Sample records for highly acidic solutions

  1. Recovery of fission product palladium from acidic high level waste solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizvi, G.H.; Mathur, J.N.; Murali, M.S.

    1996-07-01

    The recovery of palladium from a synthetic pressurized heavy water reactor high level waste (PHWR-HLW) solution has been carried out, and the best reagents to use for the actual HLW solutions are discussed. The extraction of palladium from nitric acid solutions has been carried out using Cyanex-471X (triisobutylphosphine sulfide, TIPS) as the extractant. The metal ion could be quantitatively extracted from solutions with nitric acid concentrations between 2.0 and 6.0 M. The species extracted into the organic phase was found to be Pd(NO{sub 3}){sub 2}{center_dot}TIPS. Nitric acid in the range of 2.0 to 5.0 M had no effect on TIPSmore » for at least 71 hours. A systematic study of gamma irradiation on loading and stripping of palladium from loaded organic phases using several potential extractants, TIPS, alpha benzoin oxime, dioctylsulfide, and dioctylsulfoxide has been made. A flow sheet for the recovery of palladium from actual HLW solutions using TIPS is proposed.« less

  2. High-Yield Production of Levulinic Acid from Pretreated Cow Dung in Dilute Acid Aqueous Solution.

    PubMed

    Su, Jialei; Shen, Feng; Qiu, Mo; Qi, Xinhua

    2017-02-14

    Agricultural waste cow dung was used as feedstock for the production of a high value-added chemical levulinic acid (LA) in dilute acid aqueous solutions. A high LA yield of 338.9 g/kg was obtained from the pretreated cow dung, which was much higher than that obtained from the crude cow dung (135 g/kg), mainly attributed to the breakage of the lignin fraction in the lignocellulose structure of the cow dung by potassium hydroxide (KOH) pretreatment, and thus enhanced the accessibility of cow dung to the acid sites in the catalytic reaction. Meanwhile, another value-added chemical formic acid could be obtained with a yield of ca. 160 g/kg in the process, implying a total production of ca. 500 g/kg yield for LA and formic acid from the pretreated cow dung with the proposed process. The developed process was shown to be tolerant to high initial substrate loading with a satisfied LA yield. This work provides a promising strategy for the value-increment utilization of liglocellulosic agricultural residues.

  3. Dibutyl Phosphoric Acid Solubility in High-Acid, Uranium-Bearing Solutions at SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.A.

    1998-10-02

    The Savannah River Site has enriched uranium (EU) solution which has been stored for almost 10 years since being purified in the second uranium cycle of the H area solvent extraction process. The concentrations in solution are approximately 6 g/L U and about 0.1 M nitric acid. Residual tributylphosphate in the solutions has slowly hydrolyzed to form dibutyl phosphoric acid (HDBP) at concentrations averaging 50 mg/L. Uranium is known to form compounds with the dibutylphosphate ion (DBP) which have limited solubility. The potential to form uranium-DBP solids raises a nuclear criticality safety issue. Prior SRTC tests (WSRC-TR-98-00188) showed that U-DBPmore » solids precipitate at concentrations potentially attainable during the storage of enriched uranium solutions. Furthermore, evaporation of the existing EUS solution without additional acidification could result in the precipitation of U-DBP solids if the DBP concentration in the resulting solution exceeds 110 mg/L at ambient temperature. The same potential exists for evaporation of unwashed 1CU solutions. As a follow-up to the earlier studies, SRTC studied the solubility limits for solutions containing acid concentrations above 0.5M HNO3. The data obtained in these tests reveals a shift to higher levels of DBP solubility above 0.5M HNO3 for both 6 g/L and 12 g/L uranium solutions. Analysis of U-DBP solids from the tests identified a mixture of different molecular structures for the solids created. The analysis distinguished UO2(DBP)2 as the dominant compound present at low acid concentrations. As the acid concentration increases, the crystalline UO2(DBP)2 shows molecular substitutions and an increase in amorphous content. Further analysis by methods not available at SRS will be needed to better identify the specific compounds present. This data indicates that acidification prior to evaporation can be used to increase the margin of safety for the storage of the EUS solutions. Subsequent experimentation evaluated

  4. Nitric acid recovery from waste solutions

    DOEpatents

    Wilson, A. S.

    1959-04-14

    The recovery of nitric acid from aqueous nitrate solutions containing fission products as impurities is described. It is desirable to subject such solutions to concentration by evaporation since nitric acid is regenerated thereby. A difficulty, however, is that the highly radioactive fission product ruthenium is volatilized together with the nitric acid. It has been found that by adding nitrous acid, ruthenium volatilization is suppressed and reduced to a negligible degree so that the distillate obtained is practically free of ruthenium.

  5. Dissolution of Simulated and Radioactive Savannah River Site High-Level Waste Sludges with Oxalic Acid & Citric Acid Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STALLINGS, MARY

    This report presents findings from tests investigating the dissolution of simulated and radioactive Savannah River Site sludges with 4 per cent oxalic acid and mixtures of oxalic and citric acid previously recommended by a Russian team from the Khlopin Radium Institute and the Mining and Chemical Combine (MCC). Testing also included characterization of the simulated and radioactive waste sludges. Testing results showed the following: Dissolution of simulated HM and PUREX sludges with oxalic and citric acid mixtures at SRTC confirmed general trends reported previously by Russian testing. Unlike the previous Russian testing six sequential contacts of a mixture of oxalicmore » acid citric acids at a 2:1 ratio (v/w) of acid to sludge did not produce complete dissolution of simulated HM and PUREX sludges. We observed that increased sludge dissolution occurred at a higher acid to sludge ratio, 50:1 (v/w), compared to the recommended ratio of 2:1 (v/w). We observed much lower dissolution of aluminum in a simulated HM sludge by sodium hydroxide leaching. We attribute the low aluminum dissolution in caustic to the high fraction of boehmite present in the simulated sludge. Dissolution of HLW sludges with 4 per cent oxalic acid and oxalic/citric acid followed general trends observed with simulated sludges. The limited testing suggests that a mixture of oxalic and citric acids is more efficient for dissolving HM and PUREX sludges and provides a more homogeneous dissolution of HM sludge than oxalic acid alone. Dissolution of HLW sludges in oxalic and oxalic/citric acid mixtures produced residual sludge solids that measured at higher neutron poison to equivalent 235U weight ratios than that in the untreated sludge solids. This finding suggests that residual solids do not present an increased nuclear criticality safety risk. Generally the neutron poison to equivalent 235U weight ratios of the acid solutions containing dissolved sludge components are lower than those in the

  6. Effect of adding acid solution on setting time and compressive strength of high calcium fly ash based geopolymer

    NASA Astrophysics Data System (ADS)

    Antoni, Herianto, Jason Ghorman; Anastasia, Evelin; Hardjito, Djwantoro

    2017-09-01

    Fly ash with high calcium oxide content when used as the base material in geopolymer concrete could cause flash setting or rapid hardening. However, it might increase the compressive strength of geopolymer concrete. This rapid hardening could cause problems if the geopolymer concrete is used on a large scale casting that requires a long setting time. CaO content can be indicated by pH values of the fly ash, while higher pH is correlated with the rapid setting time of fly ash-based geopolymer. This study investigates the addition of acid solution to reduce the initial pH of the fly ash and to prolong the setting time of the mixture. The acids used in this study are hydrochloric acid (HCl), sulfuric acid (H2 SO4), nitric acid (HNO3) and acetic acid (CH3 COOH). It was found that the addition of acid solution in fly ash was able to decrease the initial pH of fly ash, however, the initial setting time of geopolymer was not reduced. It was even faster than that of the control mixture. The acid type causes various influence, depending on the fly ash properties. In addition, the use of acid solution in fly ash reduces the compressive strength of geopolymer mortar. It is concluded that the addition of acid solution cannot prolong the rapid hardening of high calcium fly ash geopolymer, and it causes adverse effect on the compressive strength.

  7. Reference electrode for strong oxidizing acid solutions

    DOEpatents

    Rigdon, Lester P.; Harrar, Jackson E.; Bullock, Sr., Jack C.; McGuire, Raymond R.

    1990-01-01

    A reference electrode for the measurement of the oxidation-reduction potentials of solutions is especially suitable for oxidizing solutions such as highly concentrated and fuming nitric acids, the solutions of nitrogen oxides, N.sub.2 O.sub.4 and N.sub.2 O.sub.5, in nitric acids. The reference electrode is fabricated of entirely inert materials, has a half cell of Pt/Ce(IV)/Ce(III)/70 wt. % HNO.sub.3, and includes a double-junction design with an intermediate solution of 70 wt. % HNO.sub.3. The liquid junctions are made from Corning No. 7930 glass for low resistance and negligible solution leakage.

  8. Synthesis of highly ordered TiO2 nanotube in malonic acid solution by anodization.

    PubMed

    Ryu, Won Hee; Park, Chan Jin; Kwon, Hyuk Sang

    2008-10-01

    We synthesized TiO2 nanotube array by anodizing in a solution of malonic acid (HOOCCH2COOH) and NH4F, and analyzed the morphology of the nanotube using scanning electron microscopy (SEM). The morphology of TiO2 nanotube was largely affected by anodizing time, anodizing voltage, and malonic acid concentration. With increasing the anodizing voltage from 5 V to 20 V, the diameter of TiO2 nanotube was increased from about 20 nm to 110 nm and its length from about 10 nm to 700 nm. In addition, the length of TiO2 nanotube was increased with increasing anodizing time up to 6 h at 20 V. We obtained the longest and the most highly ordered nanotube structure when anodizing Ti in a solution of 0.5 wt% NH4F and 1 M malonic acid at 20 V for 6 h.

  9. Process for the removal of radium from acidic solutions containing same

    DOEpatents

    Scheitlin, F.M.

    The invention is a process for the removal of radium from acidic aqueous solutions. In one aspect, the invention is a process for removing radium from an inorganic-acid solution. The process comprises contacting the solution with coal fly ash to effect adsorption of the radium on the ash. The radium-containing ash then is separated from the solution. The process is simple, comparatively inexpensive, and efficient. High radium-distribution coefficients are obtained even at room temperature. Coal fly ash is an inexpensive, acid-resistant, high-surface-area material which is available in large quantities throughout the United States. The invention is applicable, for example, to the recovery of /sup 226/Ra from nitric acid solutions which have been used to leach radium from uranium-mill tailings.

  10. REDUCTION OF ACIDITY OF NITRIC ACID SOLUTIONS BY USE OF FORMALDEHYDE

    DOEpatents

    Healy, T.V.

    1958-05-20

    A continuous method is described of concentrating by evaporation and reducing the nitrate ion content of an aqueous solution of metallic salts containing nitric acid not in excess of 8N. It consists of heating the solution and then passing formaldehyde into the heated solution to bring about decomposition of the nitric acid. The evolved gases containing NO are contacted countercurrently with an aqueous metal salt solution containing nitric acid in excess of 8N so as to bring about decomposition of the nitric acid and lower the normality to at least 8N, whereupon it is passed into the body of heated solution.

  11. Mesoporous titanosilicates with high loading of titanium synthesized in mild acidic buffer solution.

    PubMed

    Tang, Jianting; Liu, Jian; Yang, Jie; Feng, Zhaochi; Fan, Fengtao; Yang, Qihua

    2009-07-15

    Mesoporous titanosilicates with high titanium content were synthesized under mild acidic conditions (pH=4.4, HAc-NaAc buffer solution) by co-condensation of acetylacetone-modified titanium isopropoxide (Ti(OBu(n))(3) (acac)) and mixture of sodium silicate with tetramethoxysilane (TMOS) or tetraethoxysilane (TEOS) or tetrakis(2-hydroxyethyl)orthosilicate (EGMS), using block copolymer Pluronic P123 as template. The combined results of XRD, N(2) sorption and TEM show that the highly regular structure of the mesoporous titanosilicates can still be obtained when Ti/Si molar ratio in the final product is as high as 0.059. The results of UV-vis diffuse reflectance spectra and UV resonance Raman spectra show that the framework titanium species are predominant in the mesoporous titanosilicates when Ti/Si molar ratio in the final product is less than 0.042. The mixture of sodium silicate and EGMS was proved to be the best silicon source for the synthesis of titanosilicates with ordered mesostructure and high titanium content. The efficiency of this synthetic method may be attributed to the mild acidic medium as well as the modified hydrolysis-condensation rate and hydrophility of the precursors.

  12. ELECTROLYTIC REDUCTION OF NITRIC ACID SOLUTIONS

    DOEpatents

    Alter, H.W.; Barney, D.L.

    1958-09-30

    A process is presented for the treatment of radioactivc waste nitric acid solutions. The nitric acid solution is neutralized with an alkali metal hydroxide in an amount sufficient to precipitate insoluble hydroxides, and after separation of the precipitate the solution is electrolyzed to convert the alkali nitrate formed, to alkali hydroxide, gaseous ammonla and oxygen. The solution is then reusable after reducing the volume by evaporating the water and dissolved ammonia.

  13. Acid anhydrides: a simple route to highly pure organometallic solutions for superconducting films

    NASA Astrophysics Data System (ADS)

    Roma, N.; Morlens, S.; Ricart, S.; Zalamova, K.; Moreto, J. M.; Pomar, A.; Puig, T.; Obradors, X.

    2006-06-01

    The presence of impurities in the precursor metal carboxylate solutions for the preparation of epitaxial thin films by metal organic decomposition (MOD) is substantially avoided by the use of acid anhydrides. In particular, trifluoroacetic anhydride (TFAA) was used for the synthesis of the starting Y, Ba and Cu trifluoroacetates used in YBa2Cu3O7-x (YBCO) preparation by the MOD process. In this way, highly stable organometallic precursors and a short pyrolysis process could be used leading to YBCO films with high critical currents (Jc >=2-4 MA cm-2 at 77 K). Furthermore, the reproducibility of the results has been ascertained.

  14. Population and size distribution of solute-rich mesospecies within mesostructured aqueous amino acid solutions.

    PubMed

    Jawor-Baczynska, Anna; Moore, Barry D; Lee, Han Seung; McCormick, Alon V; Sefcik, Jan

    2013-01-01

    Aqueous solutions of highly soluble substances such as small amino acids are usually assumed to be essentially homogenous systems with some degree of short range local structuring due to specific interactions on the sub-nanometre scale (e.g. molecular clusters, hydration shells), usually not exceeding several solute molecules. However, recent theoretical and experimental studies have indicated the presence of much larger supramolecular assemblies or mesospecies in solutions of small organic and inorganic molecules as well as proteins. We investigated both supersaturated and undersaturated aqueous solutions of two simple amino acids (glycine and DL-alanine) using Dynamic Light Scattering (DLS), Brownian Microscopy/Nanoparticles Tracking Analysis (NTA) and Cryogenic Transmission Electron Microscopy (Cryo-TEM). Colloidal scale mesospecies (nanodroplets) were previously reported in supersaturated solutions of these amino acids and were implicated as intermediate species on non-classical crystallization pathways. Surprisingly, we have found that the mesospecies are also present in significant numbers in undersaturated solutions even when the solute concentration is well below the solid-liquid equilibrium concentration (saturation limit). Thus, mesopecies can be observed with mean diameters ranging from 100 to 300 nm and a size distribution that broadens towards larger size with increasing solute concentration. We note that the mesospecies are not a separate phase and the system is better described as a thermodynamically stable mesostructured liquid containing solute-rich domains dispersed within bulk solute solution. At a given temperature, solute molecules in such a mesostructured liquid phase are subject to equilibrium distribution between solute-rich mesospecies and the surrounding bulk solution.

  15. Decomposition mechanism of chromite in sulfuric acid-dichromic acid solution

    NASA Astrophysics Data System (ADS)

    Zhao, Qing; Liu, Cheng-jun; Li, Bao-kuan; Jiang, Mao-fa

    2017-12-01

    The sulfuric acid leaching process is regarded as a promising, cleaner method to prepare trivalent chromium products from chromite; however, the decomposition mechanism of the ore is poorly understood. In this work, binary spinels of Mg-Al, Mg-Fe, and Mg-Cr in the powdered and lump states were synthesized and used as raw materials to investigate the decomposition mechanism of chromite in sulfuric acid-dichromic acid solution. The leaching yields of metallic elements and the changes in morphology of the spinel were studied. The experimental results showed that the three spinels were stable in sulfuric acid solution and that dichromic acid had little influence on the decomposition behavior of the Mg-Al spinel and Mg-Fe spinel because Mg2+, Al3+, and Fe3+ in spinels cannot be oxidized by Cr6+. However, in the case of the Mg-Cr spinel, dichromic acid substantially promoted the decomposition efficiency and functioned as a catalyst. The decomposition mechanism of chromite in sulfuric acid-dichromic acid solution was illustrated on the basis of the findings of this study.

  16. Removal of radium from acidic solutions containing same by adsorption on coal fly ash

    DOEpatents

    Scheitlin, Frank M.

    1984-01-01

    The invention is a process for the removal of radium from acidic aqueous solutions. In one aspect, the invention is a process for removing radium from an inorganic-acid solution. The process comprises contacting the solution with coal fly ash to effect adsorption of the radium on the ash. The radium-containing ash then is separated from the solution. The process is simple, comparatively inexpensive, and efficient. High radium-distribution coefficients are obtained even at room temperature. Coal fly ash is an inexpensive, acid-resistant, high-surface-area material which is available in large quantities throughout the United States. The invention is applicable, for example, to the recovery of .sup.226 Ra from nitric acid solutions which have been used to leach radium from uranium-mill tailings.

  17. Solubility limits of dibutyl phosphoric acid in uranium-nitric acid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.A.

    2000-01-04

    The Savannah River Site has enriched uranium (EU) solution that has been stored since being purified in its solvent extraction processes. The concentrations in solution are approximately 6 g/L U and 0.1 M nitric acid. Residual tributylphosphate in solution has slowly hydrolyzed to form dibutyl phosphoric acid (HDBP) at concentrations averaging 30--50 mg/L. Dibutyl phosphoric acid, in turn, is in equilibrium with (HDBP){sub 2} and DBP{sup {minus}}. Uranium can form compounds with the dibutylphosphate ion (DBP{sup {minus}}) which have limited solubility, thereby creating a nuclear criticality safety issue. Literature reports and earlier SRTC tests have shown that it is feasiblemore » to precipitate U-DBP solid during the storage and processing of EU solutions. As a result, a series of solubility experiments were run at nitric acid concentrations from 0--4.0 M HNO{sub 3}, uranium at 0--90 g/L, and temperatures from 0--30 C. The data shows temperature and nitric acid concentration dependence consistent with what would be expected. With respect to uranium concentration, U-DBP solubility passes through a minimum between 6 and 12 g/L U at the acid concentrations and temperatures studied. However, the minimum shows a slight shift toward lower uranium concentrations at lower nitric acid concentrations. The shifts in solubility are strongly dependent upon the overall ionic strength of the solution. The data also reveal a shift to higher DBP solubility above 0.5 M HNO{sub 3} for both 6 g/L and 12 g/L uranium solutions. Analysis of U-DBP solids from the tests identified distinct differences between precipitates from less than 0.5 M solutions and those from greater than 4 M acid. Analyses identified UO{sub 2}(DBP){sub 2} as the dominant compound present at low acid concentrations in accordance with literature reports. As the acid concentration increases, the crystalline UO{sub 2}(DBP){sub 2} shows molecular substitutions and an increase in amorphous content.« less

  18. Viscosity-Lowering Effect of Amino Acids and Salts on Highly Concentrated Solutions of Two IgG1 Monoclonal Antibodies.

    PubMed

    Wang, Shujing; Zhang, Ning; Hu, Tao; Dai, Weiguo; Feng, Xiuying; Zhang, Xinyi; Qian, Feng

    2015-12-07

    Monoclonal antibodies display complicated solution properties in highly concentrated (>100 mg/mL) formulations, such as high viscosity, high aggregation propensity, and low stability, among others, originating from protein-protein interactions within the colloidal protein solution. These properties severely hinder the successful development of high-concentration mAb solution for subcutaneous injection. We hereby investigated the effects of several small-molecule excipients with diverse biophysical-chemical properties on the viscosity, aggregation propensity, and stability on two model IgG1 (JM1 and JM2) mAb formulations. These excipients include nine amino acids or their salt forms (Ala, Pro, Val, Gly, Ser, HisHCl, LysHCl, ArgHCl, and NaGlu), four representative salts (NaCl, NaAc, Na2SO4, and NH4Cl), and two chaotropic reagents (urea and GdnHCl). With only salts or amino acids in their salt-forms, significant decrease in viscosity was observed for JM1 (by up to 30-40%) and JM2 (by up to 50-80%) formulations, suggesting charge-charge interaction between the mAbs dictates the high viscosity of these mAbs formulations. Most of these viscosity-lowering excipients did not induce substantial protein aggregation or changes in the secondary structure of the mAbs, as evidenced by HPLC-SEC, DSC, and FT-IR analysis, even in the absence of common protein stabilizers such as sugars and surfactants. Therefore, amino acids in their salt-forms and several common salts, such as ArgHCl, HisHCl, LysHCl, NaCl, Na2SO4, and NaAc, could potentially serve as viscosity-lowering excipients during high-concentration mAb formulation development.

  19. Method for liquid chromatographic extraction of strontium from acid solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1992-01-01

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

  20. Nitric acid uptake by sulfuric acid solutions under stratospheric conditions - Determination of Henry's Law solubility

    NASA Technical Reports Server (NTRS)

    Reihs, Christa M.; Golden, David M.; Tolbert, Margaret A.

    1990-01-01

    The uptake of nitric acid by sulfuric acid solutions representative of stratospheric particulate at low temperatures was measured to determine the solubility of nitric acid in sulfuric acid solutions as a function of H2SO4 concentration and solution temperature. Solubilities are reported for sulfuric acid solutions ranging from 58 to 87 wt pct H2SO4 over a temperature range from 188 to 240 K, showing that, in general, the solubility of nitric acid increases with decreasing sulfuric acid concentration and with decreasing temperature. The measured solubilities indicate that nitric acid in the global stratosphere will be found predominantly in the gas phase.

  1. Growth behavior of anodic porous alumina formed in malic acid solution

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tatsuya; Yamamoto, Tsuyoshi; Suzuki, Ryosuke O.

    2013-11-01

    The growth behavior of anodic porous alumina formed on aluminum by anodizing in malic acid solutions was investigated. High-purity aluminum plates were electropolished in CH3COOH/HClO4 solutions and then anodized in 0.5 M malic acid solutions at 293 K and constant cell voltages of 200-350 V. The anodic porous alumina grew on the aluminum substrate at voltages of 200-250 V, and a black, burned oxide film was formed at higher voltages. The nanopores of the anodic oxide were only formed at grain boundaries of the aluminum substrate during the initial stage of anodizing, and then the growth region extended to the entire aluminum surface as the anodizing time increased. The anodic porous alumina with several defects was formed by anodizing in malic acid solution at 250 V, and oxide cells were approximately 300-800 nm in diameter.

  2. Improved method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.; Kaplan, L.; Mason, G.W.

    1983-07-26

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions uses a new series of neutral bi-functional extractants, the alkyl(phenyl)-N,N-dialkylcarbamoylmethylphosphine oxides. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high-level nuclear reprocessing waste solutions.

  3. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1994-01-01

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.

  4. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1993-01-01

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.

  5. Effect of pH on Semiconducting Property of Passive Film Formed on Ultra-High-Strength Corrosion-Resistant Steel in Sulfuric Acid Solution

    NASA Astrophysics Data System (ADS)

    Sun, Min; Xiao, Kui; Dong, Chaofang; Li, Xiaogang; Zhong, Ping

    2013-10-01

    Because Cr9Ni5MoCo14 is a new ultra-high-strength corrosion-resistant steel, it is important to study its corrosion behavior in sulfuric acid solution, which is used to simulate the aggressive environment. The effect of pH on the electrochemical and semiconducting properties of passive films formed on ultra-high-strength corrosion-resistant steel in sulfuric acid solution was investigated by means of the potentiodynamic polarization technique, electrochemical impedance spectroscopy (EIS), Mott-Schottky analysis, and X-ray photoelectron spectroscopy (XPS). The results indicated that Cr9Ni5MoCo14 steel showed a passive state in acid solutions. The corrosion behavior of this Cr9Ni5MoCo14 alloy was influenced by the passive film formed on the surface, including thickness, stability, and partitioning of elements of the passive film. The passive current density decreases with increasing pH, and the corrosion resistance was enhanced by the increasing thickness and depletion of the defects within the passive film. Moreover, an enrichment of chromium (primarily the oxides of Cr) and depletion of iron in the passive film led to improved corrosion resistance. These results can provide a theoretical basis for use of this alloy and further development of ultra-high-strength corrosion-resistant steel in today's society.

  6. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1994-09-06

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid. 4 figs.

  7. Raman spectra of amino acids and their aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zhu, Guangyong; Zhu, Xian; Fan, Qi; Wan, Xueliang

    2011-03-01

    Amino acids are the basic "building blocks" that combine to form proteins and play an important physiological role in all life-forms. Amino acids can be used as models for the examination of the importance of intermolecular bonding in life processes. Raman spectra serve to obtain information regarding molecular conformation, giving valuable insights into the topology of more complex molecules (peptides and proteins). In this paper, amino acids and their aqueous solution have been studied by Raman spectroscopy. Comparisons of certain values for these frequencies in amino acids and their aqueous solutions are given. Spectra of solids when compared to those of the solute in solution are invariably much more complex and almost always sharper. We present a collection of Raman spectra of 18 kinds of amino acids ( L-alanine, L-arginine, L-aspartic acid, cystine, L-glutamic acid, L-glycine, L-histidine, L-isoluecine, L-leucine, L-lysine, L-phenylalanine, L-methionone, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine) and their aqueous solutions that can serve as references for the interpretation of Raman spectra of proteins and biological materials.

  8. Non-catalytic hydrogenation of VO2 in acid solution.

    PubMed

    Chen, Yuliang; Wang, Zhaowu; Chen, Shi; Ren, Hui; Wang, Liangxin; Zhang, Guobin; Lu, Yalin; Jiang, Jun; Zou, Chongwen; Luo, Yi

    2018-02-26

    Hydrogenation is an effective way to tune the property of metal oxides. It can conventionally be performed by doping hydrogen into solid materials with noble-metal catalysis, high-temperature/pressure annealing treatment, or high-energy proton implantation in vacuum condition. Acid solution naturally provides a rich proton source, but it should cause corrosion rather than hydrogenation to metal oxides. Here we report a facile approach to hydrogenate monoclinic vanadium dioxide (VO 2 ) in acid solution at ambient condition by placing a small piece of low workfunction metal (Al, Cu, Ag, Zn, or Fe) on VO 2 surface. It is found that the attachment of a tiny metal particle (~1.0 mm) can lead to the complete hydrogenation of an entire wafer-size VO 2 (>2 inch). Moreover, with the right choice of the metal a two-step insulator-metal-insulator phase modulation can even be achieved. An electron-proton co-doping mechanism has been proposed and verified by the first-principles calculations.

  9. Ginger extract as green corrosion inhibitor of mild steel in hydrochloric acid solution

    NASA Astrophysics Data System (ADS)

    Fidrusli, A.; Suryanto; Mahmood, M.

    2018-01-01

    Ginger extract as corrosion inhibitor from natural resources was studied to prevent corrosion of mild steel in acid media. Ginger rhizome was extracted to produce green corrosion inhibitor (G-1) while ginger powder bought at supermarket was also extract to form green corrosion inhibitor (G-2). Effectiveness of inhibitor in preventing corrosion process of mild steel was studied in 1.0 M of hydrochloric acid. The experiment of weight loss method and polarization technique were conducted to measure corrosion rate and inhibition efficiency of mild steel in solution containing 1.0 M of hydrochloric acid with various concentration of inhibitor at room temperature. The results showed that, the rate of corrosion dropped from 8.09 mmpy in solution containing no inhibitor to 0.72 mmpy in solution containing 150g/l inhibitor while inhibition efficiency up to 91% was obtained. The polarization curve in polarization experiments shows that the inhibition efficiency is 86% with high concentration of inhibitor. The adsorption of ginger extract on the surface of mild steel was observed by using optical microscope and the characterization analysis was done by using pH measurement method. When high concentration of green inhibitor in the acid solution is used, the pH at the surface of steel is increasing.

  10. [Electricity generation using high concentration terephthalic acid solution by microbial fuel cell].

    PubMed

    Ye, Ye-Jie; Song, Tian-Shun; Xu, Yuan; Chen, Ying-Wen; Zhu, She-Min; Shen, Shu-Bao

    2009-04-15

    The high concentration terephthalic acid (TA) solution as the substrate of microbial fuel cell (MFC) was studied to generate electricity. The open circuit voltage was 0.54 V after inoculating for 210 h with anaerobic activated sludge, which proved that TA can be the substrate of microbial fuel cell to generate electricity. The influence of pH and substrate concentration on generating electricity was studied deeply. The voltage output of external resistance (R = 1,000 Omega) was the highest when pH was 8.0. It increased as the substrate concentration increasing and tended towards a maximum value. The maximum voltage output Umax was 0.5 V and Ks was 785.2 mg/L by Monod equation regression. When the substrate concentration (according to COD) was 4000 mg/L, the maximum power density was 96.3 mW/m2, coulomb efficiency was 2.66% and COD removal rate was 80.3%.

  11. Method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E. Philip; Kalina, Dale G.; Kaplan, Louis; Mason, George W.

    1985-01-01

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions with an organic extractant having the formula: ##STR1## where .phi. is phenyl, R.sup.1 is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R.sup.2 is an alkyl containing from 3 to 6 carbon atoms. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high level nuclear reprocessing waste solutions.

  12. REDUCTION OF PLUTONIUM VALUES IN AN ACIDIC AQUEOUS SOLUTION WITH FORMALDEHYDE

    DOEpatents

    Olson, C.M.

    1959-06-01

    A method is given for reducing Pu to the tetravalent state and lowering the high acidity of dissolver solutions containing U and Pu. Formaldehyde is added to the HNO/sub 3/ solution of U and Pu to effect a formaldehyde to HNO/sub 3/ molar ratio of 0.375:1 to 1.5:1. The Pu can then be removed from the solution by carrier precipitation using BiPO/sub 4/ or by ion exchange. (T.R.H.)

  13. Acidities of Water and Methanol in Aqueous Solution and DMSO

    ERIC Educational Resources Information Center

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  14. Optical high acidity sensor

    DOEpatents

    Jorgensen, Betty S.; Nekimken, Howard L.; Carey, W. Patrick; O'Rourke, Patrick E.

    1997-01-01

    An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and, a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber.

  15. Optical high acidity sensor

    DOEpatents

    Jorgensen, B.S.; Nekimken, H.L.; Carey, W.P.; O`Rourke, P.E.

    1997-07-22

    An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber. 10 figs.

  16. Calcium leaching behavior of cementitious materials in hydrochloric acid solution.

    PubMed

    Yang, Huashan; Che, Yujun; Leng, Faguang

    2018-06-11

    The calcium leaching behavior of cement paste and silica fume modified calcium hydroxide paste, exposed to hydrochloric acid solution, is reported in this paper. The kinetic of degradation was assessed by the changes of pH of hydrochloric acid solution with time. The changes of compressive strength of specimens in hydrochloric acid with time were tested. Hydration products of leached specimens were also analyzed by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric (TG), and atomic force microscope (AFM). Tests results show that there is a dynamic equilibrium in the supply and consumption of calcium hydroxide in hydrochloric acid solution, which govern the stability of hydration products such as calcium silicate hydrate (C-S-H). The decrease of compressive strength indicates that C-S-H are decomposed due to the lower concentration of calcium hydroxide in the pore solution than the equilibrium concentration of the hydration products. Furthermore, the hydration of unhydrated clinker delayed the decomposition of C-S-H in hydrochloric acid solution due to the increase of calcium hydroxide in pore solution of cementitious materials.

  17. Modification of vital wheat gluten with phosphoric acid to produce high free-solution capacity

    USDA-ARS?s Scientific Manuscript database

    Wheat gluten reacts with phosphoric acid to produce natural superabsorbent gels. The gel properties are defined by Fourier Transform Infra-red (FTIR) spectroscopy, 2-dimensional gel electrophoresis (2DE), and uptake of water, salt solutions, and aqueous ethanol. Temperatures above 120'C and dry cond...

  18. Compatible solute influence on nucleic acids: Many questions but few answers

    PubMed Central

    Kurz, Matthias

    2008-01-01

    Compatible solutes are small organic osmolytes including but not limited to sugars, polyols, amino acids, and their derivatives. They are compatible with cell metabolism even at molar concentrations. A variety of organisms synthesize or take up compatible solutes for adaptation to extreme environments. In addition to their protective action on whole cells, compatible solutes display significant effects on biomolecules in vitro. These include stabilization of native protein and nucleic acid structures. They are used as additives in polymerase chain reactions to increase product yield and specificity, but also in other nucleic acid and protein applications. Interactions of compatible solutes with nucleic acids and protein-nucleic acid complexes are much less understood than the corresponding interactions of compatible solutes with proteins. Although we may begin to understand solute/nucleic acid interactions there are only few answers to the many questions we have. I summarize here the current state of knowledge and discuss possible molecular mechanisms and thermodynamics. PMID:18522725

  19. Influence of D-Penicillamine on the Viscosity of Hyaluronic Acid Solutions

    NASA Astrophysics Data System (ADS)

    Liang, Jing; Krause, Wendy E.; Colby, Ralph H.

    2006-03-01

    Polyelectrolyte hyaluronic acid (HA, hyaluronan) is an important component in synovial fluid. Its presence results in highly viscoelastic solutions with excellent lubricating and shock-absorbing properties. In comparison to healthy synovial fluid, diseased fluid has a reduced viscosity. In osteoarthritis this reduction in viscosity results from a decline in both the molecular weight and concentration of hyaluronic acid HA. Initial results indicate that D-penicillamine affects the rheology of bovine synovial fluid, a model synovial fluid solution, and its components, including HA. In order to understand how D-penicillamine modifies the viscosity of these solutions, the rheological properties of sodium hyaluronate (NaHA) in phosphate-buffered saline (PBS) with D-penicillamine were studied as function of time, D-penicillamine concentration (0 -- 0.01 M), and storage conditions. Penicillamine has a complex, time dependent effect on the viscosity of NaHA solutions---reducing the zero shear rate viscosity of a 3 mg/mL NaHA in PBS by ca. 40% after 44 days.

  20. Process for the recovery of strontium from acid solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1992-01-01

    The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid.

  1. Process for the recovery of strontium from acid solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1992-03-31

    The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid. 5 figs.

  2. Quenching characteristics of bathocuproinedisulfonic acid, disodium salt in aqueous solution and copper sulfate plating solution

    NASA Astrophysics Data System (ADS)

    Koga, Toshiaki; Hirakawa, Chieko; Takeshita, Michinori; Terasaki, Nao

    2018-04-01

    Bathocuproinedisulfonic acid, disodium salt (BCS) is generally used to detect Cu(I) through a color reaction. We newly found BCS fluorescence in the visible blue region in an aqueous solution. However, the fluorescence mechanism of BCS is not well known, so we should investigate its fundamental information. We confirmed that the characteristics of fluorescence are highly dependent on the molecular concentration and solvent properties. In particular, owing to the presence of the copper compound, the fluorescence intensity extremely decreases. By fluorescence quenching, we observed that a copper compound concentration of 10-6 mol/L or less could easily be measured in an aqueous solution. We also observed BCS fluorescence in copper sulfate plating solution and the possibility of detecting monovalent copper by fluorescence reabsorption.

  3. Adsorption of Cu(II) from aqueous solution on sulfuric acid treated palygorskite

    NASA Astrophysics Data System (ADS)

    Niu, Yan-Ning; Yuan, Yuan; Gao, Wei-Xin; Qian, Sheng; Sun, Wen

    2018-03-01

    The absorption behavior of Cu2+ from aqueous solution on sulfuric acid treated palygorskite were investigated, the results showed that palygorskite had high absorption ability for Cu2+ from aqueous solution. Effects of the shaking time, pH and the copper ion concentration on the removal rate were discussed. The absorption behavior of Cu2+ could be well imitated by the Langmuir isothermal equation.

  4. Vibrational studies in aqueous solutions. Part II. The acid oxalate ion and oxalic acid

    NASA Astrophysics Data System (ADS)

    Shippey, T. A.

    1980-08-01

    Assignments for oxalic acid in solution are re-examined. A detailed assignment of the IR and Raman spectra of the acid oxalate ion is presented for the first time. Raman spectroscopy is used to study the first ionization of oxalic acid.

  5. Separation of Molybdenum from Acidic High-Phosphorus Tungsten Solution by Solvent Extraction

    NASA Astrophysics Data System (ADS)

    Li, Yongli; Zhao, Zhongwei

    2017-10-01

    A solvent-extraction process for deep separation of molybdenum from an acidic high-phosphate tungsten solution was developed using tributyl phosphate (TBP) as the extractant and hydrogen peroxide (H2O2) as a complexing agent. The common aqueous complexes of tungsten and molybdenum (PMoxW12-xO40 3-, x = 0-12) are depolymerized to {PO4[Mo(O)2(O-O)]4}3- and {PO4[W(O)2(O-O)]4}3- by H2O2. The former can be preferentially extracted by TBP. The extractant concentration, phase contact time, H2O2 dosage, and H2SO4 concentration were optimized. By employing 80% by volume TBP, O:A = 1:1, 1.0 mol/L H2SO4, 1.0 mol/L H3PO4, a contact time of 2 min, and a molar ratio of H2O2/(W + Mo) equal to 1.5, 60.2% molybdenum was extracted in a single stage, while limiting tungsten co-extraction to 3.2%. An extraction isotherm indicated that the raffinate could be reduced to <0.1 g/L Mo in six stages of continuous counter-current extraction.

  6. Reduction of Plutonium in Acidic Solutions by Mesoporous Carbons

    DOE PAGES

    Parsons-Moss, Tashi; Jones, Stephen; Wang, Jinxiu; ...

    2015-12-19

    Batch contact experiments with several porous carbon materials showed that carbon solids spontaneously reduce the oxidation state of plutonium in 1-1.5 M acid solutions, without significant adsorption. The final oxidation state and rate of Pu reduction varies with the solution matrix, and also depends on the surface chemistry and surface area of the carbon. It was demonstrated that acidic Pu(VI) solutions can be reduced to Pu(III) by passing through a column of porous carbon particles, offering an easy alternative to electrolysis with a potentiostat.

  7. Structure elucidation and quantification of impurities formed between 6-aminocaproic acid and the excipients citric acid and sorbitol in an oral solution using high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy.

    PubMed

    Schou-Pedersen, Anne Marie V; Cornett, Claus; Nyberg, Nils; Østergaard, Jesper; Hansen, Steen Honoré

    2015-03-25

    Concentrated solutions containing 6-aminocaproic acid and the excipients citric acid and sorbitol have been studied at temperatures of 50°C, 60°C, 70°C and 80°C as well as at 20°C. It has previously been reported that the commonly employed citric acid is a reactive excipient, and it is therefore important to thoroughly investigate a possible reaction between 6-aminocaproic acid and citric acid. The current study revealed the formation of 3-hydroxy-3,4-dicarboxy-butanamide-N-hexanoic acid between 6-aminocaproic acid and citric acid by high-resolution mass spectrometry (HRMS) and nuclear magnetic resonance spectroscopy (NMR). Less than 0.03% of 6-aminocaproic acid was converted to 3-hydroxy-3,4-dicarboxy-butanamide-N-hexanoic acid after 30 days of storage at 80°C. Degradation products of 6-aminocaproic acid were also observed after storage at the applied temperatures, e.g., dimer, trimer and cyclized 6-aminocaproic acid, i.e., caprolactam. No reaction products between D-sorbitol and 6-aminocaproic acid could be observed. 3-Hydroxy-3,4-dicarboxy-butanamide-N-hexanoic acid, dimer and caprolactam were also observed after storage at 20°C for 3 months. The findings imply that an oral solution of 6-aminocaproic acid is relatively stable at 20°C at the pH values 4.00 and 5.00 as suggested in the USP for oral formulations. Compliance with the ICH guideline Q3B is expected. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Study of stability of methotrexate in acidic solution spectrofluorimetric determination of methotrexate in pharmaceutical preparations through acid-catalyzed degradation reaction.

    PubMed

    Sabry, Suzy M; Abdel-Hady, M; Elsayed, M; Fahmy, Osama T; Maher, Hadir M

    2003-07-14

    Study of the degradation reaction of methotrexate (MTX) in acidic solution was carried out. Optimization of the experimental parameters of MTX acid hydrolysis was investigated. Spectrofluorimetric method for determination of MTX through measurement of its acid-degradation product, 4-amino-4-deoxy-10-methylpteroic acid (AMP), was developed. Stability of the standard solution of MTX prepared in sulfuric acid was discussed in the view of accelerated stability analysis. Two other comparative spectroflourimetric methods based on measuring the fluorescence intensities from either a condensation reaction with acetylacetone-formaldehyde (Hantzsch reaction) or a reaction with fluorescamine were also described. Beer's law validation, accuracy, precision, limits of detection, limits of quantification, and other aspects of analytical merit are presented in the text. The proposed methods were successfully applied for the analysis of MTX in pure drug and tablets dosage form. The sensitivity of the developed methods was favorable, so it was possible to be adopted for determination of MTX in plasma samples for routine use in high-dose MTX therapy.

  9. Solubility of xenon in amino-acid solutions. II. Nine less-soluble amino acids

    NASA Astrophysics Data System (ADS)

    Kennan, Richard P.; Himm, Jeffrey F.; Pollack, Gerald L.

    1988-05-01

    Ostwald solubility (L) of xenon gas, as the radioisotope 133Xe, has been measured as a function of solute concentration, at 25.0 °C, in aqueous solutions of nine amino acids. The amino-acid concentrations investigated covered much of their solubility ranges in water, viz., asparagine monohydrate (0-0.19 M), cysteine (0-1.16 M), glutamine (0-0.22 M), histidine (0-0.26 M), isoleucine (0-0.19 M), methionine (0-0.22 M), serine (0-0.38 M), threonine (0-1.4 M), and valine (0-0.34 M). We have previously reported solubility results for aqueous solutions of six other, generally more soluble, amino acids (alanine, arginine, glycine, hydroxyproline, lysine, and proline), of sucrose and sodium chloride. In general, L decreases approximately linearly with increasing solute concentration in these solutions. If we postulate that the observed decreases in gas solubility are due to hydration, the results under some assumptions can be used to calculate hydration numbers (H), i.e., the number of H2O molecules associated with each amino-acid solute molecule. The average values of hydration number (H¯) obtained at 25.0 °C are 15.3±1.5 for asparagine, 6.8±0.3 for cysteine, 11.5±1.1 for glutamine, 7.3±0.7 for histidine, 5.9±0.4 for isoleucine, 10.6±0.8 for methionine, 11.2±1.3 for serine, 7.7± 1.0 for threonine, and 6.6±0.6 for valine. We have also measured the temperature dependence of solubility L(T) from 5-40 °C for arginine, glycine, and proline, and obtained hydration numbers H¯(T) in this range. Between 25-40 °C, arginine has an H¯ near zero. This may be evidence for an attractive interaction between xenon and arginine molecules in aqueous solution.

  10. Raman spectroscopic study of the conformation of dicarboxylic acid salts in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Fukushima, Kunio; Watanabe, Toshiaki; Umemura, Matome

    1986-08-01

    It is already known that the molecules of long chain monocarboxylic acid salts have a tendency to form micelles in aqueous solutions, the molecular chain taking the all- trans zigzag structure. However it is considered difficult for dicarboxylic acid salts to adopt the same structure as the monocarboxylic acid salts as they have two carboxyl groups, one on each end of the molecular chain. Therefore, a special structure is expected to exist for dicarboxylic acid salts in aqueous solution. In order to examine this, Raman spectra of suberic acid salt and azelaic acid salt in aqueous solution were measured and the normal vibrational calculation carried out, showing that dicarboxylic acid salts have a helical structure in aqueous solution.

  11. Understanding the dissolution of α-zein in aqueous ethanol and acetic acid solutions.

    PubMed

    Li, Yunqi; Li, Ji; Xia, Qiuyang; Zhang, Boce; Wang, Qin; Huang, Qingrong

    2012-10-04

    Zein is a corn prolamin that has broad industrial applications because of its unique physical properties. Currently, the high cost of extraction and purification, which is directly related to the dispersion of zein in different solvents, is the major bottleneck of the zein industry. Solution behaviors of zein have been studied for a long time. However, the physical nature of zein in different solvents remains unclear. In this study, small-angle X-ray scattering (SAXS), static light scattering (SLS), and rheology were combined to study the structure and protein-solvent interaction of α-zein in both acetic acid and aqueous ethanol solutions. We found that the like-dissolve-like rule, the partial unfolding, and the protonation of zein are all critical to understanding the solution behaviors. Zein holds an elongated conformation (i.e., prolate ellipsoid) in all solutions, as revealed from SAXS data. There is an "aging effect" for zein in aqueous ethanol solutions, as evidenced by the transition of Newtonian rheological profiles for fresh zein solutions to the non-Newtonian shear thinning behavior for zein solutions after storage at room temperature for 24 h. Such shear thinning behavior becomes more pronounced for zein solutions at higher concentrations. The SLS results clearly show that acetic acid is a better solvent to dissolve zein than aqueous ethanol solution, as supported by a more negative second virial coefficient. This is majorly caused by the protonation of the protein, which was further verified by the dissolution of zein in water (a nonsolvent for zein) with the addition of acids.

  12. Extraction equilibrium of indium(III) from nitric acid solutions by di(2-ethylhexyl)phosphoric acid dissolved in kerosene.

    PubMed

    Tsai, Hung-Sheng; Tsai, Teh-Hua

    2012-01-04

    The extraction equilibrium of indium(III) from a nitric acid solution using di(2-ethylhexyl) phosphoric acid (D2EHPA) as an acidic extractant of organophosphorus compounds dissolved in kerosene was studied. By graphical and numerical analysis, the compositions of indium-D2EHPA complexes in organic phase and stoichiometry of the extraction reaction were examined. Nitric acid solutions with various indium concentrations at 25 °C were used to obtain the equilibrium constant of InR₃ in the organic phase. The experimental results showed that the extraction distribution ratios of indium(III) between the organic phase and the aqueous solution increased when either the pH value of the aqueous solution and/or the concentration of the organic phase extractant increased. Finally, the recovery efficiency of indium(III) in nitric acid was measured.

  13. [Analyze nanofiltration separation rule of chlorogenic acid from low concentration ethanol by Donnan effect and solution-diffusion effect].

    PubMed

    Li, Cun-Yu; Liu, Li-Cheng; Jin, Li-Yang; Li, Hong-Yang; Peng, Guo-Ping

    2017-07-01

    To separate chlorogenic acid from low concentration ethanol and explore the influence of Donnan effect and solution-diffusion effect on the nanofiltration separation rule. The experiment showed that solution pH and ethanol volume percent had influences on the separation of chlorogenic acid. Within the pH values from 3 to 7 for chlorogenic acid in 30% ethanol, the rejection rate of chlorogenic acid was changed by 70.27%. Through the response surface method for quadratic regression model, an interaction had been found in molecule weight cut-off, pH and ethanol volume percent. In fixed nanofiltration apparatus, the existence states of chlorogenic acid determinedits separation rules. With the increase of ethanol concentration, the free form chlorogenic acid was easily adsorbed, dissolved on membrane surface and then caused high transmittance due to the solution-diffusion effect. However, at the same time, due to the double effects of Donnan effect and solution-diffusion effect, the ionic state of chlorogenic acid was hard to be adsorbed in membrane surface and thus caused high rejection rate. The combination of Box-Behnken design and response surface analysis can well optimize the concentrate process by nanofiltration, and the results showed that nanofiltration had several big advantages over the traditional vacuum concentrate technology, meanwhile, and solved the problems of low efficiency and serious component lossesin the Chinese medicines separation process for low concentration organic solvent-water solution. Copyright© by the Chinese Pharmaceutical Association.

  14. Efficiency of cardioplegic solutions containing L-arginine and L-aspartic acid.

    PubMed

    Pisarenko, O I; Shul'zhenko, V S; Studneva, I M

    2006-04-01

    In experiments on rats we studied the effects of cardioplegic solutions with L-aspartic acid or L-arginine on functional recovery and metabolism of isolated working heart after 40-min normothermal global ischemia and 30-min reperfusion. After reperfusion of the hearts preventively protected with cardioplegic solution containing L-aspartic acid or L-arginine, coronary flow decreased in comparison with the initial values. As a component of cardioplegic solution, L-arginine was less efficient in recovery of contractility and cardiac output of the hearts in comparison with L-aspartic acid. In hearts protected with L-aspartic acid, the postischemic levels of ATP and phosphocreatine were significantly higher, and the level of lactate was significantly lower than in hearts protected with L-arginine. In comparison with L-arginine, L-aspartic acid is a more efficient component of cardioplegic solution in protection of the heart from metabolic and functional damages caused by global ischemia and reperfusion.

  15. Hydrogen peroxide generation in a model paediatric parenteral amino acid solution.

    PubMed

    Brawley, V; Bhatia, J; Karp, W B

    1993-12-01

    1. Parenteral amino acid solutions undergo photooxidation, which may be an important factor in total parenteral nutrition-associated hepatic dysfunction. Light-exposed parenteral solutions containing amino acids, in addition to vitamins and trace minerals, generate free radicals, which, in turn, may contribute to this type of injury. This study examined the characteristics of H2O2 production in a parenteral amino acid solution modelled on a commercially available paediatric parenteral amino acid solution. 2. The solution was exposed to light in the presence of riboflavin-5'-monophosphate (riboflavin), and peroxide formation in the presence and absence of catalase (H2O2 formation) was assayed using potassium iodide/molybdate. 3. Peak H2O2 production occurred at a light intensity of 8 microW cm-2 nm-1 in the 425-475 nm waveband and was linear to 2 h of light exposure. H2O2 production reached 500 mumol/l at 24 h. 4. H2O2 was directly related to a riboflavin concentration of up to 20 mumol/l and was maximal at 30 mumol/l. 5. H2O2 production was greatest in the amino acid/riboflavin solution at a pH of between 5 and 6. 6. Under the conditions of light exposure intensity, light exposure time, riboflavin concentration and pH found during the administration of parenteral nutrition in neonatal intensive care units, net H2O2 production occurs in solutions modelled on a paediatric parenteral amino acid preparation.

  16. Plasma Modification of Poly Lactic Acid Solutions to Generate High Quality Electrospun PLA Nanofibers.

    PubMed

    Rezaei, Fatemeh; Nikiforov, Anton; Morent, Rino; De Geyter, Nathalie

    2018-02-02

    Physical properties of pre-electrospinning polymer solutions play a key role in electrospinning as they strongly determine the morphology of the obtained electrospun nanofibers. In this work, an atmospheric-pressure argon plasma directly submerged in the liquid-phase was used to modify the physical properties of poly lactic acid (PLA) spinning solutions in an effort to improve their electrospinnability. The electrical characteristics of the plasma were investigated by two methods; V-I waveforms and Q-V Lissajous plots while the optical emission characteristics of the plasma were also determined using optical emission spectroscopy (OES). To perform a complete physical characterization of the plasma-modified polymer solutions, measurements of viscosity, surface tension, and electrical conductivity were performed for various PLA concentrations, plasma exposure times, gas flow rates, and applied voltages. Moreover, a fast intensified charge-couple device (ICCD) camera was used to image the bubble dynamics during the plasma treatments. In addition, morphological changes of PLA nanofibers generated from plasma-treated PLA solutions were observed by scanning electron microscopy (SEM). The performed plasma treatments were found to induce significant changes to the main physical properties of the PLA solutions, leading to an enhancement of electrospinnability and an improvement of PLA nanofiber formation.

  17. An investigation into the stability and sterility of citric acid solutions used for cough reflex testing.

    PubMed

    Falconer, James R; Wu, Zimei; Lau, Hugo; Suen, Joanna; Wang, Lucy; Pottinger, Sarah; Lee, Elaine; Alazawi, Nawar; Kallesen, Molly; Gargiulo, Derryn A; Swift, Simon; Svirskis, Darren

    2014-10-01

    Citric acid is used in cough reflex testing in clinical and research settings to assess reflexive cough in patients at risk of swallowing disorders. To address a lack of knowledge in this area, this study investigated the stability and sterility of citric acid solutions. Triplicate solutions of citric acid (0.8 M) in isotonic saline were stored at 4 ± 2 °C for up to 28 days and analysed by high-performance liquid chromatography. Microbiological sterility of freshly prepared samples and bulk samples previously used for 2 weeks within the hospital was determined using a pour plate technique. Microbial survival in citric acid was determined by inoculating Staphylococcus aureus, Escherichia coli, or Candida albicans into citric acid solution and monitoring the number of colony-forming units/mL over 40 min. Citric acid solutions remained stable at 4 °C for 28 days (98.4 ± 1.8 % remained). The freshly prepared and clinical samples tested were sterile. However, viability studies revealed that citric acid solution allows for the survival of C. albicans but not for S. aureus or E. coli. The microbial survival study showed that citric acid kills S. aureus and E. coli but has no marked effect on C. albicans after 40 min. Citric acid samples at 0.8 M remained stable over the 4-week testing period, with viable microbial cells absent from samples tested. However, C. albicans has the ability to survive in citric acid solution if inadvertently introduced in practice. For this reason, in clinical and research practice it is suggested to use single-use aliquots prepared aseptically which can be stored for up to 28 days at 4 °C.

  18. Polymerization of beta-amino acids in aqueous solution

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have compared carbonyl diimidazole (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as activating agents for the oligomerization of negatively-charged alpha- and beta-amino acids in homogeneous aqueous solution. alpha-Amino acids can be oligomerized efficiently using CDI, but not by EDAC. beta-Amino acids can be oligomerized efficiently using EDAC, but not by CDI. Aspartic acid, an alpha- and beta-dicarboxylic acid is oligomerized efficiently by both reagents. These results are explained in terms of the mechanisms of the reactions, and their relevance to prebiotic chemistry is discussed.

  19. Molecular dynamics study on glycolic acid in the physiological salt solution

    NASA Astrophysics Data System (ADS)

    Matsunaga, S.

    2018-05-01

    Molecular dynamics (MD) study on glycolic acid in the physiological salt solution has been performed, which is a model of a biofuel cell. The structure and charge distribution of glycolic acid in aqueous solution used in MD is beforehand optimized by Gaussian09 utilizing the density functional theory. MD is performed in the NTV constant condition, i.e. the number of particles, temperature, and volume of MD cell are definite. The structure difference of the glycolic acid and oxalic acid is detected by the water distribution around the molecules using the pair distribution functions, gij(r), and the frequency dependent diffusion coefficients, Di(ν). The anomalous dielectric constant of the solution, i.e. about 12 times larger than that of water, has been obtained, which may be attributed to the ion pair formation in the solution.

  20. Solution of rocks and refractory minerals by acids at high temperatures and pressures. Determination of silica after decomposition with hydrofluoric acid

    USGS Publications Warehouse

    May, I.; Rowe, J.J.

    1965-01-01

    A modified Morey bomb was designed which contains a removable nichromecased 3.5-ml platinium crucible. This bomb is particularly useful for decompositions of refractory samples for micro- and semimicro-analysis. Temperatures of 400-450?? and pressures estimated as great as 6000 p.s.i. were maintained in the bomb for periods as long as 24 h. Complete decompositions of rocks, garnet, beryl, chrysoberyl, phenacite, sapphirine, and kyanite were obtained with hydrofluoric acid or a mixture of hydrofluoric and sulfuric acids; the decomposition of chrome refractory was made with hydrochloric acid. Aluminum-rich samples formed difficultly soluble aluminum fluoride precipitates. Because no volatilization losses occur, silica can be determined on sample solutions by a molybdenum-blue procedure using aluminum(III) to complex interfering fluoride. ?? 1965.

  1. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions

    PubMed Central

    Ash, Christopher; Drábek, Ondřej; Tejnecký, Václav; Jehlička, Jan; Michon, Ninon; Borůvka, Luboš

    2016-01-01

    Shredded card (SC) was assessed for use as a sorbent of potentially toxic elements (PTE) carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water). We further assessed SC for retention of PTE, using acidified water (pH 3.4). Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons) before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49) were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC). In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC). In water, only Pb showed high sorption (191x more Pb in leachate without SC). In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil), and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC). A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption). SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing. PMID:26900684

  2. Mechanisms of neptunium redox reactions in nitric acid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Sayandev; Bryan, Samuel A.; Casella, Amanda J.

    First transuranium element neptunium (Np) exhibits complicated behavior in acidic solutions because it can adopt wide range of oxidation states typically from +3 to +6 and coordinate large variety of ligands. In particular, accurate determination of Np redox potentials in nitric acid solutions is challenging due to overlapping chemical and electrochemical reactions leading to significant experimental uncertainties. Furthermore, over past decades spectrophotometry has been extensively applied to identify and characterize Np solution species in different oxidation states. However, relevant spectral database of Np in nitric acid solutions that can serve for the reference purposes has yet to be established duemore » to the experimental difficulty to isolate and stabilize Np species in pure oxidation states without compromising solution optical properties. This work demonstrates that combination of voltammetry and controlled-potential in situ thin-layer spectropotentiometry overcomes these challenges so that Np species in pure +3, +4, +5, or +6 oxidation states were electrochemically generated in the systematically varied 0.1 – 5 M nitric acid solutions, and corresponding vis-NIR spectral signatures were obtained. In situ optical monitoring of the interconversion between adjacent Np oxidation states resulted in elucidation of the mechanisms of the involved redox reactions, in-depth understanding of the relative stability of the Np oxidation states, and allowed benchmarking of the redox potentials of the NpO22+/NpO2+, NpO2+/Np4+ and Np4+/Np3+ couples. Notably, the NpO2+/Np4+ couple was distinguished from the proximal Np4+/Np3+ process overcoming previous concerns and challenges encountered in accurate determination of the respective potentials.« less

  3. Boric acid solution concentration influencing p-type emitter formation in n-type crystalline Si solar cells

    NASA Astrophysics Data System (ADS)

    Singha, Bandana; Singh Solanki, Chetan

    2016-09-01

    Boric acid (BA) is a spin on dopant (BSoD) source which is used to form p+ emitters in n-type c-Si solar cells. High purity boric acid powder (99.99% pure) when mixed with deionized (DI) water can result in high quality p-type emitter with less amount of surface defects. In this work, we have used different concentrations of boric acid solution concentrations to fabricate p-type emitters with sheet resistance values < 90 Ω/□. The corresponding junction depths for the same are less than 500 nm as measured by SIMS analysis. Boron rich layer (BRL), which is considered as detrimental in emitter performance is found to be minimal for BA solution concentration less than 2% and hence useful for p-type emitter formation.

  4. Phase equilibria in a system of aqueous arginine with an octane solution of sulfonic acid

    NASA Astrophysics Data System (ADS)

    Kuvaeva, Z. I.; Koval'chuk, I. V.; Vodop'yanova, L. A.; Soldatov, V. S.

    2013-05-01

    The extraction of arginine (Arg) from aqueous salt (0.1 M NaCl) solutions with a sulfo extractant in a wide range of pH values and amino acid concentrations was studied. The 0.1 M solution of dinonylnaphthalenesulfonic acid (HD) in octane was used as an extractant. The degree of extraction was found to be high at pH 0.8-9.0. This can be explained by the effect of additional intermolecular interactions in the extractant phase involving the guanidine group of Arg.

  5. Thermodynamics of Hydrophobic Amino Acids in Solution: A Combined Experimental–Computational Study

    DOE PAGES

    Song, Lingshuang; Yang, Lin; Meng, Jie; ...

    2016-12-29

    Here, we present a joint experimental-computational study to quantitatively describe the thermodynamics of hydrophobic leucine amino acids in aqueous solution. X-ray scattering data were acquired at a series of solute and salt concentrations to effectively measure inter-leucine interactions, indicating that a major scattering peak is observed consistently at q = 0.83 Å -1. Atomistic molecular dynamics simulations were then performed and compared with the scattering data, achieving high consistency at both small and wider scattering angles (q = 0$-$1.5 Å -1). This experimental-computational consistence enables a first glimpse of the leucineleucine interacting landscape, where two leucine molecules are aligned mostlymore » in a parallel fashion, as opposed to anti-parallel, but also allows us to derive effective leucine-leucine interactions in solution. Collectively, this combined approach of employing experimental scattering and molecular simulation enables a quantitative characterization on effective inter-molecular interactions of hydrophobic amino acids, critical for protein function and dynamics such as protein folding.« less

  6. Thermodynamics of Hydrophobic Amino Acids in Solution: A Combined Experimental–Computational Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Lingshuang; Yang, Lin; Meng, Jie

    Here, we present a joint experimental-computational study to quantitatively describe the thermodynamics of hydrophobic leucine amino acids in aqueous solution. X-ray scattering data were acquired at a series of solute and salt concentrations to effectively measure inter-leucine interactions, indicating that a major scattering peak is observed consistently at q = 0.83 Å -1. Atomistic molecular dynamics simulations were then performed and compared with the scattering data, achieving high consistency at both small and wider scattering angles (q = 0$-$1.5 Å -1). This experimental-computational consistence enables a first glimpse of the leucineleucine interacting landscape, where two leucine molecules are aligned mostlymore » in a parallel fashion, as opposed to anti-parallel, but also allows us to derive effective leucine-leucine interactions in solution. Collectively, this combined approach of employing experimental scattering and molecular simulation enables a quantitative characterization on effective inter-molecular interactions of hydrophobic amino acids, critical for protein function and dynamics such as protein folding.« less

  7. Nanostructural characterization of large-scale porous alumina fabricated via anodizing in arsenic acid solution

    NASA Astrophysics Data System (ADS)

    Akiya, Shunta; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2017-05-01

    Anodizing of aluminum in an arsenic acid solution is reported for the fabrication of anodic porous alumina. The highest potential difference (voltage) without oxide burning increased as the temperature and the concentration of the arsenic acid solution decreased, and a high anodizing potential difference of 340 V was achieved. An ordered porous alumina with several tens of cells was formed in 0.1-0.5 M arsenic acid solutions at 310-340 V for 20 h. However, the regularity of the porous alumina was not improved via anodizing for 72 h. No pore sealing behavior of the porous alumina was observed upon immersion in boiling distilled water, and it may be due to the formation of an insoluble complex on the oxide surface. The porous alumina consisted of two different layers: a hexagonal alumina layer that contained arsenic from the electrolyte and a pure alumina honeycomb skeleton. The porous alumina exhibited a white photoluminescence emission at approximately 515 nm under UV irradiation at 254 nm.

  8. Salicylic acid peels versus Jessner's solution for acne vulgaris: a comparative study.

    PubMed

    Bae, Byung Gi; Park, Chang Ook; Shin, Hyoseung; Lee, Soo Hyun; Lee, Yun Sun; Lee, Sang Ju; Chung, Kee Yang; Lee, Kwang Hoon; Lee, Ju Hee

    2013-02-01

    Salicylic acid was recently formulated in a hydroethanolic vehicle at a concentration of 20% to 30%. Salicylic acid has strong comedolytic effects because of its lipophilic nature. To compare the therapeutic efficacy and tolerability of salicylic acid peels with those of Jessner's solution peels in patients with acne vulgaris. Thirteen patients (13 men; mean age 22.6, range 20-28) with facial acne were enrolled. Jessner's solution was applied to one side of each patient's face and 30% salicylic acid to the other in three sessions at 2-week intervals. A blinded investigator counted noninflammatory and inflammatory lesions before treatment and 2 weeks after each treatment. Inflammatory and noninflammatory acne lesion counts decreased in proportion to the duration of treatment. Inflammatory acne lesion counts did not differ significantly between salicylic acid and Jessner's solution peels, although in terms of noninflammatory acne lesion counts, sites treated with salicylic acid showed significant improvement (p = .04), whereas those treated with Jessner's solution did not. We found that 30% salicylic acid peels were effective for inflammatory acne and more effective than Jessner's solution peels for treating noninflammatory acne. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  9. Surface tensions of solutions containing dicarboxylic acid mixtures

    NASA Astrophysics Data System (ADS)

    Lee, Jae Young; Hildemann, Lynn M.

    2014-06-01

    Organic solutes tend to lower the surface tension of cloud condensation nuclei, allowing them to more readily activate. The surface tension of various dicarboxylic acid aerosol mixtures was measured at 20 °C using the Wilhelmy plate method. At lower concentrations, the surface tension of a solution with equi-molar mixtures of dicarboxylic acids closely followed that of a solution with the most surface-active organic component alone. Measurements of surface tension for these mixtures were lower than predictions using Henning's model and the modified Szyszkowski equation, by ˜1-2%. The calculated maximum surface excess (Γmax) and inverse Langmuir adsorption coefficient (β) from the modified Szyszkowski equation were both larger than measured values for 6 of the 7 mixtures tested. Accounting for the reduction in surface tension in the Köhler equation reduced the critical saturation ratio for these multi-component mixtures - changes were negligible for dry diameters of 0.1 and 0.5 μm, but a reduction from 1.0068 to 1.0063 was seen for the 4-dicarboxylic acid mixture with a dry diameter of 0.05 μm.

  10. Acid-base equilibrium in aqueous solutions of 1,3-dimethylbarbituric acid as studied by 13C NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gryff-Keller, A.; Kraska-Dziadecka, A.

    2011-12-01

    13C NMR spectra of 1,3-dimethylbarbituric acid in aqueous solutions of various acidities and for various solute concentrations have been recorded and interpreted. The spectra recorded at pH = 2 and below contain the signals of the neutral solute molecule exclusively, while the ones recorded at pH = 7 and above only the signals of the appropriate anion, which has been confirmed by theoretical GIAO-DFT calculations. The signals in the spectra recorded for solutions of pH < 7 show dynamic broadenings. The lineshape analysis of these signals has provided information on the kinetics of the processes running in the dynamic acid-base equilibrium. The kinetic data determined this way have been used to clarify the mechanisms of these processes. The numerical analysis has shown that under the investigated conditions deprotonation of the neutral solute molecules undergoes not only via a simple transfer of the C-H proton to water molecules but also through a process with participation of the barbiturate anions. Moreover, the importance of tautomerism, or association, or both these phenomena for the kinetics of the acid-base transformations in the investigated system has been shown. Qualitatively similar changes of 13C NMR spectra with the solution pH variation have been observed for the parent barbituric acid.

  11. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOEpatents

    Wolf, G.A.; Smith, J.W.; Ihle, N.C.

    1982-07-08

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH)/sub 2/ to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with Portland cement to form concrete.

  12. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOEpatents

    Wolf, Gary A [Kennewick, WA; Smith, Jeffrey W [Lancaster, OH; Ihle, Nathan C [Walla Walla, WA

    1984-01-01

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH).sub.2 to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with portland cement to form concrete.

  13. Methanol Uptake by Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Essin, A. M.; Golden, D. M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The global methanol budget is currently unbalanced, with source terms significantly larger than the sinks terms. To evaluate possible losses of gaseous methanol to sulfate aerosols, the solubility and reactivity of methanol in aqueous sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosols is under investigation. Methanol will partition into sulfate aerosols according to its Henry's law solubility. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H*, for cold (196 - 220 K) solutions ranging between 45 and 70 wt % H2SO4. We have found that methanol solubility ranges from approx. 10(exp 5) - 10(exp 7) M/atm for UT/LS conditions. Solubility increases with decreasing temperature and with increasing sulfuric acid content. Although methanol is slightly more soluble than are acetone and formaldehyde, current data indicate that uptake by clean aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These solubility measurements include uptake due to physical solvation and any rapid equilibria which are established in solution. Reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H is not significant over our experimental time scale for solutions below 80 wt % H2SO4. To confirm this directly, results obtained using a complementary equilibrium measurement technique will also be presented.

  14. Reprocessing system with nuclide separation based on chromatography in hydrochloric acid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Tatsuya; Tachibana, Yu; Koyama, Shi-ichi

    2013-07-01

    We have proposed the reprocessing system with nuclide separation processes based on the chromatographic technique in the hydrochloric acid solution system. Our proposed system consists of the dissolution process, the reprocessing process, the minor actinide separation process, and nuclide separation processes. In the reprocessing and separation processes, the pyridine resin is used as a main separation media. It was confirmed that the dissolution in the hydrochloric acid solution is easily achieved by the plasma voloxidation and by the addition of oxygen peroxide into the hydrochloric acid solution.

  15. Phosphorylation of Glyceric Acid in Aqueous Solution Using Trimetaphosphate

    NASA Technical Reports Server (NTRS)

    Kolb, Vera; Orgel, Leslie E.

    1996-01-01

    The phosphorylation of glyceric acid is an interesting prebiotic reaction because it converts a simple, potentially prebiotic organic molecule into phosphate derivatives that are central to carbohydrate metabolism. We find that 0.05 M glyceric acid in the presence of 0.5 M trimetaphosphate in alkaline solution gives a mixture of 2- and 3-phosphoglyceric acids in combined yields of up to 40%.

  16. Oxidation of ascorbic acid by a (salen)ruthenium(VI) nitrido complex in aqueous solution.

    PubMed

    Wang, Qian; Man, Wai-Lun; Lam, William W Y; Lau, Tai-Chu

    2014-12-25

    The oxidation of ascorbic acid (H2A) by [Ru(VI)(N)(L)(MeOH)](+) in aqueous acidic solutions has the following stoichiometry: 2[Ru(VI)(N)] + 3H2A → 2[Ru(III)(NH2-HA)](+) + A. Mechanisms involving HAT/N-rebound at low pH (≤2) and nucleophilic attack at the nitride at high pH (≥5) are proposed.

