Science.gov

Sample records for highly efficient proton

  1. High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions

    SciTech Connect

    Green, J. S. Robinson, A. P. L.; Booth, N.; Carroll, D. C.; Rusby, D.; Wilson, L.; Dance, R. J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Murphy, C. D.

    2014-05-26

    Bright proton beams with maximum energies of up to 30 MeV have been observed in an experiment investigating ion sheath acceleration driven by a short pulse (<50 fs) laser. The scaling of maximum proton energy and total beam energy content at ultra-high intensities of ∼10{sup 21} W cm{sup −2} was investigated, with the interplay between target thickness and laser pre-pulse found to be a key factor. While the maximum proton energies observed were maximised for μm-thick targets, the total proton energy content was seen to peak for thinner, 500 nm, foils. The total proton beam energy reached up to 440 mJ (a conversion efficiency of 4%), marking a significant step forward for many laser-driven ion applications. The experimental results are supported by hydrodynamic and particle-in-cell simulations.

  2. High-Efficiency Volume Reflection of an Ultrarelativistic Proton Beam with a Bent Silicon Crystal

    SciTech Connect

    Scandale, Walter; Still, Dean A.; Baricordi, Stefano; Dalpiaz, Pietro; Fiorini, Massimiliano; Guidi, Vincenzo; Martinelli, Giuliano; Mazzolari, Andrea; Milan, Emiliano; Ambrosi, Giovanni; Azzarello, Philipp; Battiston, Roberto; Bertucci, Bruna; Burger, William J.; Ionica, Maria; Zuccon, Paolo; Cavoto, Gianluca; Santacesaria, Roberta; Valente, Paolo; Vallazza, Erik

    2007-04-13

    The volume reflection phenomenon was detected while investigating 400 GeV proton interactions with bent silicon crystals in the external beam H8 of the CERN Super Proton Synchrotron. Such a process was observed for a wide interval of crystal orientations relative to the beam axis, and its efficiency exceeds 95%, thereby surpassing any previously observed value. These observations suggest new perspectives for the manipulation of high-energy beams, e.g., for collimation and extraction in new-generation hadron colliders, such as the CERN Large Hadron Collider.

  3. High-efficiency deflection of high energy protons due to channeling along the <110> axis of a bent silicon crystal

    NASA Astrophysics Data System (ADS)

    Scandale, W.; Arduini, G.; Butcher, M.; Cerutti, F.; Garattini, M.; Gilardoni, S.; Lechner, A.; Masi, A.; Mirarchi, D.; Montesano, S.; Redaelli, S.; Rossi, R.; Smirnov, G.; Breton, D.; Burmistrov, L.; Chaumat, V.; Dubos, S.; Maalmi, J.; Puill, V.; Stocchi, A.; Bagli, E.; Bandiera, L.; Germogli, G.; Guidi, V.; Mazzolari, A.; Dabagov, S.; Murtas, F.; Addesa, F.; Cavoto, G.; Iacoangeli, F.; Galluccio, F.; Afonin, A. G.; Chesnokov, Yu. A.; Durum, A. A.; Maisheev, V. A.; Sandomirskiy, Yu. E.; Yanovich, A. A.; Kovalenko, A. D.; Taratin, A. M.; Denisov, A. S.; Gavrikov, Yu. A.; Ivanov, Yu. M.; Lapina, L. P.; Malyarenko, L. G.; Skorobogatov, V. V.; James, T.; Hall, G.; Pesaresi, M.; Raymond, M.

    2016-09-01

    A deflection efficiency of about 61% was observed for 400 GeV/c protons due to channeling, most strongly along the <110> axis of a bent silicon crystal. It is comparable with the deflection efficiency in planar channeling and considerably larger than in the case of the <111> axis. The measured probability of inelastic nuclear interactions of protons in channeling along the <110> axis is only about 10% of its amorphous level whereas in channeling along the (110) planes it is about 25%. High efficiency deflection and small beam losses make this axial orientation of a silicon crystal a useful tool for the beam steering of high energy charged particles.

  4. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications.

    PubMed

    Rosenberg, M J; Séguin, F H; Waugh, C J; Rinderknecht, H G; Orozco, D; Frenje, J A; Johnson, M Gatu; Sio, H; Zylstra, A B; Sinenian, N; Li, C K; Petrasso, R D; Glebov, V Yu; Stoeckl, C; Hohenberger, M; Sangster, T C; LePape, S; Mackinnon, A J; Bionta, R M; Landen, O L; Zacharias, R A; Kim, Y; Herrmann, H W; Kilkenny, J D

    2014-04-01

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ∼0.5-8 MeV protons. When the fluence of incident particles becomes too high, overlap of particle tracks leads to under-counting at typical processing conditions (5 h etch in 6N NaOH at 80 °C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7-4.3-MeV protons and established that for 2.4-MeV protons, relevant for detection of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 × 10(6) cm(-2). A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ∼50, increasing the operating yield upper limit by a comparable amount. PMID:24784597

  5. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications

    SciTech Connect

    Rosenberg, M. J.; Séguin, F. H.; Waugh, C. J.; Rinderknecht, H. G.; Orozco, D.; Frenje, J. A.; Johnson, M. Gatu; Sio, H.; Zylstra, A. B.; Sinenian, N.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Stoeckl, C.; Hohenberger, M.; Sangster, T. C.; LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Landen, O. L.; Zacharias, R. A.; Kim, Y.; Herrmann, H. W.; Kilkenny, J. D.

    2014-04-14

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ~0.5–8 MeV protons. When the fluence of incident particles becomes too high, the overlap of particle tracks leads to under-counting at typical processing conditions (5h etch in 6N NaOH at 80°C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detection of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 ×106 cm-2. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ~50, increasing the operating yield upper limit by a comparable amount.

  6. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications

    DOE PAGESBeta

    Rosenberg, M. J.; Séguin, F. H.; Waugh, C. J.; Rinderknecht, H. G.; Orozco, D.; Frenje, J. A.; Johnson, M. Gatu; Sio, H.; Zylstra, A. B.; Sinenian, N.; et al

    2014-04-14

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ~0.5–8 MeV protons. When the fluence of incident particles becomes too high, the overlap of particle tracks leads to under-counting at typical processing conditions (5h etch in 6N NaOH at 80°C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detectionmore » of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 ×106 cm-2. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ~50, increasing the operating yield upper limit by a comparable amount.« less

  7. High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets

    SciTech Connect

    Brenner, C. M.; Robinson, A. P. L.; Markey, K.; Scott, R. H. H.; Lancaster, K. L.; Musgrave, I. O.; Spindloe, C.; Winstone, T.; Wyatt, D.; Neely, D.; Gray, R. J.; McKenna, P.; Rosinski, M.; Badziak, J.; Wolowski, J.; Deppert, O.; Batani, D.; Davies, J. R.; Hassan, S. M.; Tatarakis, M.; and others

    2014-02-24

    An all-optical approach to laser-proton acceleration enhancement is investigated using the simplest of target designs to demonstrate application-relevant levels of energy conversion efficiency between laser and protons. Controlled deposition of laser energy, in the form of a double-pulse temporal envelope, is investigated in combination with thin foil targets in which recirculation of laser-accelerated electrons can lead to optimal conditions for coupling laser drive energy into the proton beam. This approach is shown to deliver a substantial enhancement in the coupling of laser energy to 5–30 MeV protons, compared to single pulse irradiation, reaching a record high 15% conversion efficiency with a temporal separation of 1 ps between the two pulses and a 5 μm-thick Au foil. A 1D simulation code is used to support and explain the origin of the observation of an optimum pulse separation of ∼1 ps.

  8. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  9. Highly efficient sulfonated polybenzimidazole as a proton exchange membrane for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Singha, Shuvra; Jana, Tushar; Modestra, J. Annie; Naresh Kumar, A.; Mohan, S. Venkata

    2016-06-01

    Although microbial fuel cells (MFCs) represent a promising bio-energy technology with a dual advantage (i.e., electricity production and waste-water treatment), their low power densities and high installation costs are major impediments. To address these bottlenecks and replace highly expensive Nafion, which is a proton exchange membrane (PEM), the current study focuses for the first time on membranes made from an easily synthesizable and more economical oxy-polybenzimidazole (OPBI) and its sulfonated analogue (S-OPBI) as alternate PEMs in single-chambered MFCs. The S-OPBI membrane exhibits better properties, with high water uptake, ion exchange capacity (IEC) and proton conductivity and a comparatively smaller degree of swelling compared to Nafion. The membrane morphology is characterized by atomic force microscopy, and the bright and dark regions of the S-OPBI membrane reveals the formation of ionic domains in the matrix, forming continuous water nanochannels when doped with water. These water-filled nanochannels are responsible for faster proton conduction in S-OPBI than in Nafion; therefore, the power output in the MFC with S-OPBI as the PEM is higher than in other MFCs. The open circuit voltage (460 mV), current generation (2.27 mA) and power density profile (110 mW/m2) as a function of time, as well as the polarization curves, exhibits higher current and power density (87.8 mW/m2) with S-OPBI compared to Nafion as the PEM.

  10. Fluence measurement of fast neutron fields with a highly efficient recoil proton telescope using active pixel sensors.

    PubMed

    Taforeau, J; Higueret, S; Husson, D; Kachel, M; Lebreton, L

    2014-10-01

    The spectrometer ATHENA (Accurate Telescope for High-Energy Neutron metrology Applications) is being developed at the LNE-IRSN and aims at characterising energy and fluence of fast neutron fields. The detector is a recoil proton telescope and measures neutron fields in the range of 5-20 MeV. This telescope is intended to become a primary standard for both energy and fluence measurements. The neutron detection is achieved by a polyethylene radiator for n-p conversion, three 50-µm-thick silicon sensors that use CMOS technology for proton tracking and a 3-mm-thick silicon diode to measure the residual proton energy. The use of CMOS sensors and silicon diode, owing to a large detection solid angle, increases the intrinsic efficiency of the detector by a factor of 10 compared with conventional designs. The ability of the spectrometer to determine the neutron energy was demonstrated and reported elsewhere. This paper focuses on the fluence measurement of monoenergetic neutron fields in the range of 5-20 MeV. Experimental investigations, performed at the AMANDE facility, indicate a good estimation of neutron fluence at various energies. In addition, a complete description of uncertainties budget is presented in this paper and a Monte Carlo propagation of uncertainty sources leads to a fluence measurement with a precision ∼3-5 % depending on the neutron energy. PMID:24243312

  11. Proton interactions with high multiplicity

    SciTech Connect

    Kokoulina, E. S. Nikitin, V. A.; Petukhov, Y. P.; Kutov, A. Ya.

    2012-06-15

    Project Thermalization is aimed to study the proton-proton interaction with high multiplicity of secondary particles. The region of high multiplicity is especially actual at present. We expect the manifestation of the secondary particle collective behavior at this region. The experimentally measured topological cross section was corrected for apparatus acceptance and detection efficiency. These data are in good agreement with gluon dominance model. The comparison with other models is also done and shows no essential deviations. There is evidence that Bose-Einstein condensation can formed at high total multiplicity region.

  12. High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Berger, Marie-Helen; Sayir, Ali

    2007-01-01

    High Temperature Protonic Conductors (HTPC) with the perovskite structure are envisioned for electrochemical membrane applications such as H2 separation, H2 sensors and fuel cells. Successive membrane commercialization is dependent upon addressing issues with H2 permeation rate and environmental stability with CO2 and H2O. HTPC membranes are conventionally fabricated by solid-state sintering. Grain boundaries and the presence of intergranular second phases reduce the proton mobility by orders of magnitude than the bulk crystalline grain. To enhanced protonic mobility, alternative processing routes were evaluated. A laser melt modulation (LMM) process was utilized to fabricate bulk samples, while pulsed laser deposition (PLD) was utilized to fabricate thin film membranes . Sr3Ca(1+x)Nb(2-x)O9 and SrCe(1-x)Y(x)O3 bulk samples were fabricated by LMM. Thin film BaCe(0.85)Y(0.15)O3 membranes were fabricated by PLD on porous substrates. Electron microscopy with chemical mapping was done to characterize the resultant microstructures. High temperature protonic conduction was measured by impedance spectroscopy in wet air or H2 environments. The results demonstrate the advantage of thin film membranes to thick membranes but also reveal the negative impact of defects or nanoscale domains on protonic conductivity.

  13. High Power Proton Facilities

    NASA Astrophysics Data System (ADS)

    Nagaitsev, Sergei

    2015-04-01

    This presentation will provide an overview of the capabilities and challenges of high intensity proton accelerators, such as J-PARC, Fermilab MI, SNS, ISIS, PSI, ESS (in the future) and others. The presentation will focus on lessons learned, new concepts, beam loss mechanisms and methods to mitigate them.

  14. Investigation of Proton Focusing and Conversion Efficiency for Proton Fast Ignition

    NASA Astrophysics Data System (ADS)

    Bartal, Teresa Jean

    Recent advances in generating high energy (> 50 MeV) protons from intense laser-matter interactions has opened up new areas of research, with applications in radiography, high energy density physics, and ion-proton beam fast ignition (FI). The ability to focus the proton beam has made these applications more attractive. Fast ignition (FI) is an evolved concept of conventional inertial confinement fusion (ICF). In proton FI, a collimated beam of protons is used to deliver the necessary ignition energy to the compressed Deuterium-Tritium (DT) fuel capsule instead of the original concept of a beam composed of relativistic electrons. In cone-guided FI, a cone is embedded into the side of the fuel capsule where the proton source foil is placed within the cone. The cone provides a clear path to the dense core and protects the proton source foil from radiation during the compression of the capsule. The proton source foil is a segment of a hemispherical shell target used to help focus the proton beam to the core to spark ignition. The viability of proton FI requires focusing of the generated proton beam to a 40 mum spot at the compressed fuel and a laser to proton conversion efficiency of ˜15%. Here, proton focusing and the laser to proton conversion efficiency are investigated using flat foils and hemispherical shell targets. Experiments were conducted on the 200 TW short pulse laser at Los Alamos Laboratory. The 1053 nm laser pulse delivered 70--80 J on target in 500--600 fs focused by an f/8 parabolic mirror. The generated proton beam from the target was examined by placing a mesh downstream of the target, which the proton beam would pass though and then imaged with a pack of radiochromic film (RCF). A 3D ray-tracing technique was developed to determine the focal position and focal spot size of the generated proton beam by tracing the proton trajectories from the image of the mesh collected by the RCF back through the mesh to the central axis. The focal position

  15. High intensity proton synchrotrons

    NASA Astrophysics Data System (ADS)

    Craddock, M. K.

    1986-10-01

    Strong initiatives are being pursued in a number of countries for the construction of ``kaon factory'' synchrotrons capable of producing 100 times more intense proton beams than those available now from machines such as the Brookhaven AGS and CERN PS. Such machines would yield equivalent increases in the fluxes of secondary particles (kaons, pions, muons, antiprotons, hyperons and neutrinos of all varieties)—or cleaner beams for a smaller increase in flux—opening new avenues to various fundamental questions in both particle and nuclear physics. Major areas of investigation would be rare decay modes, CP violation, meson and hadron spectroscopy, antinucleon interactions, neutrino scattering and oscillations, and hypernuclear properties. Experience with the pion factories has already shown how high beam intensities make it possible to explore the ``precision frontier'' with results complementary to those achievable at the ``energy frontier''. This paper will describe proposals for upgrading and AGS and for building kaon factories in Canada, Europe, Japan and the United States, emphasizing the novel aspects of accelerator design required to achieve the desired performance (typically 100 μA at 30 GeV).

  16. Two tyrosyl radicals stabilize high oxidation states in cytochrome c oxidase for efficient energy conservation and proton translocation

    NASA Astrophysics Data System (ADS)

    Rousseau, Denis

    2012-02-01

    The reaction of hydrogen peroxide (H2O2) with oxidized bovine cytochrome c oxidase (bCcO) was studied by electron paramagnetic resonance (EPR) to determine the properties of radical intermediates. Two distinct radicals with widths of 12 and 46 G are directly observed by X-band CW-EPR in the reaction of bCcO with H2O2 at pH 6 and pH 8. High-frequency EPR (D-band) provides assignments to tyrosine for both radicals based on well-resolved g-tensors. The 46 G wide radical has extensive hyperfine structure and can be fit with parameters consistent with Y129. However, the 12 G wide radical has minimal hyperfine structure and can be fit using parameters unique to the post-translationally modified Y244 in CcO. The results are supported by mixed quantum mechanics and molecular mechanics calculations. This study reports spectroscopic evidence of a radical formed on the modified tyrosine in CcO and resolves the much debated controversy of whether the wide radical seen at low pH in the bovine system is a tyrosine or tryptophan. A model is presented showing how radical formation and migration may play an essential role in proton translocation. This work was done in collaboration with Michelle A. Yu, Tsuyoshi Egawa, Syun-Ru Yeh and Gary J. Gerfen from Albert Einstein College of Medicine; Kyoko Shinzawa-Itoh and Shinya Yoshikawa from the University of Hyogo; and Victor Guallar from the Barcelona Supercomputing Center.

  17. Control of laser absorbing efficiency and proton quality by a specific double target

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Gu, Y. J.; Li, X. F.; Qu, J. F.; Kong, Q.; Kawata, S.

    2016-08-01

    The micro-structured double-layer target is an efficient method to improve proton quality. However, the laser absorption efficiency is low due to strong reflection at the front surface of such targets. Moreover, the proton charge is limited by the driving laser radius. To overcome these shortcomings, a specific double-layer (SDL) target with a vacuum gap in the center of the heavy ion layer is proposed in this paper. In this specified target, the laser reflection effect is significantly weakened and the absorption and penetration efficiencies are greatly enhanced. The high-energy electrons from Breakout afterburner regime efficiently transfer their energy to the protons. Both the energy of the spectral peaks and maximum proton energy are greatly increased. The periodic structure of the longitudinal electric field makes the force applied on the protons becomes homogeneous in time average and therefore reduce the energy spread. In these SDL targets, the proton layer radius and the accelerated proton charge are not limited by the laser radius. With a larger-radius proton layer, the protons can be accelerated to high energy with small energy spread. When the proton layer radius is reduced to the laser radius, the SDL target is still an effective structure to improve the proton quality. The mechanism is proved by a series of particle-in-cell simulations.

  18. High-Intensity Proton Accelerator

    SciTech Connect

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  19. Fabrication parameter optimization of a low-threshold high-efficiency proton-exchanged waveguide laser in Nd:LiTaO3

    NASA Astrophysics Data System (ADS)

    Nouh, S.; Baldi, P.; El Hadi, K.; de Micheli, M.; Monnom, G.; Ostrowsky, D. B.; Lallier, E.; Papuchon, M.

    1995-07-01

    Knowing the correlation between the Nd3+ excited-state lifetime in proton-exchanged waveguides and the phase diagram of the Hx Li1-xTaO 3 compound permits optimized waveguide fabrication parameters to be found. These have been used to with a threshold of 2.9mW and a slope efficiency of 33%, in good agreement with the best predicted values. Nevertheless this component suffers from instabilities because of the photorefractive effect.

  20. Advanced proton-exchange materials for energy efficient fuel cells.

    SciTech Connect

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  1. Magnets for high intensity proton synchrotrons

    SciTech Connect

    Jean-Francois Ostiguy, Vladimir Kashikhine and Alexander Makarov

    2002-09-19

    Recently, there has been considerable interest at Fermilab for the Proton Driver, a future high intensity proton machine. Various scenarios are under consideration, including a superconducting linac. Each scenario present some special challenges. We describe here the magnets proposed in a recent study, the Proton Driver Study II, which assumes a conventional warm synchrotron, roughly of the size of the existing FNAL booster, but capable of delivering 380 kW at 8 GeV.

  2. High intensity protons in RHIC

    SciTech Connect

    Montag, C.; Ahrens, L.; Blaskiewicz, M.; Brennan, J. M.; Drees, K. A.; Fischer, W.; Huang, H.; Minty, M.; Robert-Demolaize, G.; Thieberger, P.; Yip, K.

    2012-01-05

    During the 2012 summer shutdown a pair of electron lenses will be installed in RHIC, allowing the beam-beam parameter to be increased by roughly 50 percent. To realize the corresponding luminosity increase bunch intensities have to be increased by 50 percent, to 2.5 {center_dot} 10{sup 11} protons per bunch. We list the various RHIC subsystems that are most affected by this increase, and propose beam studies to ensure their readiness. The proton luminosity in RHIC is presently limited by the beam-beam effect. To overcome this limitation, electron lenses will be installed in IR10. With the help of these devices, the headon beam-beam kick experienced during proton-proton collisions will be partially compensated, allowing for a larger beam-beam tuneshift at these collision points, and therefore increasing the luminosity. This will be accomplished by increasing the proton bunch intensity from the presently achieved 1.65 {center_dot} 10{sup 11} protons per bunch in 109 bunches per beam to 2.5 {center_dot} 10{sup 11}, thus roughly doubling the luminosity. In a further upgrade we aim for bunch intensities up to 3 {center_dot} 10{sup 11} protons per bunch. With RHIC originally being designed for a bunch intensity of 1 {center_dot} 10{sup 11} protons per bunch in 56 bunches, this six-fold increase in the total beam intensity by far exceeds the design parameters of the machine, and therefore potentially of its subsystems. In this note, we present a list of major subsystems that are of potential concern regarding this intensity upgrade, show their demonstrated performance at present intensities, and propose measures and beam experiments to study their readiness for the projected future intensities.

  3. Fission foil detector calibrations with high energy protons

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    Fission foil detectors (FFD's) are passive devices composed of heavy metal foils in contact with muscovite mica films. The heavy metal nuclei have significant cross sections for fission when irradiated with neutrons and protons. Each isotope is characterized by threshold energies for the fission reactions and particular energy-dependent cross sections. In the FFD's, fission fragments produced by the reactions are emitted from the foils and create latent particle tracks in the adjacent mica films. When the films are processed surface tracks are formed which can be optically counted. The track densities are indications of the fluences and spectra of neutrons and/or protons. In the past, detection efficiencies have been calculated using the low energy neutron calibrated dosimeters and published fission cross sections for neutrons and protons. The problem is that the addition of a large kinetic energy to the (n,nucleus) or (p,nucleus) reaction could increase the energies and ranges of emitted fission fragments and increase the detector sensitivity as compared with lower energy neutron calibrations. High energy calibrations are the only method of resolving the uncertainties in detector efficiencies. At high energies, either proton or neutron calibrations are sufficient since the cross section data show that the proton and neutron fission cross sections are approximately equal. High energy proton beams have been utilized (1.8 and 4.9 GeV, 80 and 140 MeV) for measuring the tracks of fission fragments emitted backward and forward.

  4. Laser-accelerated proton conversion efficiency thickness scaling

    SciTech Connect

    Hey, D. S.; Foord, M. E.; Key, M. H.; LePape, S. L.; Mackinnon, A. J.; Patel, P. K.; Ping, Y.; Akli, K. U.; Stephens, R. B.; Bartal, T.; Beg, F. N.; Fedosejevs, R.; Friesen, H.; Tiedje, H. F.; Tsui, Y. Y.

    2009-12-15

    The conversion efficiency from laser energy into proton kinetic energy is measured with the 0.6 ps, 9x10{sup 19} W/cm{sup 2} Titan laser at the Jupiter Laser Facility as a function of target thickness in Au foils. For targets thicker than 20 {mu}m, the conversion efficiency scales approximately as 1/L, where L is the target thickness. This is explained by the domination of hot electron collisional losses over adiabatic cooling. In thinner targets, the two effects become comparable, causing the conversion efficiency to scale weaker than 1/L; the measured conversion efficiency is constant within the scatter in the data for targets between 5 and 15 {mu}m, with a peak conversion efficiency of 4% into protons with energy greater than 3 MeV. Depletion of the hydrocarbon contaminant layer is eliminated as an explanation for this plateau by using targets coated with 200 nm of ErH{sub 3} on the rear surface. The proton acceleration is modeled with the hybrid-particle in cell code LSP, which reproduced the conversion efficiency scaling observed in the data.

  5. A New High-Current Proton Accelerator

    SciTech Connect

    Cleland, M. R.; Galloway, R. A.; DeSanto, L.; Jongen, Y.

    2009-03-10

    A high-current (>20 mA) dc proton accelerator is being developed for applications such as boron neutron capture therapy (BNCT) and the detection of explosive materials by nuclear resonance absorption (NRA) of gamma radiation. The high-voltage dc accelerator (adjustable between 1.4 and 2.8 MeV) will be a single-ended industrial Dynamitron registered system equipped with a compact high-current, microwave-driven proton source. A magnetic mass analyzer inserted between the ion source and the acceleration tube will select the protons and reject heavier ions. A sorption pump near the ion source will minimize the flow of neutral hydrogen gas into the acceleration tube. For BNCT, a lithium target for generating epithermal neutrons is being developed that will be capable of dissipating the high power (>40 kW) of the proton beam. For NRA, special targets will be used to generate gamma rays with suitable energies for exciting nuclides typically present in explosive materials. Proton accelerators with such high-current and high-power capabilities in this energy range have not been developed previously.

  6. A New High-Current Proton Accelerator

    NASA Astrophysics Data System (ADS)

    Cleland, M. R.; Galloway, R. A.; DeSanto, L.; Jongen, Y.

