory (DFT) calculations performed on isolated solvents surrounded by implicit solvent. The reorganization energy is estimated from the difference between vertical and adiabatic redox energies and found to be especially important for the accurate prediction of reduction stability. A majority of tested compounds had the second reduction potential higher than the first reduction potential indicating that the second reduction reaction might play an important role in the passivation layer formation. Similarly, the second oxidation potential was smaller for a significant subset of tested molecules than the first oxidation potential. A number of potential sources of errors introduced during screening of the electrolyte electrochemical properties were examined. The formation of lithium fluoride during reduction of semifluorinated solvents such as fluoroethylene carbonate and the H-transfer during oxidation of solvents were found to shift the electrochemical potential by 1.5-2 V and could shrink the electrochemical stability window by as much as 3.5 V when such reactions are included in the screening procedure. The initial oxidation reaction of ethylene carbonate and dimethyl carbonate at the surface of the completely de-lithiated LiNi0.5Mn1.5O4 high voltage spinel cathode was examined using DFT. Depending on the molecular orientation at the cathode surface, a carbonate molecule either exhibited deprotonation or was found bound to the transition metal via its carbonyl oxygen.

  3. Methods for efficient high-throughput screening of protein expression in recombinant Pichia pastoris strains.

    PubMed

    Camattari, Andrea; Weinhandl, Katrin; Gudiminchi, Rama K

    2014-01-01

    The methylotrophic yeast Pichia pastoris is becoming one of the favorite industrial workhorses for protein expression. Due to the widespread use of integration vectors, which generates significant clonal variability, screening methods allowing assaying hundreds of individual clones are of particular importance. Here we describe methods to detect and analyze protein expression, developed in a 96-well format for high-throughput screening of recombinant P. pastoris strains. The chapter covers essentially three common scenarios: (1) an enzymatic assay for proteins expressed in the cell cytoplasm, requiring cell lysis; (2) a whole-cell assay for a fungal cytochrome P450; and (3) a nonenzymatic assay for detection and quantification of tagged protein secreted into the supernatant. PMID:24744029

  4. High-throughput microtitre plate-based assay for DNA topoisomerases.

    PubMed

    Taylor, James A; Burton, Nicolas P; Maxwell, Anthony

    2012-01-01

    We have developed a rapid, high-throughput assay for measuring the catalytic activity (DNA supercoiling or relaxation) of DNA topoisomerases. The assay utilizes intermolecular triplex formation between an immobilized triplex-forming oligo (TFO) and a triplex-forming region inserted into the plasmid substrate (pNO1), and capitalizes on the observation that supercoiled DNA forms triplexes more readily than relaxed DNA. Thus, supercoiled DNA is preferentially retained by the TFO under triplex-forming conditions while relaxed DNA can be washed away. Due to its high speed of sample analysis and reduced sample handling over conventional gel-based techniques, this assay can be used to screen chemical libraries for novel inhibitors of topoisomerases. PMID:22130995

  5. A high throughput screening for rarely transcribed differentially expressed genes.

    PubMed Central

    von Stein, O D; Thies, W G; Hofmann, M

    1997-01-01

    A novel method combining elements of suppression subtractive hybridization with high throughput differential screening permits the efficient and rapid cloning of rarely transcribed differentially expressed genes. The experimental strategy virtually excludes the possibility of isolating false positive clones. The potential of the method is demonstrated by the isolation of 625 differentially expressed cDNAs from the metastatic adenocarcinoma cell line Bsp73-ASML when subtracted from its non-metastatic counterpart Bsp73-1AS. Northern analysis of 72 randomly selected clones demonstrated that 68 were differentially expressed with respect to Bsp73-ASML, indicating a true positive rate of 94%. Additionally, a large proportion of these clones represented rare transcripts as determined by the exposure time required to detect a signal. Sequence data indicated that of the 625 clones obtained, 92 clones scored perfect or near perfect matches with already known genes. Two hundred and eighty one clones scored between 60 and 95% homology to known human and mouse genes, whereas 252 clones scored no match with any sequences in the public databases. The method we describe is ideally suited whenever subtle changes in gene expression profiles need to be determined. PMID:9185570

  6. Advances in High Throughput Screening of Biomass Recalcitrance (Poster)

    SciTech Connect

    Turner, G. B.; Decker, S. R.; Tucker, M. P.; Law, C.; Doeppke, C.; Sykes, R. W.; Davis, M. F.; Ziebell, A.