  17. Reusable chelating resins concentrate metal ions from highly dilute solutions

    NASA Technical Reports Server (NTRS)

    Bauman, A. J.; Weetal, H. H.; Weliky, N.

    1966-01-01

    Column chromatographic method uses new metal chelating resins for recovering heavy-metal ions from highly dilute solutions. The absorbed heavy-metal cations may be removed from the chelating resins by acid or base washes. The resins are reusable after the washes are completed.

  18. A study on lithium/air secondary batteries-Stability of NASICON-type glass ceramics in acid solutions

    NASA Astrophysics Data System (ADS)

    Shimonishi, Y.; Zhang, T.; Johnson, P.; Imanishi, N.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Sammes, N.

    The stability of a NASICON-type lithium ion conducting solid electrolyte, Li 1+ x+ yTi 2- xAl xP 3- ySi yO 12 (LTAP), in acetic acid and formic acid solutions was examined. XRD patterns of the LTAP powders immersed in 100% acetic acid and formic acid at 50 °C for 4 months showed no change as compared to the pristine LTAP. However, the electrical conductivity of LTAP drastically decreased. On the other hand, no significant electrical conductivity change of LTAP immersed in lithium formate saturated formic acid-water solution was observed, and the electrical conductivity of LTAP immersed in lithium acetate saturated acetic acid-water increased. Cyclic voltammogram tests suggested that acetic acid was stable up to a high potential, but formic acid decomposed under the decomposition potential of water. The acetic acid solution was considered to be a candidate for the active material in the air electrode of lithium-air rechargeable batteries. The cell reaction was considered as 2Li + 2 CH 3COOH + 1/2O 2 = 2CH 3COOLi + H 2O. The energy density of this lithium-air system is calculated to be 1477 Wh kg -1 from the weights of Li and CH 3COOH, and an observed open-circuit voltage of 3.69 V.

  19. Ionizing radiation induced degradation of salicylic acid in aqueous solution

    NASA Astrophysics Data System (ADS)

    Albarrán, Guadalupe; Mendoza, Edith

    2018-06-01

    The radiation-induced degradation of salicylic acid (SA-) in aqueous solutions (1.0 and 0.1 mmol dm-3) saturated with N2O or air or without oxygen were studied. Irradiation was carried out using a cobalt-60 source. With a 1 mmol dm-3 solution saturated with N2O a seemingly total degradation occurred at about 18 kGy, although small quantities of 2,3-dihydroxybenzoic acid, catechol and 2,5-dihydroxybenzoic acid were present at that dose at concentrations of 67, 22 and 6 μmol dm-3 respectively. Under air and when free oxygen, the three radiolytic products were present at 18.54 kGy while SA- was destroyed only to 90% and 62%, respectively. In the case of 0.1 mmol dm-3 SA- solutions, the acid was degraded at 3.5 kGy if the solution contained N2O, at 5.8 kGy in air and at 7 kGy without oxygen. The concentration of the radiolytic products increased with increasing dose and after a maximum they decreased. The oxidation was followed by measuring the chemical oxygen demand; the slopes were 0.48 and 0.11, 0.21 and 0.07, 0.15 and 0.03 mmol dm-3 kGy-1 for 1.0 and 0.10 mmol dm-3 solutions saturated with N2O or air or without oxygen, respectively.

  20. RECOVERY OF ACTINIDES FROM AQUEOUS NITRIC ACID SOLUTIONS

    DOEpatents

    Ader, M.

    1963-11-19

    A process of recovering actinides is presented. Tetravalent actinides are extracted from rare earths in an aqueous nitric acid solution with a ketone and back-extracted from the ketone into an aqueous medium. The aqueous actinide solution thus obtained, prior to concentration by boiling, is sparged with steam to reduce its ketone to a maximum content of 3 grams per liter. (AEC)

  1. Interaction between Al3+ and acrylic acid and polyacrylic acid in acidic aqueous solution: a model experiment for the behavior of Al3+ in acidified soil solution.

    PubMed

    Etou, Mayumi; Masaki, Yuka; Tsuji, Yutaka; Saito, Tomoyuki; Bai, Shuqin; Nishida, Ikuko; Okaue, Yoshihiro; Yokoyama, Takushi

    2011-01-01

    From the viewpoint of the phytotoxicity and mobility of Al(3+) released from soil minerals due to soil acidification, the interaction between Al(3+) and acrylic acid (AA) and polyacrylic acid (PAA) as a model compound of fulvic acid was investigated. The interaction was examined at pH 3 so as to avoid the hydrolysis of Al(3+). The interaction between Al(3+) and AA was weak. However, the interaction between Al(3+) and PAA was strong and depended on the initial (COOH in PAA)/Al molar ratio (R(P)) of the solution. For the range of 1/R(P), the interaction between Al(3+) and PAA can be divided into three categories: (1) 1:1 Al-PAA-complex (an Al(3+) combines to a carboxyl group), (2) intermolecular Al-PAA-complex (an Al(3+) combines to more than 2 carboxyl groups of other Al-PAA-complexes) in addition to the 1:1 Al-PAA-complex and (3) precipitation of intermolecular complexes. In conclusion, R(P) is an important factor affecting the behavior of Al(3+) in acidic soil solution.

  2. IN VITRO INTERACTIONS BETWEEN LACTIC ACID SOLUTION AND ART GLASS-IONOMER CEMENTS

    PubMed Central

    Wang, Linda; Cefaly, Daniela Francisca Gigo; dos Santos, Janaína Lima; dos Santos, Jean Rodrigo; Lauris, José Roberto Pereira; Mondelli, Rafael Francisco Lia; Atta, Maria Teresa

    2009-01-01

    Objectives: Production of acids such as lactic acid contributes to establish a cariogenic environment that leads to dental substrate demineralization. Fluoride plays an important role in this case and, as fluoride-releasing materials, glass-ionomer cements are expected to contribute to minimize deleterious reactions. This study evaluated interactions of glass-ionomer cements used in atraumatic restorative treatment (ART-GICs) with an aqueous lactic acid solution, testing the null hypotheses that no changes occur in the pH of the solution or on the surface roughness and mass of the ART-GICs when exposed to lactic acid solution over a 6-week period. Material and Methods: Ketac Molar, Fuji IX, Vitro Molar and Magic Glass were tested, and compared to Filtek Z250 and Ketac Fil Plus as control groups. Six specimens of each material were made according to manufacturers' instructions. The pH of the solution and roughness and mass changes of each specimen were determined over 6 weeks. Each specimen was individually stored in 2 mL of 0.02 M lactic acid solution for 1 week, renewing the solution every week. pH of solution and mass of the specimens were monitored weekly, and surface roughness of the specimens was assessed before and at the end of the 6-week acid challenge. pH and mass data were analyzed statistically by repeated measures using one-way ANOVA and Tukey's post-hoc tests for each material. Paired t-tests were used for roughness analysis. Tukey's post-hoc tests were applied to verify differences of final roughness among the materials. Significance level was set at 5%. Results: The null hypotheses were partially rejected. All materials were able to increase the pH of the lactic acid solution and presented rougher surfaces after immersion, while mass change was minimal and generally not statistically significant. Conclusions: These findings can be helpful to predict the performance of these materials under clinical conditions. A protective action against the carious

  3. Colorimetric detection of mercury(II) in a high-salinity solution using gold nanoparticles capped with 3-mercaptopropionate acid and adenosine monophosphate.

    PubMed

    Yu, Cheng-Ju; Tseng, Wei-Lung

    2008-11-04

    A new colorimetric sensor for sensing Hg2+ in a high-salinity solution has been developed using gold nanoparticles (AuNPs) decorated with 3-mercaptopropionate acid (MPA) and adenosine monophosphate (AMP). Because of the high negative charge density of AMP on each AuNP surface, MPA/AMP-capped AuNPs are well dispersed in a high-salt solution. In contrast, the aggregation of MPA-capped AuNPs was induced by sodium ions, which shield the negative charges of the carboxylic groups of MPA. Through the coordination between the carboxylic group of MPA and Hg2+, the selectivity of MPA/AMP-capped AuNPs for Hg2+ in a high-salt solution is remarkably high over that of the other metals without the addition of a masking agent or a change in the temperature. We have carefully investigated the effect of the AMP concentration on the stability and sensitivity of MPA/AMP-capped AuNPs. Under optimum conditions, the lowest detectable concentration of Hg2+ using this probe was 500 nM on the basis of the measurement of the ratio of absorption at 620 nm to that at 520 nm. The sensitivity to Hg2+ can be further improved by modifying the MPA/AMP-capped AuNPs with highly fluorescent rhodamine 6G (R6G). By monitoring the fluorescence enhancement, the lowest detectable concentration of Hg2+ using R6G/MPA/AMP-capped AuNPs was 50 nM.

  4. Treatment of infectious skin defects or ulcers with electrolyzed strong acid aqueous solution.

    PubMed

    Sekiya, S; Ohmori, K; Harii, K

    1997-01-01

    A chronic ulcer with an infection such as methicillin-resistant Staphylococcus aureus is hard to heal. Plastic and reconstructive surgeons often encounter such chronic ulcers that are resistant to surgical or various conservative treatments. We applied conservative treatment using an electrolyzed strong acid aqueous solution and obtained satisfactory results. The lesion was washed with the solution or soaked in a bowl of the solution for approximately 20 min twice a day. Fresh electrolyzed strong acid aqueous solution is unstable and should be stored in a cool, dark site in a sealed bottle. It should be used within a week after it has been produced. Here we report on 15 cases of infectious ulcers that were treated by electrolyzed strong acid aqueous solution. Of these cases, 7 patients were healed, 3 were granulated, and in 5, infection subsided. In most cases the lesion became less reddish and less edematous. Discharge or foul odor from the lesion was decreased. Electrolyzed strong acid aqueous solution was especially effective for treating a chronic refractory ulcer combined with diabetes melitus or peripheral circulatory insufficiency. This clinically applied therapy of electrolyzed strong acid aqueous solution was found to be effective so that this new therapeutic technique for ulcer treatment can now be conveniently utilized.

  5. Terahertz microfluidic chips for detection of amino acids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Su, Bo; Zhang, Cong; Fan, Ning; Zhang, Cunlin

    2016-11-01

    Microfluidic technology can control the fluidic thickness accurately in less than 100 micrometers. So the combination of terahertz (THz) and microfluidic technology becomes one of the most interesting directions towards biological detection. We designed microfluidic chips for terahertz spectroscopy of biological samples in aqueous solutions. Using the terahertz time-domain spectroscopy (THz-TDS) system, we experimentally measured the transmittance of the chips and the THz absorption spectra of L-threonine and L-arginine, respectively. The results indicated the feasibility of performing high sensitivity THz spectroscopy of amino acids solutions. Therefore, the microfluidic chips can realize real-time and label-free measurement for biochemistry samples in THz-TDS system.

  6. The ototoxic effect of boric acid solutions applied into the middle ear of guinea pigs.

    PubMed

    Oztürkcan, Sedat; Dündar, Riza; Katilmis, Hüseyin; Ilknur, Ali Ekber; Aktaş, Sinem; Haciömeroğlu, Senem

    2009-05-01

    This study analyzed the ototoxic effects of boric acid solutions. Boric acid solutions have been used as otologic preparations for many years. Boric acid is commonly found in solutions prepared with alcohol or distilled water but can also be found in a powder form. These preparations are used for both their antiseptic and acidic qualities in external and middle ear infections. We investigated the ototoxic effect of boric acid solutions on guinea pigs. We are unaware of any similar, previously published study of this subject in English. The study was conducted on 28 young albino guinea pigs. Prior to application of the boric acid solution under general anesthesia, an Auditory Brainstem Response (ABRs) test was applied to the right ear of the guinea pigs. Following the test, a perforation was created on the tympanic membrane of the right ear of each guinea pig and small gelfoam pieces were inserted into the perforated area. Test solutions were administered to the middle ear for 10 days by means of a transcanal route. Fifteen days after inserting the gelfoams in all of the guinea pigs, we anasthesized the guinea pigs and removed the gelfoams from the perforated region of the ear and then performed an ABRs on each guinea pig. The ABRs were within the normal range before the applications. After the application, no significant changes were detected in the ABRs thresholds in neither the saline group nor the group administered boric acid and distilled water solution; however, significant changes were detected in the ABRs thresholds of the Gentamicine and boric acid and alcohol solution groups. We believe that a 4% boric acid solution prepared with distilled water can be a more reliable preparation than a 4% boric acid solution prepared with alcohol.

  7. Spectroscopic and first-principles calculation studies of the chemical forms of palladium ion in nitric acid solution for development of disposal of high-level radioactive nuclear wastes

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinta; Sato, Toshikazu; Yoshida, Tomoko; Nakaya, Masato; Yoshino, Masahito; Nagasaki, Takanori; Inaba, Yusuke; Takeshita, Kenji; Onoe, Jun

    2018-04-01

    We have investigated the chemical forms of palladium (Pd) ion in nitric acid solution, using XAFS/UV-vis spectroscopic and first-principles methods in order to develop the disposal of high-level radioactive nuclear liquid wastes (HLLW: radioactive metal ions in 2 M nitric acid solution). The results of theoretical calculations and XAFS/UV-vis spectroscopy indicate that Pd is a divalent ion and forms a square-planar complex structure coordinated with four nitrate ions, [Pd(NO3)4]2-, in nitric acid solution. This complex structure is also thermodynamically predicted to be most stable among complexes [Pd(H2O)x(NO3)4-x]x-2 (x = 0-4). Since the overall feature of UV-vis spectra of the Pd complex was independent of nitric acid concentration in the range 1-6 M, the structure of the Pd complex remains unchanged in this range. Furthermore, we examined the influence of γ-ray radiation on the [Pd(NO3)4]2- complex, using UV-vis spectroscopy, and found that UV-vis spectra seemed not to be changed even after 1.0 MGy irradiation. This implies that the Pd complex structure will be still stable in actual HLLW. These findings obtained above are useful information to develop the vitrification processes for disposal of HLLW.

  8. Arginine and lysine reduce the high viscosity of serum albumin solutions for pharmaceutical injection.

    PubMed

    Inoue, Naoto; Takai, Eisuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2014-05-01

    Therapeutic protein solutions for subcutaneous injection must be very highly concentrated, which increases their viscosity through protein-protein interactions. However, maintaining a solution viscosity below 50 cP is important for the preparation and injection of therapeutic protein solutions. In this study, we examined the effect of various amino acids on the solution viscosity of very highly concentrated bovine serum albumin (BSA) and human serum albumin (HSA) at a physiological pH. Among the amino acids tested, l-arginine hydrochloride (ArgHCl) and l-lysine hydrochloride (LysHCl) (50-200 mM) successfully reduced the viscosity of both BSA and HSA solutions; guanidine hydrochloride (GdnHCl), NaCl, and other sodium salts were equally as effective, indicating the electrostatic shielding effect of these additives. Fourier transform infrared spectroscopy showed that BSA is in its native state even in the presence of ArgHCl, LysHCl, and NaCl at high protein concentrations. These results indicate that weakened protein-protein interactions play a key role in reducing solution viscosity. ArgHCl and LysHCl, which are also non-toxic compounds, will be used as additives to reduce the solution viscosity of concentrated therapeutic proteins. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Solution Preserves Nucleic Acids in Body-Fluid Specimens

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Stowe, Raymond P.

    2004-01-01

    A solution has been formulated to preserve deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) in specimens of blood, saliva, and other bodily fluids. Specimens of this type are collected for diagnostic molecular pathology, which is becoming the method of choice for diagnosis of many diseases. The solution makes it possible to store such specimens at room temperature, without risk of decomposition, for subsequent analysis in a laboratory that could be remote from the sampling location. Thus, the solution could be a means to bring the benefits of diagnostic molecular pathology to geographic regions where refrigeration equipment and diagnostic laboratories are not available. The table lists the ingredients of the solution. The functions of the ingredients are the following: EDTA chelates divalent cations that are necessary cofactors for nuclease activity. In so doing, it functionally removes these cations and thereby retards the action of nucleases. EDTA also stabilizes the DNA helix. Tris serves as a buffering agent, which is needed because minor contaminants in an unbuffered solution can exert pronounced effects on pH and thereby cause spontaneous degradation of DNA. SDS is an ionic detergent that inhibits ribonuclease activity. SDS has been used in some lysis buffers and as a storage buffer for RNA after purification. The use of the solution is straightforward. For example, a sample of saliva is collected by placing a cotton roll around in the subject's mouth until it becomes saturated, then the cotton is placed in a collection tube. Next, 1.5 mL of the solution are injected directly into the cotton and the tube is capped for storage at room temperature. The effectiveness of the solution has been demonstrated in tests on specimens of saliva containing herpes simplex virus. In the tests, the viral DNA, as amplified by polymerase chain reaction, was detected even after storage for 120 days.

  10. Hydrophobic interactions between polymethacrylic acid and sodium laureth sulfate in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Yaremko, Z. M.; Fedushinskaya, L. B.; Burka, O. A.; Soltys, M. N.

    2014-09-01

    The role of hydrophobic interaction in the development of associative processes is demonstrated, based on the concentration dependences of the viscosity and pH of binary solutions of polymethacrylic acid as an anionic polyelectrolyte and sodium laureth sulfate as an anionic surfactant. It is found that the inflection point on the dependence of the difference between the pH values of binary solutions of polymethacrylic acid and sodium laureth sulfate on the polyelectrolyte concentration is a criterion for determining the predominant contribution from hydrophobic interaction, as is the inflection point on the dependence of pH of individual solutions of polymethacrylic acid on the polyelectrolyte concentration.

  11. Impact of fluorescent lighting on the browning potential of model wine solutions containing organic acids and iron.

    PubMed

    Grant-Preece, Paris; Barril, Celia; Schmidtke, Leigh M; Clark, Andrew C

    2018-03-15

    Model wine solutions containing organic acids, individually or combined, and iron(III), were exposed to light from fluorescent lamps or stored in darkness for four hours. (-)-Epicatechin was then added, and the solutions incubated in darkness for 10days. Browning was monitored by UV-visible absorption spectrophotometry and UHPLC-DAD. The pre-irradiated solutions containing tartaric acid exhibited increased yellow/brown coloration compared to the dark controls mainly due to reaction of the tartaric acid photodegradation product glyoxylic acid with (-)-epicatechin to form xanthylium cation pigments. In these solutions, browning decreased as the concentrations of organic acids other than tartaric acid increased. Xanthylium cations were also detected in the pre-irradiated malic acid solution. However, in the malic acid, succinic acid, citric acid and lactic acid solutions, any coloration was mainly due to the production of dehydrodiepicatechin A, which was largely independent of prior light exposure, but strongly affected by the organic acid present. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Micro-organization of humic acids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Klučáková, Martina; Věžníková, Kateřina

    2017-09-01

    The methods of dynamic light scattering and micro-rheology were used to investigate the molecular organization of humic acids in solutions. The obtained results were supplemented by ultraviolet/visible spectrometry and measurement of the zeta potential. Particle tracking micro-rheology was used for the first time as a novel method in humic research. Solutions of humic acids were prepared in three different mediums: NaOH, NaCl, and NaOH neutralized by HCl after dissolution of the humic sample. The molecular organization of humic acids was studied over a wide concentration range (0.01-10 g dm-3). Two breaks were detected in the obtained concentration dependencies. The rearrangements were observed at concentrations around 0.02 g dm-3 and 1 g dm-3. Changes in the measured values observed at around 0.02 g dm-3 were less noticeable and were related to the formation of particles between 100 and 1000 nm in size and the strong bimodal character of humic systems diluted by NaCl. The ;switch-over point; at around 1 g dm-3 indicated changes in the secondary structure of humic acids connected with the increase in colloidal stability (decrease of zeta potential), the decrease in polydispersity, and minimal values of viscosity.

  13. Corrosion behavior of ODS steels with several chromium contents in hot nitric acid solutions

    NASA Astrophysics Data System (ADS)

    Tanno, Takashi; Takeuchi, Masayuki; Ohtsuka, Satoshi; Kaito, Takeji

    2017-10-01

    Oxide dispersion strengthened (ODS) steel cladding tubes have been developed for fast reactors. Tempered martensitic ODS steels with 9 and 11 wt% of chromium (9Cr-, 11Cr-ODS steel) are the candidate material in research being carried out at JAEA. In this work, fundamental immersion tests and electrochemical tests of 9 to 12Cr-ODS steels were systematically conducted in various nitric acid solutions at 95 °C. The corrosion rate decreased exponentially with effective solute chromium concentration (Creff) and nitric acid concentration. Addition of vanadium (V) and ruthenium (Ru) also decreased the corrosion rate. The combination of low Creff and dilute nitric acid could not avoid the active mass dissolution during active domain at the beginning of immersion, and the corrosion rate was high. Higher Creff decreased the partial anodic current during the active domain and assisted the passivation of the surface of the steel. Concentrated nitric acid and addition of Ru and V increased partial cathodic current and shifted the corrosion potential to noble side. These effects should have prevented the active mass dissolution and decreased the corrosion rate.

  14. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Chloric acid solution or chlorine dioxide hydrate... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When the.... Fiberboard boxes must be reinforced and insulated and sufficient dry ice must be used to maintain the hydrate...

  15. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Chloric acid solution or chlorine dioxide hydrate... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When the.... Fiberboard boxes must be reinforced and insulated and sufficient dry ice must be used to maintain the hydrate...

  16. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Chloric acid solution or chlorine dioxide hydrate... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When the.... Fiberboard boxes must be reinforced and insulated and sufficient dry ice must be used to maintain the hydrate...

  17. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Chloric acid solution or chlorine dioxide hydrate... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When the.... Fiberboard boxes must be reinforced and insulated and sufficient dry ice must be used to maintain the hydrate...

  18. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Chloric acid solution or chlorine dioxide hydrate... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When the.... Fiberboard boxes must be reinforced and insulated and sufficient dry ice must be used to maintain the hydrate...

  19. Quantitative extraction and concentration of synthetic water-soluble acid dyes from aqueous media using a quinine-chloroform solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, F.; Ozawa, N.; Hanai, J.

    Twenty-one water-soluble acid dyes, including eleven azo, five triphenylmethane four xanthene, one naphthol derivatives, used at practical concentrations for food coloration, were quantitatively extracted from water and various carbonated beverages into a 0.1 M quinine-chloroform solution in the presence of 0.5 M boric acid by brief shaking. Quantitative extraction of these dyes was also accomplished by the 0.1 M quinine-chloroform solution made conveniently from chloroform, quinine hydrochloride, and sodium hydroxide added successively to water or beverages containing boric acid. Quinine acted as a countercation on the dyes having sulfonic and/or carboxylic acid group(s) to form chloroform-soluble ion-pair complexes. The diacidicmore » base alkaloid interacted with each acid group of mono-, di-, tri-, and tetrasulfonic acid dyes approximately in the ratio 0.8-0.9 to 1. The dyes in the chloroform solution were quantitatively concentrated into a small volume of sodium hydroxide solution also by brief shaking. The convenient quinine-chloroform method was applicable to the quantitative extraction of a mixture of 12 dyes from carbonated beverages, which are all currently used for food coloration. A high-pressure liquid chromatographic method is also presented for the systematic separation and determination of these 12 dyes following their concentration into the aqueous alkaline solution. The chromatogram was monitored by double-wavelength absorptiometry in the visible and ultraviolet ray regions.« less

  20. A STUDY COMPARING CHEMICAL PEELING USING MODIFIED JESSNER'S SOLUTION AND 15%TRICHLOROACETIC ACID VERSUS 15% TRICHLOROACETIC ACID IN THE TREATMENT OF MELASMA

    PubMed Central

    Safoury, Omar Soliman; Zaki, Nagla Mohamed; El Nabarawy, Eman Ahmad; Farag, Eman Abas

    2009-01-01

    Background: Melasma is a symmetric progressive hyperpigmentation of the facial skin that occurs in all races but has a predilection for darker skin phenotypes. Depigmenting agents, laser and chemical peeling as classic Jessner's solution, modified Jessner's solution and trichloroacetic acid have been used alone and in combination in the treatment of melasma. Objectives: The aim of the study was to compare the therapeutic effect of combined 15% Trichloroacetic acid (TCA) and modified Jessner's solution with 15% TCA on melasma. Materials and Methods: Twenty married females with melasma (epidermal type), with a mean age of 38.25 years, were included in this study. All were of skin type III or IV. Fifteen percent TCA was applied to the whole face, with the exception of the left malar area to which combined TCA 15% and modified Jessner's solution was applied. Results: Our results revealed statistically highly significant difference between MASI Score (Melasma Area and Severity Index) between the right malar area and the left malar area. Conclusion: Modified Jessner's solution proved to be useful as an adjuvant treatment with TCA in the treatment of melasma, improving the results and minimizing postinflammatory hyperpigmentation. PMID:20049268

  1. Effect of citric acid on the acidification of artificial pepsin solution for metacercariae isolation from fish.

    PubMed

    Kim, Min-Ki; Pyo, Kyoung-Ho; Hwang, Young-Sang; Chun, Hyang Sook; Park, Ki Hwan; Ko, Seong-Hee; Chai, Jong-Yil; Shin, Eun-Hee

    2013-11-15

    Artificial digestive solution based on pepsin is essential for collecting metacercariae from fish. To promote the enzymatic reactivity of pepsin, the pH of the solution has to be adjusted to pH 1.0-2.0. Hydrochloride (HCl) is usually used for this purpose, but the use of HCl raises safety concerns. The aim of this work was to address the usefulness of citric acid as an alternative for HCl for the acidification of pepsin solution, and to examine its potential to damage metacercariae during in vitro digestion as compared with HCl. Changes in pH after adding 1-9% of citric acid (m/v) to pepsin solution were compared to a 1% HCl (v/v) addition. Digestion of fish muscle was evaluated by measuring released protein concentrations by spectrophotometry. In addition, survival rates of metacercariae in pepsin solution were determined at different citric acid concentrations and were compared that of with 1% HCl. The present study shows that addition of citric acid reduced the pH of pepsin solutions to the required level. Addition of more than 5% of citric acid resulted in the effective digestion of fish muscle over 3h in vitro, and 5% citric acid was less lethal to metacercariae than 1% HCl in pepsin solution. Pepsin solution containing 5% citric acid had digestive capacity superior to pepsin solution containing 1% HCl after 3h incubation with released protein concentrations of 12.0 ng/ml for 5% citric acid and 9.6 ng/ml for 1% HCl. Accordingly, the present study suggests that the addition of 5% citric acid to pepsin solution is a good alternative to 1% HCl in infection studies because citric acid is a stable at room temperature and has a good safety profile. In addition, we suggest that the use of citric acid enables the preparation of commercial digestive solutions for the detection of microorganisms in fish and other vertebrate muscle tissue. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Systems solutions by lactic acid bacteria: from paradigms to practice

    PubMed Central

    2011-01-01

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications. PMID:21995776

  3. PROCESS OF SECURING PLUTONIUM IN NITRIC ACID SOLUTIONS IN ITS TRIVALENT OXIDATION STATE

    DOEpatents

    Thomas, J.R.

    1958-08-26

    >Various processes for the recovery of plutonium require that the plutonium be obtalned and maintained in the reduced or trivalent state in solution. Ferrous ions are commonly used as the reducing agent for this purpose, but it is difficult to maintain the plutonium in a reduced state in nitric acid solutions due to the oxidizing effects of the acid. It has been found that the addition of a stabilizing or holding reductant to such solution prevents reoxidation of the plutonium. Sulfamate ions have been found to be ideally suitable as such a stabilizer even in the presence of nitric acid.

  4. Structure of polyacrylic acid and polymethacrylic acid solutions : a small angle neutron scattering study

    NASA Astrophysics Data System (ADS)

    Moussaid, A.; Schosseler, F.; Munch, J. P.; Candau, S. J.

    1993-04-01

    The intensity scattered from polyacrylic acid and polymethacrylic acid solutions has been measured by small angle neutron scattering experiemnts. The influence of polymer concentration, ionization degree, temperature and salt content has been investigated. Results are in qualitative agreement with a model which predicts the existence of microphases in the unstable region of the phase diagram. Quantitative comparison with the theory is performed by fitting the theoretical structure factor to the experimental data. For a narrow range of ionizaiton degrees nearly quantitative agreement with the theory is found for the polyacrylic acide system.

  5. Preliminary study on the photoproduction of hydroxyl radicals in aqueous solution with Aldrich humic acid, algae and Fe(III) under high-pressure mercury lamp irradiation.

    PubMed

    Liu, Xianli; Xu, Dong; Wu, Feng; Liao, Zhenhuan; Liu, Jiantong; Deng, Nansheng

    2004-03-01

    Under a high-pressure mercury lamp (HPML) and using an exposure time of 4 h, the photoproduction of hydroxyl radicals (*OH) could be induced in an aqueous solution containing humic acid (HA). Hydroxyl radicals were determined by high-performance liquid chromatography using benzene as a probe. The results showed that *OH photoproduction increased from 1.80 to 2.74 microM by increasing the HA concentration from 10 to 40 mg L(-1) at an exposure time of 4 h (pH 6.5). Hydroxyl radical photoproduction in aqueous solutions of HA containing algae was greater than that in the aqueous solutions of HA without algae. The photoproduction of *OH in the HA solution with Fe(III) was greater than that of the solution without Fe(III) at pH ranging from 4.0 to 8.0. The photoproduction of *OH in HA solution with algae with or without Fe(III) under a 250 W HPML was greater than that under a 125 W HPML. The photoproduction of *OH in irradiated samples was influenced by the pH. The results showed that HPML exposure for 4 h in the 4-8 pH range led to the highest *OH photoproduction at pH 4.0.

  6. Electrochemical and surface analysis of the Fe-Cr-Ru system in non-oxidizing acid solutions

    NASA Astrophysics Data System (ADS)

    Tjong, S. C.

    1990-03-01

    The effect of ruthenium addition on the spontaneous passivation behaviour of Fe-40Cr alloy in 0.5M H 2SO 4 and 0.5M HCl acid solutions has been studied. Auger and XPS techniques were also used to investigate the surface chemistries of the spontaneously passivated film. Electrochemical measurements indicate that the Fe-40Cr-0.1Ru and Fe-40Cr-0.2Ru alloys exhibit spontaneous passivation upon exposing them in both hydrochloric and sulphuric acid solutions from 25 to 85 ° C. However, the transition time for spontaneous passivation reduces dramatically with an increase in the ruthenium content and solution temperature. Furthermore, this transition time also decreases for the investigated alloys exposed in a less aggressive sulphuric acid solution. AES results show that ruthenium and chromium are enriched in the spontaneous passive films formed on the Fe-40Cr-0.1Ru alloy in both hydrochloric and sulphuric acid solutions at 25 °C, and also in the spontaneous passive film formed on the Fe-40Cr-0.2Ru alloy in hydrochloric acid solution at 25 ° C. AES does not detect the presence of ruthenium in the spontaneous passive film formed on the Fe-40Cr-0.2Ru alloy in sulphuric acid solution. However, XPS analysis shows that ruthenium and chromium are incorporated into the spontaneous passive films formed on the Fe-40Cr-0.1Ru and Fe-40Cr-0.2Ru alloys in both hydrochloric and sulphuric acid solutions as Ru 4+ and Cr 3+ species.

  7. Effects of the pH and Concentration on the Stability of Standard Solutions of Proteinogenic Amino Acid Mixtures.

    PubMed

    Kato, Megumi; Yamazaki, Taichi; Kato, Hisashi; Yamanaka, Noriko; Takatsu, Akiko; Ihara, Toshihide

    2017-01-01

    To prepare metrologically traceable amino acid mixed standard solutions, it is necessary to determine the stability of each amino acid present in the mixed solutions. In the present study, we prepared amino acid mixed solutions using certified reference standards of 17 proteinogenic amino acids, and examined the stability of each of these amino acids in 0.1 N HCl. We found that the concentration of glutamic acid decreased significantly during storage. LC/MS analysis indicated that the instability of glutamic acid was due to the partial degradation of glutamic acid to pyroglutamic acid in 0.1 N HCl. Using accelerated degradation tests, we investigated several solvent compositions to improve the stability of glutamic acid in amino acid mixed solution, and determined that the change of the pH by diluting the mixed solution improved the stability of glutamic acid.

  8. INTERACTION OF AQUEOUS SOLUTIONS OF CHLORINE WITH MALIC ACID, TARTARIC ACID, AND VARIOUS FRUIT JUICES, A SOURCE OF MUTAGENS

    EPA Science Inventory

    The interactions of aqueous solutions of chlorine with some fruit acids (citric acid, DL-malic acid, and L-tartaric acid) at different pH values were studied. iethyl ether extraction followed by GC/MS analysis indicated that a number of mutagens (certain chlorinated propanones an...

  9. Biocompatibility of a bicarbonate-buffered amino-acid-based solution for peritoneal dialysis.

    PubMed

    Bender, Thorsten O; Witowski, Janusz; Aufricht, Christoph; Endemann, Michaela; Frei, Ulrich; Passlick-Deetjen, Jutta; Jörres, Achim

    2008-09-01

    Amino-acid-based peritoneal dialysis (PD) fluids have been developed to improve the nutritional status of PD patients. As they may potentially exacerbate acidosis, an amino-acid-containing solution buffered with bicarbonate (Aminobic) has been proposed to effectively maintain acid-base balance. The aim of this study was to evaluate the mesothelial biocompatibility profile of this solution in comparison with a conventional low-glucose-based fluid. Omentum-derived human peritoneal mesothelial cells (HPMC) were preexposed to test PD solutions for up to 120 min, then allowed to recover in control medium for 24 h, and assessed for heat-shock response, viability, and basal and stimulated cytokine [interleukin (IL)-6] and prostaglandin (PGE(2)) release. Acute exposure of HPMC to conventional low-glucose-based PD solution resulted in a time-dependent increase in heat-shock protein (HSP-72) expression, impaired viability, and reduced ability to release IL-6 in response to stimulation. In contrast, in cells treated with Aminobic, the expression of HSP-72 was significantly lower, and viability and cytokine-producing capacity were preserved and did not differ from those seen in control cells. In addition, exposure to Aminobic increased basal release of IL-6 and PGE(2). These data point to a favorable biocompatibility profile of the amino-acid-based bicarbonate-buffered PD solution toward HPMC.

  10. Acidic and basic solutions dissolve protein plugs made of lithostathine complicating choledochal cyst/pancreaticobiliary maljunction.

    PubMed

    Kaneko, Kenitiro; Ono, Yasuyuki; Tainaka, Takahisa; Sumida, Wataru; Ando, Hisami

    2009-07-01

    Symptoms of choledochal cysts are caused by protein plugs made of lithostathine, which block the long common channel and increase pancreaticobiliary ductal pressure. Agents that dissolve protein plugs can provide relief from or prevent symptoms. In the present study, drugs reportedly effective for pancreatic and biliary stones were used in dissolution tests. Protein plugs were obtained from choledochal cysts during surgery in two children (5- and 6-year-old girls). Plugs approximately 2 mm in diameter were immersed in citric acid, tartaric acid, dimethadione, bromhexine, dehydrocholic acid, sodium citrate, hydrochloric acid, and sodium hydroxide solutions under observation with a digital microscope. The pH of each solution was measured using a pH meter. Plugs dissolved in citric acid (5.2 mM; pH 2.64), tartaric acid (6.7 mM; pH 2.51), dimethadione (75 mM; pH 3.70), hydrochloric acid (0.5 mM; pH 3.13), and sodium hydroxide (75 mM; pH 12.75) solutions. Plugs did not dissolve in dimethadione (7.5 mM; pH 4.31), bromhexine (0.1%; pH 4.68), dehydrocholic acid (5%; pH 7.45), and sodium citrate (75 mM; pH 7.23) solutions. Protein plugs in choledochal cysts are dissolved in acidic and basic solutions, which may eliminate longitudinal electrostatic interactions of the lithostathine protofibrils.

  11. A new approach to study cadmium complexes with oxalic acid in soil solution.

    PubMed

    Dytrtová, Jana Jaklová; Jakl, Michal; Sestáková, Ivana; Zins, Emilie-Laure; Schröder, Detlef; Navrátil, Tomáš

    2011-05-05

    This study presents a new analytical approach for the determination of heavy metals complexed to low-molecular-weight-organic acids in soil solutions, which combines the sensitivity of differential pulse anodic stripping voltammetry (DPASV) with the molecular insight gained by electrospray ionization mass spectrometry (ESI-MS). The combination of these analytical methods allows the investigation of such complexes in complex matrixes. On the voltammograms of the soil solutions, in addition to the expected complexes of oxalic acid with cadmium and lead, respectively, also peaks belonging to mixed complexes of cadmium, lead, and oxalic acid (OAH(2)) were observed. In order to verify the possible formation of complexes with OAH(2), aqueous solutions of OAH(2) with traces of Cd(II) were investigated as model systems. Signals corresponding to several distinct molecular complexes between cadmium and oxalic acid were detected in the model solutions using negative-ion ESI-MS, which follow the general formula [Cd(n)(X,Y)((2n+1))](-), where n is the number of cadmium atoms, X=Cl(-), and Y=OAH(-). Some of these complexes were also identified in the ESI mass spectra taken from the soil solutions. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Effect of tritium on corrosion behavior of chromium in 0.01 N sulfuric acid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyaidzu, M.; Isobe, K.; Hayashi, T.

    The effects of tritium on the corrosion behavior of chromium in 0.01 N sulfuric solution have been investigated in the present study. Electrochemical experiments have been carried our for pure chromium. At first, the concentration dependence of sulfuric acid solution on anodic polarization behavior of chromium was experimented, resulting in that 0.01 N one was found appropriate. The dependence of both dissolved oxygen and tritium concentration on anodic behavior of chromium were performed. It was found from that the self-passivation of chromium induced by dissolved oxygen was inhibited in tritiated solution resulting in the enhancement of the corrosion. As amore » consequence it is highly likely that the elution of chromium by highly oxidative radiolysis products would explain the passivation inhibitory effect of SUS304 stainless steel observed in tritiated solutions.« less

  13. Investigation on solubility of hydroxy dibasic acids in alkanolamine solutions

    NASA Astrophysics Data System (ADS)

    Du, M.

    2017-12-01

    Solubilities of three hydroxy dibasic (adipic, suberic, and sebacic) acids in alkanolamine solutions were measured within the 30-90℃ temperature range. It is found that solubility of these acids sharply grows with temperature and concentration of alkanolamine solvent. In addition, the study substantiates the adjustment of pH to optimize the CO2 absorption and desorption processes. The precipitation of added acids from alkanolamine solvents by cooling is found to be quite problematic, which makes the recovery of residual acids from lean alkanolamine solvents non-feasible and requires the application of alternative methods.

  14. Uranium fate in Hanford sediment altered by simulated acid waste solutions

    DOE PAGES

    Gartman, Brandy N.; Qafoku, Nikolla P.; Szecsody, James E.; ...

    2015-07-31

    Many aspects of U(VI) behavior in sediments that are previously exposed to acidic waste fluids for sufficiently long times to induce significant changes in pH and other physical, mineralogical and chemical properties, are not well documented in the literature. For this reason, we conducted a series of macroscopic batch experiments combined with a variety of bulk characterization studies (Mössbauer and laser spectroscopy), micro-scale inspections (µ-XRF), and molecular scale interrogations (XANES) with the objectives to: i) determine the extent of U(VI) partitioning to Hanford sediments previously exposed to acidic waste simulants (pH = 2 and pH = 5) and under neutralmore » conditions (pH = 8) at varying background solution concentrations (i.e., NaNO 3); ii) determine micron-scale solid phase associated U valence state and phase identity; and iii) provide information for a plausible conceptual model of U(VI) attenuation under waste plume acidic conditions. The results of the batch experiments showed that the acid pre-treated sediment had high affinity for aqueous U(VI), which was removed from solution via two pH dependent and apparently different mechanisms (adsorption at pH = 2 and precipitation at pH = 5). The micro-scale inspections and XANES analyses confirmed that high concentration areas were rich mainly in U(VI), demonstrating that most of the added U(VI) was not reduced to U(IV). The laser spectroscopy data showed that uranyl phosphates {e.g. metaautunite [Ca(UO 2) 2(PO 4) 2•10-12H 2O] and phosphuranylite [KCa(H 3O) 3(UO 2) 7(PO 4) 4O 4•8(H 2O)]} were present in the sediments. They also showed clear differences between the U bearing phases in the experiments conducted in the presence or absence of air. As a result, the data generated from these experiments will help in a better understanding of the reactions and processes that have a significant effect and/or control U mobility.« less

  15. Speciation of platinum(IV) in nitric acid solutions.

    PubMed

    Vasilchenko, Danila; Tkachev, Sergey; Baidina, Iraida; Korenev, Sergey

    2013-09-16

    The speciation of platinum(IV) ions in nitric acid (6-15.8 M) solutions of H2[Pt(OH)6] has been studied by (195)Pt NMR and Raman spectroscopy. Series of aqua-hydroxo-nitrato complexes [Pt(L)(x)(NO3)(6-x)] (L = H2O or OH(-); x = 0, ..., 6) were found to exist in such solutions. The pair additivity model of chemical shifts and statistical theory were used to assign signals in NMR spectra to particular [Pt(L)(x)(NO3)(6-x)] species. Mononuclear hexanitratoplatinates(IV) have been isolated in solid state in substantial yield as pyridinium salt (PyH)2[Pt(NO3)6] and characterized by single-crystal X-ray diffraction. Aging of the platinum nitric acid solutions for more than 5-6 h results in oligomerization of [Pt(L)(x)(NO3)(6-x)] species and the formation of oligonuclear aqua-hydroxo-nitrato complexes with OH(-) and NO3(-) bridging ligands. Oligomeric platinum(IV) complexes with two and four nuclei were unambiguously detected by NMR on (195)Pt -enriched samples. Oligomers with even higher nuclearity were also detected. Dimeric anions [Pt2(μ-OH)2(NO3)8](2-) have been isolated as single crystals of tetramethylammonium salt and characterized by X-ray diffraction.

  16. The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C

    USGS Publications Warehouse

    Bennett, P.C.; Melcer, M.E.; Siegel, D.I.; Hassett, J.P.

    1988-01-01

    The dissolution of quartz in dilute aqueous solutions of organic acids at 25° and standard pressure was investigated by the batch dissolution method. The bulk dissolution rate of quartz in 20 mmole/Kg citrate solutions at pH 7 was 8 to 10 times faster than that in pure water. After 1750 hours the concentration of dissolved silica in the citrate solution was 167 μmole/Kg compared to 50 μmole/Kg in water and a 20 mmole/Kg solution of acetate at pH 7. Solutions of salicylic, oxalic, and humic acids also accelerated the dissolution of quartz in aqueous solution at pH 7. The rate of dissolution in organic acids decreased sharply with decreasing pH.The possibility of a silica-organic acid complex was investigated using UV-difference spectroscopy. Results suggest that dissolved silica is complexed by citrate, oxalate and pyruvate at pH 7 by an electron-donor acceptor complex, whereas no complexation occurs between silica and acetate, lactate, malonate, or succinate. Three models are proposed for the solution and surface complexation of silica by organic acid anions which result in the accelerated dissolution and increased solubility of quartz in organic rich water.

  17. Technetium recovery from high alkaline solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  18. Extraction of steroidal glucosiduronic acids from aqueous solutions by anionic liquid ion-exchangers

    PubMed Central

    Mattox, Vernon R.; Litwiller, Robert D.; Goodrich, June E.

    1972-01-01

    A pilot study on the extraction of three steroidal glucosiduronic acids from water into organic solutions of liquid ion-exchangers is reported. A single extraction of a 0.5mm aqueous solution of either 11-deoxycorticosterone 21-glucosiduronic acid or cortisone 21-glucosiduronic acid with 0.1m-tetraheptylammonium chloride in chloroform took more than 99% of the conjugate into the organic phase; under the same conditions, the very polar conjugate, β-cortol 3-glucosiduronic acid, was extracted to the extent of 43%. The presence of a small amount of chloride, acetate, or sulphate ion in the aqueous phase inhibited extraction, but making the aqueous phase 4.0m with ammonium sulphate promoted extraction strongly. An increase in the concentration of ion-exchanger in the organic phase also promoted extraction. The amount of cortisone 21-glucosiduronic acid extracted by tetraheptylammonium chloride over the pH range of 3.9 to 10.7 was essentially constant. Chloroform solutions of a tertiary, a secondary, or a primary amine hydrochloride also will extract cortisone 21-glucosiduronic acid from water. The various liquid ion exchangers will extract steroidal glucosiduronic acid methyl esters from water into chloroform, although less completely than the corresponding free acids. The extraction of the glucosiduronic acids from water by tetraheptylammonium chloride occurs by an ion-exchange process; extraction of the esters does not involve ion exchange. PMID:5075264

  19. DYNAMIC CONDUCTIVITY MEASUREMENTS IN HUMIC AND FULVIC ACID SOLUTIONS. (R828158)

    EPA Science Inventory

    Conductivity changes of dilute aqueous humic and fulvic acids solutions were monitored after the addition of small quantities of Cu, Cd, Pb, and Zn. The solutions were stirred at a constant and reproducible rate, and measurements proceeded until stable conductivities were atta...

  20. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  1. Absorption and emission behaviour of trans- p-coumaric acid in aqueous solutions and some organic solvents

    NASA Astrophysics Data System (ADS)

    Putschögl, M.; Zirak, P.; Penzkofer, A.

    2008-01-01

    The absorption and fluorescence behaviour of trans- p-coumaric acid ( trans-4-hydroxycinnamic acid) is investigated in buffered aqueous solution over a wide range from pH 1 to pH 12, in un-buffered water, and in some organic solvents. Absorption cross-section spectra, fluorescence quantum distributions, fluorescence quantum yields, and degrees of fluorescence polarisation are measured. p-Coumaric acid exists in different ionic forms in aqueous solution depending on the pH. There is an equilibrium between the neutral form ( p-CAH 2) and the single anionic form ( p-CAH -) at low pH (p Kna ≈ 4.9), and between the single anionic and the double anionic form ( p-CA 2-) at high pH (p Kaa ≈ 9.35). In the organic solvents studied trans- p-coumaric acid is dissolved in its neutral form. The fluorescence quantum yield of trans- p-coumaric acid in aqueous solution is ϕF ≈ 1.4 × 10 -4 for the neutral and the single anionic form, while it is ϕF ≈ 1.3 × 10 -3 for the double anionic form. For trans- p-coumaric acid in organic solvents fluorescence quantum yields in the range from 4.8 × 10 -5 (acetonitrile) to 1.5 × 10 -4 (glycerol) were measured. The fluorescence spectra are 7700-10,000 cm -1 Stokes shifted in aqueous solution, and 5400-8200 cm -1 Stokes shifted in the studied organic solvents. Decay paths responsible for the low fluorescence quantum yields are discussed (photo-isomerisation and internal conversion for p-CA 2-, solvent-assisted intra-molecular charge-transfer or ππ ∗ to nπ ∗ transfer and internal conversion for p-CAH 2 and p-CAH -). The solvent dependence of the first ππ ∗ electronic transition frequency and of the fluorescence Stokes shift of p-CAH 2 is discussed in terms of polar solute-solvent interaction effects. Thereby the ground-state and excite-state molecular dipole moments are extracted.

  2. [Effects of choledochal perfusion with biliary acid solutions on activity of the sphincter of Oddi (author's transl)].

    PubMed

    Bevilacqua, R G; Margarido, N F; Soares, L A; Mansur, R; Koch, V; Gonçalves, E L

    1979-06-01

    The changes of sphincter of Oddi's resistance, induced by choledochal perfusion of conjugated (taurocolic) and non-conjugated (colic) biliary acid solutions, in anesthetized dogs, were studied. The perfusions were made at a constant flow and intracholedochal pressures were registered. The mean number of contractions per minute, the mean maximal pressures and the mean minimal pressures in each study periods were analysed. The choledochal perfusion with the biliary acids solutions induced a slight but significative increase in sphincteric resistance. After 15 minutes, the perfusion with colic acid solution induced maximal pressures significantly more elevated than the ones observed with taurocolic acid solution. The non-conjugated solution induced a pressure tracing significantly distinct from the tracing observed with the conjugated acid solution. No changes in resistance were observed with a 2% NaCl solution. This implies that the observed changes in resistance were not related to osmotic stimulation of the sphincter of Oddi.

  3. Comparative study of buffered 50% glycolic acid (pH 3.0) + 0.5% salicylic acid solution vs Jessner's solution in patients with acne vulgaris.

    PubMed

    In Jae, Jeong; Dong Ju, Hyun; Dong Hyun, Kim; Yoon, Moon Soo; Lee, Hee Jung

    2017-11-21

    Superficial chemical peels are frequently used in acne vulgaris treatment. Although glycolic acid (GA) has been widely used in clinical practice, its pH ranges from 0.08-2.75 and thus should be neutralized after application to avoid burns. To evaluate treatment efficacy and safety of chemical peeling using buffered 50% GA (pH 3.0) + 0.5% salicylic acid (SA) solution that does not need to be neutralized in the treatment of acne vulgaris compared to the conventional peeling using Jessner's solution. We performed a prospective, randomized, evaluator-blind, split-face clinical trial. Twenty patients were randomized by assigning one side of each patient's face to receive a 50% GA (pH 3.0) + 0.5% SA peel (GA side) and the other side to receive the Jessner's solution (Jessner's solution side). All patients underwent 2 sessions of treatment spaced 2 weeks apart. Lesion count, acne severity, subjective efficacy assessment, and side effects were evaluated. The total lesion count was significantly reduced for the GA and Jessner's solution sides (P < .001). However, there was no significant difference in the total lesion count, acne severity, or subjective efficacy assessment between the 2 sides (P > .05). The GA side had fewer side effects than the Jessner's solution side. The results of this study suggest that chemical peeling using the 50% GA (pH 3.0) + 0.5% SA solution can be as effective and convenient as the conventional peeling using Jessner's solution in the treatment of acne vulgaris and may show fewer adverse events than the conventional peeling. © 2017 Wiley Periodicals, Inc.

  4. Reactive solute transport in acidic streams

    USGS Publications Warehouse

    Broshears, R.E.

    1996-01-01

    Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.

  5. Nonclinical safety evaluation of boric acid and a novel borate-buffered contact lens multi-purpose solution, Biotrue™ multi-purpose solution.

    PubMed

    Lehmann, David M; Cavet, Megan E; Richardson, Mary E

    2010-12-01

    Multipurpose solutions (MPS) often contain low concentrations of boric acid as a buffering agent. Limited published literature has suggested that boric acid and borate-buffered MPS may alter the corneal epithelium; an effect attributed to cytotoxicity induced by boric acid. However, this claim has not been substantiated. We investigated the effect of treating cells with relevant concentrations of boric acid using two cytotoxicity assays, and also assessed the impact of boric acid on corneal epithelial barrier function by measuring TEER and immunostaining for tight junction protein ZO-1 in human corneal epithelial cells. Boric acid was also assessed in an in vivo ocular model when administered for 28 days. Additionally, we evaluated Biotrue multi-purpose solution, a novel borate-buffered MPS, alone and with contact lenses for ocular compatibility in vitro and in vivo. Boric acid passed both cytotoxicity assays and did not alter ZO-1 distribution or corneal TEER. Furthermore, boric acid was well-tolerated on-eye following repeated administration in a rabbit model. Finally, Biotrue multi-purpose solution demonstrated good ocular biocompatibility both in vitro and in vivo. This MPS was not cytotoxic and was compatible with the eye when administered alone and when evaluated with contact lenses. We demonstrate that boric acid and a borate-buffered MPS is compatible with the ocular environment. Our findings provide evidence that ocular effects reported for some borate-buffered MPS may be incorrectly attributed to boric acid and are more likely a function of the unique combination of ingredients in the MPS formulation tested. Copyright © 2010 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  6. Solution properties and taste behavior of lactose monohydrate in aqueous ascorbic acid solutions at different temperatures: Volumetric and rheological approach.

    PubMed

    Sarkar, Abhijit; Sinha, Biswajit

    2016-11-15

    The densities and viscosities of lactose monohydrate in aqueous ascorbic acid solutions with several molal concentrations m=(0.00-0.08)molkg(-1) of ascorbic acid were determined at T=(298.15-318.15)K and pressure p=101kPa. Using experimental data apparent molar volume (ϕV), standard partial molar volume (ϕV(0)), the slope (SV(∗)), apparent specific volumes (ϕVsp), standard isobaric partial molar expansibility (ϕE(0)) and its temperature dependence [Formula: see text] the viscosity B-coefficient and solvation number (Sn) were determined. Viscosity B-coefficients were further employed to obtain the free energies of activation of viscous flow per mole of the solvents (Δμ1(0≠)) and of the solute (Δμ2(0≠)). Effects of molality, solute structure and temperature and taste behavior were analyzed in terms of solute-solute and solute-solvent interactions; results revealed that the solutions are characterized predominantly by solute-solvent interactions and lactose monohydrate behaves as a long-range structure maker. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Interaction of Ethyl Alcohol Vapor with Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2006-01-01

    We investigated the uptake of ethyl alcohol (ethanol) vapor by sulfuric acid solutions over the range approx.40 to approx.80 wt % H2SO4 and temperatures of 193-273 K. Laboratory studies used a fast flow-tube reactor coupled to an electron-impact ionization mass spectrometer for detection of ethanol and reaction products. The uptake coefficients ((gamma)) were measured and found to vary from 0.019 to 0.072, depending upon the acid composition and temperature. At concentrations greater than approx.70 wt % and in dilute solutions colder than 220 K, the values approached approx.0.07. We also determined the effective solubility constant of ethanol in approx.40 wt % H2SO4 in the temperature range 203-223 K. The potential implications to the budget of ethanol in the global troposphere are briefly discussed.

  8. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution

    PubMed Central

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129

  9. Trapping proton transfer intermediates in the disordered hydrogen-bonded network of cryogenic hydrofluoric acid solutions.

    PubMed

    Ayotte, Patrick; Plessis, Sylvain; Marchand, Patrick

    2008-08-28

    A molecular-level description of the structural and dynamical aspects that are responsible for the weak acid behaviour of dilute hydrofluoric acid solutions and their unusual increased acidity at near equimolar concentrations continues to elude us. We address this problem by reporting reflection-absorption infrared spectra (RAIRS) of cryogenic HF-H(2)O binary mixtures at various compositions prepared as nanoscopic films using molecular beam techniques. Optical constants for these cryogenic solutions [n(omega) and k(omega)] are obtained by iteratively solving Fresnel equations for stratified media. Modeling of the experimental RAIRS spectra allow for a quantitative interpretation of the complex interplay between multiple reflections, optical interference and absorption effects. The evolution of the strong absorption features in the intermediate 1000-3000 cm(-1) range with increasing HF concentration reveals the presence of various ionic dissociation intermediates that are trapped in the disordered H-bonded network of cryogenic hydrofluoric acid solutions. Our findings are discussed in light of the conventional interpretation of why hydrofluoric acid is a weak acid revealing molecular-level details of the mechanism for HF ionization that may be relevant to analogous elementary processes involved in the ionization of weak acids in aqueous solutions.

  10. The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films

    NASA Astrophysics Data System (ADS)

    Ren, Jianjun; Zuo, Yu

    2012-11-01

    The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films were studied. The voltage-time response for galvanostatic anodization of aluminum in malonic acid solution exhibits a conventional three-stage feature but the formation voltage is much higher. With the increase of electrolyte concentration, the electrolyte viscosity increases simultaneously and the high viscosity decreases the film growth rate. With the concentration increase of the malonic acid electrolyte, the critical current density that initiates local "burning" on the sample surface decreases. For malonic acid anodization, the field-assisted dissolution on the oxide surface is relatively weak and the nucleation of pores is more difficult, which results in greater barrier layer thickness and larger cell dimension. The embryo of the porous structure of anodic film has been created within the linear region of the first transient stage, and the definite porous structure has been established before the end of the first transient stage. The self-ordering behavior of the porous film is influenced by the electrolyte concentration, film thickness and the applied current density. Great current density not only improves the cell arrangement order but also brings about larger cell dimension.

  11. Assorted interactions of amino acids prevailing in aqueous vitamin C solutions probed by physicochemical and ab-initio contrivances

    NASA Astrophysics Data System (ADS)

    Das, Koyeli; Roy, Milan Chandra; Rajbanshi, Biplab; Roy, Mahendra Nath

    2017-11-01

    Qualitative and quantitative analysis of molecular interaction prevailing in tyrosine and tryptophan in aqueous solution of vitamin C have been probed by thermophysical properties. The apparent molar volume (ϕV), viscosity B-coefficient, molal refraction (RM) of tyrosine and tryptophan have been studied in aqueous vitamin C solutions at diverse temperatures via Masson equation which deduced solute-solvent and solute-solute interactions, respectively. Spectroscopic study along with physicochemical and computational techniques provides lots of interesting and highly significant insights of the model biological systems. The overall results established strong solute-solvent interactions between studied amino acids and vitamin C mixture in the ternary solutions.

  12. Isotherm-Based Thermodynamic Models for Solute Activities of Organic Acids with Consideration of Partial Dissociation.

    PubMed

    Nandy, Lucy; Ohm, Peter B; Dutcher, Cari S

    2016-06-23

    Organic acids make up a significant fraction of the organic mass in atmospheric aerosol particles. The calculation of gas-liquid-solid equilibrium partitioning of the organic acid is therefore critical for accurate determination of atmospheric aerosol physicochemical properties and processes such as new particle formation and activation to cloud condensation nuclei. Previously, an adsorption isotherm-based statistical thermodynamic model was developed for capturing solute concentration-activity relationships for multicomponent aqueous solutions over the entire concentration range (Dutcher et al. J. Phys. Chem. C/A 2011, 2012, 2013), with model parameters for energies of adsorption successfully related to dipole-dipole electrostatic forces in solute-solvent and solvent-solvent interactions for both electrolytes and organics (Ohm et al. J. Phys. Chem. A 2015). However, careful attention is needed for weakly dissociating semivolatile organic acids. Dicarboxylic acids, such as malonic acid and glutaric acid are treated here as a mixture of nondissociated organic solute (HA) and dissociated solute (H(+) + A(-)). It was found that the apparent dissociation was greater than that predicted by known dissociation constants alone, emphasizing the effect of dissociation on osmotic and activity coefficient predictions. To avoid additional parametrization from the mixture approach, an expression was used to relate the Debye-Hückel hard-core collision diameter to the adjustable solute-solvent intermolecular distance. An improved reference state treatment for electrolyte-organic aqueous mixtures, such as that observed here with partial dissociation, has also been proposed. This work results in predictive correlations for estimation of organic acid and water activities for which there is little or no activity data.

  13. Experimental Shock Chemistry of Aqueous Amino Acid Solutions and the Cometary Delivery of Prebiotic Compounds

    NASA Astrophysics Data System (ADS)

    Blank, Jennifer G.; Miller, Gregory H.; Ahrens, Michael J.; Winans, Randall E.

    2001-02-01

    A series of shock experiments were conducted to assess the feasibility of the delivery of organic compounds to the Earth via cometary impacts. Aqueous solutions containing near-saturation levels of amino acids (lysine, norvaline, aminobutyric acid, proline, and phenylalanine) were sealed inside stainless steel capsules and shocked by ballistic impact with a steel projectile plate accelerated along a 12-m-long gun barrel to velocities of 0.5-1.9 km sec^-1. Pressure-temperature-time histories of the shocked fluids were calculated using 1D hydrodynamical simulations. Maximum conditions experienced by the solutions lasted 0.85-2.7 μs and ranged from 5.1-21 GPa and 412-870 K. Recovered sample capsules were milled open and liquid was extracted. Samples were analyzed using high performance liquid chromatography (HPLC) and mass spectrometry (MS). In all experiments, a large fraction of the amino acids survived. We observed differences in kinetic behavior and the degree of survivability among the amino acids. Aminobutyric acid appeared to be the least reactive, and phenylalanine appeared to be the most reactive of the amino acids. The impact process resulted in the formation of peptide bonds; new compounds included amino acid dimers and cyclic diketopiperazines. In our experiments, and in certain naturally occurring impacts, pressure has a greater influence than temperature in determining reaction pathways. Our results support the hypothesis that significant concentrations of organic material could survive a natural impact process.

  14. Experimental shock chemistry of aqueous amino acid solutions and the cometary delivery of prebiotic compounds.

    PubMed

    Blank, J G; Miller, G H; Ahrens, M J; Winans, R E

    2001-01-01

    A series of shock experiments were conducted to assess the feasibility of the delivery of organic compounds to the Earth via cometary impacts. Aqueous solutions containing near-saturation levels of amino acids (lysine, norvaline, aminobutyric acid, proline, and phenylalanine) were sealed inside stainless steel capsules and shocked by ballistic impact with a steel projectile plate accelerated along a 12-m-long gun barrel to velocities of 0.5-1.9 km sec-1. Pressure-temperature-time histories of the shocked fluids were calculated using 1D hydrodynamical simulations. Maximum conditions experienced by the solutions lasted 0.85-2.7 microseconds and ranged from 5.1-21 GPa and 412-870 K. Recovered sample capsules were milled open and liquid was extracted. Samples were analyzed using high performance liquid chromatography (HPLC) and mass spectrometry (MS). In all experiments, a large fraction of the amino acids survived. We observed differences in kinetic behavior and the degree of survivability among the amino acids. Aminobutyric acid appeared to be the least reactive, and phenylalanine appeared to be the most reactive of the amino acids. The impact process resulted in the formation of peptide bonds; new compounds included amino acid dimers and cyclic diketopiperazines. In our experiments, and in certain naturally occurring impacts, pressure has a greater influence than temperature in determining reaction pathways. Our results support the hypothesis that significant concentrations of organic material could survive a natural impact process.

  15. Effect of sodium metabisulfite on hydrogen peroxide production in light-exposed pediatric parenteral amino acid solutions.

    PubMed

    Brawley, V; Bhatia, J; Karp, W B

    1998-06-15

    The effect of sodium metabisulfite (MBS) on hydrogen peroxide (HP) production in model and commercial amino acid solutions exposed to phototherapy light was studied. Model and commercial pediatric amino acid solutions were prepared such that the amino acid concentration was 1%. MBS concentration, riboflavin concentration, and duration of exposure to phototherapy light were varied to determine the effect on HP production. Control solutions were kept in the dark. HP production was assayed in the model amino acid solutions by using potassium iodide in the presence of ammonium molybdate. In all experiments, HP production was measured at 360 nm in the presence and absence of catalase. In light-exposed solutions, HP production increased linearly for several hours and reached a plateau by eight hours. A mean maximum of 940 microM was produced (data pooled for all solutions). No detectable HP was generated in the solutions kept in the dark. After two hours of light exposure, it was necessary to add at least 10 times more MBS than is typically found in commercial total parenteral nutrient solutions to scavenge all the HP produced. An average of up to 940 microM of HP was produced in model and commercial pediatric parenteral 1% amino acid solutions in the presence of phototherapy light and clinically relevant concentrations of riboflavin and MBS. Light exposure decreased the antioxidant effect of MBS.

  16. Chemical durability of glaze on Zsolnay architectural ceramics (Budapest, Hungary) in acid solutions

    NASA Astrophysics Data System (ADS)

    Baricza, Ágnes; Bajnóczi, Bernadett; May, Zoltán; Tóth, Mária; Szabó, Csaba

    2015-04-01

    Zsolnay glazed architectural ceramics are among the most famous Hungarian ceramics, however, there is no profound knowledge about the deterioration of these building materials. The present study aims to reveal the influence of acidic solutions in the deterioration of Zsolnay ceramics. The studied ceramics are glazed roof tiles, which originate from two buildings in Budapest: one is located in the densely built-up city centre with high traffic rate and another one is in a city quarter with moderate traffic and more open space. The roof tiles represent the construction and the renovation periods of the buildings. The ceramics were mainly covered by lead glazes in the construction period and mainly alkali glazes in the renovation periods. The glaze of the tiles were coloured with iron (for yellow glaze) or chromium/copper/iron (for green glazes) in the case of the building located in the city centre, whereas cobalt was used as colorant and tin oxide as opacifier for the blue glaze of the ceramics of the other building. Six tiles were selected from each building. Sulphuric acid (H2SO4) solutions of pH2 and pH4 were used to measure the durability of the glazes up to 14 days at room temperature. The surfaces of the glazed ceramics after the treatment were measured by X-ray diffraction, Raman spectroscopy and SEM-EDS techniques to determine the precipitated phases on the surface of the glaze. Electron microprobe analysis was used to quantitatively characterise phases found and to determine the chemical composition of the treated glaze. The recovered sulphuric acid solutions were measured with ICP-OES technique in order to quantify the extent of the ion exchange between the glaze and the solutions. There is a significant difference in the dissolution rates in the treatments with sulphuric acid solutions of pH2 and pH4, respectively. The solution of pH2 induced greater ion exchange (approx. 7-10 times) from the glaze compared to the solution of pH4. Alkali and alkali earth

  17. Antimicrobial activity of a sodium hypochlorite/etidronic acid irrigant solution.

    PubMed

    Arias-Moliz, Maria Teresa; Ordinola-Zapata, Ronald; Baca, Pilar; Ruiz-Linares, Matilde; Ferrer-Luque, Carmen María

    2014-12-01

    The aim of this study was to evaluate the antimicrobial activity of a 2.5% sodium hypochlorite (NaOCl)/9% etidronic acid (HEBP) irrigant solution on Enterococcus faecalis growing in biofilms and a dentinal tubule infection model. The antimicrobial activity of the solutions 2.5% NaOCl and 9% HEBP alone and associated was evaluated on E. faecalis biofilms grown in the Calgary biofilm model (minimum biofilm eradication concentration high-throughput device). For the dentinal tubule infection test, the percentage of dead cells in E. faecalis-infected dentinal tubules treated with the solutions for 10 minutes was measured using confocal laser scanning microscopy and the live/dead technique. Available chlorine and pH of the solutions were also measured. Distilled water was used as the control. Nonparametric tests were used to determine statistical differences. The highest viability was found in the distilled water group and the lowest in the NaOCl-treated dentin (P < .05). Both NaOCl solutions killed 100% of the E. faecalis biofilms and showed the highest antimicrobial activity inside dentinal tubules, without statistical differences between the 2 (P < .05). The HEBP isolated solution killed bacteria inside dentinal tubules but did not present any significant effect against E. faecalis biofilms. The incorporation of HEBP to NaOCl did not cause any loss of available chlorine within 60 minutes. HEBP did not interfere with the ability of NaOCl to kill E. faecalis grown in biofilms and inside dentinal tubules. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Probe diffusion of labeled polymers inside polyacrylic acid solutions: A polyelectrolyte effect

    NASA Astrophysics Data System (ADS)

    Mishra, Banani; Mithra, K.; Khandai, Santripti; Jena, Sidhartha S.

    2018-05-01

    Probe diffusion of fluorescently labeled Dextran 40 inside polyelectrolyte solution of polyacrylic acid (PAA) was investigated using Fluorescence Recovery After Photobleaching technique. The crowding and interaction effects on probe diffusion were controlled by tuning background polymer and added external electrolyte concentration. For all the salt concentration, an overall decrease in diffusion coefficient is observed with rise in polymer concentration. The diffusion coefficient decreases with decrease in salt concentration whereas the solution viscosity increases, indicating a competition between viscous drag and electrostatic interaction. A large positive deviation from the ideal Stokes-Einstein relation is observed for high polymer and low salt concentration, which reduces markedly with addition of salt confirming polyelectrolyte effects, plays a major role in deciding the probe diffusion.

  19. Ultrasound assisted cocrystallization from solution (USSC) containing a non-congruently soluble cocrystal component pair: Caffeine/maleic acid.

    PubMed

    Aher, Suyog; Dhumal, Ravindra; Mahadik, Kakasaheb; Paradkar, Anant; York, Peter

    2010-12-23

    Ultrasound assisted solution cocrystallization (USSC) has been studied using a non-congruently soluble pair of caffeine and maleic acid in methanol. USSC was compared with solvent cooling and slurry sonication using different molar ratios of caffeine:maleic acid (1:0.5, 1:1, 1:2, 1:3 and 1:3.5) in solution/slurry. Products were characterized by PXRD and Raman spectroscopy techniques. In USSC trials, the content of cocrystal in the product was observed to increase with increase in amount of maleic acid in solution. Only USSC offered pure caffeine/maleic acid 2:1 cocrystal product when caffeine:maleic acid; 1:3.5 molar ratio was taken in solution. Caffeine/maleic acid 1:1 cocrystal and maleic acid were not obtained in neither of the techniques. Products of solvent cooling and slurry sonication experiments were mixtures of caffeine and caffeine/maleic acid 2:1 cocrystal in varying amounts. In USSC, ultrasound application must have attained simultaneous supersaturation of cocrystal components in solution due to altered supersaturation conditions resulting in cocrystal formation. For this simultaneous attainment of supersaturation, molar ratio of cocrystal components in solution was identified as an important parameter while designing experiments for a non-congruently soluble pair having large solubility difference. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. High-performance liquid chromatographic analysis of methadone hydrochloride oral solution.