    2009-03-01

    A high-current (>20 mA) dc proton accelerator is being developed for applications such as boron neutron capture therapy (BNCT) and the detection of explosive materials by nuclear resonance absorption (NRA) of gamma radiation. The high-voltage dc accelerator (adjustable between 1.4 and 2.8 MeV) will be a single-ended industrial Dynamitron® system equipped with a compact high-current, microwave-driven proton source. A magnetic mass analyzer inserted between the ion source and the acceleration tube will select the protons and reject heavier ions. A sorption pump near the ion source will minimize the flow of neutral hydrogen gas into the acceleration tube. For BNCT, a lithium target for generating epithermal neutrons is being developed that will be capable of dissipating the high power (>40 kW) of the proton beam. For NRA, special targets will be used to generate gamma rays with suitable energies for exciting nuclides typically present in explosive materials. Proton accelerators with such high-current and high-power capabilities in this energy range have not been developed previously.

  7. Protons in High Density Neutron Matter

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak M.

    2014-03-01

    We discuss the possible implication of the recent predictions of two new properties of high momentum distribution of nucleons in asymmetric nuclei for neutron star dynamics. The first property is about the approximate scaling relation between proton and neutron high momentum distributions weighted by their relative fractions (xp and xn) in the nucleus. The second is the existence of inverse proportionality of the high momentum distribution strength of protons and neutrons to xp/n. Based on these predictions we model the high momentum distribution functions for asymmetric nuclei and demonstrate that it describes reasonably well the high momentum characteristics of light nuclei. We also extrapolate our results to heavy nuclei as well as infinite nuclear matter and calculate the relative fractions of protons and neutrons with momenta above kF. Our results indicate that for neutron stars starting at three nuclear saturation densities the protons with xp = 1/9 will populate mostly the high momentum tail of the momentum distribution while only 2% of the neutrons will do so. Such a situation may have many implications for different observations of neutron stars which we discuss.

  8. High efficiency RCCI combustion

    NASA Astrophysics Data System (ADS)

    Splitter, Derek A.

    An experimental investigation of the pragmatic limits of Reactivity Controlled Compression Ignition (RCCI) engine efficiency was performed. The study utilized engine experiments combined with zero-dimensional modeling. Initially, simulations were used to suggest conditions of high engine efficiency with RCCI. Preliminary simulations suggested that high efficiency could be obtained by using a very dilute charge with a high compression ratio. Moreover, the preliminary simulations further suggested that with simultaneous 50% reductions in heat transfer and incomplete combustion, 60% gross thermal efficiency may be achievable with RCCI. Following the initial simulations, experiments to investigate the combustion process, fuel effects, and methods to reduce heat transfer and incomplete combustion reduction were conducted. The results demonstrated that the engine cycle and combustion process are linked, and if high efficiency is to be had, then the combustion event must be tailored to the initial cycle conditions. It was found that reductions to engine heat transfer are a key enabler to increasing engine efficiency. In addition, it was found that the piston oil jet gallery cooling in RCCI may be unnecessary, as it had a negative impact on efficiency. Without piston oil gallery cooling, it was found that RCCI was nearly adiabatic, achieving 95% of the theoretical maximum cycle efficiency (air standard Otto cycle efficiency).

  9. CHALLENGES FACING HIGH POWER PROTON ACCELERATORS

    SciTech Connect

    Plum, Michael A

    2013-01-01

    This presentation will provide an overview of the challenges of high power proton accelerators such as SNS, J-PARC, etc., and what we have learned from recent experiences. Beam loss mechanisms and methods to mitigate beam loss will also be discussed.

  10. Channel electron multiplier efficiency for protons of 0.2-10 keV.

    NASA Technical Reports Server (NTRS)

    Iglesias, G. E.; Mcgarity, J. O.

    1971-01-01

    The initial results of absolute proton efficiency measurements made in an auroral particle study by sounding rockets are given. The measurements were made at several counting rates from 1000 to 40,000 counts/sec on rocket-borne equipment. The results agree with those of Egidi et al. (1969) in the high energy range and show a disagreement at low energies.

  11. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon

  12. High momentum protons in superdense neutron matter

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak M.

    2013-10-01

    Recent observations of strong dominance of pn as compared to pp and nn short range correlations (SRCs) in nuclei indicate on possibility of unique new condition for asymmetric high density nuclear matter, in which the pp and nn interactions are suppressed while the pn interactions are enhanced due to tensor interaction. We demonstrate that, due to this enhancement, in high density neutron matter containing small portion of proton component the momentum distribution of protons is strongly deformed towards the high momentum states. This result is obtained by extracting the probabilities of two-nucleon (2N) SRCs from the analysis of the experimental data on high momentum transfer A(e,'e)X reactions and fitting them as a function of nuclear density and asymmetry. Using this fit we estimated that starting at three nuclear saturation densities the protons with fractional densities xp = 1/9 will populate mostly the high momentum tail of the momentum distribution while only few% of the neutrons will do so. We discuss the possible implications of this result for neutron stars.

  13. Proton-proton and proton-antiproton elastic scattering at high energies: Theory, phenomenology, and experiment

    SciTech Connect

    Wu, Tai Tsun.

    1990-01-01

    This is a brief review of the progress in the understanding, during the past twenty years, of hadronic elastic scattering near the forward direction at high energies. On the basis of quantum gauge field theories, the Pomeron is found to be a branch cut above 1. Using the physical picture that this result implies, phenomenology for proton-proton and antiproton-proton elastic scattering is constructed. Two noteworthy features are that, at high energies, both the total cross section and the ratio of the integrated elastic cross section to the total cross section to the total cross section are increasing functions of the center-of-mass energy. Detailed predictions are given for the elastic differential cross sections, Coulomb interference and the ratios of the real to imaginary parts of the forward amplitudes. These predictions have been extensively and accurately confirmed by experiments, and have also been given both for future experiments on existing accelerators and for experiments on future accelerators. 14 refs., 2 figs.

  14. Proton-proton and proton-antiproton elastic scattering at high energies: Theory, phenomenology, and experiment

    SciTech Connect

    Wu, Tai Tsun

    1990-12-31

    This is a brief review of the progress in the understanding, during the past twenty years, of hadronic elastic scattering near the forward direction at high energies. On the basis of quantum gauge field theories, the Pomeron is found to be a branch cut above 1. Using the physical picture that this result implies, phenomenology for proton-proton and antiproton-proton elastic scattering is constructed. Two noteworthy features are that, at high energies, both the total cross section and the ratio of the integrated elastic cross section to the total cross section to the total cross section are increasing functions of the center-of-mass energy. Detailed predictions are given for the elastic differential cross sections, Coulomb interference and the ratios of the real to imaginary parts of the forward amplitudes. These predictions have been extensively and accurately confirmed by experiments, and have also been given both for future experiments on existing accelerators and for experiments on future accelerators. 14 refs., 2 figs.

  15. High efficiency incandescent lighting

    SciTech Connect

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  16. High Efficiency Cell Development

    NASA Technical Reports Server (NTRS)

    Carbajal, B. G.

    1979-01-01

    The specific activity was to improve the tandem junction Cell (TJC) as a high efficiency solar cell. The TJC development was to be consistent with module assembly and should contribute to the overall goals of the Low-Cost Solar Array Project. During 1978, TJC efficiency improved from approximately 11 percent to approximately 16 percent (AMI). Photogenerated current densities in excess of 42 mA/sq cm were observed at AMO. Open circuit voltages as high as 0.615 V were measured at AMO. Fill factor was only 0.68 - 0.75 due to a nonoptimum metal contact design. A device model was conceived in which the solar cell is modelled as a transitor. There are virtually no interconnect or packaging factor systems and the TJC is compatible with all conventional module fabrication systems. A modification of the TJC, the Front Surface Field (FSF) cell, was also explored.

  17. High efficiency magnetic bearings

    NASA Technical Reports Server (NTRS)

    Studer, Philip A.; Jayaraman, Chaitanya P.; Anand, Davinder K.; Kirk, James A.

    1993-01-01

    Research activities concerning high efficiency permanent magnet plus electromagnet (PM/EM) pancake magnetic bearings at the University of Maryland are reported. A description of the construction and working of the magnetic bearing is provided. Next, parameters needed to describe the bearing are explained. Then, methods developed for the design and testing of magnetic bearings are summarized. Finally, a new magnetic bearing which allows active torque control in the off axes directions is discussed.

  18. High Efficiency, Clean Combustion

    SciTech Connect

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous

  19. PRaVDA: High Energy Physics towards proton Computed Tomography

    NASA Astrophysics Data System (ADS)

    Price, T.

    2016-07-01

    Proton radiotherapy is an increasingly popular modality for treating cancers of the head and neck, and in paediatrics. To maximise the potential of proton radiotherapy it is essential to know the distribution, and more importantly the proton stopping powers, of the body tissues between the proton beam and the tumour. A stopping power map could be measured directly, and uncertainties in the treatment vastly reduce, if the patient was imaged with protons instead of conventional x-rays. Here we outline the application of technologies developed for High Energy Physics to provide clinical-quality proton Computed Tomography, in so reducing range uncertainties and enhancing the treatment of cancer.

  20. Superstructure high efficiency photovoltaics

    NASA Technical Reports Server (NTRS)

    Wagner, M.; So, L. C.; Leburton, J. P.

    1987-01-01

    A novel class of photovoltaic cascade structures is introduced which features multijunction upper subcells. These superstructure high efficiency photovoltaics (SHEP's) exhibit enhanced upper subcell spectral response because of the additional junctions which serve to reduce bulk recombination losses by decreasing the mean collection distance for photogenerated minority carriers. Two possible electrical configurations were studied and compared: a three-terminal scheme that allows both subcells to be operated at their individual maximum power points and a two-terminal configuration with an intercell ohmic contact for series interconnection. The three-terminal devices were found to be superior both in terms of beginning-of-life expectancy and radiation tolerance. Realistic simulations of three-terminal AlGaAs/GaAs SHEP's show that one sun AMO efficiencies in excess of 26 percent are possible.

  1. High efficiency photoionization detector

    DOEpatents

    Anderson, David F.

    1984-01-01

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

  2. High efficiency photoionization detector

    DOEpatents

    Anderson, D.F.

    1984-01-31

    A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

  3. HIGH EFFICIENCY SYNGAS GENERATION

    SciTech Connect

    Robert J. Copeland; Yevgenia Gershanovich; Brian Windecker

    2005-02-01

    This project investigated an efficient and low cost method of auto-thermally reforming natural gas to hydrogen and carbon monoxide. Reforming is the highest cost step in producing products such as methanol and Fisher Tropsch liquids (i.e., gas to liquids); and reducing the cost of reforming is the key to reducing the cost of these products. Steam reforming is expensive because of the high cost of the high nickel alloy reforming tubes (i.e., indirectly fired reforming tubes). Conventional auto-thermal or Partial Oxidation (POX) reforming minimizes the size and cost of the reformers and provides a near optimum mixture of CO and hydrogen. However POX requires pure oxygen, which consumes power and significantly increases the cost to reforming. Our high efficiency process extracts oxygen from low-pressure air with novel oxygen sorbent and transfers the oxygen to a nickel-catalyzed reformer. The syngas is generated at process pressure (typically 20 to 40 bar) without nitrogen dilution and has a 1CO to 2H{sub 2} ratio that is near optimum for the subsequent production of Fisher-Tropsch liquid to liquids and other chemicals (i.e., Gas to Liquids, GTL). Our high process efficiency comes from the way we transfer the oxygen into the reformer. All of the components of the process, except for the oxygen sorbent, are commonly used in commercial practice. A process based on a longlived, regenerable, oxygen transfer sorbent could substantially reduce the cost of natural gas reforming to syngas. Lower cost syngas (CO + 2H{sub 2}) that is the feedstock for GTL would reduce the cost of GTL and for other commercial applications (e.g., methanol, other organic chemicals). The vast gas resources of Alaska's North Slope (ANS) offer more than 22 Tcf of gas and GTL production in this application alone, and could account for as much as 300,000 to 700,000 bpd for 20 to 30+ years. We developed a new sorbent, which is an essential part of the High Efficiency Oxygen Process (HOP). We tested the

  4. High-efficiency CARM

    SciTech Connect

    Bratman, V.L.; Kol`chugin, B.D.; Samsonov, S.V.; Volkov, A.B.

    1995-12-31

    The Cyclotron Autoresonance Maser (CARM) is a well-known variety of FEMs. Unlike the ubitron in which electrons move in a periodical undulator field, in the CARM the particles move along helical trajectories in a uniform magnetic field. Since it is much simpler to generate strong homogeneous magnetic fields than periodical ones for a relatively low electron energy ({Brit_pounds}{le}1-3 MeV) the period of particles` trajectories in the CARM can be sufficiently smaller than in the undulator in which, moreover, the field decreases rapidly in the transverse direction. In spite of this evident advantage, the number of papers on CARM is an order less than on ubitron, which is apparently caused by the low (not more than 10 %) CARM efficiency in experiments. At the same time, ubitrons operating in two rather complicated regimes-trapping and adiabatic deceleration of particles and combined undulator and reversed guiding fields - yielded efficiencies of 34 % and 27 %, respectively. The aim of this work is to demonstrate that high efficiency can be reached even for a simplest version of the CARM. In order to reduce sensitivity to an axial velocity spread of particles, a short interaction length where electrons underwent only 4-5 cyclotron oscillations was used in this work. Like experiments, a narrow anode outlet of a field-emission electron gun cut out the {open_quotes}most rectilinear{close_quotes} near-axis part of the electron beam. Additionally, magnetic field of a small correcting coil compensated spurious electron oscillations pumped by the anode aperture. A kicker in the form of a sloping to the axis frame with current provided a control value of rotary velocity at a small additional velocity spread. A simple cavity consisting of a cylindrical waveguide section restricted by a cut-off waveguide on the cathode side and by a Bragg reflector on the collector side was used as the CARM-oscillator microwave system.

  5. High power solid state rf amplifier for proton accelerator

    SciTech Connect

    Jain, Akhilesh; Sharma, Deepak Kumar; Gupta, Alok Kumar; Hannurkar, P. R.

    2008-01-15

    A 1.5 kW solid state rf amplifier at 352 MHz has been developed and tested at RRCAT. This rf source for cw operation will be used as a part of rf system of 100 MeV proton linear accelerator. A rf power of 1.5 kW has been achieved by combining output power from eight 220 W rf amplifier modules. Amplifier modules, eight-way power combiner and divider, and directional coupler were designed indigenously for this development. High efficiency, ease of fabrication, and low cost are the main features of this design.

  6. High Rate Proton Irradiation of 15mm Muon Drifttubes

    NASA Astrophysics Data System (ADS)

    Zibell, A.; Biebel, O.; Hertenberger, R.; Ruschke, A.; Schmitt, Ch.; Kroha, H.; Bittner, B.; Schwegler, P.; Dubbert, J.; Ott, S.

    2012-08-01

    Future LHC luminosity upgrades will significantly increase the amount of background hits from photons, neutrons 11.11d protons in the detectors of the ATLAS muon spectrometer. At the proposed LHC peak luminosity of 5\\cdot 1034(1)/(cm2s), background hit rates of more than 10(kHz)/(cm2) are expected in the innermost forward region, leading to a loss of performance of the current tracking chambers. Based on the ATLAS Monitored Drift Tube chambers, a new high rate capable drift tube detecor using tubes with a reduced diameter of 15mm was developed. To test the response to highly ionizing particles, a prototype chamber of 46 15mm drift tubes was irradiated with a 20 MeV proton beam at the tandem accelerator at the Maier-Leibnitz Laboratory, Munich. Three tubes in a planar layer were irradiated while all other tubes were used for reconstruction of cosmic muon tracks through irradiated and nonirradiated parts of the chamber. To determine the rate capability of the 15mm drifttubes we investigated the effect of the proton hit rate on pulse height, efficiency and spatial resolution of the cosmic muon signals.

  7. High-energy proton imaging for biomedical applications

    DOE PAGESBeta

    Prall, Matthias; Durante, Marco; Berger, Thomas; Przybyla, B.; Graeff, C.; Lang, Phillipp M.; LaTessa, Ciara; Shestov, Less; Simoniello, P.; Danly, Christopher R.; et al

    2016-06-10

    The charged particle community is looking for techniques exploiting proton interactions instead of X-ray absorption for creating images of human tissue. Due to multiple Coulomb scattering inside the measured object it has shown to be highly non-trivial to achieve sufficient spatial resolution. We present imaging of biological tissue with a proton microscope. This device relies on magnetic optics, distinguishing it from most published proton imaging methods. For these methods reducing the data acquisition time to a clinically acceptable level has turned out to be challenging. In a proton microscope, data acquisition and processing are much simpler. This device even allowsmore » imaging in real time. The primary medical application will be image guidance in proton radiosurgery. Proton images demonstrating the potential for this application are presented. As a result, tomographic reconstructions are included to raise awareness of the possibility of high-resolution proton tomography using magneto-optics.« less

  8. High-energy proton imaging for biomedical applications

    NASA Astrophysics Data System (ADS)

    Prall, M.; Durante, M.; Berger, T.; Przybyla, B.; Graeff, C.; Lang, P. M.; Latessa, C.; Shestov, L.; Simoniello, P.; Danly, C.; Mariam, F.; Merrill, F.; Nedrow, P.; Wilde, C.; Varentsov, D.

    2016-06-01

    The charged particle community is looking for techniques exploiting proton interactions instead of X-ray absorption for creating images of human tissue. Due to multiple Coulomb scattering inside the measured object it has shown to be highly non-trivial to achieve sufficient spatial resolution. We present imaging of biological tissue with a proton microscope. This device relies on magnetic optics, distinguishing it from most published proton imaging methods. For these methods reducing the data acquisition time to a clinically acceptable level has turned out to be challenging. In a proton microscope, data acquisition and processing are much simpler. This device even allows imaging in real time. The primary medical application will be image guidance in proton radiosurgery. Proton images demonstrating the potential for this application are presented. Tomographic reconstructions are included to raise awareness of the possibility of high-resolution proton tomography using magneto-optics.

  9. High-energy proton imaging for biomedical applications

    PubMed Central

    Prall, M.; Durante, M.; Berger, T.; Przybyla, B.; Graeff, C.; Lang, P. M.; LaTessa, C.; Shestov, L.; Simoniello, P.; Danly, C.; Mariam, F.; Merrill, F.; Nedrow, P.; Wilde, C.; Varentsov, D.

    2016-01-01

    The charged particle community is looking for techniques exploiting proton interactions instead of X-ray absorption for creating images of human tissue. Due to multiple Coulomb scattering inside the measured object it has shown to be highly non-trivial to achieve sufficient spatial resolution. We present imaging of biological tissue with a proton microscope. This device relies on magnetic optics, distinguishing it from most published proton imaging methods. For these methods reducing the data acquisition time to a clinically acceptable level has turned out to be challenging. In a proton microscope, data acquisition and processing are much simpler. This device even allows imaging in real time. The primary medical application will be image guidance in proton radiosurgery. Proton images demonstrating the potential for this application are presented. Tomographic reconstructions are included to raise awareness of the possibility of high-resolution proton tomography using magneto-optics. PMID:27282667

  10. High-energy proton imaging for biomedical applications.

    PubMed

    Prall, M; Durante, M; Berger, T; Przybyla, B; Graeff, C; Lang, P M; LaTessa, C; Shestov, L; Simoniello, P; Danly, C; Mariam, F; Merrill, F; Nedrow, P; Wilde, C; Varentsov, D

    2016-01-01

    The charged particle community is looking for techniques exploiting proton interactions instead of X-ray absorption for creating images of human tissue. Due to multiple Coulomb scattering inside the measured object it has shown to be highly non-trivial to achieve sufficient spatial resolution. We present imaging of biological tissue with a proton microscope. This device relies on magnetic optics, distinguishing it from most published proton imaging methods. For these methods reducing the data acquisition time to a clinically acceptable level has turned out to be challenging. In a proton microscope, data acquisition and processing are much simpler. This device even allows imaging in real time. The primary medical application will be image guidance in proton radiosurgery. Proton images demonstrating the potential for this application are presented. Tomographic reconstructions are included to raise awareness of the possibility of high-resolution proton tomography using magneto-optics. PMID:27282667

  11. High Efficiency Integrated Package

    SciTech Connect

    Ibbetson, James

    2013-09-15

    Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours – 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ≥ 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the component’s viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873

  12. Charge transfer efficiency in proton damaged CCD`s

    SciTech Connect

    Hardy, T. |; Murowinski, R.; Deen, M.J.

    1998-04-01

    The authors have performed detailed measurements of the charge transfer efficiency (CTE) in a thinned, backside-illuminated imaging charge-coupled device (CCD). The device had been damaged in three separate sections by proton radiation typical of that which a CCD would receive in space-borne experiments, nuclear imaging, or particle detection. They examined CTE as a function of signal level, temperature, and radiation dose. The dominant factor affecting the CTE in radiation-damaged CCD`s is seen to be trapping by bulk states. They present a simple physical model for trapping as a function of transfer rate, trap concentration, and temperature. They have made calculations using this model and arrived at predictions which closely match the measured results. The CTE was also observed to have a nonlinear dependence on signal level. Using two-dimensional device simulations to examine the distribution of the charge packets in the CCD channel over a range of signal levels, they were able to explain the observed variation.

  13. The second generation Singapore high resolution proton beam writing facilitya)

    NASA Astrophysics Data System (ADS)

    van Kan, J. A.; Malar, P.; Baysic de Vera, Armin

    2012-02-01

    A new proton beam focusing facility, designed for proton beam writing (PBW) applications has been tested. PBW allows for proximity free structuring of high aspect ratio, high-density 3D nanostructures. The new facility is designed around OM52 compact quadrupole lenses capable of operating in a variety of high demagnification configurations. Performance tests show that proton beams can be focused down to 19.0 × 29.9 nm2 and single line scans show a beam width of 12.6 nm. The ultimate goal of sub 10 nm structuring with MeV protons will be discussed.

  14. Dynamics of high-energy proton beam acceleration and focusing from hemisphere-cone targets by high-intensity lasers.

    PubMed

    Qiao, B; Foord, M E; Wei, M S; Stephens, R B; Key, M H; McLean, H; Patel, P K; Beg, F N

    2013-01-01

    Acceleration and focusing of high-energy proton beams from fast-ignition (FI) -related hemisphere-cone assembled targets have been numerically studied by hybrid particle-in-cell simulations and compared with those from planar-foil and open-hemisphere targets. The whole physical process including the laser-plasma interaction has been self-consistently modeled for 15 ps, at which time the protons reach asymptotic motion. It is found that the achievable focus of proton beams is limited by the thermal pressure gradients in the co-moving hot electrons, which induce a transverse defocusing electric field that bends proton trajectories near the axis. For the advanced hemisphere-cone target, the flow of hot electrons along the cone wall induces a local transverse focusing sheath field, resulting in a clear enhancement in proton focusing; however, it leads to a significant loss of longitudinal sheath potential, reducing the total conversion efficiency from laser to protons. PMID:23410447

  15. Periods of High Intensity Solar Proton Flux

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Adams, James H.; Dietrich, William F.

    2012-01-01

    Analysis is presented for times during a space mission that specified solar proton flux levels are exceeded. This includes both total time and continuous time periods during missions. Results for the solar maximum and solar minimum phases of the solar cycle are presented and compared for a broad range of proton energies and shielding levels. This type of approach is more amenable to reliability analysis for spacecraft systems and instrumentation than standard statistical models.

  16. Si film separation obtained by high energy proton implantation

    SciTech Connect

    Braley, C.; Mazen, F.; Papon, A.-M.; Rieutord, F.; Charvet, A.-M.; Ntsoenzok, E.

    2012-11-06

    High energy protons implantation in the 1-1.5 MeV range can be used to detach free-standing thin silicon films with thickness between 15 and 30 {mu}m. Recently, we showed that Si orientation has a strong effect on the layer separation threshold fluence and efficiency. While complete delamination of (111)Si films is achieved, (100)Si films separation is more challenging due to blistering phenomena or partial separation of the implanted layer. In this work, we study the fracture mechanism in (100) and (111)Si after high energy implantation in order to understand the origin of such a behavior. We notably point out that fracture precursor defects, i.e. the platelets, preferentially form on (111) planes, as a consequence of the low strain level in the damaged region in our implantation conditions. Fracture therefore propagates easily in (111)Si, while it requires higher fluence to overcome unfavorable precursors orientation and propagate in (100)Si.