    2012-06-01

    This was a poster displayed at the Symposium. Advances on previous high throughput screening of biomass recalcitrance methods have resulted in improved conversion and replicate precision. Changes in plate reactor metallurgy, improved preparation of control biomass, species-specific pretreatment conditions, and enzymatic hydrolysis parameters have reduced overall coefficients of variation to an average of 6% for sample replicates. These method changes have improved plate-to-plate variation of control biomass recalcitrance and improved confidence in sugar release differences between samples. With smaller errors plant researchers can have a higher degree of assurance more low recalcitrance candidates can be identified. Significant changes in plate reactor, control biomass preparation, pretreatment conditions and enzyme have significantly reduced sample and control replicate variability. Reactor plate metallurgy significantly impacts sugar release aluminum leaching into reaction during pretreatment degrades sugars and inhibits enzyme activity. Removal of starch and extractives significantly decreases control biomass variability. New enzyme formulations give more consistent and higher conversion levels, however required re-optimization for switchgrass. Pretreatment time and temperature (severity) should be adjusted to specific biomass types i.e. woody vs. herbaceous. Desalting of enzyme preps to remove low molecular weight stabilizers and improved conversion levels likely due to water activity impacts on enzyme structure and substrate interactions not attempted here due to need to continually desalt and validate precise enzyme concentration and activity.

  7. Adaptation to high throughput batch chromatography enhances multivariate screening.

    PubMed

    Barker, Gregory A; Calzada, Joseph; Herzer, Sibylle; Rieble, Siegfried

    2015-09-01

    High throughput process development offers unique approaches to explore complex process design spaces with relatively low material consumption. Batch chromatography is one technique that can be used to screen chromatographic conditions in a 96-well plate. Typical batch chromatography workflows examine variations in buffer conditions or comparison of multiple resins in a given process, as opposed to the assessment of protein loading conditions in combination with other factors. A modification to the batch chromatography paradigm is described here where experimental planning, programming, and a staggered loading approach increase the multivariate space that can be explored with a liquid handling system. The iterative batch chromatography (IBC) approach is described, which treats every well in a 96-well plate as an individual experiment, wherein protein loading conditions can be varied alongside other factors such as wash and elution buffer conditions. As all of these factors are explored in the same experiment, the interactions between them are characterized and the number of follow-up confirmatory experiments is reduced. This in turn improves statistical power and throughput. Two examples of the IBC method are shown and the impact of the load conditions are assessed in combination with the other factors explored. PMID:25914370

  8. High-Throughput Chemical Screening for Antivirulence Developmental Phenotypes in Trypanosoma brucei

    PubMed Central

    MacGregor, Paula; Ivens, Alasdair; Shave, Steven; Collie, Iain; Gray, David; Auer, Manfred