    PubMed

    Beasley, T H; Ziegler, H W

    1977-12-01

    A direct and rapid high-performance liquid chromatographic assay for methadone hydrochloride in a flavored oral solution dosage form is described. A syrup sample, one part diluted with three parts of water, is introduced onto a column packed with octadecylsilane bonded on 10 micrometer porous silica gel (reversed phase). A formic acid-ammonium formate-buffered mobile phase is linear programmed with acetonitrile. The absorbance is monitored continuously at 280 or 254 nm, using a flow-through, UV, double-beam photometer. An aqueous methadone hydrochloride solution is used for external standardization. The relative standard deviation was not more than 1.0%. Drug recovery from a syrup base was better than 99.8%.

  1. Length scale dependence of the dynamic properties of hyaluronic acid solutions in the presence of salt.

    PubMed

    Horkay, Ferenc; Falus, Peter; Hecht, Anne-Marie; Geissler, Erik

    2010-12-02

    In solutions of the charged semirigid biopolymer hyaluronic acid in salt-free conditions, the diffusion coefficient D(NSE) measured at high transfer momentum q by neutron spin echo is more than an order of magnitude smaller than that determined by dynamic light scattering, D(DLS). This behavior contrasts with neutral polymer solutions. With increasing salt content, D(DLS) approaches D(NSE), which is independent of ionic strength. Contrary to theoretical expectation, the ion-polymer coupling, which dominates the low q dynamics of polyelectrolyte solutions, already breaks down at distance scales greater than the Debye-Hückel length.

  2. Solution Process Synthesis of High Aspect Ratio ZnO Nanorods on Electrode Surface for Sensitive Electrochemical Detection of Uric Acid

    NASA Astrophysics Data System (ADS)

    Ahmad, Rafiq; Tripathy, Nirmalya; Ahn, Min-Sang; Hahn, Yoon-Bong

    2017-04-01

    This study demonstrates a highly stable, selective and sensitive uric acid (UA) biosensor based on high aspect ratio zinc oxide nanorods (ZNRs) vertical grown on electrode surface via a simple one-step low temperature solution route. Uricase enzyme was immobilized on the ZNRs followed by Nafion covering to fabricate UA sensing electrodes (Nafion/Uricase-ZNRs/Ag). The fabricated electrodes showed enhanced performance with attractive analytical response, such as a high sensitivity of 239.67 μA cm-2 mM-1 in wide-linear range (0.01-4.56 mM), rapid response time (~3 s), low detection limit (5 nM), and low value of apparent Michaelis-Menten constant (Kmapp, 0.025 mM). In addition, selectivity, reproducibility and long-term storage stability of biosensor was also demonstrated. These results can be attributed to the high aspect ratio of vertically grown ZNRs which provides high surface area leading to enhanced enzyme immobilization, high electrocatalytic activity, and direct electron transfer during electrochemical detection of UA. We expect that this biosensor platform will be advantageous to fabricate ultrasensitive, robust, low-cost sensing device for numerous analyte detection.

  3. Solution influence on biomolecular equilibria - Nucleic acid base associations

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Pratt, L. R.; Burt, S. K.; Macelroy, R. D.

    1984-01-01

    Various attempts to construct an understanding of the influence of solution environment on biomolecular equilibria at the molecular level using computer simulation are discussed. First, the application of the formal statistical thermodynamic program for investigating biomolecular equilibria in solution is presented, addressing modeling and conceptual simplications such as perturbative methods, long-range interaction approximations, surface thermodynamics, and hydration shell. Then, Monte Carlo calculations on the associations of nucleic acid bases in both polar and nonpolar solvents such as water and carbon tetrachloride are carried out. The solvent contribution to the enthalpy of base association is positive (destabilizing) in both polar and nonpolar solvents while negative enthalpies for stacked complexes are obtained only when the solute-solute in vacuo energy is added to the total energy. The release upon association of solvent molecules from the first hydration layer around a solute to the bulk is accompanied by an increase in solute-solvent energy and decrease in solvent-solvent energy. The techniques presented are expectd to displace less molecular and more heuristic modeling of biomolecular equilibria in solution.

  4. Molecular dynamics simulations of highly crowded amino acid solutions: comparisons of eight different force field combinations with experiment and with each other

    PubMed Central

    Andrews, Casey T.

    2013-01-01

    Although it is now commonly accepted that the highly crowded conditions encountered inside biological cells have the potential to significantly alter the thermodynamic properties of biomolecules, it is not known to what extent the thermodynamics of fundamental types of interactions such as salt bridges and hydrophobic interactions are strengthened or weakened by high biomolecular concentrations. As one way of addressing this question we have performed a series of all-atom explicit solvent molecular dynamics (MD) simulations to investigate the effect of increasing solute concentration on the behavior of four types of zwitterionic amino acids in aqueous solution. We have simulated systems containing glycine, valine, phenylalanine or asparagine at concentrations of 50, 100, 200 and 300 mg/ml. Each molecular system has been simulated for 1 μs in order to obtain statistically converged estimates of thermodynamic parameters, and each has been conducted with 8 different force fields and water models; the combined simulation time is 128 μs. The density, viscosity, and dielectric increments of the four amino acids calculated from the simulations have been compared to corresponding experimental measurements. While all of the force fields perform well at reproducing the density increments, discrepancies for the viscosity and dielectric increments raise questions both about the accuracy of the simulation force fields and, in certain cases, the experimental data. We also observe large differences between the various force fields' descriptions of the interaction thermodynamics of salt bridges and, surprisingly, these differences also lead to qualitatively different predictions of their dependences on solute concentration. For the aliphatic interactions of valine sidechains, fewer differences are observed between the force fields, but significant differences are again observed for aromatic interactions of phenylalanine sidechains. Taken together, the results highlight the

  5. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  6. The kinetics of oxidation of bilirubin and ascorbic acid in solution

    NASA Astrophysics Data System (ADS)

    Solomonov, A. V.; Rumyantsev, E. V.; Kochergin, B. A.; Antina, E. V.

    2012-07-01

    The results of a comparative study of the oxidation of bilirubin, ascorbic acid, and their mixture in aqueous solutions under the action of air oxygen and hydrogen peroxide are presented. The observed and true rate constants for the oxidation reactions were determined. It was shown that the oxidation of tetrapyrrole pigment occurred under these conditions bypassing the stage of biliverdin formation to monopyrrole products. Simultaneous oxidation of bilirubin and ascorbic acid was shown to be accompanied by the inhibition of ascorbic acid oxidation by bilirubin, whereas ascorbic acid itself activated the oxidation of bilirubin.

  7. Gamma-irradiation of malic acid in aqueous solutions. [prebiotic significance

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Graff, R. L.; Ponnamperuma, C.

    1980-01-01

    The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  8. White Paper on Potential Hazards Associated with Contaminated Cheesecloth Exposed to Nitric Acid Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hypes, Philip A.

    This white paper addresses the potential hazards associated with waste cheesecloth that has been exposed to nitric acid solutions. This issue was highlighted by the cleanup of a 100 ml leak of aqueous nitric acid solution containing Heat Source (HS) plutonium on 21 June 2016. Nitration of cellulosic material is a well-understood process due to industrial/military applications of the resulting material. Within the Department of Energy complex, nitric acids have been used extensively, as have cellulosic wipes. If cellulosic materials are nitrated, the cellulosic material can become ignitable and in extreme cases, reactive. We have chemistry knowledge and operating experiencemore » to support the conclusion that all current wastes are safe and compliant. There are technical questions worthy of further experimental evaluation. An extent of condition evaluation has been conducted back to 2004. During this time period there have been interruptions in the authorization to use cellulosic wipes in PF-4. Limited use has been authorized since 2007 (for purposes other than spill cleanup), so our extent of condition includes the entire current span of use. Our evaluation shows that there is no indication that process spills involving high molarity nitric acid were cleaned up with cheesecloth since 2007. The materials generated in the 21 June leak will be managed in a safe manner compliant with all applicable requirements.« less

  9. Methanol Uptake By Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    To evaluate the role of upper tropospheric and lower stratospheric aerosols in the global budget of methanol, the solubility and reactivity of CH3OH in aqueous sulfuric acid solutions are under investigation. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H(*), for methanol dissolution into 45 to 70 percent by weight H2SO4. We find that methanol solubility ranges from 10(exp 5) to 10(exp 8) M/atm and increases with decreasing temperature and with increasing sulfuric acid content. These solubility measurements include uptake due to physical solvation and all rapid equilibria which are established in solution. Our data indicate that simple uptake by aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These results differ from those recently reported in the literature, and an explanation of this disparity will be presented. In addition to solvation, reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H may proceed in the atmosphere but is not significant under our experimental conditions. Results obtained using a complementary equilibrium measurement technique confirm this directly. In addition, the extent of methanol sequestration via formation of mono- and dimethylsulfate will be evaluated under several atmospheric conditions.

  10. Toluene nitration in irradiated nitric acid and nitrite solutions

    NASA Astrophysics Data System (ADS)

    Elias, Gracy; Mincher, Bruce J.; Mezyk, Stephen P.; Muller, Jim; Martin, Leigh R.

    2011-04-01

    The kinetics, mechanisms, and stable products produced for the nitration of aryl alkyl mild ortho-para director toluene in irradiated nitric acid and neutral nitrite solutions were investigated using γ and pulse radiolysis. Electron pulse radiolysis was used to determine the bimolecular rate constants for the reaction of toluene with different transient species produced by irradiation. HPLC with UV detection, GC-MS and LC-MS, were used to assess the stable reaction products. Free-radical based nitration reaction products were found in irradiated acidic and neutral media. In 6.0 M HNO3, ring substitution, side chain substitution, and oxidation, produced different nitrated toluene products. For ring substitution, nitrogen oxide radicals were added mainly to cyclohexadienyl radicals, whereas for side chain substitution, these radicals were added to the carbon-centered benzyl radical produced by H-atom abstraction. In neutral nitrite solutions, radiolytically-induced ring nitration products approached a statistically random distribution, suggesting a direct free-radical reaction involving addition of the rad NO2 radical.

  11. Corrosion property of 9Cr-ODS steel in nitric acid solution for spent nuclear fuel reprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeuchi, M.; Koizumi, T.; Inoue, M.

    2013-07-01

    Corrosion tests of oxide dispersion strengthened with 9% Cr (9Cr-ODS) steel, which is one of the desirable materials for cladding tube of sodium-cooled fast reactors, in pure nitric acid solution, spent FBR fuel solution, and its simulated solution were performed to understand the corrosion behavior in a spent nuclear fuel reprocessing. In this study, the 9Cr-ODS steel with lower effective chromium content was evaluated to understand the corrosion behavior conservatively. As results, the tube-type specimens of the 9Cr-ODS steels suffered severe weight loss owing to active dissolution at the beginning of the immersion test in pure nitric acid solution inmore » the range from 1 to 3.5 M. In contrast, the weight loss was decreased and they showed a stable corrosion in the higher nitric acid concentration, the dissolved FBR fuel solution, and its simulated solution by passivation. The corrosion rates of the 9Cr-ODS steel in the dissolved FBR fuel solution and its simulated solution were 1-2 mm/y and showed good agreement with each other. The passivation was caused by the shift of corrosion potential to noble side owing to increase in nitric acid concentration or oxidative ions in the dissolved FBR fuel solution and the simulated spent fuel solution. (authors)« less

  12. Exceptionally crystalline and conducting acid doped polyaniline films by level surface assisted solution casting approach

    NASA Astrophysics Data System (ADS)

    Puthirath, Anand B.; Methattel Raman, Shijeesh; Varma, Sreekanth J.; Jayalekshmi, S.

    2016-04-01

    Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra can be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.

  13. Exceptionally crystalline and conducting acid doped polyaniline films by level surface assisted solution casting approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puthirath, Anand B.; Varma, Sreekanth J.; Jayalekshmi, S., E-mail: jayalekshmi@cusat.ac.in

    2016-04-18

    Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra canmore » be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.« less

  14. Aquatic photolysis: photolytic redox reactions between goethite and adsorbed organic acids in aqueous solutions

    USGS Publications Warehouse

    Goldberg, M.C.; Cunningham, K.M.; Weiner, Eugene R.

    1993-01-01

    Photolysis of mono and di-carboxylic acids that are adsorbed onto the surface of the iron oxyhydroxide (goethite) results in an oxidation of the organic material and a reduction from Fe(III) to Fe(II) in the iron complex. There is a subsequent release of Fe2+ ions into solution. At constant light flux and constant solution light absorption, the factors responsible for the degree of photolytic reaction include: the number of lattice sites that are bonded by the organic acid; the rate of acid readsorption to the surface during photolysis; the conformation and structure of the organic acid; the degree of oxidation of the organic acid; the presence or absence of an ??-hydroxy group on the acid, the number of carbons in the di-acid chain and the conformation of the di-acid. The ability to liberate Fe(III) at pH 6.5 from the geothite lattice is described by the lyotropic series: tartrate>citrate> oxalate > glycolate > maleate > succinate > formate > fumarate > malonate > glutarate > benzoate = butanoate = control. Although a larger amount of iron is liberated, the series is almost the same at pH 5.5 except that oxalate > citrate and succinate > maleate. A set of rate equations are given that describe the release of iron from the goethite lattice. It was observed that the pH of the solution increases during photolysis if the solutions are not buffered. There is evidence to suggest the primary mechanism for all these reactions is an electron transfer from the organic ligand to the Fe(III) in the complex. Of all the iron-oxyhydroxide materials, crystalline goethite is the least soluble in water; yet, this study indicates that in an aqueous suspension, iron can be liberated from the goethite lattice. Further, it has been shown that photolysis can occur in a multiphase system at the sediment- water interface which results in an oxidation of the organic species and release of Fe2+ to solution where it becomes available for further reaction. ?? 1993.

  15. THE KINETICS OF SAPONIFICATION OF IODOACETIC ACID BY SODIUM HYDROXIDE AND BY CERTAIN ALKALINE BUFFER SOLUTIONS.

    PubMed

    Brdicka, R

    1936-07-20

    1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions.

  16. Time dependent inhibition of xanthine oxidase in irradiated solutions of folic acid, aminopterin and methotrexate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, K.; Pilot, T.F.; Meany, J.E.

    1990-01-01

    The xanthine oxidase catalyzed oxidation of hypoxanthine was followed by monitoring the formation of uric acid at 290 nm. Inhibition of xanthine oxidase occurs in aqueous solutions of folic acid methotrexate and aminopterin. These compounds are known to dissociate upon exposure to ultraviolet light resulting in the formation of their respective 6-formylpteridine derivatives. The relative rates of dissociation were monitored spectrophotometrically by determining the absorbance of their 2,4-dinitrophenylhydrazine derivatives at 500 nm. When aqueous solutions of folic acid, aminopterin and methotrexate were exposed to uv light, a direct correlation was observed between the concentrations of the 6-formylpteridine derivatives existing inmore » solution and the ability of these solutions to inhibit xanthine oxidase. The relative potency of the respective photolysis products were estimated.« less

  17. Use of Nonspecific, Glutamic Acid-Free, Media and High Glycerol or High Amylase as Inducing Parameters for Screening Bacillus Isolates Having High Yield of Polyglutamic Acid

    PubMed Central

    Baxi, Nandita N.

    2014-01-01

    Out of fifty-five Bacillus isolates obtained from ten different regional locations and sources, seven showed the ability to consistently produce specific extracellular polymeric substance (EPS) on rich as well as synthetic but nonspecific media which did not contain glutamic acid. The isolates were identified as either Bacillus licheniformis or Bacillus subtilis. The EPS from all isolates was resistant to alpha protease, proteinase K, and was thus of high molecular weight. Further it was detected after SDS-PAGE by methylene blue but not by coomassie blue R staining as in case of proteins with high proportion of acidic amino acids. Cell-free EPS, after acid hydrolysis, showed absence of carbohydrates and presence of only glutamic acid. Thus the native the EPS from all seven isolates was confirmed to be gamma polyglutamic acid (PGA) and not exopolysaccharide. The Bacillus isolate T which produced maximum polymer on all media tested had higher amylase: protease activity as compared to other strains. If inoculum was developed in rich medium as compared to synthetic medium, the PGA produced increased by twofold in the subsequent synthetic production medium. Similarly, use of inoculum consisting of young and vegetative cells also increased the PGA production by twofold though amount of inoculum did not affect yield of PGA. Though PGA was produced in even in the absence of glutamic acid supplementation in the production medium by all isolates, the yield of PGA increased by fourfold in the presence glutamic acid and the maximum yield was 30 g/l for isolate K. The supplementation of glutamine instead of glutamic acid into the medium caused an increase in the viscosity of the non-Newtonian solution of PGA. PMID:27379328

  18. Use of Nonspecific, Glutamic Acid-Free, Media and High Glycerol or High Amylase as Inducing Parameters for Screening Bacillus Isolates Having High Yield of Polyglutamic Acid.

    PubMed

    Baxi, Nandita N

    2014-01-01

    Out of fifty-five Bacillus isolates obtained from ten different regional locations and sources, seven showed the ability to consistently produce specific extracellular polymeric substance (EPS) on rich as well as synthetic but nonspecific media which did not contain glutamic acid. The isolates were identified as either Bacillus licheniformis or Bacillus subtilis. The EPS from all isolates was resistant to alpha protease, proteinase K, and was thus of high molecular weight. Further it was detected after SDS-PAGE by methylene blue but not by coomassie blue R staining as in case of proteins with high proportion of acidic amino acids. Cell-free EPS, after acid hydrolysis, showed absence of carbohydrates and presence of only glutamic acid. Thus the native the EPS from all seven isolates was confirmed to be gamma polyglutamic acid (PGA) and not exopolysaccharide. The Bacillus isolate T which produced maximum polymer on all media tested had higher amylase: protease activity as compared to other strains. If inoculum was developed in rich medium as compared to synthetic medium, the PGA produced increased by twofold in the subsequent synthetic production medium. Similarly, use of inoculum consisting of young and vegetative cells also increased the PGA production by twofold though amount of inoculum did not affect yield of PGA. Though PGA was produced in even in the absence of glutamic acid supplementation in the production medium by all isolates, the yield of PGA increased by fourfold in the presence glutamic acid and the maximum yield was 30 g/l for isolate K. The supplementation of glutamine instead of glutamic acid into the medium caused an increase in the viscosity of the non-Newtonian solution of PGA.

  19. Direct sensing of fluoride in aqueous solutions using a boronic acid based sensor.

    PubMed

    Wu, Xin; Chen, Xuan-Xuan; Song, Bing-Nan; Huang, Yan-Jun; Ouyang, Wen-Juan; Li, Zhao; James, Tony D; Jiang, Yun-Bao

    2014-11-21

    Binding of the fluoride ion triggers aggregation of a pyreneboronic acid-catechol ensemble in acidic aqueous solutions, giving rise to intense excimer emission, allowing for sensitive fluoride ion sensing at ppm levels, with an apparent fluoride binding constant higher than 10(3) M(-1) which is unprecedented for boronic acid sensors in water.

  20. THE KINETICS OF SAPONIFICATION OF IODOACETIC ACID BY SODIUM HYDROXIDE AND BY CERTAIN ALKALINE BUFFER SOLUTIONS

    PubMed Central

    Brdička, R.

    1936-01-01

    1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions. PMID:19872968

  1. Kinetics of dodecanoic acid adsorption from caustic solution by activated carbon.

    PubMed

    Pendleton, Phillip; Wu, Sophie Hua

    2003-10-15

    This study examines the influences of adsorbent porosity and surface chemistry and of carbon dosage on dodecanoic acid adsorption kinetics from aqueous and 2 M NaOH solutions as batch adsorption processes. Both adsorbents are steam-activated carbons prepared from either coconut or coal precursors. Prior to use the adsorbents were washed in deionized water or 2 M NaOH. Mass transfer coefficients and effective overall diffusion coefficients indicate a minor contribution from adsorbent porosity. In contrast, high surface oxygen content impedes transport to and into the adsorbent structure. Carbon dosage shows a proportional increase in transport coefficients with increasing mass; these coefficients are constant when normalized per unit mass. Neither water nor NaOH treatment of the adsorbents has a significant influence on dodecanoic acid adsorption kinetics. Molecular and Knudsen diffusion coefficients are defined to demonstrate that the overall effective diffusion coefficient values and the diffusion process are controlled by surface diffusion.

  2. Degradation of hydroxycinnamic acid mixtures in aqueous sucrose solutions by the Fenton process.

    PubMed

    Nguyen, Danny M T; Zhang, Zhanying; Doherty, William O S

    2015-02-11

    The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA), and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) were studied by the Fenton oxidation process. Central composite design and multiresponse surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was a <0.01% loss of sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass %, pH 5.39, 35.98 °C) were 77% and 57%, respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose and coprecipitated with lepidocrocite, an iron oxyhydroxide.

  3. Changes in properties of polyacid-modified composite resins (compomers) following storage in acidic solutions.

    PubMed

    Nicholson, J W; Gjorgievska, E; Bajraktarova, B; McKenzie, M A

    2003-06-01

    The interaction of three polyacid-modified composite resins (compomers) with various acidic storage solutions, and also water, over periods of time up to 6 months has been studied and compared with those of a glass-ionomer and a composite resin. This interaction has been shown to vary in a complex way with length of storage and nature of the acid, and citric acid was found to be the most aggressive storage medium for glass-ionomer cement, and also for the compomers. The pure composite resin, by contrast, was relatively unaffected by all of the acid solutions examined. In all acids, the compomers showed a distinct buffering effect, i.e. they increased the pH towards neutral, as did the glass-ionomer. The extent of this also varied with duration of storage and nature of the acid. The biaxial flexure strength was determined and found to be essentially unaffected by the complex chemical interactions with acidic storage solutions. Values obtained for the compomers were lower than those of the composite resin, but above those of the glass-ionomer. Fourier-transform infrared (FT-IR) spectroscopy was employed to study the changes in the compomers following storage in the aqueous media, but bands were broad and no detailed assignments could be made. There were changes in the region of the spectra associated with metal carboxylates however, and this indicates that the secondary acid-base reaction had occurred following water uptake.

  4. The thermochemical characteristics of solution of phenol and benzoic acid in water-dimethylsulfoxide and water-acetonitrile mixtures

    NASA Astrophysics Data System (ADS)

    Zakharov, A. G.; Voronova, M. I.; Batov, D. V.; Smirnova, K. V.

    2011-03-01

    The solution of phenol and benzoic acid in water-dimethylsulfoxide (DMSO) and water-acetonitrile (AN) mixtures was studied. As distinct from benzoic acid, the thermodynamic characteristics of solution of phenol sharply change at concentrations corresponding to a change in the character of cluster formation in water-DMSO and water-AN mixtures. Differences in the solvation of phenol and benzoic acid are explained by different mechanisms of the interaction of the solutes with clusters existing in binary mixtures.

  5. Formation of amino acids by cobalt-60 irradiation of hydrogen cyanide solutions

    NASA Technical Reports Server (NTRS)

    Sweeney, M. A.; Toste, A. P.; Ponnamperuma, C.

    1976-01-01

    Experiments were conducted to study the pathway for the prebiotic origin of amino acids from hydrogen cyanide (HCN) under the action of ionizing radiation considered as an effective source of energy on the primitive earth. The irradiations were performed in a cobalt-60 source with a dose rate of 200,000 rad/hr. Seven naturally occurring amino acids are identified among the products formed by the hydrolysis of gamma-irradiated solutions of HCN: glycine, alanine, valine, serine, threonine, aspartic acid, and glutamic acid. The identity of these amino acids is established by gas chromatography and mass spectrometry. Control experiments provided evidence that the amino acids are not the result of contamination.

  6. Method for extracting lanthanides and actinides from acid solutions by modification of Purex solvent

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.

    1984-05-21

    A process has been developed for the extraction of multivalent lanthanide and actinide values from acidic waste solutions, and for the separation of these values from fission product and other values, which utilizes a new series of neutral bi-functional extractants, the alkyl(phenyl)-N, N-dialkylcarbamoylmethylphosphine oxides, in combination with a phase modifier to form an extraction solution. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions.

  7. The dynamics of solvation dictates the conformation of polyethylene oxide in aqueous, isobutyric acid and binary solutions.

    PubMed

    Dahal, Udaya R; Dormidontova, Elena E

    2017-04-12

    Polymers hydrogen-bonding with solvent represent an important broad class of polymers, properties of which depend on solvation. Using atomistic molecular dynamics simulations with the OPLS/AA force field we investigate the effect of hydrogen bonding on PEO conformation and chain mobility by comparing its behavior in isobutyric acid and aqueous solutions. In agreement with experimental data, we found that in isobutyric acid PEO forms a rather rigid extended helical structure, while in water it assumes a highly flexible coil conformation. We show that the difference in PEO conformation and flexibility is the result of the hydrogen bond stability and overall solvent dynamics near PEO. Isobutyric acid forms up to one hydrogen bond per repeat unit of PEO and interacts with PEO for a prolonged period of time, thereby stabilizing the helical structure of the polymer and reducing its segmental mobility. In contrast, water forms on average 1.2 hydrogen bonds per repeat unit of PEO (with 60% of water forming a single hydrogen bond and 40% of water forming two hydrogen bonds) and resides near PEO for a noticeably shorter time than isobutyric acid, leading to the well-documented high segmental mobility of PEO in water. We also analyze PEO conformation, hydrogen bonding and segmental mobility in binary water/isobutyric acid solutions and find that in the phase separated region PEO resides in the isobutyric-rich phase forming about 25% of its hydrogen bonds with isobutyric acid and 75% with water. We show that the dynamics of solvation affects the equilibrium properties of macromolecules, such as conformation, and by mixing of hydrogen bond-donating solvents one can significantly alter both polymer conformation and its local dynamics.

  8. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    NASA Astrophysics Data System (ADS)

    Jia, Wenbao; He, Yanquan; Ling, Yongsheng; Hei, Daqian; Shan, Qing; Zhang, Yan; Li, Jiatong

    2015-04-01

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L-1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the •OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while •H and eaq- played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation.

  9. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments.

    PubMed

    Szecsody, Jim E; Truex, Mike J; Qafoku, Nikolla P; Wellman, Dawn M; Resch, Tom; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH2) resulted in a rapid (<10 h) increase in aqueous carbonate (with Ca(2+), Mg(2+)) and phosphate and a slow (100 s of hours) increase in silica, Al(3+), and K(+), likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH13) resulted in a rapid (<10h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Clinical Improvement of Subacute and Chronic Otitis Media With Effusion Treated With Hyaluronic Acid Plus Hypertonic Solution via Nasal Lavage: A Randomized Controlled Trial.

    PubMed

    Cioffi, Luigi; Gallo, Patrizia; D'Avino, Antonio; Carlomagno, Francesco; Aloi, Giuseppe; D'Onofrio, Antonietta; Del Gaizo, Donatella; Giuliano, Maria; De Franchis, Raffaella; Sandomenico, Maria L; Pecoraro, Anna

    2017-01-01

    Background . This study, a randomized controlled trial, aims to demonstrate a clinically significant improvement in subacute and chronic otitis media with effusion through the administration of hyaluronic acid associated with hypertonic solution compared with the administration of hypertonic solution alone. The setting was an outpatient clinic of 20 primary care pediatrician offices affiliated with the 3 Local Health Units (Azienda Sanitaria Locale) of Naples. Materials and Methods . The study was conducted for 6 months, from October 2014 to the end of March 2015. The study saw the participation of 20 pediatricians who were experts in pneumatic otoscopy, each of whom enrolled 15 children. Each investigator was randomized to carry out the treatment with 3% hypertonic solution or high-molecular-weight hyaluronic acid + 3% hypertonic solution. Results . A total of 275 children were enrolled, of whom 11(equal to 4% ) were lost to follow-up. A total of 264 children completed the trial according to the protocol, 120 in the hyaluronic acid + hypertonic solution group and 144 in the hypertonic solution group. Hyaluronic acid associated with hypertonic solution and hypertonic solution alone administered by nasal lavage have proven to be safe and effective in the treatment of prolonged otitis media with effusion (initial score of -0.5, final score of 0.9, P < 001, for the hypertonic + hyaluronic acid group; initial score of -0.3, final score of 0.2, P < .001, for the hypertonic solution group). Though starting from a less favorable initial clinical score (-0.5 vs -0.3, P < .016), hyaluronic acid associated with hypertonic solution resulted in a significant increase in clinical healing (0.9 vs 0.2, P < .001). One interesting outcome was the significant reduction in the consumption of drugs (cortisone and antibiotics) during the follow-up.

  11. Stability of antimicrobial activity of peracetic acid solutions used in the final disinfection process.

    PubMed

    Costa, Solange Alves da Silva; Paula, Olívia Ferreira Pereira de; Silva, Célia Regina Gonçalves E; Leão, Mariella Vieira Pereira; Santos, Silvana Soléo Ferreira dos

    2015-01-01

    The instruments and materials used in health establishments are frequently exposed to microorganism contamination, and chemical products are used before sterilization to reduce occupational infection. We evaluated the antimicrobial effectiveness, physical stability, and corrosiveness of two commercial formulations of peracetic acid on experimentally contaminated specimens. Stainless steel specimens were contaminated with Staphylococcus aureus, Escherichia coli, Candida albicans, blood, and saliva and then immersed in a ready peracetic acid solution: 2% Sekusept Aktiv (SA) or 0.25% Proxitane Alpha (PA), for different times. Then, washes of these instruments were plated in culture medium and colony-forming units counted. This procedure was repeated six times per day over 24 non-consecutive days. The corrosion capacity was assessed with the mass loss test, and the concentration of peracetic acid and pH of the solutions were measured with indicator tapes. Both SA and PA significantly eliminated microorganisms; however, the SA solution was stable for only 4 days, whereas PA remained stable throughout the experiment. The concentration of peracetic acid in the SA solutions decreased over time until the chemical was undetectable, although the pH remained at 5. The PA solution had a concentration of 500-400 mg/L and a pH of 2-3. Neither formulation induced corrosion and both reduced the number of microorganisms (p = 0.0001). However, the differences observed in the performance of each product highlight the necessity of establishing a protocol for optimizing the use of each one.

  12. A 25% tannic acid solution as a root canal irrigant cleanser: a scanning electron microscope study.

    PubMed

    Bitter, N C

    1989-03-01

    A scanning electron microscope was used to evaluate the cleansing properties of a 25% tannic acid solution on the dentinal surface in the pulp chamber of endodontically prepared teeth. This was compared with the amorphous smear layer of the canal with the use of hydrogen peroxide and sodium hypochlorite solution as an irrigant. The tannic acid solution removed the smear layer more effectively than the regular cleansing agent.

  13. Selective recovery of vanadium and scandium by ion exchange with D201 and solvent extraction using P507 from hydrochloric acid leaching solution of red mud.

    PubMed

    Zhu, Xiaobo; Li, Wang; Tang, Sen; Zeng, Majian; Bai, Pengyuan; Chen, Lunjian

    2017-05-01

    D201 resin and P507 extractant diluted with sulfonated kerosene were used to respectively separate vanadium and scandium, and impurity ions from hydrochloric acid leaching solution of red mud. More than 99% of vanadium was selectively adsorbed from the hydrochloric acid leaching solution under the conditions of pH value of 1.8, volume ratio of leaching solution to resin of 10, and flow rate of 3.33 mL/min. Maximum extraction and separation of scandium was observed from the acid leaching solution at an aqueous pH value of 0.2. More than 99% of scandium can be selectively extracted using 15% P507, 5% TBP at the aqueous solution/organic phase (A/O) ratio of 10:1 for 6 min. The loaded organic phase was washed with 0.3 mol/L sulfuric acid, wherein most impurities were removed. After the process of desorption or stripping, precipitation, and roasting, high-purity V 2 O 5 and Sc 2 O 3 were obtained. Finally, a conceptual flow sheet was established to separate and recover vanadium and scandium from red mud hydrochloric acid leaching solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Superhydrophobic copper surfaces fabricated by fatty acid soaps in aqueous solution for excellent corrosion resistance

    NASA Astrophysics Data System (ADS)

    Xu, Wenlong; Hu, Yuanyuan; Bao, Wenda; Xie, Xiaoyu; Liu, Yiran; Song, Aixin; Hao, Jingcheng

    2017-03-01

    A simple and safe one-step immersion method was developed to obtain the stable superhydrophobic copper surfaces with excellent corrosion resistance ability using fatty acids in water-medium instead of ethanol. An organic alkali, N,N-dimethylcyclohexylamine (DMCHA), was chosen to solve the poor solubility of fatty acids in water and the high Krafft point of carboxylate salts with inorganic counterions. The superhydrophobic property can be realized in a much quicker process (7.5 min) in aqueous solution than in ethanol (more than 2 d), which is universally feasible for the fabrication of superhydrophobic metal surfaces in industry scale, thereby greatly increasing the safety in industrial manufacture.

  15. Determination of acid ionization constants for weak acids by osmometry and the instrumental analysis self-evaluation feedback approach to student preparation of solutions

    NASA Astrophysics Data System (ADS)

    Kakolesha, Nyanguila

    One focus of this work was to develop of an alternative method to conductivity for determining the acid ionization constants. Computer-controlled osmometry is one of the emerging analytical tools in industrial research and clinical laboratories. It is slowly finding its way into chemistry laboratories. The instrument's microprocessor control ensures shortened data collection time, repeatability, accuracy, and automatic calibration. The equilibrium constants of acetic acid, chloroacetic acid, bromoacetic acid, cyanoacetic acid, and iodoacetic acid have been measured using osmometry and their values compared with the existing literature values obtained, usually, from conductometric measurements. Ionization constant determined by osmometry for the moderately strong weak acids were in reasonably good agreement with literature values. The results showed that two factors, the ionic strength and the osmotic coefficient, exert opposite effects in solutions of such weak acids. Another focus of the work was analytical chemistry students solution preparation skills. The prevailing teacher-structured experiments leave little room for students' ingenuity in quantitative volumetric analysis. The purpose of this part of the study was to improve students' skills in making solutions using instrument feedback in a constructivist-learning model. After making some solutions by weighing and dissolving solutes or by serial dilution, students used the spectrophotometer and the osmometer to compare their solutions with standard solutions. Students perceived the instrument feedback as a nonthreatening approach to monitoring the development of their skill levels and liked to clarify their understanding through interacting with an instructor-observer. An assessment of the instrument feedback and the constructivist model indicated that students would assume responsibility for their own learning if given the opportunity. This study involved 167 students enrolled in Quantitative Chemical

  16. A high-throughput microtiter plate based method for the determination of peracetic acid and hydrogen peroxide.

    PubMed

    Putt, Karson S; Pugh, Randall B

    2013-01-01

    Peracetic acid is gaining usage in numerous industries who have found a myriad of uses for its antimicrobial activity. However, rapid high throughput quantitation methods for peracetic acid and hydrogen peroxide are lacking. Herein, we describe the development of a high-throughput microtiter plate based assay based upon the well known and trusted titration chemical reactions. The adaptation of these titration chemistries to rapid plate based absorbance methods for the sequential determination of hydrogen peroxide specifically and the total amount of peroxides present in solution are described. The results of these methods were compared to those of a standard titration and found to be in good agreement. Additionally, the utility of the developed method is demonstrated through the generation of degradation curves of both peracetic acid and hydrogen peroxide in a mixed solution.

  17. A High-Throughput Microtiter Plate Based Method for the Determination of Peracetic Acid and Hydrogen Peroxide

    PubMed Central

    Putt, Karson S.; Pugh, Randall B.

    2013-01-01

    Peracetic acid is gaining usage in numerous industries who have found a myriad of uses for its antimicrobial activity. However, rapid high throughput quantitation methods for peracetic acid and hydrogen peroxide are lacking. Herein, we describe the development of a high-throughput microtiter plate based assay based upon the well known and trusted titration chemical reactions. The adaptation of these titration chemistries to rapid plate based absorbance methods for the sequential determination of hydrogen peroxide specifically and the total amount of peroxides present in solution are described. The results of these methods were compared to those of a standard titration and found to be in good agreement. Additionally, the utility of the developed method is demonstrated through the generation of degradation curves of both peracetic acid and hydrogen peroxide in a mixed solution. PMID:24260173

  18. Effects of topical oxiconazole and boric acid in alcohol solutions to rat inner ears.

    PubMed

    Özdemir, Süleyman; Tuncer, Ülkü; Tarkan, Özgür; Akar, Funda; Sürmelioğlu, Özgür

    2013-06-01

    The aim of this study is to evaluate the ototoxicity of topical oxiconazole and boric acid in alcohol solutions. Prospective controlled animal study. Research laboratory. Fifty adult Wistar albino rats were divided into 5 groups consisting of 10 animals each. The right tympanic membranes were perforated, and baseline and posttreatment distortion product otoacoustic emission (DPOAE) measurements were performed. The solutions were applied through the external ear canal to the middle ear twice a day for 14 days. The rats in group I and group II received 0.1 mL of oxiconazole-containing solution drops and 4% boric acid in alcohol solution drops, respectively. Group III received gentamicin solution (40 mg/mL) (ototoxic control), group IV received saline solution, and group V was followed without any medication. The baseline DPOAE results of the right ears of all animals tested were normal. Animals in groups I, II, IV, and V showed no statistically significant change in the DPOAE amplitudes. The rats in the gentamicin group showed a significant decrease. This study demonstrates that topically used oxiconazole and boric acid in alcohol solutions to the middle ear appear to be safe on the inner ear of rats. The safety of these drugs has not yet been confirmed in humans. Caution should be taken when prescribing these drugs, especially to patients who had tympanic membrane perforation. Ear drops should be chosen more carefully in an external ear infection for patients with tympanic membrane perforation to avoid ototoxicity.

  19. The effects of temperature and aeration on the corrosion of A508III low alloy steel in boric acid solutions at 25-95 °C

    NASA Astrophysics Data System (ADS)

    Xiao, Qian; Lu, Zhanpeng; Chen, Junjie; Yao, Meiyi; Chen, Zhen; Ejaz, Ahsan

    2016-11-01

    The effects of temperature, solution composition and dissolved oxygen on the corrosion rate and electrochemical behavior of an A508III low alloy steel in boric acid solution with lithium hydroxide at 25-95 °C are investigated. In aerated solutions, increasing the boric acid concentration increases the corrosion rate and the anodic current density. The corrosion rate in deaerated solutions increases with increasing temperature. A corrosion rate peak value is found at approximately 75 °C in aerated solutions. Increasing temperature increases the oxygen diffusion coefficient, decreases the dissolved oxygen concentration, accelerates the hydrogen evolution reaction, and accelerates both the active dissolution and the film forming reactions. Increasing dissolved oxygen concentration does not significantly affect the corrosion rate at 50 and 60 °C, increases the corrosion rate at 70 and 80 °C, and decreases the corrosion rate at 87.5 and 95 °C in a high concentration boric acid solution with lithium hydroxide.

  20. A long-wavelength fluorescent squarylium cyanine dye possessing boronic acid for sensing monosaccharides and glycoproteins with high enhancement in aqueous solution.

    PubMed

    Saito, Shingo; Massie, Tara L; Maeda, Takeshi; Nakazumi, Hiroyuki; Colyer, Christa L

    2012-01-01

    Fluorescence sensing of saccharides and glycoproteins using a boronic acid functionalized squarylium cyanine dye ("SQ-BA") is characterized in terms of synthetic, fluorometric, thermodynamic and kinetic parameters. In our previous work, this newly synthesized dye was successfully applied to the separation and quantification of Gram-positive bacteria by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF); however, the fundamental properties of the dye and its saccharide complexes still required elucidation, as presented in this paper. The dye itself forms nonemissive, soluble aggregates in aqueous solution. With the addition of a monosaccharide, the dye aggregate dissociates to form an emissive monomer accompanied by the formation of a cyclic cis-diol ester with long-wavelength emission (λ(ex) = 630 nm, λ(em) = 660 nm). A very large fluorescence enhancement factor of 18× was observed for the sensing dye as a fructose complex at pH 10, yielding a limit of detection of 10 μM fructose. The relative order of fluorescence enhancement of SQ-BA with other monosaccharides was found to be: fructose > ribose > arabinose ≈ galactose > xylose > mannose > rhamnose > fucose ≈ glucose; and apparent affinity constants of 10(2.80), 10(2.08) and 10(0.86) M(-1) were determined for fructose, ribose and glucose, respectively. Formation of the emissive complexes occurred within minutes, proving the kinetics of the sugar-dye interactions to be suitable for on-column labeling methods in CE-LIF. Furthermore, the sensing dye was successfully applied to glycoproteins, mucin type I-S and type III, which were detected with high sensitivity in batch aqueous solution as a result of the sugar-selective boronic acid-diol esterification as well as hydrophobic interactions.

  1. A Long-Wavelength Fluorescent Squarylium Cyanine Dye Possessing Boronic Acid for Sensing Monosaccharides and Glycoproteins with High Enhancement in Aqueous Solution

    PubMed Central

    Saito, Shingo; Massie, Tara L.; Maeda, Takeshi; Nakazumi, Hiroyuki; Colyer, Christa L.

    2012-01-01

    Fluorescence sensing of saccharides and glycoproteins using a boronic acid functionalized squarylium cyanine dye (“SQ-BA”) is characterized in terms of synthetic, fluorometric, thermodynamic and kinetic parameters. In our previous work, this newly synthesized dye was successfully applied to the separation and quantification of Gram-positive bacteria by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF); however, the fundamental properties of the dye and its saccharide complexes still required elucidation, as presented in this paper. The dye itself forms nonemissive, soluble aggregates in aqueous solution. With the addition of a monosaccharide, the dye aggregate dissociates to form an emissive monomer accompanied by the formation of a cyclic cis-diol ester with long-wavelength emission (λex = 630 nm, λem = 660 nm). A very large fluorescence enhancement factor of 18× was observed for the sensing dye as a fructose complex at pH 10, yielding a limit of detection of 10 μM fructose. The relative order of fluorescence enhancement of SQ-BA with other monosaccharides was found to be: fructose > ribose > arabinose ≈ galactose > xylose > mannose > rhamnose > fucose ≈ glucose; and apparent affinity constants of 102.80, 102.08 and 100.86 M−1 were determined for fructose, ribose and glucose, respectively. Formation of the emissive complexes occurred within minutes, proving the kinetics of the sugar-dye interactions to be suitable for on-column labeling methods in CE-LIF. Furthermore, the sensing dye was successfully applied to glycoproteins, mucin type I–S and type III, which were detected with high sensitivity in batch aqueous solution as a result of the sugar-selective boronic acid-diol esterification as well as hydrophobic interactions. PMID:22778592

  2. Uptake of Hypobromous Acid (HOBr) by Aqueous Sulfuric Acid Solutions: Low-Temperature Solubility and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, Rebecca R.; Ashbourn, Samatha F. M.; Rammer, Thomas A.; Golden, David M.

    2005-01-01

    Hypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45 - 70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H* = 10(exp 4) - 10(exp 7) mol/L/atm. H* is inversely dependent on temperature, with Delta H = -46.2 kJ/mol and Delta S = -106.2 J/mol/K for 55 - 70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into aqueous 45 wt% H2SO4, the solubility can be described by log H* = 3665/T - 10.63. For 55 - 70 wt% H2SO4, log H* = 2412/T - 5.55. At temperatures colder than approx. 213 K, the solubility of HOBr in 45 wt% H2SO4 is noticeably larger than in 70 wt% H2SO4. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Our measurements indicate chemical reaction of HOBr upon uptake into aqueous sulfuric acid in the presence of other brominated gases followed by evolution of gaseous products including Br2O and Br2, particularly at 70 wt% H2SO4.

  3. The use of raw and acid-pretreated bivalve mollusk shells to remove metals from aqueous solutions.

    PubMed

    Liu, Yang; Sun, Changbin; Xu, Jin; Li, Youzhi

    2009-08-30

    Heavy metal removal from industrial wastewater is not only to protect living organisms in the environment but also to conserve resources such as metals and water by enabling their reuse. To overcome the disadvantage of high cost and secondary pollution by the conventional physico-chemical treatment techniques, environmentally benign and low-cost adsorbents are in demand. In this study, the use of raw and acid-pretreated bivalve mollusk shells (BMSs) to remove metals from aqueous solutions with single or mixed metal was evaluated at different BMSs doses, pH and temperatures in batch shaking experiments in laboratory conditions. When the BMSs were used to treat CuSO(4)x5H(2)O solution, the copper sorption capacities of the raw and acid-pretreated BMSs were approximately 38.93 mg/g and 138.95 mg/g, respectively. The copper removal efficiency (CRE) of the raw BMSs became greatly enhanced with increasing initial pH, reaching 99.51% at the initial pH 5. Conversely, the CRE of the acid-pretreated BMSs was maintained at 99.48-99.52% throughout the pH range of 1-5. Furthermore, the CRE values of the raw and acid-pretreated BMSs were not greatly changed when the temperature was varied from 15 degrees C to 40 degrees C. In addition, the CRE value of the raw BMSs was maintained for 12 cycles of sorption-desorption with a CRE of 98.4% being observed in the final cycle. Finally, when the BMSs were used to treat electroplating wastewater, the removal efficiencies (REs) of the raw BMSs were 99.97%, 98.99% and 87% for Fe, Zn and Cu, respectively, whereas the REs of the acid-pretreated BMSs were 99.98%, 99.43% and 92.13%, respectively. Ion exchange experiments revealed that one of mechanisms for metal sorption by the BMSs from aqueous solution is related to ion exchange, especially between the metal ions in the treated solution and Ca(2+) from BMSs. Infrared absorbance spectra analysis indicated that the acid pretreatment led to occurrence of the groups (i.e. -OH, -NH, C=O and S

  4. Liquid Superlubricity of Polyethylene Glycol Aqueous Solution Achieved with Boric Acid Additive.

    PubMed

    Ge, Xiangyu; Li, Jinjin; Zhang, Chenhui; Luo, Jianbin

    2018-03-27

    Boric acid is a weak acid and has been used as a lubrication additive because of its special structure. In this study, we report that boric acid could achieve a robust superlubricity (μ < 0.01) as an additive in polyethylene glycol (PEG) aqueous solution at the Si 3 N 4 /SiO 2 interfaces. The superlow and steady friction coefficient of approximately 0.004-0.006 could be achieved with boric acid under neutral conditions (pH of approximately 6.4), which is different from the acidic conditions leading to superlubricity. The influence of various factors, including boric acid concentration, sliding speed, applied load, PEG molecular weight, and the volume of lubricant on the superlubricity, were investigated. The results reveal that the PEG aqueous solution with the boric acid additive could achieve superlubricity under a wide range of conditions. The surface composition analysis shows that the synergy effect between boric acid and PEG provides sufficient H + ions to realize the running-in process. Moreover, a composite tribochemical film composed of silica and ammonia-containing compounds were formed on the ball surface, contributing to the superlubricity. The film thickness calculation shows that superlubricity was achieved in a mixed lubrication region, and therefore, the superlubricity state was dominated by both the composite tribochemical film formed via the tribochemical reaction on the contact surfaces and the hydrodynamic lubricating film between the contact surfaces. Such a liquid superlubricity achieved under neutral conditions is of importance for both scientific understanding and engineering applications.

  5. Influence of trace elements on stabilization of aqueous solutions of ascorbic acid.

    PubMed

    Dolińska, Barbara; Ostróżka-Cieślik, Aneta; Caban, Artur; Rimantas, Klimas; Leszczyńska, Lucyna; Ryszka, Florian

    2012-12-01

    Together with vitamin C, zinc, selenium, manganese, and magnesium play a vital role in the preservation of organs scheduled for transplantation. In the present study, it is shown that addition of 1 mg/l of these elements influences the stability of 0.3 mM ascorbic acid solutions. The solution's stability was estimated using an accelerated stability test. The concentration of vitamin C was measured using a validated spectrophotometric method, which uses the reduction of 2,6-dichlorophenoloindophenol by ascorbic acid. Elevated temperatures, the factor accelerating substances' decomposition reaction rate, were used in the tests. The research was conducted at two temperatures at intervals of 10 °C: 80 ± 0.1 and 90 ± 0.1 °C. It was stated that the studied substances' decomposition occurred in accordance with the equation for first-order reactions. The function of the logarithmic concentration (log%C) over time was revealed to be rectilinear. This dependence was used to determine the kinetics of decomposition reaction rate parameters. The stabilization of vitamin C solutions was measured as the time in which 10 % of the substance decomposed at 20 and 0 °C. Addition of Se(IV) or Mg(II) ions significantly increase the stability of ascorbic acid solution (∼34 and ∼16 %, respectively), but Zn(II) causes a significant decrease in stability by ∼23 %. Addition of Mn(II) has no significant influence on vitamin C stability.

  6. Acid-base and hemodynamic status of patients with intraoperative hemorrhage using two solution types: Crystalloid Ringer lactate and 1.3% sodium bicarbonate in half-normal saline solution.

    PubMed

    Hashemi, Sayed Jalal; Heidari, Sayed Morteza; Yaraghi, Ahmad; Seirafi, Reza

    2016-01-01

    Intraoperative hemorrhage is one of the problems during surgery and, if it happens in a high volume without an immediate action to control, it can be fatal. Nowadays, various injectable solutions are used. The aim of this study was to compare the acid-base and hemodynamic status of the patient using two solutions, Ringer lactate and 1.3% sodium bicarbonate, in half saline solution. This clinical trial was performed at the Al-Zahra Hospital in 2013 on 66 patients who were randomly selected and put in two studied groups at the onset of hemorrhage. For the first group, crystalloid Ringer lactate solution and for the second group, 1.3% sodium bicarbonate in half-normal saline solution was used. Electrocardiogram, heart rate, O2 saturation non-invasive blood pressure and end-tidal CO2 were monitored. The arterial blood gas, blood electrolytes, glucose and blood urea nitrogen were measured before serum and blood injection. After the infusion of solutions and before blood transfusions, another sample was sent for measurement of blood parameters. Data were analyzed using SPSS software. The mean arterial pressure was significantly higher in the second group than in the first group at some times after the infusion of solutions. pHh levels, base excess, bicarbonate, sodium, strong ion differences and osmolarity were significantly greater and potassium and chloride were significantly lower in the second group than in the first group after the infusion of solutions. 1.3% sodium bicarbonate in half-normal saline solution can lead to a proper correction of hemodynamic instability. By maintaining hemodynamic status, osmolarity and electrolytes as well as better balance of acid-base, 1.3% sodium bicarbonate solution in half-normal saline solution can be more effective than Ringer lactate solution during intraoperative bleeding.

  7. Molecular dynamics simulation studies of the interactions between ionic liquids and amino acids in aqueous solution.

    PubMed

    Tomé, Luciana I N; Jorge, Miguel; Gomes, José R B; Coutinho, João A P

    2012-02-16

    Although the understanding of the influence of ionic liquids (ILs) on the solubility behavior of biomolecules in aqueous solutions is relevant for the design and optimization of novel biotechnological processes, the underlying molecular-level mechanisms are not yet consensual or clearly elucidated. In order to contribute to the understanding of the molecular interactions established between amino acids and ILs in aqueous media, classical molecular dynamics (MD) simulations were performed for aqueous solutions of five amino acids with different structural characteristics (glycine, alanine, valine, isoleucine, and glutamic acid) in the presence of 1-butyl-3-methylimidazolium bis(trifluoromethyl)sulfonyl imide. The results from MD simulations enable to relate the properties of the amino acids, namely their hydrophobicity, to the type and strength of their interactions with ILs in aqueous solutions and provide an explanation for the direction and magnitude of the solubility phenomena observed in [IL + amino acid + water] systems by a mechanism governed by a balance between competitive interactions of the IL cation, IL anion, and water with the amino acids.

  8. Arsenic removal from acidic solutions with biogenic ferric precipitates.

    PubMed

    Ahoranta, Sarita H; Kokko, Marika E; Papirio, Stefano; Özkaya, Bestamin; Puhakka, Jaakko A

    2016-04-05

    Treatment of acidic solution containing 5g/L of Fe(II) and 10mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.7h, 96-98% of the added Fe(II) precipitated (99.1% of which was jarosite). The highest iron oxidation and precipitation rates were 1070 and 28mg/L/h, respectively, and were achieved at pH 3.0. Subsequently, the effect of pH on arsenic removal through sorption and/or co-precipitation was examined by gradually decreasing solution pH from 3.0 to 1.6 (feed pH). At pH 3.0, 2.4 and 1.6, the highest arsenic removal efficiencies obtained were 99.5%, 80.1% and 7.1%, respectively. As the system had ferric precipitates in excess, decreased arsenic removal was likely due to reduced co-precipitation at pH<2.4. As(III) was partially oxidized to As(V) in the system. In shake flask experiments, As(V) sorbed onto jarosite better than As(III). Moreover, the sorption capacity of biogenic jarosite was significantly higher than that of synthetic jarosite. The developed bioprocess simultaneously and efficiently removes iron and arsenic from acidic solutions, indicating potential for mining wastewater treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Thermodynamic characteristics of the interaction between nicotinic acid and phenylalanine in an aqueous buffer solution at 298 K

    NASA Astrophysics Data System (ADS)

    Badelin, V. G.; Tyunina, E. Yu.; Mezhevoi, I. N.; Tarasova, G. N.

    2013-08-01

    The interaction between L-phenylalanine and nicotinic acid is studied by solution calorimetry in an aqueous buffer solution (pH 7.35) at different ratios of the reagents. Experimental data on the enthalpy of dissolution of amino acid in the buffer solution of nicotinic acid at 298.15 K are calculated. The values of thermodynamic parameters for the complexation of L-phenylalanine with nicotinic acid are calculated. It is shown that the formation of a 1: 2 molecular complex is stabilized by the entropy factor due to the dominant role of the dehydration effect of initial reagents.

  10. The response of soil solution chemistry in European forests to decreasing acid deposition.

    PubMed

    Johnson, James; Graf Pannatier, Elisabeth; Carnicelli, Stefano; Cecchini, Guia; Clarke, Nicholas; Cools, Nathalie; Hansen, Karin; Meesenburg, Henning; Nieminen, Tiina M; Pihl-Karlsson, Gunilla; Titeux, Hugues; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Waldner, Peter; Jonard, Mathieu

    2018-03-31

    Acid deposition arising from sulphur (S) and nitrogen (N) emissions from fossil fuel combustion and agriculture has contributed to the acidification of terrestrial ecosystems in many regions globally. However, in Europe and North America, S deposition has greatly decreased in recent decades due to emissions controls. In this study, we assessed the response of soil solution chemistry in mineral horizons of European forests to these changes. Trends in pH, acid neutralizing capacity (ANC), major ions, total aluminium (Al tot ) and dissolved organic carbon were determined for the period 1995-2012. Plots with at least 10 years of observations from the ICP Forests monitoring network were used. Trends were assessed for the upper mineral soil (10-20 cm, 104 plots) and subsoil (40-80 cm, 162 plots). There was a large decrease in the concentration of sulphate (SO42-) in soil solution; over a 10-year period (2000-2010), SO42- decreased by 52% at 10-20 cm and 40% at 40-80 cm. Nitrate was unchanged at 10-20 cm but decreased at 40-80 cm. The decrease in acid anions was accompanied by a large and significant decrease in the concentration of the nutrient base cations: calcium, magnesium and potassium (Bc = Ca 2+  + Mg 2+  + K + ) and Al tot over the entire dataset. The response of soil solution acidity was nonuniform. At 10-20 cm, ANC increased in acid-sensitive soils (base saturation ≤10%) indicating a recovery, but ANC decreased in soils with base saturation >10%. At 40-80 cm, ANC remained unchanged in acid-sensitive soils (base saturation ≤20%, pHCaCl2 ≤ 4.5) and decreased in better-buffered soils (base saturation >20%, pHCaCl2 > 4.5). In addition, the molar ratio of Bc to Al tot either did not change or decreased. The results suggest a long-time lag between emission abatement and changes in soil solution acidity and underline the importance of long-term monitoring in evaluating ecosystem response to decreases in deposition. © 2018 John Wiley & Sons

  11. Infrared optical constants of H2O ice, amorphous nitric acid solutions, and nitric acid hydrates

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Koehler, Birgit G.; Middlebrook, Ann M.; Tolbert, Margaret A.; Jordon, Joseph

    1994-01-01

    We determined the infrared optical constants of nitric acid trihydrate, nitric acid dihydrate, nitric acid monohydrate, and solid amorphous nitric acid solutions which crystallize to form these hydrates. We have also found the infrared optical constants of H2O ice. We measured the transmission of infrared light throught thin films of varying thickness over the frequency range from about 7000 to 500/cm at temperatures below 200 K. We developed a theory for the transmission of light through a substrate that has thin films on both sides. We used an iterative Kramers-Kronig technique to determine the optical constants which gave the best match between measured transmission spectra and those calculated for a variety of films of different thickness. These optical constants should be useful for calculations of the infrared spectrum of polar stratospheric clouds.

  12. Assessment of the Effects Exerted by Acid and Alkaline Solutions on Bone: Is Chemistry the Answer?

    PubMed

    Amadasi, Alberto; Camici, Arianna; Porta, Davide; Cucca, Lucia; Merli, Daniele; Milanese, Chiara; Profumo, Antonella; Rassifi, Nabila; Cattaneo, Cristina

    2017-09-01

    The treatment of corpses with extremely acid or basic liquids is sometimes performed in criminal contexts. A thorough characterization by chemical analysis may provide further help to macroscopic and microscopic analysis; 63 porcine bone samples were treated with solutions at different pH (1-14) for immersion periods up to 70 days, as well as in extremely acidic sulfuric acid solutions (9 M/18 M) and extremely basic sodium hydroxide. Inductively coupled optical emission spectrometry (ICP-OES)/plasma mass spectrometry (ICP-MS), Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray analysis (EDX), X-ray powder diffraction (XRPD), and scanning electron microscopy (SEM) showed that only the sulfuric acid solution 18 M was able to completely dissolve the sample. In addition, chemical analysis allowed to recognize the contact between bone and substances. Hydrated calcium sulfate arose from extreme pH. The possibility of detecting the presence of human material within the residual solution was demonstrated, especially with FT-IR, ICP-OES, and EDX. © 2017 American Academy of Forensic Sciences.

  13. Mechanistic study of fulvic acid assisted propranolol photodegradation in aqueous solution.

    PubMed

    Makunina, Maria P; Pozdnyakov, Ivan P; Chen, Yong; Grivin, Vyacheslav P; Bazhin, Nikolay M; Plyusnin, Victor F

    2015-01-01

    Laser flash (355 nm) and stationary (365 nm) photolysis were used to study the mechanisms of propranolol photolysis in the presence of fulvic acid in aqueous solutions. The FA-assisted photodegradation of propranolol was observed using UV-A irradiation (where propranolol is stable). Direct evidence indicated that the photodegradation resulted from the static quenching of the FA triplet state by propranolol via the electron transfer mechanism. The triplet state yield (ϕT≈0.6%) and the T-T absorption coefficient (ɛT(620 nm)≈5×10(4) M(-1) cm(-1)) were estimated for the first time by modeling the yields of the FA triplet state in the presence of propranolol. Thus, fulvic acid is a promising agent for accelerating propranolol photodegradation in aqueous solutions under UV-A light irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Chemical Corrosion of Liquid-Phase Sintered SiC in Acidic/Alkaline Solutions Part 1. Corrosion in HNO3 Solution

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zhang, Ming; He, Xinnong; Tang, Wenming

    2016-03-01

    The corrosion behavior of the liquid-phase sintered SiC (LPS-SiC) was studied by dipping in 3.53 mol/L HNO3 aqueous solution at room temperature and 70 °C, respectively. The weight loss, strength reduction and morphology evolution of the SiC specimens during corroding were revealed and also the chemical corrosion process and mechanism of the SiC specimens in the acidic solution were clarified. The results show that the corrosion of the LPS-SiC specimens in the HNO3 solution is selective. The SiC particles are almost free from corrosion, but the secondary phases of BaAl2Si2O8 (BAS) and Y2Si2O7 are corroded via an acid-alkali neutralization reaction. BAS has a higher corrosion rate than Y2Si2O7, resulting in the formation of the bamboo-leaf-like corrosion pits. As the SiC specimens etched in the HNO3 solution at room temperature for 75 days, about 80 μm thickness corrosion layer forms. The weight loss and bending strength reduction of the etched SiC specimens are 2.6 mg/cm2 and 52%, respectively. The corrosion of the SiC specimens is accelerated in the 70 °C HNO3 solution with a rate about five times bigger than that in the same corrosion medium at room temperature.

  15. Study on corrosion resistance of high - entropy alloy in medium acid liquid and chemical properties

    NASA Astrophysics Data System (ADS)

    Florea, I.; Buluc, G.; Florea, R. M.; Soare, V.; Carcea, I.

    2015-11-01

    High-entropy alloy is a new alloy which is different from traditional alloys. The high entropy alloys were started in Tsing Hua University of Taiwan since 1995 by Yeh et al. Consisting of a variety of elements, each element occupying a similar compared with other alloy elements to form a high entropy. We could define high entropy alloys as having approximately equal concentrations, made up of a group of 5 to 11 major elements. In general, the content of each element is not more than 35% by weight of the alloy. During the investigation it turned out that this alloy has a high hardness and is also corrosion proof and also strength and good thermal stability. In the experimental area, scientists used different tools, including traditional casting, mechanical alloying, sputtering, splat-quenching to obtain the high entropy alloys with different alloying elements and then to investigate the corresponding microstructures and mechanical, chemical, thermal, and electronic performances. The present study is aimed to investigate the corrosion resistance in a different medium acid and try to put in evidence the mechanical properties. Forasmuch of the wide composition range and the enormous number of alloy systems in high entropy alloys, the mechanical properties of high entropy alloys can vary significantly. In terms of hardness, the most critical factors are: hardness/strength of each composing phase in the alloy, distribution of the composing phases. The corrosion resistance of an high entropy alloy was made in acid liquid such as 10%HNO3-3%HF, 10%H2SO4, 5%HCl and then was investigated, respectively with weight loss experiment. Weight loss test was carried out by put the samples into the acid solution for corrosion. The solution was maintained at a constant room temperature. The liquid formulations used for tests were 3% hydrofluoric acid with 10% nitric acid, 10% sulphuric acid, 5% hydrochloric acid. Weight loss of the samples was measured by electronic scale.

  16. Study of the IGA/SCC behavior of Alloy 600 and 690 in high temperature solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsujikawa, S.; Yashima, S.; Ohnishi, K.

    1995-09-01

    IGA/SCC of Alloy 600 steam generator (SG) tubes in the secondary side has been recognized as a matter of great concern for PWRs. IGA/SCC behavior of Alloy 600 and 690 in high temperature solutions were studied using CERT method under potentiostatic conditions. The IGA/SCC susceptible regions were investigated as the function of pH and electrode potential. To understand the cause of IGA/SCC, the electrochemical measurements and surface film analysis were also performed in acidic and alkaline solutions. To verify the results of CERT test, the long term model boiler tests were also carried out. Thermally treated Alloy 690 showed highermore » IGA/SCC resistance than Alloy 600 under both acid and alkaline conditions.« less

  17. THE PREPARATION AND PROPERTIES OF HIGHLY PURIFIED ASCORBIC ACID OXIDASE

    PubMed Central

    Powers, Wendell H.; Lewis, Stanley; Dawson, Charles R.

    1944-01-01

    1. A method is described for the preparation of a highly purified ascorbic acid oxidase containing 0.24 per cent copper. 2. Using comparable activity measurements, this oxidase is about one and a half times as active on a dry weight basis as the hitherto most highly purified preparation described by Lovett-Janison and Nelson. The latter contained 0.15 per cent copper. 3. The oxidase activity is proportional to the copper content and the proportionality factor is the same as that reported by Lovett-Janison and Nelson. 4. When dialyzed free of salt, the blue concentrated oxidase solutions precipitate a dark green-blue protein which carries the activity. This may be prevented by keeping the concentrated solutions about 0.1 M in Na2HPO4. 5. When highly diluted for activity measurements the oxidase rapidly loses activity (irreversibly) previous to the measurement, unless the dilution is made with a dilute inert protein (gelatin) solution. Therefore activity values obtained using such gelatin-stabilized dilute solutions of the oxidase run considerably higher than values obtained by the Lovett-Janison and Nelson technique. 6. The effect of pH and substrate concentration on the activity of the purified oxidase in the presence and absence of inert protein was studied. PMID:19873382

  18. A Novel High Energy Density Rechargeable Hybrid Sodium-Air Cell with Acidic Electrolyte.

    PubMed

    Kang, Yao; Su, Fengmei; Zhang, Qingkai; Liang, Feng; Adair, Keegan R; Chen, Kunfeng; Xue, Dongfeng; Hayashi, Katsuro; Cao, Shan Cecilia; Yadegari, Hossein; Sun, Xueliang

    2018-06-22

    Low cost, high energy density and highly efficient devices for energy storage have long been desired in our society. Herein, a novel high energy density hybrid sodium-air cell was fabricated successfully based on acidic catholytes. Such a hybrid sodium-air cell possess a high theoretical voltage of 3.94 V, capacity of 1121 mAh g-1, and energy density of 4418 Wh kg-1. Firstly, the buffering effect of an acidic solution was demonstrated, which provides relatively long and stable cell discharge behaviours. Secondly, the catholyte of hybrid sodium-air cells were optimized systematically from the solutions of 0.1 M H3PO4 + 0.1 M Na2SO4 to 0.1 M HAc + 0.1 M NaAc, and it was found that the cells with 0.1 M H3PO4 + 0.1 M Na2SO4 displayed maximum power density of 34.9 mW cm-2. The cell with 0.1 M H3PO4 + 0.1 M Na2SO4 displayed higher discharge capacity of 896 mAh g-1. Moreover, the fabricated acidic hybrid sodium-air cells exhibited stable cycling performance in ambient air, and they delivered a low voltage gap around 0.3 V when the current density is 0.13 mA cm-2, leading to a high energy efficiency up to 90%. Therefore, the present study provides new opportunities to develop highly cost-effective energy storage technologies.

  19. Effective Removal of Tetracycline from Aqueous Solution by Organic Acid-Coated Magnetic Nanoparticles.

    PubMed

    Guo, Liang; Liang, Yuyan; Chen, Xuelan; Xu, Wei; Wu, Kesheng; Wei, Hua; Xiong, Yonghua

    2016-03-01

    Self-assembled iron oxide nanocomposites are good magnetic nano-adsorbents that can be prepared using simple methods. Four types of organic acid-functionalised (oleic acid, undecenoic acid, caprylic acid or hexanoic acid) magnetic nanoparticles (MNPs) were synthesised through a one-pot chemisorption method for the removal of tetracycline (TC) from aqueous solution. The undecenoic acid-coated MNPs (UA-MNPs) exhibited the highest adsorption efficiency and can be easily retrieved with a low-gradient magnetic separator (0.4 Tesla) at pH 5.0 aqueous solution. The TC adsorption process on the UA-MNPs followed the Langmuir isotherm and the maximum adsorption capacities increased from 86.96 mg g(-1) to 222.2 mg g(-1) with the increase in temperature from 288 K to 318 K. The kinetics of adsorption fits pseudo-second-order model perfectly with a rate constant, 5.946 g mg(-1) min(-1) at 298 K. The positive values of the enthalpy (AH) and the negative value of the free energy (AG) indicated an endothermic and spontaneous adsorption process of TC on the UA-MNPs. Moreover, the UA-MNPs possessed excellent ability to adsorb the other three major types of TC antibiotics, including chlortetracycline, oxytetracycline and doxycycline.

  20. A prospective randomized trial of two solutions for intrapartum amnioinfusion: effects on fetal electrolytes, osmolality, and acid-base status.

    PubMed

    Pressman, E K; Blakemore, K J

    1996-10-01

    Our purpose was to compare the effects of intrapartum amnioinfusion with normal saline solution versus lactated Ringer's solution plus physiologic glucose on neonatal electrolytes and acid-base balance. Patients undergoing amnioinfusion for obstetric indications were randomized to receive normal saline solution or lactated Ringer's solution plus physiologic glucose at standardized amnioinfusion rates. Data were collected prospectively on maternal demographics, course of labor, and maternal and neonatal outcome. Arterial cord blood was obtained for analysis of electrolytes, glucose, osmolality, lactic acid, and blood gases. Control subjects with normal fetal heart rate patterns, and clear amniotic fluid not receiving amnioinfusion were studied concurrently. Data were collected on 59 patients (21 normal saline solution, 18 lactated Ringer's solution plus physiologic glucose, and 20 controls). Maternal demographics, course of labor, and neonatal outcome were similar in all three groups. Cesarean sections were performed more often in the amnioinfusion groups (33.3% for normal saline solution, 38.9% for lactated Ringer's solution plus physiologic glucose) than in the control group (5.0%), p < 0.05. Cord arterial electrolytes, glucose, osmolality, lactic acid, and blood gases were not altered by amnioinfusion with either solution. Intrapartum amnioinfusion with normal saline solution or lactated Ringer's solution plus physiologic glucose has no effect on neonatal electrolytes or acid-base balance.

  1. Competitive adsorption of boric acid and chromate onto alumina in aqueous solutions.

    PubMed

    Demetriou, A; Pashalidis, I

    2014-01-01

    The competitive adsorption of boric acid and chromate from aqueous solutions by alumina has been investigated by spectrophotometry at pH 8, ionic strength = 0.0, 0.1 and 1.0 M NaClO4, T = 22 ± 3 °C and under normal atmospheric conditions. The experimental data show that addition of excess boric acid in the system leads to the increase of Cr(VI) concentration in solution, indicating the replacement of adsorbed chromate by boron on the alumina surface. Data evaluation results in the determination of the competition reaction constant and the formation constant of the Cr(VI) surface complexes, which are logKCr(VI)-B(III) = -3.5 ± 0.2 and logβ*Cr = 7.6 ± 0.3, respectively.