  17. Geometrical splitting technique to improve the computational efficiency in Monte Carlo calculations for proton therapy

    SciTech Connect

    Ramos-Mendez, Jose; Perl, Joseph; Faddegon, Bruce; Schuemann, Jan; Paganetti, Harald

    2013-04-15

    Purpose: To present the implementation and validation of a geometrical based variance reduction technique for the calculation of phase space data for proton therapy dose calculation. Methods: The treatment heads at the Francis H Burr Proton Therapy Center were modeled with a new Monte Carlo tool (TOPAS based on Geant4). For variance reduction purposes, two particle-splitting planes were implemented. First, the particles were split upstream of the second scatterer or at the second ionization chamber. Then, particles reaching another plane immediately upstream of the field specific aperture were split again. In each case, particles were split by a factor of 8. At the second ionization chamber and at the latter plane, the cylindrical symmetry of the proton beam was exploited to position the split particles at randomly spaced locations rotated around the beam axis. Phase space data in IAEA format were recorded at the treatment head exit and the computational efficiency was calculated. Depth-dose curves and beam profiles were analyzed. Dose distributions were compared for a voxelized water phantom for different treatment fields for both the reference and optimized simulations. In addition, dose in two patients was simulated with and without particle splitting to compare the efficiency and accuracy of the technique. Results: A normalized computational efficiency gain of a factor of 10-20.3 was reached for phase space calculations for the different treatment head options simulated. Depth-dose curves and beam profiles were in reasonable agreement with the simulation done without splitting: within 1% for depth-dose with an average difference of (0.2 {+-} 0.4)%, 1 standard deviation, and a 0.3% statistical uncertainty of the simulations in the high dose region; 1.6% for planar fluence with an average difference of (0.4 {+-} 0.5)% and a statistical uncertainty of 0.3% in the high fluence region. The percentage differences between dose distributions in water for simulations

  18. Geometrical splitting technique to improve the computational efficiency in Monte Carlo calculations for proton therapy

    PubMed Central

    Ramos-Méndez, José; Perl, Joseph; Faddegon, Bruce; Schümann, Jan; Paganetti, Harald

    2013-01-01

    Purpose: To present the implementation and validation of a geometrical based variance reduction technique for the calculation of phase space data for proton therapy dose calculation. Methods: The treatment heads at the Francis H Burr Proton Therapy Center were modeled with a new Monte Carlo tool (TOPAS based on Geant4). For variance reduction purposes, two particle-splitting planes were implemented. First, the particles were split upstream of the second scatterer or at the second ionization chamber. Then, particles reaching another plane immediately upstream of the field specific aperture were split again. In each case, particles were split by a factor of 8. At the second ionization chamber and at the latter plane, the cylindrical symmetry of the proton beam was exploited to position the split particles at randomly spaced locations rotated around the beam axis. Phase space data in IAEA format were recorded at the treatment head exit and the computational efficiency was calculated. Depth–dose curves and beam profiles were analyzed. Dose distributions were compared for a voxelized water phantom for different treatment fields for both the reference and optimized simulations. In addition, dose in two patients was simulated with and without particle splitting to compare the efficiency and accuracy of the technique. Results: A normalized computational efficiency gain of a factor of 10–20.3 was reached for phase space calculations for the different treatment head options simulated. Depth–dose curves and beam profiles were in reasonable agreement with the simulation done without splitting: within 1% for depth–dose with an average difference of (0.2 ± 0.4)%, 1 standard deviation, and a 0.3% statistical uncertainty of the simulations in the high dose region; 1.6% for planar fluence with an average difference of (0.4 ± 0.5)% and a statistical uncertainty of 0.3% in the high fluence region. The percentage differences between dose distributions in water for

  19. Proton shock acceleration using a high contrast high intensity laser

    NASA Astrophysics Data System (ADS)

    Gauthier, Maxence; Roedel, Christian; Kim, Jongjin; Aurand, Bastian; Curry, Chandra; Goede, Sebastian; Propp, Adrienne; Goyon, Clement; Pak, Art; Kerr, Shaun; Ramakrishna, Bhuvanesh; Ruby, John; William, Jackson; Glenzer, Siegfried

    2015-11-01

    Laser-driven proton acceleration is a field of intense research due to the interesting characteristics of this novel particle source including high brightness, high maximum energy, high laminarity, and short duration. Although the ion beam characteristics are promising for many future applications, such as in the medical field or hybrid accelerators, the ion beam generated using TNSA, the acceleration mechanism commonly achieved, still need to be significantly improved. Several new alternative mechanisms have been proposed such as collisionless shock acceleration (CSA) in order to produce a mono-energetic ion beam favorable for those applications. We report the first results of an experiment performed with the TITAN laser system (JLF, LLNL) dedicated to the study of CSA using a high intensity (5x1019W/cm2) high contrast ps laser pulse focused on 55 μm thick CH and CD targets. We show that the proton spectrum generated during the interaction exhibits high-energy mono-energetic features along the laser axis, characteristic of a shock mechanism.

  20. Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells

    PubMed Central

    Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari

    2015-01-01

    Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC). PMID:26218470

  1. Hardness assurance for proton direct ionization-induced SEEs using a high-energy proton beam

    DOE PAGESBeta

    Dodds, Nathaniel Anson; Schwank, James R.; Shaneyfelt, Marty R.; Dodd, Paul E.; Doyle, Barney Lee; Trinczek, M.; Blackmore, E. W.; Rodbell, K. P.; Reed, R. A.; Pellish, J. A.; et al

    2014-11-06

    The low-energy proton energy spectra of all shielded space environments have the same shape. This shape is easily reproduced in the laboratory by degrading a high-energy proton beam, producing a high-fidelity test environment. We use this test environment to dramatically simplify rate prediction for proton direct ionization effects, allowing the work to be done at high-energy proton facilities, on encapsulated parts, without knowledge of the IC design, and with little or no computer simulations required. Proton direct ionization (PDI) is predicted to significantly contribute to the total error rate under the conditions investigated. Scaling effects are discussed using data frommore » 65-nm, 45-nm, and 32-nm SOI SRAMs. These data also show that grazing-angle protons will dominate the PDI-induced error rate due to their higher effective LET, so PDI hardness assurance methods must account for angular effects to be conservative. As a result, we show that this angular dependence can be exploited to quickly assess whether an IC is susceptible to PDI.« less

  2. Hardness assurance for proton direct ionization-induced SEEs using a high-energy proton beam

    SciTech Connect

    Dodds, Nathaniel Anson; Schwank, James R.; Shaneyfelt, Marty R.; Dodd, Paul E.; Doyle, Barney Lee; Trinczek, M.; Blackmore, E. W.; Rodbell, K. P.; Reed, R. A.; Pellish, J. A.; LaBel, K. A.; Marshall, P. W.; Swanson, Scot E.; Vizkelethy, Gyorgy; Van Deusen, Stuart B.; Sexton, Frederick W.; Martinez, Marino J.; Gordon, M. S.

    2014-11-06

    The low-energy proton energy spectra of all shielded space environments have the same shape. This shape is easily reproduced in the laboratory by degrading a high-energy proton beam, producing a high-fidelity test environment. We use this test environment to dramatically simplify rate prediction for proton direct ionization effects, allowing the work to be done at high-energy proton facilities, on encapsulated parts, without knowledge of the IC design, and with little or no computer simulations required. Proton direct ionization (PDI) is predicted to significantly contribute to the total error rate under the conditions investigated. Scaling effects are discussed using data from 65-nm, 45-nm, and 32-nm SOI SRAMs. These data also show that grazing-angle protons will dominate the PDI-induced error rate due to their higher effective LET, so PDI hardness assurance methods must account for angular effects to be conservative. As a result, we show that this angular dependence can be exploited to quickly assess whether an IC is susceptible to PDI.

  3. ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS.

    SciTech Connect

    WEI,J.; MACEK,R.J.

    2002-04-14

    One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures.

  4. Heavy ion linac as a high current proton beam injector

    NASA Astrophysics Data System (ADS)

    Barth, Winfried; Adonin, Aleksey; Appel, Sabrina; Gerhard, Peter; Heilmann, Manuel; Heymach, Frank; Hollinger, Ralph; Vinzenz, Wolfgang; Vormann, Hartmut; Yaramyshev, Stepan

    2015-05-01

    A significant part of the experimental program at Facility for Antiproton and Ion Research (FAIR) is dedicated to pbar physics requiring a high number of cooled pbars per hour. The primary proton beam has to be provided by a 70 MeV proton linac followed by two synchrotrons. The new FAIR proton linac will deliver a pulsed proton beam of up to 35 mA of 36 μ s duration at a repetition rate of 4 Hz (maximum). The GSI heavy ion linac (UNILAC) is able to deliver world record uranium beam intensities for injection into the synchrotrons, but it is not suitable for FAIR relevant proton beam operation. In an advanced machine investigation program it could be shown that the UNILAC is able to provide for sufficient high intensities of CH3 beam, cracked (and stripped) in a supersonic nitrogen gas jet into protons and carbon ions. This advanced operational approach will result in up to 3 mA of proton intensity at a maximum beam energy of 20 MeV, 1 0 0 μ s pulse duration and a repetition rate of up to 2.7 Hz delivered to the synchrotron SIS18. Recent linac beam measurements will be presented, showing that the UNILAC is able to serve as a proton FAIR injector for the first time, while the performance is limited to 25% of the FAIR requirements.

  5. H- Ion Sources for High Intensity Proton Drivers

    SciTech Connect

    Dudnikov, Vadim; Johnson, Rolland P.; Stockli, Martin P; Welton, Robert F; Dudnikova, Galina

    2010-01-01

    Spallation neutron source user facilities require reliable, intense beams of protons. The technique of H- charge exchange injection into a storage ring or synchrotron can provide the needed beam currents, but may be limited by the ion sources that have currents and reliability that do not meet future requirements and emittances that are too large for efficient acceleration. In this project we are developing an H- source which will synthesize the most important developments in the field of negative ion sources to provide high current, small emittance, good lifetime, high reliability, and power efficiency. We describe planned modifications to the present external antenna source at SNS that involve: 1) replacing the present 2 MHz plasma-forming solenoid antenna with a 60 MHz saddle-type antenna and 2) replacing the permanent multicusp magnet with a weaker electromagnet, in order to increase the plasma density near the outlet aperture. The SNS test stand will then be used to verify simulations of this approach that indicate significant improvements in H- output current and efficiency, where lower RF power will allow higher duty factor, longer source lifetime, and/or better reliability.

  6. High Efficiency Furnace

    SciTech Connect

    Hwang, K. S.; Koestler, D. J.

    1985-08-27

    Disclosed is a dwelling furnace having at least one clam-shell type primary heat exchanger in parallel orientation with a secondary heat exchanger, both the primary and secondary heat exchangers being vertically oriented relative to a furnace housing and parallel to the flow of air to be heated. The primary heat exchanger has a combustion chamber in the lower end thereof, and the lower end of the secondary heat exchanger exhausts into a tertiary heat exchanger oriented approximately perpendicular to the primary and secondary heat exchangers and horizontally relative to the housing, below the combustion chambers of the primary heat exchangers and below the exhaust outlet of the secondary heat exchanger. The tertiary heat exchanger includes a plurality of condensation tubes for retrieving the latent heat of condensation of the combustion gases. The furnace further comprises an induced draft blower for drawing combustion gases through the heat exchangers and inducting sufficient air to the combustion chamber of the primary heat exchanger for efficient combustion.

  7. High efficiency furnace

    SciTech Connect

    Hwang, K. S.; Koestler, D. J.

    1985-12-31

    Disclosed is a dwelling furnace having at least one clam-shell type primary heat exchanger in parallel orientation with a secondary heat exchanger, both the primary and secondary heat exchangers being vertically oriented relative to a furnace housing and parallel to the flow of air to be heated. The primary heat exchanger has a combustion chamber in the lower end thereof, and the lower end of the secondary heat exchanger exhausts into a tertiary heat exchanger oriented approximately perpendicular to the primary and secondary heat exchangers and horizontally relative to the housing, below the combustion chambers of the primary heat exchangers and below the exhaust outlet of the secondary heat exchanger. The tertiary heat exchanger includes a plurality of condensation tubes for retrieving the latent heat of condensation of the combustion gases. The furnace further comprises an induced draft blower for drawing combustion gases through the heat exchangers and inducting sufficient air to the combustion chamber of the primary heat exchanger for efficient combustion.

  8. High efficiency gas burner

    DOEpatents

    Schuetz, Mark A.

    1983-01-01

    A burner assembly provides for 100% premixing of fuel and air by drawing the air into at least one high velocity stream of fuel without power assist. Specifically, the nozzle assembly for injecting the fuel into a throat comprises a plurality of nozzles in a generally circular array. Preferably, swirl is imparted to the air/fuel mixture by angling the nozzles. The diffuser comprises a conical primary diffuser followed by a cusp diffuser.

  9. High energy protons generation by two sequential laser pulses

    SciTech Connect

    Wang, Xiaofeng; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Xu, Jiancai; Yi, Longqing; Shi, Yin

    2015-04-15

    The sequential proton acceleration by two laser pulses of relativistic intensity is proposed to produce high energy protons. In the scheme, a relativistic super-Gaussian (SG) laser pulse followed by a Laguerre-Gaussian (LG) pulse irradiates dense plasma attached by underdense plasma. A proton beam is produced from the target and accelerated in the radiation pressure regime by the short SG pulse and then trapped and re-accelerated in a special bubble driven by the LG pulse in the underdense plasma. The advantages of radiation pressure acceleration and LG transverse structure are combined to achieve the effective trapping and acceleration of protons. In a two-dimensional particle-in-cell simulation, protons of 6.7 GeV are obtained from a 2 × 10{sup 22 }W/cm{sup 2} SG laser pulse and a LG pulse at a lower peak intensity.

  10. Encapsulating Mobile Proton Carriers into Structural Defects in Coordination Polymer Crystals: High Anhydrous Proton Conduction and Fuel Cell Application.

    PubMed

    Inukai, Munehiro; Horike, Satoshi; Itakura, Tomoya; Shinozaki, Ryota; Ogiwara, Naoki; Umeyama, Daiki; Nagarkar, Sanjog; Nishiyama, Yusuke; Malon, Michal; Hayashi, Akari; Ohhara, Takashi; Kiyanagi, Ryoji; Kitagawa, Susumu

    2016-07-13

    We describe the encapsulation of mobile proton carriers into defect sites in nonporous coordination polymers (CPs). The proton carriers were encapsulated with high mobility and provided high proton conductivity at 150 °C under anhydrous conditions. The high proton conductivity and nonporous nature of the CP allowed its application as an electrolyte in a fuel cell. The defects and mobile proton carriers were investigated using solid-state NMR, XAFS, XRD, and ICP-AES/EA. On the basis of these analyses, we concluded that the defect sites provide space for mobile uncoordinated H3PO4, H2PO4(-), and H2O. These mobile carriers play a key role in expanding the proton-hopping path and promoting the mobility of protons in the coordination framework, leading to high proton conductivity and fuel cell power generation. PMID:27324658

  11. A New Hybrid Proton-Exchange-Membrane Fuel Cells-Battery Power System with Efficiencies Considered

    NASA Astrophysics Data System (ADS)

    Chao, Chung-Hsing; Shieh, Jenn-Jong

    Hybrid systems, based on lead-acid or lithium-ion batteries and proton-exchange-membrane fuel cells (PEMFCs), give the possibility of combining the benefit of both technologies. The merits of high energy density and power density for different applications are discussed in this paper in recognition of the practical realization of such hybrid power systems. Furthermore, experimental data for such a hybrid system is described and the results are shown and discussed. The results show that the combination of lead-acid batteries or lithium-ion batteries and PEMFCs shows advantages in cases of applications with high peak power requirements, such as electric scooters and applications where the fuel cell (FC) is used as an auxiliary power-supply to recharge the battery. The high efficiency of FCs operating with a partial load results in a good fuel economy for the purpose of recharging batteries within a FC system.

  12. Proton radiation damage in high-resistivity n-type silicon CCDs

    SciTech Connect

    Bebek, C.J.; Groom, D.E.; Holland, S.E.; Karcher, A.; Kolbe, W.F.; Lee, J.; Levi, M.E.; Palaio, N.P.; Turko, B.T.; Uslenghi, M.C.; Wagner, M.T.; Wang, G.

    2001-12-20

    A new type of p-channel CCD constructed on high-resistivity n-type silicon was exposed to 12 MeV protons at doses up to 1x1011 protons/cm2. The charge transfer efficiency was measured as a function of radiation dose and temperature. We previously reported that these CCDs are significantly more tolerant to radiation damage than conventional n-channel devices. In the work reported here, we used pocket pumping techniques and charge transfer efficiency measurements to determine the identity and concentrations of radiation induced traps present in the damaged devices.

  13. High power density proton exchange membrane fuel cells

    NASA Technical Reports Server (NTRS)

    Murphy, Oliver J.; Hitchens, G. Duncan; Manko, David J.

    1993-01-01

    Proton exchange membrane (PEM) fuel cells use a perfluorosulfonic acid solid polymer film as an electrolyte which simplifies water and electrolyte management. Their thin electrolyte layers give efficient systems of low weight, and their materials of construction show extremely long laboratory lifetimes. Their high reliability and their suitability for use in a microgravity environment makes them particularly attractive as a substitute for batteries in satellites utilizing high-power, high energy-density electrochemical energy storage systems. In this investigation, the Dow experimental PEM (XUS-13204.10) and unsupported high platinum loading electrodes yielded very high power densities, of the order of 2.5 W cm(exp -2). A platinum black loading of 5 mg per cm(exp 2) was found to be optimum. On extending the three-dimensional reaction zone of fuel cell electrodes by impregnating solid polymer electrolyte into the electrode structures, Nafion was found to give better performance than the Dow experimental PEM. The depth of penetration of the solid polymer electrolyte into electrode structures was 50-70 percent of the thickness of the platinum-catalyzed active layer. However, the degree of platinum utilization was only 16.6 percent and the roughness factor of a typical electrode was 274.

  14. High efficiency SPS klystron design

    NASA Technical Reports Server (NTRS)

    Nalos, E. J.

    1980-01-01

    The most likely compact configuration to realize both high efficiency and high gain is a 5-6 cavity design focused by an electromagnet. An outline of a potential klystron configuration is given. The selected power output of 70 kW CW resulted from a maximum assumed operating voltage of 40 kV. The basic klystron efficiency cannot be expected to exceed 70-75% without collector depression. Although impressive gains were achieved in raising the basic efficiency from 50% to 70% or so with a multi-stage collector, the estimated efficiency improvement due to 5-stage collector at the 75% level is only about 8% resulting in an overall efficiency of about 83%.

  15. High efficiency solar cell processing

    NASA Technical Reports Server (NTRS)

    Ho, F.; Iles, P. A.

    1985-01-01

    At the time of writing, cells made by several groups are approaching 19% efficiency. General aspects of the processing required for such cells are discussed. Most processing used for high efficiency cells is derived from space-cell or concentrator cell technology, and recent advances have been obtained from improved techniques rather than from better understanding of the limiting mechanisms. Theory and modeling are fairly well developed, and adequate to guide further asymptotic increases in performance of near conventional cells. There are several competitive cell designs with promise of higher performance ( 20%) but for these designs further improvements are required. The available cell processing technology to fabricate high efficiency cells is examined.

  16. Proton-Proton On Shell Optical Potential at High Energies and the Hollowness Effect

    NASA Astrophysics Data System (ADS)

    Arriola, Enrique Ruiz; Broniowski, Wojciech

    2016-04-01

    We analyze the usefulness of the optical potential as suggested by the double spectral Mandelstam representation at very high energies, such as in the proton-proton scattering at ISR and the LHC. Its particular meaning regarding the interpretation of the scattering data up to the maximum available measured energies is discussed. Our analysis reconstructs 3D dynamics from the effective transverse 2D impact parameter representation and suggests that besides the onset of gray nucleons at the LHC there appears an inelasticity depletion (hollowness) which precludes convolution models at the attometer scale.

  17. Proton-Proton On Shell Optical Potential at High Energies and the Hollowness Effect

    NASA Astrophysics Data System (ADS)

    Arriola, Enrique Ruiz; Broniowski, Wojciech

    2016-07-01

    We analyze the usefulness of the optical potential as suggested by the double spectral Mandelstam representation at very high energies, such as in the proton-proton scattering at ISR and the LHC. Its particular meaning regarding the interpretation of the scattering data up to the maximum available measured energies is discussed. Our analysis reconstructs 3D dynamics from the effective transverse 2D impact parameter representation and suggests that besides the onset of gray nucleons at the LHC there appears an inelasticity depletion (hollowness) which precludes convolution models at the attometer scale.

  18. Quarkonium production in high energyproton-proton and proton-nucleus collisions

    SciTech Connect

    del Valle, Z C; Corcella, G; Fleuret, F; Ferreiro, E G; Kartvelishvili, V; Kopeliovich, B; Lansberg, J P; Lourenco, C; Martinez, G; Papadimitriou, V; Satz, H; Scomparin, E; Ullrich, T; Teryaev, O; Vogt, R; Wang, J X

    2011-03-14

    We present a brief overview of the most relevant current issues related to quarkonium production in high energy proton-proton and proton-nucleus collisions along with some perspectives. After reviewing recent experimental and theoretical results on quarkonium production in pp and pA collisions, we discuss the emerging field of polarization studies. Afterwards, we report on issues related to heavy-quark production, both in pp and pA collisions, complemented by AA collisions. To put the work in broader perpectives, we emphasize the need for new observables to investigate the quarkonium production mechanisms and reiterate the qualities that make quarkonia a unique tool for many investigations in particle and nuclear physics.

  19. Gloeobacter Rhodopsin, Limitation of Proton Pumping at High Electrochemical Load

    PubMed Central

    Vogt, Arend; Wietek, Jonas; Hegemann, Peter

    2013-01-01

    We studied the photocurrents of a cyanobacterial rhodopsin Gloeobacter violaceus (GR) in Xenopus laevis oocytes and HEK-293 cells. This protein is a light-driven proton pump with striking similarities to marine proteorhodopsins, including the D121-H87 cluster of the retinal Schiff base counterion and a glutamate at position 132 that acts as a proton donor for chromophore reprotonation during the photocycle. Interestingly, at low extracellular pHo and negative voltage, the proton flux inverted and directed inward. Using electrophysiological measurements of wild-type and mutant GR, we demonstrate that the electrochemical gradient limits outward-directed proton pumping and converts it into a purely passive proton influx. This conclusion contradicts the contemporary paradigm that at low pH, proteorhodopsins actively transport H+ into cells. We identified E132 and S77 as key residues that allow inward directed diffusion. Substitution of E132 with aspartate or S77 with either alanine or cysteine abolished the inward-directed current almost completely. The proton influx is likely caused by the pKa of E132 in GR, which is lower than that of other microbial ion pumping rhodopsins. The advantage of such a low pKa is an acceleration of the photocycle and high pump turnover at high light intensities. PMID:24209850

  20. Definition and Application of Proton Source Efficiency in Accelerator-Driven Systems

    SciTech Connect

    Seltborg, Per; Wallenius, Jan; Tucek, Kamil; Gudowski, Waclaw

    2003-11-15

    In order to study the beam power amplification of an accelerator-driven system (ADS), a new parameter, the proton source efficiency {psi}* is introduced. {psi}* represents the average importance of the external proton source, relative to the average importance of the eigenmode production, and is closely related to the neutron source efficiency [varphi]*, which is frequently used in the ADS field. [varphi]* is commonly used in the physics of subcritical systems driven by any external source (spallation source, (d,d), (d,t), {sup 252}Cf spontaneous fissions, etc.). On the contrary, {psi}* has been defined in this paper exclusively for ADS studies where the system is driven by a spallation source. The main advantage with using {psi}* instead of [varphi]* for ADS is that the way of defining the external source is unique and that it is proportional to the core power divided by the proton beam power, independent of the neutron source distribution.Numerical simulations have been performed with the Monte Carlo code MCNPX in order to study {psi}* as a function of different design parameters. It was found that, in order to maximize {psi}* and therefore minimize the proton current needs, a target radius as small as possible should be chosen. For target radii smaller than {approx}30 cm, lead-bismuth is a better choice of coolant material than sodium, regarding the proton source efficiency, while for larger target radii the two materials are equally good. The optimal axial proton beam impact was found to be located {approx}20 cm above the core center. Varying the proton energy, {psi}*/E{sub p} was found to have a maximum for proton energies between 1200 and 1400 MeV. Increasing the americium content in the fuel decreases {psi}* considerably, in particular when the target radius is large.

  1. Protonation enthalpies of metal oxides from high temperature electrophoresis

    SciTech Connect

    Rodriguez-Santiago, V; Fedkin, Mark V.; Lvov, Serguei N.

    2012-01-01

    Surface protonation reactions play an important role in the behavior of mineral and colloidal systems, specifically in hydrothermal aqueous environments. However, studies addressing the reactions at the solid/liquid interface at temperatures above 100 C are scarce. In this study, newly and previously obtained high temperature electrophoresis data (up to 260 C) zeta potentials and isoelectric points for metal oxides, including SiO2, SnO2, ZrO2, TiO2, and Fe3O4, were used in thermodynamic analysis to derive the standard enthalpies of their surface protonation. Two different approaches were used for calculating the protonation enthalpy: one is based on thermodynamic description of the 1-pKa model for surface protonation, and another one on a combination of crystal chemistry and solvation theories which link the relative permittivity of the solid phase and the ratio of the Pauling bond strength and bond length to standard protonation enthalpy. From this analysis, two expressions relating the protonation enthalpy to the relative permittivity of the solid phase were obtained.

  2. Protonation enthalpies of metal oxides from high temperature electrophoresis.

    SciTech Connect

    Rodriguez-Santiago, V; Fedkin, Mark V; Lvov, Serguei N.