    2014-01-01

    In the bloodstream of mammalian hosts, the sleeping sickness parasite, Trypanosoma brucei, exists as a proliferative slender form or a nonproliferative, transmissible, stumpy form. The transition between these developmental forms is controlled by a density-dependent mechanism that is important for the parasite's infection dynamics, immune evasion via ordered antigenic variation, and disease transmissibility. However, stumpy formation has been lost in most laboratory-adapted trypanosome lines, generating monomorphic parasites that proliferate uncontrolled as slender forms in vitro and in vivo. Nonetheless, these forms are readily amenable to cell culture and high-throughput screening for trypanocidal lead compounds. Here, we have developed and exploited a high-throughput screen for developmental phenotypes using a transgenic monomorphic cell line expressing a reporter under the regulation of gene control signals from the stumpy-specific molecule PAD1. Using a whole-cell fluorescence-based assay to screen over 6,000 small molecules from a kinase-focused compound library, small molecules able to activate stumpy-specific gene expression and proliferation arrest were assayed in a rapid assay format. Independent follow-up validation identified one hit able to induce modest, yet specific, changes in mRNA expression indicative of a partial differentiation to stumpy forms in monomorphs. Further, in pleomorphs this compound induced a stumpy-like phenotype, entailing growth arrest, morphological changes, PAD1 expression, and enhanced differentiation to procyclic forms. This not only provides a potential tool compound for the further understanding of stumpy formation but also demonstrates the use of high-throughput screening in the identification of compounds able to induce specific phenotypes, such as differentiation, in African trypanosomes. PMID:24442893

  9. A comprehensive statistical analysis of predicting in vivo hazard using high-throughput in vitro screening.

    PubMed

    Thomas, Russell S; Black, Michael B; Li, Lili; Healy, Eric; Chu, Tzu-Ming; Bao, Wenjun; Andersen, Melvin E; Wolfinger, Russell D

    2012-08-01

    Over the past 5 years, increased attention has been focused on using high-throughput in vitro screening for identifying chemical hazards and prioritizing chemicals for additional in vivo testing. The U.S. Environmental Protection Agency's ToxCast program has generated a significant amount of high-throughput screening data allowing a broad-based assessment of the utility of these assays for predicting in vivo responses. In this study, a comprehensive cross-validation model comparison was performed to evaluate the predictive performance of the more than 600 in vitro assays from the ToxCast phase I screening effort across 60 in vivo endpoints using 84 different statistical classification methods. The predictive performance of the in vitro assays was compared and combined with that from chemical structure descriptors. With the exception of chronic in vivo cholinesterase inhibition, the overall predictive power of both the in vitro assays and the chemical descriptors was relatively low. The predictive power of the in vitro assays was not significantly different from that of the chemical descriptors and aggregating the assays based on genes reduced predictive performance. Prefiltering the in vitro assay data outside the cross-validation loop, as done in some previous studies, significantly biased estimates of model performance. The results suggest that the current ToxCast phase I assays and chemicals have limited applicability for predicting in vivo chemical hazards using standard statistical classification methods. However, if viewed as a survey of potential molecular initiating events and interpreted as risk factors for toxicity, the assays may still be useful for chemical prioritization. PMID:22543276

  10. High Throughput Screening for Drugs that Modulate Intermediate Filament Proteins

    PubMed Central

    Sun, Jingyuan; Groppi, Vincent E.; Gui, Honglian; Chen, Lu; Xie, Qing; Liu, Li

    2016-01-01

    Intermediate filament (IF) proteins have unique and complex cell and tissue distribution. Importantly, IF gene mutations cause or predispose to more than 80 human tissue-specific diseases (IF-pathies), with the most severe disease phenotypes being due to mutations at conserved residues that result in a disrupted IF network. A critical need for the entire IF-pathy field is the identification of drugs that can ameliorate or cure these diseases, particularly since all current therapies target the IF-pathy complication, such as diabetes or cardiovascular disease, rather than the mutant IF protein or gene. We describe a high throughput approach to identify drugs that can normalize disrupted IF proteins. This approach utilizes transduction of lentivirus that expresses green-fluorescent-protein-tagged keratin 18 (K18) R90C in A549 cells. The readout is drug ‘hits’ that convert the dot-like keratin filament distribution, due to the R90C mutation, to a wildtype-like filamentous array. A similar strategy can be used to screen thousands of compounds and can be utilized for practically any IF protein with a filament-disrupting mutation, and could therefore potentially target many IF-pathies. ‘Hits’ of interest require validation in cell culture then using in vivo experimental models. Approaches to study the mechanism of mutant-IF normalization by potential drugs of interest are also described. The ultimate goal of this drug screening approach is to identify effective and safe compounds that can potentially be tested for clinical efficacy in patients. PMID:26795471