  2. Acid-Base Properties of Azo Dyes in Solution Studied Using Spectrophotometry and Colorimetry

    NASA Astrophysics Data System (ADS)

    Snigur, D. V.; Chebotarev, A. N.; Bevziuk, K. V.

    2018-03-01

    Colorimetry and spectrophotometry with chemometric data processing were used to study the acid-base properties of azo dyes in aqueous solution. The capabilities of both methods were compared. Ionization constants of all the functional groups of the azo compounds studied could be determined relative to the change in the specific color difference depending on the acidity of the medium. The colorimetric functions of ion-molecular forms of azo compounds used as an analytical signal allow us to obtain complete information on the acid-base equilibrium in a wide acidity range.

  3. Effect of Boric Acid Versus Conventional Irrigation Solutions on the Bond Strength Between Fiber Post 
and Root Dentin.

    PubMed

    Culhaoglu, Ahmet Kursad; Özcan, Erdal; Kilicarslan, Mehmet Ali; Seker, Emre

    2017-01-01

    To compare the effect of boric acid solutions of different percentages to conventional irrigation solutions on the adhesive bond strength between fiber posts and radicular dentin surface with different cement types. One hundred fifteen extracted human incisors were endodontically instrumented to a length of 14-15 mm, and 12-mm post spaces were prepared with specific drills. Cylindrical fiber posts (Panavia Post) were luted with two different composite cements (Panavia F 2.0, Panavia SA) and cut into 1-mm-thick slices. These specimens were randomly allocated to 5 groups according to the irrigant applied: 1. control, no irrigant; 2. 10 ml of 2% chlorhexidine; 3. 10 ml of 5.25% NaOCl for 5 min and 10 ml of 17% EDTA for 3 min; 4. 10 ml of 5% boric acid solution at a temperature of 55°C for 60 s; 5. 10% boric acid solution, conditions as in group 4. Bond strength was determined using the push-out test. Microscopic assessment and SEM evaluations were performed in combination with push-out tests. The push-out bond strengths of cervical segments were significantly higher than for the middle and apical segments in all groups. The type of irrigation solution used significantly affected the bond strengths of the posts. The 10% boric acid solution and EDTA + NaOCl irrigation solutions provided the highest bond strengths (p < 0.005). SEM analysis showed that the dentin tubules were open and the smear layer was completely removed when EDTA/NaOCl and 10% boric acid were used as irrigation agents. Boric acid solutions, especially at a concentration of 10%, can be a viable alternative to the conventional irrigants used during endodontic treatment. The extent to which the 10% boric acid solution successfully removed the smear layer and the ease of rinsing boric acid from the root surface are advantageous.

  4. Large-scale production of anhydrous nitric acid and nitric acid solutions of dinitrogen pentoxide

    DOEpatents

    Harrar, Jackson E.; Quong, Roland; Rigdon, Lester P.; McGuire, Raymond R.

    2001-01-01

    A method and apparatus are disclosed for a large scale, electrochemical production of anhydrous nitric acid and N.sub.2 O.sub.5. The method includes oxidizing a solution of N.sub.2 O.sub.4 /aqueous-HNO.sub.3 at the anode, while reducing aqueous HNO.sub.3 at the cathode, in a flow electrolyzer constructed of special materials. N.sub.2 O.sub.4 is produced at the cathode and may be separated and recycled as a feedstock for use in the anolyte. The process is controlled by regulating the electrolysis current until the desired products are obtained. The chemical compositions of the anolyte and catholyte are monitored by measurement of the solution density and the concentrations of N.sub.2 O.sub.4.

  5. Solubility Limits of Dibutyl Phosphoric Acid in Uranium Solutions at SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, M.C.; Pierce, R.A.; Ray, R.J.

    1998-06-01

    The Savannah River Site has enriched uranium (EU) solution which has been stored for almost 10 years since being purified in the second uranium cycle of the H area solvent extraction process. The concentrations in solution are {tilde 6} g/L U and about 0.1 M nitric acid. Residual tributylphosphate in the solutions has slowly hydrolyzed to form dibutyl phosphoric acid (HDBP) at concentrations averaging 50 mg/L. Uranium is known to form compounds with DBP which have limited solubility. The potential to form uranium-DBP solids raises a nuclear criticality safety issue. SRTC tests have shown that U-DBP solids will precipitate atmore » concentrations potentially attainable during storage of enriched uranium solutions. Evaporation of the existing EUS solution without additional acidification could result in the precipitation of U-DBP solids if DBP concentration in the resulting solution exceeds 110 ppm at ambient temperature. The same potential exists for evaporation of unwashed 1CU solutions. The most important variables of interest for present plant operations are HNO{sub 3} and DBP concentrations. Temperature is also an important variable controlling precipitation. The data obtained in these tests can be used to set operating and safety limits for the plant. It is recommended that the data for 0 degrees C with 0.5 M HNO{sub 3} be used for setting the limits. The limit would be 80 mg/L which is 3 standard deviations below the average of 86 observed in the tests. The data shows that super-saturation can occur when the DBP concentration is as much as 50 percent above the solubility limit. However, super-saturation cannot be relied on for maintaining nuclear criticality safety. The analytical method for determining DBP concentration in U solutions was improved so that analyses for a solution are accurate to within 10 percent. However, the overall uncertainty of results for periodic samples of the existing EUS solutions was only reduced slightly. Thus, sampling appears

  6. Effects Sprayed Solution of Salicylic Acid to Prevent of Wilt Disease Caused by Fussarium oxysporium

    NASA Astrophysics Data System (ADS)

    Yousif, Dina. Y. M.

    2018-05-01

    The current search aimed to detective the effect of sprayed solution of salicylic acid on plant and leaves of sweet green pepper (Capsicum annuum) for control the pathogen Fussarium oxysporium compering with control plant and leaves. Results indicated that, the spray of salicylic acid at concentration 0.5 g/L is effecting the fungal infection through prevent transport fungus F. oxysporum to the neighboring green pepper plant. The number of dead green pepper plant after sprayed with solution of salicylic acid and only water they were (4, 6, and 3) (8, 9, and 10) respectively. While the experimental infection of green pepper leaves after inoculated the fungus as local spot by scorching small spots of these leaves with the aid of hot nail. These spots were then exposed to the 0.5 g/L aqueous solution salicylic acid before and after the inoculation of the fungus. The spray of salicylic acid before 24 and 48 hour prevent the development of disease and make a good protection of the mention leaves from infection with this fungus, the diameter of leaves lesion (1,1.5 cm) respectively. while the ability of fungus to grow after 24 and 48 hour from salicylic acid treatment was markedly reduce as compared with control, such treatment show slow growth of pathogen infect.

  7. Determination of organic acids by high-performance liquid chromatography with electrochemical detection during wine brewing.

    PubMed

    Kotani, Akira; Miyaguchi, Yuji; Tomita, Eiji; Takamura, Kiyoko; Kusu, Fumiyo

    2004-03-24

    Voltammetric determination of acids by means of the electrochemical reduction of quinone was applied to high-performance liquid chromatography (HPLC) with electrochemical detection (ED) for determining organic acids in fruit wines. A two-channel HPLC-ED system was fabricated by use of an ion-exclusion column and an electrochemical detector with a glassy carbon working electrode. Aqueous solution of 0.1 mM HClO(4) and ethanol containing 2-methyl-1,4-naphthoquinone served as a mobile phase and reagent solution, respectively. Determination of acetic, citric, lactic, malic, succinic, and tartaric acids was made by measuring the peak areas of the flow signals due to the reduction current of quinone caused by the eluted acids. The peak area was found to be linearly related to the acid amount ranging from 0.1 to 40 nmol per 20 microL injection. The present method was characterized by reproducibility with the simple and rapid procedure without derivatization of analytes. The method was shown as an effective means for following acid contents in fruit juices during fermentation with wine yeast.

  8. Effect of molecular structure of aniline-formaldehyde copolymers on corrosion inhibition of mild steel in hydrochloric acid solution.

    PubMed

    Zhang, Yan; Nie, Mengyan; Wang, Xiutong; Zhu, Yukun; Shi, Fuhua; Yu, Jianqiang; Hou, Baorong

    2015-05-30

    Aniline-formaldehyde copolymers with different molecular structures have been prepared and investigated for the purpose of corrosion control of mild steel in hydrochloric acid. The copolymers were synthesized by a condensation polymerization process with different ratios of aniline to formaldehyde in acidic precursor solutions. The corrosion inhibition efficiency of as-synthesized copolymers for Q235 mild steel was investigated in 1.0 mol L(-1) hydrochloric acid solution by weight loss measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy, respectively. All the results demonstrate that as-prepared aniline-formaldehyde copolymers are efficient mixed-type corrosion inhibitors for mild steels in hydrochloric acid. The corrosion inhibition mechanism is discussed in terms of the role of molecular structure on adsorption of the copolymers onto the steel surface in acid solution. Copyright © 2015. Published by Elsevier B.V.

  9. Compatibility of amino acids in ice Ih and high-pressure phases: implications for the origin of life

    NASA Astrophysics Data System (ADS)

    Hao, J.; Giovenco, E.; Pedreira-Segade, U.; Montagnac, G.; Daniel, I.

    2017-12-01

    Icy environments may have been common on the early Earth due to the faint young sun. Previous studies have proposed that the formation of large icy bodies in the early ocean could concentrate the building blocks of life in eutectic fluids and therefore facilitate the polymerization of monomers. This hypothesis is based on the untested assumption that organic molecules are virtually incompatible in ice Ih. In this study, we conducted freezing experiments to explore the partitioning behavior of selected amino acids (glycine, L-alanine, L-proline, and L-phenylalanine) between ice Ih and aqueous solutions analogous to seawater. We let ice crystals grow slowly from a few seeds in equilibrium with the solution and used Raman spectroscopy to analyze in situ the relative concentrations of amino acids in the ice and aqueous solution. During freezing, there was no precipitation of amino acid crystals, indicating that the concentrations in solution never reached their solubility limit, even when the droplet was mostly frozen. Analyses of the Raman spectra of ice and eutectic solution showed that considerable amounts of amino acids existed in the ice phase with partition coefficients ranging between 0.2 and 0.5. This study also explored the partitioning of amino acids between other phases of ice (ice VI and ice VII) and solutions at high pressures and observed similar results. These observations implied little incompatibility of amino acids in ice during the freezing of the solutions, rendering the hypothesis of a cold origin of life unwarranted. However, incorporation into ice could significantly improve the efficiency of extraterrestrial transport of small organics. Therefore, this study supports the hypothesis of extraterrestrial delivery of organic molecules in the icy comets and asteroids to the primitive Earth as suggested by an increasing number of independent observations.

  10. PHYSICAL SOLUTIONS FOR ACID ROCK DRAINAGE AT REMOTE SITES DEMONSTRATION PROJECT

    EPA Science Inventory

    This report summarizes the results of Mine Waste Technology Program, Activity III, Project 42, Physical Solutions for Acid Rock Drainage at Remote Sites, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Department of Energy. A...

  11. Adsorption of Copper Ion using Acrylic Acid-g-Polyaniline in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Kamarudin, Sabariah; Mohammad, Masita

    2018-04-01

    A conductive polymer, polyaniline (PANI) has unique electrical behaviour, stable in the environment, easy synthesis and have wide application in various fields. Modification of PANI in order to improve its adsorption capacity has been done. In this study, the polyaniline-grafted acrylic acid has been prepared and followed by adsorption of copper ion in aqueous solution. Acrylic acid, PANI and acrylic acid-g-polyaniline (Aag-PANI) were characterized by FTIR and SEM to determine its characteristic. The adsorption capacity was investigated to study the removal capacity of Cu ion from aqueous solution. Two parameters were selected which are pH (2, 4 and 6) and initial metal ion concentration (50 mg/L, 100 mg/L and 200 mg/L). The maximum adsorption capacity for PANI and Aag-PANI are 1.7 mg/g and 64.6 mg/g, respectively, at an initial concentration of 100 mg/L. The Langmuir adsorption isotherm model and Freundlich adsorption isotherm model have been used and showed that it is heterolayer adsorption by follows the Freundlich isotherm model.

  12. Conformation of kainic acid in solution from molecular modelling and NMR spectra.

    PubMed

    Falk, M; Sidhu, P; Walter, J A

    1998-01-01

    Conformational behaviour of kainic acid in aqueous solution was elucidated by molecular mechanics and dynamics. The pucker of the five-membered ring in kainic acid was examined and compared with that of model compounds. In cyclopentane there is no barrier to pseudorotation, so that all puckered states coexist. In pyrrolidinium, the presence of a hetero-atom in the ring introduces a small barrier (about 0.6 kcal mol(-1)) to pseudorotation, separating two stable regions, A and B, which are equivalent by symmetry. In proline, the presence of the carboxylate group on C2 removes the symmetry but two stable conformational minima, A and B, remain. In kainic acid, the presence of side-chains on C3 and C4 introduces complications resulting in additional sub-minima in both regions, A and B. In solution, kainic acid is a complex mixture of conformers with comparable energies, because of the combination of several stable states of the pyrrolidinium ring with the torsional degrees of freedom arising from the two side-chains. The individual geometries, energies, and estimates of relative populations of these conformers were obtained from molecular dynamics simulations. The calculations were validated by a comparison of predicted inter-proton distances and vicinal proton coupling constants with the experimental quantities derived from NMR spectra.

  13. Surface characterisation of ethylene propylene diene rubber upon exposure to aqueous acidic solution

    NASA Astrophysics Data System (ADS)

    Mitra, Susanta; Ghanbari-Siahkali, Afshin; Kingshott, Peter; Hvilsted, Søren; Almdal, Kristoffer

    2006-07-01

    Two types of pure ethylene propylene diene rubbers were exposed to two different acids for varying period of time. Surface characterisation was carried out using X-ray photoelectron spectroscopy (XPS). Two EPDM rubbers selected for this study were comparable in co-monomer compositions but significantly different with respect to molar mass and the presence of long chain branching. Both rubbers contained 5-ethylidene-2-norbornene (ENB) as diene. Solution cast films of pure EPDM samples were exposed in two different acidic solutions, viz. chromosulphuric (Cr (VI)/H 2SO 4) and sulphuric acid (H 2SO 4) (20%, v/v) at ambient temperature from 1 to 12 weeks. XPS analysis indicated that several oxygenated species were formed on the surface of both rubbers after exposure. It was postulated from the XPS analyses that both aqueous acidic solutions attacked the olefinic double bonds (C dbnd C) of ENB. Furthermore, 20% Cr (VI)/H 2SO 4 also attacked the allylic carbon-hydrogen (C sbnd H) bonds of ENB resulting in more oxygenated species on the surface compared to 20% H 2SO 4 under identical conditions. Cr (VI) in the 20% Cr (VI)/H 2SO 4 was found to play an important role in alteration of surface chemistry. Studies using a model system consisting of EPDM mixed with Cr (VI) and Cr (III) salts revealed that the change of oxidation state from Cr (VI) to Cr (III) as a consequence of direct involvement of Cr (VI) in the chemical alteration of EPDM surfaces. Interestingly, the presence of long chain branching and molar mass did not significantly influence the chemical processes owing to the acid treatment.

  14. Forward osmosis for oily wastewater reclamation: Multi-charged oxalic acid complexes as draw solutes.

    PubMed

    Ge, Qingchun; Amy, Gary Lee; Chung, Tai-Shung

    2017-10-01

    Forward osmosis (FO) has demonstrated its merits in hybrid FO seawater desalination. However, FO may have a potential for other applications if suitable draw solutes are available. In this study, a series of novel draw solutes based on oxalic acid (OA)-transitional metal complexes are presented. Influential factors of FO performance have been systematically investigated by varying the transitional metals, cations of the complex draw solutes as well as the experimental conditions. Compared to NaCl and other recently synthesized draw solutes, the OA complexes show superior FO performance in terms of high water fluxes up to 27.5 and 89.1 LMH under the respective FO and PRO (pressure retarded osmosis) modes, both with negligible reverse solute fluxes. The features of octahedral geometry, abundant hydrophilic groups and ionic species are crucial for the OA complexes as appropriate draw solutes with satisfactory FO performance. Among the synthesized OA complexes, the ammonium salt of chromic complex (NH 4 -Cr-OA) outperforms others due to the presence of more ionic species in its complex system. NH 4 -Cr-OA also performs better than the typical NaCl draw solute in FO oily wastewater treatment with higher water recovery and negligible reverse fluxes. Dilute solutions of OA complexes have been reconcentrated through membrane distillation (MD) and reused to new round of FO processes. The OA complexes have demonstrated their suitability and superiority as a novel class of draw solutes for the FO process in this study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Removal of acidic or basic α-amino acids in water by poorly water soluble scandium complexes.

    PubMed

    Hayashi, Nobuyuki; Jin, Shigeki; Ujihara, Tomomi

    2012-11-02

    To recognize α-amino acids with highly polar side chains in water, poorly water soluble scandium complexes with both Lewis acidic and basic portions were synthesized as artificial receptors. A suspension of some of these receptor molecules in an α-amino acid solution could remove acidic and basic α-amino acids from the solution. The compound most efficient at preferentially removing basic α-amino acids (arginine, histidine, and lysine) was the receptor with 7,7'-[1,3-phenylenebis(carbonylimino)]bis(2-naphthalenesulfonate) as the ligand. The neutral α-amino acids were barely removed by these receptors. Removal experiments using a mixed amino acid solution generally gave results similar to those obtained using solutions containing a single amino acid. The results demonstrated that the scandium complex receptors were useful for binding acidic and basic α-amino acids.

  16. Sonolytic degradation of butyric acid in aqueous solutions.

    PubMed

    Dükkancı, Meral; Gündüz, Gönül

    2013-11-15

    The sonolytic degradation of butyric acid was investigated in an ultrasonic reactor emitting waves at 850 kHz. The effects of the ultrasonic power, the initial concentration of butyric acid, and the addition of H2O2 were studied on the degradation of butyric acid. In the sonication of butyric acid, degradation degrees as high as 31.5% could be achieved at a power of 31 W, at an initial concentration of 2.8 mM butyric acid with the addition of 0.34 M H2O2 for a sonication time of 5 h. The degradation of butyric acid increased with irradiation time, indicating first order kinetics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Highly selective luminescent sensing of picric acid based on a water-stable europium metal-organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Tifeng; Zhu, Fengliang; Cui, Yuanjing, E-mail: cuiyj@zju.edu.cn

    A water-stable metal-organic framework (MOF) EuNDC has been synthesized for selective detection of the well-known contaminant and toxicant picric acid (PA) in aqueous solution. Due to the photo-induced electron transfer and self-absorption mechanism, EuNDC displayed rapid, selective and sensitive detection of PA with a detection limit of 37.6 ppb. Recyclability experiments revealed that EuNDC retains its initial luminescent intensity and same quenching efficiency in each cycle, suggesting high photostability and reusability for long-term sensing applications. The excellent detection performance of EuNDC makes it a promising PA sensing material for practical applications. - Graphical abstract: A water-stable europium-based metal-organic framework hasmore » been reported for highly selective sensing of picric acid (PA) with a detection limit of 37.6 ppb in aqueous solution. - Highlights: • A water-stable metal-organic framework (MOF) EuNDC was synthesized. • The highly selective detection of picric acid with a detection limit of 37.6 ppb was realized. • The detection mechanism were also presented and discussed.« less

  18. A hollow-fiber membrane extraction process for recovery and separation of lactic acid from aqueous solution.

    PubMed

    Huang, Hanjing; Yang, Shang-Tian; Ramey, David E

    2004-01-01

    An energy-efficient hollow-fiber membrane extraction process was successfully developed to separate and recover lactic acid produced in fermentation. Although many fermentation processes have been developed for lactic acid production, an economical method for lactic acid recovery from the fermentation broth is still needed. Continuous extraction of lactic acid from a simulated aqueous stream was achieved by using Alamine 336 in 2-octanol contained in a hollow-fiber membrane extractor. In this process, the extractant was simultaneously regenerated by stripping with NaOH in a second membrane extractor, and the final product is a concentrated lactate salt solution. The extraction rate increased linearly with an increase in the Alamine 336 content in the solvent (from 5 to 40%). Increasing the concentration of the undissociated lactic acid in the feed solution by either increasing the lactate concentration (from 5 to 40 g/L) or decreasing the solution pH (from 5.0 to 4.0) also increased the extraction rate. Based on these observations, a reactive extraction model with a first-order reaction mechanism for both lactic acid and amine concentrations was proposed. The extraction rate also increased with an increase in the feed flow rate, but not the flow rates of solvent and the stripping solution, suggesting that the process was not limited by diffusion in the liquid films or membrane pores. A mathematical model considering both diffusion and chemical reaction in the extractor and back extractor was developed to simulate the process. The model fits the experimental data well and can be used in scale up design of the process.

  19. Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment

    NASA Astrophysics Data System (ADS)

    Marković, Radmila; Stevanović, Jasmina; Avramović, Ljiljana; Nedeljković, Dragutin; Jugović, Branimir; Stajić-Trošić, Jasna; Gvozdenović, Milica

    2012-12-01

    The aim of this study is synthesis of copper-sulfate pentahydrate from the waste sulfuric acid solution-mother liquor generated during the regeneration process of copper bleed solution. Copper is removed from the mother liquor solution in the process of the electrolytic treatment using the insoluble lead anodes alloyed with 6 mass pct of antimony on the industrial-scale equipment. As the result of the decopperization process, copper is removed in the form of the cathode sludge and is precipitated at the bottom of the electrolytic cell. By this procedure, the content of copper could be reduced to the 20 mass pct of the initial value. Chemical characterization of the sludge has shown that it contains about 90 mass pct of copper. During the decopperization process, the very strong poison, arsine, can be formed, and the process is in that case terminated. The copper leaching degree of 82 mass pct is obtained using H2SO4 aqueous solution with the oxygen addition during the cathode sludge chemical treatment at 80 °C ± 5 °C. Obtained copper salt satisfies the requirements of the Serbian Standard for Pesticide, SRPS H.P1. 058. Therefore, the treatment of waste sulfuric acid solutions is of great economic and environmental interest.

  20. DISTRIBUTION OF URANIUM, ZIRCONIUM, NIOBIUM, RUTHENIUM AND CERIUM BETWEEN NITRIC ACID SOLUTIONS AND 10% TLA-5% OCTYL ALCOHOL/SHELL SOL-T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Menchero, E.; Centeno, J.; Magni, G.

    1962-03-01

    The extraction of traces of Ru, Zr, Nb, Ce, and U at low concentrations (5 mg/l in aqueous solution) from nitric acid solutions using trilauryl amine (TLA) has been experimentally studied. TLA will eventually be used for final purification of plutonium. Room-temperature data on plutonium contaminant distribution between aqueous solutions of varying nitric acid concentrations and a Shellsol-T solution containing l0% TlA and 5% octyl alcohol are presented. Within the temperature and nitric acid concentration ranges tested, the extractability of uranium increased with increased acid concentrations, although acid concentration in the aqueous phase had no effect on the decontamination factorsmore » for the main fission products. (H.G.G.)« less

  1. Homogeneous freezing of single sulfuric and nitric acid solution drops levitated in an acoustic trap

    NASA Astrophysics Data System (ADS)

    Diehl, Karoline; Ettner-Mahl, Matthias; Hannemann, Anke; Mitra, Subir K.

    2009-10-01

    The freezing temperatures of single supercooled drops of binary and ternary sulfuric and nitric acid solutions were measured while varying the acid concentration. An acoustic levitator was used which allows to freely suspend single solution drops in air without electrical charges thereby avoiding any electrical influences which may affect the freezing process. The drops of typically 500 µm in radius were monitored by a video camera during cooling cycles down to - 85 °C to simulate the upper tropospheric and stratospheric temperature range. The present data confirm that liquid solution droplets can be supercooled far below the equilibrium melting point by approximately 35 °C. They follow the general trend of the expected freezing temperatures for homogeneous ice nucleation.

  2. Synthesis of nickel germanide (Ge12Ni19) nanoparticles for durable hydrogen evolution reaction in acid solutions.

    PubMed

    Chen, Jee-Yee; Jheng, Shao-Lou; Tuan, Hsing-Yu

    2018-06-14

    Desigining advanced materials as electrochemical catalysts for the hydrogen evolution reaction (HER) has caught great attention owing to the growing demand for clean and renewable energy. Nickel (Ni)-based compounds and alloys are promising non-noble-metal electrocatalysts due to their low cost and high activity. However, in most cases, Ni-based compounds and alloys have low durability in acid electrolyte, which limits their application in the electrolytic processes. In this study, monoclinic Ge12Ni19 nanoparticles were synthesized and exhibited high electrocatalytic activity and stability for the HER in acidic solution. Ge12Ni19 nanoparticles achieve an overpotential of 190 mV at cathodic current density of 10 mA cm-2 and a Tafel slope of 88.5 mV per decade in 0.50 M H2SO4 electrolyte. Moreover, the performance is maintained after a 10 000-cycle CV sweep (-0.3 to +0.1 V vs. RHE) or under a static overpotential of -0.7 V vs. RHE for 24 hours. The reported electrocatalytic performance of the Ge12Ni19 nanoparticles sufficiently proves the excellent endurance at lower required active overpotentials in acidic solution, enabling the broad applications of the Ni-based electrocatalysts. Finally, a large-area (5 cm2) electrocatalyst for HER was demonstrated for the first time. The great efficiency of the energy conversion performance sufficiently represented the potential of Ge12Ni19 nanoparticles as electrocatalysts in commercial fuel cells.

  3. D-Galacturonic Acid: A Highly Reactive Compound in Nonenzymatic Browning. 2. Formation of Amino-Specific Degradation Products.

    PubMed

    Wegener, Steffen; Bornik, Maria-Anna; Kroh, Lothar W

    2015-07-22

    Thermal treatment of aqueous solutions of D-galacturonic acid and L-alanine at pH 3, 5, and 8 led to rapid and more intensive nonenzymatic browning reactions compared to similar solutions of other uronic acids and to Maillard reactions of reducing sugars. The hemiacetal ring structures of uronic acids had a high impact on browning behavior and reaction pathways. Besides reductic acid (1,2-dihydroxy-2-cyclopenten-1-one), 4,5-dihydroxy-2-cyclopenten-1-one (DHCP), furan-2-carboxaldehyde, and norfuraneol (4-hydroxy-5-methyl-3-(2H)-furanone) could be detected as typical products of nonenzymatic uronic acid browning reactions. 2-(2-Formyl-1H-pyrrole-1-yl)propanoic acid (FPA) and 1-(1-carboxyethyl)-3-hydroxypyridin-1-ium (HPA) were identified as specific reaction products of uronic acids with amine participation like l-alanine. In contrast, the structurally related D-galacturonic acid methyl ester showed less browning activity and degradation under equal reaction conditions. Pectin-specific degradation products such as 5-formyl-2-furanoic acid and 2-furanoic acid were found but could not be verified for d-galacturonic acid monomers alone.

  4. Conformation of poly(γ-glutamic acid) in aqueous solution.

    PubMed

    Muroga, Yoshio; Nakaya, Asami; Inoue, Atsuki; Itoh, Daiki; Abiru, Masaya; Wada, Kaori; Takada, Masako; Ikake, Hiroki; Shimizu, Shigeru

    2016-04-01

    Local conformation and overall conformation of poly(γ-DL-glutamic acid) (PγDLGA) and poly(γ-L-glutamic acid) (PγLGA) in aqueous solution was studied as a function of degree of ionization ε by (1) H-NMR, circular dichroism, and potentiometric titration. It was clarified that their local conformation is represented by random coil over an entire ε range and their overall conformation is represented by expanded random-coil in a range of ε > ε(*) , where ε(*) is about 0.3, 0.35, 0.45, and 0.5 for added-salt concentration of 0.02M, 0.05M, 0.1M, and 0.2M, respectively. In a range of ε < ε(*) , however, ε dependence of their overall conformation is significantly differentiated from each other. PγDLGA tends to aggregate intramolecularly and/or intermolecularly with decreasing ε, but PγLGA still behaves as expanded random-coil. It is speculated that spatial arrangement of adjacent carboxyl groups along the backbone chain essentially affects the overall conformation of PγGA in acidic media. © 2015 Wiley Periodicals, Inc.

  5. Signal enhancement for gradient reverse-phase high-performance liquid chromatography-electrospray ionization mass spectrometry analysis with trifluoroacetic and other strong acid modifiers by postcolumn addition of propionic acid and isopropanol.

    PubMed

    Kuhlmann, F E; Apffel, A; Fischer, S M; Goldberg, G; Goodley, P C

    1995-12-01

    Trifluoroacetic acid (TFA) and other volatile strong acids, used as modifiers in reverse-phase high-performance liquid chromatography, cause signal suppression for basic compounds when analyzed by electrospray ionization mass spectrometry (ESI-MS). Evidence is presented that signal suppression is caused by strong ion pairing between the TFA anion and the protonated sample cation of basic sample molecules. The ion-pairing process "masks" the protonated sample cations from the ESI-MS electric fields by rendering them "neutral. " Weakly basic molecules are not suppressed by this process. The TFA signal suppression effect is independent from the well-known spray problem that electrospray has with highly aqueous solutions that contain TFA. This previously reported spray problem is caused by the high conductivity and surface tension of aqueous TFA solutions. A practical method to enhance the signal for most basic analytes in the presence of signal-suppressing volatile strong acids has been developed. The method employs postcolumn addition of a solution of 75% propionic acid and 25% isopropanol in a ratio 1:2 to the column flow. Signal enhancement is typically 10-50 times for peptides and other small basic molecules. Thus, peptide maps that use ESI-MS for detection can be performed at lower levels, with conventional columns, without the need to use capillary chromatography or reduced mass spectral resolution to achieve satisfactory sensitivity. The method may be used with similar results for heptafluorobutyric acid and hydrochloric acid. A mechanism for TFA signal suppression and signal enhancement by the foregoing method, is proposed.

  6. Corrosion Behaviour of Sn-based Lead-Free Solders in Acidic Solution

    NASA Astrophysics Data System (ADS)

    Nordarina, J.; Mohd, H. Z.; Ahmad, A. M.; Muhammad, F. M. N.

    2018-03-01

    The corrosion properties of Sn-9(5Al-Zn), Sn-Cu and SAC305 were studied via potentiodynamic polarization method in an acidic solution of 1 M hydrochloric acid (HCl). Sn-9(5Al-Zn) produced different polarization profile compared with Sn-Cu and SAC305. The morphological analysis showed that small, deep grooves shaped of corrosion product formed on top of Sn-9(5Al-Zn) solder while two distinctive structures of closely packed and loosely packed corrosion product formed on top of Sn-Cu and SAC305 solder alloys. Phase analysis revealed the formations of various corrosion products such as SnO and SnO2 mainly dominant on surface of solder alloys after potentiodynamic polarization in 1 M hydrochloric acid (HCl).

  7. Variation of unsaturated fatty acids in soybean sprout of high oleic acid accessions.

    PubMed

    Dhakal, Krishna Hari; Jung, Ki-Hwal; Chae, Jong-Hyun; Shannon, J Grover; Lee, Jeong-Dong

    2014-12-01

    Oleic acid and oleic acid rich foods may have beneficial health effects in humans. Soybeans with high oleic acid (around 80% in seed oil) have been developed. Soybean sprouts are an important vegetable in Korea, Japan and China. The objective of this study was to investigate the variation of unsaturated fatty acids, oleic, linoleic and α-linolenic acids, in sprouts from soybeans with normal and high oleic acid concentration. Twelve soybean accessions with six high oleic acid lines, three parents of high oleic acid lines, and three checks with normal and high oleic acid concentration were used in this study. The unsaturated fatty acid concentration in sprouts from each genotype was similar to the concentration in the ungerminated seed. The oleic acid concentration in the sprouts of high oleic acid lines (up to 80%) was still high (>70%) compared to the ungerminated seed. Thus, high oleic soybean varieties developed for sprout production could add valuable health benefits to sprouts and the individuals who consume this vegetable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Characterization of a novel sialic acid transporter of the sodium solute symporter (SSS) family and in vivo comparison with known bacterial sialic acid transporters.

    PubMed

    Severi, Emmanuele; Hosie, Arthur H F; Hawkhead, Judith A; Thomas, Gavin H

    2010-03-01

    The function of sialic acids in the biology of bacterial pathogens is reflected by the diverse range of solute transporters that can recognize these sugar acids. Here, we use an Escherichia coliDeltananT strain to characterize the function of known and proposed bacterial sialic acid transporters. We discover that the STM1128 gene from Salmonella enterica serovar Typhimurium, which encodes a member of the sodium solute symporter family, is able to restore growth on sialic acid to the DeltananT strain and is able to transport [(14)C]-sialic acid. Using the DeltananT genetic background, we performed a direct in vivo comparison of the transport properties of the STM1128 protein with those of sialic acid transporters of the major facilitator superfamily and tripartite ATP-independent periplasmic families, E. coli NanT and Haemophilus influenzae SiaPQM, respectively. This revealed that both STM1128 and SiaPQM are sodium-dependent and, unlike SiaPQM, both STM1128 and NanT are reversible secondary carriers, demonstrating qualitative functional differences in the properties of sialic acid transporters used by bacteria that colonize humans.

  9. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.

    2010-04-01

    The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers

  10. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.

    2010-08-01

    The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers

  11. Solution blow spun Poly(lactic acid)/Hydroxypropyl methylcellulose nanofibers with antimicrobial properties

    USDA-ARS?s Scientific Manuscript database

    Poly(lactic acid) (PLA) nanofibers containing hydroxypropyl methylcellulose (HPMC) and tetracycline hydrochloride (THC) were solution blow spun from two different solvents, chloroform/acetone (CA, 80:20 v/v) and 2,2,2-triflouroethanol (TFE). The diameter distribution, chemical, thermal, thermal stab...

  12. The solute carrier family 10 (SLC10): beyond bile acid transport

    PubMed Central

    da Silva, Tatiana Claro; Polli, James E.; Swaan, Peter W.

    2012-01-01

    The solute carrier (SLC) family 10 (SLC10) comprises influx transporters of bile acids, steroidal hormones, various drugs, and several other substrates. Because the seminal transporters of this family, namely, sodium/taurocholate cotransporting polypeptide (NTCP; SLC10A1) and the apical sodium-dependent bile acid transporter (ASBT; SLC10A2), were primarily bile acid transporters, the term “sodium bile salt cotransporting family” was used for the SLC10 family. However, this notion became obsolete with the finding of other SLC10 members that do not transport bile acids. For example, the sodium-dependent organic anion transporter (SOAT; SLC10A6) transports primarily sulfated steroids. Moreover, NTCP was shown to also transport steroids and xenobiotics, including HMG-CoA inhibitors (statins). The SLC10 family contains four additional members, namely, P3 (SLC10A3; SLC10A3), P4 (SLC10A4; SLC10A4), P5 (SLC10A5; SLC10A5) and SLC10A7 (SLC10A7), several of which were unknown or considered hypothetical until approximately a decade ago. While their substrate specificity remains undetermined, great progress has been made towards their characterization in recent years. SLC10A4 may participate in vesicular storage or exocytosis of neurotransmitters or mastocyte mediators, whereas SLC10A5 and SLC10A7 may be involved in solute transport and SLC10A3 may have a role as a housekeeping protein. Finally, the newly found role of bile acids in glucose and energy homeostasis, via the TGR5 receptor, sheds new light on the clinical relevance of ASBT and NTCP. The present mini-review provides a brief summary of recent progress on members of the SLC10 family. PMID:23506869

  13. Capacitive Deionization of High-Salinity Solutions

    DOE PAGES

    Sharma, Ketki; Gabitto, Jorge; Mayes, Richard T.; ...

    2014-12-22

    Desalination of high salinity solutions has been studied using a novel experimental technique and a theoretical model. Neutron imaging has been employed to visualize lithium ions in mesoporous carbon materials, which are used as electrodes in capacitive deionization for water desalination. Experiments were conducted with a flow-through capacitive deionization cell designed for neutron imaging and with lithium chloride ( 6LiCl) as the electrolyte. Sequences of neutron images have been obtained at a relatively high concentration of lithium chloride ( 6LiCl) solution to provide information on the transport of ions within the electrodes. A new model that computes the individual ionicmore » concentration profiles inside mesoporous carbon electrodes has been used to simulate the capacitive deionization process. Modifications have also been introduced into the simulation model to calculate results at high electrolyte concentrations. Experimental data and simulation results provide insight into why capacitive deionization is not effective for desalination of high ionic-strength solutions. The combination of experimental information, obtained through neutron imaging, with the theoretical model will help in the design of capacitive deionization devices, which can improve the process for high ionic-strength solutions.« less

  14. A decade of monitoring at Swiss Long-Term Forest Ecosystem Research (LWF) sites: can we observe trends in atmospheric acid deposition and in soil solution acidity?

    PubMed

    Pannatier, Elisabeth Graf; Thimonier, Anne; Schmitt, Maria; Walthert, Lorenz; Waldner, Peter

    2011-03-01

    Trends in atmospheric acid deposition and in soil solution acidity from 1995 or later until 2007 were investigated at several forest sites throughout Switzerland to assess the effects of air pollution abatements on deposition and the response of the soil solution chemistry. Deposition of the major elements was estimated from throughfall and bulk deposition measurements at nine sites of the Swiss Long-Term Forest Ecosystem Research network (LWF) since 1995 or later. Soil solution was measured at seven plots at four soil depths since 1998 or later. Trends in the molar ratio of base cations to aluminum (BC/Al) in soil solutions and in concentrations and fluxes of inorganic N (NO(3)-N + NH(4)-N), sulfate (SO(4)-S), and base cations (BC) were used to detect changes in soil solution chemistry. Acid deposition significantly decreased at three out of the nine study sites due to a decrease in total N deposition. Total SO(4)-S deposition decreased at the nine sites, but due to the relatively low amount of SO(4)-S load compared to N deposition, it did not contribute to decrease acid deposition significantly. No trend in total BC deposition was detected. In the soil solution, no trend in concentrations and fluxes of BC, SO(4)-S, and inorganic N were found at most soil depths at five out of the seven sites. This suggests that the soil solution reacted very little to the changes in atmospheric deposition. A stronger reduction in base cations compared to aluminum was detected at two sites, which might indicate that acidification of the soil solution was proceeding faster at these sites.

  15. GADOLINIUM OXALATE SOLUBILITY MEASUREMENTS IN NITRIC ACID SOLUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R. A.

    2012-03-12

    HB-Line will begin processing Pu solutions during FY2012 that will involve the recovery of Pu using oxalate precipitation and filtration. After the precipitation and filtration processes, the filtrate solution will be transferred from HB-Line to H-Canyon. The presence of excess oxalate and unfiltered Pu oxalate solids in these solutions create a criticality safety issue if they are sent to H-Canyon without controls in H-Canyon. One approach involves H-Canyon receiving the filtrate solution into a tank that is poisoned with soluble gadolinium (Gd). Decomposition of the oxalate will occur within a subsequent H-Canyon vessel. The receipt of excess oxalate into themore » H-Canyon receipt tanks has the potential to precipitate a portion of the Gd poison in the receipt tanks. Because the amount of Gd in solution determines the maximum amount of Pu solids that H-Canyon can receive, H-Canyon Engineering requested that SRNL determine the solubility of Gd in aqueous solutions of 4-10 M nitric acid (HNO{sub 3}), 4-12 g/L Gd, and 0.15-0.25 M oxalic acid (H{sub 2}C{sub 2}O{sub 4}) at 25 °C. The target soluble Gd concentration is 6 g/L. The data indicate that the target can be achieved above 6 M HNO{sub 3} and below 0.25 M H{sub 2}C{sub 2}O{sub 4}. At 25 °C, for 6 M HNO{sub 3}, 11 g/L and 7 g/L Gd are soluble in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. In 4 M HNO{sub 3}, the Gd solubility drops significantly to 2.5 g/L and 0.8 g/L in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. The solubility of Gd at 8-10 M HNO{sub 3} exceeds the solubility at 6 M HNO{sub 3}. The data for 4 M HNO{sub 3} showed good agreement with data in the literature. To achieve a target of 6 g/L soluble Gd in solution in the presence of 0.15-0.25 M oxalate, the HNO{sub 3} concentration must be maintained at or above 6 M HNO{sub 3}. The solubility of Gd in 4 M HNO{sub 3} with 0.15 M oxalate at 10 °C is about 1.5 g/L. For 6 M HNO{sub 3} with 0.15 M oxalate, the solubility of

  16. Chemical and spectral behavior of nitric acid in aqueous sulfuric acid solutions: Absorption spectrum and molar absorption coefficient of nitronium ion

    NASA Astrophysics Data System (ADS)

    Ershov, Boris G.; Panich, Nadezhda M.

    2018-01-01

    The chemical species formed from nitric acid in aqueous solutions of sulfuric acid (up to 18.0 mol L- 1) were studied by optical spectroscopy method. The concentration region of nitronium ion formation was identified and NO2+ ion absorption spectrum was measured (λmax ≤ 190 nm and ε190 = 1040 ± 50 mol- 1 L cm- 1).

  17. Unified molecular picture of the surfaces of aqueous acid, base, and salt solutions.

    PubMed

    Mucha, Martin; Frigato, Tomaso; Levering, Lori M; Allen, Heather C; Tobias, Douglas J; Dang, Liem X; Jungwirth, Pavel

    2005-04-28

    The molecular structure of the interfacial regions of aqueous electrolytes is poorly understood, despite its crucial importance in many biological, technological, and atmospheric processes. A long-term controversy pertains between the standard picture of an ion-free surface layer and the strongly ion specific behavior indicating in many cases significant propensities of simple inorganic ions for the interface. Here, we present a unified and consistent view of the structure of the air/solution interface of aqueous electrolytes containing monovalent inorganic ions. Molecular dynamics calculations show that in salt solutions and bases the positively charged ions, such as alkali cations, are repelled from the interface, whereas the anions, such as halides or hydroxide, exhibit a varying surface propensity, correlated primarily with the ion polarizability and size. The behavior of acids is different due to a significant propensity of hydronium cations for the air/solution interface. Therefore, both cations and anions exhibit enhanced concentrations at the surface and, consequently, these acids (unlike bases and salts) reduce the surface tension of water. The results of the simulations are supported by surface selective nonlinear vibrational spectroscopy, which reveals among other things that the hydronium cations are present at the air/solution interface. The ion specific propensities for the air/solution interface have important implications for a whole range of heterogeneous physical and chemical processes, including atmospheric chemistry of aerosols, corrosion processes, and bubble coalescence.

  18. Reduction in bacterial load using hypochlorous acid hygiene solution on ocular skin

    PubMed Central

    Stroman, David W; Mintun, Keri; Epstein, Arthur B; Brimer, Crystal M; Patel, Chirag R; Branch, James D; Najafi-Tagol, Kathryn

    2017-01-01

    Purpose To examine the magnitude of bacterial load reduction on the surface of the periocular skin 20 minutes after application of a saline hygiene solution containing 0.01% pure hypochlorous acid (HOCl). Methods Microbiological specimens were collected immediately prior to applying the hygiene solution and again 20 minutes later. Total microbial colonies were counted and each unique colony morphology was processed to identify the bacterial species and to determine the susceptibility profile to 15 selected antibiotics. Results Specimens were analyzed from the skin samples of 71 eyes from 36 patients. Prior to treatment, 194 unique bacterial isolates belonging to 33 different species were recovered. Twenty minutes after treatment, 138 unique bacterial isolates belonging to 26 different species were identified. Staphylococci accounted for 61% of all strains recovered and Staphylococcus epidermidis strains comprised 60% of the staphylococcal strains. No substantial differences in the distribution of Gram-positive, Gram-negative, or anaerobic species were noted before and after treatment. The quantitative data demonstrated a >99% reduction in the staphylococcal load on the surface of the skin 20 minutes following application of the hygiene solution. The total S. epidermidis colony-forming units were reduced by 99.5%. The HOCl hygiene solution removed staphylococcal isolates that were resistant to multiple antibiotics equally well as those isolates that were susceptible to antibiotics. Conclusion The application of a saline hygiene solution preserved with pure HOCl acid reduced the bacterial load significantly without altering the diversity of bacterial species remaining on the skin under the lower eyelid. PMID:28458509

  19. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...

  20. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...

  1. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...

  2. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...

  3. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...

  4. Solubility of acetic acid and trifluoroacetic acid in low-temperature (207-245 k) sulfuric acid solutions: implications for the upper troposphere and lower stratosphere.

    PubMed

    Andersen, Mads P Sulbaek; Axson, Jessica L; Michelsen, Rebecca R H; Nielsen, Ole John; Iraci, Laura T

    2011-05-05

    The solubility of gas-phase acetic acid (CH(3)COOH, HAc) and trifluoroacetic acid (CF(3)COOH, TFA) in aqueous sulfuric acid solutions was measured in a Knudsen cell reactor over ranges of temperature (207-245 K) and acid composition (40-75 wt %, H(2)SO(4)). For both HAc and TFA, the effective Henry's law coefficient, H*, is inversely dependent on temperature. Measured values of H* for TFA range from 1.7 × 10(3) M atm(-1) in 75.0 wt % H(2)SO(4) at 242.5 K to 3.6 × 10(8) M atm(-1) in 40.7 wt % H(2)SO(4) at 207.8 K. Measured values of H* for HAc range from 2.2 × 10(5) M atm(-1) in 57.8 wt % H(2)SO(4) at 245.0 K to 3.8 × 10(8) M atm(-1) in 74.4 wt % H(2)SO(4) at 219.6 K. The solubility of HAc increases with increasing H(2)SO(4) concentration and is higher in strong sulfuric acid than in water. In contrast, the solubility of TFA decreases with increasing sulfuric acid concentration. The equilibrium concentration of HAc in UT/LS aerosol particles is estimated from our measurements and is found to be up to several orders of magnitude higher than those determined for common alcohols and small carbonyl compounds. On the basis of our measured solubility, we determine that HAc in the upper troposphere undergoes aerosol partitioning, though the role of H(2)SO(4) aerosol particles as a sink for HAc in the upper troposphere and lower stratosphere will only be discernible under high atmospheric sulfate perturbations.

  5. Transformation of 5-O-caffeoylquinic acid in blueberries during high-temperature processing.

    PubMed

    Dawidowicz, Andrzej L; Typek, Rafal

    2014-11-12

    Chlorogenic acid (CQA), an ester of caffeic with quinic acid, is a natural compound found in a wide array of plants. Although coffee beans are most frequently mentioned as plant products remarkably rich in CQAs, their significant amounts can also be found in many berries, for example, blueberries. This paper shows and discusses the thermal stability of the main CQA representative, that is, 5-O-caffeoylquinic acid (5-CQA), during high-temperature processing of blueberries (as in the production of blueberry foods) in systems containing sucrose in low and high concentration. It has been found that up to 11 components (5-CQA derivatives and its reaction product with water) can be formed from 5-CQA during the processing of blueberries. Their formation speed depends on the sucrose concentration in the processed system, which has been confirmed in the artificial system composed of 5-CQA water solution containing different amounts of the sugar.

  6. Trivalent chromium removal from aqueous solutions by a sol–gel synthesized silica adsorbent functionalized with sulphonic acid groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez-Gonzalez, Sergio Efrain; Carbajal-Arizaga, Gregorio Guadalupe; Manriquez-Gonzalez, Ricardo

    Highlights: • Corpuscular sulphonic acid-functionalized silica holds improved uptake of chromium. • Mesopores on adsorbent facilitate (CH{sub 3}COO){sub 2}Cr{sup +} ion uptake on sulphonate sites. • Formation of chromium acetate sulphonate complex proposed from XPS results. • Fixed bed chromium uptake results suggest potential industrial use. - Abstract: A high capacity hybrid silica adsorbent was synthesized via sol–gel processing with sulphonic acid groups as trivalent chromium complex ions chelators from aqueous solutions. The synthesis included co-condensation of tetraethoxysilane (TEOS) with 3-(mercaptopropyl)trimethoxysilane (MPS), and oxidation of thiol to sulphonic acid groups. Chromium uptake kinetic, batch and fixed-bed experiments were performed tomore » assess the removal of this metal from aqueous solutions. {sup 13}C, {sup 29}Si CPMAS NMR, FTIR, XPS were used to characterize the adsorbent structure and the nature of chromium complexes on the adsorbent surface. Chromium maximum uptake was obtained at pH 3 (72.8 mg/g). Elemental analysis results showed ligand density of 1.48 mmol sulphonic groups/g. About 407 mL of Cr(III) solution (311 mg/L) were treated to breakthrough point reaching ≤0.06 mg/L at the effluent. These results comply with USEPA regulation for chromium concentration in drinking water (≤0.1 mg/L). The adsorbent shows potential to be used in chromium separations to the industrial level.« less

  7. High-Solids Polyimide Precursor Solutions

    NASA Technical Reports Server (NTRS)

    Chuang, Chun-Hua (Inventor)

    2004-01-01

    The invention is a highly concentrated stable solution of polymide precursors (monometers) having a solids content ranging from about 80 to 98 percent by weight in lower aliphatic alcohols i.e. methyl and/or ethylalcohol. the concentrated polyimide precursos solution comparisons effective amounts of at least one aromatic diamine, at least one aromatic dianhydride, and a monofunctional endcap including monoamines, monoanhydrides and lower alkyl esters of said monoanhydrides. These concentrated polyimide precursor solutions are particularly useful for the preparation of fibrous prepregs and composites for use in structural materials for military and civil applications.

  8. Electrolyte diodes with weak acids and bases. I. Theory and an approximate analytical solution.

    PubMed

    Iván, Kristóf; Simon, Péter L; Wittmann, Mária; Noszticzius, Zoltán

    2005-10-22

    Until now acid-base diodes and transistors applied strong mineral acids and bases exclusively. In this work properties of electrolyte diodes with weak electrolytes are studied and compared with those of diodes with strong ones to show the advantages of weak acids and bases in these applications. The theoretical model is a one dimensional piece of gel containing fixed ionizable groups and connecting reservoirs of an acid and a base. The electric current flowing through the gel is measured as a function of the applied voltage. The steady-state current-voltage characteristic (CVC) of such a gel looks like that of a diode under these conditions. Results of our theoretical, numerical, and experimental investigations are reported in two parts. In this first, theoretical part governing equations necessary to calculate the steady-state CVC of a reverse-biased electrolyte diode are presented together with an approximate analytical solution of this reaction-diffusion-ionic migration problem. The applied approximations are quasielectroneutrality and quasiequilibrium. It is shown that the gel can be divided into an alkaline and an acidic zone separated by a middle weakly acidic region. As a further approximation it is assumed that the ionization of the fixed acidic groups is complete in the alkaline zone and that it is completely suppressed in the acidic one. The general solution given here describes the CVC and the potential and ionic concentration profiles of diodes applying either strong or weak electrolytes. It is proven that previous formulas valid for a strong acid-strong base diode can be regarded as a special case of the more general formulas presented here.

  9. Stabilization of a supersaturated solution of mefenamic acid from a solid dispersion with EUDRAGIT(®) EPO.

    PubMed

    Kojima, Taro; Higashi, Kenjirou; Suzuki, Toyofumi; Tomono, Kazuo; Moribe, Kunikazu; Yamamoto, Keiji

    2012-10-01

    The stabilization mechanism of a supersaturated solution of mefenamic acid (MFA) from a solid dispersion with EUDRAGIT(®) EPO (EPO) was investigated. The solid dispersions were prepared by cryogenic grinding method. Powder X-ray diffractometry, in vitro dissolution test, in vivo oral absorption study, infrared spectroscopy, and solid- and solution-state NMR spectroscopies were used to characterize the solid dispersions. Dissolution tests in acetate buffer (pH 5.5) revealed that solid dispersion showed > 200-fold higher concentration of MFA. Supersaturated solution was stable over 1 month and exhibited improved oral bioavailability of MFA in rats, with a 7.8-fold higher area under the plasma concentration-versus-time curve. Solid-state (1)H spin-lattice relaxation time (T(1)) measurement showed that MFA was almost monomolecularly dispersed in the EPO polymer matrix. Intermolecular interaction between MFA and EPO was indicated by solid-state infrared and (13)C-T(1) measurements. Solution-state (1)H-NMR measurement demonstrated that MFA existed in monomolecular state in supersaturated solution. (1)H-T(1) and difference nuclear Overhauser effect measurements indicated that cross relaxation occurred between MFA and EPO due to the small distance between them. The formation and high stability of the supersaturated solution were attributable to the specifically formed intermolecular interactions between MFA and EPO.

  10. Alteration of chemical behavior of L-ascorbic acid in combination with nickel sulfate at different pH solutions in vitro

    PubMed Central

    Maniyar, Shaheen A; Jargar, Jameel G; Das, Swastika N; Dhundasi, Salim A; Das, Kusal K

    2012-01-01

    Objective To evaluate the alteration of chemical behavior of L-ascorbic acid (vitamin C) with metal ion (nickel) at different pH solutions in vitro. Methods Spectra of pure aqueous solution of L-ascorbic acid (E mark) compound and NiSO4 (H2O) (sigma USA) were evaluated by UV visible spectrophotometer. Spectral analysis of L-ascorbic acid and nickel at various pH (2.0, 7.0, 7.4 and 8.6) at room temperature of 29 °C was recorded. In this special analysis, combined solution of L-ascorbic acid and nickel sulfate at different pH was also recorded. Results The result revealed that λmax (peak wavelength of spectra) of L-ascorbic acid at pH 2.0 was 289.0 nm whereas at neutral pH 7.0, λmax was 295.4 nm. In alkaline pH 8.6, λmax was 295.4 nm and at pH 7.4 the λmax of L-ascorbic acid remained the same as 295.4 nm. Nickel solution at acidic pH 2.0 was 394.5 nm, whereas at neutral pH 7.0 and pH 7.4 were the same as 394.5 nm. But at alkaline pH 8.6, λmax value of nickel sulfate became 392.0 nm. The combined solution of L-ascorbic acid and nickel sulfate (6 mg/mL each) at pH 2.0 showed 292.5 nm and 392.5 nm, respectively whereas at pH 7.0, L-ascorbic acid showed 296.5 nm and nickel sulfate showed 391.5 nm. At pH 7.4, L-ascorbic acid showed 297.0 nm and nickel sulfate showed 394.0 nm in the combined solution whereas at pH 8.6 (alkaline) L-ascorbic acid and nickel sulfate were showing 297.0 and 393.5 nm, respectively. Conclusions Results clearly indicate an altered chemical behavior of L-ascorbic acid either alone or in combination with nickel sulfate in vitro at different pH. Perhaps oxidation of L-ascorbic acid to L-dehydro ascorbic acid via the free radical (HSc*) generation from the reaction of H2ASc + Ni (II) is the cause of such alteration of λmax value of L-ascorbic acid in the presence of metal nickel. PMID:23569901

  11. Influence of Concentration and Agitation of Sodium Hypochlorite and Peracetic Acid Solutions on Tissue Dissolution.

    PubMed

    Tanomaru-Filho, Mário; Silveira, Bruna Ramos Franco; Martelo, Roberta Bosso; Guerreiro-Tanomaru, Juliane Maria

    2015-11-01

    To evaluated the tissue dissolution of sodium hypochlorite (NaOCl) and peracetic acid (PA) solutions at different concentrations, with or without ultrasonic agitation. The following solutions were analyzed: 2.5% NaOCl, 0.5, 1 and 2% PA, 1% PA associated with 6.5% hydrogen peroxide (HP) and saline. Fragments of bovine pulp tissue with 25 ± 2g mg were immersed into test tubes containing 4 mL of the solutions for 10 minutes. In the groups with agitation, pulp tissues were submitted to 2 cycles of 1 minute of ultrasonic agitation. The specimens were weighed after the removal from the solutions. The percentage of mass loss was calculated according to the difference of mass before and after exposure to solutions. Data were submitted to ANOVA and Tukey tests (p < 0.05). A total of 2.5% NaOCl with or without agitation showed the higher tissue dissolution (between 64.5 and 67% of mass reduction) (p < 0.005). By comparing the PA solutions, the concentrations of 1 and 2% with or without agitation and the concentration of 0.5% with agitation showed similar dissolution activity (between 35.4 and 44% of mass reduction). The use of the ultrasonic agitation promoted an increase of the dissolution ability only for 0.5% PA. Peracetic acid solution has pulp tissue dissolution. However, this ability is lower than 2.5% NaOCl solution. The sodium hypochlorite solution shows higher ability to dissolve tissue than PA.

  12. High-performance oxygen reduction catalysts in both alkaline and acidic fuel cells based on pre-treating carbon material and iron precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Ping; Barkholtz, Heather M.; Wang, Ying

    We demonstrate a new and simple method for pre-treating the carbon material and iron precursor to prepare oxygen reduction reaction (ORR) catalysts, which can produce super-high performance and stability in alkaline solution, with high performance in acid solution. This strategy using cheap materials is simply controllable. Moreover, it has achieved smaller uniform nanoparticles to exhibit high stability, and the synergetic effect of Fe and N offered much higher performance in ORR than commercial Pt/C, with high maximum power density in alkaline and acid fuel cell test. So it can make this kind of catalysts be the most promising alternatives ofmore » Pt-based catalysts with best performance/price.« less

  13. [Massive transfusion of washed red blood cells: acid-base and electrolyth changes for different wash solutions].

    PubMed

    Sümpelmann, R; Schürholz, T; Marx, G; Ahrenshop, O; Zander, R

    2003-09-01

    The composition of normal saline (NaCl), the standard wash solution for cell saver autotransfusion, is considerably different from physiologic plasma values in small infants. Therefore, we investigated acid-base and electrolyte changes during massive cell saver autotransfusion with different wash solutions in young pigs. After approval by the animal protection authorities 15 young pigs (weight 10.6 +/- 1.1 kg, blood volume 848 +/- 88 ml, mean+/-SD) underwent 15 cycles of cell saver autotransfusion (Haemolite 2plus, Haemonetics). For each cycle, 100 ml arterial blood was withdrawn, washed with NaCl, physiologic multielectrolyte solution (PME, V Infusionslösung 296 mval Elektrolyte, Baxter) or physiologic erythrocyte protection solution (PEP, 3.2 % gelatine, pH 7.40, cHCO3 24 mmol/l), and then retransfused. Analyses of acid-base, electrolyte, and hematologic parameters were performed for systemic and washed blood samples. For NaCl there was a progressive decrease in systemic pH, HCO3 and base excess (BE) and an increase in chloride values (Cl) (p < 0.05). Use of PME slightly decreased pH (n. s.), whereas HCO3, BE and Cl remained stable. PEP slightly increased pH, HCO3 and BE, and decreased Cl (n. s.). Free hemoglobin increased in NaCl and PME (p < 0.05) and was below baseline in PEP (n. s.). Lactic acid course was comparable in all groups. The use of NaCl as wash solution for massive autotransfusion resulted in metabolic acidosis caused by dilution of HCO3 and increased Cl values. Fewer systemic acid-base and electrolyte changes were observed, when blood was washed with PME or PEP. The decreased hemoglobin release with PEP is possibly due to a gelatine specific electrostatic surface coating of erythrocyte membranes. For massive transfusion of washed red blood cells, physiologic multielectrolyte solution and physiologic erythrocyte protection solution should be preferred to NaCl, especially for small infants.

  14. Corrosion control of carbon steel using inhibitor of banana peel extract in acid diluted solutions

    NASA Astrophysics Data System (ADS)

    Komalasari; Utami, S. P.; Fermi, M. I.; Aziz, Y.; Irianti, R. S.

    2018-04-01

    Issues of corrosion happened in pipes, it was used as fluid transportation in the chemical industry. Corrosion cannot be preventing, however it could be controlled or blocked. Inhibitor addition is one of the method to control the corrosion inside the pipe. Corrosion inhibitors consisted of inorganic and organic compound inhibitors. Organic inhibitor is composed from synthetic and natural material. This study focused to evaluate the inhibition’s efficiency from banana peel to carbon steel in different concentration of inhibitor and immersing time in acid solution variation. The research employed inhibitor concentration of 0 gram/liter, 2 gram/liter, 4 gram/liter and 6 gram/liter, immersed time of carbon steel for 2, 4, 6, 8 and 10 hours. It was immersed in chloride acid solution of 0.5 M and 1.5 M. Carbon Steel AISI 4041 was used as specimen steel. Results were analyzed using corrosion rate evaluation for each specimens and inhibitor efficiencies determination. It was found that the specimen without inhibitor yielded fast corrosion rate in long immersing time and high concentration of HCl. However, the specimens with inhibitor gave lowest corrosion rate which was 78.59% for 6 gram/litre and 10 hours in 0.5 M HCl.

  15. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil.

    PubMed

    Wu, L H; Luo, Y M; Christie, P; Wong, M H

    2003-02-01

    A pot experiment was conducted to study the effects of EDTA and low molecular weight organic acids (LMWOA) on the pH, total organic carbon (TOC) and heavy metals in the soil solution in the rhizosphere of Brassica juncea grown in a paddy soil contaminated with Cu, Zn, Pb and Cd. The results show that EDTA and LMWOA have no effect on the soil solution pH. EDTA addition significantly increased the TOC concentrations in the soil solution. The TOC concentrations in treatments with EDTA were significantly higher than those in treatments with LMWOA. Adding 3 mmol kg(-1) EDTA to the soil markedly increased the total concentrations of Cu, Zn, Pb and Cd in the soil solution. Compared to EDTA, LMWOA had a very small effect on the metal concentrations. Total concentrations in the soil solution followed the sequence: EDTA > citric acid (CA) approximately oxalic acid (OA) approximately malic acid (MA) for Cu and Pb; EDTA > MA > CA approximately OA for Zn; and EDTA > MA > CA > OA for Cd. The labile concentrations of Cu, Zn, Pb and Cd showed similar trends to the total concentrations.

  16. Rapid determination of thiamine, riboflavin, niacinamide, pantothenic acid, pyridoxine, folic acid and ascorbic acid in Vitamins with Minerals Tablets by high-performance liquid chromatography with diode array detector.

    PubMed

    Jin, Pengfei; Xia, Lufeng; Li, Zheng; Che, Ning; Zou, Ding; Hu, Xin

    2012-11-01

    A simple, isocratic, and stability-indicating high-performance liquid chromatography (HPLC) method has been developed for the rapid determination of thiamine (VB(1)), niacinamide (VB(3)), pyridoxine (VB(6)), ascorbic acid (VC), pantothenic acid (VB(5)), riboflavin (VB(2)) and folic acid (VB(9)) in Vitamins with Minerals Tablets (VMT). An Alltima C(18) column (250 mm × 4.6 mm i.d., 5 μm) was used for the separation at ambient temperature, with 50mM ammonium dihydrogen phosphate (adjusting with phosphoric acid to pH 3.0) and acetonitrile as the mobile phase at the flow rate of 0.5 ml min(-1). VB(1), VB(3), VB(6), VC and VB(5) were extracted with a solution containing 0.05% phosphoric acid (v/v) and 0.3% sodium thiosulfate (w/v), and were then simultaneously analyzed by using the mobile phase of phosphate buffer-acetonitrile (95:5, v/v), while VB(2) and VB(9) were extracted with a solution containing 0.5% ammonium hydroxide solution (v/v), and were then simultaneously analyzed by using the mobile phase of phosphate buffer-acetonitrile (85:15, v/v). The detection wavelengths were 275 nm for VB(1), VB(3), VB(6), VC, 210 nm for VB(5), and 282 nm for VB(2) and VB(9). The method showed good system suitability, sensitivity, linearity, specificity, precision, stability and accuracy. All the seven water-soluble vitamins were well separated from other ingredients and degradation products. Method comparison indicated good concordance between the developed method and the USP method. The developed method was reliable and convenient for the rapid determination of VB(1), VB(3), VB(6), VC, VB(5), VB(2) and VB(9) in VMT. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Simultaneous pollutant removal and electricity generation in denitrifying microbial fuel cell with boric acid-borate buffer solution.

    PubMed

    Chen, Gang; Zhang, Shaohui; Li, Meng; Wei, Yan

    2015-01-01

    A double-chamber denitrifying microbial fuel cell (MFC), using boric acid-borate buffer solution as an alternative to phosphate buffer solution, was set up to investigate the influence of buffer solution concentration, temperature and external resistance on electricity generation and pollutant removal efficiency. The result revealed that the denitrifying MFC with boric acid-borate buffer solution was successfully started up in 51 days, with a stable cell voltage of 205.1 ± 1.96 mV at an external resistance of 50 Ω. Higher concentration of buffer solution favored nitrogen removal and electricity generation. The maximum power density of 8.27 W/m(3) net cathodic chamber was obtained at a buffer solution concentration of 100 mmol/L. An increase in temperature benefitted electricity generation and nitrogen removal. A suitable temperature for this denitrifying MFC was suggested to be 25 °C. Decreasing the external resistance favored nitrogen removal and organic matter consumption by exoelectrogens.

  18. Biosorption of clofibric acid and carbamazepine in aqueous solution by agricultural waste rice straw.

    PubMed

    Liu, Zhanguang; Zhou, Xuefei; Chen, Xiaohua; Dai, Chaomeng; Zhang, Juan; Zhang, Yalei

    2013-12-01

    Due to their widespread use, clofibric acid (CA) and carbamazepine (CBZ) have been frequently detected simultaneously at relatively high concentrations in aquatic environments. In this study, agricultural waste rice straw was employed as a potentially low-cost, effective and easy-to-operate biosorbent (RSB) to remove CA and CBZ. The adsorption of both pharmaceuticals followed pseudo second-order kinetics, and intraparticle diffusion was an important rate-limiting step. The adsorption isotherms of both drugs were fit well with Freundlich model. The adsorption of CA onto RSB was exothermic and was more likely to be dominated by physical processes, while the adsorption of CBZ was endothermic. Solution pH was determined to be the most important factor for CA adsorption, such that the adsorption capacity of CA onto RSB increased with the decline of solution pH. In the lower range of solution pH below 3.1, the CA removal efficiency was enhanced with the increase of biosorbent dosage. The CBZ removal efficiency was enhanced with the increase of RSB dosage without pH control. The maximum adsorption capacities were 126.3 mg/g for CA and 40.0 mg/g for CBZ.

  19. Effect of amino acids on the eutectic behavior of NaCl solutions studied by DSC.

    PubMed

    Chen, N J; Morikawa, J; Hashimoto, T

    2005-06-01

    The effect of a series of amino acids on the eutectic behavior of NaCl solutions at isotonic concentration has been studied by differential scanning calorimetry. The inclusion of different amino acids had different effects on eutectic formation. The amino acids were grouped into four categories based on their effect on eutectic formation: category C were amino acids that had no effect on eutectic formation; category D amino acids inhibited eutectic formation; category T amino acids shifted the melting of the eutectic to a lower temperature; category E amino acids caused the formation of a new eutectic with a melting temperature approximately -5 degrees C. The mechanism of these different effects on eutectic behavior is discussed, based on the chemical structure of the amino acids.

  20. Ligand-enhanced electrokinetic remediation of metal-contaminated marine sediments with high acid buffering capacity.

    PubMed

    Masi, Matteo; Iannelli, Renato; Losito, Gabriella

    2016-06-01

    The suitability of electrokinetic remediation for removing heavy metals from dredged marine sediments with high acid buffering capacity was investigated. Laboratory-scale electrokinetic remediation experiments were carried out by applying two different voltage gradients to the sediment (0.5 and 0.8 V/cm) while circulating water or two different chelating agents at the electrode compartments. Tap water, 0.1 M citric acid and 0.1 M ethylenediaminetetraacetic acid (EDTA) solutions were used respectively. The investigated metals were Zn, Pb, V, Ni and Cu. In the unenhanced experiment, the acid front could not propagate due to the high acid buffering capacity of the sediments; the production of OH(-) ions at the cathode resulted in a high-pH environment causing the precipitation of CaCO3 and metal hydroxides. The use of citric acid prevented the formation of precipitates, but solubilisation and mobilisation of metal species were not sufficiently achieved. Metal removal was relevant when EDTA was used as the conditioning agent, and the electric potential was raised up to 0.8 V/cm. EDTA led to the formation of negatively charged complexes with metals which migrated towards the anode compartment by electromigration. This result shows that metal removal from sediments with high acid buffering capacity may be achieved by enhancing the electrokinetic process by EDTA addition when the acidification of the medium is not economically and/or environmentally sustainable.

  1. Synthesis of walnut shell modified with titanium dioxide and zinc oxide nanoparticles for efficient removal of humic acid from aqueous solutions.

    PubMed

    Naghizadeh, Ali; Shahabi, Habibeh; Ghasemi, Fatemeh; Zarei, Ahmad

    2016-12-01

    The main aim of this research was to study the efficiency of modified walnut shell with titanium dioxide (TiO 2 ) and zinc oxide (ZnO) in the adsorption of humic acid from aqueous solutions. This experimental study was carried out in a batch condition to determine the effects of factors such as contact time, pH, humic acid concentration, dose of adsorbents (raw walnut shell, modified walnut shell with TiO 2 and ZnO) on the removal efficiency of humic acid. pH zpc of raw walnut shell, walnut shell modified with TiO 2 and walnut shell modified with ZnO were 7.6, 7.5, and 8, respectively. The maximum adsorption capacity of humic acid at concentration of 30 mg/L, contact time of 30 min at pH = 3 in an adsorbent dose of 0.02 g of walnut shell and ZnO and TiO 2 modified walnut shell were found to be 35.2, 37.9, and 40.2 mg/g, respectively. The results showed that the studied adsorbents tended to fit with the Langmuir model. Walnut shell, due to its availability, cost-effectiveness, and also its high adsorption efficiency, can be proposed as a promising natural adsorbent in the removal of humic acid from aqueous solutions.