    2012-01-01

    Surface protonation reactions play an important role in the behavior of mineral and colloidal systems, specifically in hydrothermal aqueous environments. However, studies addressing the reactions at the solid/liquid interface at temperatures above 100 C are scarce. In this study, newly and previously obtained high temperature electrophoresis data (up to 260 C) - zeta potentials and isoelectric points - for metal oxides, including SiO{sub 2}, SnO{sub 2}, ZrO{sub 2}, TiO{sub 2}, and Fe{sub 3}O{sub 4}, were used in thermodynamic analysis to derive the standard enthalpies of their surface protonation. Two different approaches were used for calculating the protonation enthalpy: one is based on thermodynamic description of the 1-pKa model for surface protonation, and another one - on a combination of crystal chemistry and solvation theories which link the relative permittivity of the solid phase and the ratio of the Pauling bond strength and bond length to standard protonation enthalpy. From this analysis, two expressions relating the protonation enthalpy to the relative permittivity of the solid phase were obtained.

  3. Star tracker operation in a high density proton field

    NASA Technical Reports Server (NTRS)

    Miklus, Kenneth J.; Kissh, Frank; Flynn, David J.

    1993-01-01

    Algorithms that reject transient signals due to proton effects on charge coupled device (CCD) sensors have been implemented in the HDOS ASTRA-l Star Trackers to be flown on the TOPEX mission scheduled for launch in July 1992. A unique technique for simulating a proton-rich environment to test trackers is described, as well as the test results obtained. Solar flares or an orbit that passes through the South Atlantic Anomaly can subject the vehicle to very high proton flux levels. There are three ways in which spurious proton generated signals can impact tracker performance: the many false signals can prevent or extend the time to acquire a star; a proton-generated signal can compromise the accuracy of the star's reported magnitude and position; and the tracked star can be lost, requiring reacquisition. Tests simulating a proton-rich environment were performed on two ASTRA-1 Star Trackers utilizing these new algorithms. There were no false acquisitions, no lost stars, and a significant reduction in reported position errors due to these improvements.

  4. Heavy quark energy loss in high multiplicity proton-proton collisions at the LHC.

    PubMed

    Vogel, Sascha; Gossiaux, Pol Bernard; Werner, Klaus; Aichelin, Jörg

    2011-07-15

    One of the most promising probes to study deconfined matter created in high energy nuclear collisions is the energy loss of (heavy) quarks. It has been shown in experiments at the Relativistic Heavy Ion Collider that even charm and bottom quarks, despite their high mass, experience a remarkable medium suppression in the quark gluon plasma. In this exploratory investigation we study the energy loss of heavy quarks in high multiplicity proton-proton collisions at LHC energies. Although the colliding systems are smaller than compared to those at the Relativistic Heavy Ion Collider (p+p vs Au+Au), the higher energy might lead to multiplicities comparable to Cu+Cu collisions at the Relativistic Heavy Ion Collider. The interaction of charm quarks with this environment gives rise to a non-negligible suppression of high momentum heavy quarks in elementary collisions. PMID:21838351

  5. Advanced high efficiency concentrator cells

    SciTech Connect

    Gale, R. . Varian Research Center)

    1992-06-01

    This report describes research to develop the technology needed to demonstrate a monolithic, multijunction, two-terminal, concentrator solar cell with a terrestrial power conversion efficiency greater than 35%. Under three previous subcontracts, Varian developed many of the aspects of a technology needed to fabricate very high efficiency concentrator cells. The current project was aimed at exploiting the new understanding of high efficiency solar cells. Key results covered in this report are as follows. (1) A 1.93-eV AlGaAs/1.42-eV GaAs metal-interconnected cascade cell was manufactured with a one-sun efficiency at 27.6% at air mass 1.5 (AM1.5) global. (2) A 1.0eV InGaAs cell was fabricated on the reverse'' side of a low-doped GaAs substrate with a one-sun efficiency of 2.5% AM1.5 diffuse and a short-circuit current of 14.4 mA/cm{sup 2}. (3) Small-scale manufacturing of GaAs p/n concentrator cells was attempted and obtained an excellent yield of high-efficiency cells. (4) Grown-in tunnel junction cell interconnects that are transparent and thermally stable using C and Si dopants were developed. 10 refs.

  6. Very high efficiency solar cells

    NASA Astrophysics Data System (ADS)

    Barnett, Allen; Kirkpatrick, Douglas; Honsberg, Christiana

    2006-08-01

    The Defense Advanced Research Projects Agency has initiated the Very High Efficiency Solar Cell (VHESC) program to address the critical need of the soldier for power in the field. Very High Efficiency Solar Cells for portable applications that operate at greater than 55 percent efficiency in the laboratory and 50 percent in production are being developed. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space that leads to a new architecture paradigm. An integrated team effort is now underway that requires us to invent, develop and transfer to production these new solar cells. Our approach is driven by proven quantitative models for the solar cell design, the optical design and the integration of these designs. We start with a very high performance crystalline silicon solar cell platform. Examples will be presented. Initial solar cell device results are shown for devices fabricated in geometries designed for this VHESC Program.

  7. High efficiency SPS klystron design

    NASA Technical Reports Server (NTRS)

    Nalos, E. J.

    1980-01-01

    The most likely compact configuration to realize both high efficiency and high gain (approx. 40 dB) is a 5-6 cavity design focused by an electromagnet. The basic klystron efficiency cannot be expected to exceed 70-75% without collector depression. It was estimated that the net benefit of a 5 stage collector over a 2 stage collector is between 1.5 and 3.5 kW per tube. A modulating anode is incorporated in the design to enable rapid shutoff of the beam current in case the r.f. drive should be removed.

  8. High efficiency solar panel /HESP/

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Gay, C.; Uno, F.; Scott-Monck, J.

    1978-01-01

    A family of high efficiency, weldable silicon solar cells, incorporating nearly every feature of advanced cell technology developed in the past four years, was produced and subjected to space qualification testing. This matrix contained both field and non-field cells ranging in thickness from 0.10 mm to 0.30 mm, and in base resistivity from nominal two to one hundred ohm-cm. Initial power outputs as high as 20 mW/sq cm (14.8% AM0 efficiency) were produced by certain cell types within the matrix.

  9. Accumulation efficiency of cancer stem-like cells post γ-ray and proton irradiation

    NASA Astrophysics Data System (ADS)

    Quan, Yi; Wang, Weikang; Fu, Qibin; Mei, Tao; Wu, Jingwen; Li, Jia; Yang, Gen; Wang, Yugang

    2012-09-01

    Ionizing radiation (IR) has been proven to be a powerful medical treatment in cancer therapy. Rational and effective use of its killing power depends on understanding IR-mediated responses at the molecular, cellular and tissue levels. Increasing evidence supports that cancer stem-like cells (CSCs) play an important role in tumor regrowth and spread post radiotherapy, for they are resistant to various therapy methods including radiation. Presently, SW620 colon carcinoma monolayer culture cells were irradiated with γ-rays and protons of 2 Gy. Then apoptosis, clonogenic survival and the expression of CD133+ protein were examined. The results showed that there was no significantly difference either on long-term clonogenic survival or on short-term apoptosis ratio. However, compared with γ-rays, irradiation with protons was less efficient to accumulate CSCs at the same dose, although both protons and γ-rays can significantly accumulate the CD133+ CSCs subpopulation. In addition, the results of sphere formation assay also confirmed that proton irradiation is less efficient in CSCs accumulation, suggesting proton irradiation might have higher efficiency in CSCs elimination for cancer radiotherapy.

  10. Microstructured snow targets for high energy quasi-monoenergetic proton acceleration

    NASA Astrophysics Data System (ADS)

    Schleifer, E.; Nahum, E.; Eisenmann, S.; Botton, M.; Baspaly, A.; Pomerantz, I.; Abricht, F.; Branzel, J.; Priebe, G.; Steinke, S.; Andreev, A.; Schnuerer, M.; Sandner, W.; Gordon, D.; Sprangle, P.; Ledingham, K. W. D.; Zigler, A.

    2013-05-01

    Compact size sources of high energy protons (50-200MeV) are expected to be key technology in a wide range of scientific applications 1-8. One promising approach is the Target Normal Sheath Acceleration (TNSA) scheme 9,10, holding record level of 67MeV protons generated by a peta-Watt laser 11. In general, laser intensity exceeding 1018 W/cm2 is required to produce MeV level protons. Another approach is the Break-Out Afterburner (BOA) scheme which is a more efficient acceleration scheme but requires an extremely clean pulse with contrast ratio of above 10-10. Increasing the energy of the accelerated protons using modest energy laser sources is a very attractive task nowadays. Recently, nano-scale targets were used to accelerate ions 12,13 but no significant enhancement of the accelerated proton energy was measured. Here we report on the generation of up to 20MeV by a modest (5TW) laser system interacting with a microstructured snow target deposited on a Sapphire substrate. This scheme relax also the requirement of high contrast ratio between the pulse and the pre-pulse, where the latter produces the highly structured plasma essential for the interaction process. The plasma near the tip of the snow target is subject to locally enhanced laser intensity with high spatial gradients, and enhanced charge separation is obtained. Electrostatic fields of extremely high intensities are produced, and protons are accelerated to MeV-level energies. PIC simulations of this targets reproduce the experimentally measured energy scaling and predict the generation of 150 MeV protons from laser power of 100TW laser system18.

  11. Novel collective phenomena in high-energy proton-proton and proton-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Dusling, Kevin; Li, Wei; Schenke, Björn

    2016-01-01

    The observation of long-range rapidity correlations among particles in high-multiplicity p-p and p-Pb collisions has created new opportunities for investigating novel high-density QCD phenomena in small colliding systems. We review experimental results related to the study of collective phenomena in small systems at RHIC and the LHC along with the related developments in theory and phenomenology. Perspectives on possible future directions for research are discussed with the aim of exploring emergent QCD phenomena.

  12. Impact of Solar Proton Events on High Latitude Ionospheric Conditions

    NASA Astrophysics Data System (ADS)

    Aslam, A. M.; Gwal, Ashok Kumar; Mansoori, Azad Ahmad

    2016-07-01

    We investigate the ionospheric response to the solar protons which are accelerated to different energies (MeV-GeV) and thought to be originated at the solar atmosphere during the various energetic phenomena knows as solar transients viz. Solar Flares, Coronal Mass Ejections (CMEs). These transients are believed to be a manifestation of same energy release processes from a highly complex condition in the magnetic field configuration on the solar surface. We have taken six solar proton events (SPE) of solar cycle 23rd for analysis in the various energy bands of the protons. In order to find the ionospheric responses to these incoming solar protons ionospheric total electron content (TEC) is taken as the characteristic parameter. We have taken the data observed by GOES satellites which provides the data for different energy channels (0.8-4 MeV, 4-9 MeV, 9-15 MeV, 15-40 MeV, 40-80 MeV, 80-165 MeV, and 165-500 MeV). The enhancement in peak TEC (∆TEC) was then obtained for the high latitude station Davis (Lat-68.35, Lon 77.58). To find the association of this enhancement with proton flux characteristics we derived the correspondence between spectral indices and ∆TEC. We obtained a strong correlation (0.84) to exist between the spectral indices and ∆TEC.

  13. High Efficiency Engine Technologies Program

    SciTech Connect

    Rich Kruiswyk

    2010-07-13

    Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in

  14. CGC/saturation approach for high energy soft interactions: v2 in proton-proton collisions

    NASA Astrophysics Data System (ADS)

    Gotsman, E.; Levin, E.; Maor, U.; Tapia, S.

    2016-04-01

    In this paper we continue our program to construct a model for high energy soft interactions, based on the CGC/saturation approach. We demonstrate that in our model, which describes diffractive physics as well as multiparticle production at high energy, the density variation mechanism leads to the value of v2 , which is about 60%-70% of the measured v2 . Bearing in mind that in the CGC/saturation approach there are two other mechanisms present, Bose enhancement in the wave function and local anisotropy, we believe that the azimuthal long range rapidity correlations in proton-proton collisions stem from the CGC/saturation physics, and not from quark-gluon plasma production.

  15. Energy dependence of the ridge in high multiplicity proton-proton collisions

    DOE PAGESBeta

    Dusling, Kevin; Tribedy, Prithwish; Venugopalan, Raju

    2016-01-27

    In this study, we demonstrate that the recent measurement of azimuthally collimated, long-range rapidity (“ridge”) correlations in √s=13 TeV proton-proton (p+p) collisions by the ATLAS Collaboration at the LHC are in agreement with expectations from the color glass condensate effective theory of high-energy QCD. The observation that the integrated near-side yield as a function of multiplicity is independent of collision energy is a natural consequence of the fact that multiparticle production is driven by a single semihard saturation scale in the color glass condensate framework. We argue further that the azimuthal structure of these recent ATLAS ridge measurements strongly constrainsmore » hydrodynamic interpretations of such correlations in high-multiplicity p+p collisions.« less

  16. Enabling High Efficiency Ethanol Engines

    SciTech Connect

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

  17. Recent developments for high-intensity proton linacs

    SciTech Connect

    Wangler, T.P.; Garnett, R.W.; Gray, E.R.; Nath, S.

    1996-04-01

    High-intensity proton linacs are being proposed for new projects around the world, especially for tritium production, and for pulsed spallation neutron sources. Typical requirements for these linacs include peak beam current of about 100 mA, and final energies of 1 GeV and higher, APT, a tritium production linac, requires cw operation to obtain sufficient average tritium production linac, requires cw operation to obtain sufficient average beam power, and H{sup +} ion sources appear capable of providing the required current and emittances. The pulsed spallation neutron source requires a linac as an injector to one or more accumulator rings, and favors the use of an H{sup minus} beam to allow charge-exchange injection into the rings. For both applications high availability is demanded; the fraction of scheduled beam time for actual production must be 75% or more. Such a high availability requires low beam-loss to avoid radioactivation of the accelerator, and to allow hands-on maintenance that will keep the mean repair and maintenance times short. To keep the accelerator activation sufficiently low, the beam loss should not exceed about 0.1 to 1.0 nA/m, except perhaps for a few localized places, where special design adaptations could be made. The requirement of such small beam losses at such a high intensity presents a new beam physics challenge. This challenge will require greater understanding of the beam distribution, including the low- density beam halo, which is believed to be responsible for most of the beam losses. Furthermore, it will be necessary to choose the apertures so the beam losses will be acceptably low, and because large aperture size is generally accompanied by an economic penalty resulting from reduced power efficiency, an optimized choice of the aperture will be desirable.

  18. About multiple scattering of high energy protons in crystal deflectors

    NASA Astrophysics Data System (ADS)

    Taratin, A. M.; Scandale, W.

    2015-07-01

    The process of multiple scattering of high energy protons in a silicon crystal at its amorphous orientation was studied by simulation of proton trajectories in the model of binary collisions and by a straight simulation of the sequences of proton collisions with atoms when their impact parameters are randomly and uniformly distributed on the symmetry cell for a given crystallography direction. The value of the RMS deflection of multiple scattering obtained by the simulation is in a good agreement with the experiment and more than 15% larger than it follows from the Moliere theory. The obtained RMS deflection used in the Gaussian approach of multiple scattering well describes dechanneling of protons in the frame of the planar potential model. Different number of proton collisions with atoms occurs along the same crystal length for different crystal orientations. However, the change of the collision number is compensated by the corresponding change of the mean square deflection in a single collision. Therefore, multiple scattering is the same for different crystal orientations. The generator of multiple scattering for amorphous crystal orientations was proposed.

  19. Polarisation Transfer in Proton Compton Scattering at High Momentum Transfer

    SciTech Connect

    Hamilton, David

    2004-12-31

    The Jefferson Lab Hall A experiment E99-114 comprised a series of measurements to explore proton Compton scattering at high momentum transfer. For the first time, the polarisation transfer observables in the p (~ 0 ~ p) reaction were measured in the GeV energy range, where it is believed that quark-gluon degrees of freedom begin to dominate. The experiment utilised a circularly polarised photon beam incident on a liquid hydrogen target, with the scattered photon and recoil proton detected in a lead-glass calorimeter and a magnetic spectrometer, respectively.

  20. Investigation of high-energy-proton effects in aluminum

    SciTech Connect

    Czajkowski, C.J.; Snead, C.L. Jr.; Todosow, M.

    1997-12-01

    Specimens of 1100 aluminum were exposed to several fluences of 23.5-GeV protons at the Brookhaven Alternating Gradient Synchrotron. Although this energy is above those currently being proposed for spallation-neutron applications, the results can be viewed as indicative of trends and other microstructural evolution with fluence that take place with high-energy proton exposures such as those associated with an increasing ratio of gas generation to dpa. TEM investigation showed significantly larger bubble size and lower density of bubbles compared with lower-energy proton results. Additional testing showed that the tensile strength increased with fluence as expected, but the microhardness decreased, a result for which an intepretation is still under investigation.

  1. Klystron based high power rf system for proton accelerator

    SciTech Connect

    Pande, Manjiri; Shrotriya, Sandip; Sharma, Sonal; Patel, Niranjan; Handu, Verander E-mail: manjiri08@gmail.com

    2011-07-01

    As a part of ADS program a proton accelerator (20 MeV, 30 mA) and its high power RF systems (HPRF) are being developed in BARC. This paper explains design details of this klystron based HPRF system. (author)

  2. Critical design issues of high intensity proton linacs

    SciTech Connect

    Lawrence, G.P.

    1994-08-01

    Medium-energy proton linear accelerators are being studied as drivers for spallation applications requiring large amounts of beam powder. Important design factors for such high-intensity linacs are reviewed, and issues and concerns specific to this unprecedented power regime are discussed.

  3. CW high intensity non-scaling FFAG proton drivers

    SciTech Connect

    Johnstone, C.; Berz, M.; Makino, K.; Snopok, P.; /IIT, Chicago

    2011-04-01

    Accelerators are playing increasingly important roles in basic science, technology, and medicine including nuclear power, industrial irradiation, material science, and neutrino production. Proton and light-ion accelerators in particular have many research, energy and medical applications, providing one of the most effective treatments for many types of cancer. Ultra high-intensity and high-energy (GeV) proton drivers are a critical technology for accelerator-driven sub-critical reactors (ADS) and many HEP programs (Muon Collider). These high-intensity GeV-range proton drivers are particularly challenging, encountering duty cycle and space-charge limits in the synchrotron and machine size concerns in the weaker-focusing cyclotrons; a 10-20 MW proton driver is not presently considered technically achievable with conventional re-circulating accelerators. One, as-yet, unexplored re-circulating accelerator, the Fixed-field Alternating Gradient, or FFAG, is an attractive alternative to the cyclotron. Its strong focusing optics are expected to mitigate space charge effects, and a recent innovation in design has coupled stable tunes with isochronous orbits, making the FFAG capable of fixed-frequency, CW acceleration, as in the classical cyclotron. This paper reports on these new advances in FFAG accelerator technology and references advanced modeling tools for fixed-field accelerators developed for and unique to the code COSY INFINITY.

  4. Proton Structure in High-Energy High-Multiplicity p-p Collisions

    NASA Astrophysics Data System (ADS)

    Głazek, Stanisław D.; Kubiczek, Patryk

    2016-06-01

    A few-body proton image, expected to be derivable from QCD in the renormalization group procedure for effective particles, is used within the Monte Carlo Glauber model to calculate the anisotropy coefficients in the initial collision-state of matter in high-energy high-multiplicity proton-proton interaction events. We estimate the ridge-like correlations in the final hadronic state by assuming their proportionality to the initial collision-state anisotropy. In our estimates, some distinct few-body proton structures appear capable of accounting for the magnitude of p-p ridge effect, with potentially discernible differences in dependence on multiplicity.

  5. Improvement of extraction efficiency from a compact synchrotron for proton beam therapy by applying particle tracking analysis

    NASA Astrophysics Data System (ADS)

    Ebina, Futaro; Umezawa, Masumi; Hiramoto, Kazuo

    2013-04-01

    Various types of synchrotrons are used for particle beam therapy. In particle beam therapy, especially in proton beam therapy, downsizing of the accelerator system is a major concern. A compact synchrotron dedicated for proton beam therapy is presented. The synchrotron is horizontally weakly focusing and consists of 4 H-type zerogradient dipole magnets and 4 quadrupole magnets. The circumference of the ring is a little shorter than 18 m, and the energies are up to 230MeV. Beam extraction from the synchrotron is performed by RF-driven slow extraction technology. Two sextupole magnets set in adjacent straight sections form a horizontal separatrix which is fixed during the beam extraction. Horizontal RF voltage excites betatron oscillation of the circulating beam, and protons exceeding the separatrix are extracted by an electrostatic deflector and a horizontal septum dipole magnet. To achieve adequately high extraction efficiency, the relationship between the extraction efficiency and the horizontal chromaticity of the ring is analyzed by particle tracking simulation. The horizontal chromaticity with maximum extraction efficiency is half of the theoretical value because of the distortion of the horizontal separatrix for the extraction. With this chromaticity, the spiral-step of the extracted particle is independent of the momentum deviation of the particle, and the separatrix across the electrostatic septum electrodes is superpositioned.

  6. Improvement of extraction efficiency from a compact synchrotron for proton beam therapy by applying particle tracking analysis

    SciTech Connect

    Ebina, Futaro; Umezawa, Masumi; Hiramoto, Kazuo

    2013-04-19

    Various types of synchrotrons are used for particle beam therapy. In particle beam therapy, especially in proton beam therapy, downsizing of the accelerator system is a major concern. A compact synchrotron dedicated for proton beam therapy is presented. The synchrotron is horizontally weakly focusing and consists of 4 H-type zerogradient dipole magnets and 4 quadrupole magnets. The circumference of the ring is a little shorter than 18 m, and the energies are up to 230MeV. Beam extraction from the synchrotron is performed by RF-driven slow extraction technology. Two sextupole magnets set in adjacent straight sections form a horizontal separatrix which is fixed during the beam extraction. Horizontal RF voltage excites betatron oscillation of the circulating beam, and protons exceeding the separatrix are extracted by an electrostatic deflector and a horizontal septum dipole magnet. To achieve adequately high extraction efficiency, the relationship between the extraction efficiency and the horizontal chromaticity of the ring is analyzed by particle tracking simulation. The horizontal chromaticity with maximum extraction efficiency is half of the theoretical value because of the distortion of the horizontal separatrix for the extraction. With this chromaticity, the spiral-step of the extracted particle is independent of the momentum deviation of the particle, and the separatrix across the electrostatic septum electrodes is superpositioned.

  7. Geometrical splitting technique to improve the computational efficiency in Monte Carlo calculations for proton therapy

    NASA Astrophysics Data System (ADS)

    Ramos-Mendez, J. A.; Perl, J.; Faddegon, B.; Paganetti, H.

    2012-10-01

    In this work, the well accepted particle splitting technique has been adapted to proton therapy and implemented in a new Monte Carlo simulation tool (TOPAS) for modeling the gantry mounted treatment nozzles at the Northeast Proton Therapy Center (NPTC) at Massachusetts General Hospital (MGH). Gains up to a factor of 14.5 in computational efficiency were reached with respect to a reference simulation in the generation of the phase space data in the cylindrically symmetric region of the nozzle. Comparisons between dose profiles in a water tank for several configurations show agreement between the simulations done with and without particle splitting within the statistical precision.

  8. Proton Therapy

    MedlinePlus

    ... nucleus is surrounded by electrons. In proton therapy, beams of fast-moving protons are used to destroy ... atoms to release proton, neutron, and helium ion beams. In this highly specialized form of radiosurgery , proton ...

  9. Micro-sphere layered targets efficiency in laser driven proton acceleration

    SciTech Connect

    Floquet, V.; Martin, Ph.; Ceccotti, T.; Klimo, O.; Psikal, J.; Limpouch, J.; Proska, J.; Novotny, F.; Stolcova, L.; Velyhan, A.; Macchi, A.; Sgattoni, A.; Vassura, L.; Labate, L.; Baffigi, F.; Gizzi, L. A.

    2013-08-28

    Proton acceleration from the interaction of high contrast, 25 fs laser pulses at >10{sup 19} W/cm{sup 2} intensity with plastic foils covered with a single layer of regularly packed micro-spheres has been investigated experimentally. The proton cut-off energy has been measured as a function of the micro-sphere size and laser incidence angle for different substrate thickness, and for both P and S polarization. The presence of micro-spheres with a size comparable to the laser wavelength allows to increase the proton cut-off energy for both polarizations at small angles of incidence (10∘). For large angles of incidence, however, proton energy enhancement with respect to flat targets is absent. Analysis of electron trajectories in particle-in-cell simulations highlights the role of the surface geometry in the heating of electrons.

  10. High Efficiency Room Air Conditioner

    SciTech Connect

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  11. Production of high-brightness CW proton beams with very high proton fractions

    SciTech Connect

    Spence, D.; McMichael, G.; Lykke, K.R.; Schneider, J.D.; Sherman, J.; Stevens, R. Jr.; Hodgkins, D.