  2. Fat high in stearic acid favorably affects blood lipids and factor VII coagulant activity in comparison with fats high in palmitic acid or high in myristic and lauric acids.

    PubMed

    Tholstrup, T; Marckmann, P; Jespersen, J; Sandström, B

    1994-02-01

    The effect of fats high in individual, prevalent saturated dietary fatty acids on lipoproteins and hemostatic variables in young healthy subjects was evaluated in a randomized strictly controlled metabolic feeding study. Three experimental diets: shea butter (S; 42% stearic acid), palm oil (P; 43% palmitic palmitic acid), and palm-kernel oil with high-oleic sunflower oil (ML; 10% myristic acid, 30% lauric acid) were served to 15 men for 3 wk each, separated by washout periods. Diet S compared with diet P resulted in significant reduction in plasma cholesterol (22%) LDL cholesterol (26%), apolipoprotein B (18%), HDL cholesterol (12%), apolipoprotein A-I (13%), and a 13% lower factor VII coagulant activity (P = 0.001). Similar differences were observed between diets S and ML. In conclusion, intake of shea butter high in stearic acid favorably affects blood lipids and factor VII coagulant activity in young men, compared with fats high in saturated fatty acids with 12-16 carbons.

  3. Electrothermal vaporization of mineral acid solutions in inductively coupled plasma mass spectrometry: comparison with sample nebulization

    NASA Astrophysics Data System (ADS)

    Mora, Juan; Gras, Luis; van Veen, Eric H.; de Loos-Vollebregt, Margaretha T. C.

    1999-06-01

    The analytical behaviour of an electrothermal vaporization (ETV) device for the introduction of mineral acid solutions in inductively coupled plasma mass spectrometry (ICP-MS) was evaluated. Water, nitric acid, hydrochloric acid, perchloric acid and sulphuric acid in concentrations within the 0.05-1.0 mol l-1 range were studied. For all the acids tested, increasing the acid concentration increases the ion signal and deteriorates the precision. The magnitude of the signal enhancement depends on the analyte and on the acid considered. Acid solutions give rise to ion signals that are between 2 and 10 times higher than those with water. Among the acids tested, sulphuric acid provides the highest signals. The addition of palladium reduces matrix effects due to the acids and increases the signal in ETV ICP-MS. In comparison with conventional sample nebulization (CS), the ETV sample introduction system provides higher sensitivities (between 2 and 20 times higher) at the same acid concentration. The magnitude of this improvement is similar to that obtained with a microwave desolvation system (MWDS). The ETV sample introduction system gives rise to the lowest background signals from matrix-induced species. Due to this fact, the limits of detection (LODs) obtained for the isotopes affected by any interference are lower for ETV sample introduction than those obtained with the CS and the MWDS. For the isotopes that do not suffer from matrix-induced spectral interferences, the ETV gives rise to LODs higher than those obtained with the CS. For these isotopes the lowest LODs are obtained with MWDS.

  4. Ultra-high-performance liquid chromatography/tandem high-resolution mass spectrometry analysis of sixteen red beverages containing carminic acid: identification of degradation products by using principal component analysis/discriminant analysis.

    PubMed

    Gosetti, Fabio; Chiuminatto, Ugo; Mazzucco, Eleonora; Mastroianni, Rita; Marengo, Emilio

    2015-01-15

    The study investigates the sunlight photodegradation process of carminic acid, a natural red colourant used in beverages. For this purpose, both carminic acid aqueous standard solutions and sixteen different commercial beverages, ten containing carminic acid and six containing E120 dye, were subjected to photoirradiation. The results show different patterns of degradation, not only between the standard solutions and the beverages, but also from beverage to beverage. Due to the different beverage recipes, unpredictable reactions take place between the dye and the other ingredients. To identify the dye degradation products in a very complex scenario, a methodology was used, based on the combined use of principal component analysis with discriminant analysis and ultra-high-performance liquid chromatography coupled with tandem high resolution mass spectrometry. The methodology is unaffected by beverage composition and allows the degradation products of carminic acid dye to be identified for each beverage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Poly(amido amine) and calcium phosphate nanocomposite remineralization of dentin in acidic solution without calcium phosphate ions.

    PubMed

    Liang, Kunneng; Zhou, Han; Weir, Michael D; Bao, Chongyun; Reynolds, Mark A; Zhou, Xuedong; Li, Jiyao; Xu, Hockin H K

    2017-07-01

    Patients with dry mouth often have an acidic oral environment lacking saliva that provides calcium (Ca) and phosphate (P) ions. However, there has been no study on dentin remineralization by placing samples in an acidic solution without Ca and P ions. Previous studies used saliva-like solutions with neutral pH and Ca and P ions. Therefore, the objective of this study was to investigate a novel method of combining poly(amido amine) (PAMAM) with a composite of nanoparticles of amorphous calcium phosphate (NACP) on dentin remineralization in an acidic solution without Ca and P ions for the first time. Demineralized dentin specimens were tested into four groups: (1) dentin control, (2) dentin coated with PAMAM, (3) dentin with NACP nanocomposite, (4) dentin with PAMAM plus NACP composite. Specimens were treated with lactic acid at pH 4 without initial Ca and P ions for 21 days. Acid neutralization and Ca and P ion concentrations were measured. Dentin specimens were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and hardness testing vs. remineralization efficacy. NACP composite had mechanical properties similar to commercial control composites (p>0.1). NACP composite neutralized acid and released Ca and P ions. PAMAM alone failed to induce dentin remineralization. NACP alone achieved mild remineralization and slightly increased dentin hardness at 21days (p>0.1). In contrast, the PAMAM+NACP nanocomposite method in acid solution without initial Ca and P ions greatly remineralized the pre-demineralized dentin, restoring its hardness to approach that of healthy dentin (p>0.1). Dentin remineralization via PAMAM+NACP in pH 4 acid without initial Ca and P ions was demonstrated for the first time, when conventional methods such as PAMAM did not work. The novel PAMAM+NACP nanocomposite method is promising to protect tooth structures, especially for patients with reduced saliva to inhibit caries. Copyright © 2017 The Academy of Dental

  6. Formation of specific amino acid sequences during carbodiimide-mediated condensation of amino acids in aqueous solution, and computer-simulated sequence generation

    NASA Astrophysics Data System (ADS)

    Hartmann, Jürgen; Nawroth, Thomas; Dose, Klaus

    1984-12-01

    Carbodiimide-mediated peptide synthesis in aqueous solution has been studied with respect to self-ordering of amino acids. The copolymerisation of amino acids in the presence of glutamic acid or pyroglutamic acid leads to short pyroglutamyl peptides. Without pyroglutamic acid the formation of higher polymers is favoured. The interactions of the amino acids and the peptides, however, are very complex. Therefore, the experimental results are rather difficult to explain. Some of the experimental results, however, can be explained with the aid of computer simulation programs. Regarding only the tripeptide fraction the copolymerisation of pyroGlu, Ala and Leu, as well as the simulated copolymerisation lead to pyroGlu-Ala-Leu as the main reaction product. The amino acid composition of the insoluble peptides formed during the copolymerisation of Ser, Gly, Ala, Val, Phe, Leu and Ile corresponds in part to the computer-simulated copolymerisation data.

  7. PROCESS FOR EXTRACTING NEPTUNIUM AND PLUTONIUM FROM NITRIC ACID SOLUTIONS OF SAME CONTAINING URANYL NITRATE WITH A TERTIARY AMINE

    DOEpatents

    Sheppard, J.C.

    1962-07-31

    A process of selectively extracting plutonium nitrate and neptunium nitrate with an organic solution of a tertiary amine, away from uranyl nitrate present in an aqueous solution in a maximum concentration of 1M is described. The nitric acid concentration is adjusted to about 4M and nitrous acid is added prior to extraction. (AEC)

  8. Thermally induced processes in mixtures of aluminum with organic acids after plastic deformations under high pressure

    NASA Astrophysics Data System (ADS)

    Zhorin, V. A.; Kiselev, M. R.; Roldugin, V. I.

    2017-11-01

    DSC is used to measure the thermal effects of processes in mixtures of solid organic dibasic acids with powdered aluminum, subjected to plastic deformation under pressures in the range of 0.5-4.0 GPa using an anvil-type high-pressure setup. Analysis of thermograms obtained for the samples after plastic deformation suggests a correlation between the exothermal peaks observed around the temperatures of degradation of the acids and the thermally induced chemical reactions between products of acid degradation and freshly formed surfaces of aluminum particles. The release of heat in the mixtures begins at 30-40°C. The thermal effects in the mixtures of different acids change according to the order of acid reactivity in solutions. The extreme baric dependences of enthalpies of thermal effects are associated with the rearrangement of the electron subsystem of aluminum upon plastic deformation at high pressures.

  9. Mycobacterium massiliense BRA100 strain recovered from postsurgical infections: resistance to high concentrations of glutaraldehyde and alternative solutions for high level disinfection.

    PubMed

    Lorena, Nádia Suely de Oliveira; Pitombo, Marcos Bettini; Côrtes, Patrícia Barbur; Maya, Maria Cristina Araújo; Silva, Marlei Gomes da; Carvalho, Ana Carolina da Silva; Coelho, Fábrice Santana; Miyazaki, Neide Hiromi Tokumaru; Marques, Elizabeth Andrade; Chebabo, Alberto; Freitas, Andréa D'Avila; Lupi, Otília; Duarte, Rafael Silva

    2010-10-01

    To evaluate the minimum inhibitory concentration (MIC) of GTA against these microorganisms and alternative disinfectants for high-level disinfection (HLD). Reference mycobacteria and clinical M. massiliense strains were included in this study. Active cultures were submitted to susceptibility qualitative tests with GTA dilutions (ranging from 1.5% to 8%), and commercial orthophthaldehyde (OPA) and peracetic acid (PA)-based solutions, during the period of exposure as recommended by National Agency of Sanitary Surveillance for HLD. All reference and M. massiliense non-BRA100 strains, recovered from sputum, were susceptible to any GTA concentration, OPA and PA solutions. M. massiliense BRA100 strains presented MIC of 8% GTA and were susceptible to OPA and PA. M. massiliense BRA100 strain is resistant to high GTA concentrations (up to 7%), which proves that this product is non-effective against specific rapidly growing mycobacteria and should be substituted by OPA or PA-based solutions for HLD.

  10. Conversion of salvianolic acid B into salvianolic acid A in tissues of Radix Salviae Miltiorrhizae using high temperature, high pressure and high humidity.

    PubMed

    Xia, Hongrui; Sun, Longru; Lou, Hongxiang; Rahman, M Mukhlesur

    2014-05-15

    Salvianolic acid A (Sal A), an important constituent of Radix Salviae Miltiorrhizae (RSM), is effective for the treatment of myocardial infarction (MI) and coronary heart disease due to its potential in the improvement of acute myocardial ischemia. However, its content is very low in RSM. So it is obvious to find a rich source of Sal A or to improve its content by conversion of other related components into Sal A modifying reaction conditions. In this research we focused on the conversion of Sal B into Sal A in aqueous solutions of RSM by using different reaction conditions including pH, temperature, pressure and humidity. During the reactions, the contents of Sal A, Sal B and danshensu in the RSM were analyzed by high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LCMS). The results indicated that the conversion of Sal B into Sal A in RSM tissues under the conditions of a high temperature, high pressure and high humidity was efficient and thereby, was readily utilized to prepare rich Sal A materials in practice. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. The Scale Formation of Barite (BaSO4) from Laminar Flowing Water in The Presence of Tartaric Acid and Ba2+ Concentration Variation of Solution

    NASA Astrophysics Data System (ADS)

    Fatra, F.; Ivanto, G.; Dera, N. S.; Muryanto, S.; Bayuseno, A. P.

    2017-05-01

    The barite (BaSO4) scale is a mineral deposit that can be precipitated during the process of drilling oil and gas in the offshore. Deposite scale in pipes can cause a narrowing of the diameter of pipes, and can reduce water flowing in the pipe. The aim of this study is to investigation the effect of the tartaric acid additive and Ba2+ concentration on the growth o the scale formation of barite in the laminar flow of the piping system. Solution forming barite crystal was prepared by mixing equimolar solutions of barium chloride (BaCl2) and sodium sulfate (Na2SO4) with concentration variations of Ba2+ of 3000, 3500, 4000, 4500, and 5000 ppm. The flow rate of solution is 40 ml/min at temperature of 50 °C. Various concentrations of tartaric acid (C4H6O6) of 0 ppm, 5 ppm and 10 ppm were added to the solutions. The formation of barite from the solution was observed by ion conductivity measurement. The obtained barite crystals before and after adding tartaric acid were dried and characterized by using SEM/EDX for morphology and elemental analysis, and XRD for phase identification. The SEM results show that the morphology of the crystals are star-like particles, while XRD analysis confirmed that the barite crystals were produced during the experiments are high purity. Moreover, the tartaric acid can inhibit the crystal growth of barite.

  12. Conductivity of gel polymer electrolytes doped with solutions of phosphonic acid or protic ionic liquids

    NASA Astrophysics Data System (ADS)

    Shmukler, Liudmila E.; Fadeeva, Yuliya A.; Glushenkova, Ekaterina V.; Nguyen, Van Thuc; Safonova, Liubov P.

    2018-04-01

    The proton-conducting gel electrolytes (PCGEs) based on PMMA, PVdF or PVdF-HFP doped with solutions of phosphonic acid or ammonium based protic ionic liquids (PILs) in DMF have been synthesized. Rather high values of the conductivity (10-4-10-3 S cm-1) have been reached at low dopant concentrations (up to 1 mol l-1). The influence of the nature of both polymeric matrix and dopant as well as dopant concentration on the conductivity values was discussed. It was established that the dependence of conductivity on the nature of dopant, but not the polymeric matrix, was more pronounced.

  13. Glass formation and unusual hygroscopic growth of iodic acid solution droplets with relevance for iodine oxide particles in the coastal marine boundary layer

    NASA Astrophysics Data System (ADS)

    Murray, B. J.; Haddrell, A. E.; Peppe, S.; Davies, J. F.; Reid, J. P.; O'Sullivan, D.; Price, H. C.; Kumar, R.; Saunders, R. W.; Plane, J. M. C.; Umo, N. S.; Wilson, T. W.

    2012-03-01

    Iodine oxide particles are known to nucleate in the marine boundary layer where gas phase molecular iodine and organoiodine species are produced by macroalgae. There has been some debate over the chemical identity of these particles. Hygroscopic measurements have been used to infer that they are composed of insoluble I2O4, while elemental analysis of laboratory generated particles suggests soluble I2O5 or its hydrated form iodic acid, HIO3 (I2O5 · H2O). In this paper we explore the response of super-micron sized aqueous iodic acid solution droplets to varying humidity using both Raman microscopy and single particle electrodynamic traps. These measurements reveal that the propensity of an iodic acid solution droplet to crystallise is negligible on drying to ~0% relative humidity (RH). On applying mechanical pressure to these droplets they shatter in a manner consistent with an ultra-viscous liquid or a brittle glass, but subsequent water uptake between 10 and 20% RH causes their viscosity to reduce sufficiently that the cracked droplets flow and merge. The persistence of iodic acid solution in an amorphous state, rather than a crystalline state, suggests they will more readily accommodate other condensable material and are therefore more likely to grow to sizes where they may serve as cloud condensation nuclei. On increasing the humidity to ~90% the mass of the droplets only increases by ~20% with a corresponding increase in radius of only ~6 %, which is remarkably small for a highly soluble material. We suggest that the small growth factor of aqueous iodic acid solution droplets is consistent with the small aerosol growth factors observed in field experiments.

  14. Synergistic Growth of Giant Wormlike Micelles in Ternary Mixed Surfactant Solutions: Effect of Octanoic Acid.

    PubMed

    Georgieva, Gergana S; Anachkov, Svetoslav E; Lieberwirth, Ingo; Koynov, Kaloian; Kralchevsky, Peter A

    2016-12-06

    The synergistic growth of giant wormlike micelles in ternary mixed solutions composed of an anionic surfactant (sodium laurylethersulfate, SLES), a zwitterionic surfactant (cocamidopropyl betaine, CAPB), and octanoic acid (HC8) is studied. Rheological data and their analysis in terms of Cole-Cole plots and micellar characteristic times are presented, and the micellar structures behind the observed rheological behavior are revealed by cryo-TEM micrographs. The surfactant composition is fixed near the maximal micelle size of the binary SLES + CAPB system, whereas the concentration of HC8 is varied. At a given HC8 concentration, the viscosity of the ternary micellar solutions exhibits a very high and sharp peak. Polarized-light optical microscopy indicates that all investigated solutions are isotropic rather than liquid-crystalline. The cryo-TEM imaging shows complex phase behavior: wormlike micelles to the left of the peak, giant entangled wormlike micelles at the peak, and long wormlike micelles coexisting with multiconnected micellar aggregates to the right of the peak. The formation of multiconnected micelles leads to a drop in viscosity at the higher concentrations. The results contribute to a better understanding of the structure-rheology relations in micellar surfactant solutions and could be useful for controlling the properties of formulations in personal-care and house-hold detergency.

  15. Kinetics of nonoxidative leaching of galena in perchloric, hydrobromic, and hydrochloric acid solutions

    NASA Astrophysics Data System (ADS)

    Núñez, C.; Espiell, F.; García-Zayas, J.

    1988-08-01

    Several kinetic studies are presented on the nonoxidative leaching of galena with solutions of hydrocloric, hydrobromic, and perchloric acid. The kinetic parameters were set up in terms of the mean ionic activities of the electrolytes. The apparent order of reaction for the mean ionic activity of perchloric acid is one. For hydrochloric acid the order of reaction over a wide range of concentrations is 3/2 with respect to its mean activity. For hydrobromic acid, whose anion has greater complex-forming power for lead than HC1, the order of reaction is 2. Activation energies are 64.4 kJ/mole for HC1, 71.5 kJ/mole for HC104, and 66.5 kJ mole for HBr. The complete kinetic equations are given for the three reactions.

  16. Radiolysis of aqueous solutions of acetic acid in the presence of Na-montmorillonite

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, R.; Negron-Mendoza, A.; Ramos, S.; Ponnamperuma, C.

    1990-01-01

    The gamma-irradiation of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite. H2, CH4, CO, CO2, and several polycarboxylic acids were formed in all systems. The primary characteristics observed in the latter system were: (1) Higher yield of the decomposition of acetic acid; (2) Lower yield of the formation of polycarboxylic acids; (3) No effect on the formation of methane; (4) Higher yield of the formation of carbon dioxide; and (5) The reduction of Fe3+ in the octahedral sites of Na-montmorillonite. A possible reaction scheme was proposed to account for the observed changes. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

  17. Tandem Lewis/Brønsted homogeneous acid catalysis: conversion of glucose to 5-hydoxymethylfurfural in an aqueous chromium(iii) chloride and hydrochloric acid solution

    DOE PAGES

    Swift, T. Dallas; Nguyen, Hannah; Anderko, Andrzej; ...

    2015-07-25

    Here, a kinetic model for the tandem conversion of glucose to 5-hydroxymethylfurfural (HMF) through fructose in aqueous CrCl 3–HCl solution was developed by analyzing experimental data. We show that the coupling of Lewis and Brønsted acids in a single pot overcomes equilibrium limitations of the glucose–fructose isomerization leading to high glucose conversions and identify conditions that maximize HMF yield. Adjusting the HCl/CrCl 3 concentration has a more pronounced effect on HMF yield at constant glucose conversion than that of temperature or CrCl 3 concentration. This is attributed to the interactions between HCl and CrCl 3 speciation in solution that leadsmore » to HMF yield being maximized at moderate HCl concentrations for each CrCl 3 concentration. This volcano-like behavior is accompanied with a change in the rate-limiting step from fructose dehydration to glucose isomerization as the concentration of the Brønsted acid increases. The maximum HMF yield in a single aqueous phase is only modest and appears independent of catalysts’ concentrations as long as they are appropriately balanced. However, it can be further maximized in a biphasic system. Our findings are consistent with recent studies in other tandem reactions catalyzed by different catalysts.« less

  18. Tandem Lewis/Brønsted homogeneous acid catalysis: conversion of glucose to 5-hydoxymethylfurfural in an aqueous chromium(iii) chloride and hydrochloric acid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swift, T. Dallas; Nguyen, Hannah; Anderko, Andrzej

    Here, a kinetic model for the tandem conversion of glucose to 5-hydroxymethylfurfural (HMF) through fructose in aqueous CrCl 3–HCl solution was developed by analyzing experimental data. We show that the coupling of Lewis and Brønsted acids in a single pot overcomes equilibrium limitations of the glucose–fructose isomerization leading to high glucose conversions and identify conditions that maximize HMF yield. Adjusting the HCl/CrCl 3 concentration has a more pronounced effect on HMF yield at constant glucose conversion than that of temperature or CrCl 3 concentration. This is attributed to the interactions between HCl and CrCl 3 speciation in solution that leadsmore » to HMF yield being maximized at moderate HCl concentrations for each CrCl 3 concentration. This volcano-like behavior is accompanied with a change in the rate-limiting step from fructose dehydration to glucose isomerization as the concentration of the Brønsted acid increases. The maximum HMF yield in a single aqueous phase is only modest and appears independent of catalysts’ concentrations as long as they are appropriately balanced. However, it can be further maximized in a biphasic system. Our findings are consistent with recent studies in other tandem reactions catalyzed by different catalysts.« less

  19. Ammonium removal from high-strength aqueous solutions by Australian zeolite.

    PubMed

    Wijesinghe, D Thushari N; Dassanayake, Kithsiri B; Sommer, Sven G; Jayasinghe, Guttila Y; J Scales, Peter; Chen, Deli

    2016-07-02

    Removal of ammonium nitrogen (NH4(+)-N) particularly from sources which are highly rich in nitrogen is important for addressing environmental pollution. Zeolites, aluminosilicate minerals, are commonly used as commercial adsorbents and ion-exchange medium in number of commercial applications due to its high adsorption capacity of ammonium (NH4(+)). However, detailed investigations on NH4(+) adsorption and ion exchange capacities of Australian natural zeolites are rare, particularly under higher NH4(+) concentrations in the medium. Therefore, this study was conducted to determine NH4(+) adsorption characteristics of Australian natural zeolites at high NH4(+) concentrations with and without other chemical compounds in an aqueous solution. Results showed that initial NH4(+) concentration, temperature, reaction time, and pH of the solution had significant effects on NH4(+) adsorption capacity of zeolite. Increased retention time and temperature generally had a positive impact on adsorption. Freundlich model fitted well with adsorption process of Australian natural zeolites; however, Langmuir model had best fitted for the adsorption process of sodium (Na(+)) treated zeolites. NaCl treatment increased the NH4(+) adsorption capacity of Australian zeolites by 25% at 1000 mg-N, NH4(+) solution. The maximum adsorption capacity of both natural Australian zeolites and Na(+) treated zeolites were estimated as 9.48 and 11.83 mg-N/g, respectively, which is lower than many zeolites from other sources. Compared to the NH4(+) only medium, presence of other competitive ions and acetic acid in the medium (resembling composition in digested swine manure slurries) reduced NH4(+) removal of natural and Na(+) treated zeolites by 44% and 57%, respectively. This suggests detailed investigations are required to determine practically achievable NH4(+) -N removal potential of zeolites for applications in complex mediums such as animal manure slurries.

  20. Evaluation of ethylenediaminetetraacetic acid (EDTA) solution and gel for smear layer removal.

    PubMed

    Dotto, Sidney Ricardo; Travassos, Rosana Maria Coelho; de Oliveira, Elias Pandonor Motcy; Machado, Manoel Eduardo de Lima; Martins, José Luiz

    2007-08-01

    The purpose of this in vitro study was to compare the efficacy of 24% ethylenediaminetetraacetic acid (EDTA) gel and 17% EDTA solution in cleaning dentine walls after root canal instrumentation. Thirty human canine teeth were divided into three groups of 10 teeth each. In Group 1, 1% sodium hypochlorite was used as the irrigating solution; in Group 2, 1% sodium hypochlorite was used with 17% EDTA solution; and in Group 3, 1% sodium hypochlorite was used with 24% EDTA gel. The presence of a smear layer was analysed after instrumentation using scanning electron microscopy. The Kruskal-Wallis test revealed a statistical difference (P < 0.05) between Groups 1 and 2, and also between Groups 1 and 3. No difference was observed between Groups 2 and 3 (P > 0.05). The results indicate that 1% sodium hypochlorite alone does not remove the smear layer and that there was no statistical difference between EDTA gel and EDTA solution in smear layer removal.

  1. Evaluation of the Magnesium Hydroxide Treatment Process for Stabilizing PFP Plutonium/Nitric Acid Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Mark A.; Schmidt, Andrew J.; Delegard, Calvin H.

    2000-09-28

    This document summarizes an evaluation of the magnesium hydroxide [Mg(OH)2] process to be used at the Hanford Plutonium Finishing Plant (PFP) for stabilizing plutonium/nitric acid solutions to meet the goal of stabilizing the plutonium in an oxide form suitable for storage under DOE-STD-3013-99. During the treatment process, nitric acid solutions bearing plutonium nitrate are neutralized with Mg(OH)2 in an air sparge reactor. The resulting slurry, containing plutonium hydroxide, is filtered and calcined. The process evaluation included a literature review and extensive laboratory- and bench-scale testing. The testing was conducted using cerium as a surrogate for plutonium to identify and quantifymore » the effects of key processing variables on processing time (primarily neutralization and filtration time) and calcined product properties.« less

  2. Influence of electro-activated solutions of weak organic acid salts on microbial quality and overall appearance of blueberries during storage.

    PubMed

    Liato, Viacheslav; Hammami, Riadh; Aïder, Mohammed

    2017-06-01

    The aim of this work was to study the potential of diluted electro-activated solutions of weak organic acid salts (potassium acetate, potassium citrate and calcium lactate) to extend the shelf life of blueberries during post-harvest storage. The sanitizing capacity of these solutions was studied against pathogenic bacteria Listeria monocytogenes and E. coli O157:H7 as well as phytopathogenic fungi A. alternata, F. oxysporum and B. cinerea. The results showed that a 5-min treatment of inoculated blueberries with electro-activated solutions resulted in a 4 log CFU/g reduction in Listeria monocytogenes for all solutions. For E. coli O157:H7, the electro-activated potassium acetate and potassium citrate solutions achieved a decrease of 3.5 log CFU/g after 5 min of berry washing. The most important fungus reduction was found when blueberries were washed with an electro-activated solution of potassium acetate and a NaOCl solution. After 5 min of blueberry washing with an electro-activated potassium acetate solution, a very high reduction effect was observed for A. alternata, F. oxysporum and B. cinerea, which showed survival levels of only 2.2 ± 0.16, 0.34 ± 0.15 and 0.21 ± 0.16 log CFU/g, respectively. Regarding the effect of the washing on the organoleptic quality of blueberries, the obtained results showed no negative effect on the product color or textural profile. Finally, this work suggests that washing with electro-activated solutions of weak organic acid salts can be used to enhance the shelf-life of blueberries during post-harvest storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Flash photolysis and pulse radiolysis studies on collagen Type I in acetic acid solution.

    PubMed

    Sionkowska, Alina

    2006-07-03

    An investigation of the photochemical properties of collagen Type I in acetic acid solution was carried out using nanosecond laser irradiation. The transient spectra of collagen solution excited at 266 nm show two bands. One of them with maximum at 295 nm and the second one with maximum at 400 nm. The peak at 400 nm is assigned to tyrosyl radicals. The first peak of the transient absorption spectra at 295 nm is probably due to photoionisation producing collagen radical cation. The transient for collagen solution in acetic acid at 640 nm was not observed. It is evidence that there is no hydrated electron in the irradiated collagen solution. The reactions of hydrated electrons and (*)OH radicals with collagen have been studied by pulse radiolysis. In the absorption spectra of products resulting from the reaction of collagen with e(aq)(-) no characteristic maximum absorption in UV and visible light region has been observed. In the absorption spectra of products resulting from the reaction of the hydroxyl radicals with collagen two bands have been observed. The first one at 320 nm and the second one at 405 nm. Reaction of (*)OH radicals with tyrosine residues in collagen chains gives rise to Tyr phenoxyl radicals (absorption at 400 nm).

  4. Fabrications of Polyaniline Films by Pulse Electrodeposition in Acidic Solutions with Different Anions and Their Thermoelectric Performances

    NASA Astrophysics Data System (ADS)

    Yang, Weifang; Xu, Han; Li, Yuanyuan; Wang, Wei

    2017-08-01

    Polymerization of aniline was prepared by the pulse potentiostatic method in H3PO4, HClO4 and H2SO4 acidic solutions. The morphologies and thermoelectric performances were analyzed by scanning electron microscopy, Seebeck coefficient ( S) and resistivity ( R) measurements. The results show that flake polyaniline (PANI) films can be obtained in H3PO4 and HClO4 acidic solutions, and porous PANI films with nanofiber-overlapped structures can be prepared in H2SO4 solution under the same pulse parameters. PANI films prepared in the three solutions are all p-type thermoelectric materials. PANI films polymerized in H2SO4 solution possess the highest S (30.2 μV K-1) and lowest R (1.6 × 10-3 Ω m) compared with those prepared in H3PO4 and HClO4 solutions, indicating that nanofiber-overlapped structures formed in H2SO4 solution contribute better thermoelectric performance. In addition, the effects of pulse parameters (anodic potential φ a, anodic pulse duration t a and cathodic pulse duration t c) on the surface morphologies and thermoelectric performances of PANI films were systematically investigated.

  5. A New Acid-oxidizing Solution: Assessment of Its Role on Methicillin-resistant Staphylococcus aureus (MRSA) Biofilm Morphological Changes.

    PubMed

    D'Atanasio, Noemi; Capezzone de Joannon, Alessandra; Mangano, Giorgina; Meloni, Marisa; Giarratana, Nadia; Milanese, Claudio; Tongiani, Serena

    2015-10-01

    Biofilms represent a key challenge in the treatment of chronic wounds, as they are among the main reasons for delays in chronic wound healing. This in vitro study was aimed at evaluating the activity of a new acid-oxidizing solution (AOS) on biofilm formation. Acid-oxidizing solution contains free chlorine species with stabilized hypochlorous acid in high concentration (> 95%) and is characterized by acidic (pH less than 3) and super-oxidizing (Redox greater than 1000mV) features. A 3-dimensional in vitro model of reconstructed human epidermis was used to compare the activity of AOS vs 2 reference products (RP) containing betaine and polyhexanide (RP1) and sodium hypochlorite and hypochlorous acid (RP2). Different approaches were used to assess the prevention and eradication of methicillin-resistant Staphyloccocus aureus biofilm by the study products. Xylitol and chlorhexidine were used as positive controls. The activity of the study products on the biofilm structure was evaluated analyzing the ultrastructural modification by scanning electron microscopy, while skin compatibility was assessed on noncolonized tissues measuring the metabolic activity of the cells. In all experiments, AOS showed to be active on the biofilm matrix, modifying its structure and allowing bacterial release from the matrix. In all experiments, no cytotoxicity was observed in the tissues treated with the product suggesting a good compatibility of AOS with skin tissues. Reference product 1 affected the biofilm, suggesting a disruption effect; RP2 was slightly less active than AOS in modifying the biofilm structure. Treatment with AOS affects biofilm by modifying its structure and therefore facilitating local bacteria accessibility to bactericidal agents, with consequent potential clinical benefits in the treatment of chronic wounds.

  6. NEUTRALIZATIONS OF HIGH ALUMINUM LOW URANIUM USED NUCLEAR FUEL SOLUTIONS CONTAINING GADOLINIUM AS A NEUTRON POISON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, K.

    2011-06-08

    H-Canyon will begin dissolving High Aluminum - Low Uranium (High Al/Low U) Used Nuclear Fuel (UNF) following approval by DOE which is anticipated in CY2011. High Al/Low U is an aluminum/enriched uranium UNF with small quantities of uranium relative to aluminum. The maximum enrichment level expected is 93% {sup 235}U. The High Al/Low U UNF will be dissolved in H-Canyon in a nitric acid/mercury/gadolinium solution. The resulting solution will be neutralized and transferred to Tank 39H in the Tank Farm. To confirm that the solution generated could be poisoned with Gd, neutralized, and discarded to the Savannah River Site (SRS)more » high level waste (HLW) system without undue nuclear safety concerns the caustic precipitation of simulant solutions was examined. Experiments were performed with three simulant solutions representative of the H-Canyon estimated concentrations in the final solutions after dissolution. The maximum U, Gd, and Al concentration were selected for testing from the range of solution compositions provided. Simulants were prepared in three different nitric acid concentrations, ranging from 0.5 to 1.5 M. The simulant solutions were neutralized to four different endpoints: (1) just before a solid phase was formed (pH 3.5-4), (2) the point where a solid phase was obtained, (3) 0.8 M free hydroxide, and (4) 1.2 M free hydroxide, using 50 wt % sodium hydroxide (NaOH). The settling behavior of the neutralized solutions was found to be slower compared to previous studies, with settling continuing over a one week period. Due to the high concentration of Al in these solutions, precipitation of solids was observed immediately upon addition of NaOH. Precipitation continued as additional NaOH was added, reaching a point where the mixture becomes almost completely solid due to the large amount of precipitate. As additional NaOH was added, some of the precipitate began to redissolve, and the solutions neutralized to the final two endpoints mixed easily and had

  7. Mechanism of 1,4,5,8-naphthalene tetracarboxylic acid dianhydride hydrolysis and formation in aqueous solution.

    PubMed

    Barros, T C; Cuccovia, I M; Farah, J P S; Masini, J C; Chaimovich, H; Politi, M J

    2006-01-07

    The study of highly conjugated, carbonyl-containing molecules such as 1,4,5,8-naphthalene tetracarboxylic dianhydride, III, is of interest since reactivity differences and transmission of electronic effects through the conjugated framework can be evidenced. The kinetics of hydrolysis of III in aqueous solution were determined from 5 M acid to pH 10. In basic solution hydrolysis of III yields, sequentially, 1,4,5,8-naphthalene diacid monoanhydride, II, and 1,4,5,8-naphthalene tetracarboxylic acid, I. The second order rate constant for alkaline hydrolysis is 200 fold higher for the first ring opening. The water-catalyzed hydrolysis of III yields a pH-dependent mixture of ionic forms of I and II. The rate constant for water-catalyzed hydrolysis of III is 25 fold higher than that for II. In concentrated acid the rates for reaching equilibrium (I, II and III) increase and III is the major product. The pK(a)s of I (3.24, 5.13 and 6.25) and II (3.05, 5.90) were determined by potentiometric, fluorescence and UV spectroscopy titrations and by quantitative fit of the kinetic and equilibrium data. The apparent, pH-dependent, equilibrium constants, K(EqII), for anhydride formation between I and II were obtained from the UV spectra. The quantitative fit of kinetic and equilibrium data are consistent with the assumption that anhydride formation only proceeds with the fully protonated species for both I and II and permitted the estimation of the equilibrium constants for anhydride formation, K(EqII). The value of K(EqII) (I <==> II) between pH 1 and 6 was ca. 5. Geometry optimization calculations in the gas phase of the reactions of III in alkaline, neutral and acid conditions, at the DFT level of theory, gave electronic distributions that were qualitatively consistent with the experimental results.

  8. Recovery of boric acid from ion exchangers

    DOEpatents

    Pollock, Charles W.

    1976-01-01

    The recovery of boric acid from an anion exchange resin is improved by eluting the boric acid with an aqueous solution of ammonium bicarbonate. The boric acid can be readily purified and concentrated by distilling off the water and ammonium bicarbonate. This process is especially useful for the recovery of boric acid containing a high percentage of .sup.10 B which may be found in some nuclear reactor coolant solutions.

  9. Ditetraalkylammonium amino acid ionic liquids as CO₂ absorbents of high capacity.

    PubMed

    Ma, Jing-Wen; Zhou, Zheng; Zhang, Feng; Fang, Cheng-Gang; Wu, You-Ting; Zhang, Zhi-Bing; Li, Ai-Min

    2011-12-15

    By grafting butyl or ethyl onto tetramethylethylenediamine, quaternary ammonium salts with two positive charge centers were formed at the first step. Metathesis with Ag(2)O followed. Through neutralization with glycine, l-alanine, or valine, a series of new ditetraalkylammonium amino acid ionic liquids (DILs) for CO(2) capture were generated. The structures of DILs, as shown in Figure 1, were verified by using (1)H NMR and EA. These DILs were found to be of quite high viscosity which militated against their industrial application in CO(2) removal. Drawing on the experience of mixed amines' aqueous solutions, these DILs were blended with water or N-methyldiethanolamine (MDEA) aqueous solutions to act as special absorbents of CO(2). Using a Double-Tank Absorption System, the absorption performance of these DIL solutions was investigated in detail. The experimental results indicated that among the three aqueous solutions of DILs (20%, 40%, and 80 wt %), the solution of 40% DIL had a higher absorption rate of CO(2) than the other two, demonstrating the different effects of concentration and viscosity on the absorption. The solution of 40% DIL or the 15% DIL + 15% MDEA had much higher capacity for CO(2) than the corresponding monocation tetraalkylammonium AAILs, due to the special structure of the dication which could influence the solubility of CO(2) in the aqueous solution.

  10. Dissolution profile of dolomite in chloric acid solution: The effect of chloric acid concentration and pulp density

    NASA Astrophysics Data System (ADS)

    Solihin, Indriani, Mubarok, M. Zaki

    2018-05-01

    Dolomite is one of carbonate minerals that contain magnesium. Magnesium is important element used in many aspects of life such as cofactor of many enzymes in human body, nutrient for plants, and raw material in automotive industry. Dolomite can be processed through low temperature process to obtain magnesium and calcium oxide that is needed in important applications such as base material for making drugs, raw material in the synthesize slow release fertilizer, materials for fire retardant, component for catalyst, etc. One of the important step of this low temperature process is dissolution of dolomite. Optimizing the dissolution process determines the % extraction of magnesium and calcium oxide from dolomite. The dissolution of dolomite from Gresik, East Java Provence Indonesia, in chloric acid solution has been conducted. Chloric acid concentration and pulp density are the variables that were observed. The dissolution of magnesium and calcium from Gresik dolomite was found to be very fast. The stable stage of dissolution can be reached for 5-10 seconds. The % extraction is mainly determined by the molar ratio of chloric acid / dolomite. At molar ratio of chloric acid / dolomite equal or above stoichiometric of dolomite dissolution, % extraction of magnesium is almost 100 %.

  11. Miscibility of poly(lactic acid) and poly(ethylene oxide) solvent polymer blends and nanofibers made by solution blow spinning

    USDA-ARS?s Scientific Manuscript database

    The miscibility of blends of poly(lactic acid) (PLA) and poly(ethylene oxide) (PEO) was studied in polymer solutions by dilute solution viscometry and in solution blow spun nanofibers by microscopy (SEM, TEM) and by thermal and spectral analysis. Three blends of PLA and PEO were solution blended in...

  12. Oxidation of clofibric acid in aqueous solution using a non-thermal plasma discharge or gamma radiation

    NASA Astrophysics Data System (ADS)

    Madureira, Joana; Ceriani, Elisa; Pinhão, Nuno; Marotta, Ester; Melo, Rita; Cabo Verde, Sandra; Paradisi, Cristina; Margaça, Fernanda M. A.

    2017-11-01

    In this work, we study degradation of clofibric acid (CFA) in aqueous solution using either ionizing radiation from a $^{60}$Co source or a non-thermal plasma produced by discharges in the air above the solution. The results obtained with the two technologies are compared in terms of effectiveness of CFA degradation and its by-products. In both cases the CFA degradation follows a quasi-exponential decay in time well modelled by a kinetic scheme which considers the competition between CFA and all reaction intermediates for the reactive species generated in solution as well as the amount of the end product formed. A new degradation law is deduced to explain the results. Although the end-product CO$_2$ was detected and the CFA conversion found to be very high under the studied conditions, HPLC analysis reveals several degradation intermediates still bearing the aromatic ring with the chlorine substituent. The extent of mineralization is rather limited. The energy yield is found to be higher in the gamma radiation experiments.

  13. Oxidation of clofibric acid in aqueous solution using a non-thermal plasma discharge or gamma radiation.

    PubMed

    Madureira, Joana; Ceriani, Elisa; Pinhão, Nuno; Marotta, Ester; Melo, Rita; Cabo Verde, Sandra; Paradisi, Cristina; Margaça, Fernanda M A

    2017-11-01

    In this work, we study degradation of clofibric acid (CFA) in aqueous solution using either ionizing radiation from a 60 Co source or a non-thermal plasma produced by discharges in the air above the solution. The results obtained with the two technologies are compared in terms of effectiveness of CFA degradation and its by-products. In both cases the CFA degradation follows a quasi-exponential decay in time well modelled by a kinetic scheme which considers the competition between CFA and all reaction intermediates for the reactive species generated in solution as well as the amount of the end product formed. A new degradation law is deduced to explain the results. Although the end-product CO 2 was detected and the CFA conversion found to be very high under the studied conditions, HPLC analysis reveals several degradation intermediates still bearing the aromatic ring with the chlorine substituent. The extent of mineralization is rather limited. The energy yield is found to be higher in the gamma radiation experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Solubility of HOBr in Acidic Solution and Implications for Liberation of Halogens Via Aerosol Processing

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, R. R.; Rammer, T. A.; Ashbourn, S. F. M.

    2004-01-01

    Halogen species are known to catalytically destroy ozone in several regions of the atmosphere. In addition to direct catalytic losses, bromine compounds can indirectly enhance ozone loss through coupling to other radical families. Hypobromous acid (HOBr) is a key species in the linkage of BrOx to ClOx and HOx. The aqueous- phase coupling reaction HOBr + HCI (right arrow) BrCl + H2O may provide a pathway for chlorine activation on sulfate aerosols at temperatures warmer than those required for polar stratospheric cloud formation. We have measured t h e solubility of HOBr in 45 - 70 wt% sulfuric acid solutions. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, H* = 10(exp 4) - 10(exp 7) mol dm(exp -3) atm(exp -1). The expected inverse dependence of H* on temperature was observed, but only a weak dependence on acidity was found. The solubility of HOBr is comparable to that of HBr, indicating that equilibrium concentrations of HOBr could equal or exceed those of HBr in upper tropospheric and lower stratospheric aerosols. Despite the high solubility of HOBr, aerosol volumes are not large enough to sequester a significant fraction of inorganic bromine from the gas phase. Our measurements of HOBr uptake in aqueous sulfuric acid in the presence of other brominated gases show the evolution of gaseous products including Br2O and Br2.

  15. [Effect of warm and cold honey solutions on acid-forming function of the stomach].

    PubMed

    Kas'ianenko, V I; Selezneva, E Ia; Markarova, N V

    2002-01-01

    Apitherapy is treatment of diseases with biologically active products of bee-keeping (BAPB), which is developing in an intensive way all over the world. The interest in apitherapy is explained, on the one hand, by a great number of natural compounds produced by bees as a result of their vital functions and having high physiological activity, and on the other hand, by the universal nature of bees occurrence and comparative simplicity of getting the bee-keeping products. In apitherapy literature many authors point to the fact that honey has an impact on gastric secretion: a cold honey solution stimulates, and a warm one inhibits acid excretion. Yet there are no results of studies confirming this action in all publications.

  16. Extremely high-rate, uniform dissolution of alloy C-22 in anhydrous organic solutions at room temperature

    DOE PAGES

    Schindelholz, Eric J.; Christie, Michael A.; Allwein, Shawn P.; ...

    2016-06-21

    During routine pharmaceutical development and scale-up work, severe corrosion of a Hastelloy Alloy C-22 filter dryer was observed after single, short (several hours) contact with the product slurry at room temperature. Initial investigations showed that the presence of both 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and HCl was sufficient in an acetonitrile solution to cause rapid corrosion of C-22. More detailed mass loss studies showed initial corrosion rates exceeding25 mm/year that then decreased over several hours to steady state rates of 3-5 mm/year. The corrosion was highly uniform. Electrochemical measurements demonstrated that although C-22 is spontaneously passive in acetonitrile solution, the presence of HClmore » leads to the development of a transpassive region. Furthermore, DDQ is a sufficiently strong oxidizer, particularly in acidic solutions, to polarize the C-22 well into the transpassive region, leading to the observed high corrosion rates.« less

  17. Application and comparison of high performance liquid chromatography and high speed counter-current chromatography in enantioseparation of (±)-2-phenylpropionic acid.

    PubMed

    Tong, Shengqiang; Zheng, Ye; Yan, Jizhong

    2013-03-15

    High performance liquid chromatography (HPLC) and high speed counter-current chromatography (HSCCC) were applied and compared in enantioseparation of 2-phenylpropionic acid (2-PPA) when hydroxypropyl-β-cyclodextrin (HP-β-CD) was used as chiral mobile phase additive. For HPLC, the enantioseparation was achieved on ODS C(18) reverse phase column and the mobile phase was 25 mmol L(-1) HP-β-CD aqueous buffer solution (pH 4.0, adjusted with triethylamine): methanol: glacial acetic acid (85:15:0.5 (v/v/v)). For HSCCC, the two-phase solvent system was composed of n-hexane-ethyl acetate-0.1 mol L(-1) phosphate buffer solution pH2.67 (5:5:10 for isocratic elution and 8:2:10 for recycling elution (v/v/v)) added with 0.1 mol L(-1) HP-β-CD. The key parameters, such as a substitution degree of HP-β-CD, the concentration of HP-β-CD, pH value of the aqueous phase and the temperature were optimized for both separation methods. Using the optimum conditions a complete HSCCC enantioseparation of 40 mg of 2-propylpropionic acid in a recycling elution mode gave 15-18 mg of (+)-2-PPA and (-)-2-PPA enantiomers with 95-98% purity and 85-93% recovery. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Potentiality of uranium biosorption from nitric acid solutions using shrimp shells.

    PubMed

    Ahmed, S H; El Sheikh, E M; Morsy, A M A

    2014-08-01

    Biosorption has gained important credibility during recent years because of its good performance and low cost. This work is concerned with studying the potentiality of the chitin component of the shrimp shells for uranium biosorption from nitric acid liquid solutions. The structural characteristics of the working chitin have been determined via Fourier Transform Infrared Spectroscopy (FTIR). The surface morphology was examined using Scanning Electron Microscopy (SEM). The adsorption capacity of biomass was investigated experimentally. The influence of contact time, pH, metal ion concentration, solution volume to mass ratio and temperature were evaluated and the results were fitted using adsorption isotherm models. The kinetic of uranium biosorption was also investigated as well as biosorption thermodynamic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Acidity and hydrogen exchange dynamics of iron(II)-bound nitroxyl in aqueous solution.

    PubMed

    Gao, Yin; Toubaei, Abouzar; Kong, Xianqi; Wu, Gang

    2014-10-20

    Nitroxyl-iron(II) (HNO-Fe(II)) complexes are often unstable in aqueous solution, thus making them very difficult to study. Consequently, many fundamental chemical properties of Fe(II)-bound HNO have remained unknown. Using a comprehensive multinuclear ((1)H, (15)N, (17)O) NMR approach, the acidity of the Fe(II)-bound HNO in [Fe(CN)5(HNO)](3-) was investigated and its pK(a) value was determined to be greater than 11. Additionally, HNO undergoes rapid hydrogen exchange with water in aqueous solution and this exchange process is catalyzed by both acid and base. The hydrogen exchange dynamics for the Fe(II)-bound HNO have been characterized and the obtained benchmark values, when combined with the literature data on proteins, reveal that the rate of hydrogen exchange for the Fe(II)-bound HNO in the interior of globin proteins is reduced by a factor of 10(6). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Extremophiles in Mineral Sulphide Heaps: Some Bacterial Responses to Variable Temperature, Acidity and Solution Composition

    PubMed Central

    Watling, Helen R.; Shiers, Denis W.; Collinson, David M.

    2015-01-01

    In heap bioleaching, acidophilic extremophiles contribute to enhanced metal extraction from mineral sulphides through the oxidation of Fe(II) and/or reduced inorganic sulphur compounds (RISC), such as elemental sulphur or mineral sulphides, or the degradation of organic compounds derived from the ore, biota or reagents used during mineral processing. The impacts of variable solution acidity and composition, as well as temperature on the three microbiological functions have been examined for up to four bacterial species found in mineral sulphide heaps. The results indicate that bacteria adapt to sufficiently high metal concentrations (Cu, Ni, Co, Zn, As) to allow them to function in mineral sulphide heaps and, by engaging alternative metabolic pathways, to extend the solution pH range over which growth is sustained. Fluctuating temperatures during start up in sulphide heaps pose the greatest threat to efficient bacterial colonisation. The large masses of ores in bioleaching heaps mean that high temperatures arising from sulphide oxidation are hard to control initially, when the sulphide content of the ore is greatest. During that period, mesophilic and moderately thermophilic bacteria are markedly reduced in both numbers and activity. PMID:27682094

  1. The effects of acid and alkaline solutions on cut marks and on the structure of bone: An experimental study on porcine ribs.

    PubMed

    Amadasi, Alberto; Camici, Arianna; Sironi, Luca; Profumo, Antonella; Merli, Davide; Mazzarelli, Debora; Porta, Davide; Duday, Henri; Cattaneo, Cristina

    2015-11-01

    Among taphonomical modifications during decomposition processes, little is known about the action of high or low pH to human tissues and bones. Moreover, acid or basic solutions are seldom used to ease decomposition and wrecking of the body. In this study a total of 60 samples of porcine bones on which two cut marks were produced before the beginning of the experiment, were put in six different solutions with different pH (1, 3, 5, 9, 12, 14) and analyzed every five days over a period of 70 days. Surveys were carried out macroscopically, with stereomicroscopy and with light microscopy on thin sections. Only the specimens exposed to extremely acid (<1) or basic (>12) pH showed evident modifications of the bone's structure, as witnessed by the analyses with stereomicroscopy as well. Many samples showed a detachment of the periosteum; cut marks became soon unrecognizable with pH 14 but still detectable in all the other samples. The information gained from the present study can be of great help in detecting the exposure of human tissues to high or low environmental pH and in understanding the effects that these solutions can exert on human bones. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Aspartic acid-promoted highly selective and sensitive colorimetric sensing of cysteine in rat brain.

    PubMed

    Qian, Qin; Deng, Jingjing; Wang, Dalei; Yang, Lifen; Yu, Ping; Mao, Lanqun

    2012-11-06

    Direct selective determination of cysteine in the cerebral system is of great importance because of the crucial roles of cysteine in physiological and pathological processes. In this study, we report a sensitive and selective colorimetric assay for cysteine in the rat brain with gold nanoparticles (Au-NPs) as the signal readout. Initially, Au-NPs synthesized with citrate as the stabilizer are red in color and exhibit absorption at 520 nm. The addition of an aqueous solution (20 μL) of cysteine or aspartic acid alone to a 200 μL Au-NP dispersion causes no aggregation, while the addition of an aqueous solution of cysteine into a Au-NP dispersion containing aspartic acid (1.8 mM) causes the aggregation of Au-NPs and thus results in the color change of the colloid from wine red to blue. These changes are ascribed to the ion pair interaction between aspartic acid and cysteine on the interface between Au-NPs and solution. The concentration of cysteine can be visualized with the naked eye and determined by UV-vis spectroscopy. The signal output shows a linear relationship for cysteine within the concentration range from 0.166 to 1.67 μM with a detection limit of 100 nM. The assay demonstrated here is highly selective and is free from the interference of other natural amino acids and other thiol-containing species as well as the species commonly existing in the brain such as lactate, ascorbic acid, and glucose. The basal dialysate level of cysteine in the microdialysate from the striatum of adult male Sprague-Dawley rats is determined to be around 9.6 ± 2.1 μM. The method demonstrated here is facile but reliable and durable and is envisaged to be applicable to understanding the chemical essence involved in physiological and pathological events associated with cysteine.

  3. Highly Viscoelastic Reverse Wormlike Micellar Systems from a Mixture of Lecithin, Polyglycerol Fatty Acid Monoesters, and an Oil.

    PubMed

    Hashizaki, Kaname; Imai, Miko; Yako, Shuhei; Tsusaka, Hitomi; Sakanishi, Yuichi; Saito, Yoshihiro; Fujii, Makiko

    2017-09-01

    We report new lecithin reverse wormlike micelles with high viscoelasticity formed using lecithin/polyglycerol fatty acid monoester (PGLFA)/oil systems. In this study, the influence of the amphiphilicity (i.e., hydrophile-lipophile balance, HLB) of PGLFA on the phase behavior and rheological properties of reverse wormlike micelles was investigated in detail. PGLFAs with degrees of polymerization of polyglycerol varying between 6-40 and constituent fatty acids with chains between 6-18 carbon atoms long were used. Partial phase diagrams of the lecithin/PGLFA/n-decane systems indicated that the appropriate PGLFA could change the lecithin/oil solution into a highly viscoelastic solution comprising reverse wormlike micelles. Rheological measurements showed that all systems that formed reverse wormlike micelles exhibited an unusual phenomenon called "shear-thickening". Furthermore, reverse wormlike micelles grew as the PGLFA concentration increased and the zero-shear viscosity (η 0 ) of the solution rapidly increased. Our results indicate that the magnitude of the maximum η 0 depends on the degree of polymerization of the constituent polyglycerol in the PGLFA, while the size of the reverse micellar region and the highly viscous region in the phase diagram depends on the HLB value of the PGLFA.

  4. Spatial structure peculiarities of influenza A virus matrix M1 protein in an acidic solution that simulates the internal lysosomal medium.

    PubMed

    Shishkov, Alexander; Bogacheva, Elena; Fedorova, Natalia; Ksenofontov, Alexander; Badun, Gennadii; Radyukhin, Victor; Lukashina, Elena; Serebryakova, Marina; Dolgov, Alexey; Chulichkov, Alexey; Dobrov, Evgeny; Baratova, Lyudmila

    2011-12-01

    The structure of the C-terminal domain of the influenza virus A matrix M1 protein, for which X-ray diffraction data were still missing, was studied in acidic solution. Matrix M1 protein was bombarded with thermally-activated tritium atoms, and the resulting intramolecular distribution of the tritium label was analyzed to assess the steric accessibility of the amino acid residues in this protein. This technique revealed that interdomain loops and the C-terminal domain of the protein are the most accessible to labeling with tritium atoms. A model of the spatial arrangement of the C-terminal domain of matrix M1 protein was generated using rosetta software adjusted to the data obtained by tritium planigraphy experiments. This model suggests that the C-terminal domain is an almost flat layer with a three-α-helical structure. To explain the high level of tritium label incorporation into the C-terminal domain of the M1 protein in an acidic solution, we also used independent experimental approaches (CD spectroscopy, limited proteolysis and MALDI-TOF MS analysis of the proteolysis products, dynamic light scattering and analytical ultracentrifugation), as well as multiple computational algorithms, to analyse the intrinsic protein disorder. Taken together, the results obtained in the present study indicate that the C-terminal domain is weakly structured. We hypothesize that the specific 3D structural peculiarities of the M1 protein revealed in acidic pH solution allow the protein greater structural flexibility and enable it to interact effectively with the components of the host cell. © 2011 The Authors Journal compilation © 2011 FEBS.

  5. NITRIC ACID RECPVERY FROM WASTE COLUTIONS

    DOEpatents

    Wilson, A.S.

    1959-04-14

    The recovery of nitric acid from aqueous nitrate solutions containing fission products as impurities is described. It is desirable to subject such solutions to concentration by evaporation since nitric acid is regenerated thereby. A difficulty, however, is that the highly radioactive fission product ruthenium is volatilized together with the nitric acid. It has been found that by adding nitrous acids ruthenium volatilization is suppressed and reduced to a negligible degree so that the distillate obtained is practically free of rutheniuim.

  6. Field effects in graphene in an interface contact with aqueous solutions of acetic acid and potassium hydroxide

    NASA Astrophysics Data System (ADS)

    Butko, A. V.; Butko, V. Yu.; Lebedev, S. P.; Lebedev, A. A.; Kumzerov, Yu. A.

    2017-10-01

    For the creation of new promising chemical sensors, it is very important to study the influence of the interface between graphene and aqueous solutions of acids and alkalis on the transistor characteristics of graphene. Transistor structures on the basis of graphene grown by thermal decomposition of silicon carbide were created and studied. For the interface of graphene with aqueous solutions of acetic acid and potassium hydroxide in the transistor geometry, with a variation in the gate-to-source voltage, the field effect corresponding to the hole type of charge carriers in graphene was observed. It is established that an increase in the concentration of molecular ions in these solutions leads to an increase in the dependence of the resistance of the transistor on the gate voltage.

  7. Controlling mechanisms of metals release form cement-based waste form in acetic acid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Kuang Ye.

    1991-01-01

    The purpose of this dissertation is to identify the individual leaching mechanisms of metals by knowing the pH profile within the leached specimen and the physical and chemical properties of the leached material. Leaching of cement-based waste form in acetic acid solutions with different acidic strengths has been investigated in this work. The pH profile along the acid penetration route in the cement-based waste form was identified by various pH color indicators. The pH in the surface altered layer varies from 5.0 to 6.0, which is very close to the pH in the bulk leachate. A reacting zone, where themore » pH abruptly changes from 6 to 12, sharply divides the altered surface layer from the remaining unleached waste form or kernel. Leaching of metals is controlled by the acidity available in the leachant. Dissolution of alkaline materials leaves a silica-rich layer on the surface of the cement-based waste form. This surface layer exhibits different properties than those of the unleached material. The surface layer has a higher water content, is lighter weight, and is soft and friable. Furthermore, the abundant silicate content on the solid surface detains portion of the leached metals, while they are moving through the leached layer into bulk solution. The leaching of metals is a consequence of acid penetration. The distance from the solid/solution interface to the front of the leaching boundary can be regarded as the depth of leaching zone, where the metals dissolve and diffuse out of the waste form. The metal ions diffuse through the leached layer may be retarded on the solid surface by the pH-dependent adsorption reactions. It is found that the leaching process through the leached layer is diffusion-controlled for calcium and cadmium, whereas diffusion and adsorption occur simultaneously in the leached layer for lead and arsenic.« less

  8. SEMICONDUCTOR TECHNOLOGY: Wet etching characteristics of a HfSiON high-k dielectric in HF-based solutions

    NASA Astrophysics Data System (ADS)

    Yongliang, Li; Qiuxia, Xu

    2010-03-01

    The wet etching properties of a HfSiON high-k dielectric in HF-based solutions are investigated. HF-based solutions are the most promising wet chemistries for the removal of HfSiON, and etch selectivity of HF-based solutions can be improved by the addition of an acid and/or an alcohol to the HF solution. Due to densification during annealing, the etch rate of HfSiON annealed at 900 °C for 30 s is significantly reduced compared with as-deposited HfSiON in HF-based solutions. After the HfSiON film has been completely removed by HF-based solutions, it is not possible to etch the interfacial layer and the etched surface does not have a hydrophobic nature, since N diffuses to the interface layer or Si substrate formation of Si-N bonds that dissolves very slowly in HF-based solutions. Existing Si-N bonds at the interface between the new high-k dielectric deposit and the Si substrate may degrade the carrier mobility due to Coulomb scattering. In addition, we show that N2 plasma treatment before wet etching is not very effective in increasing the wet etch rate for a thin HfSiON film in our case.

  9. Spectral characterization of the fluorescent components present in humic substances, fulvic acid and humic acid mixed with pure benzo(a)pyrene solution

    NASA Astrophysics Data System (ADS)

    El Fallah, Rawa; Rouillon, Régis; Vouvé, Florence

    2018-06-01

    The fate of benzo(a)pyrene (BaP), a ubiquitous contaminant reported to be persistent in the environment, is largely controlled by its interactions with the soil organic matter. In the present study, the spectral characteristics of fluorophores present in the physical fractions of the soil organic matter were investigated in the presence of pure BaP solution. After extraction of humic substances (HSs), and their fractionation into fluvic acid (FA) and humic acid (HA), two fluorescent compounds (C1 and C2) were identified and characterized in each physical soil fraction, by means of fluorescence excitation-emission matrices (FEEMs) and Parallel Factor Analysis (PARAFAC). Then, to each type of fraction having similar DOC content, was added an increasing volume of pure BaP solution in attempt to assess the behavior of BaP with the fluorophores present in each one. The application of FEEMs-PARAFAC method validated a three-component model that consisted of the two resulted fluorophores from HSs, FA and HA (C1 and C2) and a BaP-like fluorophore (C3). Spectral modifications were noted for components C2HSs (C2 in humic substances fraction) (λex/λem: 420/490-520 nm), C2FA (C2 in fulvic acid fraction) (λex/λem: 400/487(517) nm) and C1HA (C1 in humic acid fraction) (λex/λem: 350/452(520) nm). We explored the impact of increasing the volume of the added pure BaP solution on the scores of the fluorophores present in the soil fractions. It was found that the scores of C2HSs, C2FA, and C1HA increased when the volume of the added pure BaP solution increased. Superposition of the excitation spectra of these fluorophores with the emission spectrum of BaP showed significant overlaps that might explain the observed interactions between BaP and the fluorescent compounds present in SOM physical fractions.

  10. Spectral characterization of the fluorescent components present in humic substances, fulvic acid and humic acid mixed with pure benzo(a)pyrene solution.

    PubMed

    El Fallah, Rawa; Rouillon, Régis; Vouvé, Florence

    2018-06-15

    The fate of benzo(a)pyrene (BaP), a ubiquitous contaminant reported to be persistent in the environment, is largely controlled by its interactions with the soil organic matter. In the present study, the spectral characteristics of fluorophores present in the physical fractions of the soil organic matter were investigated in the presence of pure BaP solution. After extraction of humic substances (HSs), and their fractionation into fluvic acid (FA) and humic acid (HA), two fluorescent compounds (C 1 and C 2 ) were identified and characterized in each physical soil fraction, by means of fluorescence excitation-emission matrices (FEEMs) and Parallel Factor Analysis (PARAFAC). Then, to each type of fraction having similar DOC content, was added an increasing volume of pure BaP solution in attempt to assess the behavior of BaP with the fluorophores present in each one. The application of FEEMs-PARAFAC method validated a three-component model that consisted of the two resulted fluorophores from HSs, FA and HA (C 1 and C 2 ) and a BaP-like fluorophore (C 3 ). Spectral modifications were noted for components C 2 HSs (C 2 in humic substances fraction) (λex/λem: 420/490-520 nm), C 2 FA (C 2 in fulvic acid fraction) (λex/λem: 400/487(517) nm) and C 1 HA (C 1 in humic acid fraction) (λex/λem: 350/452(520) nm). We explored the impact of increasing the volume of the added pure BaP solution on the scores of the fluorophores present in the soil fractions. It was found that the scores of C 2 HSs, C 2 FA, and C 1 HA increased when the volume of the added pure BaP solution increased. Superposition of the excitation spectra of these fluorophores with the emission spectrum of BaP showed significant overlaps that might explain the observed interactions between BaP and the fluorescent compounds present in SOM physical fractions. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson

    2014-07-01

    A system for forming metal hydroxide from a metal carbonate utilizes a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide.

  12. Protection of copper surface with phytic acid against corrosion in chloride solution.

    PubMed

    Peca, Dunja; Pihlar, Boris; Ingrid, Milošev

    2014-01-01

    Phytic acid (inositol hexaphosphate) was tested as a corrosion inhibitor for copper in 3% sodium chloride. Phytic acid is a natural compound derived from plants, it is not toxic and can be considered as a green inhibitor. Electrochemical methods of linear polarization and potentiodynamic polarization were used to study the electrochemical behaviour and evaluate the inhibition effectiveness. To obtain the optimal corrosion protection the following experimental conditions were investigated: effect of surface pre-treatment (abrasion and three procedures of surface roughening), pre-formation of the layer of phytic acid, time of immersion and concentration of phytic acid. To evaluate the surface pre-treatment procedures the surface roughness and contact angle were measured. Optimal conditions for formation of phytic layer were selected resulting in the inhibition effectiveness of nearly 80%. Morphology and composition of the layer were further studied by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The layer of phytic acid with thickness in the nanometer range homogeneously covers the copper surface. The obtained results show that this natural compound can be used as a mildly effective corrosion inhibitor for copper in chloride solution.

  13. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, Patrick V.

    1995-01-01

    A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  14. Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin.

    PubMed

    Chen, Yanliang; Wei, Yuezhou; He, Linfeng; Tang, Fangdong

    2016-09-30

    To separate thorium and uranium in nitric acid solution using anion exchange process, a strong base silica-based anion exchange resin (SiPyR-N4) was synthesized. Batch experiments were conducted and the separation factor of thorium and uranium in 9M nitric acid was about 10. Ion exchange chromatography was applied to separate thorium and uranium in different ratios. Uranium could be eluted by 9M nitric acid and thorium was eluted by 0.1M nitric acid. It was proved that thorium and uranium can be separated and recovered successfully by this method. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Intake of Ethanol, Sodium Chloride, Sucrose, Citric Acid, and Quinine Hydrochloride Solutions by Mice: A Genetic Analysis

    PubMed Central

    Bachmanov, A. A.; Reed, D. R.; Tordoff, M. G.; Price, R. A.; Beauchamp, G. K.

    2013-01-01

    Mice of the 129/J (129) and C57BL/6ByJ (B6) strains and their reciprocal F1 and F2 hybrids were offered solutions of ethanol, sucrose, citric acid, quinine hydrochloride, and NaCI in two-bottle choice tests. Consistent with earlier work, the B6 mice drank more ethanol, sucrose, citric acid, and quinine hydrochloride solution and less NaCI solution than did 129 mice. Analyses of each generation’s means and distributions showed that intakes of ethanol, quinine, sucrose, and NaCI were influenced by a few genes. The mode of inheritance was additive in the case of ethanol and quinine, for sucrose the genotype of the 129 strain was recessive, and for NaCI it was dominant. Citric acid intake appeared to be influenced by many genes with small effects, with the 129 genotype dominant. Correlations of sucrose consumption with ethanol and citric acid consumption were found among mice of the F2 generation, and the genetically determined component of these correlations was stronger than the component related to environmental factors. The genetically determined correlation between sucrose and ethanol intakes is consistent with the hypothesis that the higher ethanol intake by B6 mice depends, in part, on higher hedonic attractiveness of its sweet taste component. PMID:8990535

  16. Investigation of phase stability of poly(1-oxotrimethylene)-dissolved aqueous solutions containing ZnCl2/CaCl2/LiCl: Influence of boric acid introduction and aging time

    NASA Astrophysics Data System (ADS)

    Chae, Dong Wook; Jang, Han Beol; Kim, Byoung Chul

    2018-02-01

    Poly(1-oxotrimethylene) (POTM) was dissolved in aqueous solutions containing ZnCl2, CaCl2, and LiCl, and the effects of boric acid introduction on the phase stability of the POTM solutions over various aging times were investigated. In the absence of boric acid, aging at 70°C for 8 h notably reduced the loss tangent (tanδ) for the 7.0 wt.% POTM solutions. Addition of boric acid into unaged solutions had little effect on tanδ over the frequency range measured, regardless of its content, whereas addition of 0.3-1.0 wt.% of boric acid into aged solutions increased tanδ. The dynamic viscosity of the POTM solutions with 1.0 wt.% boric acid was affected little by aging time. Conversely, the POTM solutions without boric acid exhibited increased dynamic viscosity in the low-frequency range with aging time. In addition, the slope of the solutions in the Cole-Cole plot decreased with increasing aging time in the absence of boric acid, whereas aging time had little effect in the presence of 1.0 wt.% boric acid. For dilute POTM solutions ( i.e., 0.5 g/dL), the reduced viscosity decreased with increasing aging time in the absence of boric acid, while it was affected little in solutions with the addition of 1.0 wt.% boric acid. In the UV-Vis spectra, the aging-time-dependent increase of the absorbance peak at 390 nm was associated with the generation of a chromophoric complex in the POTM solutions. Conversely, the disappearance of the peak due to the addition of boric acid indicated suppression of complex formation.

  17. IMPROVEMENT UPON THE CARRIER PRECIPITATION OF PLUTONIUM IONS FROM NITRIC ACID SOLUTIONS

    DOEpatents

    James, R.A.; Thompson, S.G.

    1958-12-23

    A process is reported for improving the removal of plutonlum by carrier precipitation by the addition of nitrite ions to a nitrlc acid solutlon of neutronirradiated unanium so as to destroy any hydrazine that may be present in the solution since the hydrazine tends to complex the tetravalent plutonium and prevents removal by the carrier precipltate, such as bismuth phospbate.

  18. Evaluation of the smear layer removal and erosive capacity of EDTA, boric acid, citric acid and desy clean solutions: an in vitro study.

    PubMed

    Turk, Tugba; Kaval, Mehmet Emin; Şen, Bilge Hakan

    2015-09-03

    The purpose of this study was to investigate the smear layer removal and erosive capacity of various irrigation solutions with sequential use of NaOCl on instrumented root canal walls. The root canals of single-rooted teeth were instrumented with ProTaper rotary instrument. Then, the teeth were randomly divided into five experimental groups. The root canals were irrigated with one of the following solutions (5 mL/1 min): 5% EDTA, 5% boric acid (BA), a mixture of BA and CA, 2.5% citric acid (CA) and 5% Desy Clean. After irrigating with 2.5% NaOCl and distilled water, the roots were split into two halves and each half was prepared for SEM examination. Representative photographs were taken from each third at x500 and x1000 magnifications. Double blind scoring was performed by two calibrated observers for smear layer and erosion. The scores were statistically analyzed using Kruskal-Wallis, Dunn's post hoc and Spearman's correlation tests (p = 0.05). There were statistically significant differences among the solutions by means of smear layer and erosion (p < 0.05). While 2.5% CA solution was the most effective solution in removal of smear layer, it was also the most erosive solution (p < 0.05). 5% Desy Clean removed smear layer effectively and caused less erosion. There was a negative, but statistically significant correlation between presence of smear layer and erosion (r = -0.684; p < 0.0001). Desy Clean can be a promising agent as an irrigation solution with optimal smear layer removal capacity and less erosive effects.

  19. D-Galacturonic acid as a highly reactive compound in nonenzymatic browning. 1. Formation of browning active degradation products.

    PubMed

    Bornik, Maria-Anna; Kroh, Lothar W

    2013-04-10

    Thermal treatment of an aqueous solution of D-galacturonic acid at pH 3, 5, and 8 led to rapid browning of the solution and to the formation of carbocyclic compounds such as reductic acid (2,3-dihydroxy-2-cyclopenten-1-one), DHCP (4,5-dihydroxy-2-cyclopenten-1-one), and furan-2-carbaldehyde, as degradation products in weak acidic solution. Studies on their formation revealed 2-ketoglutaraldehyde as their common key intermediate. Norfuraneol (4-hydroxy-5-methyl-3-(2H)-furanone) is a typical alkaline degradation product and formed after isomerization. Further model studies revealed reductic acid as an important and more browning active compound than furan-2-carbaldehyde, which led to a red color of the model solution. This red-brown color is also characteristic of thermally treated uronic acid solutions.

  20. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, P.V.

    1995-11-28

    A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  1. Effect of acidic aqueous solution on chemical and physical properties of polyamide NF membranes

    NASA Astrophysics Data System (ADS)

    Jun, Byung-Moon; Kim, Su Hwan; Kwak, Sang Kyu; Kwon, Young-Nam

    2018-06-01

    This work was systematically investigated the effects of acidic aqueous solution (15 wt% sulfuric acid as model wastewater from smelting process) on the physical and chemical properties of commercially available nanofiltration (NF) polyamide membranes, using piperazine (PIP)-based NE40/70 membranes and m-phenylene diamine (MPD)-based NE90 membrane. Surface properties of the membranes were studied before and after exposure to strong acid using various analytical tools: Scanning Electron Microscopy (SEM), Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), contact angle analyzer, and electrophoretic light scattering spectrophotometer. The characterization and permeation results showed piperazine-based NE40/70 membranes have relatively lower acid-resistance than MPD-based NE90 membrane. Furthermore, density functional theory (DFT) calculation was also conducted to reveal the different acid-tolerances between the piperazine-based and MPD-based polyamide membranes. The easiest protonation was found to be the protonation of oxygen in piperazine-based monomer, and the N-protonation of the monomer had the lowest energy barrier in the rate determining step (RDS). The calculations were well compatible with the surface characterization results. In addition, the energy barrier in RDS is highly correlated with the twist angle (τD), which determines the delocalization of electrons between the carbonyl πCO bond and nitrogen lone pair, and the tendency of the twist angle was also maintained in longer molecules (dimer and trimer). This study clearly explained why the semi-aromatic membrane (NE40/70) is chemically less stable than the aromatic membrane (NE90) given the surface characterizations and DFT calculation results.

  2. Method for extracting lanthanides and actinides from acid solutions by modification of purex solvent

    DOEpatents

    Horwitz, E. Philip; Kalina, Dale G.

    1986-01-01

    A process for the recovery of actinide and lanthanide values from aqueous solutions with an extraction solution containing an organic extractant having the formula: ##STR1## where .phi. is phenyl, R.sup.1 is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R.sup.2 is an alkyl containing from 3 to 6 carbon atoms and phase modifiers in a water-immiscible hydrocarbon diluent. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions.

  3. Regularities in the association of polymethacrylic acid with benzethonium chloride in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Tugay, A. V.; Zakordonskiy, V. P.

    2006-06-01

    The association of cationogenic benzethonium chloride with polymethacrylic acid in aqueous solutions was studied by nephelometry, conductometry, tensiometry, viscometry, and pH-metry. The critical concentrations of aggregation and polymer saturation with the surface-active substance were determined. A model describing processes in such systems step by step was suggested.

  4. Kinetics of reactions of aquacobalamin with aspartic and glutamic acids and their amides in water solutions

    NASA Astrophysics Data System (ADS)

    Bui, T. T. T.; Sal'nikov, D. S.; Dereven'kov, I. A.; Makarov, S. V.

    2017-04-01

    The kinetics of aquacobalamin reaction with aspartic and glutamic acids, and with their amides in water solutions, is studied via spectrophotometry. The kinetic and activation parameters of the process are determined. It is shown that the reaction product is cobalamin-amino acid complex. The data are compared to results on the reaction between aquacobalamin and primary amines.

  5. The effects of electrolysis on operational solutions in electromembrane extraction: The role of acceptor solution.

    PubMed

    Kubáň, Pavel; Boček, Petr

    2015-06-12

    Fundamental operational principle and instrumental set-up of electromembrane extraction (EME) suggest that electrolysis may play an important role in this recently developed micro-extraction technique. In the present study, the effect of electrolysis in EME is described comprehensively for the first time and it is demonstrated that electrolysis considerably influences EME performance. Micro-electromembrane extraction (μ-EME) across free liquid membrane formed by 1-pentanol was utilized for real-time monitoring of the electrolytically induced changes in composition of μ-EME solutions. These changes were visualized with a set of acid-base indicators. Changes in colours of their aqueous solutions revealed serious variations in their pH values, which occurred within seconds to minutes of the μ-EME process. Variations of up to eight pH units were observed for indicator solutions initially prepared in 1, 5 and 10mM hydrochloric acid. No or only negligible pH changes (less than 0.15 pH unit) were observed for indicator solutions prepared in 50 and 100mM acetic acid demonstrating that initial composition of the aqueous solutions was the crucial parameter. These results were also confirmed by theoretical calculations of maximum pH variations in the solutions, which were based on total electric charge transfers measured in the μ-EME systems, and by exact measurements of their pH values after μ-EMEs. Acceptor solutions that, in the current practice, consist predominantly of low concentrations of strong mineral acids or alkali hydroxides may thus not always ensure adequate EME performance, which was manifested by decrease in extraction recoveries of a basic drug papaverine. A suitable remedy to the observed effects is the application of acceptor solutions containing high concentrations of weak acids or bases. These solutions not only eliminate the decrease in recoveries but also serve well as matrices of extracted samples for subsequent analysis by capillary

  6. ZrB 2-HfB 2 solid solutions as electrode materials for hydrogen reaction in acidic and basic solutions

    DOE PAGES

    Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit

    2016-11-09

    Spark plasma sintered transition metal diborides such as HfB 2, ZrB 2 and their solid solutions were investigated as electrode materials for electrochemical hydrogen evolutions reactions (HER) in 1 M H 2SO 4 and 1 M NaOH electrolytes. HfB 2 and ZrB 2 formed complete solid solutions when mixed in 1:1, 1:4, and 4:1 ratios and they were stable in both electrolytes. The HER kinetics of the diborides were slower in the basic solution than in the acidic solutions. The Tafel slopes in 1 M H 2SO 4 were in the range of 0.15 - 0.18 V/decade except for puremore » HfB 2 which showed a Tafel slope of 0.38 V/decade. In 1 M NaOH the Tafel slopes were in the range of 0.12 - 0.27 V/decade. The composition of Hf xZr 1-xB 2 solid solutions with x = 0.2 - 0.8, influenced the exchange current densities, overpotentials and Tafel slopes of the HER. As a result, the EIS data were fitted with a porous film equivalent circuit model in order to better understand the HER behavior. In addition, modeling calculations, using density functional theory approach, were carried out to estimate the density of states and band structure of the boride solid solutions.« less

  7. A High-Fat, High-Oleic Diet, But Not a High-Fat, Saturated Diet, Reduces Hepatic α-Linolenic Acid and Eicosapentaenoic Acid Content in Mice.

    PubMed

    Picklo, Matthew J; Murphy, Eric J

    2016-05-01

    Considerable research has focused upon the role of linoleic acid (LNA; 18:2n-6) as a competitive inhibitor of α-linolenic (ALA; 18:3n-3) metabolism; however, little data exist as to the impact of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) on ALA metabolism. We tested the hypothesis that a high SFA diet, compared to a high MUFA (oleic acid 18:1n-9) diet, reduces ALA conversion to long chain n-3 fatty acids. Mice were fed for 12 weeks on three diets: (1) a control, 16 % fat energy diet consisting of similar levels of SFA and MUFA (2) a 50 % fat energy high MUFA energy diet (35 % MUFA and 7 % SFA) or (3) a 50 % fat energy, high SFA energy diet (34 % SFA, 8 % MUFA). ALA and LNA content remained constant. Analysis of hepatic lipids demonstrated a selective reduction (40 %) in ALA but not LNA and a 35 % reduction in eicosapentaenoic acid (EPA; 20:5n-3) in the high MUFA mice compared to the other groups. Lower content of ALA was reflected in the neutral lipid fraction, while smaller levels of phospholipid esterified EPA and docosapentaenoic acid (DPA; 22:5n-3) were evident. Docosahexaenoic acid (DHA; 22:6n-3) content was elevated by the high SFA diet. Expression of Fads1 (Δ5 desaturase) and Fads2 (Δ6 desaturase) was elevated by the high MUFA and reduced by the high SFA diet. These data indicate that a high MUFA diet, but not a high SFA diet, reduces ALA metabolism and point to selective hepatic disposition of ALA versus LNA.

  8. Inhibitory effect of aroma on the bitterness of branched-chain amino acid solutions.

    PubMed

    Mukai, Junji; Tokuyama, Emi; Ishizaka, Toshihiko; Okada, Sachie; Uchida, Takahiro

    2007-11-01

    Nutritional products for patients with liver failure available on the Japanese market contain many branched-chain amino acids (BCAAs) such as L-leucine, L-isoleucine, and L-valine, which not only have a bitter taste but also strong, unpleasant odours, leading to low palatability. The palatability of these nutritional products can be significantly improved by the addition of flavoured powders containing various kinds of tastants (sucrose, citric acid, etc.) and odourants (fruit, coffee aromas, etc.). The specific effects of the aroma of flavoured powders have not yet been clearly evaluated. In the present article, the inhibitory effect of aroma on the bitterness of BCAA solutions was examined. The bitterness intensity of a BCAA solution at the same concentration as Aminoleban EN was defined as 3.5 (measured by a previously described gustatory sensation method). The bitterness threshold of a BCAA standard solution without added aroma was estimated to be 1.87, while those of BCAA solutions containing green-tea, coffee, apple, vanilla, or strawberry aromas were 2.02, 1.98, 2.35, 2.40 and 2.87, respectively, when evaluated by the probit method. This shows that the addition of an aroma can elevate the bitterness threshold in human volunteers. The green-tea and coffee aromas predominantly evoked bitterness, while the vanilla aroma predominantly evoked sweetness. Apple and strawberry aromas evoked both sweetness and sourness, with the apple aroma having stronger sourness and the strawberry aroma stronger sweetness. Thus, a 'sweet' aroma suppresses the bitterness of BCAA, with coexisting sourness also participating in the bitterness inhibition.

  9. Color removal from acid and reactive dye solutions by electrocoagulation and electrocoagulation/adsorption processes.

    PubMed

    Bellebia, S; Kacha, S; Bouberka, Z; Bouyakoub, A Z; Derriche, Z

    2009-04-01

    In this study, electrocoagulation of Marine Blue Erionyl MR (acid dye) and electrocoagulation followed by adsorption of Brilliant Blue Levafix E-BRA (reactive dye) from aqueous solutions were investigated, using aluminum electrodes and granular activated carbon (GAC). In the electrocoagulation and adsorption of dyestuff solutions, the effects of current density, loading charge, pH, conductivity, stirring velocity, contact time, and GAC concentration were examined. The optimum conditions for the electrocoagulation process were identified as loading charges 7.46 and 1.49 F/m3, for a maximum abatement of 200 mg/L reactive and acid dye, respectively. The residual reactive dye concentration was completely removed with 700 mg/L GAC. The results of this investigation provide important data for the development of a combined process to remove significant concentrations of recalcitrant dyes from water, using moderate activated carbon energy and aluminum consumption, and thereby lowering the cost of treatment.

  10. Y2O3:Eu phosphor particles prepared by spray pyrolysis from a solution containing citric acid and polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Roh, H. S.; Kang, Y. C.; Park, H. D.; Park, S. B.

    Y2O3:Eu phosphor particles were prepared by large-scale spray pyrolysis. The morphological control of Y2O3:Eu particles in spray pyrolysis was attempted by adding polymeric precursors to the spray solution. The effect of composition and amount of polymeric precursors on the morphology, crystallinity and photoluminescence characteristics of Y2O3:Eu particles was investigated. Particles prepared from a solution containing polyethylene glycol (PEG) with an average molecular weight of 200 had a hollow structure, while those prepared from solutions containing adequate amounts of citric acid (CA) and PEG had a spherical shape, filled morphology and clean surfaces after post-treatment at high temperature. Y2O3:Eu particles prepared from an aqueous solution with no polymeric precursors had a hollow structure and rough surfaces after post-treatment. The phosphor particles prepared from solutions with inadequate amounts of CA and/or PEG also had hollow and/or fragmented structures. The particles prepared from the solution containing 0.3 M CA and 0.3 M PEG had the highest photoluminescence emission intensity, which was 56% higher than that of the particles prepared from aqueous solution without polymeric precursors.

  11. Study of IGA/SCC behavior of alloy 600 and 690 SG tubing materials in high temperature solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsujikawa, S.; Yashima, S.; Hattori, T.

    1996-09-01

    Intergranular attack/stress corrosion cracking (IGA/SCC) of Alloy 600 Steam Generator (SG) tubes in the secondary side has been recognized as a matter of great concern for PWRs. Here, IGA/SCC behavior of Alloy 600 and 690 in high temperature solutions was studied using constant extension rate testing (CERT) method under potentiostatic conditions. The IGA/SCC susceptible regions were investigated as a function of pH and electrode potential. The IGA/SCC resistance of SG tubing materials were ranked as, MA600 = TT600 {much_lt} TT690 in acidic solutions, and MA600 < TT600 < TT690 in alkaline solutions. TT690 showed higher corrosion resistance than MA600 andmore » TT600 in both acidic and alkaline conditions. To verify the results of CERT test, long term model boiler tests were also carried out. The model boiler which consists of combinations of several SG tubing materials and tube support plate configurations, operated for more than 15,000 hrs under the simulated operating plant conditions. The results of destructive examination showed good correspondence with the results of a fundamental study, CERT test. The improved performance of alternate SG tubing material was confirmed.« less

  12. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    NASA Astrophysics Data System (ADS)

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-05-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition.

  13. Method for extracting lanthanides and actinides from acid solutions by modification of Purex solvent

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.

    1986-03-04

    A process is described for the recovery of actinide and lanthanide values from aqueous solutions with an extraction solution containing an organic extractant having the formula as shown in a diagram where [phi] is phenyl, R[sup 1] is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R[sup 2] is an alkyl containing from 3 to 6 carbon atoms and phase modifiers in a water-immiscible hydrocarbon diluent. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions. 6 figs.

  14. Effect of various halide salts on the incompatibility of cyanocobalamin and ascorbic acid in aqueous solution.

    PubMed

    Ichikawa, Makoto; Ide, Nagatoshi; Shiraishi, Sumihiro; Ono, Kazuhisa

    2005-06-01

    Combination of cyanocobalamin (VB12) and ascorbic acid (VC) has been widely seen in pharmaceutical products and dietary supplements. However, VB12 has been reported that its behavior in stability in aqueous solution is quite different when VC is mixed. In the present study, we examined the stabilities of these vitamins in acetate buffer (pH 4.8) using high performance liquid chromatography. Degradation of VB12 was not observed in the absence of VC in the buffer. However, when VC was mixed in the VB12 solution, VB12 concentrations decreased in accordance with VC degradation. VB12 and VC degradations were inhibited by adding sodium halides to acetate buffer at pH 4.8. These stabilization effects were also observed in the range from pH 3.5 to 5.3 and by adding potassium, magnesium, and calcium halides. Furthermore, our data demonstrated that increases in the halide anion concentrations and atomic number (Cl-solution.

  15. Investigating the Influence of Polymers on Supersaturated Flufenamic Acid Cocrystal Solutions.

    PubMed

    Guo, Minshan; Wang, Ke; Hamill, Noel; Lorimer, Keith; Li, Mingzhong

    2016-09-06

    The development of enabling formulations is a key stage when demonstrating the effectiveness of pharmaceutical cocrystals to maximize the oral bioavailability for poorly water soluble drugs. Inhibition of drug crystallization from a supersaturated cocrystal solution through a fundamental understanding of the nucleation and crystal growth is important. In this study, the influence of the three polymers of polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), and a copolymer of N-vinly-2-pyrrodidone (60%) and vinyl acetate (40%) (PVP-VA) on the flufenamic acid (FFA) crystallization from three different supersaturated solutions of the pure FFA and two cocrystals of FFA-NIC CO and FFA-TP CO has been investigated by measuring nucleation induction times and desupersaturation rates in the presence and absence of seed crystals. It was found that the competition of intermolecular hydrogen bonding among drug/coformer, drug/polymer, and coformer/polymer was a key factor responsible for maintaining supersaturation through nucleation inhibition and crystal growth modification in a cocrystal solution. The supersaturated cocrystal solutions with predissolved PEG demonstrated more effective stabilization in comparison to the pure FFA in the presence of the same polymer. In contrast, neither of the two cocrystal solutions, in the presence of PVP or PVP-VA, exhibited a better performance than the pure FFA with the same predissolved polymer. The study suggests that the selection of a polymeric excipient in a cocrystal formulation should not be solely dependent on the interplay of the parent drug and polymer without considering the coformer effects.

  16. Structure and dynamics of hyaluronic acid semidilute solutions: a dielectric spectroscopy study.

    PubMed

    Vuletić, T; Dolanski Babić, S; Ivek, T; Grgicin, D; Tomić, S; Podgornik, R

    2010-07-01

    Dielectric spectroscopy is used to investigate fundamental length scales describing the structure of hyaluronic acid sodium salt (Na-HA) semidilute aqueous solutions. In salt-free regime, the length scale of the relaxation mode detected in MHz range scales with HA concentration as c(HA)(-0.5) and corresponds to the de Gennes-Pfeuty-Dobrynin correlation length of polyelectrolytes in semidilute solution. The same scaling was observed for the case of long, genomic DNA. Conversely, the length scale of the mode detected in kilohertz range also varies with HA concentration as c(HA)(-0.5) which differs from the case of DNA (c(DNA)(-0.25)). The observed behavior suggests that the relaxation in the kilohertz range reveals the de Gennes-Dobrynin renormalized Debye screening length, and not the average size of the chain, as the pertinent length scale. Similarly, with increasing added salt the electrostatic contribution to the HA persistence length is observed to scale as the Debye length, contrary to scaling pertinent to the Odijk-Skolnick-Fixman electrostatic persistence length observed in the case of DNA. We argue that the observed features of the kilohertz range relaxation are due to much weaker electrostatic interactions that lead to the absence of Manning condensation as well as a rather high flexibility of HA as compared to DNA.

  17. Photophysics and Photochemistry of 2-Aminobenzoic Acid Anion in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Pozdnyakov, Ivan P.; Plyusnin, Victor F.; Grivin, Vjacheslav P.

    2009-11-01

    Nanosecond laser flash photolysis and absorption and fluorescence spectroscopy were used to study photochemical processes of 2-aminobenzoic acid anion (ABA-) in aqueous solutions. Excitation of this species gives rise to the ABA- triplet state to the ABA• radical and to the hydrated electron (eaq-). The last two species result from two-photon processes. In a neutral medium, the main decay channels of ABA- triplet state, the ABA• radical, and eaq- are T-T annihilation, recombination, and capture by the ABA- anion, respectively.

  18. Uptake of Cr3+ from aqueous solution by lignite-based humic acids.

    PubMed

    Arslan, G; Pehlivan, E

    2008-11-01

    Humic acid (HA) produced from brown coal, a relatively abundant and inexpensive material is currently being investigated as an adsorbent to remove toxic metals from aqueous solution. The influence of five parameters (contact time, solution pH, initial metal concentration, temperature and amount of adsorbent) on the removal at 20+/-1 degrees C was studied. HAs were prepared from lignites by using alkaline extraction, sedimentation and acidic precipitation. Adsorption equilibrium was achieved in about 60 min for Cr3+ ion. The Langmuir adsorption isotherm was used to describe observed sorption phenomena. The maximum adsorption capacity of 0.17 mmol for Ilgin (HA1), 0.29 mmol for Beysehir (HA2) and 0.18 mmol Ermenek (HA3) and 0.17 mmol of Cr3+/g for activated carbon (AC) was achieved, respectively at pH of 4.1. More than 84% of Cr3+ was removed by HA2, 54% by HA3 and 51% by HA1 and 50% by AC from aqueous solution. The adsorption was strongly dependent on pH but independent of ionic strength and metal ions. The adsorption of Cr3+ was higher between pH 4.1 and 5.1 for all HAs and maximum sorption was observed at pH 4.1. The rise in temperature caused a slight decrease in the value of the equilibrium constant (Kc) for the sorption of Cr3+ ion. Complex mechanisms including ion exchange, complexation and adsorption and size exclusion are possible for sorption of Cr3+ ion on HAs.

  19. Mechanism of Corrosion by Naphthenic Acids and Organosulfur Compounds at High Temperatures

    NASA Astrophysics Data System (ADS)

    Jin, Peng

    Due to the law of supply and demand, the last decade has witnessed a skyrocketing in the price of light sweet crude oil. Therefore, refineries are increasingly interested in "opportunity crudes", characterized by their discounted price and relative ease of procurement. However, the attractive economics of opportunity crudes come with the disadvantage of high acid/organosulfur compound content, which could lead to corrosion and even failure of facilities in refineries. However, it is generally accepted that organosulfur compounds may form protective iron sulfide layers on the metal surface and decrease the corrosion rate. Therefore, it is necessary to investigate the corrosive property of crudes at high temperatures, the mechanism of corrosion by acids (naphthenic acids) in the presence of organosulfur compounds, and methods to mitigate its corrosive effect. In 2004, an industrial project was initiated at the Institute for Corrosion and Multiphase Technology to investigate the corrosion by naphthenic acids and organosulfur compounds. In this project, for each experiment there were two experimentation phases: pretreatment and challenge. In the first pretreatment phase, a stirred autoclave was filled with a real crude oil fraction or model oil of different acidity and organosulfur compound concentration. Then, the stirred autoclave was heated to high temperatures to examine the corrosivity of the oil to different materials (specimens made from CS and 5% Cr containing steel were used). During the pretreatment, corrosion product layers were formed on the metal surface. In the second challenge phase, the steel specimens pretreated in the first phase were inserted into a rotating cylinder autoclave, called High Velocity Rig (HVR). The HVR was fed with a high-temperature oil solution of naphthenic acids to attack the iron sulfide layers. Based on the difference of specimen weight loss between the two steps, the net corrosion rate could be calculated and the protectiveness

  20. Deciphering the role and nature of phosphate species at the surface of stainless steel immersed in phosphoric acid solutions

    NASA Astrophysics Data System (ADS)

    Liascukiene, I.; Ben Salah, M.; Sabot, R.; Refait, Ph.; Dhouibi, L.; Méthivier, C.; Landoulsi, J.; Jeannin, M.

    2018-03-01

    We investigate the evolution of the surface of a highly alloyed stainless steel (Sanicro 28) upon immersion in aqueous phosphoric acid solutions. For this purpose, both short- (few hours) and long-term immersion (several days) were carried out. A detailed analysis of XPS spectra allowed a distinction to be made between oxygen originating from the organic adlayer (adventitious contamination), the passive oxide layer, and adsorbed phosphate species. By estimating the fraction of oxygen due to phosphate species (Oph), it was shown that the Oph/P molar concentration ratio was ranging from about 2 to 3. This suggests the presence of a polyphosphate layer at the stainless steel surface, as also supported by Raman analysis, which influence the electrochemical behavior of SS in the acidic media.

  1. Solution of Azelaic Acid (20%), Resorcinol (10%) and Phytic Acid (6%) Versus Glycolic Acid (50%) Peeling Agent in the Treatment of Female Patients with Facial Melasma.

    PubMed

    Faghihi, Gita; Taheri, Azam; Shahmoradi, Zabihollah; Nilforoushzadeh, Mohammad Ali

    2017-01-01

    Melasma, a common acquired disorder of hyperpigmentation, especially in women, is often resistant to therapy. This study was aimed to evaluate the efficacy and safety of azelaic acid, resorcinol and phytic acid solution in chemical peeling of melasma in comparison to 50% glycolic acid. This clinical trial was performed, on 42 female patients with bilateral melasma. Severity of melasma was assessed by melasma area and severity index (MASI). Combination of (20% azelaic acid + 10% resorcinol + 6% phytic acid) was used as a new peeling agent on the right side of the face and 50% glycolic acid on the left side every 2 weeks for 6 times. Follow-up was carried out for 3 months after the last session. Any decrease in MASI score and unwanted complications following peeling were evaluated and compared during the trial. Patients showed marked improvement as calculated with MASI score before and after treatment in both sides of the face. The efficacy of combination formula (azelaic acid, resorcinol and phytic acid) was similar to glycolic acid, but with fewer complications. There was no statistically difference in improvement between two groups ( P > 0.05). However, the patient's discomfort following procedures was significantly lower with azelaic acid, resorcinol and phytic compared with the glycolic acid peels ( P < 0.05) and there was the same duration in the beginning of the therapeutic response in both groups. Results showed that triple-combination was found to be an effective and safe peeling agent in the treatment of melasma and it was as effective as 50% glycolic acid peel.

  2. Macrophage Biocompatibility of CoCr Wear Particles Produced under Polarization in Hyaluronic Acid Aqueous Solution

    PubMed Central

    Perez-Maceda, Blanca Teresa; López-Fernández, María Encarnación; Díaz, Iván; Kavanaugh, Aaron; Billi, Fabrizio; Escudero, María Lorenza; García-Alonso, María Cristina; Lozano, Rosa María

    2018-01-01

    Macrophages are the main cells involved in inflammatory processes and in the primary response to debris derived from wear of implanted CoCr alloys. The biocompatibility of wear particles from a high carbon CoCr alloy produced under polarization in hyaluronic acid (HA) aqueous solution was evaluated in J774A.1 mouse macrophages cultures. Polarization was applied to mimic the electrical interactions observed in living tissues. Wear tests were performed in a pin-on-disk tribometer integrating an electrochemical cell in phosphate buffer solution (PBS) and in PBS supplemented with 3 g/L HA, an average concentration that is generally found in synovial fluid, used as lubricant solution. Wear particles produced in 3 g/L HA solution showed a higher biocompatibility in J774A.1 macrophages in comparison to those elicited by particles obtained in PBS. A considerable enhancement in macrophages biocompatibility in the presence of 3 g/L of HA was further observed by the application of polarization at potentials having current densities typical of injured tissues suggesting that polarization produces an effect on the surface of the metallic material that leads to the production of wear particles that seem to be macrophage-biocompatible and less cytotoxic. The results showed the convenience of considering the influence of the electric interactions in the chemical composition of debris detached from metallic surfaces under wear corrosion to get a better understanding of the biological effects caused by the wear products. PMID:29738506

  3. Thermal Stability of Acetohydroxamic Acid/Nitric Acid Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudisill, T.S.

    2002-03-13

    The transmutation of transuranic actinides and long-lived fission products in spent commercial nuclear reactor fuel has been proposed as one element of the Advanced Accelerator Applications Program. Preparation of targets for irradiation in an accelerator-driven subcritical reactor would involve dissolution of the fuel and separation of uranium, technetium, and iodine from the transuranic actinides and other fission products. The UREX solvent extraction process is being developed to reject and isolate the transuranic actinides in the acid waste stream by scrubbing with acetohydroxamic acid (AHA). To ensure that a runaway reaction will not occur between nitric acid and AHA, an analoguemore » of hydroxyl amine, thermal stability tests were performed to identify if any processing conditions could lead to a runaway reaction.« less

  4. The effect of particle immersing in acetic acid solution on dimensional stability and strength properties of particleboard

    NASA Astrophysics Data System (ADS)

    Heri Iswanto, Apri; Hermanto, Samuel; Sucipto, Tito

    2018-03-01

    The objective of the research was to evaluate the effect of particle immersing treatments in acetic acid (AA) solution on dimensional stability and strength properties of particleboard. Particle was immersed in various level AA solution namely 0 (untreated), 1, 2, 3, 4% for 24 hours. Afterward, the particle was oven dried up to 5% moisture content. The amount of 12% UF resin level used for binding in manufacturing particleboard. Board size, thickness and density target in this experiment was 25 by 25 cm2, 1 cm, and 0.75 g/cm3 respectively. After mat forming, board pressed using 130°C temperature, 30 kg/cm2, and pressure for 10 minutes. The results showed that particles immersing in AA solution provide enhancement of thickness swelling (TS) parameters. Overall, 1% AA solution is the best treatment to improve dimensional stability. The similar results also showed by internal bond value. In general, the excess of 1% acetic acid level resulted in decreasing of IB value. A similar trend also occurs in modulus of rupture (MoR) and modulus of elasticity (MoE) parameters.

  5. Extraction of Trivalent Actinides and Lanthanides from Californium Campaign Rework Solution Using TODGA-based Solvent Extraction System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benker, Dennis; Delmau, Laetitia Helene; Dryman, Joshua Cory

    This report presents the studies carried out to demonstrate the possibility of quantitatively extracting trivalent actinides and lanthanides from highly acidic solutions using a neutral ligand-based solvent extraction system. These studies stemmed from the perceived advantage of such systems over cationexchange- based solvent extraction systems that require an extensive feed adjustment to make a low-acid feed. The targeted feed solutions are highly acidic aqueous phases obtained after the dissolution of curium targets during a californium (Cf) campaign. Results obtained with actual Cf campaign solutions, but highly diluted to be manageable in a glove box, are presented, followed by results ofmore » tests run in the hot cells with Cf campaign rework solutions. It was demonstrated that a solvent extraction system based on the tetraoctyl diglycolamide molecule is capable of quantitatively extracting trivalent actinides from highly acidic solutions. This system was validated using actual feeds from a Cf campaign.« less

  6. Laboratory replication of filtration procedures associated with Serratia marcescens bloodstream infections in patients receiving compounded amino acid solutions.

    PubMed

    Moulton-Meissner, Heather; Noble-Wang, Judith; Gupta, Neil; Hocevar, Susan; Kallen, Alex; Arduino, Matthew

    2015-08-01

    Specific deviations from United States Pharmacopeia standards were analyzed to investigate the factors allowing an outbreak of Serratia marcescens bloodstream infections in patients receiving compounded amino acid solutions. Filter challenge experiments using the outbreak strain of S. marcescens were compared with those that used the filter challenge organism recommended by ASTM International (Brevundimonas diminuta ATCC 19162) to determine the frequency and degree of organism breakthrough. Disk and capsule filters (0.22- and 0.2-μm nominal pore size, respectively) were challenged with either the outbreak strain of S. marcescens or B. diminuta ATCC 19162. The following variables were compared: culture conditions in which organisms were grown overnight or cultured in sterile water (starved), solution type (15% amino acid solution or sterile water), and filtration with or without a 0.5-μm prefilter. Small-scale, syringe-driven, disk-filtration experiments of starved bacterial cultures indicated that approximately 1 in every 1,000 starved S. marcescens cells (0.12%) was able to pass through a 0.22-μm nominal pore-size filter, and about 1 in every 1,000,000 cells was able to pass through a 0.1-μm nominal pore-size filter. No passage of the B. diminuta ATCC 19162 cells was observed with either filter. In full-scale experiments, breakthrough was observed only when 0.2-μm capsule filters were challenged with starved S. marcescens in 15% amino acid solution without a 0.5-μm prefiltration step. Laboratory simulation testing revealed that under certain conditions, bacteria can pass through 0.22- and 0.2-μm filters intended for sterilization of an amino acid solution. Bacteria did not pass through 0.2-μm filters when a 0.5-μm prefilter was used. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  7. Speciation of aqueous Ni(II)-carboxylate and Ni(II)-fulvic acid solutions: Combined ATR-FTIR and XAFS analysis

    NASA Astrophysics Data System (ADS)

    Strathmann, Timothy J.; Myneni, Satish C. B.

    2004-09-01

    Aqueous solutions containing Ni(II) and a series of structurally related carboxylic acids were analyzed using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Ni K-edge X-ray absorption fine structure spectroscopy (XAFS). XAFS spectra were also collected for solutions containing Ni 2+ and chelating ligands (ethylenediaminetetraacetic acid, nitrilotriacetic acid (NTA)) as well as soil fulvic acid. Limited spectral changes are observed for aqueous Ni(II) complexes with monocarboxylates (formate, acetate) and long-chain polycarboxylates (succinate, tricarballylate), where individual donor groups are separated by multiple bridging methylene groups. These spectral changes indicate weak interactions between Ni(II) and carboxylates, and the trends are similar to some earlier reports for crystalline Ni(II)-acetate solids, for which X-ray crystallography studies have indicated monodentate Ni(II)-carboxylate coordination. Nonetheless, electrostatic or outer-sphere coordination cannot be ruled out for these complexes. However, spectral changes observed for short-chain dicarboxylates (oxalate, malonate) and carboxylates that contain an alcohol donor group adjacent to one of the carboxylate groups (lactate, malate, citrate) demonstrate inner-sphere metal coordination by multiple donor groups. XAFS spectral fits of Ni(II) solutions containing soil fulvic acid are consistent with inner-sphere Ni(II) coordination by one or more carboxylate groups, but spectra are noisy and outer-sphere modes of coordination cannot be ruled out. These molecular studies refine our understanding of the interactions between carboxylates and weakly complexing divalent transition metals, such as Ni(II).

  8. Calcium and ascorbic acid affect cellular structure and water mobility in apple tissue during osmotic dehydration in sucrose solutions.

    PubMed

    Mauro, Maria A; Dellarosa, Nicolò; Tylewicz, Urszula; Tappi, Silvia; Laghi, Luca; Rocculi, Pietro; Rosa, Marco Dalla

    2016-03-15

    The effects of the addition of calcium lactate and ascorbic acid to sucrose osmotic solutions on cell viability and microstructure of apple tissue were studied. In addition, water distribution and mobility modification of the different cellular compartments were observed. Fluorescence microscopy, light microscopy and time domain nuclear magnetic resonance (TD-NMR) were respectively used to evaluate cell viability and microstructural changes during osmotic dehydration. Tissues treated in a sucrose-calcium lactate-ascorbic acid solution did not show viability. Calcium lactate had some effects on cell walls and membranes. Sucrose solution visibly preserved the protoplast viability and slightly influenced the water distribution within the apple tissue, as highlighted by TD-NMR, which showed higher proton intensity in the vacuoles and lower intensity in cytoplasm-free spaces compared to other treatments. The presence of ascorbic acid enhanced calcium impregnation, which was associated with permeability changes of the cellular wall and membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Effects of air polishing and an amino acid buffered hypochlorite solution to dentin surfaces and periodontal ligament cell survival, attachment, and spreading.

    PubMed

    Schmidlin, Patrick R; Fujioka-Kobayashi, Masako; Mueller, Heinz-Dieter; Sculean, Anton; Lussi, Adrian; Miron, Richard J

    2017-06-01

    The aim of this study is to examine morphological changes of dentin surfaces following air polishing or amino acid buffered hypochlorite solution application and to assess their influence on periodontal ligament (PDL) cell survival, attachment, and spreading to dentin discs in vitro. Bovine dentin discs were treated with either (i) Classic, (ii) Plus, or (iii) Perio powder (EMS). Furthermore, Perisolv® a hypochlorite solution buffered with various amino acids was investigated. Untreated dentin discs served as controls. Morphological changes to dentin discs were assessed using scanning electron microscopy (SEM). Human PDL cells were seeded onto the respectively treated discs, and samples were then investigated for PDL cell survival, attachment, and spreading using a live/dead assay, adhesion assay, and SEM imaging, respectively. Both control and Perisolv®-rinsed dentin discs demonstrated smooth surfaces at low and high magnifications. The Classic powders demonstrated the thickest coating followed by the Powder Plus. The Perio powder demonstrated marked alterations of dentin discs by revealing the potential to open dentinal tubules even before rinsing. Seeding of PDL cells demonstrated an almost 100 % survival rate on all samples demonstrating very high biocompatibility for all materials. Significantly higher PDL cell numbers were observed on samples treated with the Perio powder and the Perisolv® solution (approximately 40 % more cells; p < 0.05). SEM imaging revealed the potential for PDL cells to attach and spread on all surfaces. The results from the present study demonstrate that cell survival and spreading of PDL cells on root surfaces is possible following either air polishing or application with Perisolv®. Future in vitro and animal testing is necessary to further characterize the beneficial effects of either system in a clinical setting. The use of air polishing or application with Perisolv amino acid buffered hypochlorite solution was effective in

  10. Glass formation and unusual hygroscopic growth of iodic acid solution droplets with relevance for iodine mediated particle formation in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Murray, B. J.; Haddrell, A. E.; Peppe, S.; Davies, J. F.; Reid, J. P.; O'Sullivan, D.; Price, H. C.; Kumar, R.; Saunders, R. W.; Plane, J. M. C.; Umo, N. S.; Wilson, T. W.

    2012-09-01

    Iodine oxide particles are known to nucleate in the marine boundary layer where gas phase molecular iodine and organoiodine species are produced by macroalgae. These ultra-fine particles may then grow through the condensation of other materials to sizes where they may serve as cloud condensation nuclei. There has been some debate over the chemical identity of the initially nucleated particles. In laboratory simulations, hygroscopic measurements have been used to infer that they are composed of insoluble I2O4, while elemental analysis of laboratory generated particles suggests soluble I2O5 or its hydrated form iodic acid, HIO3 (I2O5·H2O). In this paper we explore the response of super-micron sized aqueous iodic acid solution droplets to varying humidity using both Raman microscopy and single particle electrodynamic traps. These measurements reveal that the propensity of an iodic acid solution droplet to crystallise is negligible on drying to ~0% relative humidity (RH). On applying mechanical pressure to these droplets they shatter in a manner consistent with an ultra-viscous liquid or a brittle glass. Water retention in amorphous material at low RH is important for understanding the hygroscopic growth of aerosol particles and uptake of other condensable material. Subsequent water uptake between 10 and 20% RH causes their viscosity to reduce sufficiently that the cracked droplets flow and merge. The persistence of iodic acid solution in an amorphous state, rather than a crystalline state, suggests they will more readily accommodate other condensable material and are therefore more likely to grow to sizes where they may serve as cloud condensation nuclei. On increasing the humidity to ~90% the mass of the droplets only increases by ~20% with a corresponding increase in radius of only 6%, which is remarkably small for a highly soluble material. We suggest that the small growth factor of aqueous iodic acid solution droplets is consistent with the small aerosol growth

  11. [Effects of Low-Molecular-Weight Organic Acids on the Speciation of Pb in Purple Soil and Soil Solution].

    PubMed

    Liu, Jiang; Jiang, Tao; Huang, Rong; Zhang, Jin-zhong; Chen, Hong

    2016-04-15

    Lead (Pb) in purple soil was selected as the research target, using one-step extraction method with 0.01 mol · L⁻¹ sodium nitrate as the background electrolyte to study the release effect of citric acid (CA), tartaric acid (TA) and acetic acid (AC) with different concentrations. Sequential extraction and geochemical model (Visual Minteq v3.0) were applied to analyze and predict the speciation of Pb in soil solid phase and soil solution phase. Then the ebvironmental implications and risks of low-molecule weight organic acid (LMWOA) on soil Pb were analyzed. The results indicated that all three types of LMWOA increased the desorption capacity of Pb in purple soil, and the effect followed the descending order of CA > TA > AC. After the action of LMWOAs, the exchangeable Pb increased; the carbonate-bound Pb and Fe-Mn oxide bound Pb dropped in soil solid phase. Organic bound Pb was the main speciation in soil solution phase, accounting for 45.16%-75.05%. The following speciation of Pb in soil solution was free Pb, accounting for 22.71%-50.25%. For CA and TA treatments, free Pb ions and inorganic bound Pb in soil solution increased with increasing LMWOAs concentration, while organic bound Pb suffered a decrease in this process. An opposite trend for AC treatment was observed compared with CA and TA treatments. Overall, LMWOAs boosted the bioavailability of Pb in purple soil and had a potential risk to contaminate underground water. Among the three LMWOAs in this study, CA had the largest potential to activate soil Pb.

  12. Photophysics and photochemistry of 2-aminobenzoic acid anion in aqueous solution.

    PubMed

    Pozdnyakov, Ivan P; Plyusnin, Victor F; Grivin, Vjacheslav P

    2009-12-24

    Nanosecond laser flash photolysis and absorption and fluorescence spectroscopy were used to study photochemical processes of 2-aminobenzoic acid anion (ABA(-)) in aqueous solutions. Excitation of this species gives rise to the ABA(-) triplet state to the ABA* radical and to the hydrated electron (e(aq)(-)). The last two species result from two-photon processes. In a neutral medium, the main decay channels of ABA(-) triplet state, the ABA* radical, and e(aq)(-) are T-T annihilation, recombination, and capture by the ABA(-) anion, respectively.

  13. [Enhanced electro-chemical oxidation of Acid Red 3R solution with phosphotungstic acid supported on gamma-Al2O3].

    PubMed

    Yue, Lin; Wang, Kai-Hong; Guo, Jian-Bo; Yang, Jing-Liang; Liu, Bao-You; Lian, Jing; Wang, Tao

    2013-03-01

    Supported phosphotungstic acid catalysts on gamma-Al2O3 (HPW/gamma-Al2O3) were prepared by solution impregnation and characterized by FTIR, XRD, TG-DTA and SEM. The heteropolyanion shows a Keggin structure. Electro-chemical oxidation of Acid Red 3R was investigated in the presence of HPW supported on gamma-Al2O3 as packing materials in the reactor. The results show that HPW/gamma-Al2O3 has a good catalytic activity for decolorization of Acid Red 3R. When HPW loading was 4.6%, pH value of Acid Red 3R was 3, the voltage was 25.0 V, air-flow was 0.04 m3 x h(-1), and electrode span was 3.0 cm, the decolorization efficiency of Acid Red 3R can reach 97.6%. The removal rate of color had still about 80% in this electro-chemical oxidation system, after HPW/gamma-Al2O3 was used for 10 times, but active component loss existed. The interim product was analyzed by means of Vis-UV absorption spectrum. It shows that the conjugated structure of dye is destroyed primarily.

  14. High-Performance Pyrochlore-Type Yttrium Ruthenate Electrocatalyst for Oxygen Evolution Reaction in Acidic Media

    DOE PAGES

    Kim, Jaemin; Shih, Pei-Chieh; Tsao, Kai-Chieh; ...

    2017-07-27

    Development of acid-stable electrocatalysts with low overpotential for oxygen evolution reaction (OER) is a major challenge to produce hydrogen directly from water. We report in this paper a pyrochlore yttrium ruthenate (Y 2Ru 2O 7-δ) electrocatalyst that has significantly enhanced performance toward OER in acid media over the best-known catalysts, with an onset overpotential of 190 mV and high stability in 0.1 M perchloric acid solution. X-ray absorption near-edge structure (XANES) indicates Y 2Ru 2O 7-δ electrocatalyst had a low valence state that favors the high OER activity. Density functional theory (DFT) calculation shows this pyrochlore has lower band centermore » energy for the overlap between Ru 4d and O 2p orbitals and is therefore more stable Ru–O bond than RuO 2, highlighting the effect of yttrium on the enhancement in stability. Finally, the Y 2Ru 2O 7-δ pyrochlore is also free of expensive iridium metal and thus is a cost-effective candidate for practical applications.« less

  15. High-Performance Pyrochlore-Type Yttrium Ruthenate Electrocatalyst for Oxygen Evolution Reaction in Acidic Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jaemin; Shih, Pei-Chieh; Tsao, Kai-Chieh

    Development of acid-stable electrocatalysts with low overpotential for oxygen evolution reaction (OER) is a major challenge for the production of hydrogen directly from water. We report in this paper a pyrochlore yttrium ruthenate (Y2Ru2O7-δ) electrocatalyst that has significantly enhanced performance towards OER in acid media over the best-known catalysts, with an onset overpotential of 190 mV and high stability in 0.1-M perchloric acid solution. X-ray absorption near-edge structure (XANES) indicates Y2Ru2O7-δ electrocatalyst had a low valence state that favors the high OER activity. Density functional theory (DFT) calculation shows this pyrochlore has lower band center energy for the overlap betweenmore » Ru 4d and O 2p orbitals and therefore more stable Ru-O bond than RuO2, highlighting the effect of yttrium on the enhancement in stability. The Y2Ru2O7-δ pyrochlore is also free of expensive iridium metal, thus a cost-effective candidate for practical applications.« less

  16. High-Performance Pyrochlore-Type Yttrium Ruthenate Electrocatalyst for Oxygen Evolution Reaction in Acidic Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jaemin; Shih, Pei-Chieh; Tsao, Kai-Chieh

    Development of acid-stable electrocatalysts with low overpotential for oxygen evolution reaction (OER) is a major challenge to produce hydrogen directly from water. We report in this paper a pyrochlore yttrium ruthenate (Y 2Ru 2O 7-δ) electrocatalyst that has significantly enhanced performance toward OER in acid media over the best-known catalysts, with an onset overpotential of 190 mV and high stability in 0.1 M perchloric acid solution. X-ray absorption near-edge structure (XANES) indicates Y 2Ru 2O 7-δ electrocatalyst had a low valence state that favors the high OER activity. Density functional theory (DFT) calculation shows this pyrochlore has lower band centermore » energy for the overlap between Ru 4d and O 2p orbitals and is therefore more stable Ru–O bond than RuO 2, highlighting the effect of yttrium on the enhancement in stability. Finally, the Y 2Ru 2O 7-δ pyrochlore is also free of expensive iridium metal and thus is a cost-effective candidate for practical applications.« less

  17. Coefficients of interphase distribution and Gibbs energy of the transfer of nicotinic acid from water into aqueous solutions of ethanol and dimethylsulfoxide

    NASA Astrophysics Data System (ADS)

    Grazhdan, K. V.; Gamov, G. A.; Dushina, S. V.; Sharnin, V. A.

    2012-11-01

    Coefficients of the interphase distribution of nicotinic acid are determined in aqueous solution systems of ethanol-hexane and DMSO-hexane at 25.0 ± 0.1°C. They are used to calculate the Gibbs energy of the transfer of nicotinic acid from water into aqueous solutions of ethanol and dimethylsulfoxide. The Gibbs energy values for the transfer of the molecular and zwitterionic forms of nicotinic acid are obtained by means of UV spectroscopy. The diametrically opposite effect of the composition of binary solvents on the transfer of the molecular and zwitterionic forms of nicotinic acid is noted.

  18. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    PubMed Central

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-01-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition. PMID:27222322

  19. Chromosomal Fragmentation: A Possible Marker for the Selection of High Gymnemic Acid Yielding Accessions of Gymnema sylvestre R. Br.

    PubMed

    Verma, Ashutosh Kumar; Dhawan, Sunita Singh

    2017-10-01

    Gymnema sylvestre R. Br. a member of family Asclepiadaceae as mentioned in Indian Pharmacopoeia popular among the researchers because of stimulatory effect of its phytoconstituent on pancreatic cells and potential to treat Type I and II type of diabetes. Development of cost-effective marker system for the selection of high gymnemic acid yielding accessions of G. sylvestre . Presoaked seeds of Brassica campestris treated with different dilutions of gymnemagenin and 10% leaf extract of twenty different accessions of G. sylvestre . Root tips of germinated seeds were fixed, and chromosomal studies were made by root tip bioassay method. Exposure of seeds to treatment solutions promotes various types of chromosomal anomalies in root meristem, and surprisingly, direct correlation between the percentage of chromosomal fragmentation and the percentage of gymnemic acid shared by treatment solution were observed. Later finding may be explored for the development of a novel methodology or marker system for the selection of high active principle yielding accessions of G. sylvestre . An experiment was carried out using root tip bioassay method for the study of effect of different dilutions of standard gymnemic acid and 10% leaf extract of twenty different accessions of Gymnema sylvestre on root tip meristem of Brassica campestris . Various types of chromosomal anomalies were observed. Of which, percentage of chromosomal fragmentation was showed a direct (∞) relationship with the percentage of gymnemic acid shared by treatment solution. This interesting result after more and more exploration and revalidation could be utilized for the development of a novel methodology for the selection of high active principle yielding accessions of G. sylvestre . Abbreviations used: MI: Mitotic index; CP: Condensed prophase; CM: Clumped metaphase; MC: Metaphase cleft; FR: Fragmentation; AP: Anaphase with persistent nucleolous; LA: Laggard, BR: Bridge; BI: Bi-nucleated cell; DA: Disturbed

  20. Chromosomal Fragmentation: A Possible Marker for the Selection of High Gymnemic Acid Yielding Accessions of Gymnema sylvestre R. Br

    PubMed Central

    Verma, Ashutosh Kumar; Dhawan, Sunita Singh

    2017-01-01

    Background: Gymnema sylvestre R. Br. a member of family Asclepiadaceae as mentioned in Indian Pharmacopoeia popular among the researchers because of stimulatory effect of its phytoconstituent on pancreatic cells and potential to treat Type I and II type of diabetes. Objectives: Development of cost-effective marker system for the selection of high gymnemic acid yielding accessions of G. sylvestre. Materials and Methods: Presoaked seeds of Brassica campestris treated with different dilutions of gymnemagenin and 10% leaf extract of twenty different accessions of G. sylvestre. Root tips of germinated seeds were fixed, and chromosomal studies were made by root tip bioassay method. Results: Exposure of seeds to treatment solutions promotes various types of chromosomal anomalies in root meristem, and surprisingly, direct correlation between the percentage of chromosomal fragmentation and the percentage of gymnemic acid shared by treatment solution were observed. Conclusion: Later finding may be explored for the development of a novel methodology or marker system for the selection of high active principle yielding accessions of G. sylvestre. SUMMARY An experiment was carried out using root tip bioassay method for the study of effect of different dilutions of standard gymnemic acid and 10% leaf extract of twenty different accessions of Gymnema sylvestre on root tip meristem of Brassica campestris. Various types of chromosomal anomalies were observed. Of which, percentage of chromosomal fragmentation was showed a direct (∞) relationship with the percentage of gymnemic acid shared by treatment solution. This interesting result after more and more exploration and revalidation could be utilized for the development of a novel methodology for the selection of high active principle yielding accessions of G. sylvestre. Abbreviations used: MI: Mitotic index; CP: Condensed prophase; CM: Clumped metaphase; MC: Metaphase cleft; FR: Fragmentation; AP: Anaphase with persistent

  1. Evaluation of White Bentonite Modified by Acid Attack

    NASA Astrophysics Data System (ADS)

    Andrade, C. G. Bastos; Fermino, D. M.; Fernandes, M. G.; Valenzuela-Diaz, F. R.

    For industrial use, the smectite clays must be cleared of impurities, usually obtained by acid modification, using a high concentration solution of inorganic acid at temperatures under boiling point. In the present paper, a sample of white bentonite from Paraiba, Brazil, was modified by hydrochloric acid under moderate conditions (90°C, reaction times of 1, 6, 12, 18 and 24hours in close reactor, concentration of the aqueous solution of hydrochloric acid 1.5 M, acid solution/clay ratio of 1g/10mL). The purpose of these attacks is to reduce the concentration of impurities with minimal change in the clay minerals structure. The modified samples were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), Cation Exchange Capacity (CEC), Stereomicroscopy, Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Detector (EDS). Thus, this modified bentonite tends to be a good economic and environmental alternative in manufacturing of products with high added value such as cosmetics and polymer/clay nanocomposites.

  2. Capillary electrophoresis of chitooligosaccharides in acidic solution: simple determination using a quaternary-ammonium-modified column and indirect photometric detection with crystal violet.

    PubMed

    Hattori, Toshiaki; Anraku, Nobuhiro; Kato, Ryo

    2010-02-01

    Five chitosan oligosaccharides were separated in acidic aqueous solution by capillary electrophoresis (CE) with indirect photometric detection using a positively coated capillary. Electrophoretic mobility of the chitooligosaccharides (COSs) depended on the number of monomer units in acidic aqueous solution, similar to other polyelectrolyte oligomers. The separation was developed in nitric acid aqueous solution at pH 3.0 with 1 mM Crystal Violet, using a capillary positively coated with N-trimethoxypropyl-N,N,N-trimethylammonium chloride. The limit of the detection for chitooligosaccharides with two to six saccharide chains was less than 5 microM. CE determination of an enzymatically hydrolyzed COS agreed with results from HPLC. 2009 Elsevier B.V. All rights reserved.

  3. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review.

    PubMed

    Tang, Wang-Wang; Zeng, Guang-Ming; Gong, Ji-Lai; Liang, Jie; Xu, Piao; Zhang, Chang; Huang, Bin-Bin

    2014-01-15

    Nowadays nanomaterials have been widely used to remove heavy metals from water/wastewater due to their large surface area and high reactivity. Humic acid (HA) and fulvic acid (FA) exist ubiquitously in aquatic environments and have a variety of functional groups which allow them to complex with metal ions and interact with nanomaterials. These interactions can not only alter the environmental behavior of nanomaterials, but also influence the removal and transportation of heavy metals by nanomaterials. Thus, the interactions and the underlying mechanisms involved warrant specific investigations. This review outlined the effects of HA/FA on the removal of heavy metals from aqueous solutions by various nanomaterials, mainly including carbon-based nanomaterials, iron-based nanomaterials and photocatalytic nanomaterials. Moreover, mechanisms involved in the interactions were discussed and potential environmental implications of HA/FA to nanomaterials and heavy metals were evaluated. © 2013.

  4. Solution of Azelaic Acid (20%), Resorcinol (10%) and Phytic Acid (6%) Versus Glycolic Acid (50%) Peeling Agent in the Treatment of Female Patients with Facial Melasma

    PubMed Central

    Faghihi, Gita; Taheri, Azam; Shahmoradi, Zabihollah; Nilforoushzadeh, Mohammad Ali

    2017-01-01

    Background: Melasma, a common acquired disorder of hyperpigmentation, especially in women, is often resistant to therapy. This study was aimed to evaluate the efficacy and safety of azelaic acid, resorcinol and phytic acid solution in chemical peeling of melasma in comparison to 50% glycolic acid. Materials and Methods: This clinical trial was performed, on 42 female patients with bilateral melasma. Severity of melasma was assessed by melasma area and severity index (MASI). Combination of (20% azelaic acid + 10% resorcinol + 6% phytic acid) was used as a new peeling agent on the right side of the face and 50% glycolic acid on the left side every 2 weeks for 6 times. Follow-up was carried out for 3 months after the last session. Any decrease in MASI score and unwanted complications following peeling were evaluated and compared during the trial. Results: Patients showed marked improvement as calculated with MASI score before and after treatment in both sides of the face. The efficacy of combination formula (azelaic acid, resorcinol and phytic acid) was similar to glycolic acid, but with fewer complications. There was no statistically difference in improvement between two groups (P > 0.05). However, the patient's discomfort following procedures was significantly lower with azelaic acid, resorcinol and phytic compared with the glycolic acid peels (P < 0.05) and there was the same duration in the beginning of the therapeutic response in both groups. Conclusion: Results showed that triple-combination was found to be an effective and safe peeling agent in the treatment of melasma and it was as effective as 50% glycolic acid peel. PMID:28299301

  5. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.

    PubMed

    Kuo, S; Lai, M S; Lin, C W

    2006-12-01

    Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1+/-0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them

  6. A high-temperature high-pressure calorimeter for determining heats of solution up to 623 K.

    PubMed

    Djamali, Essmaiil; Turner, Peter J; Murray, Richard C; Cobble, James W

    2010-07-01

    A high-temperature high-pressure isoperibol calorimeter for determining the heats of solution and reaction of very dilute substances in water (10(-4) m) at temperatures up to 623 K is described. The energies of vaporization of water at steam saturation pressure were measured as a function of temperature and the results agree with the corresponding values from steam tables to better than 0.08+/-0.18%. The novelties of the present instrument relative to flow type heat capacity calorimeters are that measurements can be made at orders of magnitude lower concentrations and that measurement of heat of reaction involving solids or gases or in the presence of high concentrations of supporting electrolytes, acids, and bases is possible. Furthermore, the advantage of using enthalpy data over heat capacity data for calculations of the standard state Gibbs free energies of electrolytes is that the experimental heat data of this research need only be integrated once to derive higher temperature free energy data from lower temperatures. The derived heat capacities can be used mathematically to obtain free energies by double integration. However, the resulting errors are much smaller than if experimental aqueous heat capacities were used for the integrations.

  7. Sonocatalytic degradation of humic acid by N-doped TiO2 nano-particle in aqueous solution.

    PubMed

    Kamani, Hossein; Nasseri, Simin; Khoobi, Mehdi; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein

    2016-01-01

    Un-doped and N-doped TiO2 nano-particles with different nitrogen contents were successfully synthesized by a simple sol-gel method, and were characterized by X-ray diffraction, field emission scanning electron microscopy, Energy dispersive X-ray analysis and UV-visible diffuse reflectance spectra techniques. Then enhancement of sonocatalytic degradation of humic acid by un-doped and N-doped TiO2 nano-particles in aqueous environment was investigated. The effects of various parameters such as initial concentration of humic acid, N-doping, and the degradation kinetics were investigated. The results of characterization techniques affirmed that the synthesis of un-doped and N-doped TiO2 nano-particles was successful. Degradation of humic acid by using different nano-particles obeyed the first-order kinetic. Among various nano-particles, N-doped TiO2 with molar doping ratio of 6 % and band gap of 2.92 eV, exhibited the highest sonocatalytic degradation with an apparent-first-order rate constant of 1.56 × 10(-2) min(-1). The high degradation rate was associated with the lower band gap energy and well-formed anatase phase. The addition of nano-catalysts could enhance the degradation efficiency of humic acid as well as N-doped TiO2 with a molar ratio of 6 %N/Ti was found the best nano-catalyst among the investigated catalysts. The sonocatalytic degradation with nitrogen doped semiconductors could be a suitable oxidation process for removal of refractory pollutants such as humic acid from aqueous solution.

  8. Plasma Jet Printing and in Situ Reduction of Highly Acidic Graphene Oxide.

    PubMed

    Dey, Avishek; Krishnamurthy, Satheesh; Bowen, James; Nordlund, Dennis; Meyyappan, M; Gandhiraman, Ram P

    2018-05-23

    Miniaturization of electronic devices and the advancement of Internet of Things pose exciting challenges to develop technologies for patterned deposition of functional nanomaterials. Printed and flexible electronic devices and energy storage devices can be embedded onto clothing or other flexible surfaces. Graphene oxide (GO) has gained much attention in printed electronics due its solution processability, robustness, and high electrical conductivity in the reduced state. Here, we introduce an approach to print GO films from highly acidic suspensions with in situ reduction using an atmospheric pressure plasma jet. Low-temperature plasma of a He and H 2 mixture was used successfully to reduce a highly acidic GO suspension (pH < 2) in situ during deposition. This technique overcomes the multiple intermediate steps required to increase the conductivity of deposited GO. X-ray spectroscopic studies confirmed that the reaction intermediates and the concentration of oxygen functionalities bonded to GO have been reduced significantly by this approach without any additional steps. Moreover, the reduced GO films showed enhanced conductivity. Hence, this technique has a strong potential for printing conducting patterns of GO for a range of large-scale applications.

  9. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson [Castro Valley, CA

    2012-05-15

    A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.

  10. Influence of biopolymers on the solubility of branched-chain amino acids and stability of their solutions.

    PubMed

    Hong, Chi Rac; Lee, Gyu Whan; Paik, Hyun-Dong; Chang, Pahn-Shick; Choi, Seung Jun

    2018-01-15

    This study confirmed the possibility of biopolymer-type stabilizers to increase the saturation concentration of branched-chain amino acids by preventing their crystallization/precipitation. Although microfluidization increased the initial solubility, it failed to increase the saturation concentration of the branched-chain amino acids. The saturation concentration of the branched-chain amino acids increased from 3.81% to 4.42% and 4.85% after the incorporation of food hydrocolloids and proteins, respectively. However, the branched-chain amino acids:stabilizer ratio did not affect the solubility. In the case of food hydrocolloid-based solutions, crystal formation and growth of branched-chain amino acids occurred during storage, resulting in the precipitation of branched-chain amino acid crystals. However, food proteins effectively increased the stability of the solubilized branched-chain amino acids. The improved solubility and stability of the solubilized branched-chain amino acids could be attributed to interactions between the functional groups (carboxyl, amine, sulfate, aliphatic, aromatic, etc.) of the stabilizer and the branched-chain amino acid molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. High-oleate yeast oil without polyunsaturated fatty acids.

    PubMed

    Tsakraklides, Vasiliki; Kamineni, Annapurna; Consiglio, Andrew L; MacEwen, Kyle; Friedlander, Jonathan; Blitzblau, Hannah G; Hamilton, Maureen A; Crabtree, Donald V; Su, Austin; Afshar, Jonathan; Sullivan, John E; LaTouf, W Greg; South, Colin R; Greenhagen, Emily H; Shaw, A Joe; Brevnova, Elena E

    2018-01-01

    Oleate-enriched triacylglycerides are well-suited for lubricant applications that require high oxidative stability. Fatty acid carbon chain length and degree of desaturation are key determinants of triacylglyceride properties and the ability to manipulate fatty acid composition in living organisms is critical to developing a source of bio-based oil tailored to meet specific application requirements. We sought to engineer the oleaginous yeast Yarrowia lipolytica for production of high-oleate triacylglyceride oil. We studied the effect of deletions and overexpressions in the fatty acid and triacylglyceride synthesis pathways to identify modifications that increase oleate levels. Oleic acid accumulation in triacylglycerides was promoted by exchanging the native ∆9 fatty acid desaturase and glycerol-3-phosphate acyltransferase with heterologous enzymes, as well as deletion of the Δ12 fatty acid desaturase and expression of a fatty acid elongase. By combining these engineering steps, we eliminated polyunsaturated fatty acids and created a Y. lipolytica strain that accumulates triglycerides with > 90% oleate content. High-oleate content and lack of polyunsaturates distinguish this triacylglyceride oil from plant and algal derived oils. Its composition renders the oil suitable for applications that require high oxidative stability and further demonstrates the potential of Y. lipolytica as a producer of tailored lipid profiles.

  12. Sub-lethal heat treatment affects the tolerance of Cronobacter sakazakii BCRC 13988 to various organic acids, simulated gastric juice and bile solution.

    PubMed

    Hsiao, Wan-Ling; Ho, Wei-Li; Chou, Cheng-Chun

    2010-12-15

    Cronobacter spp., formerly Enterobacter sakazakii, are considered emerging opportunistic pathogens and the etiological agent of life-threatening bacterial infections in infants. In the present study, C. sakazakii BCRC 13988 was first subjected to sub-lethal heat treatment at 47°C for 15min. Survival rates of the heat-shocked and non-shocked C. sakazakii cells in phosphate buffer solution (PBS, pH 4.0) containing organic acids (e.g. acetic, propionic, citric, lactic or tartaric acid), simulated gastric juice (pH 2.0-4.0), and bile solution (0.5 and 2.0%) were examined. Results revealed that sub-lethal heat treatment enhanced the test organism's tolerance to organic acids, although the extent of increased acid tolerance varied with the organic acid examined. Compared with the control cells, heat-shocked C. sakazakii cells after 120-min of exposure, exhibited the largest increase in tolerance in the lactic acid-containing PBS. Furthermore, although heat shock did not affect the behavior of C. sakazakii in bile solution, it increased the test organism's survival when exposed to simulated gastric juice with a pH of 3.0-4.0. Copyright © 2010. Published by Elsevier B.V.

  13. Ion-exclusion chromatography with conductimetric detection of aliphatic carboxylic acids on a weakly acidic cation-exchange resin by elution with benzoic acid-beta-cyclodextrin.

    PubMed

    Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Helaleh, Murad I H; Ikedo, Mikaru; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Fritz, James S; Haddad, Paul R

    2003-05-16

    In this study, an aqueous solution consisting of benzoic acid with low background conductivity and beta-cyclodextrin (beta-CD) of hydrophilic nature and the inclusion effect to benzoic acid were used as eluent for the ion-exclusion chromatographic separation of aliphatic carboxylic acids with different pKa values and hydrophobicity on a polymethacrylate-based weakly acidic cation-exchange resin in the H+ form. With increasing concentration of beta-cyclodextrin in the eluent, the retention times of the carboxylic acids decreased due to the increased hydrophilicity of the polymethacrylate-based cation-exchange resin surface from the adsorption of OH groups of beta-cyclodextrin. Moreover, the eluent background conductivity decreased with increasing concentration of beta-cyclodextrin in 1 mM benzoic acid, which could result in higher sensitivity for conductimetric detection. The ion-exclusion chromatographic separation of carboxylic acids with high resolution and sensitivity was accomplished successfully by elution with a 1 mM benzoic acid-10 mM cyclodextrin solution without chemical suppression.

  14. Removal of humic acid from aqueous solution using dual PMMA/PVDF composite nanofiber: kinetics study

    NASA Astrophysics Data System (ADS)

    Zulfikar, M. A.; Afrianingsih, I.; Bahri, A.; Nasir, M.; Alni, A.; Setiyanto, H.

    2018-05-01

    The removal of humic acid from aqueous solution using dual poly(methyl methacrylate)/polyvinyl difluoride composite nanofiber under the influence of concentration has been studied. The experiments were performed using humic acid (HA) as an adsorbate at concentration in the range of 50-200 mg/L. Pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were used to describe the kinetic data and the rate constants were evaluated. It was observed that the amount of humic acid removed decrease with increasing concentration. The kinetic study revealed that pseudo-second order model fitted well the kinetic data, while the external diffusion or boundary layer diffusion was the main rate determining step in the removal process.

  15. Experiments on the Filtration of Solution of Sodium Uranate with Nitric Acid; ENSAYOS DE FILTRACION DE SOLUCIONES DE DISOLUCION DE URANATO SODICO CON ACIDO NITRICO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clement, J.M.; Luina, A.P.; Jodra, L.G.

    1957-01-01

    In the recovery of uraniuma from leach solutions, the pilot plant of the J.E.N, does not clarify the solution and the sodium uranate carries with it a high proportion of impurities. Therefore, a study was made to determine the optimum conditions for the filtration of sodium uranate from nitric acid solution and to establish modifications in the dissolution processes at present in use for the concentrates. The effects of pressure, addition of CaSO/sub 4/ and Kieselgur, pH, and temperature were investigated The modifications made to the pilot plant as a result of these studies are briefly described. (J.S.R.)

  16. Application and comparison of high-speed countercurrent chromatography and high performance liquid chromatography in preparative enantioseparation of α-substitution mandelic acids

    PubMed Central

    Tong, Shengqiang; Zhang, Hu; Shen, Mangmang; Ito, Yoichiro; Yan, Jizhong

    2014-01-01

    Preparative enantioseparations of α-cyclopentylmandelic acid and α-methylmandelic acid by high-speed countercurrent chromatography (HSCCC) and high performance liquid chromatography (HPLC) were compared using hydroxypropy-β-cyclodextrin (HP-β-CD) and sulfobutyl ether-β-cyclodextrin (SBE-β-CD) as the chiral mobile phase additives. In preparative HPLC the enantioseparation was achieved on the ODS C18 reverse phase column with the mobile phase composed of a mixture of acetonitrile and 0.10 mol L−1 phosphate buffer at pH 2.68 containing 20 mmol L−1 HP-β-CD for α-cyclopentylmandelic acid and 20 mmol L−1 SBE-β-CD for α-methylmandelic acid. The maximum sample size for α-cyclopentylmandelic acid and α-methylmandelic acid was only about 10 mg and 5 mg, respectively. In preparative HSCCC the enantioseparations of these two racemates were performed with the two-phase solvent system composed of n-hexane-methyl tert.-butyl ether-0.1 molL−1 phosphate buffer solution at pH 2.67 containing 0.1 mol L−1 HP-β-CD for α-cyclopentylmandelic acid (8.5:1.5:10, v/v/v) and 0.1 mol L−1 SBE-β-CD for α-methylmandelic acid (3:7:10, v/v/v). Under the optimum separation conditions, total 250 mg of racemic α-cyclopentylmandelic acid could be completely enantioseparated by HSCCC with HP-β-CD as a chiral mobile phase additive in a single run, yielding 105-110 mg of enantiomers with 95-98% purity and 85-90% recovery. But, no complete enantioseparation of α-methylmandelic acid was achieved by preparative HSCCC with either of the chiral selectors due to their limited enantioselectivity. In this paper preparative enantioseparation by HSCCC and HPLC was compared from various aspects. PMID:25983356

  17. Application and comparison of high-speed countercurrent chromatography and high performance liquid chromatography in preparative enantioseparation of α-substitution mandelic acids.