    1995-12-01

    This paper demonstrates a new technique to significantly enhance the proton fraction of an ion beam extracted from a plasma ion source. We employ a magnetically confined microwave driven source, though the technique is not source-specific and can probably be applied equally effectively to other plasma sources such as Penning and multicusp types. Specifically, we dope the plasma with about 1% H{sub 2}O, which increases the proton fraction of a 45 keV 45 mA beam from 75 to 90% with 375W 2.45 GHz power to the source and from 84% to 92% for 500W when the source is operated under nonresonant conditions. Much of the remaining fraction of the beam comprises a heavy mass ion we believe to be N{sup +} impurity ions resulting from the conditions under which the experiments were performed. If so, this impurity can be easily removed and much higher proton fractions could be expected. Preliminary measurements show the additive has no adverse effect on the emittance of the extracted beam, and source stability is greatly improved.

  12. A Family of L-band SRF Cavities for High Power Proton Driver Applications

    SciTech Connect

    Robert Rimmer, Frank Marhauser

    2009-05-01

    Recent global interest in high duty factor or CW superconducting linacs with high average beam power highlights the need for robust and reliable SRF structures capable of delivering high average RF power to the beam with moderate HOM damping, low interception of halo and good efficiency. Potential applications include proton or H- drivers for spallation neutron sources, neutrino physics, waste transmutation, subcritical reactors, and high-intensity high-energy physics experiments. We describe a family of SRF cavities with a range of Betas capable of transporting beam currents in excess of 10 mA CW with large irises for minimal interception of halo and HOM and power couplers capable of supporting high average power operation. Goals include an efficient cell shape, high packing factor for efficient real-estate gradient and strong HOM damping to ensure stable beam operation,

  13. High Efficiency Germanium Immersion Gratings

    SciTech Connect

    Kuzmenko, P J; Davis, P J; Little, S L; Little, L M; Bixler, J V

    2006-05-01

    We have fabricated several germanium immersion gratings by single crystal, single point diamond flycutting on an ultra-precision lathe. Use of a dead sharp tool produces groove corners less than 0.1 micron in radius and consequently high diffraction efficiency. We measured first order efficiencies in immersion of over 80% at 10.6 micron wavelength. Wavefront error was low averaging 0.06 wave rms (at 633 nm) across the full aperture. The grating spectral response was free of ghosts down to our detection limit of 1 part in 10{sup 4}. Scatter should be low based upon the surface roughness. Measurement of the spectral line profile of a CO{sub 2} laser sets an upper bound on total integrated scatter of 0.5%.

  14. High efficiency germanium immersion gratings

    NASA Astrophysics Data System (ADS)

    Kuzmenko, Paul J.; Davis, Pete J.; Little, Steve L.; Little, Liesl M.; Bixler, Jay V.

    2006-06-01

    We have fabricated several germanium immersion gratings by single crystal, single point diamond flycutting on an ultra-precision lathe. Use of a dead sharp tool produces groove corners less than 0.1 micron in radius and consequently high diffraction efficiency. We measured first order efficiencies in immersion of over 80% at 10.6 micron wavelength. Wavefront error was low averaging 0.06 wave rms (at 633 nm) across the full aperture. The grating spectral response was free of ghosts down to our detection limit of 1 part in 104. Scatter should be low based upon the surface roughness. Measurement of the spectral line profile of a CO II laser sets an upper bound on total integrated scatter of 0.5%.

  15. A simple, high efficiency, high resolution spectropolarimeter

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.

    2012-09-01

    A simple concept is described that uses volume phase holographic gratings as polarizing dispersers for a high efficiency, high resolution spectropolarimeter. Although the idea has previously been mentioned in the literature as possible, such a concept has not been explored in detail. Performance analysis is presented for a VPHG spectropolarimeter concept that could be utilized for both solar and night-time astronomy. Instrumental peak efficiency can approach 100% with spectral dispersions permitting R~200,000 spectral resolution with diffraction limited telescopes. The instrument has 3-channels: two dispersed image planes with orthogonal polarization and an undispersed image plane. The concept has a range of versatility where it could be configured (with appropriate half-wave plates) for slit-fed spectroscopy or without slits for snapshot/hyperspectral/tomographic spectroscopic imaging. Multiplex gratings could also be used for the simultaneous recording of two separate spectral bands or multiple instruments could be daisy chained with beam splitters for further spectral coverage.

  16. Proton radiation damage in P-channel CCDs fabricated on high-resistivity silicon

    SciTech Connect

    Bebek, C.; Groom, D.; Holland, S.; Karcher, A.; Kolbe, W.; Lee, J.; Levi, M.; Palaio, N.; Turko, B.; Uslenghi, M.; Wagner, M.; Wang, G.

    2002-07-28

    P-channel, backside illuminated silicon CCDs were developed and fabricated on high-resistivity n-type silicon. Devices have been exposed up to 1x1011 protons/cm2 at 12 MeV. The charge transfer efficiency and dark current were measured as a function of radiation dose. These CCDs were found to be significantly more radiation tolerant than conventional n-channel devices. This could prove to be a major benefit for long duration space missions.

  17. High-Temperature Proton-Conducting Ceramics Developed

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Dynys, Frederick W.; Berger, M. H.

    2005-01-01

    High-temperature protonic conductors (HTPC) are needed for hydrogen separation, hydrogen sensors, fuel cells, and hydrogen production from fossil fuels. The HTPC materials for hydrogen separation at high temperatures are foreseen to be metal oxides with the perovskite structure A(sup 2+)B(sup 4+)C(sup 2-, sub 3) and with the trivalent cation (M(sup 3+)) substitution at the B(sup 4+)-site to introduce oxygen vacancies. The high affinity for hydrogen ions (H(sup +)) is advantageous for protonic transport, but it increases the reactivity toward water (H2O) and carbon dioxide (CO2), which can lead to premature membrane failure. In addition, there are considerable technological challenges related to the processing of HTPC materials. The high melting point and multi-cation chemistry of HTPC materials creates difficulties in in achieving high-density, single-phase membranes by solid-state sintering. The presence of secondary phases and grain-boundary interfaces are detrimental to the protonic conduction and environmental stability of polycrystalline HTPC materials.

  18. Relative TL and OSL efficiency to protons of various dosimetric materials.

    PubMed

    Sądel, M; Bilski, P; Swakoń, J

    2014-10-01

    Thermoluminescence (TL) and optically stimulated luminescence (OSL) are the well-known phenomena used for passive methods of dose measurements. TL and OSL detectors are frequently used in the dosimetry of cosmic radiation in space and of particle radiotherapy beams. However, the relative TL/OSL efficiency, which is defined as a ratio of the emitted light intensity per unit dose for a given radiation type, to the same quantity for the reference gamma radiation is not constant and depends on radiation type and energy. In the present work several types of TL and OSL dosimetric materials, including lithium fluoride (LiF), aluminium oxide, beryllium oxide and lithium aluminate, were tested with protons. The measurements were realised exploiting the 60-MeV proton beam of the AIC-144 cyclotron in the Proton Eye Radiotherapy Facility at Institute of Nuclear Physics (IFJ PAN). The influence of proton energy on the relative efficiency and other TL/OSL characteristics of the studied detector types was presented. PMID:24036656

  19. Commissioning plan for a high-current proton linac

    SciTech Connect

    Chan, K.C.D.; Barber, R.L.; Garnett, R.W.

    1997-09-01

    High-power proton linacs (E>500 MeV) are potentially useful for transmutation applications, such as the production of tritium. In production applications, high availability is essential. Achieving high availability requires an accelerator design that simplifies maintenance and accommodates commissioning procedures designed to minimize tune-up time. These are worthwhile goals for any accelerator, but the very high beam powers (170 MW) and heavy beam loading of the Accelerator Production of Tritium (APT) linac introduce significant new challenges. This paper will describe the commissioning plan, as developed to date.

  20. PULSED POWER APPLICATIONS IN HIGH INTENSITY PROTON RINGS.

    SciTech Connect

    ZHANG, S.Y.; SANDBERG, J.; ET AL.

    2005-05-16

    Pulsed power technology has been applied in particle accelerators and storage rings for over four decades. It is most commonly used in injection, extraction, beam manipulation, source, and focusing systems. These systems belong to the class of repetitive pulsed power. In this presentation, we review and discuss the history, present status, and future challenge of pulsed power applications in high intensity proton accelerators and storage rings.

  1. High-efficiency photovoltaic cells

    DOEpatents

    Yang, H.T.; Zehr, S.W.

    1982-06-21

    High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.

  2. High-power proton linac for transmuting the long-lived fission products in nuclear waste

    SciTech Connect

    Lawrence, G.P.

    1991-01-01

    High power proton linacs are being considered at Los Alamos as drivers for high-flux spallation neutron sources that can be used to transmute the troublesome long-lived fission products in defense nuclear waste. The transmutation scheme being studied provides a high flux (> 10{sup 16}/cm{sup 2}{minus}s) of thermal neutrons, which efficiently converts fission products to stable or short-lived isotopes. A medium-energy proton linac with an average beam power of about 110 MW can burn the accumulated Tc99 and I129 inventory at the DOE's Hanford Site within 30 years. Preliminary concepts for this machine are described. 3 refs., 5 figs., 2 tabs.

  3. High efficiency shale oil recovery

    SciTech Connect

    Adams, C.D.

    1992-07-18

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a larger continuous process kiln. For example, similar conditions of heatup rate, oxidation of the residue and cool-down prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The second quarter agenda consisted of (a) kiln modifications; (b) sample preparation; and (c) Heat Transfer calibration runs (part of proposal task number 3 -- to be completed by the end of month 7).

  4. High efficiency laser spectrum conditioner

    DOEpatents

    Greiner, Norman R.

    1980-01-01

    A high efficiency laser spectrum conditioner for generating a collinear parallel output beam containing a predetermined set of frequencies from a multifrequency laser. A diffraction grating and spherical mirror are used in combination, to disperse the various frequencies of the input laser beam and direct these frequencies along various parallel lines spatially separated from one another to an apertured mask. Selection of the desired frequencies is accomplished by placement of apertures at locations on the mask where the desired frequencies intersect the mask. A recollimated parallel output beam with the desired set of frequencies is subsequently generated utilizing a mirror and grating matched and geometrically aligned in the same manner as the input grating and mirror.

  5. Towards effective and efficient patient-specific quality assurance for spot scanning proton therapy.

    PubMed

    Zhu, X Ronald; Li, Yupeng; Mackin, Dennis; Li, Heng; Poenisch, Falk; Lee, Andrew K; Mahajan, Anita; Frank, Steven J; Gillin, Michael T; Sahoo, Narayan; Zhang, Xiaodong

    2015-01-01

    An intensity-modulated proton therapy (IMPT) patient-specific quality assurance (PSQA) program based on measurement alone can be very time consuming due to the highly modulated dose distributions of IMPT fields. Incorporating independent dose calculation and treatment log file analysis could reduce the time required for measurements. In this article, we summarize our effort to develop an efficient and effective PSQA program that consists of three components: measurements, independent dose calculation, and analysis of patient-specific treatment delivery log files. Measurements included two-dimensional (2D) measurements using an ionization chamber array detector for each field delivered at the planned gantry angles with the electronic medical record (EMR) system in the QA mode and the accelerator control system (ACS) in the treatment mode, and additional measurements at depths for each field with the ACS in physics mode and without the EMR system. Dose distributions for each field in a water phantom were calculated independently using a recently developed in-house pencil beam algorithm and compared with those obtained using the treatment planning system (TPS). The treatment log file for each field was analyzed in terms of deviations in delivered spot positions from their planned positions using various statistical methods. Using this improved PSQA program, we were able to verify the integrity of the data transfer from the TPS to the EMR to the ACS, the dose calculation of the TPS, and the treatment delivery, including the dose delivered and spot positions. On the basis of this experience, we estimate that the in-room measurement time required for each complex IMPT case (e.g., a patient receiving bilateral IMPT for head and neck cancer) is less than 1 h using the improved PSQA program. Our experience demonstrates that it is possible to develop an efficient and effective PSQA program for IMPT with the equipment and resources available in the clinic. PMID:25867000

  6. Towards Effective and Efficient Patient-Specific Quality Assurance for Spot Scanning Proton Therapy

    PubMed Central

    Zhu, X. Ronald.; Li, Yupeng; Mackin, Dennis; Li, Heng; Poenisch, Falk; Lee, Andrew K.; Mahajan, Anita; Frank, Steven J.; Gillin, Michael T.; Sahoo, Narayan; Zhang, Xiaodong

    2015-01-01

    An intensity-modulated proton therapy (IMPT) patient-specific quality assurance (PSQA) program based on measurement alone can be very time consuming due to the highly modulated dose distributions of IMPT fields. Incorporating independent dose calculation and treatment log file analysis could reduce the time required for measurements. In this article, we summarize our effort to develop an efficient and effective PSQA program that consists of three components: measurements, independent dose calculation, and analysis of patient-specific treatment delivery log files. Measurements included two-dimensional (2D) measurements using an ionization chamber array detector for each field delivered at the planned gantry angles with the electronic medical record (EMR) system in the QA mode and the accelerator control system (ACS) in the treatment mode, and additional measurements at depths for each field with the ACS in physics mode and without the EMR system. Dose distributions for each field in a water phantom were calculated independently using a recently developed in-house pencil beam algorithm and compared with those obtained using the treatment planning system (TPS). The treatment log file for each field was analyzed in terms of deviations in delivered spot positions from their planned positions using various statistical methods. Using this improved PSQA program, we were able to verify the integrity of the data transfer from the TPS to the EMR to the ACS, the dose calculation of the TPS, and the treatment delivery, including the dose delivered and spot positions. On the basis of this experience, we estimate that the in-room measurement time required for each complex IMPT case (e.g., a patient receiving bilateral IMPT for head and neck cancer) is less than 1 h using the improved PSQA program. Our experience demonstrates that it is possible to develop an efficient and effective PSQA program for IMPT with the equipment and resources available in the clinic. PMID:25867000

  7. Laser-induced generation of ultraintense proton beams for high energy-density science

    SciTech Connect

    Badziak, J.; Jablonski, S.; Parys, P.; Rosinski, M.; Suchanska, R.; Wolowski, J.; Antici, P.; Fuchs, J.; Mancic, A.; Szydlowski, A.

    2008-06-24

    Basic properties of high-current high-intensity ion beam generation using laser-induced skin-layer ponderomotive acceleration (SLPA) are discussed. The results of a recent experiment, in which 0.35-ps laser pulse of intensity up to 2x10{sup 19} W/cm{sup 2} irradiated a thin (1-3 {mu}m) PS (plastic) or Au/PS target (PS covered by 0.1-0.2 {mu}m Au front layer), are presented. It is shown that multi-MA proton beams of current densities >1 TA/cm{sup 2} and intensities > 10{sup 18} W/cm{sup 2} at the source can be produced when the laser-target interaction conditions approach the SLPA requirements. The proton beam parameters as well as the laser-protons energy conversion efficiency substantially depend on the target structure and can be significantly increased with the use of a double-layer Au/PS target. A prospect for the application of SLPA-driven proton beams in ICF fast ignition research is outlined.

  8. Increased Efficiency of Short-Pulse Laser Generated Proton Beams from Novel Flat-Top Cone Targets

    NASA Astrophysics Data System (ADS)

    Flippo, Kirk

    2007-11-01

    Ion-driven Fast Ignition (IFI) may have significant advantages over electron-driven FI (EFI) due to a large reduction in the ignitor beam and laser driver energy requirements. Recent experiments at the LANL Trident facility, using novel flat-top cones made by Nanolabz in Reno Nevada, have yielded a 4 fold increase in laser-ion conversion efficiency, a 13 fold increase in the number of ions above 10 MeV, and a two fold increase in the maximum proton energy as compared to Au flat-foil targets. If efficiencies scale with intensity, in accordance with flat-foils, then IFI would have an even bigger advantage over EFI. At a modest intensity of 10^19 W/cm^2 with 20 Joules in 600 fs protons with at least 30 MeV were observed from the cone targets. Particle in Cell (PIC) simulations show that the maximum cutoff energy could have been as high as 40 MeV. The simulations indicate that the observed energy and efficiency increase can be attributed to the cone's ability guide and focus the laser, allowing more laser-light to be absorbed into the electrons. The cone's geometry then funnels the electrons to the flat-top. The small size also limits the number of electrons, allowing more to be heated to high temperatures, creating a hotter, denser sheath. The PIC simulations elucidate the critical parameters in obtaining superior proton acceleration such as the dependence on laser contrast/preplasma-fill and longitudinal and transverse laser pointing. In addition, these cones have the potential to revolutionize ICF target design and fabrication via mass production.

  9. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

  10. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although a batch oil shale sample will be sealed in the batch kiln from the start until the end of the run, the process conditions for the batch will be the same as the conditions that an element of oil shale would encounter in a large continuous process kiln. For example, similar conditions of heat-up rate (20 deg F/min during the pyrolysis), oxidation of the residue and cool-down will prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The agenda for the first three months of the project consisted of the first of nine tasks and was specified as the following four items: 1. Sample acquisition and equipment alteration: Obtain seven oil shale samples, of varying grade each 10 lb or more, and samples of quartz sand. Order equipment for kiln modification. 3. Set up and modify kiln for operation, including electric heaters on the ends of the kiln. 4. Connect data logger and make other repairs and changes in rotary batch kiln.

  11. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1993-04-22

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft[sup 2]/[degrees]F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000[degrees]F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

  12. Improved efficiency in Monte Carlo simulation for passive-scattering proton therapy.

    PubMed

    Méndez, J Ramos; Perl, J; Schümann, J; Shin, J; Paganetti, H; Faddegon, B

    2015-07-01

    The aim of this work was to improve the computational efficiency of Monte Carlo simulations when tracking protons through a proton therapy treatment head. Two proton therapy facilities were considered, the Francis H Burr Proton Therapy Center (FHBPTC) at the Massachusetts General Hospital and the Crocker Lab eye treatment facility used by University of California at San Francisco (UCSFETF). The computational efficiency was evaluated for phase space files scored at the exit of the treatment head to determine optimal parameters to improve efficiency while maintaining accuracy in the dose calculation. For FHBPTC, particles were split by a factor of 8 upstream of the second scatterer and upstream of the aperture. The radius of the region for Russian roulette was set to 2.5 or 1.5 times the radius of the aperture and a secondary particle production cut (PC) of 50 mm was applied. For UCSFETF, particles were split a factor of 16 upstream of a water absorber column and upstream of the aperture. Here, the radius of the region for Russian roulette was set to 4 times the radius of the aperture and a PC of 0.05 mm was applied. In both setups, the cylindrical symmetry of the proton beam was exploited to position the split particles randomly spaced around the beam axis. When simulating a phase space for subsequent water phantom simulations, efficiency gains between a factor of 19.9  ±  0.1 and 52.21  ±  0.04 for the FHTPC setups and 57.3  ±  0.5 for the UCSFETF setups were obtained. For a phase space used as input for simulations in a patient geometry, the gain was a factor of 78.6  ±  7.5. Lateral-dose curves in water were within the accepted clinical tolerance of 2%, with statistical uncertainties of 0.5% for the two facilities. For the patient geometry and by considering the 2% and 2mm criteria, 98.4% of the voxels showed a gamma index lower than unity. An analysis of the dose distribution resulted in systematic deviations below of 0.88% for 20% of the

  13. Improved efficiency in Monte Carlo simulation for passive-scattering proton therapy

    PubMed Central

    Méndez, J. Ramos; Perl, J.; Schuemann, J.; Shin, J.; Paganetti, H.; Faddegon, B.

    2015-01-01

    The aim of this work was to improve the computational efficiency of Monte Carlo simulations when tracking protons through a proton therapy treatment head. Two proton therapy facilities were considered, the Francis H Burr Proton Therapy Center (FHBPTC) at the Massachusetts General Hospital and the Crocker Lab eye treatment facility used by University of California at San Francisco (UCSFETF). The computational efficiency was evaluated for phase space files scored at the exit of the treatment head to determine optimal parameters to improve efficiency while maintaining accuracy in the dose calculation. For FHBPTC, particles were split by a factor of 8 upstream of the second scatterer and upstream of the aperture. The radius of the region for Russian roulette was set to 2.5 or 1.5 times the radius of the aperture and a secondary particle production cut (PC) of 50 mm was applied. For UCSFETF, particles were split a factor of 16 upstream of a water absorber column and upstream of the aperture. Here, the radius of the region for Russian roulette was set to 4 times the radius of the aperture and a PC of 0.05 mm was applied. In both setups, the cylindrical symmetry of the proton beam was exploited to position the split particles randomly spaced around the beam axis. When simulating a phase space for subsequent water phantom simulations, efficiency gains between a factor of 19.9±0.1 and 52.21±0.04 for the FHTPC setups and 57.3±0.5 for the UCSFETF setups were obtained. For a phase space (PHSP) used as input for simulations in a patient geometry, the gain was a factor of 78.6±7.5. Lateral-dose curves in water were within the accepted clinical tolerance of 2%, with statistical uncertainties of 0.5% for the two facilities. For the patient geometry and by considering the 2% and 2mm criteria, 98.4% of the voxels showed a gamma index lower than unity. An analysis of the dose distribution resulted in systematic deviations below of 0.88% for 20% of the voxels with dose of 20% of

  14. Improved efficiency in Monte Carlo simulation for passive-scattering proton therapy

    NASA Astrophysics Data System (ADS)

    Ramos Méndez, J.; Perl, J.; Schümann, J.; Shin, J.; Paganetti, H.; Faddegon, B.

    2015-07-01

    The aim of this work was to improve the computational efficiency of Monte Carlo simulations when tracking protons through a proton therapy treatment head. Two proton therapy facilities were considered, the Francis H Burr Proton Therapy Center (FHBPTC) at the Massachusetts General Hospital and the Crocker Lab eye treatment facility used by University of California at San Francisco (UCSFETF). The computational efficiency was evaluated for phase space files scored at the exit of the treatment head to determine optimal parameters to improve efficiency while maintaining accuracy in the dose calculation. For FHBPTC, particles were split by a factor of 8 upstream of the second scatterer and upstream of the aperture. The radius of the region for Russian roulette was set to 2.5 or 1.5 times the radius of the aperture and a secondary particle production cut (PC) of 50 mm was applied. For UCSFETF, particles were split a factor of 16 upstream of a water absorber column and upstream of the aperture. Here, the radius of the region for Russian roulette was set to 4 times the radius of the aperture and a PC of 0.05 mm was applied. In both setups, the cylindrical symmetry of the proton beam was exploited to position the split particles randomly spaced around the beam axis. When simulating a phase space for subsequent water phantom simulations, efficiency gains between a factor of 19.9  ±  0.1 and 52.21  ±  0.04 for the FHTPC setups and 57.3  ±  0.5 for the UCSFETF setups were obtained. For a phase space used as input for simulations in a patient geometry, the gain was a factor of 78.6  ±  7.5. Lateral-dose curves in water were within the accepted clinical tolerance of 2%, with statistical uncertainties of 0.5% for the two facilities. For the patient geometry and by considering the 2% and 2mm criteria, 98.4% of the voxels showed a gamma index lower than unity. An analysis of the dose distribution resulted in systematic deviations below of 0.88% for 20% of the

  15. High temperature polymers for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Einsla, Brian Russel

    Novel proton exchange membranes (PEMs) were investigated that show potential for operating at higher temperatures in both direct methanol (DMFC) and H 2/air PEM fuel cells. The need for thermally stable polymers immediately suggests the possibility of heterocyclic polymers bearing appropriate ion conducting sites. Accordingly, monomers and random disulfonated poly(arylene ether) copolymers containing either naphthalimide, benzoxazole or benzimidazole moieties were synthesized via direct copolymerization. The ion exchange capacity (IEC) was varied by simply changing the ratio of disulfonated monomer to nonsulfonated monomer in the copolymerization step. Water uptake and proton conductivity of cast membranes increased with IEC. The water uptake of these heterocyclic copolymers was lower than that of comparable disulfonated poly(arylene ether) systems, which is a desirable improvement for PEMs. Membrane electrode assemblies were prepared and the initial fuel cell performance of the disulfonated polyimide and polybenzoxazole (PBO) copolymers was very promising at 80°C compared to the state-of-the-art PEM (NafionRTM); nevertheless these membranes became brittle under operating conditions. Several series of poly(arylene ether)s based on disodium-3,3'-disulfonate-4,4 '-dichlorodiphenylsulfone (S-DCDPS) and a benzimidazole-containing bisphenol were synthesized and afforded copolymers with enhanced stability. Selected properties of these membranes were compared to separately prepared miscible blends of disulfonated poly(arylene ether sulfone) copolymers and polybenzimidazole (PBI). Complexation of the sulfonic acid groups with the PBI structure reduced water swelling and proton conductivity. The enhanced proton conductivity of NafionRTM membranes has been proposed to be due to the aggregation of the highly acidic side-chain sulfonic acid sites to form ion channels. A series of side-chain sulfonated poly(arylene ether sulfone) copolymers based on methoxyhydroquinone was

  16. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Sancho, J. Blanco; Shutov, A.; Schmidt, R.; Piriz, A. R.

    2012-05-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%-20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect). It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS), to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle energy in the SPS beam is 440

  17. High Efficiency Cascade Solar Cells

    SciTech Connect

    Shuguang Deng, Seamus Curran, Igor Vasiliev

    2010-09-28

    This report summarizes the main work performed by New Mexico State University and University of Houston on a DOE sponsored project High Efficiency Cascade Solar Cells. The main tasks of this project include materials synthesis, characterization, theoretical calculations, organic solar cell device fabrication and test. The objective of this project is to develop organic nano-electronic-based photovoltaics. Carbon nanotubes and organic conjugated polymers were used to synthesize nanocomposites as the new active semiconductor materials that were used for fabricating two device architectures: thin film coating and cascade solar cell fiber. Chemical vapor deposition technique was employed to synthesized a variety of carbon nanotubes (single-walled CNT, doubled-walled CNT, multi-walled CNT, N-doped SWCNT, DWCNT and MWCNT, and B-doped SWCNT, DWCNT and MWCNT) and a few novel carbon structures (CNT-based nanolance, nanocross and supported graphene film) that have potential applications in organic solar cells. Purification procedures were developed for removing amorphous carbons from carbon nanotubes, and a controlled oxidation method was established for partial truncation of fullerene molecules. Carbon nanotubes (DWCNT and DWCNT) were functionalized with fullerenes and dyes covalently and used to form nanocomposites with conjugated polymers. Biologically synthesized Tellurium nanotubes were used to form composite with the conjugated polymers as well, which generated the highest reported optical limiting values from composites. Several materials characterization technique including SEM/TEM, Raman, AFM, UV-vis, adsorption and EDS were employed to characterize the physical and chemical properties of the carbon nanotubes, the functionalized carbon nanotubes and the nanocomposites synthesized in this project. These techniques allowed us to have a spectroscopic and morphological control of the composite formation and to understand the materials assembled. A parallel 136-CPU

  18. High latitude proton precipitation and light-ion density profiles during the magnetic storm initial phase

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1973-01-01

    Measurements of precipitating protons and light ion densities by experiments on OGO-4 indicate that widespread proton precipitation occurs in predawn hours during the magnetic storm initial phase from the latitude of the high-latitude ion trough, or plasmapause , up to Lambda 75 deg. A softening of the proton spectrum is apparent as the plasmapause is approached. The separation of the low-latitude precipitation boundaries for 7.3 kev and 23.8 kev protons is approximately 1 deg, compared with a 3.6 deg separation which has been computed using the formulas of Gendrin and Eather and Carovillano. Consideration of probable proton drift morphology leads to the conclusion that protons ase injected in predawn hours, with widespread precipitation occurring in the region outside the plasmapause. Protons less energetic than approximately 7 kev drift eastward, while the more energetic protons drift westward, producing the observed dawn-dusk asymmetry for the lower-energy protons.

  19. Beam-halo measurements in high-current proton beams

    SciTech Connect

    Allen, C.K.; Chan, K.C.D.; Colestock, P.L.; Crandall, K.R.; Garnett, R.W.; Gilpatrick, J.D.; Lysenko, W.; Qiang, J.; Schneider, J.D.; Schulze, M.E.; Sheffield, R.L.; Smith, H.V.; Wangler, T.P.

    2002-01-11

    We present results from an experimental study of the beam halo in a high-current 6.7-MeV proton beam propagating through a 52-quadrupole periodic-focusing channel. The gradients of the first four quadrupoles were independently adjusted to match or mismatch the injected beam. Emittances and beamwidths were obtained from measured profiles for comparisons with maximum emittance-growth predictions of a free-energy model and maximum halo-amplitude predictions of a particle-core model. The experimental results support both models and the present theoretical picture of halo formation.

  20. Efficiency and reliability assessments of retrofitted high-efficiency motors

    SciTech Connect

    Hsu, John S.; Otaduy, P.J.; Dueck, J.D.

    1994-12-31

    The majority of electric-motor applications are pumps, fans, blowers, and certain compressors that follow the load torque pattern described in this paper. It has been known for many years that simply replacing the old motor with a high-efficiency motor might not produce the expected efficiency gain. This paper suggests the calculations for the effective efficiency and temperature rise of the high-efficiency motor. The reliability in terms of temperature rise, downsizing, power factor, harmonics, mechanical structure, etc., are discussed.

  1. High efficiency, long life terrestrial solar panel

    NASA Technical Reports Server (NTRS)

    Chao, T.; Khemthong, S.; Ling, R.; Olah, S.

    1977-01-01

    The design of a high efficiency, long life terrestrial module was completed. It utilized 256 rectangular, high efficiency solar cells to achieve high packing density and electrical output. Tooling for the fabrication of solar cells was in house and evaluation of the cell performance was begun. Based on the power output analysis, the goal of a 13% efficiency module was achievable.

  2. A brief history of high power RF proton linear accelerators

    SciTech Connect

    Browne, J.C.

    1996-12-31

    The first mention of linear acceleration was in a paper by G. Ising in 1924 in which he postulated the acceleration of positive ions induced by spark discharges which produced electric fields in gaps between a series of {open_quotes}drift tubes{close_quotes}. Ising apparently was not able to demonstrate his concept, most likely due to the limited state of electronic devices. Ising`s work was followed by a seminal paper by R. Wideroe in 1928 in which he demonstrated the first linear accelerator. Wideroe was able to accelerate sodium or potassium ions to 50 keV of energy using drift tubes connected alternately to high frequency waves and to ground. Nuclear physics during this period was interested in accelerating protons, deuterons, electrons and alpha particles and not heavy ions like sodium or potassium. To accelerate the light ions required much higher frequencies than available at that time. So linear accelerators were not pursued heavily at that time. Research continued during the 1930s but the development of high frequency RF tubes for radar applications in World War 2 opened the potential for RF linear accelerators after the war. The Berkeley laboratory of E. 0. Lawrence under the leadership of Luis Alvarez developed a new linear proton accelerator concept that utilized drift tubes that required a full RF period to pass through as compared to the earlier concepts. This development resulted in the historic Berkeley 32 MeV proton linear accelerator which incorporated the {open_quotes}Alvarez drift tube{close_quotes} as the basic acceleration scheme using surplus 200 MHz radar components.

  3. High efficiency, radiation-hard solar cells

    SciTech Connect

    Ager III, J.W.; Walukiewicz, W.

    2004-10-22

    The direct gap of the In{sub 1-x}Ga{sub x}N alloy system extends continuously from InN (0.7 eV, in the near IR) to GaN (3.4 eV, in the mid-ultraviolet). This opens the intriguing possibility of using this single ternary alloy system in single or multi-junction (MJ) solar cells of the type used for space-based surveillance satellites. To evaluate the suitability of In{sub 1-x}Ga{sub x}N as a material for space applications, high quality thin films were grown with molecular beam epitaxy and extensive damage testing with electron, proton, and alpha particle radiation was performed. Using the room temperature photoluminescence intensity as a indirect measure of minority carrier lifetime, it is shown that In{sub 1-x}Ga{sub x}N retains its optoelectronic properties at radiation damage doses at least 2 orders of magnitude higher than the damage thresholds of the materials (GaAs and GaInP) currently used in high efficiency MJ cells. This indicates that the In{sub 1-x}Ga{sub x}N is well-suited for the future development of ultra radiation-hard optoelectronics. Critical issues affecting development of solar cells using this material system were addressed. The presence of an electron-rich surface layer in InN and In{sub 1-x}Ga{sub x}N (0 < x < 0.63) was investigated; it was shown that this is a less significant effect at large x. Evidence of p-type activity below the surface in Mg-doped InN was obtained; this is a significant step toward achieving photovoltaic action and, ultimately, a solar cell using this material.

  4. Post-acceleration of laser driven protons with a compact high field linac

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Turchetti, Giorgio; Bolton, Paul R.

    2013-05-01

    We present a start-to-end 3D numerical simulation of a hybrid scheme for the acceleration of protons. The scheme is based on a first stage laser acceleration, followed by a transport line with a solenoid or a multiplet of quadrupoles, and then a post-acceleration section in a compact linac. Our simulations show that from a laser accelerated proton bunch with energy selection at ~ 30MeV, it is possible to obtain a high quality monochromatic beam of 60MeV with intensity at the threshold of interest for medical use. In the present day experiments using solid targets, the TNSA mechanism describes accelerated bunches with an exponential energy spectrum up to a cut-off value typically below ~ 60MeV and wide angular distribution. At the cut-off energy, the number of protons to be collimated and post-accelerated in a hybrid scheme are still too low. We investigate laser-plasma acceleration to improve the quality and number of the injected protons at ~ 30MeV in order to assure efficient post-acceleration in the hybrid scheme. The results are obtained with 3D PIC simulations using a code where optical acceleration with over-dense targets, transport and post-acceleration in a linac can all be investigated in an integrated framework. The high intensity experiments at Nara are taken as a reference benchmarks for our virtual laboratory. If experimentally confirmed, a hybrid scheme could be the core of a medium sized infrastructure for medical research, capable of producing protons for therapy and x-rays for diagnosis, which complements the development of all optical systems.

  5. High efficiency turbine blade coatings.

    SciTech Connect

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered

  6. High-efficiency wind turbine

    NASA Technical Reports Server (NTRS)

    Hein, L. A.; Myers, W. N.

    1980-01-01

    Vertical axis wind turbine incorporates several unique features to extract more energy from wind increasing efficiency 20% over conventional propeller driven units. System also features devices that utilize solar energy or chimney effluents during periods of no wind.

  7. Construction of low current 30 keV proton accelerator for detection efficiency studies

    NASA Astrophysics Data System (ADS)

    Salas Bacci, Americo; Baessler, Stefan; Ross, Aaron; Roane, Nicholas; Whitaker, C. J.

    2013-10-01

    We have constructed a small ion source and proton accelerator at UVA. This accelerator is needed for the characterization of the detection efficiency of a large area, thick, 127-hexagonal segmented Silicon detector for the neutron beta decay ``Nab'' experiment that will be carried out at SNS, Oak Ridge National Laboratory in search of physics beyond the standard model. We will present the design, simulations, operation, and detection of 30 keV H+ and H2+, as well as our efforts to stabilize and correlate both ion currents.

  8. Hole-boring radiation pressure proton acceleration at high intensity in near-critical density targets

    NASA Astrophysics Data System (ADS)

    Yu, Jinqing; Dover, N. P.; Jin, Xiaolin; Li, Bin; Dangor, A. E.; Najmudin, Z.

    2014-10-01

    We will present high quality proton beams accelerated from hole-boring radiation pressure proton acceleration (HB-RPA) using three-dimension Particle-in-Cell simulation results. Scaling works on proton cut off energy with laser parameters such as laser intensity and laser pulse duration have been studied in detail by two-dimension Particle-in-Cell simulations. Optimal conditions for generating proton beam of narrow energy spread will be discussed.

  9. High Energy Efficiency Air Conditioning

    SciTech Connect

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  10. Electron and proton acceleration efficiency by merger shocks in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Vazza, F.; Eckert, D.; Brüggen, M.; Huber, B.

    2015-08-01

    Radio relics in galaxy clusters are associated with powerful shocks that (re)accelerate relativistic electrons. It is widely believed that the acceleration proceeds via diffusive shock acceleration. In the framework of thermal leakage, the ratio of the energy in relativistic electrons to the energy in relativistic protons should be smaller than Ke/p ˜ 10-2. The relativistic protons interact with the thermal gas to produce γ-rays in hadronic interactions. Combining observations of radio relics with upper limits from γ-ray observatories can constrain the ratio Ke/p. In this work, we selected 10 galaxy clusters that contain double radio relics, and derive new upper limits from the stacking of γ-ray observations by Fermi. We modelled the propagation of shocks using a semi-analytical model, where we assumed a simple geometry for shocks and that cosmic ray protons are trapped in the intracluster medium. Our analysis shows that diffusive shock acceleration has difficulties in matching simultaneously the observed radio emission and the constraints imposed by Fermi, unless the magnetic field in relics is unrealistically large ( ≫ 10 μG). In all investigated cases (also including realistic variations of our basic model and the effect of re-acceleration), the mean emission of the sample is of the order of the stacking limit by Fermi, or larger. These findings put tension on the commonly adopted model for the powering of radio relics, and imply that the relative acceleration efficiency of electrons and protons is at odds with predictions of diffusive shock acceleration, requiring Ke/p ≥ 10 - 10-2.

  11. High efficiency stationary hydrogen storage

    SciTech Connect

    Hynek, S.; Fuller, W.; Truslow, S.

    1995-09-01

    Stationary storage of hydrogen permits one to make hydrogen now and use it later. With stationary hydrogen storage, one can use excess electrical generation capacity to power an electrolyzer, and store the resultant hydrogen for later use or transshipment. One can also use stationary hydrogen as a buffer at fueling stations to accommodate non-steady fueling demand, thus permitting the hydrogen supply system (e.g., methane reformer or electrolyzer) to be sized to meet the average, rather than the peak, demand. We at ADL designed, built, and tested a stationary hydrogen storage device that thermally couples a high-temperature metal hydride to a phase change material (PCM). The PCM captures and stores the heat of the hydriding reaction as its own heat of fusion (that is, it melts), and subsequently returns that heat of fusion (by freezing) to facilitate the dehydriding reaction. A key component of this stationary hydrogen storage device is the metal hydride itself. We used nickel-coated magnesium powder (NCMP) - magnesium particles coated with a thin layer of nickel by means of chemical vapor deposition (CVD). Magnesium hydride can store a higher weight fraction of hydrogen than any other practical metal hydride, and it is less expensive than any other metal hydride. We designed and constructed an experimental NCM/PCM reactor out of 310 stainless steel in the form of a shell-and-tube heat exchanger, with the tube side packed with NCMP and the shell side filled with a eutectic mixture of NaCL, KCl, and MgCl{sub 2}. Our experimental results indicate that with proper attention to limiting thermal losses, our overall efficiency will exceed 90% (DOE goal: >75%) and our overall system cost will be only 33% (DOE goal: <50%) of the value of the delivered hydrogen. It appears that NCMP can be used to purify hydrogen streams and store hydrogen at the same time. These prospects make the NCMP/PCM reactor an attractive component in a reformer-based hydrogen fueling station.

  12. Proton conductivity of perfluorosulfonate ionomers at high temperature and high relative humidity

    SciTech Connect

    Matos, Bruno R.; Goulart, Cleverson A.; Santiago, Elisabete I.; Muccillo, R.; Fonseca, Fabio C.

    2014-03-03

    The proton transport properties of Nafion membranes were studied in a wide range of temperature by using an air-tight sample holder able to maintain the sample hydrated at high relative humidity. The proton conductivity of hydrated Nafion membranes continuously increased in the temperature range of 40–180 °C with relative humidity kept at RH = 100%. In the temperature range of 40–90 °C, the proton conductivity followed the Arrhenius-like thermal dependence. The calculated apparent activation energy E{sub a} values are in good agreement with proton transport via the structural diffusion in absorbed water. However, at higher measuring temperatures an upturn of the electrical conductivity was observed to be dependent on the thermal history of the sample.

  13. High-energy proton radiation damage of high-purity germanium detectors

    NASA Technical Reports Server (NTRS)

    Pehl, R. H.; Varnell, L. S.; Metzger, A. E.

    1978-01-01

    Quantitative studies of radiation damage in high-purity germanium gamma-ray detectors due to high-energy charged particles have been carried out; two 1.0 cm thick planar detectors were irradiated by 6 GeV/c protons. Under proton bombardment, degradation in the energy resolution was found to begin below 7 x 10 to the 7th protons/sq cm and increased proportionately in both detectors until the experiment was terminated at a total flux of 5.7 x 10 to the 8th protons/sq cm, equivalent to about a six year exposure to cosmic-ray protons in space. At the end of the irradiation, the FWHM resolution measured at 1332 keV stood at 8.5 and 13.6 keV, with both detectors of only marginal utility as a spectrometer due to the severe tailing caused by charge trapping. Annealing these detectors after proton damage was found to be much easier than after neutron damage.

  14. Hydrogen diffusion in high temperature proton conducting ceramics

    NASA Astrophysics Data System (ADS)

    Sorieul, S.; Miro, S.; Taillades-Jacquin, M.; Dailly, J.; Mauvy, F.; Berger, M.-H.; Berger, P.

    2008-04-01

    BaCeO3 or SrCeO3-based perovskites doped with a rare earth are high temperature protonic conductors (HTPC) envisioned as electrolytes for fuel cells working at intermediate temperature (400-600 °C). In these ceramics, the proton conductance is hampered by microstructural defects that act as barriers for hydrogen diffusion. Respective contributions of bulk and grain boundaries to overall conductivity is usually evidenced via impedance measurements but further information on hydrogen transport relevant for improvement of microstructure design can be obtained with nuclear microanalysis, based on the use of MeV light ions microbeam. We report here a contribution of ion beam microanalysis to the study of hydrogen transport in BaCe0.9Y0.1O3. ERDA hydrogen profiling performed on partially hydrated samples at 200 and 500 °C reveals concentration gradients from which diffusion coefficients have been derived with the help of a simple Fickian diffusion model.

  15. High Efficiency, High Performance Clothes Dryer

    SciTech Connect

    Peter Pescatore; Phil Carbone

    2005-03-31

    This program covered the development of two separate products; an electric heat pump clothes dryer and a modulating gas dryer. These development efforts were independent of one another and are presented in this report in two separate volumes. Volume 1 details the Heat Pump Dryer Development while Volume 2 details the Modulating Gas Dryer Development. In both product development efforts, the intent was to develop high efficiency, high performance designs that would be attractive to US consumers. Working with Whirlpool Corporation as our commercial partner, TIAX applied this approach of satisfying consumer needs throughout the Product Development Process for both dryer designs. Heat pump clothes dryers have been in existence for years, especially in Europe, but have not been able to penetrate the market. This has been especially true in the US market where no volume production heat pump dryers are available. The issue has typically been around two key areas: cost and performance. Cost is a given in that a heat pump clothes dryer has numerous additional components associated with it. While heat pump dryers have been able to achieve significant energy savings compared to standard electric resistance dryers (over 50% in some cases), designs to date have been hampered by excessively long dry times, a major market driver in the US. The development work done on the heat pump dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) 40-50% energy savings on large loads with 35 F lower fabric temperatures and similar dry times; (2) 10-30 F reduction in fabric temperature for delicate loads with up to 50% energy savings and 30-40% time savings; (3) Improved fabric temperature uniformity; and (4) Robust performance across a range of vent restrictions. For the gas dryer development, the concept developed was one of modulating the gas flow to the dryer throughout the dry cycle. Through heat modulation in a

  16. High-Affinity Proton Donors Promote Proton-Coupled Electron Transfer by Samarium Diiodide.

    PubMed

    Chciuk, Tesia V; Anderson, William R; Flowers, Robert A

    2016-05-10

    The relationship between proton-donor affinity for Sm(II) ions and the reduction of two substrates (anthracene and benzyl chloride) was examined. A combination of spectroscopic, thermochemical, and kinetic studies show that only those proton donors that coordinate or chelate strongly to Sm(II) promote anthracene reduction through a PCET process. These studies demonstrate that the combination of Sm(II) ions and water does not provide a unique reagent system for formal hydrogen atom transfer to substrates. PMID:27061351

  17. High efficiency ground data transmission

    NASA Technical Reports Server (NTRS)

    Dickinson, W. B.

    1973-01-01

    It is demonstrated that state-of-the-art communications technology can be implemented and reliably operated on a global basis to increase the transmission rates and efficiencies on circuits with bandwidths greater than the typical speech channel. Optimization is affected by optimum clock recovery procedures, multilevel pulse amplitude modulation, single sideband amplitude modulation, transversal filter equalizers, data scrambling, and active compensation for phase instability.

  18. Cryo-SEM of hydrated high temperature proton exchange membranes

    SciTech Connect

    Perry, Kelly A; More, Karren Leslie; Walker, Larry R; Benicewicz, Brian

    2009-01-01

    Alternative energy technologies, such as high temperature fuel cells and hydrogen pumps, rely on proton exchange membranes (PEM). A chemically and thermally stable PEM with rapid proton transport is sol-gel phosphoric acid (PA)-doped polybenzimidazole (PBI) membranes. It is believed that the key to the high ionic conductivity of PA-doped PBI membranes is related to the gel morphology. However, the gel structure and general morphology of this PA-doped PBI membrane has not been widely investigated. In an effort to understand the gel morphology, two SEM sample preparation methodologies have been developed for PA-doped PBI membranes. Due to the high vacuum environment of conventional SEM, the beam-sensitivity of these membranes was reduced with a mild 120 C heat treatment to remove excess water without structural rearrangement (as verified from wide angle X-ray scattering). Cryo-SEM has also been implemented for both initial and heated membranes. Cryo-SEM is known to prevent dehydration of the specimen and reduce beam-sensitivity. The SEM cross-section image (Fig. 1A) of the heated samples exhibit 3{micro}m spheroidal features that are elongated in the direction of the casting blade. These features are distorted to 2{micro}m under conventional SEM conditions (Fig. 1B). The fine-scale gel morphology image (Fig. 2) is composed of 65nm diameter domains and 30nm walls, which resembles a cellular structure. In the future, the PA-doped PBI membranes will be cryo-microtomed and cryotransferred for elemental analysis in a TEM.

  19. Proton-driven electromagnetic instabilities in high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Abraham-Shrauner, B.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.

    1979-01-01

    Electromagnetic instabilities of the field-aligned, right-hand circularly polarized magnetosonic wave and the left-hand circularly polarized Alfven wave driven by two drifted proton components are analyzed for model parameters determined from Imp 7 solar wind proton data measured during high-speed flow conditions. Growth rates calculated using bi-Lorentzian forms for the main and beam proton as well as core and halo electron velocity distributions do not differ significantly from those calculated using bi-Maxwellian forms. Using distribution parameters determined from 17 measured proton spectra, we show that considering the uncertainties the magnetosonic wave may be linearly stable and the Alfven wave is linearly unstable. Because proton velocity distribution function shapes are observed to persist for times long compared to the proton gyroperiod, the latter result suggests that linear stability theory fails for proton-driven ion cyclotron waves in the high-speed solar wind.

  20. High efficiency thermionic converter studies

    NASA Technical Reports Server (NTRS)

    Huffman, F. N.; Sommer, A. H.; Balestra, C. L.; Briere, T. R.; Lieb, D.; Oettinger, P. E.; Goodale, D. B.

    1977-01-01

    Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion.

  1. Advanced treatment planning methods for efficient radiation therapy with laser accelerated proton and ion beams

    SciTech Connect

    Schell, Stefan; Wilkens, Jan J.

    2010-10-15

    Purpose: Laser plasma acceleration can potentially replace large and expensive cyclotrons or synchrotrons for radiotherapy with protons and ions. On the way toward a clinical implementation, various challenges such as the maximum obtainable energy still remain to be solved. In any case, laser accelerated particles exhibit differences compared to particles from conventional accelerators. They typically have a wide energy spread and the beam is extremely pulsed (i.e., quantized) due to the pulsed nature of the employed lasers. The energy spread leads to depth dose curves that do not show a pristine Bragg peak but a wide high dose area, making precise radiotherapy impossible without an additional energy selection system. Problems with the beam quantization include the limited repetition rate and the number of accelerated particles per laser shot. This number might be too low, which requires a high repetition rate, or it might be too high, which requires an additional fluence selection system to reduce the number of particles. Trying to use laser accelerated particles in a conventional way such as spot scanning leads to long treatment times and a high amount of secondary radiation produced when blocking unwanted particles. Methods: The authors present methods of beam delivery and treatment planning that are specifically adapted to laser accelerated particles. In general, it is not necessary to fully utilize the energy selection system to create monoenergetic beams for the whole treatment plan. Instead, within wide parts of the target volume, beams with broader energy spectra can be used to simultaneously cover multiple axially adjacent spots of a conventional dose delivery grid as applied in intensity modulated particle therapy. If one laser shot produces too many particles, they can be distributed over a wider area with the help of a scattering foil and a multileaf collimator to cover multiple lateral spot positions at the same time. These methods are called axial and

  2. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    Recent progress in the development of highly efficient coherent optical sources was reviewed. This work has focused on nonlinear frequency conversion of the highly coherent output of the non-planar ring laser oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  3. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    Recent progress in the development of highly efficient coherent optical sources is reviewed. This work focusses on nonlinear frequency conversion of the highly coherent output of the Non-Planar Ring Laser Oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  4. Advanced High Efficiency Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Flanders, Laffite; Cummer, Keith R.; Feinsinger, Joseph; Heshmatpour, Ben

    2006-01-01

    The research effort at Teledyne Energy Systems, Inc., which has been aimed at improving the performance of the currently used thermoelectric (TE) materials has identified a number of improved formulations for the standard n-type PbTe and p-type TAGS. The preliminary test results appear to indicate nearly 50% higher thermal to electric energy conversion efficiency for these new PbTe and TAGS formulations. Effort is continuing to confirm the preliminary test results and validate the materials fabrication processes. Multiple batches of the newly developed TE materials will be prepared and characterized for thermoelectric properties. The selected TE materials will be subjected to degradation analysis and life modeling to determine any deterioration in the TE properties as a function of time and operating temperatures. This effort also includes measurement of sublimation rates as a function of temperature for the selected materials. The results for the initial sublimation tests are quite encouraging and show appreciable reduction in sublimation rate for TAGS 80 and the modified TAGS alloys. Future effort will include determination of effect of sublimation on TE characteristics for the selected TE materials. Microanalysis technique such as optical and electron microscopy, XRD and EDSX will be used to determine the microstructural characteristics of the TE materials at various stages of their simulated operating life. Based on the results of these studies the n-type and p-type materials with the highest power conversion efficiency and the lowest degradation rate will be selected for use in fabrication of future thermoelectric devices.