    PubMed

    Tong, Shengqiang; Zhang, Hu; Shen, Mangmang; Ito, Yoichiro; Yan, Jizhong

    2015-04-01

    Preparative enantioseparations of α-cyclopentylmandelic acid and α-methylmandelic acid by high-speed countercurrent chromatography (HSCCC) and high performance liquid chromatography (HPLC) were compared using hydroxypropy-β-cyclodextrin (HP-β-CD) and sulfobutyl ether-β-cyclodextrin (SBE-β-CD) as the chiral mobile phase additives. In preparative HPLC the enantioseparation was achieved on the ODS C 18 reverse phase column with the mobile phase composed of a mixture of acetonitrile and 0.10 mol L -1 phosphate buffer at pH 2.68 containing 20 mmol L -1 HP-β-CD for α-cyclopentylmandelic acid and 20 mmol L -1 SBE-β-CD for α-methylmandelic acid. The maximum sample size for α-cyclopentylmandelic acid and α-methylmandelic acid was only about 10 mg and 5 mg, respectively. In preparative HSCCC the enantioseparations of these two racemates were performed with the two-phase solvent system composed of n -hexane-methyl tert. -butyl ether-0.1 molL -1 phosphate buffer solution at pH 2.67 containing 0.1 mol L -1 HP-β-CD for α-cyclopentylmandelic acid (8.5:1.5:10, v/v/v) and 0.1 mol L -1 SBE-β-CD for α-methylmandelic acid (3:7:10, v/v/v). Under the optimum separation conditions, total 250 mg of racemic α-cyclopentylmandelic acid could be completely enantioseparated by HSCCC with HP-β-CD as a chiral mobile phase additive in a single run, yielding 105-110 mg of enantiomers with 95-98% purity and 85-90% recovery. But, no complete enantioseparation of α-methylmandelic acid was achieved by preparative HSCCC with either of the chiral selectors due to their limited enantioselectivity. In this paper preparative enantioseparation by HSCCC and HPLC was compared from various aspects.

  18. Biocompatibility of new peritoneal dialysis solutions: clinical experience.

    PubMed

    Garcia-Lopez, E; Lindholm, B; Tranaeus, A

    2000-01-01

    The successful development of peritoneal dialysis (PD) during the last two decades has been made possible by using well-established glucose-based solutions with lactate as buffer. On the other hand, awareness has been increasing about the potentially negative effects of the high concentrations of glucose and lactate, and the low pH of conventional PD solutions. This awareness has prompted an intensive effort to search for and test alternative solutions. As a result, three new, more biocompatible solutions-containing either less glucose or less lactate--are available. Amino acid-based solution uses amino acids instead of glucose as the osmotic agent; it is indicated for treatment of malnutrition. The higher pH and absence of glucose in this solution may prevent alterations of the peritoneal membrane caused by acidity and high glucose concentrations. Bicarbonate/lactate-buffered solution contains a physiologic concentration of bicarbonate and a reduced concentration of lactate; it also has a physiologic pH and markedly reduced levels of glucose degradation products (GDPs). Icodextrin-based solution contains icodextrin as the osmotic agent; it is indicated for long dwells, delivering sustained ultrafiltration for more than 16 hours. This iso-osmolar glucose-free solution may reduce peritoneal membrane alterations caused by glucose or the hyperosmolality (or both) of conventional solutions. Clinical experience of the new solutions is now extensive, and their efficacy and safety are well documented. It therefore seems appropriate to state that we have entered a new era of PD therapy. Each of the new solutions may be less damaging to the peritoneal membrane than conventional solution. In addition, they permit better management of malnutrition and fluid status, and may thus help to improve PD patient survival. Although the effects of each of these new solutions have been well described, clinical documentation of the combined use of these new biocompatible PD solutions is

  19. [Determination of sugars, organic acids and alcohols in microbial consortium fermentation broth from cellulose using high performance liquid chromatography].

    PubMed

    Jiang, Yan; Fan, Guifang; Du, Ran; Li, Peipei; Jiang, Li

    2015-08-01

    A high performance liquid chromatographic method was established for the determination of metabolites (sugars, organic acids and alcohols) in microbial consortium fermentation broth from cellulose. Sulfate was first added in the samples to precipitate calcium ions in microbial consortium culture medium and lower the pH of the solution to avoid the dissociation of organic acids, then the filtrates were effectively separated using high performance liquid chromatography. Cellobiose, glucose, ethanol, butanol, glycerol, acetic acid and butyric acid were quantitatively analyzed. The detection limits were in the range of 0.10-2.00 mg/L. The linear correlation coefficients were greater than 0.999 6 in the range of 0.020 to 1.000 g/L. The recoveries were in the range of 85.41%-115.60% with the relative standard deviations of 0.22% -4.62% (n = 6). This method is accurate for the quantitative analysis of the alcohols, organic acids and saccharides in microbial consortium fermentation broth from cellulose.

  20. Soil-solution partitioning of DOC in acid organic soils: Results from a UK field acidification and alkalization experiment

    NASA Astrophysics Data System (ADS)

    Oulehle, Filip; Jones, Timothy; Burden, Annette; Evans, Chris

    2013-04-01

    Dissolved organic carbon (DOC) is an important component of the global carbon (C) cycle and has profound impacts on water chemistry and metabolism in lakes and rivers. Reported increases of DOC concentration in surface waters across Europe and Northern America have been attributed to several drivers; from changing climate and land-use to eutrophication and declining acid deposition. The last of these suggests that acidic deposition suppressed the solubility of DOC, and that this historic suppression is now being reversed by reducing emissions of acidifying pollutants. We studied a set of four parallel acidification and alkalization experiments in organic rich soils which, after three years of manipulation, have shown clear soil solution DOC responses to acidity change. We tested whether these DOC concentration changes were related to changes in the acid/base properties of DOC. Based on laboratory determination of DOC site density (S.D. = amount of carboxylic groups per milligram DOC) and charge density (C.D. = organic acid anion concentration per milligram DOC) we found that the change in DOC soil-solution partitioning was tightly related to the change in degree of dissociation (α = C.D./S.D. ratio) of organic acids (R2=0.74, p<0.01). Carbon turnover in soil organic matter (SOM), determined by soil respiration and β-D-glucosidase enzyme activity measurements, also appears to have some impact on DOC leaching, via constraints on the actual supply of available DOC from SOM; when the turnover rate of C in SOM is low, the effect of α on DOC leaching is reduced. Thus, differences in the magnitude of DOC changes seen across different environments might be explained by interactions between physicochemical restrictions of DOC soil-solution partitioning, and SOM carbon turnover effects on DOC supply.

  1. Green synthesis of highly concentrated aqueous colloidal solutions of large starch-stabilised silver nanoplatelets.

    PubMed

    Cheng, Fei; Betts, Jonathan W; Kelly, Stephen M; Hector, Andrew L

    2015-01-01

    A simple, environmentally friendly and cost-effective method has been developed to prepare a range of aqueous silver colloidal solutions, using ascorbic acid as a reducing agent, water-soluble starch as a combined crystallising, stabilising and solubilising agent, and water as the solvent. The diameter of silver nanoplatelets increases with higher concentrations of AgNO3 and starch. The silver nanoparticles are also more uniform in shape the greater the diameter of the nanoparticles. Colloidal solutions with a very high concentration of large, flat, hexagonal silver nanoplatelets (~230 nm in breadth) have been used to deposit and fix an antibacterial coating of these large starch-stabilised silver nanoplates on commercial cotton fibres, using a simple dip-coating process using water as the solvent, in order to study the dependence of the antibacterial properties of these nanoplatelets on their size. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Electro-activation of potassium acetate, potassium citrate and calcium lactate: impact on solution acidity, Redox potential, vibrational properties of Raman spectra and antibacterial activity on E. coli O157:H7 at ambient temperature.

    PubMed

    Liato, Viacheslav; Labrie, Steve; Aïder, Mohammed

    2016-01-01

    To study the electro-activation of potassium acetate, potassium citrate and calcium lactate aqueous solutions and to evaluate their antimicrobial effect against E. coli O157:H7 at ambient temperature. Potassium acetate, potassium citrate and calcium lactate aqueous solutions were electrically excited in the anodic compartment of a four sectional electro-activation reactor. Different properties of the electro-activated solutions were measured such as: solutions acidity (pH and titratable), Redox potential and vibrational properties by Raman spectroscopy. Moreover, the antimicrobial activity of these solutions was evaluated against E. coli O157:H7. The results showed a pH decrease from 7.07 ± 0.08, 7.53 ± 0.12 and 6.18 ± 0.1 down to 2.82 ± 0.1, 2.13 ± 0.09 and 2.26 ± 0.15, after 180 min of electro-activation of potassium acetate, potassium citrate and calcium lactate solution, respectively. These solutions were characterized by high oxidative ORP of +1076 ± 12, +958 ± 11 and +820 ± 14 mV, respectively. Raman scattering analysis of anolytes showed stretching vibrations of the hydrogen bonds with the major changes within the region of 3410-3430 cm -1 . These solutions were used against E. coli O157:H7 and the results from antimicrobial assays showed high antibacterial effect with a population reduction of ≥6 log CFU/ml within 5 min of treatment. This study demonstrated the effectiveness of the electro-activation to confer to aqueous solutions of organic salts of highly reactive properties that differ them from their conjugated commercial acids. The electro-activated solutions demonstrated significant antimicrobial activity against E. coli O157:H7. This study opens new possibilities to use electro-activated solutions of salts of weak organic acids as food preservatives to develop safe, nutritive and low heat processed foods.

  3. Impacts of dyebath auxiliaries on the reductive discoloration of Acid Orange 7 dye by high-carbon iron filings.

    PubMed

    Kumar, Raja; Sinha, Alok

    This study proposed that the physicochemical effects of common dyebath auxiliaries on the bulk dye solution as well as on the iron surface can influence the reductive discoloration of effluent containing Acid Orange 7 (AO7) dye using high-carbon iron filings. Sodium chloride increased the discoloration rate because of the pitting corrosion on the iron surface, triggered by chloride anion. 'Salting out' effect of ammonium sulfate improved the reaction rate up to a certain concentration, beyond which it could compete with dye molecules for the reactive sites, as revealed by formed sulfite and sulfide. Urea drastically reduced the discoloration rates by its chaotropic effect on the bulk solution and by wrapping around the iron surface. Organic acids, namely acetic acid and citric acid, stimulated iron corrosion to improve the discoloration rates. The discoloration reaction was biphasic with an initial fast reaction phase, where in every case more than 70% discoloration was observed within 5 min of reaction, preceding a slow reaction phase. The experimental data could be well described using biphasic kinetics equation (R(2)> 0.997 in all cases) and a biphasic equation was developed considering the individual impact of co-existing auxiliaries on AO7 discoloration.

  4. A systematic investigation and insight into the formation mechanism of bilayers of fatty acid/soap mixtures in aqueous solutions.

    PubMed

    Xu, Wenlong; Song, Aixin; Dong, Shuli; Chen, Jingfei; Hao, Jingcheng

    2013-10-08

    Vesicles are the most common form of bilayer structures in fatty acid/soap mixtures in aqueous solutions; however, a peculiar bilayer structure called a "planar sheet" was found for the first time in the mixtures. In the past few decades, considerable research has focused on the formation theory of bilayers in fatty acid/soap mixtures. The hydrogen bond theory has been widely accepted by scientists to explain the formation of bilayers. However, except for the hydrogen bond, no other driving forces were proposed systematically. In this work, three kinds of weak interactions were investigated in detail, which could perfectly demonstrate the formation mechanism of bilayer structures in the fatty acid/soap mixtures in aqueous solutions. (i) The influence of hydrophobic interaction was detected by changing the chain length of fatty acid (C(n)H(2n+1)COOH), in which n = 10 to 18, the phase behavior was investigated, and the phase region was presented. With the help of cryogenic transmission electron microscopy (cryo-TEM) observations, deuterium nuclear magnetic resonance ((2)H NMR), and X-ray diffraction (XRD) measurements, the vesicles and planar sheets were determined. The chain length of C(n)H(2n+1)COOH has an important effect on the physical state of the hydrophobic chain, resulting in an obvious difference in the viscoelasticity of the solution samples. (ii) The existence of hydrogen bonds between fatty acids and their soaps in aqueous solutions was demonstrated by Fourier transform infrared (FT-IR) spectroscopy and molecule dynamical simulation. From the pH measurements, the pH ranges of the bilayer formation were at the pKa values of fatty acids, respectively. (iii) Counterions can be embedded in the stern layer of the bilayers and screen the electrostatic repulsion between the COO(-) anionic headgroups. FT-IR characterization demonstrated a bidentate bridging coordination mode between counterions and carboxylates. The conductivity measurements provided the degree

  5. An In Silico study of TiO2 nanoparticles interaction with twenty standard amino acids in aqueous solution

    NASA Astrophysics Data System (ADS)

    Liu, Shengtang; Meng, Xuan-Yu; Perez-Aguilar, Jose Manuel; Zhou, Ruhong

    2016-11-01

    Titanium dioxide (TiO2) is probably one of the most widely used nanomaterials, and its extensive exposure may result in potentially adverse biological effects. Yet, the underlying mechanisms of interaction involving TiO2 NPs and macromolecules, e.g., proteins, are still not well understood. Here, we perform all-atom molecular dynamics simulations to investigate the interactions between TiO2 NPs and the twenty standard amino acids in aqueous solution exploiting a newly developed TiO2 force field. We found that charged amino acids play a dominant role during the process of binding to the TiO2 surface, with both basic and acidic residues overwhelmingly preferred over the non-charged counterparts. By calculating the Potential Mean Force, we showed that Arg is prone to direct binding onto the NP surface, while Lys needs to overcome a ~2 kT free energy barrier. On the other hand, acidic residues tend to form “water bridges” between their sidechains and TiO2 surface, thus displaying an indirect binding. Moreover, the overall preferred positions and configurations of different residues are highly dependent on properties of the first and second solvation water. These molecular insights learned from this work might help with a better understanding of the interactions between biomolecules and nanomaterials.

  6. Comparison of the influence of polyaspartic acid and polylysine functional groups on the adsorption at the Cr2O3-Aqueous polymer solution interface

    NASA Astrophysics Data System (ADS)

    Ostolska, Iwona; Wiśniewska, Małgorzata

    2014-08-01

    Polyamino acids are a group of synthesized polymers obtained by polymerization of a given kind of amino acid monomer. Because of high biodegradability of this class of polymers, they can be used as flocculation or stabilization agents in the environmental aspects. Therefore determination of their influence on the stability of the aqueous suspension of metal oxides is important. An influence of different functional groups of polyamino acids, their molecular weight and concentration on the adsorption at the chromium (III) oxide (Cr2O3)-aqueous solution interface was determined. Experiments were carried out for four values of solution pH varying from 3 to 10 (3, 4, 7.6 and 10, respectively). Two polymers were used: anionic polyaspartic acid (ASP) of 6800 and 27,000 as well as polylysine (LYS) of 4900 and 33,000 molecular weights. Changes of surface charge density of colloidal Cr2O3 in the presence and in the absence of macromolecular substances were determined using potentiometric titration. In these studies the influence of the concentration and molecular weight of the ionic polymers on the pHpzc value was determined. Additionally, due to the lack of appropriate literature data, potentiometric titration of the selected polymers was performed to determine pKa values.

  7. Kinetics of Ni3S2 sulfide dissolution in solutions of sulfuric and hydrochloric acids

    NASA Astrophysics Data System (ADS)

    Palant, A. A.; Bryukvin, V. A.; Vinetskaya, T. N.; Makarenkova, T. A.

    2008-02-01

    The kinetics of Ni3S2 sulfide (heazlewoodite) dissolution in solutions of hydrochloric and sulfuric acids is studied. The process under study in the temperature range of 30 90°C is found to occur in a kinetic regime and is controlled by the corresponding chemical reactions of the Ni3S2 decomposition by solutions of inorganic acids ( E a = 67 92 kJ/mol, or 16 22 kcal/mol). The only exception is the Ni3S2-HCl system at elevated temperatures (60 90°C). In this case, the apparent activation energy decreases sharply to 8.8 kJ/mol (2.1 kcal/mol), which is explained by the catalytic effect of gaseous chlorine formed under these conditions. The studies performed are related to the physicochemical substantiation of the hydrometallurgical processing of the copper-nickel converter mattes produced in the industrial cycle of the Norilsk Mining Company.

  8. High-throughput ab-initio dilute solute diffusion database.

    PubMed

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-07-19

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.

  9. Effects of solvent on the solution properties, structural characteristics and properties of silk sericin.

    PubMed

    Jo, Yoon Nam; Um, In Chul

    2015-07-01

    Sericin films have attracted much attention from researchers in biomedical and cosmetic fields because of its unique properties, including good cytocompatibility and its promotion of wound healing. However, poor mechanical properties of sericin films have restricted its application in these fields. In this study, a new solvent, formic acid, was used to fabricate sericin solutions and films. The effects of formic acid on the structural characteristics and mechanical properties of the sericin solutions and films were examined and compared with water. The sericin/formic acid solution showed fewer aggregated sericin molecules, resulting in a lower turbidity than that of the sericin/water solution. In addition, the gelation of the sericin solution was retarded in formic acid compared to that of water. Sericin films cast from the formic acid solution exhibited a much higher crystallinity index than that produced from water. The tensile strength and elongation of the sericin films cast from the formic acid solution were more than double that of the sericin films cast from water. It is expected that the more stable sericin solution and high-crystallinity sericin films, which have significantly improved mechanical properties, produced by using formic acid as the solvent could be utilized in biomedical and cosmetic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Study on the Key Technology of High Purity Strontium Titanate Powder Synthesized from Oxalic Acid Co-sediment Precipitation

    NASA Astrophysics Data System (ADS)

    Bi, Xiaoguo; Dong, Yingnan; Li, Yingjie; Niu, Wei; Tang, Jian; Ding, Shuang; Li, Meiyang

    2017-09-01

    Oxalate coprecipitation is applied in this paper, high purity titanium tetrachloride, and after the purification of strontium chloride, match with a certain concentration of solution, oxalate and strontium chloride and titanium tetrachloride in 1.005:1.000 make strontium titanium mixture ratio, slowly under 60°C to join in oxalic acid solution, aging around 4 h, get oxygen titanium strontium oxalate (SrTiO(C2O4)2 • 4H2 ) precipitation, after washing, drying and other process made oxygen titanium strontium oxalate powder.

  11. Preparation and characterization of (10)B boric acid with high purity for nuclear industry.

    PubMed

    Zhang, Weijiang; Liu, Tianyu; Xu, Jiao

    2016-01-01

    Boric acid is often added into coolant as neutron capture agent for pressurized water reactor, whose amount is influenced by its abundance and purity. Therefore, the preparation of enriched (10)B boric acid with high purity is beneficial to nuclear industry. (10)B is also used in developing tumor-specific boronated drugs in boron neutron capture therapy. The boronated drug can be administered to patient intravenously, intratumorally, or deposited at tumor site in surgical excision. Thus, enriched (10)B boric acid is of practical significance in the field of medicine. Self-made boron trifluoride-methanol-complex solution was selected as one of the experimental reagents, and the preparation of (10)B acid was realized by one-step reaction for the complexes with water and calcium chloride. The determination of electrical conductivity in reaction process proves that the optimum reaction time was 16-20 h. Furthermore, the effect of reaction time, ratio of calcium chloride to complex as well as the amount of water on the purity and yield of boric acid was investigated. Finally, the optimum reaction time was 20 h, the optimal solid-liquid ratio (molar ratio) was 3:1, and the amount of water was 1 L of deionized water for each mol of the complex. H2O2 was added in the reaction process to remove Fe(2+). After recrystallization, IR spectra of (10)B boric acid was measured and compared with standard to verify the product of boric acid. The feasibility of the preparation method was determined by the detection of XRD of boric acid. To observe the morphology by polarizing microscope, crystal structure was obtained. The purity of the final product is 99.95 %, and the yield is 96.47 %. The ion concentration of boric acid accords with the national standard of high purity, which was determined by ICP.

  12. Solvent effects and polymorphic transformation of organic nonlinear optical crystal L-pyroglutamic acid in solution growth processes . I. Solvent effects and growth morphology

    NASA Astrophysics Data System (ADS)

    Wang, W. S.; Aggarwal, M. D.; Choi, J.; Gebre, T.; Shields, Angela D.; Penn, Benjamin G.; Frazier, Donald O.

    1999-03-01

    Single crystals of a new promising nonlinear optical material for the tunable UV harmonic generation, L-pyroglutamic acid 60×20×20 mm 3 in size were obtained from aqueous solution by using the temperature-lowering method. Solubility of L-pyroglutamic acid in different solvents was measured. The single crystals showed different morphological characteristics and growth rate in different solvents with different crystallographic orientations. Methanol or ethanol solutions yielded needle-like crystals. In mixed solution such as methanol/H 2O or ethanol/ H 2O plate-like crystals with a thickness in the direction [0 1 0] were observed. The water as a good solvent, however, produced long prism-like crystals. The two polymorphs of L-pyroglutamic acid (α and β phases) were found for the first time. The growth shapes of α-phase is mainly a prism and β phases is a rhombic plate.The growth rate of α and β phases is mainly a function of the supersaturation of the L-pyroglutamic acid in solution.

  13. Simultaneous quantification of eight organic acid components in Artemisia capillaris Thunb (Yinchen) extract using high-performance liquid chromatography coupled with diode array detection and high-resolution mass spectrometry.

    PubMed

    Yu, Fangjun; Qian, Hao; Zhang, Jiayu; Sun, Jie; Ma, Zhiguo

    2018-04-01

    We aim to determine the chemical constituents of Yinchen extract and Yinchen herbs using high-performance liquid chromatography coupled with diode array detection and high-resolution mass spectrometry. The method was developed to analyze of eight organic acid components of Yinchen extract (including neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, caffeic acid, 1,3-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid). The separation was conducted using an Agilent TC-C18 column with acetonitrile - 0.2% formic acid solution as the mobile phases under gradient elution. The analytical method was fully validated in terms of linearity, sensitivity, precision, repeatability as well as recovery, and subsequently the method was performed for the quantitative assessment of Yinchen extracts and Yinchen herbs. In addition, the changes of selected markers were studied when Yinchen herbs decocting in water and isomerization occurred between the chlorogenic acids. The proposed method enables both qualitative and quantitative analyses and could be developed as a new tool for the quality evaluation of Yinchen extract and Yinchen herbs. The changes of selected markers in water decoction process could give us some novel idea when studying the link between substances and drug efficacy. Copyright © 2017. Published by Elsevier B.V.

  14. FURFURAL YIELD AND DECOMPOSITION IN SODIUM 2,4DIMETHYLBENZENESULFONATE--SULFURIC ACID--WATER SOLUTIONS.

    DTIC Science & Technology

    Batch-type microreactors (about 1/40 milliliter of reactants) were used to measure furfural yields from acidified xylose solutions containing sodium...It was found that presence of the salt did not affect the quantity of furfural produced, but greatly increased the rate of formation. The regular...increase in rate of furfural formation was directly related to the increase in the rate xylose decomposition, and furfural yields for all salt and acid

  15. High-throughput 96-well solvent mediated sonic blending synthesis and on-plate solid/solution stability characterization of pharmaceutical cocrystals.

    PubMed

    Luu, Van; Jona, Janan; Stanton, Mary K; Peterson, Matthew L; Morrison, Henry G; Nagapudi, Karthik; Tan, Helming

    2013-01-30

    A 96-well high-throughput cocrystal screening workflow has been developed consisting of solvent-mediated sonic blending synthesis and on-plate solid/solution stability characterization by XRPD. A strategy of cocrystallization screening in selected blend solvents including water mixtures is proposed to not only manipulate solubility of the cocrystal components but also differentiate physical stability of the cocrystal products. Caffeine-oxalic acid and theophylline-oxalic acid cocrystals were prepared and evaluated in relation to saturation levels of the cocrystal components and stability of the cocrystal products in anhydrous and hydrous solvents. AMG 517 was screened with a number of coformers, and solid/solution stability of the resulting cocrystals on the 96-well plate was investigated. A stability trend was observed and confirmed that cocrystals comprised of lower aqueous solubility coformers tended to be more stable in water. Furthermore, cocrystals which could be isolated under hydrous solvent blending condition exhibited superior physical stability to those which could only be obtained under anhydrous condition. This integrated HTS workflow provides an efficient route in an API-sparing approach to screen and identify cocrystal candidates with proper solubility and solid/solution stability properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Utilization of High-Fructose Corn Syrup for Biomass Production Containing High Levels of Docosahexaenoic Acid by a Newly Isolated Aurantiochytrium sp. YLH70.

    PubMed

    Yu, Xin-Jun; Yu, Zhi-Qiang; Liu, Ying-Liang; Sun, Jie; Zheng, Jian-Yong; Wang, Zhao

    2015-11-01

    High-fructose corn syrup (HFCS) is an agro-source product and has been the most commonly used substitute for sugar as sweetener in food industry due to its low price and high solution property. In this study, the F55 HFCS, rich in fructose and glucose, was first tested for biomass and docosahexaenoic acid productions as a mixed carbon source by a newly isolated Aurantiochytrium sp.YLH70. After the compositions of the HFCS media were optimized, the results showed that the HFCS with additions of metal ion and vitamin at low concentrations was suitable for biomass and docosahexaenoic acid productions and the metal ion and sea salt had the most significant effects on biomass production. During the 5-l fed-batch fermentation, total HFCS containing 180 g l(-1) reducing sugar was consumed and yields of biomass, lipid, and DHA could reach 78.5, 51, and 20.1 g l(-1), respectively, at 114 h. Meanwhile, the daily productivity and the reducing sugar conversion yield for docosahexaenoic acid were up to 4.23 g l(-1)day(-1) and 0.11 g g(-1). The fatty acid profile of Aurantiochytrium sp.YLH70 showed that 46.4% of total fatty acid was docosahexaenoic acid, suggesting that Aurantiochytrium sp.YLH70 was a promising DHA producer.

  17. Biochar of animal origin: a sustainable solution to the global problem of high-grade rock phosphate scarcity?

    PubMed

    Vassilev, Nikolay; Martos, Eva; Mendes, Gilberto; Martos, Vanessa; Vassileva, Maria

    2013-06-01

    Phosphorus (P) is an essential element for all living organisms. However, in soil-plant systems, this nutrient is the most limiting, leading to frequent applications of soluble P fertilisers. Their excessive use provokes alterations in the natural P cycle, soil biodiversity and ecological equilibrium and is the main reason for the eutrophication of water, with consequences on food safety. Biotechnology offers a number of sustainable solutions that can mitigate these problems by using various waste materials as a source of P and, on the other hand, their solubilisation by selected micro-organisms. This review present results on the solubilisation of animal bone char with high phosphate content by micro-organisms to produce organic acids such as lactic acid, citric acid and itaconic acid. All experiments were performed under conditions of liquid submerged and solid state fermentation processes. Freely suspended and immobilised cells of the corresponding microbial cultures were employed using substrates characterised by low cost and abundance. Other alternative technologies are discussed as well in order to stimulate further studies in this field, bearing in mind the progressive increase in P fertiliser prices based on high global P consumption and the scarcity of rock phosphate reserves. © 2013 Society of Chemical Industry.

  18. DRBEM solution of the acid-mediated tumour invasion model with time-dependent carrying capacities

    NASA Astrophysics Data System (ADS)

    Meral, Gülnihal

    2017-07-01

    It is known that the pH level of the extracellular tumour environment directly effects the progression of the tumour. In this study, the mathematical model for the acid-mediated tumour cell invasion consisting of a system of nonlinear reaction diffusion equations describing the interaction between the density of the tumour cells, normal cells and the concentration of ? protons produced by the tumour cells is solved numerically using the combined application of dual reciprocity boundary element method (DRBEM) and finite difference method. The space derivatives in the model are discretised by DRBEM using the fundamental solution of Laplace equation considering the time derivative and the nonlinearities as the nonhomogenity. The resulting systems of ordinary differential equations after the application of DRBEM are then discretised using forward difference. Because of the highly nonlinear character of the model, there arises difficulties in solving the model especially for two-dimensions and the boundary-only nature of DRBEM discretisation gives the advantage of having solutions with a lower computational cost. The proposed method is tested with different kinds of carrying capacities which also depend on time. The results of the numerical simulations are compared among each case and seen to confirm the expected behaviour of the model.

  19. CESIUM RECOVERY FROM AQUEOUS SOLUTIONS

    DOEpatents

    Schneider, R.A.

    1961-06-20

    Cesium may be precipitated from an aqueous solution whose acidity ranges between a pH of 1.5 and a molarity of 5 on cobaltous, zinc, cadmium, nickel, or ferrous cobalticyanide. This precipitation brings about a separation from most fission products. Ruthenium which coprecipitates to a great degree can be removed by dissolving in sulfuric acid and boiling the solution in the presence of periodic acid for volatilization; other coprecipitated fission products can then be precipitated from the sulfuric acid solution with a ferric hydroxide carrier.

  20. Process for the preparation of lactic acid and glyceric acid

    DOEpatents

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  1. Polythermal investigation of viscosity of solution of metal carboxylates in VIK-grade mixed carboxylic acids: Yttrium and gadolinium carboxylates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezhov, E.A.; Samatov, A.V.; Troyanovskii, L.V.

    Kinematic viscosities have been measured for solutions of yttrium and gadolinium carboxylates in grade VIK mixed carboxylic acids (MCA). It has been established that the optimal fluidity of these metal carboxylate solutions for application to articles is reached at 333 K. A regression model has been developed to describe the concentration and temperature dependences of the viscosity of yttrium- and gadolinium-containing MCA solutions. 2 refs., 3 tabs.

  2. High-throughput ab-initio dilute solute diffusion database

    PubMed Central

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-01-01

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308

  3. Pd-loaded carbon felt as the cathode for selective dechlorination of 2,4-dichlorophenoxyacetic acid in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsyganok, A.I.; Yamanaka, Ichiro; Otsuka, Kiyoshi

    1998-11-01

    Electrocatalytic reductive dehalogenation of 2,4-dichlorophenoxyacetic acid (2,4-D) to phenoxyacetic acid in aqueous solution containing MeOH, trifluoroacetic acid, and tetraalkylammonium salt was studied. A Teflon-made two-compartment flow-through cell with a permeable carbon felt cathode and a platinum foil anode was employed. Several noble metals were tested as electrocatalysts. Palladium-loaded carbon felt was found to be the most suitable significantly enhanced its electrocatalytic activity toward 2,4-D dechlorination. The reaction was hypothesized to proceed at carbon-palladium interface areas through 4-chlorine cleavage to form 2-chlorophenoxyacetic acid as the main reaction intermediate.

  4. Synthesizing Pt nanoparticles in the presence of methylamine: Impact of acetic acid treatment in the electrocatalytic activity of formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Ooi, M. D. Johan; Aziz, A. Abdul

    2017-05-01

    Surfactant removal from the surface of platinum nanoparticles prepared by solution based method is a prerequisite process to accomplish a high catalytic activity for electrochemical reactions. Here, we report a possible approach of combining acid acetic with thermal treatment for improving catalytic performance of formic acid oxidation. This strategy involves conversion of amine to amide in acetic acid followed by surfactant removal via subsequent thermal treatment at 85 °C. This combined activation technique produced monodisperse nanoparticle with the size of 3 to 5 nm with enhanced formic acid oxidation activity, particularly in perchloric acid solution. Pt treated in 1 h of acetic acid and heat treatment of 9 h shows high electrochemical surface area value (27.6 m2/g) compares to Pt without activation (16.6 m2/g). The treated samples also exhibit high current stability of 0.3 mA/cm2 compares to the as-prepared mA/cm2). Shorter duration of acid wash and longer duration of heating process result in high electrocatalytic activity. This work demonstrates a possible technique in improving catalytic activity of platinum nanoparticles synthesized using methylamine as surfactant.

  5. Interaction of model aryl- and alkyl-boronic acids and 1,2-diols in aqueous solution.

    PubMed

    Marinaro, William A; Prankerd, Richard; Kinnari, Kaisa; Stella, Valentino J

    2015-04-01

    The goal of this work was to quantitate ester formation between alkyl and aryl boronic acids and vicinal-diols or 1,2-diols in aqueous solution. As used here, 1,2-diols includes polyols with one or more 1,2-diol pairs. Multiple techniques were used including apparent pKa shifts of the boronic acids using UV spectrophotometry (for aryl acids) and titration (for aryl and alkyl acids). Isothermal microcalorimetry was also used, with all reactions being enthalpically favored. For all the acids and 1,2-diols and the conditions studied, evidence only supported 1:1 ester formation. All the esters formed were found to be significantly more acidic, as Lewis acids, by 3-3.5 pKa units than the corresponding nonesterified boronic acid. The equilibrium constants for ester formation increased with increasing number of 1,2-diol pairs but stereochemistry may also play a role as sorbitol with five possible 1,2-diol pairs and five isomers (taking into account the stereochemistry of the alcohol groups) was twice as efficient at ester formation compared with mannitol, also with five possible 1,2-diol pairs but only three isomers. Alkyl boronic acids formed esters to a greater extent than aryl acids. Although some quantitative differences were seen between the various techniques used, rank ordering of the structure/reactivity was consistent. Formulation implications of ester formation between boronic acids and 1,2-diols are discussed. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Characterization of highly concentrated antibody solution - A toolbox for the description of protein long-term solution stability

    PubMed Central

    Schermeyer, Marie-Therese; Wöll, Anna K.; Eppink, Michel; Hubbuch, Jürgen

    2017-01-01

    ABSTRACT High protein titers are gaining importance in biopharmaceutical industry. A major challenge in the development of highly concentrated mAb solutions is their long-term stability and often incalculable viscosity. The complexity of the molecule itself, as well as the various molecular interactions, make it difficult to describe their solution behavior. To study the formulation stability, long- and short-range interactions and the formation of complex network structures have to be taken into account. For a better understanding of highly concentrated solutions, we combined established and novel analytical tools to characterize the effect of solution properties on the stability of highly concentrated mAb formulations. In this study, monoclonal antibody solutions in a concentration range of 50–200 mg/ml at pH 5–9 with and without glycine, PEG4000, and Na2SO4 were analyzed. To determine the monomer content, analytical size-exclusion chromatography runs were performed. ζ-potential measurements were conducted to analyze the electrophoretic properties in different solutions. The melting and aggregation temperatures were determined with the help of fluorescence and static light scattering measurements. Additionally, rheological measurements were conducted to study the solution viscosity and viscoelastic behavior of the mAb solutions. The so-determined analytical parameters were scored and merged in an analytical toolbox. The resulting scoring was then successfully correlated with long-term storage (40 d of incubation) experiments. Our results indicate that the sensitivity of complex rheological measurements, in combination with the applied techniques, allows reliable statements to be made with respect to the effect of solution properties, such as protein concentration, ionic strength, and pH shift, on the strength of protein-protein interaction and solution colloidal stability. PMID:28617076

  7. Two new frameworks of potassium saccharate obtained from acidic and alkaline solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Yao-Kang; Feng, Yun-Long, E-mail: sky37@zjnu.edu.c; Liu, Ji-Wei

    2011-05-15

    Two chiral K(I) complexes based on D-saccharic acid (H{sub 2}sac), [K(Hsac)]{sub n} (1) and [K{sub 2}(sac)]{sub n} (2) were obtained from acidic and alkaline solution. The 3D framework of 1 includes K(I) polyhedral rods and typical pairwise coaxial right- and left-handed helical chains, and displays binodal 6-connected pcu topology. 2 contains 2D polyhedral sheets consisting of left-handed helical chains, and generates 3D network with an unprecedented (7,11)-connected net. Cyclic voltammetry tests and charge-discharge tests indicate that the addition of complex 2 to the electrolyte could improve the electrochemical properties of the nickel hydroxide electrode. -- Graphical abstract: Two K(I) complexesmore » based on D-saccharic acid (H{sub 2}sac), [K(Hsac)]{sub n} (1) and [K{sub 2}(sac)]{sub n} (2) were obtained and characterized. Electrochemical studies indicate the potential use of 2 in Ni-MH battery. Display Omitted highlights: > Two novel chiral K(I) frameworks based on D-saccharic acid were obtained. > The structure of 1 includes K(I) polyhedral rods and typical helical chains. > 2 contains 2D polyhedral sheets and generates an unprecedented (7,11)-connected net. > Addition of 2 to electrolyte could improve the nickel hydroxide electrode's property.« less

  8. The improvement of the energy resolution in epi-thermal neutron region of Bonner sphere using boric acid water solution moderator.

    PubMed

    Ueda, H; Tanaka, H; Sakurai, Y

    2015-10-01

    Bonner sphere is useful to evaluate the neutron spectrum in detail. We are improving the energy resolution in epi-thermal neutron region of Bonner sphere, using boric acid water solution as a moderator. Its response function peak is narrower than that for polyethylene moderator and the improvement of the resolution is expected. The resolutions between polyethylene moderator and boric acid water solution moderator were compared by simulation calculation. Also the influence in the uncertainty of Bonner sphere configuration to spectrum estimation was simulated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Adsorption of fatty acids on iron (hydr)oxides from aqueous solutions.

    PubMed

    Chernyshova, Irina V; Ponnurangam, Sathish; Somasundaran, Ponisseril

    2011-08-16

    The interaction of iron (hydr)oxides with fatty acids is related to many industrial and natural processes. To resolve current controversies about the adsorption configurations of fatty acids and the conditions of the maximum hydrophobicity of the minerals, we perform a detailed study of the adsorption of sodium laurate (dodecanoate) on 150 nm hematite (α-Fe(2)O(3)) particles as a model system. The methods used include in situ FTIR spectroscopy, ex situ X-ray photoelectron spectroscopy (XPS), measurements of the adsorption isotherm and contact angle, as well as the density functional theory (DFT) calculations. We found that the laurate adlayer is present as a mixture of inner-sphere monodentate mononuclear (ISMM) and outer-sphere (OS) hydration shared complexes independent of the solution pH. Protonation of the OS complexes does not influence the conformational order of the surfactant tails. One monolayer, which is filled through the growth of domains and is reached at the micellization/precipitation edge of laurate, makes the particles superhydrophobic. These results contradict previous models of the fatty acid adsorption and suggest new interpretation of literature data. Finally, we discovered that the fractions of both the OS laurate and its molecular form increase in D(2)O, which can be used for interpreting complex spectra. We discuss shortcomings of vibrational spectroscopy in determining the interfacial coordination of carboxylate groups. This work advances the current understanding of the oxide-carboxylate interactions and the research toward improving performance of fatty acids as surfactants, dispersants, lubricants, and anticorrosion reagents.

  10. Extraction and Chromatographic Determination of Shikimic Acid in Chinese Conifer Needles with 1-Benzyl-3-methylimidazolium Bromide Ionic Liquid Aqueous Solutions

    PubMed Central

    Chen, Fengli; Hou, Kexin; Li, Shuangyang; Zu, Yuangang; Yang, Lei

    2014-01-01

    An ionic liquids-based ultrasound-assisted extraction (ILUAE) method was successfully developed for extracting shikimic acid from conifer needles. Eleven 1-alkyl-3-methylimidazolium ionic liquids with different cations and anions were investigated and 1-benzyl-3-methylimidazolium bromide solution was selected as the solvent. The conditions for ILUAE, including the ionic liquid concentration, ultrasound power, ultrasound time, and liquid-solid ratio, were optimized. The proposed method had good recovery (99.37%–100.11%) and reproducibility (RSD, n = 6; 3.6%). ILUAE was an efficient, rapid, and simple sample preparation technique that showed high reproducibility. Based on the results, a number of plant species, namely, Picea koraiensis, Picea meyeri, Pinus elliottii, and Pinus banksiana, were identified as among the best resources of shikimic acid. PMID:24782942

  11. Rapid degradation of p-arsanilic acid with simultaneous arsenic removal from aqueous solution using Fenton process.

    PubMed

    Xie, Xiande; Hu, Yuanan; Cheng, Hefa

    2016-02-01

    Although banned in some developed countries, p-arsanilic acid (p-ASA) is still used widely as a feed additive for swine production in many countries. With little uptake and transformation in animal bodies, nearly all the p-ASA administered to animals is excreted chemically unchanged in animal wastes, which can subsequently release the more toxic inorganic arsenic species upon degradation in the environment. For safe disposal of the animal wastes laden with p-ASA, we proposed a method of leaching the highly water-soluble p-ASA out of the manure first, followed by treatment of the leachate using the Fenton process to achieve fast oxidation of p-ASA and removal of the inorganic arsenic species released (predominantly arsenate) from solution simultaneously. The effects of solution pH, dosages of H2O2 and Fe(2+), and the presence of dissolved organic matter (DOM) on the treatment efficiency were systematically investigated. Under the optimum treatment conditions (0.53 mmol L(-1) Fe(2+), 2.12 mmol L(-1) H2O2, and initial pH of 3.0), p-ASA (10 mg-As L(-1)) could be completely oxidized to As(V) within 30 min in pure water and 4 natural water samples, and at the final pH of 4.0, the residual arsenic levels in solution phase were as low as 1.1 and 20.1-43.4 μg L(-1) in the two types of water matrixes, respectively. The presence of humic acid significantly retarded the oxidation of p-ASA by scavenging HO, and inhibited the As(V) removal through competitive adsorption on ferric hydroxide. Due to the high contents of DOM in the swine manure leachate samples (TOC at ∼500 mg L(-1)), much higher dosages of Fe(2+) (10.0 mmol L(-1)) and H2O2 (40.0 mmol L(-1)) and a longer treatment time (120 min) were required to achieve near complete oxidation of p-ASA (98.0%), while maintaining the levels of residual arsenic in the solution at <70.0 μg L(-1). The degradation pathway of p-ASA in the Fenton process was proposed based on the major degradation products detected

  12. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids

    USGS Publications Warehouse

    Chiou, C.T.; Malcolm, R.L.; Brinton, T.I.; Kile, D.E.

    1986-01-01

    Water solubility enhancements by dissolved humic and fulvic acids from soil and aquatic origins and by synthetic organic polymers have been determined for selected organic pollutants and pesticides (p,p???-DDT, 2,4,5,2???,5???-PCB, 2,4,4???-PCB, 1,2,3-trichlorobenzene, and lindane). Significant solubility enhancements of relatively water-insoluble solutes by dissolved organic matter (DOM) of soil and aquatic origins may be described in terms of a partition-like interaction of the the solutes with the microscopic organic environment of the high-molecular-weight DOM species; the apparent solute solubilities increase linearly with DOM concentration and show no competitive effect between solutes. With a given DOM sample, the solute partition coefficient (Kdom) increases with a decrease of solute solubility (Sw) or with an increase of the solute's octanol-water partition coefficient (Kow). The Kdom values of solutes with soil-derived humic acid are approximately 4 times greater than with soil fulvic acid and 5-7 times greater than with aquatic humic and fulvic acids. The effectiveness of DOM in enhancing solute solubility appears to be largely controlled by the DOM molecular size and polarity. The relative inability of high-molecular-weight poly(acrylic acids) to enhance solute solubility is attributed to their high polarities and extended chain structures that do not permit the formation of a sizable intramolecular nonpolar environment.

  13. Partitioning of lysolipids, fatty acids and their mixtures in aqueous lipid bilayers: solute concentration/composition effects.

    PubMed

    Singh, Jasmeet; Lai, Amy Jo; Alaee, Yasmin; Ranganathan, Radha

    2014-01-01

    Distributions of lysopalmitoylphosphatidylcholine (LPPC), palmitic acid (PA) and their 1:1 mixtures between water and dipalmitoylphosphatidylcholine (DPPC) bilayer were determined using a fluorescence probe that selectively detects only the solutes in water. Water solute concentrations were obtained at each of several lipid concentrations. Dynamic Light Scattering experiments confirmed that the lipid/solute aggregates were vesicles in the concentration range investigated. Lipid concentration dependence of the solute component in water was fit to a thermodynamic model of solute distribution between two coexisting solvents. Water/bilayer partition coefficient and the free energy of transfer, for each of these solutes were determined from the fit. Main findings are: (1) Water/bilayer partition coefficient of solute is greater for 2 to 10% solute mole fraction than for 0 to 2%, signaling solute induced bilayer perturbation that increases bilayer solubility, beginning at 2% solute mole fraction. (2) Partition coefficients are in the order LPPCsolute solubility in the bilayer-gel phase and lack of it in the bilayer-liquid phase when LPPC and PA are present together. Implications of the solute concentration/composition and bilayer phase dependences of the partition coefficients to the reported solute induced enhancements in transmembrane permeability are discussed. © 2013.

  14. Partitioning of Lysolipids, Fatty Acids and Their Mixtures in Aqueous Lipid Bilayers: Solute Concentration / Composition Effects

    PubMed Central

    Singh, Jasmeet; Lai, Amy Jo; Alaee, Yasmin; Ranganathan, Radha

    2013-01-01

    Distribution of lysopalmitoylphosphatidylcholine (LPPC), Palmitic acid (PA) and their 1:1 mixtures between water and dipalmitoylphosphatidylcholine (DPPC) bilayer were determined using a fluorescence probe that selectively detects only the solutes in water. Water solute concentrations were obtained at each of several lipid concentrations. Dynamic Light Scattering experiments confirmed that the lipid/solute aggregates were vesicles in the concentration range investigated. Lipid concentration dependence of the solute component in water was fit to a thermodynamic model of solute distribution between two coexisting solvents. Water/bilayer partition coefficient and the free energy of transfer, for each of these solutes were determined from the fit. Main findings are: (1) Water/bilayer partition coefficient of solute is greater for 2 to 10 % solute mole fraction than for 0 to 2 %, signaling solute induced bilayer perturbation that increases bilayer solubility, beginning at 2 % solute mole fraction. (2) Partition coefficients are in the order LPPCsolute solubility in the bilayer-gel phase and lack of it in the bilayer-liquid phase when LPPC and PA are present together. Implications of the solute concentration / composition and bilayer phase dependences of the partition coefficients to the reported solute induced enhancements in transmembrane permeability are discussed. PMID:24099742

  15. Recent advances in f-element separations based on a new method for the production of pentavalent americium in acidic solution

    DOE PAGES

    Mincher, Bruce J.; Schmitt, Nicholas C.; Schuetz, Brian K.; ...

    2015-03-11

    The peroxydisulfate anion has long been used for the preparation of hexavalent americium (Am VI) from the normally stable Am III valence state in mildly acidic solutions. However, there has been no satisfactory means to directly prepare the pentavalent state (Am V) in that medium. Some early literature reports indicated that the peroxydisulfate oxidation was incomplete, and silver ion catalysis in conjunction with peroxydisulfate became accepted as the means to ensure quantitative generation of Am VI. Incomplete oxidation would be expected to leave residual Am III, or to produce Am V in treated solutions. However, until recently, the use ofmore » peroxydisulfate as an Am V reagent has not been reported. Here, parameters influencing the oxidation were investigated, including peroxydisulfate and acid concentration, temperature, duration of oxidative treatment, and the presence of higher concentrations of other redox active metals such as plutonium. Using optimized conditions determined here, quantitative Am V was prepared in an acidic solution and the UV/Vis extinction coefficients of the Am V 513 nm peak were measured over a range of nitric acid concentrations. Furthermore, the utility of Am V for separations from the lanthanides and curium by solvent extraction, organic column chromatography and inorganic ion exchangers was also investigated.« less

  16. Films prepared from poly(vinyl alcohol) and amylose-fatty acid salt inclusion complexes with increased surface hydrophobicity and high elongation

    USDA-ARS?s Scientific Manuscript database

    In this study, water-soluble amylose-inclusion complexes were prepared from high amylose corn starch and sodium salts of lauric, palmitic, and stearic acid by steam jet cooking. Cast films were prepared by combining the amylose complexes with poly(vinyl alcohol)(PVOH) solution at ratios varying from...

  17. Kinetic Aspects of Leaching Zinc from Waste Galvanizing Zinc by Using Hydrochloric Acid Solutions

    NASA Astrophysics Data System (ADS)

    Sminčáková, Emília; Trpčevská, Jarmila; Pirošková, Jana

    2017-10-01

    In this work, the results of acid leaching of flux skimmings coming from two plants are presented. Sample A contained two phases, Zn(OH)Cl and NH4Cl. In sample B, the presence of three phases, Zn5(OH)8Cl2·H2O, (NH4)2(ZnCl4) and ZnCl2(NH3)2, was proved. The aqueous solution of hydrochloric acid and distilled water was used as the leaching medium. The effects of the leaching time, temperature and concentration of the leaching medium on the zinc extraction were investigated. The apparent activation energy, E a = 4.61 kJ mol-1, and apparent reaction order n = 0.18 for sample A, and the values E a = 6.28 kJ mol-1 and n = 0.33 for sample B were experimentally determined. Zinc leaching in acid medium is a diffusion-controlled process.

  18. Corrosion behavior of heat-treated intermetallic titanium-nickel in hydrochloric acid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starosvetsky, D.; Khaselev, O.; Yahalom, J.

    1998-07-01

    Samples of 45% Ti-55% Ni alloy (Ti-Ni) were heat-treated in air at 450 C, and their anodic behavior in 0.3 M, 1 M, 2 M, and 4 M hydrochloric acid (HCl) solutions was studied. In 0.3 M HCl, heat-treated Ti-Ni was passive, and very low anodic currents were observed. In 1 M and 2 M HCl, heat-treated Ti-Ni was dissolved actively, while heat-treated and surface-ground Ti-Ni became passive. The effect was explained by selective oxidation of Ti-Ni and formation of a layered structure on its surface with discontinuous titanium oxide and a nickel-enriched zone underneath. The latter was dissolved inmore » the HCl solutions, thus accelerating failure of the Ti-Ni samples. In 4 M HCl, heat-treated and heat-treated/ground samples were dissolved readily.« less

  19. Fluorimetric study of the mechanism of molecular association in aqueous solutions of polymethacrylic acid and sodium dodecylbenzenesulfonate

    NASA Astrophysics Data System (ADS)

    Sachko, A. V.; Zakordonskii, V. P.; Voloshinovskii, A. S.

    2013-03-01

    Fluorescent spectroscopy is used to investigate the processes of intermolecular association in mixed solutions of polymethacrylic acid (PMAA) and anionic sodium dodecylbenzenesulfonate (SDBS). We propose a model for describing the stage-by-stage mechanism of association processes and conclude that the nature of intermolecular associates depends on the PMAA-SDBS concentration ratio in the solution. Studying the kinetics of fluorescence decay reveals the simultaneous existence of two types of formations capable of pyrene solubilization.

  20. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, Mark L.; Horwitz, E. Philip; Bartsch, Richard A.; Barrans, Jr., Richard E.; Rausch, David

    1999-01-01

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution.

  1. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.

    1999-03-30

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.

  2. Chitosan-caffeic acid-genipin films presenting enhanced antioxidant activity and stability in acidic media.

    PubMed

    Nunes, Cláudia; Maricato, Élia; Cunha, Ângela; Nunes, Alexandra; da Silva, José A Lopes; Coimbra, Manuel A

    2013-01-02

    The use of chitosan films has been limited due to their high degradability in aqueous acidic media. In order to produce chitosan films with high antioxidant activity and insoluble in acid solutions caffeic acid was grafted to chitosan by a radical mechanism using ammonium cerium (IV) nitrate (60 mM). Genipin was used as cross-linker. This methodology originated films with 80% higher antioxidant activity than the pristine film. Also, these films only lost 11% of their mass upon seven days immersion into an aqueous solution at pH 3.5 under stirring. The films surface wettability (contact angle 105°), mechanical properties (68 MPa of tensile strength and 4% of elongation at break), and thermal stability for temperatures lower than 300 °C were not significantly influenced by the covalent linkage of caffeic acid and genipin to chitosan. Due to their characteristics, mainly higher antioxidant activity and lower solubility, these are promising materials to be used as active films. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Contrasting the Influence of Cationic Amino Acids on the Viscosity and Stability of a Highly Concentrated Monoclonal Antibody.

    PubMed

    Dear, Barton J; Hung, Jessica J; Truskett, Thomas M; Johnston, Keith P

    2017-01-01

    To explain the effects of cationic amino acids and other co-solutes on the viscosity, stability and protein-protein interactions (PPI) of highly concentrated (≥200 mg/ml) monoclonal antibody (mAb) solutions to advance subcutaneous injection. The viscosities of ≥200 mg/ml mAb1 solutions with various co-solutes and pH were measured by capillary rheometry in some cases up to 70,000 s -1 . The viscosities are analyzed in terms of dilute PPI characterized by diffusion interaction parameters (k D ) from dynamic light scattering (DLS). MAb stability was measured by turbidity and size exclusion chromatography (SEC) after 4 weeks of 40°C storage. Viscosity reductions were achieved by reducing the pH, or adding histidine, arginine, imidazole or camphorsulfonic acid, each of which contains a hydrophobic moiety. The addition of inorganic electrolytes or neutral osmolytes only weakly affected viscosity. Systems with reduced viscosities also tended to be Newtonian, while more viscous systems were shear thinning. Viscosity reduction down to 20 cP at 220 mg/ml mAb1 was achieved with co-solutes that are both charged and contain a hydrophobic interaction domain for sufficient binding to the protein surface. These reductions are related to the DLS diffusion interaction parameter, k D , only after normalization to remove the effect of charge screening. Shear rate profiles demonstrate that select co-solutes reduce protein network formation.

  4. Kinetic Studies of the Thermal Decomposition of 2-Chloroethylphosphonic Acid in Aqueous Solution

    PubMed Central

    Biddle, Eric; Kerfoot, Douglas G. S.; Kho, Yioe Hwa; Russell, Kenneth E.

    1976-01-01

    The decomposition of 2-chloroethylphosphonic acid in aqueous solution has been studied at pH values from 6 to 9 and at temperatures in the 30 to 55 C range. The rate of decomposition is estimated from the rate of formation of ethylene. The rate is proportional to the concentration of the phosphonate dianion and is independent of the hydroxyl ion concentration. The rate constant at 40 C is 1.9 × 10−4 sec−1 and the activation energy is 29.8 kcal mol−1. The rate of reaction is not affected significantly by the presence of potassium iodide or urea (substances which increase the rate of leaf abscission in trees sprayed by 2-chloroethylphosphonic acid). The rate decreases slightly in the presence of low concentrations of magnesium and calcium ions. PMID:16659748

  5. Thermodynamic Studies of Levitated Microdroplets of Highly Supersaturated Electrolyte Solutions

    NASA Technical Reports Server (NTRS)

    Myerson, Allan S.; Izmailov, Alexander F.; Na, Han-Soo

    1996-01-01

    Highly supersaturated electrolyte solutions are studied by employing an electrodynamic levitator trap (ELT) technique. The ELT technique involves containerless suspension of a microdroplet thus eliminating dust, dirt, and container walls which normally cause heterogeneous nucleation. This allows very high supersaturations to be achieved. A theoretical study of the experimental results obtained for the water activity in microdroplets of various electrolyte solutions is based on the development of the Cahn-Hilliard formalism for electrolyte solutions. A correspondence of 96-99% between the theory and experiment for the all solutions studied was achieved and allowed the determination of an analytical expression for the spinodal concentration n(sub spin) and its calculation for various electrolyte solutions at 298 K.

  6. Investigation of the factors influencing the survival of Bifidobacterium longum in model acidic solutions and fruit juices.

    PubMed

    Nualkaekul, Sawaminee; Salmeron, Ivan; Charalampopoulos, Dimitris

    2011-12-01

    The survival of Bifidobacterium longum NCIMB 8809 was studied during refrigerated storage for 6weeks in model solutions, based on which a mathematical model was constructed describing cell survival as a function of pH, citric acid, protein and dietary fibre. A Central Composite Design (CCD) was developed studying the influence of four factors at three levels, i.e., pH (3.2-4), citric acid (2-15g/l), protein (0-10g/l), and dietary fibre (0-8g/l). In total, 31 experimental runs were carried out. Analysis of variance (ANOVA) of the regression model demonstrated that the model fitted well the data. From the regression coefficients it was deduced that all four factors had a statistically significant (P<0.05) negative effect on the log decrease [log10N0 week-log10N6 week], with the pH and citric acid being the most influential ones. Cell survival during storage was also investigated in various types of juices, including orange, grapefruit, blackcurrant, pineapple, pomegranate and strawberry. The highest cell survival (less than 0.4log decrease) after 6weeks of storage was observed in orange and pineapple, both of which had a pH of about 3.8. Although the pH of grapefruit and blackcurrant was similar (pH ∼3.2), the log decrease of the former was ∼0.5log, whereas of the latter was ∼0.7log. One reason for this could be the fact that grapefruit contained a high amount of citric acid (15.3g/l). The log decrease in pomegranate and strawberry juices was extremely high (∼8logs). The mathematical model was able to predict adequately the cell survival in orange, grapefruit, blackcurrant, and pineapple juices. However, the model failed to predict the cell survival in pomegranate and strawberry, most likely due to the very high levels of phenolic compounds in these two juices. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin.

    PubMed

    Wang, Haoyong; Cao, Shangzhi; Wang, William Tianshuo; Wang, Kaven Tianyv; Jia, Xianhui

    2016-06-01

    Very high gravity (VHG) fermentation is the mainstream technology in ethanol industry, which requires the strains be resistant to multiple stresses such as high glucose concentration, high ethanol concentration, high temperature and harsh acidic conditions. To our knowledge, it was not reported previously that any ethanol-producing microbe showed a high performance in VHG fermentations without amino acid and vitamin. Here we demonstrate the engineering of a xylose utilizing recombinant Zymomonas mobilis for VHG ethanol fermentations. The recombinant strain can produce ethanol up to 136 g/L without amino acid and vitamin with a theoretical yield of 90 %, which is significantly superior to that produced by all the reported ethanol-producing strains. The intracellular fatty acids of the bacterial were about 16 % of the bacterial dry biomass, with the ratio of ethanol:fatty acids was about 273:1 (g/g). The recombinant strain was achieved by a multivariate-modular strategy tackles with the multiple stresses which are closely linked to the ethanol productivity of Z. mobilis. The over-expression of metB/yfdZ operon enabled the growth of the recombinant Z. mobilis in a chemically defined medium without amino acid and vitamin; and the fatty acids overproduction significantly increased ethanol tolerance and ethanol production. The coupled production of ethanol with fatty acids of the Z. mobilis without amino acid and vitamin under VHG fermentation conditions may permit a significant reduction of the production cost of ethanol and microbial fatty acids.

  8. In-situ spectroscopic investigations of the redox behavior of poly(indole-5-carboxylic-acid) modified electrodes in acidic aqueous solutions.

    PubMed

    Talbi, H; Billaud, D; Louarn, G; Pron, A

    2001-03-01

    The oxidation of electrochemically grown poly(indole-5-carboxylic-acid) (P5CO2H) and its spectroscopic properties have been studied by in-situ spectroelectrochemical techniques. The purpose of this paper is to characterize the different modifications on the P5CO2H backbone, induced by the electrochemical oxidation in aqueous acidic solution. We have identified, on the basis of Raman spectra, the vibrational modes associated with neutral and oxidized segments of polymer. It was shown that at least three chemically and optically different species (perhaps other products too) are produced in different potential regimes upon oxidation of this polymer. The results obtained also indicate that the molecular properties of this conducting polymer are better revealed by in-situ resonant spectra than by ex-situ infrared and Raman studies.

  9. Nature and consequences of protein-protein interactions in high protein concentration solutions.

    PubMed

    Saluja, Atul; Kalonia, Devendra S

    2008-06-24

    High protein concentration solutions are becoming increasingly important in the pharmaceutical industry. The solution behavior of proteins at high concentrations can markedly differ from that predicted based on dilute solution analysis due to thermodynamic non-ideality in these solutions. The non-ideality observed in these systems is related to the protein-protein interactions (PPI). Different types of forces play a key role in determining the overall nature and extent of these PPI and their relative contributions are affected by solute and solvent properties. However, individual contributions of these forces to the solution properties of concentrated protein solutions are not fully understood. The role of PPI, driven by these intermolecular forces, in governing solution rheology and physical stability of high protein concentration solutions is discussed from the point of view of pharmaceutical product development. Investigation of protein self-association and aggregation in concentrated protein solutions is crucial for ensuring the safety and efficacy of the final product for the duration of the desired product shelf life. Understanding rheology of high concentration protein solutions is critical for addressing issues during product manufacture and administration of final formulation to the patient. To this end, analysis of solution viscoelastic character can also provide an insight into the nature of PPI affecting solution rheology.

  10. High frequency and large deposition of acid fog on high elevation forest.

    PubMed

    Igawa, Manabu; Matsumura, Ko; Okochi, Hiroshi

    2002-01-01

    We have collected and analyzed fogwater on the mountainside of Mt. Oyama (1252 m) in the Tanzawa Mountains of Japan and observed the fog event frequency from the base of the mountain with a video camera. The fog event frequency increased with elevation and was observed to be present 46% of the year at the summit. The water deposition via throughfall increased with elevation because of the increase in fogwater interception and was about twice that via rain at the summit, where the air pollutant deposition via throughfall was several times that via rainwater. The dry deposition and the deposition via fogwater were dominant factors in the total ion deposition at high elevation sites. In a fog event, nitric acid, the major acid component on the mountain, is formed during the transport of the air mass from the base of the mountain along the mountainside, where gases including nitric acid deposit and are scavenged by fogwater. Therefore, high acidity caused by nitric acid and relatively low ion strength are observed in the fogwater at high elevation sites.

  11. Rise in the pH of an unfrozen solution in ice due to the presence of NaCl and promotion of decomposition of gallic acids owing to a change in the pH.

    PubMed

    Takenaka, Norimichi; Tanaka, Masayuki; Okitsu, Kenji; Bandow, Hiroshi

    2006-09-14

    Oxidative decomposition of gallic acid occurs in alkaline solutions but hardly arises in acidic solutions. We have found that the addition of sodium chloride promotes the decomposition of gallic acid caused by freezing even under neutral and acidic conditions. Even at pH 4.5, gallic acid was decomposed by freezing in the presence of NaCl; however, in the absence of NaCl, it was hardly decomposed by freezing at pH lower than 7. Chloride ions are more easily incorporated in ice than sodium ions when the NaCl solution is frozen. The unfrozen solution in ice becomes positively charged, and as a result, protons transfer from the unfrozen solution to the ice. We measured the pH in the unfrozen solution which coexists with single-crystal ice formed from a 5 mmol dm(-3) NaCl solution and determined the pH to be 8.6 at equilibrium with CO(2) of 380 ppm or 11.3 in the absence of CO(2) compared to pH 5.6 in the original solution. From the model calculation performed for gallic acid solution in the presence of 5 mmol dm(-3) NaCl, it can be estimated that the amount of OH(-) transferred from the ice to the solution corresponds to 1.26 x 10(-5) mol dm(-3). The amount of OH(-) transferred is concentrated into the unfrozen solution and affects the pH of the unfrozen solution. Therefore, the pH in an unfrozen gallic acid solution in ice becomes alkaline, and the decomposition of gallic acid proceeds. It is expected that other base-catalyzed reactions in weakly acidic solutions also proceed by freezing in the presence of NaCl without the need for any alkaline reagents.

  12. Effects of acid and metal solutions on seedling foliage of two western conifers. Forest Service research note

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, J.; Weaver, T.; Cole, D.M.

    1994-11-01

    A greenhouse study tested the effects of three acids and five metals on foliage of lodgepole pine (Pinus contorta var. latifolia) and Douglas-fir (Pseudotsugs menziesii) seedlings. The seedlings were treated with a single immersion of foliage into solutions of three acids (HCL, H2S04, and HN3) and five metal chlorides (ZnC12, CdC12, HgC12, CuC12, and PbC12) each at five different concentration levels. Injury to the foliage was recorded after 5 weeks by counting needles that were chlorotic (yellow) or dead. Statistically significant (p < 0.05) effects were observed for both acids and metals. The effects of metals were far greater thanmore » the effects of acids for both species.« less

  13. Highly selective and efficient imprinted polymers based on carboxyl-functionalized magnetic nanoparticles for the extraction of gallic acid from pomegranate rind.

    PubMed

    Zhang, Junjie; Li, Benqiang; Yue, Huijuan; Wang, Jing; Zheng, Yuansuo

    2018-01-01

    With the combined surface imprinting technique and immobilized template strategy, molecularly imprinted magnetic nanoparticles were successfully prepared and coupled with high-performance liquid chromatography to selectively separate and determine gallic acid from the pomegranate rind. On the surface of carboxyl-functionalized magnetic nanospheres, thin imprinting shells were formed using dopamine as monomer and crosslinker. The characteristics, polymerization conditions, and adsorption performances of the resultant nanomaterials were investigated in detail. In addition of good crystallinity, satisfactory magnetism, and uniform morphology of the obtained polymers, they had rapid binding kinetics, high adsorption capacity, and favorable reusability. In the mixed solution of four hydroxybenzoic acids, the prepared nanomaterials have an excellent selectivity to gallic acid with an imprinting factor of as high as 17.5. Therefore, the polymers have great potentials in specific extraction and enrichment of gallic acid from the complex natural resources. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Analytic, High-beta Solutions of the Helical Grad-Shafranov Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.R. Smith; A.H. Reiman

    We present analytic, high-beta ({beta} {approx} O(1)), helical equilibrium solutions for a class of helical axis configurations having large helical aspect ratio, with the helix assumed to be tightly wound. The solutions develop a narrow boundary layer of strongly compressed flux, similar to that previously found in high beta tokamak equilibrium solutions. The boundary layer is associated with a strong localized current which prevents the equilibrium from having zero net current.

  15. Citric Acid-Modified Fenton's Reaction for the Oxidation of Chlorinated Ethylenes in Soil Solution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seol, Yongkoo; Javandel, Iraj

    Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in-situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varyingmore » H{sub 2}O{sub 2} concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H{sub 2}O{sub 2} relative to iron catalysts (Fe{sup 2+}/H{sub 2}O{sub 2} < 1/330) would result in lowering the efficiency of contaminant removal by iron chelations in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.« less

  16. Citric acid-modified Fenton's reaction for the oxidation of chlorinated ethylenes in soil solution systems.

    PubMed

    Seol, Yongkoo; Javandel, Iraj

    2008-06-01

    Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H2O2 concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H2O2 relative to iron catalysts (Fe2+/H2O2<1/330) would result in lowering the efficiency of contaminant removal by iron chelation in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.

  17. Chitosan-silica complex membranes from sulfonic acid functionalized silica nanoparticles for pervaporation dehydration of ethanol-water solutions.

    PubMed

    Liu, Ying-Ling; Hsu, Chih-Yuan; Su, Yu-Huei; Lai, Juin-Yih

    2005-01-01

    Nanosized silica particles with sulfonic acid groups (ST-GPE-S) were utilized as a cross-linker for chitosan to form a chitosan-silica complex membranes, which were applied to pervaporation dehydration of ethanol-water solutions. ST-GPE-S was obtained from reacting nanoscale silica particles with glycidyl phenyl ether, and subsequent sulfonation onto the attached phenyl groups. The chemical structure of the functionalized silica was characterized with FTIR, (1)H NMR, and energy-dispersive X-ray. Homogeneous dispersion of the silica particles in chitosan was observed with electronic microscopies, and the membranes obtained were considered as nanocomposites. The silica nanoparticles in the membranes served as spacers for polymer chains to provide extra space for water permeation, so as to bring high permeation rates to the complex membranes. With addition of 5 parts per hundred of functionalized silica into chitosan, the resulting membrane exhibited a separation factor of 919 and permeation flux of 410 g/(m(2) h) in pervaporation dehydration of 90 wt % ethanol aqueous solution at 70 degrees C.

  18. Combined Jessner Solution and Trichloroacetic Acid Versus Trichloroacetic Acid Alone in the Treatment of Melasma in Dark-Skinned Patients.

    PubMed

    Abdel-Meguid, Azza M; Taha, Emad A; Ismail, Sahar A

    2017-05-01

    Melasma is a common challenging pigmentary skin disorder especially in dark-skinned females urging them to seek medical help. Many modalities of treatment are available, but none is satisfactory. To compare safety and efficacy of combined trichloroacetic acid (TCA) (20%-25%) and Jessner's solution versus TCA (20%-25%) alone in dark patients with melasma. The study design was a split face, right-left, assessor-blinded, randomized controlled study. Twenty-four adult female patients (skin phototypes IV-V) with bilateral melasma were treated for 6 sessions at 2 weeks intervals. Clinical assessment of the 2 sides of the face with Melasma Area and Severity Index (MASI) score was performed, and photographs were taken before and after the peeling course. Both therapeutic modalities showed significant decrease in MASI score, which was significantly lower on the side treated with both Jessner solution and TCA. There were significant negative correlations between the percentage of improvement of MASI score and both age of the patients and duration of the melasma. Dark skin melasma can be treated with both regimens safely and effectively; however, combined Jessner solution and TCA is more effective.