  5. Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins

    NASA Astrophysics Data System (ADS)

    Chevelkov, Veniamin; Habenstein, Birgit; Loquet, Antoine; Giller, Karin; Becker, Stefan; Lange, Adam

    2014-05-01

    Proton-detected solid-state NMR was applied to a highly deuterated insoluble, non-crystalline biological assembly, the Salmonella typhimurium type iii secretion system (T3SS) needle. Spectra of very high resolution and sensitivity were obtained at a low protonation level of 10-20% at exchangeable amide positions. We developed efficient experimental protocols for resonance assignment tailored for this system and the employed experimental conditions. Using exclusively dipolar-based interspin magnetization transfers, we recorded two sets of 3D spectra allowing for an almost complete backbone resonance assignment of the needle subunit PrgI. The additional information provided by the well-resolved proton dimension revealed the presence of two sets of resonances in the N-terminal helix of PrgI, while in previous studies employing 13C detection only a single set of resonances was observed.

  6. Laser-Produced and Accelerated High Energy Protons

    NASA Astrophysics Data System (ADS)

    Cowan, Thomas

    2005-04-01

    Ultra-low emittance, multi-MeV proton beams have recently been produced by the interaction of high-intensity short-pulse lasers with thin metallic foils [1]. The acceleration process proceeds in two steps. First the laser ponderomotively accelerates huge, MA currents of ˜MeV electrons which propagate through the foil and form a dense relativistic electron sheath on the non-irradiated rear surface. This sheath produces an electrostatic field >10^12 V/m that ionizes the surface atoms almost instantaneously, forming a ˜1 nm thick ion layer which, together with the electron sheath, resembles a virtual cathode. The ions are accelerated initially normal to the foil surface, followed by a diverging plasma expansion phase driven by the electron plasma pressure. By structuring the rear surface of the foil, we have succeeded to produce modulations in the transverse phase space of the ions, which resemble fiducial ``beamlets'' within the envelope of the expanding plasma. This allows one to image the initial accelerating sheath, and map the plasma expansion of the beam envelope, to fully reconstruct the transverse phase space. We find that for protons of 10 MeV, the normalized transverse rms emittance is less than 0.004 π mm.mrad [1], i.e. 100-fold better than typical RF accelerators and at substantially higher ion currents exceeding 10 kA. Recent results will be reported on stripping the electrons while maintaining the low emittance from experiments at the LULI 100 TW laser, and theoretical estimates of the lowest emittance which can be expected based on ion heating mechanisms during the initial sheath formation and ion acceleration processes, will be presented. [1] T.E. Cowan, J. Fuchs, H. Ruhl et al., Phys. Rev. Lett. 92, 204801 (2004).

  7. The Mainz high-precision proton form factor measurement

    NASA Astrophysics Data System (ADS)

    Bernauer, Jan

    2011-04-01

    Form factors offer a direct approach to fundamental properties of the nucleons like the radius and charge distribution. Renewed interest was stirred up by the 5 sigma discrepancy between a recent determination of the proton radius from the Lamb shift in muonic hydrogen and preceding electron scattering results. The low-q shape of the form factors might also contain a direct signal of a pion cloud around the nucleus and is a strong test of hadron models. In my talk, I will discuss the electron scattering experiment performed with the 3-spectrometer-facility of the A1 collaboration at MAMI in Mainz, Germany. The data set covers the Q2-range from 0.004 to 1 (GeV / c) 2 and includes about 1400 separate cross section measurements, spanning the range of scattering angles from below 20° to above 120° at six beam energies between 180 and 855 MeV, with statistical uncertainties below 0.4%. The 3-spectrometer-setup allowed for a simultaneous monitoring of the luminosity and overlapping and redundant measurements of the cross section to achieve stringent control over systematic uncertainties. Beam stabilization systems and redundant current measurements further limit systematic effects. The measured cross sections were analyzed with the standard Rosenbluth separation technique and by employing direct fits of a large set of form factor models. The high redundancy of the data set allowed us to extract the form factors up to 0.6 (GeV / c) 2 with very small uncertainties and to give a new, precise value for the proton radius from electron scattering. From the form factors, the charge distribution and Zemach moments were calculated. The latter constitute important input for the theoretical corrections of the muonic Lamb shift experiment. However, the revised values can not explain the discrepancy. Further possible explanations include higher order QED-corrections, vacuum effects or even physics beyond the standard model.

  8. Protonation process of conjugated polyelectrolytes on enhanced power conversion efficiency in the inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Yi, Chao; Hu, Rong; Ren, He; Hu, Xiaowen; Wang, Shu; Gong, Xiong; Cao, Yong

    2014-01-01

    In this study, two conjugated polyelectrolytes, polythiophene derivative (PTP) and poly[(9,9-bis [6‧-N, N, N-trimethylammonium] hexyl)-fluorenylene-phenylene] dibromide (PFP), are utilized to modify the surface properties of ZnO electron extraction layer (EEL) in the inverted polymer solar cells (PSCs). Both higher short-circuit current densities and larger open-circuit voltages were observed from the inverted PSCs with ZnO/PFP or ZnO/PTP as compared with those only with ZnO EEL. The protonation process for PTP and PFP in solution is distinguished. Overall, more than 40% enhanced power conversion efficiency (PCE) from the inverted PSCs with ZnO/PFP, in which the PFP could be fully ionized in deionized water, and more than 30% enhanced PCE from the inverted PSCs with ZnO/PTP, as the case that the PTP could not be fully ionized in deionized water, as compared with the inverted PSCs with ZnO EEL were observed, respectively. These results demonstrate that the conjugated polyelectrolytes play an important role in enhancement of device performance of inverted PSCs and that the protonation process of the conjugated polyelectrolytes is critical to the modification for EEL in PSCs.

  9. Indication of change of phase in high-multiplicity proton-proton events at LHC in string percolation model

    NASA Astrophysics Data System (ADS)

    Bautista, I.; Téllez, A. Fernandez; Ghosh, Premomoy

    2015-10-01

    We analyze high-multiplicity proton-proton (p p ) collision data in the framework of the string percolation model that has been successful in describing several phenomena of multiparticle production, including the signatures of recent discovery of strongly interacting partonic matter, the quark-gluon plasma, in relativistic heavy-ion collisions. Our study in terms of the ratio of shear viscosity and entropy density (η /s ) and the [Lattice Quantum Chromodinamics (LQCD)] predicted signature of QCD change of phase, in terms of the effective number of degrees of freedom (ɛ /T4), reiterates the possibility of a strongly interacting collective medium in these events.

  10. Efficient high density train operations

    DOEpatents

    Gordon, Susanna P.; Evans, John A.

    2001-01-01

    The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference. During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.

  11. Mechanoassisted Synthesis of Sulfonated Covalent Organic Frameworks with High Intrinsic Proton Conductivity.

    PubMed

    Peng, Yongwu; Xu, Guodong; Hu, Zhigang; Cheng, Youdong; Chi, Chenglong; Yuan, Daqiang; Cheng, Hansong; Zhao, Dan

    2016-07-20

    It is challenging to introduce pendent sulfonic acid groups into modularly built crystalline porous frameworks for intrinsic proton conduction. Herein, we report the mechanoassisted synthesis of two sulfonated covalent organic frameworks (COFs) possessing one-dimensional nanoporous channels decorated with pendent sulfonic acid groups. These COFs exhibit high intrinsic proton conductivity as high as 3.96 × 10(-2) S cm(-1) with long-term stability at ambient temperature and 97% relative humidity (RH). In addition, they were blended with nonconductive polyvinylidene fluoride (PVDF) affording a series of mixed-matrix membranes (MMMs) with proton conductivity up to 1.58 × 10(-2) S cm(-1) and low activation energy of 0.21 eV suggesting the Grotthuss mechanism for proton conduction. Our study has demonstrated the high intrinsic proton conductivity of COFs shedding lights on their wide applications in proton exchange membranes. PMID:27385672

  12. Highly Efficient Multilayer Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Boufelfel, Ali

    2006-01-01

    Multilayer thermoelectric devices now at the prototype stage of development exhibit a combination of desirable characteristics, including high figures of merit and high performance/cost ratios. These devices are capable of producing temperature differences of the order of 50 K in operation at or near room temperature. A solvent-free batch process for mass production of these state-of-the-art thermoelectric devices has also been developed. Like prior thermoelectric devices, the present ones have commercial potential mainly by virtue of their utility as means of controlled cooling (and/or, in some cases, heating) of sensors, integrated circuits, and temperature-critical components of scientific instruments. The advantages of thermoelectric devices for such uses include no need for circulating working fluids through or within the devices, generation of little if any noise, and high reliability. The disadvantages of prior thermoelectric devices include high power consumption and relatively low coefficients of performance. The present development program was undertaken in the hope of reducing the magnitudes of the aforementioned disadvantages and, especially, obtaining higher figures of merit for operation at and near room temperature. Accomplishments of the program thus far include development of an algorithm to estimate the heat extracted by, and the maximum temperature drop produced by, a thermoelectric device; solution of the problem of exchange of heat between a thermoelectric cooler and a water-cooled copper block; retrofitting of a vacuum chamber for depositing materials by sputtering; design of masks; and fabrication of multilayer thermoelectric devices of two different designs, denoted I and II. For both the I and II designs, the thicknesses of layers are of the order of nanometers. In devices of design I, nonconsecutive semiconductor layers are electrically connected in series. Devices of design II contain superlattices comprising alternating electron

  13. High efficiency solar photovoltaic power module concept

    NASA Technical Reports Server (NTRS)

    Bekey, I.

    1978-01-01

    The investigation of a preliminary concept for high efficiency solar power generation in space is presented. The concept was a synergistic combination of spectral splitting, tailored bandgap cells, high concentration ratios, and cool cell areas.

  14. High-Efficiency dc/dc Converter

    NASA Technical Reports Server (NTRS)

    Sturman, J.

    1982-01-01

    High-efficiency dc/dc converter has been developed that provides commonly used voltages of plus or minus 12 Volts from an unregulated dc source of from 14 to 40 Volts. Unique features of converter are its high efficiency at low power level and ability to provide output either larger or smaller than input voltage.

  15. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)

    2015-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  16. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N (Inventor); Wintucky, Edwin G (Inventor)

    2013-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  17. Increased efficiency of short-pulse laser-generated proton beams from novel flat-top cone targetsa)

    NASA Astrophysics Data System (ADS)

    Flippo, K. A.; d'Humières, E.; Gaillard, S. A.; Rassuchine, J.; Gautier, D. C.; Schollmeier, M.; Nürnberg, F.; Kline, J. L.; Adams, J.; Albright, B.; Bakeman, M.; Harres, K.; Johnson, R. P.; Korgan, G.; Letzring, S.; Malekos, S.; Renard-LeGalloudec, N.; Sentoku, Y.; Shimada, T.; Roth, M.; Cowan, T. E.; Fernández, J. C.; Hegelich, B. M.

    2008-05-01

    Ion-driven fast ignition (IFI) may have significant advantages over electron-driven FI due to the potentially large reduction in the amount of energy required for the ignition beam and the laser driver. Recent experiments at the Los Alamos National Laboratory's Trident facility employing novel Au flat-top cone targets have produced a fourfold increase in laser-energy to ion-energy efficiency, a 13-fold increase in the number of ions above 10MeV, and a few times increase in the maximum ion energy compared to Au flat-foil targets. Compared to recently published scaling laws, these gains are even greater. If the efficiency scales with intensity in accordance to flat-foil scaling, then, with little modification, these targets can be used to generate the pulse of ions needed to ignite thermonuclear fusion in the fast ignitor scheme. A proton energy of at least 30MeV was measured from the flat-top cone targets, and particle-in-cell (PIC) simulations show that the maximum cutoff energy may be as high as 40-45MeV at modest intensity of 1×1019W/cm2 with 20J in 600fs. Simulations indicate that the observed energy and efficiency increase can be attributed to the cone target's ability to guide laser light into the neck to produce hot electrons and transport these electrons to the flat-top of the cone where they can be heated to much higher temperatures, creating a hotter, denser sheath. The PIC simulations also elucidate the critical parameters for obtaining superior proton acceleration such as the dependence on laser contrast/plasma prefill, as well as longitudinal and transverse laser pointing, and cone geometry. These novel cones have the potential to revolutionize inertial confinement fusion target design and fabrication via their ability to be mass produced. In addition, they could have an impact on the general physics community studying basic electron and radiation transport phenomena or as better sources of particle beams to study equations of state and warm dense

  18. Generation and focusing of short pulse high intensity laser accelerated protons

    NASA Astrophysics Data System (ADS)

    Foord, Mark E.

    2011-10-01

    Much progress has recently been reported in generating MeV energy protons from intense laser-matter interactions, having potential applications in areas such as radiography, oncology, and ion-proton beam fast ignition. Experiments were conducted on the sub-ps LANL Trident laser, where we systematically investigated proton focusing and conversion efficiency from curved surface targets in both open and closed cone-shaped target geometries. We clearly show that the focusing is strongly affected by the electric fields in the beam, bending the trajectories near the axis. We also find that in the cone geometry, a sheath electric field effectively ``channels'' the proton beam through the cone tip, substantially improving the beam focusing properties. The far-field energy and angular distribution of the proton beam were measured using a mesh that images the beam onto a RCF detector. For the cone-shaped targets using a 300 μm-radius curved surface foil, a 60 μm diameter proton spot was determined. Proton generation and focusing were modeled using 2-D hybrid PIC simulations, which compared well with RCF data. The proton conversion efficiency varied strongly with the target geometry. Simulations indicate this is due to that charge flow on the structure and the coupling to the hot electrons and electric fields in the plasma. Work performed under US DOE contract DE-AC52-07NA27344

  19. High Efficiency Microwave Power Amplifier (HEMPA) Design

    NASA Technical Reports Server (NTRS)

    Sims, W. Herbert

    2004-01-01

    This paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  20. Polarization Transfer in Proton Compton Scattering at High Momentum Transfer

    SciTech Connect

    Hamilton, D.J.; Annand, J.R.M.; Mamyan, V.H.; Aniol, K.A.; Margaziotis, D.J.; Bertin, P.Y.; Camsonne, A.; Laveissiere, G.; Bosted, P.; Paschke, K.; Calarco, J.R.; Chang, G.C.; Horn, T.; Savvinov, N.; Chang, T.-H.; Danagoulian, A.; Nathan, A.M.; Roedelbronn, M.; Chen, J.-P.

    2005-06-24

    Compton scattering from the proton was investigated at s=6.9 GeV{sup 2} and t=-4.0 GeV{sup 2} via polarization transfer from circularly polarized incident photons. The longitudinal and transverse components of the recoil proton polarization were measured. The results are in disagreement with a prediction of perturbative QCD based on a two-gluon exchange mechanism, but agree well with a prediction based on a reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton.

  1. Space-charge compensation in high-intensity proton rings

    SciTech Connect

    A. Burov, G.W. Foster and V.D. Shiltsev

    2000-09-21

    Recently, it was proposed to use negatively charged electron beams for compensation of beam-beam effects due to protons in the Tevatron collider. The authors show that a similar compensation is possible in space-charge dominated low energy proton beams. The idea has a potential of several-fold increase of the FNAL Booster beam brightness. Best results will be obtained using three electron lenses around the machine circumference, using co-moving electron beam with time structure and profile approximately matched to the proton beam. This technique, if feasible, will be more cost effective than the straightforward alternative of increasing the energy of the injection linac.

  2. Polarization Transfer in Proton Compton Scattering at High Momentum Transfer

    SciTech Connect

    D.J. Hamilton; Vahe Mamyan

    2004-10-01

    Compton scattering from the proton was investigated at s = 6.9 GeV{sup 2} and t = -4.0 TeV{sup 2} via polarization transfer from circularly polarized incident photons. The longitudinal and transverse components of the recoil proton polarization were measured. The results are in excellent agreement with a prediction based on a reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton and in disagreement with a prediction of pQCD based on a two-gluon exchange mechanism.

  3. Multicolor, High Efficiency, Nanotextured LEDs

    SciTech Connect

    Jung Han; Arto Nurmikko

    2011-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and green for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) heteroepitaxy of nitrogen-polar LEDs on sapphire, (ii) heteroepitaxy of semipolar (11{bar 2}2) green LEDs on sapphire, (iii) synthesis of quantum-dot loaded nanoporous GaN that emits white light without phosphor conversion, (iv) demonstration of the highest quality semipolar (11{bar 2}2) GaN on sapphire using orientation-controlled epitaxy, (v) synthesis of nanoscale GaN and InGaN medium, and (vi) development of a novel liftoff process for manufacturing GaN thin-film vertical LEDs. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  4. High-Efficiency Autonomous Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Gatt, Philip; Henderson, Sammy W.; Hannon, Stephen M.

    1999-01-01

    A useful measure of sensor performance is the transceiver system efficiency n (sub sys). Which consists of the antenna efficiency n (sub a) and optical and electronic losses. Typically, the lidar equation and the antenna efficiency are defined in terms of the telescope aperture area. However, during the assembly of a coherent transceiver, it is important to measure the system efficiency before the installation of the beamexpanding telescope (i.e., the untruncated-beam system efficiency). Therefore, to accommodate both truncated and untruncated beam efficiency measurements, we define the lidar equation and the antenna efficiency in terms of the beam area rather than the commonly used aperture area referenced definition. With a well-designed Gaussian-beam lidar, aperture area referenced system efficiencies of 15 to 20 % (23-31% relative to the beam area) are readily achievable. In this paper we compare the differences between these efficiency definitions. We then describe techniques by which high efficiency can be achieved, followed by a discussion several novel auto alignment techniques developed to maintain high efficiency.

  5. Internal spin structure of the proton from high energy polarized e-p scattering

    SciTech Connect

    Hughes, V.W.; Baum, G.; Bergstroem, M.R.

    1981-02-01

    A review is given of experimental knowledge of the spin dependent structure functions of the proton, which is based on inclusive high energy scattering of longitudinal polarized electrons by longitudinally polarized protons in both the deep inelastic and resonance regions, and includes preliminary results from our most recent SLAC experiment. Implications for scaling, sum rules, models of proton structure, and the hyperfine structure interval in hydrogen are given. Possible future directions of research are indicated.

  6. Science to Practice: Highly Shifted Proton MR imaging—A Shift toward Better Cell Tracking?

    PubMed Central

    Bulte, Jeff W. M.

    2015-01-01

    Summary A “hot spot” magnetic resonance (MR) imaging cell tracking technique has been developed that allows direct detection of dysprosium- or thulium-1,4,7,10-tetraazacyclododecane-α,α′,α″,α‴-tetramethyl-1,4,7,10-tetraacetic acid (DOTMA)–labeled protons inside cells. These highly shifted protons may allow specific detection of multiple cell types because it does not rely on acquiring the proton signal from bulk water. PMID:25153271

  7. High relaxivity Gd(III)-DNA gold nanostars: investigation of shape effects on proton relaxation.

    PubMed

    Rotz, Matthew W; Culver, Kayla S B; Parigi, Giacomo; MacRenaris, Keith W; Luchinat, Claudio; Odom, Teri W; Meade, Thomas J

    2015-03-24

    Gadolinium(III) nanoconjugate contrast agents (CAs) have distinct advantages over their small-molecule counterparts in magnetic resonance imaging. In addition to increased Gd(III) payload, a significant improvement in proton relaxation efficiency, or relaxivity (r1), is often observed. In this work, we describe the synthesis and characterization of a nanoconjugate CA created by covalent attachment of Gd(III) to thiolated DNA (Gd(III)-DNA), followed by surface conjugation onto gold nanostars (DNA-Gd@stars). These conjugates exhibit remarkable r1 with values up to 98 mM(-1) s(-1). Additionally, DNA-Gd@stars show efficient Gd(III) delivery and biocompatibility in vitro and generate significant contrast enhancement when imaged at 7 T. Using nuclear magnetic relaxation dispersion analysis, we attribute the high performance of the DNA-Gd@stars to an increased contribution of second-sphere relaxivity compared to that of spherical CA equivalents (DNA-Gd@spheres). Importantly, the surface of the gold nanostar contains Gd(III)-DNA in regions of positive, negative, and neutral curvature. We hypothesize that the proton relaxation enhancement observed results from the presence of a unique hydrophilic environment produced by Gd(III)-DNA in these regions, which allows second-sphere water molecules to remain adjacent to Gd(III) ions for up to 10 times longer than diffusion. These results establish that particle shape and second-sphere relaxivity are important considerations in the design of Gd(III) nanoconjugate CAs. PMID:25723190

  8. The Quest for Spinning Glue in High-Energy Polarized Proton-Proton Collisions at RHIC

    SciTech Connect

    Surrow, Bernd

    2007-10-26

    The STAR experiment at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) is carrying out a spin physics program colliding transverse or longitudinal polarized proton beams at {radical}(s) = 200-500 GeV to gain a deeper insight into the spin structure and dynamics of the proton. These studies provide fundamental tests of Quantum Chromodynamics (QCD).One of the main objectives of the STAR spin physics program is the determination of the polarized gluon distribution function through a measurement of the longitudinal double-spin asymmetry, A{sub LL}, for various processes. Recent results will be shown on the measurement of A{sub LL} for inclusive jet production, neutral pion production and charged pion production at {radical}(s) = 200 GeV.

  9. Time Exceedances for High Intensity Solar Proton Fluxes

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Adam, James H., Jr.; Dietrich, William F.

    2011-01-01

    A model is presented for times during a space mission that specified solar proton flux levels are exceeded. This includes both total time and continuous time periods during missions. Results for the solar maximum and solar minimum phases of the solar cycle are presented and compared for a broad range of proton energies and shielding levels. This type of approach is more amenable to reliability analysis for spacecraft systems and instrumentation than standard statistical models.

  10. THE STABILITY AND ELECTRICAL PROPERTIES OF HIGH TEMPERATURE PROTON CONDUCTORS

    SciTech Connect

    Brinkman, K.

    2010-07-06

    The morphological and electrical properties of Ba{sub 1-x}Sr{sub x}Ce{sub 0.8}Y{sub 0.2}O{sub 3-{delta}} with x varying from 0 to 1 prepared by a modified Pechini method were investigated as potential high temperature proton conductors. Dense microstructures were achieved for all the samples upon sintering at 1500 C for 5 h. The phase structure analysis indicated that perovskite phase was formed for 0 {le} x {le} 0.2, while for x larger than 0.5, impurity phases of Sr{sub 2}CeO{sub 4} and Y{sub 2}O{sub 3} appeared. The tolerance to H{sub 2}O for the samples improved with the increase in Sr content when exposed to boiling water, while the electrical conductivity decreased from x = 0 to 1. However, the resistance to CO{sub 2} attack at elevated temperatures was not improved within the whole x range studied.

  11. Beam dynamic design of a high intensity injector for proton linac

    NASA Astrophysics Data System (ADS)

    Dou, Wei-Ping; Wang, Zhi-Jun; Jia, Fang-Jian; He, Yuan; Wang, Zhi; Lu, Yuan-Rong

    2016-08-01

    A compact room-temperature injector is designed to accelerate 100 mA proton beam from 45 keV to 4.06 MeV for the proposed high intensity proton linac at State Key Lab of Nuclear Physics and Technology in Peking university. The main feature is that the Radio Frequency Quadruple (RFQ) and the Drift Tube linac (DTL) sections are merged in one piece at the total length of 276 cm. The beam is matched in transverse directions with an compact internal doublet instead of an external matching section in between. The design has reached a high average accelerating gradient up to 1.55 MV/m with transmission efficiency of 95.9% at the consideration of high duty factor operation. The operation frequency is chose to be 200 MHz due to the already available RF power source. The injector combines a 150 cm long 4-vanes RFQ internal section from 45 keV to 618 keV with a 126 cm long H-type DTL section to 4.06 MeV. In general the design satisfy the challenges of the project requirements. And the details are presented in this paper.

  12. Effects of high energy protons on the E771 silicon microstrip detector

    NASA Astrophysics Data System (ADS)

    Alexopoulos, T.; Antoniazzi, L.; Arenton, M.; Ballagh, C.; Bingham, H.; Blankman, A.; Block, M.; Boden, A.; Borodin, S.; Budagov, J.; Cao, Z. L.; Cataldi, G.; Chen, T. Y.; Clark, K.; Cline, D.; Conetti, S.; Cooper, M.; Corti, G.; Cox, B.; Creti, P.; Dukes, E.; Durandet, C.; Elia, V.; Erwin, A.; Fortney, L.; Golovatyuk, S.; Gorini, E.; Grancagnolo, F.; Haire, M.; Hanlet, P.; He, M.; Introzzi, G.; Jenkins, M.; Jennings, J.; Judd, D.; Kaeding, T.; Kononenko, W.; Kowald, W.; lanza, A.; Lau, K.; Liguori, G.; Lys, J.; Mazur, P.; McManus, A.; Misawa, S.; Mo, G.; Murphy, T.; Nelson, K.; Newcomer, M.; Panareo, M.; Ramachandran, S.; Recagni, M.; Rhoades, J.; Segal, J.; Selove, W.; Smith, R.; Spiegel, L.; Sun, J.; Tokar, S.; Torre, P.; Trischuk, J.; Trojak, T.; Tsyganov, E.; Turnbull, L.; VanBerg, R.; Wagoner, D.; Wang, C.; Wang, H. C.; Wei, C.; Yang, W.; Yao, N.; Zhang, N.; Zhang, S. N.; Zou, B.