  19. Safer staining method for acid fast bacilli.

    PubMed Central

    Ellis, R C; Zabrowarny, L A

    1993-01-01

    To develop a method for staining acid fast bacilli which excluded highly toxic phenol from the staining solution. A lipophilic agent, a liquid organic detergent, LOC High Studs, distributed by Amway, was substituted. The acid fast bacilli stained red; nuclei, cytoplasm, and cytoplasmic elements stained blue on a clear background. These results compare very favourably with acid fast bacilli stained by the traditional method. Detergents are efficient lipophilic agents and safer to handle than phenol. The method described here stains acid fast bacilli as efficiently as traditional carbol fuchsin methods. LOC High Suds is considerably cheaper than phenol. Images PMID:7687254

  20. Safer staining method for acid fast bacilli.

    PubMed

    Ellis, R C; Zabrowarny, L A

    1993-06-01

    To develop a method for staining acid fast bacilli which excluded highly toxic phenol from the staining solution. A lipophilic agent, a liquid organic detergent, LOC High Studs, distributed by Amway, was substituted. The acid fast bacilli stained red; nuclei, cytoplasm, and cytoplasmic elements stained blue on a clear background. These results compare very favourably with acid fast bacilli stained by the traditional method. Detergents are efficient lipophilic agents and safer to handle than phenol. The method described here stains acid fast bacilli as efficiently as traditional carbol fuchsin methods. LOC High Suds is considerably cheaper than phenol.

  1. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats.

    PubMed

    Panchal, Sunil K; Ward, Leigh; Brown, Lindsay

    2013-03-01

    Fruits and nuts may prevent or reverse common human health conditions such as obesity, diabetes and hypertension; together, these conditions are referred to as metabolic syndrome, an increasing problem. This study has investigated the responses to ellagic acid, present in many fruits and nuts, in a diet-induced rat model of metabolic syndrome. Eight- to nine-week-old male Wistar rats were divided into four groups for 16-week feeding with cornstarch diet (C), cornstarch diet supplemented with ellagic acid (CE), high-carbohydrate, high-fat diet (H) and high-carbohydrate, high-fat diet supplemented with ellagic acid (HE). CE and HE rats were given 0.8 g/kg ellagic acid in food from week 8 to 16 only. At the end of 16 weeks, cardiovascular, hepatic and metabolic parameters along with protein levels of Nrf2, NF-κB and CPT1 in the heart and the liver were characterised. High-carbohydrate, high-fat diet-fed rats developed cardiovascular remodelling, impaired ventricular function, impaired glucose tolerance, non-alcoholic fatty liver disease with increased protein levels of NF-κB and decreased protein levels of Nrf2 and CPT1 in the heart and the liver. Ellagic acid attenuated these diet-induced symptoms of metabolic syndrome with normalisation of protein levels of Nrf2, NF-κB and CPT1. Ellagic acid derived from nuts and fruits such as raspberries and pomegranates may provide a useful dietary supplement to decrease the characteristic changes in metabolism and in cardiac and hepatic structure and function induced by a high-carbohydrate, high-fat diet by suppressing oxidative stress and inflammation.

  2. Modeling methylene blue aggregation in acidic solution to the limits of factor analysis.

    PubMed

    Golz, Emily K; Vander Griend, Douglas A

    2013-01-15

    Methylene blue (MB(+)), a common cationic thiazine dye, aggregates in acidic solutions. Absorbance data for equilibrated solutions of the chloride salt were analyzed over a concentration range of 1.0 × 10(-3) to 2.6 × 10(-5) M, in both 0.1 M HCl and 0.1 M HNO(3). Factor analyses of the raw absorbance data sets (categorically a better choice than effective absorbance) definitively show there are at least three distinct molecular absorbers regardless of acid type. A model with monomer, dimer, and trimer works well, but extensive testing has resulted in several other good models, some with higher order aggregates and some with chloride anions. Good models were frequently indistinguishable from each other by quality of fit or reasonability of molar absorptivity curves. The modeling of simulated data sets demonstrates the cases and degrees to which signal noise in the original data obscure the true model. In particular, the more mathematically similar (less orthogonal) the molar absorptivity curves of the chemical species in a model are, the less signal noise it takes to obscure the true model from other potentially good models. Unfortunately, the molar absorptivity curves in dye aggregation systems like that of methylene blue tend to be sufficiently similar so as to lead to the obscuration of models even at the noise levels (0.0001 ABS) of typical benchtop spectrophotometers.

  3. Study of the antibacterial activity of electro-activated solutions of salts of weak organic acids on Salmonella enterica, Staphylococcus aureus and Listeria monocytogenes.

    PubMed

    Liato, Viacheslav; Labrie, Steve; Aïder, Mohammed

    2017-01-01

    This work assessed the antibacterial activity of electro-activated solutions of salts of weak organic acids (potassium acetate, potassium citrate and calcium lactate) on Salmonella enterica, Staphylococcus aureus and Listeria monocytogenes. This activity was compared in terms of minimal inhibitory (bactericidal) concentration to the effect of commercial acetic, citric and lactic acid at equivalent titratable acidity. Staining live/dead BacLight method was used to consider physiological state of bacteria following the evaluation of pathogenic strains during exposure to the tested solutions. The results demonstrated strong inhibitory activity of all electro-activated solutions. After 10 min of exposure to electro-activated potassium acetate, a reduction of ≥6 log CFU/ml of all bacteria was observed. The electro-activated potassium citrate demonstrated the lowest minimal inhibitory concentration. Nevertheless, its inactivation power was significantly higher than that of conjugated citric acid. Although electro-activated calcium lactate was found less effective in comparison with its conjugated acid form, after 10 min of contact with the tested pathogens, it induced a population reduction of 2.23, 2.97 and 5.57 log CFU/ml of S. aureus, L. monocytogenes and S. enterica, respectively.

  4. Hydrolytic cleavage of pyroglutamyl-peptide bond. V. selective removal of pyroglutamic acid from biologically active pyroglutamylpeptides in high concentrations of aqueous methanesulfonic acid.

    PubMed

    Kobayashi, Junko; Ohki, Kazuhiro; Okimura, Keiko; Hashimoto, Tadashi; Sakura, Naoki

    2006-06-01

    Application of aqueous methanesulfonic acid (MSA) for selective chemical removal of pyroglutamic acid (pGlu) residue from five biologically active pyroglutamyl-peptides (pGlu-X-peptides, X=amino acid residue at position 2) was examined. Gonadotropin releasing hormone (Gn-RH), dog neuromedin U-8 (d-NMU-8), physalaemin (PH), a bradykinin potentiating peptide (BPP-5a) and neurotensin (NT) as pGlu-X-peptides were incubated in either 70% or 90% aqueous MSA at 25 degrees C. HPLC analysis of the incubation solutions showed that the main decomposition product was H-X-peptide derived from each pGlu-X-peptide by the removal of pGlu. The results revealed that the pGlu-X peptide bond had higher susceptibility than various internal amide bonds in the five peptides examined, including the Trp-Ser bond in Gn-RH, the C-terminal Asn-NH(2) in d-NMU-8, and the Asp-Pro bond in PH, whose acid susceptibility is well known. Thus, mild hydrolysis with high concentrations of aqueous MSA may be applicable to chemically selective removal of pGlu from pGlu-X-peptides for structural examinations.

  5. Solution blow spinning: parameters optimization and effects on the properties of nanofibers from poly(lactic) acid/dimethyl carbonate solutions

    USDA-ARS?s Scientific Manuscript database

    Solution blow spinning (SBS) is a process to produce non-woven fiber sheets with high porosity and an extremely large amount of surface area. In this study, a Box-Behnken experimental design (BBD) was used to optimize the processing parameters for the production of nanofibers from polymer solutions ...

  6. Discoloration of titanium alloy in acidic saline solutions with peroxide.

    PubMed

    Takemoto, Shinji; Hattori, Masayuki; Yoshinari, Masao; Kawada, Eiji; Oda, Yutaka

    2013-01-01

    The objective of this study was to compare corrosion behavior in several titanium alloys with immersion in acidulated saline solutions containing hydrogen peroxide. Seven types of titanium alloy were immersed in saline solutions with varying levels of pH and hydrogen peroxide content, and resulting differences in color and release of metallic elements determined in each alloy. Some alloys were characterized using Auger electron spectroscopy. Ti-55Ni alloy showed a high level of dissolution and difference in color. With immersion in solution containing hydrogen peroxide at pH 4, the other alloys showed a marked difference in color but a low level of dissolution. The formation of a thick oxide film was observed in commercially pure titanium showing discoloration. The results suggest that discoloration in titanium alloys immersed in hydrogen peroxide-containing acidulated solutions is caused by an increase in the thickness of this oxide film, whereas discoloration of Ti-55Ni is caused by corrosion.

  7. Biosorption of formic and acetic acids from aqueous solution using activated carbon from shea butter seed shells

    NASA Astrophysics Data System (ADS)

    Adekola, Folahan A.; Oba, Ismaila A.

    2017-10-01

    The efficiency of prepared activated carbon from shea butter seed shells (SB-AC) for the adsorption of formic acid (FA) and acetic acid (AA) from aqueous solution was investigated. The effect of optimization parameters including initial concentration, agitation time, adsorbent dosage and temperature of adsorbate solution on the sorption capacity were studied. The SB-AC was characterized for the following parameters: bulk density, moisture content, ash content, pH, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The optimal conditions for the adsorption were established and the adsorption data for AA fitted Dubinin-Radushkevich (D-R) isotherm well, whereas FA followed Langmuir isotherm. The kinetic data were examined. It was found that pseudo-second-order kinetic model was found to adequately explain the sorption kinetic of AA and FA from aqueous solution. It was again found that intraparticle diffusion was found to explain the adsorption mechanism. Adsorption thermodynamic parameters were estimated and the negative values of Δ G showed that the adsorption process was feasible and spontaneous in nature, while the negative values of Δ H indicate that the adsorption process was exothermic. It is therefore established that SB-AC has good potential for the removal of AA and FA from aqueous solution. Hence, it should find application in the regular treatment of polluted water in aquaculture and fish breeding system.

  8. A comparison of water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids

    USGS Publications Warehouse

    Chlou, C.T.; Kile, D.E.; Brinton, T.I.; Malcolm, R.L.; Leenheer, J.A.; MacCarthy, P.

    1987-01-01

    Water solubility enhancements of 1,1-bis(p-chloro-phenyl)-2,2,2-trichloroethane (p,p???-DDT), 2,4,5,2???,5???-pentachlorobiphenyl (2,4,5,2???,5???-PCB), and 2,4,4???-tri-chlorobiphenyl (2,4,4???-PCB) by dissolved organic matter have been studied with the following samples: (1) acidic water samples from the Suwannee River, Georgia, and the Sopchoppy River, Florida; (2) a humic extract of a nearly neutral pH water from the Calcasieu River, Louisiana; (3) commercial humic acids from the Aldrich Chemical Co. and Fluka-Tridom Chemical Corp. The calculated partition coefficients on a dissolved organic carbon basis (Kdoc) for organic solutes with water samples and aquatic humic extracts from this and earlier studies indicate that the enhancement effect varies with the molecular composition of the aquatic humic materials. The Kdoc values with water and aquatic humic samples are, however, far less than the observed Kdoc values obtained with the two commercial samples, by factors of about 4-20. In view of this finding, one should be cautious in interpreting the effects of the dissolved organic matter on solubility enhancement of organic solutes on the basis of the use of commercial humic acids.

  9. Gas-saturated solution process to obtain microcomposite particles of alpha lipoic acid/hydrogenated colza oil in supercritical carbon dioxide.

    PubMed

    Mishima, Kenji; Honjo, Masatoshi; Sharmin, Tanjina; Ito, Shota; Kawakami, Ryo; Kato, Takafumi; Misumi, Makoto; Suetsugu, Tadashi; Orii, Hideaki; Kawano, Hiroyuki; Irie, Keiichi; Sano, Kazunori; Mishima, Kenichi; Harada, Takunori; Ouchi, Mikio

    2016-09-01

    Alpha lipoic acid (ALA), an active substance in anti-aging products and dietary supplements, need to be masked with an edible polymer to obscure its unpleasant taste. However, the high viscosity of the ALA molecules prevents them from forming microcomposites with masking materials even in supercritical carbon dioxide (scCO2). Therefore, the purpose of this study was to investigate and develop a novel production method for microcomposite particles for ALA in hydrogenated colza oil (HCO). Microcomposite particles of ALA/HCO were prepared by using a novel gas-saturated solution (PGSS) process in which the solid-dispersion method is used along with stepwise temperature control (PGSS-STC). Its high viscosity prevents the formation of microcomposites in the conventional PGSS process even under strong agitation. Here, we disperse the solid particles of ALA and HCO in scCO2 at low temperatures and change the temperature stepwise in order to mix the melted ALA and HCO in scCO2. As a result, a homogeneous dispersion of the droplets of ALA in melted HCO saturated with CO2 is obtained at high temperatures. After the rapid expansion of the saturated solution through a nozzle, microcomposite particles of ALA/HCO several micrometers in diameter are obtained.

  10. Crystallization of highly supersaturated solutions - An experimental study

    NASA Technical Reports Server (NTRS)

    Queen, Brian; Hallett, John

    1990-01-01

    The crystallization of ammonium sulfate solutions under very high supersaturation is investigated. The results imply that high saturation ratios can exist at least to 30 +/- 5 and possibly higher in smaller drops. Under certain atmospheric conditions highly supersaturated drops can persist at even lower temperatures and humidities.

  11. Acid neutralizing processes in an alpine watershed front range, Colorado, U.S.A.-1: Buffering capacity of dissolved organic carbon in soil solutions

    USGS Publications Warehouse

    Iggy, Litaor M.; Thurman, E.M.

    1988-01-01

    Soil interstitial waters in the Green Lakes Valley, Front Range, Colorado were studied to evaluate the capacity of the soil system to buffer acid deposition. In order to determine the contribution of humic substances to the buffering capacity of a given soil, dissolved organic carbon (DOC) and pH of the soil solutions were measured. The concentration of the organic anion, Ai-, derived from DOC at sample pH and the concentration of organic anion, Ax- at the equivalence point were calculated using carboxyl contents from isolated and purified humic material from soil solutions. Subtracting Ax- from Ai- yields the contribution of humic substances to the buffering capacity (Aequiv.-). Using this method, one can evaluate the relative contribution of inorganic and organic constituents to the acid neutralizing capacity (ANC) of the soil solutions. The relative contribution of organic acids to the overall ANC was found to be extremely important in the alpine wetland (52%) and the forest-tundra ecotone (40%), and somewhat less important in the alpine tundra sites (20%). A failure to recognize the importance of organic acids in soil solutions to the ANC will result in erroneous estimates of the buffering capacity in the alpine environment of the Front Range, Colorado. ?? 1988.

  12. Finite Volume Scheme for Double Convection-Diffusion Exchange of Solutes in Bicarbonate High-Flux Hollow-Fiber Dialyzer Therapy

    PubMed Central

    Annan, Kodwo

    2012-01-01

    The efficiency of a high-flux dialyzer in terms of buffering and toxic solute removal largely depends on the ability to use convection-diffusion mechanism inside the membrane. A two-dimensional transient convection-diffusion model coupled with acid-base correction term was developed. A finite volume technique was used to discretize the model and to numerically simulate it using MATLAB software tool. We observed that small solute concentration gradients peaked and were large enough to activate solute diffusion process in the membrane. While CO2 concentration gradients diminished from their maxima and shifted toward the end of the membrane, HCO3 − concentration gradients peaked at the same position. Also, CO2 concentration decreased rapidly within the first 47 minutes while optimal HCO3 − concentration was achieved within 30 minutes of the therapy. Abnormally high diffusion fluxes were observed near the blood-membrane interface that increased diffusion driving force and enhanced the overall diffusive process. While convective flux dominated total flux during the dialysis session, there was a continuous interference between convection and diffusion fluxes that call for the need to seek minimal interference between these two mechanisms. This is critical for the effective design and operation of high-flux dialyzers. PMID:23197994

  13. Composition and stability of complexes of maleic and succinic acids with Cu2+ ions in water-ethanol solutions at 298 K

    NASA Astrophysics Data System (ADS)

    Tukumova, N. V.; Usacheva, T. R.; Thuan, Tran Thi Dieu; Sharnin, V. A.

    2014-10-01

    The composition and stability of coordination compounds of the anions of maleic (H2L) and succinic (H2Y) acids with copper(II) ions in water-ethanol solutions is studied by means of potentiometric titration at a sodium perchlorate ionic strength of 0.1 and a temperature of 298.15 K. The composition of the water-ethanol solvent was varied from 0 to 0.7 molar parts of ethanol for maleic acid and from 0 to 0.4 molar parts for succinic acid. The stability of monoligand complexes of copper ions with the anions of maleic and succinic acids grows with increase of ethanol concentration from 3.86 to 6.62 for logβCuL and from 2.98 to 6.01 for logβCuY. It is shown that a monotonic rise in stability upon an increase in the content of ethanol in solution is observed, while the values of logβCuL change more sharply. The succinic acid anion forms a stronger complex with copper ions than maleic acid anions do at an ethanol content of 0.4 molar parts. The possibility of the formation of a protonated CuHY+ particle is established.

  14. Fast high-throughput method for the determination of acidity constants by capillary electrophoresis: I. Monoprotic weak acids and bases.

    PubMed

    Fuguet, Elisabet; Ràfols, Clara; Bosch, Elisabeth; Rosés, Martí

    2009-04-24

    A new and fast method to determine acidity constants of monoprotic weak acids and bases by capillary zone electrophoresis based on the use of an internal standard (compound of similar nature and acidity constant as the analyte) has been developed. This method requires only two electrophoretic runs for the determination of an acidity constant: a first one at a pH where both analyte and internal standard are totally ionized, and a second one at another pH where both are partially ionized. Furthermore, the method is not pH dependent, so an accurate measure of the pH of the buffer solutions is not needed. The acidity constants of several phenols and amines have been measured using internal standards of known pK(a), obtaining a mean deviation of 0.05 pH units compared to the literature values.

  15. High-performance magnetic carbon materials in dye removal from aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xiaoming, E-mail: dawn1026@163.com; Zhang, Yu; Dai, Yuan

    To obtain a novel adsorbent with excellent adsorption capacity and convenient magnetic separation property, magnetic activated semi-coke was prepared by KOH activation method and further modified by FeCl{sub 3}. The surface morphology, physical structure, chemical properties and textural characteristics of unmodified semi-coke, KOH-modified semi-coke and magnetic activated semi-coke were characterized by scanning electron microscopy, X-ray powder diffraction, N{sub 2} adsorption-desorption measurement, and electronic differential system. The adsorption characteristics of the magnetic activated semi-coke were explored for the removal of methyl orang (MO), methylene blue (MB), congo red (CR), acid fuchsin (AF), and rhodamine B (RB) from aqueous solution. The effectsmore » of adsorption parameters, including adsorbent dosage, pH and contact time, were investigated by comparing the adsorption properties of the magnetic activated semi-coke to RB. The result showed that the magnetic activated semi-coke displayed excellent dispersion, convenient separation and high adsorption capacity. The adsorption experiment data indicated that the pseudosecond order model and the Langmuir model could well explain the adsorption processes of RB on the magnetic activated semi-coke, and the maximum adsorption capacity (q{sub m}) was 526.32 mg/g. The values of thermodynamic parameters (ΔG°, ΔH° and ΔS°) indicated that the adsorption process depended on the temperature of the aqueous phase, and it was spontaneous and exothermic in nature. As the addition of the magnetic activated semi-coke, the color of the solution significantly faded. Subsequently, fast aggregation of the magnetic activated semi-coke from their homogeneous dispersion in the presence of an external magnetic field could be happened. So, the magnetic activated semi-coke displayed excellent dispersion, convenient separation and high adsorption capacity. - Graphical abstract: As the addition of the magnetic activated

  16. Modelling of the acid-base properties of natural and synthetic adsorbent materials used for heavy metal removal from aqueous solutions.

    PubMed

    Pagnanelli, Francesca; Vegliò, Francesco; Toro, Luigi

    2004-02-01

    In this paper a comparison about kinetic behaviour, acid-base properties and copper removal capacities was carried out between two different adsorbent materials used for heavy metal removal from aqueous solutions: an aminodiacetic chelating resin as commercial product (Lewatit TP207) and a lyophilised bacterial biomass of Sphaerotilus natans. The acid-base properties of a S. natans cell suspension were well described by simplified mechanistic models without electrostatic corrections considering two kinds of weakly acidic active sites. In particular the introduction of two-peak distribution function for the proton affinity constants allows a better representation of the experimental data reproducing the site heterogeneity. A priori knowledge about resin functional groups (aminodiacetic groups) is the base for preliminary simulations of titration curve assuming a Donnan gel structure for the resin phase considered as a concentrated aqueous solution of aminodiacetic acid (ADA). Departures from experimental and simulated data can be interpreted by considering the heterogeneity of the functional groups and the effect of ionic concentration in the resin phase. Two-site continuous model describes adequately the experimental data. Moreover the values of apparent protonation constants (as adjustable parameters found by non-linear regression) are very near to the apparent constants evaluated by a Donnan model assuming the intrinsic constants in resin phase equal to the equilibrium constants in aqueous solution of ADA and considering the amphoteric nature of active sites for the evaluation of counter-ion concentration in the resin phase. Copper removal outlined the strong affinity of the active groups of the resin for this ion in solution compared to the S. natans biomass according to the complexation constants between aminodiacetic and mono-carboxylic groups and copper ions.

  17. Adsorption of Benzoic Acid in Aqueous Solution by Bagasse Fly Ash

    NASA Astrophysics Data System (ADS)

    Suresh, S.

    2012-09-01

    This paper reports the studies on the benzoic acid (BA) onto bagasse fly ash (BFA) was studied in aqueous solution in a batch system. Physico-chemical properties including surface area, surface texture of the GAC before and after BA adsorption onto BFA were analysed using X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The optimum initial pH for the adsorption of BA was found to be 5.56. The adsorbent dose was 10 g/l for BFA and the equilibrium time 8 h of reaction. Pseudo first and second order models were used to find the adsorption kinetics. It was found that intraparticle diffusion played important role in the adsorption mechanisms of BA and the adsorption kinetics followed pseudo-second order kinetic model rather than the pseudo first order kinetic model. Isotherm data were generated for BA solution having initial concentrations of BA in the range of 10-200 mg/l for the BFA dosage of 10 g/l at temperatures of 288, 303, and 318 K. The adsorption of BA onto BFA was favorably influenced by an increase in temperature. Equilibrium data were well represented by the Redlich-Peterson isotherm model. Values of the change in entropy ( ΔS 0), heat of adsorption ( ΔH 0) for adsorption of BA on BFA was found to be 120.10 and 19.61 kJ/mol respectively. The adsorption of BA onto BFA was an endothermic reaction. Desorption of BA from BFA was studied by various solvents method. Acetic acid was found to be a better eluant for desorption of BA with a maximum desorption efficiency of 55.2 %. Owing to its heating value, spent BFA can be used as a co-fuel for the production of heat in boiler furnaces.

  18. High-titer and productivity of l-(+)-lactic acid using exponential fed-batch fermentation with Bacillus coagulans arr4, a new thermotolerant bacterial strain.

    PubMed

    Coelho, Luciana Fontes; Beitel, Susan Michelz; Sass, Daiane Cristina; Neto, Paulo Marcelo Avila; Contiero, Jonas

    2018-04-01

    Bacillus coagulans arr4 is a thermotolerant microorganism with great biotechnological potential for l-(+)-lactic acid production from granulated sugar and yeast extract. The highest l-(+)-lactic acid production was obtained with Ca(OH) 2 . The maximum production of l-(+)-lactic acid (206.81 g/L) was observed in exponential feeding using granulated sugar solution (900 g/L) and yeast extract (1%) at 50 °C, pH 6.5, and initial granulated sugar concentration of 100 g/L at 39 h. 5.3 g/L h productivity and 97% yield were observed, and no sugar remained. Comparing the simple batch with exponential fed-batch fermentation, the l(+) lactic acid production was improved in 133.22% and dry cell weight was improved in 83.29%, using granulated sugar and yeast extract. This study presents the highest productivity of lactic acid ever observed in the literature, on the fermentation of thermotolerant Bacillus sp. as well as an innovative and high-efficiency purification technology, using low-cost substances as Celite and charcoal. The recovery of lactic acid was 86%, with 100% protein removal, and the fermentation medium (brown color) became a colorless solution.

  19. Direct NMR Monitoring of Phase Separation Behavior of Highly Supersaturated Nifedipine Solution Stabilized with Hypromellose Derivatives.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu

    2017-07-03

    We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution 1 H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.

  20. [Analysis of monosaccharides and uronic acids in polysaccharides by pre-column derivatization with p-aminobenzoic acid and high performance liquid chromatography].

    PubMed

    Hao, Guitang; Chen, Shangwei; Zhu, Song; Yin, Hongping; Dai, Jun; Cao, Yuhua

    2007-01-01

    An ion-pair reversed-phase high performance liquid chromatographic (RP-HPLC) method for the simultaneous determination of carbohydrate and uronic acids was developed. p-Aminobenzoic acid (p-AMBA) was used for pre-column derivatization of the analytes, enabling fluorescence (lambda(ex) = 313 nm, lambda(em) = 358 nm) or ultraviolet (UV at 303 nm) detection. Reaction conditions such as reaction temperature and reaction time were optimized. Atlantis dC18 column with hydrophilic end capping was selected for the separation of derivatives. Effects of mobile phase compositions such as ion pairs and their concentrations and pH on the retention behaviors and separation results of 9 monosaccharides and 2 uronic acids were investigated. Derivatives of fructose, galactose, glucose, mannose, xylose, arabinose, ribose, galacturonic acid, fucose, glucuronic acid and rhamnose were separated within 42 min, applying tetrabutyl ammonium hydrogen bisulfate (TBAHSO4) as the ion pair reagent. The detection limits were between 3.38 x 10(-8) mol/L and 176 x 10(-8) mol/L for fluorescence detection and between 2.55 x 10(-7) mol/L and 13.4 x 10(-7) mol/L for UV detection. Good linearities were obtained with correlation coefficients (r2) above 0.99. The relative standard deviations (RSDs) of the peak area of the derivatives in 12 - 51 h after derivatization were from 2.5% to 3.9%. This method has been applied for the determination of mono-/disaccharides and uronic acids in spirulina polysaccharide after dissolved in trifluoroacetic acid solution (2 mol/L). The results showed this method is suitable for the analysis of monosaccharide compositions in polysaccharides.

  1. Isotherm-Based Thermodynamic Model for Solute Activities of Asymmetric Electrolyte Aqueous Solutions.

    PubMed

    Nandy, Lucy; Dutcher, Cari S

    2017-09-21

    Adsorption isotherm-based statistical thermodynamic models can be used to determine solute concentration and solute and solvent activities in aqueous solutions. Recently, the number of adjustable parameters in the isotherm model of Dutcher et al. J. Phys. Chem. A/C 2011, 2012, 2013 were reduced for neutral solutes as well as symmetric 1:1 electrolytes by using a Coulombic model to describe the solute-solvent energy interactions (Ohm et al. J. Phys. Chem. A 2015, Nandy et al. J. Phys. Chem. A 2016). Here, the Coulombic treatment for symmetric electrolytes is extended to establish improved isotherm model equations for asymmetric 1-2 and 1-3 electrolyte systems. The Coulombic model developed here results in prediction of activities and other thermodynamic properties in multicomponent systems containing ions of arbitrary charge. The model is found to accurately calculate the osmotic coefficient over the entire solute concentration range with two model parameters, related to intermolecular solute-solute and solute-solvent spacing. The inorganic salts and acids treated here are generally considered to be fully dissociated. However, there are certain weak acids that do not dissociate completely, such as the bisulfate ion. In this work, partial dissociation of the bisulfate ion from sulfuric acid is treated as a mixture, with an additional model parameter that accounts for the dissociation ratio of the dissociated ions to nondissociated ions.

  2. Interactive effects of soil acidity and fluoride on soil solution aluminium chemistry and barley (Hordeum vulgare L.) root growth.

    PubMed

    Manoharan, V; Loganathan, P; Tillman, R W; Parfitt, R L

    2007-02-01

    A greenhouse study was conducted to determine if concentrations of fluoride (F), which would be added to acid soils via P fertilisers, were detrimental to barley root growth. Increasing rates of F additions to soil significantly increased the soil solution concentrations of aluminium (Al) and F irrespective of the initial adjusted soil pH, which ranged from 4.25 to 5.48. High rates of F addition severely restricted root growth; the effect was more pronounced in the strongly acidic soil. Speciation calculations demonstrated that increasing rates of F additions substantially increased the concentrations of Al-F complexes in the soil. Stepwise regression analysis showed that it was the combination of the activities of AlF2(1+) and AlF(2+) complexes that primarily controlled barley root growth. The results suggested that continuous input of F to soils, and increased soil acidification, may become an F risk issue in the future.

  3. Temporary Abdominal Closure Combined With an Irrigating System Utilizing Hypochlorous Acid Solution to Decrease Abdominal Mucopurulence

    PubMed Central

    Matthews, Marc R.; Quan, Asia N.; Weir, Alexandra S.; Foster, Kevin N.; Caruso, Daniel M.

    2018-01-01

    Introduction: Leaving the abdominal cavity open is a well-described and frequently utilized technique in the treatment of severe intra-abdominal sepsis. Irrigation through a negative pressure wound therapy device is a technique employed to assist in the closure of wounds as well as the reduction of bacterial contamination. Furthermore, hypochlorous acid has been found to be safe and effective in microorganismal elimination from extremity wounds. There is no literature regarding the infusion of hypochlorous solution into the abdominal cavity for intra-abdominal sepsis or mucopurulent abscesses or biofilm. Objectives: A 47-year-old man with granulomatosis polyangiitis was started on weekly rituximab. After 4 infusions, skin sloughing, ultimately diagnosed as toxic epidermal necrolysis, developed. During the hospital course, he developed sepsis and bowel perforation necessitating an exploratory laparotomy. The abdomen was left open with a temporary abdominal closure using the Abthera open abdomen negative wound therapy device; however, the abdomen remained infected with visually diffuse, thickening mucopurulence despite multiple washouts. Therefore, a VAC Vera-Flo irrigation device was combined with the Abthera open abdomen negative wound therapy device and cyclical irrigation of hypochlorous acid. After 72 hours, the purulence visually was improved and no adverse events were recorded with the placement of intra-abdominal hypochlorous acid. Conclusions: The combination of two medical devices for the intra-abdominal instillation of irrigation is considered “off-label use” from the manufacturer's recommendations. In addition, the repeated instillation of hypochlorous acid solution has not been described but was noted to have visually decreased the contaminated effluent within the intra-abdominal fluid. PMID:29527250

  4. SFG study of platinum electrodes in perchloric acid solutions

    NASA Astrophysics Data System (ADS)

    Zheng, W. Q.; Pluchery, O.; Tadjeddine, A.

    2002-04-01

    Infrared-visible sum-frequency generation (SFG) spectroscopy has been used to study the structure of water molecules (and/or its derivatives OH -, H 3O + etc.) at aqueous electrolyte/electrode interfaces. For Pt(1 1 0) and Pt(1 0 0) electrodes in 0.1 M perchloric acid solution, we did not observe any significant O-H stretching resonance. In striking contrast to the resonant SFG signal, the nonresonant SFG (NRSFG) signal varies sensitively with the applied electrochemical potential, indicating that the interaction of water molecules with platinum electrodes is relatively weak as compared to that of H + and ClO 4- ions. From changes in the NRSFG signal and on the basis of an ionic adsorption model, we can also deduce that the potential of zero charge of Pt(1 1 0) in 0.1 M HClO 4 should be located at about 0.22 V (vs. NHE). This value is in good agreement with that measured recently by electrochemical method.

  5. RECOVERY OF URANIUM FROM AQUEOUS PHOSPHATE-CONTAINING SOLUTIONS

    DOEpatents

    Igelsrud, I.; Stephen, E.F.

    1959-08-11

    ABS>A method is presented for recovering hexavalent uranium from an acidic phosphaie solution. A high molecular weight amine, such as a mixture of cccoanut oil amines, is added to the solution in such amount as to give a ratio of about 2000 parts by weight of amine to 1 part by weight of uranium. The uranium is precipitated with the amines and the whole filtered from the solution. The uranium is leached from the amine mass by washing with aqueous sodium carbonate solution; and the amine mixture is available for reuse.

  6. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jun-Ho; Lim, Sohee; Chon, Bonghwan

    The vibrational frequency, frequency fluctuation dynamics, and transition dipole moment of the O—D stretch mode of HDO molecule in aqueous solutions are strongly dependent on its local electrostatic environment and hydrogen-bond network structure. Therefore, the time-resolved vibrational spectroscopy the O—D stretch mode has been particularly used to investigate specific ion effects on water structure. Despite prolonged efforts to understand the interplay of O—D vibrational dynamics with local water hydrogen-bond network and ion aggregate structures in high salt solutions, still there exists a gap between theory and experiment due to a lack of quantitative model for accurately describing O—D stretch frequencymore » in high salt solutions. To fill this gap, we have performed numerical simulations of Raman scattering and IR absorption spectra of the O—D stretch mode of HDO in highly concentrated NaCl and KSCN solutions and compared them with experimental results. Carrying out extensive quantum chemistry calculations on not only water clusters but also ion-water clusters, we first developed a distributed vibrational solvatochromic charge model for the O—D stretch mode in aqueous salt solutions. Furthermore, the non-Condon effect on the vibrational transition dipole moment of the O—D stretch mode was fully taken into consideration with the charge response kernel that is non-local polarizability density. From the fluctuating O—D stretch mode frequencies and transition dipole vectors obtained from the molecular dynamics simulations, the O—D stretch Raman scattering and IR absorption spectra of HDO in salt solutions could be calculated. The polarization effect on the transition dipole vector of the O—D stretch mode is shown to be important and the asymmetric line shapes of the O—D stretch Raman scattering and IR absorption spectra of HDO especially in highly concentrated NaCl and KSCN solutions are in quantitative agreement with experimental

  7. Effectiveness of 3 per cent boric acid in 70 per cent alcohol versus 1 per cent clotrimazole solution in otomycosis patients: a randomised, controlled trial.

    PubMed

    Romsaithong, S; Tomanakan, K; Tangsawad, W; Thanaviratananich, S

    2016-09-01

    To compare the clinical effectiveness and adverse events for 3 per cent boric acid in 70 per cent alcohol versus 1 per cent clotrimazole solution in the treatment of otomycosis. A total of 120 otomycosis patients were randomly assigned to receive either 1 per cent clotrimazole solution (intervention group) or 3 per cent boric acid in 70 per cent alcohol (control group) at the Khon Kaen Hospital ENT out-patient department. Treatment effectiveness was determined based on the otomicroscopic absence of fungus one week after therapy, following a single application of treatment. After 1 week of treatment, there were data for 109 participants, 54 in the clotrimazole group and 55 in the boric acid group. The absolute difference in cure rates between 1 per cent clotrimazole solution and 3 per cent boric acid in 70 per cent alcohol was 17.9 per cent (95 per cent confidence interval, 2.3 to 33.5; p = 0.028) and the number needed to treat was 6 (95 per cent confidence interval, 3.0 to 43.4). Adverse events for the two agents were comparable. One per cent clotrimazole solution is more effective than 3 per cent boric acid in 70 per cent alcohol for otomycosis treatment.

  8. Topochemical approach to efficiently produce main-chain poly(bile acid)s with high molecular weights.

    PubMed

    Li, Weina; Li, Xuesong; Zhu, Wei; Li, Changxu; Xu, Dan; Ju, Yong; Li, Guangtao

    2011-07-21

    Based on a topochemical approach, a strategy for efficiently producing main-chain poly(bile acid)s in the solid state was developed. This strategy allows for facile and scalable synthesis of main-chain poly(bile acid)s not only with high molecular weights, but also with quantitative conversions and yields.

  9. Rice solution and World Health Organization solution by gastric infusion for high stool output diarrhea.

    PubMed

    Mota-Hernández, F; Bross-Soriano, D; Pérez-Ricardez, M L; Velásquez-Jones, L

    1991-08-01

    We sought to determine the efficacy of three different types of treatment in children with acute diarrhea who, during the oral rehydration period, had high stool output (greater than 10 mL/kg per hour). Sixty-six children, aged 1 to 18 months, with an average stool output of 22.6 mL/kg per hour were randomly distributed into three groups: group 1 received a rice flour solution, group 2 received the World Health Organization rehydration solution by gastric infusion, and group 3 continued to receive this solution orally. In all three groups, a decrease in stool output was observed, with the higher decrease observed in group 1 patients. Such a decrease facilitated rehydration of all 22 patients in group 1 (100%) in 3.3 +/- 1.5 hours, 16 (73%) in group 2 in 4.3 +/- 2.1 hours, and 15 (69%) in group 3 in 4.9 +/- 2.0 hours. No complications were observed. These data indicate that the rice flour solution is effective in children with high stool output diarrhea.

  10. Cesium recovery from aqueous solutions

    DOEpatents

    Goodhall, C. A.

    1960-09-13

    A process for recovering cesium from aqueous solutions is given in which precipitation on zinc ferricyanide is used. The precipitation is preferably carried out in solutions containing at least 0.0004M zinc ferricyanide, an acidity ranging from 0.2N mineral acid to 0.61N acid deficiency, and 1 to 2.5M aluminum nitrate. (D.L.C.)

  11. Prescription omega-3 fatty acid products containing highly purified eicosapentaenoic acid (EPA).

    PubMed

    Brinton, Eliot A; Mason, R Preston

    2017-01-31

    The omega-3 fatty acid eicosapentaenoic acid (EPA) has multiple actions potentially conferring cardiovascular benefit, including lowering serum triglyceride (TG) and non-high-density lipoprotein cholesterol (non-HDL-C) levels and potentially reducing key steps in atherogenesis. Dietary supplements are a common source of omega-3 fatty acids in the US, but virtually all contain docosahexaenoic acid (DHA) in addition to EPA, and lipid effects differ between DHA and EPA. Contrary to popular belief, no over-the-counter omega-3 products are available in the US, only prescription products and dietary supplements. Among the US prescription omega-3 products, only one contains EPA exclusively (Vascepa); another closely related prescription omega-3 product also contains highly purified EPA, but is approved only in Japan and is provided in different capsule sizes. These high-purity EPA products do not raise low-density lipoprotein cholesterol (LDL-C) levels, even in patients with TG levels >500 mg/dL, in contrast to the increase in LDL-C levels with prescription omega-3 products that also contain DHA. The Japanese prescription EPA product was shown to significantly reduce major coronary events in hypercholesterolemic patients when added to statin therapy in the Japan EPA Lipid Intervention Study (JELIS). The effects of Vascepa on cardiovascular outcomes are being investigated in statin-treated patients with high TG levels in the Reduction of Cardiovascular Events With EPA-Intervention Trial (REDUCE-IT).

  12. Reparameterization of Solute—Solute Interactions for Amino Acid-Sugar Systems Using Isopiestic Osmotic Pressure Molecular Dynamics Simulations

    PubMed Central

    Lay, Wesley K.; Miller, Mark S.

    2018-01-01

    AMBER/GLYCAM and CHARMM are popular force fields for simulations of amino acids and sugars. Here we report excessively attractive amino acid-sugar interactions in both force fields, and corrections to nonbonded interactions that match experimental osmotic pressures of mixed aqueous solutions of diglycine and sucrose. The modified parameters also improve the ΔGtrans of diglycine from water to aqueous sucrose and, with AMBERff99SB/GLYCAM06, eliminate a caging effect seen in previous simulations of the protein ubiquitin with glucose. PMID:28437100

  13. Iodine addition using triiodide solutions

    NASA Technical Reports Server (NTRS)

    Rutz, Jeffrey A.; Muckle, Susan V.; Sauer, Richard L.

    1992-01-01

    The study develops: a triiodide solution for use in preparing ground service equipment (GSE) water for Shuttle support, an iodine dissolution method that is reliable and requires minimal time and effort to prepare, and an iodine dissolution agent with a minimal concentration of sodium salt. Sodium iodide and hydriodic acid were both found to dissolve iodine to attain the desired GSE iodine concentrations of 7.5 +/- 2.5 mg/L and 25 +/- 5 mg/L. The 1.75:1 and 2:1 sodium iodide solutions produced higher iodine recoveries than the 1.2:1 hydriodic acid solution. A two-hour preparation time is required for the three sodium iodide solutions. The 1.2:1 hydriodic acid solution can be prepared in less than 5 min. Two sodium iodide stock solutions (2.5:1 and 2:1) were found to dissolve iodine without undergoing precipitation.

  14. Stable, concentrated solutions of high molecular weight polyaniline and articles therefrom

    DOEpatents

    Mattes, Benjamin R.; Wang, Hsing-Lin

    1999-11-09

    Stable, concentrated solutions of high molecular weight polyaniline. In order to process high quality fibers and other articles possessing good mechanical properties, it is known that solution concentrations of the chosen polymer should be in the range from 15-30% (w/w). Moreover, it is desirable to use the highest molecular weight consistent with the solubility properties of the polymer. However, such solutions are inherently unstable, forming gels before processing can be achieved. The present invention describes the addition gel inhibitors (GIs) to the polymer solution, thereby permitting high concentrations (between 15% and 30% (w/w)) of high molecular weight ((M.sub.w)>120,000, and (M.sub.n)>30,000) emeraldine base (EB) polyaniline to be dissolved. Secondary amines have been used for this purpose in concentrations which are small compared to those which might otherwise be used in a cosolvent role therefor. The resulting solutions are useful for generating excellent fibers, films, coatings and other objects, since the solutions are stable for significant time periods, and the GIs are present in too small concentrations to cause polymer deterioration. It is demonstrated that the GIs found to be useful do not act as cosolvents, and that gelation times of the solutions are directly proportional to the concentration of GI. In particular, there is a preferred concentration of GI, which if exceeded causes structural and electrical conductivity degradation of resulting articles. Heating of the solutions significantly improves solubility.

  15. Stable, concentrated solutions of high molecular weight polyaniline and articles therefrom

    DOEpatents

    Mattes, Benjamin R.; Wang, Hsing-Lin

    2000-01-01

    Stable, concentrated solutions of high molecular weight polyaniline. In order to process high quality fibers and other articles possessing good mechanical properties, it is known that solution concentrations of the chosen polymer should be in the range from 15-30% (w/w). Moreover, it is desirable to use the highest molecular weight consistent with the solubility properties of the polymer. However, such solutions are inherently unstable, forming gels before processing can be achieved. The present invention describes the addition gel inhibitors (GIs) to the polymer solution, thereby permitting high concentrations (>15% (w/w)) of high molecular weight ((M.sub.w)>120,000, and (M.sub.n)>30,000) emeraldine base (EB) polyaniline to be dissolved. Secondary amines have been used for this purpose in concentrations which are small compared to those which might otherwise be used in a cosolvent role therefor. The resulting solutions are useful for generating excellent fibers, films, coatings and other objects, since the solutions are stable for significant time periods, and the GIs are present in too small concentrations to cause polymer deterioration. It is demonstrated that the GIs found to be useful do not act as cosolvents, and that gelation times of the solutions are directly proportional to the concentration of GI. In particular, there is a preferred concentration of GI, which if exceeded causes structural and electrical conductivity degradation of resulting articles. Heating of the solutions significantly improves solubility.

  16. High nitrogen pressure solution growth of GaN

    NASA Astrophysics Data System (ADS)

    Bockowski, Michal

    2014-10-01

    Results of GaN growth from gallium solution under high nitrogen pressure are presented. Basic of the high nitrogen pressure solution (HNPS) growth method is described. A new approach of seeded growth, multi-feed seed (MFS) configuration, is demonstrated. The use of two kinds of seeds: free-standing hydride vapor phase epitaxy GaN (HVPE-GaN) obtained from metal organic chemical vapor deposition (MOCVD)-GaN/sapphire templates and free-standing HVPE-GaN obtained from the ammonothermally grown GaN crystals, is shown. Depending on the seeds’ structural quality, the differences in the structural properties of pressure grown material are demonstrated and analyzed. The role and influence of impurities, like oxygen and magnesium, on GaN crystals grown from gallium solution in the MFS configuration is presented. The properties of differently doped GaN crystals are discussed. An application of the pressure grown GaN crystals as substrates for electronic and optoelectronic devices is reported.

  17. Degradation of chitosan hydrogel dispersed in dilute carboxylic acids by solution plasma and evaluation of anticancer activity of degraded products

    NASA Astrophysics Data System (ADS)

    Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Theeramunkong, Sewan; Saito, Nagahiro

    2018-01-01

    Chitosan is a polysaccharide that has been extensively studied in the field of biomedicine, especially its water-soluble degraded products called chitooligosaccharides (COS). In this study, COS were produced by the degradation of chitosan hydrogel dispersed in a dilute solution (i.e., 1.55 mM) of various kinds of carboxylic acids using a non-thermal plasma technology called solution plasma (SP). The degradation rates of chitosan were influenced by the type of carboxylic acids, depending on the interaction between chitosan and each carboxylic acid. After SP treatment, the water-soluble degraded products containing COS could be easily separated from the water-insoluble residue of chitosan hydrogel by centrifugation. The production yields of the COS were mostly higher than 55%. Furthermore, the obtained COS products were evaluated for their inhibitory effect as well as their selectivity against human lung cancer cells (H460) and human lung normal cells (MRC-5).

  18. Homogenous Electrocatalytic Oxygen Reduction Rates Correlate with Reaction Overpotential in Acidic Organic Solutions

    PubMed Central

    2016-01-01

    Improved electrocatalysts for the oxygen reduction reaction (ORR) are critical for the advancement of fuel cell technologies. Herein, we report a series of 11 soluble iron porphyrin ORR electrocatalysts that possess turnover frequencies (TOFs) from 3 s–1 to an unprecedented value of 2.2 × 106 s–1. These TOFs correlate with the ORR overpotential, which can be modulated by changing the E1/2 of the catalyst using different ancillary ligands, by changing the solvent and solution acidity, and by changing the catalyst’s protonation state. The overpotential is well-defined for these homogeneous electrocatalysts by the E1/2 of the catalyst and the proton activity of the solution. This is the first such correlation for homogeneous ORR electrocatalysis, and it demonstrates that the remarkably fast TOFs are a consequence of high overpotential. The correlation with overpotential is surprising since the turnover limiting steps involve oxygen binding and protonation, as opposed to turnover limiting electron transfer commonly found in Tafel analysis of heterogeneous ORR materials. Computational studies show that the free energies for oxygen binding to the catalyst and for protonation of the superoxide complex are in general linearly related to the catalyst E1/2, and that this is the origin of the overpotential correlations. This analysis thus provides detailed understanding of the ORR barriers. The best catalysts involve partial decoupling of the influence of the second coordination sphere from the properties of the metal center, which is suggested as new molecular design strategy to avoid the limitations of the traditional scaling relationships for these catalysts. PMID:27924314

  19. Degradation of the herbicide 2, 4-dichlorophenoxyacetic acid (2,4-D) dimethylamine salt by gamma radiation from cobalt-60 in aqueous solution containing humic acid

    NASA Astrophysics Data System (ADS)

    Campos, Sandro X.; Vieira, Eny M.; Cordeiro, Paulo J. M.; Rodrigues-Fo, Edson; Murgu, Michael

    2003-12-01

    In this study, gamma radiation from cobalt-60 was used to degrade the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) dimethylamine salt in water in the presence of humic acid. The 2,4-D dimethylamine salt 1.13×10 -4 mol dm -3 solution was irradiated with different doses. HPLC was used as an analytical technique to determine the degradation rate of herbicide studied. The results showed that the herbicide was completely degraded at an absorbed dose of 3 kGy. Degradation decreased when humic acid was added to all the doses. ESI/MS and MS/MS were used to identify the radiolytic degradation products. A fragmentation path for production of 4.6-dichlororesorcinol, is suggested. The radiolytic yields ( G) were calculated.

  20. Acid Solutions for Etching Corrosion-Resistant Metals

    NASA Technical Reports Server (NTRS)

    Simmons, J. R.

    1982-01-01

    New study characterized solutions for etching austenitic stainless steels, nickel-base alloys, and titanium alloys (annealed). Solutions recommended for use remove at least 0.4 mil of metal from surface in less than an hour. Solutions do not cause intergranular attack on metals for which they are effective, when used under specified conditions.

  1. The molecular properties of biochar carbon released in dilute acidic solution and its effects on maize seed germination.

    PubMed

    Sun, Jingling; Drosos, Marios; Mazzei, Pierluigi; Savy, Davide; Todisco, Daniele; Vinci, Giovanni; Pan, Genxing; Piccolo, Alessandro

    2017-01-15

    It is not yet clear whether the carbon released from biochar in the soil solution stimulates biological activities. Soluble fractions (AQU) from wheat and maize biochars, whose molecular content was thoroughly characterized by FTIR, 13 C and 1 H NMR, and high-resolution ESI-IT-TOF-MS, were separated in dilute acidic solution to simulate soil rhizospheric conditions and their effects evaluated on maize seeds germination activity. Elongation of maize-seeds coleoptile was significantly promoted by maize biochar AQU, whereas it was inhibited by wheat biochar AQU. Both AQU fractions contained relatively small heterocyclic nitrogen compounds, whose structures were accounted by their spectroscopic properties. Point-of-Zero-Charge (PZC) values and van Krevelen plots of identified masses of soluble components suggested that the dissolved carbon from maize biochar behaved as humic-like supramolecular material capable to adhere to seedlings and deliver bioactive molecules. These findings contribute to understand the biostimulation potential of biochars from crop biomasses when applied in agricultural production. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Transcriptome and membrane fatty acid analyses reveal different strategies for responding to permeating and non-permeating solutes in the bacterium Sphingomonas wittichii

    PubMed Central

    2011-01-01

    Background Sphingomonas wittichii strain RW1 can completely oxidize dibenzo-p-dioxins and dibenzofurans, which are persistent contaminants of soils and sediments. For successful application in soil bioremediation systems, strain RW1 must cope with fluctuations in water availability, or water potential. Thus far, however, little is known about the adaptive strategies used by Sphingomonas bacteria to respond to changes in water potential. To improve our understanding, strain RW1 was perturbed with either the cell-permeating solute sodium chloride or the non-permeating solute polyethylene glycol with a molecular weight of 8000 (PEG8000). These solutes are assumed to simulate the solute and matric components of the total water potential, respectively. The responses to these perturbations were then assessed and compared using a combination of growth assays, transcriptome profiling, and membrane fatty acid analyses. Results Under conditions producing a similar decrease in water potential but without effect on growth rate, there was only a limited shared response to perturbation with sodium chloride or PEG8000. This shared response included the increased expression of genes involved with trehalose and exopolysaccharide biosynthesis and the reduced expression of genes involved with flagella biosynthesis. Mostly, the responses to perturbation with sodium chloride or PEG8000 were very different. Only sodium chloride triggered the increased expression of two ECF-type RNA polymerase sigma factors and the differential expression of many genes involved with outer membrane and amino acid metabolism. In contrast, only PEG8000 triggered the increased expression of a heat shock-type RNA polymerase sigma factor along with many genes involved with protein turnover and repair. Membrane fatty acid analyses further corroborated these differences. The degree of saturation of membrane fatty acids increased after perturbation with sodium chloride but had the opposite effect and decreased

  3. Photochemistry of nucleic acid bases and their thio- and aza-analogues in solution.

    PubMed

    Pollum, Marvin; Martínez-Fernández, Lara; Crespo-Hernández, Carlos E

    2015-01-01

    The steady-state and time-resolved photochemistry of the natural nucleic acid bases and their sulfur- and nitrogen-substituted analogues in solution is reviewed. Emphasis is given to the experimental studies performed over the last 3-5 years that showcase topical areas of scientific inquiry and those that require further scrutiny. Significant progress has been made toward mapping the radiative and nonradiative decay pathways of nucleic acid bases. There is a consensus that ultrafast internal conversion to the ground state is the primary relaxation pathway in the nucleic acid bases, whereas the mechanism of this relaxation and the level of participation of the (1)πσ*, (1) nπ*, and (3)ππ* states are still matters of debate. Although impressive research has been performed in recent years, the microscopic mechanism(s) by which the nucleic acid bases dissipate excess vibrational energy to their environment, and the role of the N-glycosidic group in this and in other nonradiative decay pathways, are still poorly understood. The simple replacement of a single atom in a nucleobase with a sulfur or nitrogen atom severely restricts access to the conical intersections responsible for the intrinsic internal conversion pathways to the ground state in the nucleic acid bases. It also enhances access to ultrafast and efficient inter-system crossing pathways that populate the triplet manifold in yields close to unity. Determining the coupled nuclear and electronic pathways responsible for the significantly different photochemistry in these nucleic acid base analogues serves as a convenient platform to examine the current state of knowledge regarding the photodynamic properties of the DNA and RNA bases from both experimental and computational perspectives. Further investigations should also aid in forecasting the prospective use of sulfur- and nitrogen-substituted base analogues in photochemotherapeutic applications.

  4. Electronic structures and spectra of two antioxidants: uric acid and ascorbic acid

    NASA Astrophysics Data System (ADS)

    Shukla, M. K.; Mishra, P. C.

    1996-04-01

    Electronic absorption and fluorescence spectra of aqueous solutions of two well known antioxidants, uric acid and ascorbic acid (vitamin C), have been studied at different pH. The observed spectra have been interpreted in terms of neutral and anionic forms of the molecules with the help of molecular orbital calculations. The N 3 site of uric acid has been shown to be the most acidic. Fluorescence of uric acid seems to originate from an anion of the molecule in a wide pH range. Around pH 3, both the neutral and anionic forms of ascorbic acid appear to be present in aqueous solutions. In aqueous media, ascorbic acid appears to get converted easily to its dehydro form and this conversion does not seem to be reversible. An anion of dehydroascorbic acid seems to be formed on heating dehydroascorbic acid in aqueous solutions.

  5. Terrestrial evolution of polymerization of amino acids - Heat to ATP

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Nakashima, T.

    1981-01-01

    Sets of amino acids containing sufficient trifunctional monomer are thermally polymerized at temperatures such as 65 deg; the amino acids order themselves. Various polymers have diverse catalytic activities. The polymers aggregate, in aqueous solution, to cell-like structures having those activities plus emergent properties, e.g. proliferatability. Polyamino acids containing sufficient lysine catalyze conversion of free amino acids, by ATP, to small peptides and a high molecular weight fraction. The lysine-rich proteinoid is active in solution, within suspensions of cell-like particles, or in other particles composed of lysine-rich proteinoid and homopolyribonucleotide. Selectivities are observed. An archaic polyamino acid prelude to coded protein synthesis is indicated.

  6. SOLVENT EXTRACTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM FROM AQUEOUS ACIDIC SOLUTIONS OF NEUTRON IRRADIATED URANIUM

    DOEpatents

    Bruce, F.R.

    1962-07-24

    A solvent extraction process was developed for separating actinide elements including plutonium and uranium from fission products. By this method the ion content of the acidic aqueous solution is adjusted so that it contains more equivalents of total metal ions than equivalents of nitrate ions. Under these conditions the extractability of fission products is greatly decreased. (AEC)

  7. Effect of wood ash application on soil solution chemistry of tropical acid soils: incubation study.

    PubMed

    Nkana, J C Voundi; Demeyer, A; Verloo, M G

    2002-12-01

    The objective of this study was to determine the effect of wood ash application on soil solution composition of three tropical acid soils. Calcium carbonate was used as a reference amendment. Amended soils and control were incubated for 60 days. To assess soluble nutrients, saturation extracts were analysed at 15 days intervals. Wood ash application affects the soil solution chemistry in two ways, as a liming agent and as a supplier of nutrients. As a liming agent, wood ash application induced increases in soil solution pH, Ca, Mg, inorganic C, SO4 and DOC. As a supplier of elements, the increase in the soil solution pH was partly due to ligand exchange between wood ash SO4 and OH- ions. Large increases in concentrations of inorganic C, SO4, Ca and Mg with wood ash relative to lime and especially increases in K reflected the supply of these elements by wood ash. Wood ash application could represent increased availability of nutrients for the plant. However, large concentrations of basic cations, SO4 and NO3 obtained with higher application rates could be a concern because of potential solute transport to surface waters and groundwater. Wood ash must be applied at reasonable rates to avoid any risk for the environment.

  8. Separation and Precipitation of Nickel from Acidic Sulfate Leaching Solution of Molybdenum-Nickel Black Shale by Potassium Nickel Sulfate Hexahydrate Crystallization

    NASA Astrophysics Data System (ADS)

    Deng, Zhigan; Wei, Chang; Fan, Gang; Li, Xingbin; Li, Minting; Li, Cunxiong

    2018-02-01

    Nickel was separated and precipitated with potassium nickel sulfate hexahydrate [K2Ni(SO4)2·6H2O] from acidic sulfate solution, a leach solution from molybdenum-nickel black shale. The effects of the potassium sulfate (K2SO4) concentration, crystallization temperature, solution pH, and crystallization time on nickel(II) recovery and iron(III) precipitation were investigated, revealing that nickel and iron were separated effectively. The optimum parameters were K2SO4 concentration of 200 g/L, crystallization temperature of 10°C, solution pH of 0.5, and crystallization time of 24 h. Under these conditions, 97.6% nickel(II) was recovered as K2Ni(SO4)2·6H2O crystals while only 2.0% of the total iron(III) was precipitated. After recrystallization, 98.4% pure K2Ni(SO4)2·6H2O crystals were obtained in the solids. The mother liquor was purified by hydrolysis-precipitation followed by cooling, and more than 99.0% K2SO4 could be crystallized. A process flowsheet was developed to separate iron(III) and nickel(II) from acidic-sulfate solution.

  9. Pretreatment Solution for Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Muirhead, Dean (Inventor)

    2018-01-01

    Chemical pretreatments are used to produce usable water by treating a water source with a chemical pretreatment that contains a hexavalent chromium and an acid to generate a treated water source, wherein the concentration of sulfate compounds in the acid is negligible, and wherein the treated water source remains substantially free of precipitates after the addition of the chemical pretreatment. Other methods include reducing the pH in urine to be distilled for potable water extraction by pretreating the urine before distillation with a pretreatment solution comprising one or more acid sources selected from a group consisting of phosphoric acid, hydrochloric acid, and nitric acid, wherein the urine remains substantially precipitate free after the addition of the pretreatment solution. Another method described comprises a process for reducing precipitation in urine to be processed for water extraction by mixing the urine with a pretreatment solution comprising hexavalent chromium compound and phosphoric acid.

  10. Characterization of Nanoparticles and Colloids in Aquatic Systems 1. Small Angle Neutron Scattering Investigations of Suwannee River Fulvic Acid Aggregates in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Diallo, Mamadou S.; Glinka, Charles J.; Goddard, William A.; Johnson, James H.

    2005-10-01

    Fulvic acids (FA) and humic acids (HA) constitute 30-50% of dissolved organic matter in natural aquatic systems. In aqueous solutions, a commonly accepted view is that FA and HA exist as soluble macroligands at low concentration and as supramolecular aggregates at higher concentration. The size, shape and structure of these aggregates are still the subject of ongoing debate in the environmental chemistry literature. In this article, we use small angle neutron scattering (SANS) to assess the effects of solute concentration, solution pH and background electrolyte (NaCl) concentration on the structures of Suwannee River FA (SRFA) aggregates in D2O. The qualitative features of the SANS curves and data analysis are not consistent with the view point that SRFA forms micelle-like aggregates as its concentration in aqueous solution increases. We find that SRFA forms fractal aggregates in D20 with size greater than 242 nm. The SRFA aggregates undergo a significant degree of restructuring in compactness as solution pH, solute concentration and NaCl concentration increase.

  11. The Human Gene SLC25A29, of Solute Carrier Family 25, Encodes a Mitochondrial Transporter of Basic Amino Acids*

    PubMed Central

    Porcelli, Vito; Fiermonte, Giuseppe; Longo, Antonella; Palmieri, Ferdinando

    2014-01-01

    The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation. PMID:24652292

  12. The human gene SLC25A29, of solute carrier family 25, encodes a mitochondrial transporter of basic amino acids.

    PubMed

    Porcelli, Vito; Fiermonte, Giuseppe; Longo, Antonella; Palmieri, Ferdinando

    2014-05-09

    The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation.

  13. Extraction and separation of Co(II) and Ni(II) from acidic sulfate solutions using Aliquat 336.

    PubMed

    Nayl, A A

    2010-01-15

    Extraction and separation of Co(II) and Ni(II) from acidic sulfate solutions by solvent extraction technique were studied using different forms of Aliquat 336 diluted with kerosene. The extraction percent of each metal ion was found to increase with increasing pH and extractant concentration. Co(II) was preferentially extracted by different forms of Aliquat 336 over Ni(II) under the same extraction conditions. From analysis of the experimental results, the extraction mechanism of R(4)N-forms was proposed with Co(II). It was found that the highest separation factor (S(Co/Ni)) value of 606.7 was obtained with 0.36 M R(4)N-SCN in kerosene from 2.0M H(2)SO(4) solution at pH 4.8 and shaking time of 20 min. Stripping of the two metal ions from the organic phase was also investigated. Based on the experimental results, a separation method was developed and tested to separate high purity Co(II), Ni(II) and Ln(III) from Ni-MH batteries leached by 2.0M H(2)SO(4). Based on the experimental results, a flow sheet was developed and tested and 0.34 g Co, 1.39 g Ln and 5.2g Ni were obtained from the leaching process.

  14. Toward understanding the chloroquine action at the molecular level in antimalarial therapy--X-ray absorption studies in acetic acid solution.

    PubMed

    Walczak, Monika S; Lawniczak-Jablonska, Krystyna; Wolska, Anna; Sikora, Marcin; Sienkiewicz, Andrzej; Suárez, Liliana; Kosar, Aaron J; Bellemare, Marie-Josee; Bohle, D Scott

    2011-04-21

    The local atomic structure around the central iron of the synthetic soluble analog of malarial pigment in acetic acid solution and with addition of chloroquine as found by X-ray absorption spectroscopy is reported. The special interest was drawn to the axial linkage between the central iron atom of the ferriprotoporphyrin IX (FePPIX) coordinated axially to the propionate group of the adjacent FePPIX. This kind of bonding is typical for hematin anhydride. Detailed analysis revealed differences in oxygen coordination sphere (part of dimer linkage bond) between synthetic equivalent of hemozoin in the powder state and dissolved in acetic acid and water at different concentrations mimicking the physiological condition of the parasite's food vacuole. The results of performed studies suggest that the molecular structure of synthetic analogue of hemozoin is no longer dimer-like in acidic solution. Further changes in atomic order around Fe are seen after addition of the antimalarial drug chloroquine.

  15. Modification of vital wheat gluten with phosphoric acid to produce high free solution capacity

    USDA-ARS?s Scientific Manuscript database

    Wheat gluten reacts with phosphoric acid in the presence of urea to produce natural superabsorbent gels. Fourier Transform Infra-red (FT-IR) spectroscopy and two-dimensional gel electrophoresis (2DE) reveal chemical changes from the reaction. Temperatures above 120°C and dry conditions create the op...

  16. The structural study of acetohydroxamic and oxalodihydroxamic acids in DMSO solution based on the DFT calculations of NMR spectra

    NASA Astrophysics Data System (ADS)

    Kaczor, Agnieszka; Proniewicz, Leonard M.

    2004-10-01

    The 1H and 13C NMR spectra of acetohydroxamic (aha) and oxalodihydroxamic (oxha) acids were measured in DMSO- d6 solution. The atoms chemical shifts of chosen stable entgegen and zusammen conformers of monomeric acids were computed along with some clusters of the compounds with the solvent molecules [B3LYP/6-311++G(d,p), GIAO]. The latter were proposed to explain the differences between the theoretical and experimental resonances of the protons of the N-H and O-H groups. The computed chemical shifts of aha-(DMSO) 2 and oxha-(DMSO) 2 models are in good agreement with experimental data proving that the compounds existing in solution form aggregates with DMSO. The acids are H-bonded via all the labile protons to the oxygen atoms of the solvent molecules. aha exists in the zusammen and entgegen (relative to C-N bond) forms with the relative intensities of 8:1 while the sole z, E, z-conformers (notation refers to C-N, C-C and C-N bonds, respectively) were found for oxha.

  17. A kinetic study of the enhancement of solution chemiluminescence of glyoxylic acid oxidation by manganese species.

    PubMed

    Otamonga, Jean-Paul; Abdel-Mageed, Amal; Agater, Irena B; Jewsbury, Roger A

    2015-08-01

    In order to study the mechanism of the enhancement of solution chemiluminescence, the kinetics of the decay of the oxidant and the chemiluminescence emission were followed for oxidations by permanganate, manganese dioxide sol and Mn(3+) (aq) of glyoxylic acid, using stopped-flow spectrophotometry. Results are reported for the glyoxylic acid oxidized under pseudo first-order conditions and in an acidic medium at 25 °C. For permanganate under these conditions, the decay is sigmoidal, consistent with autocatalysis, and for manganese dioxide sol and Mn(3+) it is pseudo first order. The effects of the presence of aqueous formaldehyde and Mn(2+) were observed and a fit to a simple mechanism is discussed. It is concluded that chemiluminescent enhancement in these systems is best explained by reaction kinetics. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Analysis of nine food additives in red wine by ion-suppression reversed-phase high-performance liquid chromatography using trifluoroacetic acid and ammonium acetate as ion-suppressors.

    PubMed

    Zhao, Yong-Gang; Chen, Xiao-Hong; Yao, Shan-Shan; Pan, Sheng-Dong; Li, Xiao-Ping; Jin, Mi-Cong

    2012-01-01

    A reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed for the simultaneous determination of nine food additives, i.e., acesulfame, saccharin, caffeine, aspartame, benzoic acid, sorbic acid, stevioside, dehydroacetic acid and neotame in red wine. The effects of ion-suppressors, i.e., trifluoroacetic acid (TFA) and ammonium acetate (AmAc) on retention behavior of nine food additives in RP-HPLC separation were discussed in detail. The relationships between retention factors of solutes and volume percent of ion-suppressors in the mobile-phase systems of acetonitrile-TFA aqueous solution and acetonitrile-TFA-AmAc aqueous solution were quantitatively established, respectively. The results showed that the ion suppressors had not only an ion suppression effect, but also an organic modification effect on the acidic analytes. The baseline separation of nine food additives was completed by a gradient elution with acetonitrile-TFA(0.01%, v/v)-AmAc(2.5 mmol L(-1)) aqueous solution as the mobile phase. The recoveries were between 80.2 - 99.5% for all analytes with RSDs in the range of 1.5 - 8.9%. The linearities were in the range of 0.2 - 100.0 mg L(-1) with determination coefficients (r(2)) higher than 0.9991 for all analytes. The limits of quantification (LOQs) were between 0.53 - 0.99 mg L(-1). The applicability of the proposed method to detect and quantify food additives has been demonstrated in the analysis of 30 real samples.

  19. Structural evidence for solvent-stabilisation by aspartic acid as a mechanism for halophilic protein stability in high salt concentrations.

    PubMed

    Lenton, Samuel; Walsh, Danielle L; Rhys, Natasha H; Soper, Alan K; Dougan, Lorna

    2016-07-21

    Halophilic organisms have adapted to survive in high salt environments, where mesophilic organisms would perish. One of the biggest challenges faced by halophilic proteins is the ability to maintain both the structure and function at molar concentrations of salt. A distinct adaptation of halophilic proteins, compared to mesophilic homologues, is the abundance of aspartic acid on the protein surface. Mutagenesis and crystallographic studies of halophilic proteins suggest an important role for solvent interactions with the surface aspartic acid residues. This interaction, between the regions of the acidic protein surface and the solvent, is thought to maintain a hydration layer around the protein at molar salt concentrations thereby allowing halophilic proteins to retain their functional state. Here we present neutron diffraction data of the monomeric zwitterionic form of aspartic acid solutions at physiological pH in 0.25 M and 2.5 M concentration of potassium chloride, to mimic mesophilic and halophilic-like environmental conditions. We have used isotopic substitution in combination with empirical potential structure refinement to extract atomic-scale information from the data. Our study provides structural insights that support the hypothesis that carboxyl groups on acidic residues bind water more tightly under high salt conditions, in support of the residue-ion interaction model of halophilic protein stabilisation. Furthermore our data show that in the presence of high salt the self-association between the zwitterionic form of aspartic acid molecules is reduced, suggesting a possible mechanism through which protein aggregation is prevented.

  20. Extraction of domoic acid from seawater and urine using a resin based on 2-(trifluoromethyl)acrylic acid.

    PubMed

    Piletska, Elena V; Villoslada, Fernando Navarro; Chianella, Iva; Bossi, Alessandra; Karim, Kal; Whitcombe, Michael J; Piletsky, Sergey A; Doucette, Gregory J; Ramsdell, John S

    2008-03-03

    A new solid-phase extraction (SPE) matrix with high affinity for the neurotoxin domoic acid (DA) was designed and tested. A computational modelling study led to the selection of 2-(trifluoromethyl)acrylic acid (TFMAA) as a functional monomer capable of imparting affinity towards domoic acid. Polymeric adsorbents containing TFMAA were synthesised and tested in high ionic strength solutions such as urine and seawater. The TFMAA-based polymers demonstrated excellent performance in solid-phase extraction of domoic acid, retaining the toxin while salts and other interfering compounds such as aspartic and glutamic acids were removed by washing and selective elution. It was shown that the TFMAA-based polymer provided the level of purification of domoic acid from urine and seawater acceptable for its quantification by high performance liquid chromatography-mass spectrometry (HPLC-MS) and enzyme-linked immunosorbent assay (ELISA) without any additional pre-concentration and purification steps.