    1993-01-01

    A silicon strip detector (SSD) system for use in very high rate experiments has been operated in Experiment E771 (Cox, 1989) at the Fermi National Accelerator laboratory. The detector electronics were designed (Swoboda, 1990; Bowden, 1990; Zimmerman, 1989; Christian, 1991) to meet the specific needs of Fermilab experiment E771 using ASIC chip sets where commercial circuits were not suitable. The electronics for the SSD were designed to operate at rates up to 60 Mhz and were operated at interaction rates up to 10 7 interaction/sec (beam rates of 2 × 10 8 proton/sec). In addition to being very fast, the detector for the 1991 run was very compact with 10000 channels of active detector in a volume fo 5cm × 5cm × 10cm. An expansion of the system to 16000 channels is planned for the next Fermilab fixed target run. The strip pitch ranged from 25 μ m in the center of the detector near the target to 100 μ m pitch at the most downstream, outer edges of the detector. The readout is a latch design with pipelined readout and appears to have single strip efficiencies of ≈ 75% even in the presence of a high radiation dose (∽ 10 14 protons/cm 2) and high leakage currents(≈ 1 nA/strip). The detector and associated amplifier electronics has presently been operated at 17° C and is designed to operate as low as 8° C.

  13. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    SciTech Connect

    Yamamoto, Seiichi Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka; Toshito, Toshiyuki

    2014-11-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The

  14. Determination of solar proton fluxes and energies at high solar latitudes by UV radiation measurements

    NASA Technical Reports Server (NTRS)

    Witt, N.; Blum, P. W.; Ajello, J. M.

    1981-01-01

    The latitudinal variation of the solar proton flux and energy causes a density increase at high solar latitudes of the neutral gas penetrating the heliosphere. Measurements of the neutral density by UV resonance radiation observations from interplanetary spacecraft thus permit deductions on the dependence of the solar proton flux on heliographic latitude. Using both the results of Mariner 10 measurements and of other off-ecliptic solar wind observations, the values of the solar proton fluxes and energies at polar heliographic latitudes are determined for several cases of interest. The Mariner 10 analysis, together with IPS results, indicate a significant decrease of the solar proton flux at polar latitudes.

  15. Very High Efficiency Solar Cell Modules

    SciTech Connect

    Barnett, A.; Kirkpatrick, D.; Honsberg, C.; Moore, D.; Wanlass, M.; Emery, K.; Schwartz, R.; Carlson, D.; Bowden, S.; Aiken, D.; Gray, A.; Kurtz, S.; Kazmerski, L., et al

    2009-01-01

    The Very High Efficiency Solar Cell (VHESC) program is developing integrated optical system - PV modules for portable applications that operate at greater than 50% efficiency. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space. Our approach is driven by proven quantitative models for the solar cell design, the optical design, and the integration of these designs. Optical systems efficiency with an optical efficiency of 93% and solar cell device results under ideal dichroic splitting optics summing to 42.7 {+-} 2.5% are described.

  16. Final Report for "Modeling Electron Cloud Diagnostics for High-Intensity Proton Accelerators"

    SciTech Connect

    Seth A Veitzer

    2009-09-25

    Electron clouds in accelerators such as the ILC degrade beam quality and limit operating efficiency. The need to mitigate electron clouds has a direct impact on the design and operation of these accelerators, translating into increased cost and reduced performance. Diagnostic techniques for measuring electron clouds in accelerating cavities are needed to provide an assessment of electron cloud evolution and mitigation. Accurate numerical modeling of these diagnostics is needed to validate the experimental techniques. In this Phase I, we developed detailed numerical models of microwave propagation through electron clouds in accelerating cavities with geometries relevant to existing and future high-intensity proton accelerators such as Project X and the ILC. Our numerical techniques and simulation results from the Phase I showed that there was a high probability of success in measuring both the evolution of electron clouds and the effects of non-uniform electron density distributions in Phase II.

  17. LATTICES FOR HIGH-POWER PROTON BEAM ACCELERATION AND SECONDARY BEAM COLLECTION AND COOLING.

    SciTech Connect

    WANG, S.; WEI, J.; BROWN, K.; GARDNER, C.; LEE, Y.Y.; LOWENSTEIN, D.; PEGGS, S.; SIMOS, N.

    2006-06-23

    Rapid cycling synchrotrons are used to accelerate high-intensity proton beams to energies of tens of GeV for secondary beam production. After primary beam collision with a target, the secondary beam can be collected, cooled, accelerated or decelerated by ancillary synchrotrons for various applications. In this paper, we first present a lattice for the main synchrotron. This lattice has: (a) flexible momentum compaction to avoid transition and to facilitate RF gymnastics (b) long straight sections for low-loss injection, extraction, and high-efficiency collimation (c) dispersion-free straights to avoid longitudinal-transverse coupling, and (d) momentum cleaning at locations of large dispersion with missing dipoles. Then, we present a lattice for a cooler ring for the secondary beam. The momentum compaction across half of this ring is near zero, while for the other half it is normal. Thus, bad mixing is minimized while good mixing is maintained for stochastic beam cooling.

  18. Junior High Gets Energy Efficient VAV System

    ERIC Educational Resources Information Center

    Modern Schools, 1977

    1977-01-01

    Minnesota's Isanti Junior High, designed with an energy efficient variable air volume system, is an innovative school selected for display at the 1977 Exhibition of School Architecture in Las Vegas. (Author/MLF)

  19. High-efficiency crystalline silicon technology development

    NASA Technical Reports Server (NTRS)

    Prince, M. B.

    1984-01-01

    The rationale for pursuing high efficiency crystalline silicon technology research is discussed. Photovoltaic energy systems are reviewed as to their cost effectiveness and their competitiveness with other energy systems. The parameters of energy system life are listed and briefly reviewed.

  20. Multi Band Gap High Efficiency Converter (RAINBOW)

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Lewis, C.; Phillips, W.; Shields, V.; Stella, P.

    1997-01-01

    The RAINBOW multi band gap system represents a unique combination of solar cells, concentrators and beam splitters. RAINBOW is a flexible system which can readily expand as new high efficiency components are developed.

  1. A HIGH-LEVEL CALCULATION OF THE PROTON AFFINITY OF DIBORANE

    EPA Science Inventory

    The experimental proton affinity of diborane (B2H6) is based on an unstable species, B2H,+, 4 which has been observed only at low temperatures. The present work calculates the proton 5 affinity of diborane using the Gaussian-3 method and other high-level compound ab initio 6 met...

  2. The affect of erbium hydride on the conversion efficience to accelerated protons from ultra-shsort pulse laser irradiated foils

    SciTech Connect

    Offermann, Dustin Theodore

    2008-01-01

    This thesis work explores, experimentally, the potential gains in the conversion efficiency from ultra-intense laser light to proton beams using erbium hydride coatings. For years, it has been known that contaminants at the rear surface of an ultra-intense laser irradiated thin foil will be accelerated to multi-MeV. Inertial Confinement Fusion fast ignition using proton beams as the igniter source requires of about 1016 protons with an average energy of about 3MeV. This is far more than the 1012 protons available in the contaminant layer. Target designs must include some form of a hydrogen rich coating that can be made thick enough to support the beam requirements of fast ignition. Work with computer simulations of thin foils suggest the atomic mass of the non-hydrogen atoms in the surface layer has a strong affect on the conversion efficiency to protons. For example, the 167amu erbium atoms will take less energy away from the proton beam than a coating using carbon with a mass of 12amu. A pure hydrogen coating would be ideal, but technologically is not feasible at this time. In the experiments performed for my thesis, ErH3 coatings on 5 μm gold foils are compared with typical contaminants which are approximately equivalent to CH1.7. It will be shown that there was a factor of 1.25 ± 0.19 improvement in the conversion efficiency for protons above 3MeV using erbium hydride using the Callisto laser. Callisto is a 10J per pulse, 800nm wavelength laser with a pulse duration of 200fs and can be focused to a peak intensity of about 5 x 1019W/cm2. The total number of protons from either target type was on the order of 1010. Furthermore, the same experiment was performed on the Titan laser, which has a 500fs pulse duration, 150J of energy and can be focused to about 3 x 1020 W/cm2. In this experiment 1012 protons were seen from both erbium hydride and

  3. The effect of erbium hydride on the conversion efficiency to accelerated protons from ultra-short pulse laser irradiated foils

    NASA Astrophysics Data System (ADS)

    Offermann, Dustin Theodore

    This thesis work explores, experimentally, the potential gains in the conversion efficiency from ultra-intense laser light to proton beams using erbium hydride coatings. For years, it has been known that contaminants at the rear surface of an ultra-intense laser irradiated thin foil will be accelerated to multi-MeV. Inertial Confinement Fusion fast ignition using proton beams as the igniter source requires of about 10 16 protons with an average energy of about 3MeV. This is far more than the 1012 protons available in the contaminant layer. Target designs must include some form of a hydrogen rich coating that can be made thick enough to support the beam requirements of fast ignition. Work with computer simulations of thin foils suggest the atomic mass of the non-hydrogen atoms in the surface layer has a strong affect on the conversion efficiency to protons. For example, the 167amu erbium atoms will take less energy away from the proton beam than a coating using carbon with a mass of 12amu. A pure hydrogen coating would be ideal, but technologically is not feasible at this time. In the experiments performed for my thesis, ErH 3 coatings on 5mum gold foils are compared with typical contaminants which are approximately equivalent to CH 1.7. It will be shown that there was a factor of 1.25 +/- 0.19 improvement in the conversion efficiency for protons above 3MeV using erbium hydride using the Callisto laser. Callisto is a 10J per pulse, 800nm wavelength laser with a pulse duration of 200fs and can be focused to a peak intensity of about 5 x 1019W/cm2. The total number of protons from either target type was on the order of 1010. Furthermore, the same experiment was performed on the Titan laser, which has a 500fs pulse duration, 150J of energy and can be focused to about 3 x 1020W/cm 2. In this experiment 1012 protons were seen from both erbium hydride and contaminants on 14mum gold foils. Significant improvements were also observed but possibly because of the depletion of

  4. Spin-spin correlations in proton-proton collisions at high energy and threshold enhancements

    SciTech Connect

    de Teramond, G.F.

    1988-05-01

    The striking effects in the spin structure observed in elastic proton collisions and the Nuclear Transparency phenomenon recently discovered at BNL are described in terms of heavy quark threshold enhancements. The deviations from scaling laws and the broadening of the angular distributions at resonance are also consistent with the introduction of new degrees of freedom in the pp system. This implies new s-channel physics. Predictions are given for the spin effects in pp collisions near 18.5 GeV/c at large p/sub T//sup 2/ where new measurements are planned. 9 refs., 4 figs.

  5. High-energy protons from submicron-sized targets

    SciTech Connect

    Bychenkov, V. Yu.; Govras, E. A.; Brantov, A. V.; Popov, K. I.

    2012-07-11

    Improving of intensity contrast ratio of intense short laser pulses is making it possible to use submicron-sized targets, both spherical and plane, in the interest of proton acceleration for different applications. The way of improving of the ion beam quality is utilization of targets with two ion species - heavy ions (majority) and light ions, e.g. protons, (minority). Two different approaches, analytical theory and particle-in-cell simulations (PIC) are presented for studying the characteristics of laser-triggered ions due to the Coulomb-like mechanism of particle acceleration from submicron-sized targets. The comparative analysis of explosions of heterogeneous (layered) and homogeneously mixed targets for production of best quality ion bunches has been performed. We also found the regime of anisotropic proton acceleration from spherical targets with light and heavy ions relevant to the experiments with submicron-diameter droplets from water spray target irradiated by an ultrashort intense laser pulse.

  6. High-latitude proton precipitation and light ion density profiles during the magnetic storm initial phase.

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1973-01-01

    Measurements of precipitating protons and light ion densities by experiments on Ogo 4 indicate that widespread proton precipitation occurs in predawn hours during the magnetic storm initial phase from the latitude of the high-latitude ion trough, or plasmapause, up to latitudes greater than 75 deg. A softening of the proton spectrum is apparent as the plasmapause is approached. The separation of the low-latitude precipitation boundaries for 7.3-keV and 23.8-keV protons is less than about 1 deg, compared with a 3.6-deg separation that has been computed by using the formulas of Gendrin and Eather and Carovillano. Consideration of probable proton drift morphology leads to the conclusion that protons are injected in predawn hours, widespread precipitation occurring in the region outside the plasmapause. Protons less energetic than 7 keV drift eastward, whereas the more energetic protons drift westward, producing the observed dawn-dusk asymmetry for the lower-energy protons.

  7. High-efficiency axial compressor: Final report

    SciTech Connect

    Bettner, J.L.; Sehra, A.K.

    1986-12-01

    An aerodynamic design study was conducted to configure an industrial-size gas turbine compressor of 14.0:1 pressure ratio and 800 lb/sec flow for achieving maximum efficiency. Starting with an initial configuration based on conventional design practice, compressor design parameters were progressively optimized, leading to a 1.8% improvement in the adiabatic efficiency over that of the conventional design. To further improve the efficiency potential of this design, several advanced design concepts were investigated. It was found that incorporation of airfoils with swept leading edges and customization of the airfoil camber and endwall region would result in an additional adiabatic efficiency potential of 1%. The projected polytropic efficiency of the final advanced concept compressor design was estimated at 92.8%, which is 2 to 3% higher than the current high-efficiency aircraft turbine engine compressors. As a part of this design study, the influence of variable geometry on the flow and efficiency (at design speed) was also investigated. It was estimated that the efficiency decrement associated with a 25% reduction in the design flow, achieved by a system of variable inlet guide vanes and the front five stators, was about 4.0%. The corresponding efficiency penalty with variable IGV-only was estimated to be in excess of 10%.

  8. Focusing of short-pulse high-intensity laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Bartal, Teresa; Foord, Mark E.; Bellei, Claudio; Key, Michael H.; Flippo, Kirk A.; Gaillard, Sandrine A.; Offermann, Dustin T.; Patel, Pravesh K.; Jarrott, Leonard C.; Higginson, Drew P.; Roth, Markus; Otten, Anke; Kraus, Dominik; Stephens, Richard B.; McLean, Harry S.; Giraldez, Emilio M.; Wei, Mingsheng S.; Gautier, Donald C.; Beg, Farhat N.

    2012-02-01

    Recent progress in generating high-energy (>50MeV) protons from intense laser-matter interactions (1018-1021Wcm-2 refs , , , , , , ) has opened up new areas of research, with applications in radiography, oncology, astrophysics, medical imaging, high-energy-density physics, and ion-proton beam fast ignition. With the discovery of proton focusing with curved surfaces, rapid advances in these areas will be driven by improved focusing technologies. Here we report on the first investigation of the generation and focusing of a proton beam using a cone-shaped target. We clearly show that the focusing is strongly affected by the electric fields in the beam in both open and enclosed (cone) geometries, bending the trajectories near the axis. Also in the cone geometry, a sheath electric field effectively `channels' the proton beam through the cone tip, substantially improving the beam focusing properties. These results agree well with particle simulations and provide the physics basis for many future applications.

  9. Comparative study by IBIC of Si and SiC diodes irradiated with high energy protons

    NASA Astrophysics Data System (ADS)

    Garcia Lopez, J.; Jimenez-Ramos, M. C.; Rodriguez-Ramos, M.; Ceballos, J.; Linez, F.; Raisanen, J.

    2016-04-01

    The transport properties of a series of Si and SiC diodes have been studied using the Ion Beam Induced Charge (IBIC) technique. Structural defects were induced into the samples during the irradiation with 17 MeV protons. The experimental values of the charge collection efficiency (CCE) vs bias voltages have been analyzed using a modified drift-diffusion model, which takes into account the recombination of carriers in the neutral and depletion regions. From these simulations, we have obtained the values of the carrier's lifetime for pristine and irradiated diodes, which are found to degrade faster in the case of the SiC samples. However, the decrease of the CCE at high bias voltages is more important for the Si detectors, indicative of the lower radiation hardness of this material compared to SiC. The nature of the proton-induced defects on Si wafers has been studied by Positron Annihilation Spectroscopy (PAS) and Doppler Broadening Spectroscopy (DBS). The results suggest that the main defect detected by the positrons in p-type samples is the divacancy while for n-type at least a fraction of the positron annihilate in another defect. The concentration of defects is much lower than the number of vacancies predicted by SRIM.

  10. Nonhumidified High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kinder, James D.

    2005-01-01

    Fuel cells are being considered for a wide variety of aerospace applications. One of the most versatile types of fuel cells is the proton-exchange-membrane (PEM) fuel cell. PEM fuel cells can be easily scaled to meet the power and space requirements of a specific application. For example, small 100-W PEM fuel cells are being considered for personal power for extravehicular activity suit applications, whereas larger PEM fuel cells are being designed for primary power in airplanes and in uninhabited air vehicles. Typically, PEM fuel cells operate at temperatures up to 80 C. To increase the efficiency and power density of the fuel cell system, researchers are pursuing methods to extend the operating temperature of the PEM fuel cell to 180 C. The most widely used membranes in PEM fuel cells are Nafion 112 and Nafion 117--sulfonated perfluorinated polyethers that were developed by DuPont. In addition to their relatively high cost, the properties of these membranes limit their use in a PEM fuel cell to around 80 C. The proton conductivity of Nafion membranes significantly decreases above 80 C because the membrane dehydrates. The useful operating range of Nafion-based PEM fuel cells can be extended to over 100 C if ancillary equipment, such as compressors and humidifiers, is added to maintain moisture levels within the membrane. However, the addition of these components reduces the power density and increases the complexity of the fuel cell system.

  11. Technology Development for High Efficiency Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2012-01-01

    Deep space optical communications is a significantly more challenging operational domain than near Earth space optical communications, primarily due to effects resulting from the vastly increased range between transmitter and receiver. The NASA Game Changing Development Program Deep Space Optical Communications Project is developing four key technologies for the implementation of a high efficiency telecommunications system that will enable greater than 10X the data rate of a state-of-the-art deep space RF system (Ka-band) for similar transceiver mass and power burden on the spacecraft. These technologies are a low mass spacecraft disturbance isolation assembly, a flight qualified photon counting detector array, a high efficiency flight laser amplifier and a high efficiency photon counting detector array for the ground-based receiver.

  12. High-efficiency solid state power amplifier

    NASA Technical Reports Server (NTRS)

    Wallis, Robert E. (Inventor); Cheng, Sheng (Inventor)

    2005-01-01

    A high-efficiency solid state power amplifier (SSPA) for specific use in a spacecraft is provided. The SSPA has a mass of less than 850 g and includes two different X-band power amplifier sections, i.e., a lumped power amplifier with a single 11-W output and a distributed power amplifier with eight 2.75-W outputs. These two amplifier sections provide output power that is scalable from 11 to 15 watts without major design changes. Five different hybrid microcircuits, including high-efficiency Heterostructure Field Effect Transistor (HFET) amplifiers and Monolithic Microwave Integrated Circuit (MMIC) phase shifters have been developed for use within the SSPA. A highly efficient packaging approach enables the integration of a large number of hybrid circuits into the SSPA.

  13. Hole-boring radiation pressure acceleration as a basis for producing high-energy proton bunches

    NASA Astrophysics Data System (ADS)

    Robinson, A. P. L.; Trines, R. M. G. M.; Dover, N. P.; Najmudin, Z.

    2012-11-01

    The production of high-energy protons by the ‘hole-boring’ radiation pressure acceleration (HB-RPA) mechanism of laser-driven ion acceleration is examined in the case where the plasma has a density less than a0nc in 2D. Previously this was examined in 1D (Robinson 2011 Phys. Plasmas 18 056701) and was motivated by previous predictions of the non-linear criterion for an ultra-intense laser pulse to penetrate a dense plasma. By reducing the density well below a0nc the proton energies achieved increases considerably, thus leading to proton energies >100 MeV at laser intensities close to current capabilities. The results show that good quality proton beams with proton energies >100 MeV can be obtained via HB-RPA using targets with densities in the range 12-20nc and laser intensities in the range 5 × 1021-3 × 1022 W cm-2.

  14. Measurements of the proton-air cross section with high energy cosmic ray experiments

    NASA Astrophysics Data System (ADS)

    Abbasi, Rasha

    2016-07-01

    Detecting Ultra High Energy Cosmic Rays (UHECRs) enables us to measure the proton-air inelastic cross section σinel p-air at energies that we are unable to access with particle accelerators. The proton-proton cross section σp-p is subsequently inferred from the proton-air cross section at these energies. UHECR experiments have been reportingon the proton-air inelastic cross section starting with the Fly's Eye in 1984 at √s =30 TeV and ending with the most recent result of the Telescope Array experiment at √s = 95 TeV in 2015. In this proceeding, I will summarize the most recent experimental results on the σinel p-air measurements from the UHECR experiments.

  15. Response of a tungsten powder target to an incident high energy proton beam

    NASA Astrophysics Data System (ADS)

    Caretta, O.; Davenne, T.; Densham, C.; Fitton, M.; Loveridge, P.; O'Dell, J.; Charitonidis, N.; Efthymiopoulos, I.; Fabich, A.; Rivkin, L.

    2014-10-01

    The experiment described in this paper is the first study of the response of a static tungsten powder sample to an impinging high energy proton beam pulse. The experiment was carried out at the HiRadMat facility at CERN. Observations include high speed videos of a proton beam induced perturbation of the powder sample as well as data from a laser Doppler vibrometer measuring the oscillations of the powder container. A comparison with a previous analogous experiment which studied a proton beam interaction with mercury is made.

  16. High-efficiency filtration meets IAQ goals

    SciTech Connect

    Aaronson, E.L. ); Fencl, F. )

    1994-12-01

    This article describes multi-stage filtration system which provided initial cost savings and is expected to save even more in energy costs while fulfilling IAQ requirements. The use of high-efficiency filtration has enabled the city of Kansas City, Mo., to save an estimated $500,000 in initial HVAC system costs for its Bartle Hall expansion project, which is currently under construction. Once operational, the new HVAC system, with its high-efficiency filters, is expected to save thousands of dollars per week more in energy costs while also delivering superior indoor air quality (IAQ).

  17. Measure Guideline. High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  18. Measure Guideline: High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  19. Proposal for superstructure based high efficiency photovoltaics

    NASA Technical Reports Server (NTRS)

    Wagner, M.; Leburton, J. P.

    1986-01-01

    A novel class of cascade structures is proposed which features multijunction upper subcells, referred to as superstructure high-efficiency photovoltaics (SHEPs). The additional junctions enhance spectral response and improve radiation tolerance by reducing bulk recombination losses. This is important because ternary III-V alloys, which tend to have short minority-carrier diffusion lengths, are the only viable materials for the high-bandgap upper subcells required for cascade solar cells. Realistic simulations of AlGaAs SHEPs show that one-sun AM0 efficiencies in excess of 26 percent are possible.

  20. Relations Between Microwave Bursts and Near-Earth High-Energy Proton Enhancements and Their Origin

    NASA Astrophysics Data System (ADS)

    Grechnev, V. V.; Kiselev, V. I.; Meshalkina, N. S.; Chertok, I. M.

    2015-10-01

    We further study the relations between parameters of bursts at 35 GHz recorded with the Nobeyama Radio Polarimeters during 25 years and solar proton events (Grechnev et al. in Publ. Astron. Soc. Japan 65, S4, 2013a). Here we address the relations between the microwave fluences at 35 GHz and near-Earth proton fluences above 100 MeV to find information on their sources and evaluate their diagnostic potential. The correlation between the microwave and proton fluences is pronouncedly higher than between their peak fluxes. This probably reflects a dependence of the total number of protons on the duration of the acceleration process. In events with strong flares, the correlation coefficients of high-energy proton fluences with microwave and soft X-ray fluences are higher than those with the speeds of coronal mass ejections. The results indicate a statistically larger contribution of flare processes to high-energy proton fluxes. Acceleration by shock waves seems to be less important at high energies in events associated with strong flares, although its contribution is probable and possibly prevails in weaker events. The probability of a detectable proton enhancement was found to directly depend on the peak flux, duration, and fluence of the 35 GHz burst, while the role of the Big Flare Syndrome might have been overestimated previously. Empirical diagnostic relations are proposed.

  1. Carbon quantum dots with photo-generated proton property as efficient visible light controlled acid catalyst

    NASA Astrophysics Data System (ADS)

    Li, Haitao; Liu, Ruihua; Kong, Weiqian; Liu, Juan; Liu, Yang; Zhou, Lei; Zhang, Xing; Lee, Shuit-Tong; Kang, Zhenhui

    2013-12-01

    Developing light-driven acid catalyst will be very meaningful for the controlled-acid catalytic processes towards a green chemical industry. Here, based on scanning electrochemical microscopy (SECM) and ΔpH testing, we demonstrate that the 5-10 nm carbon quantum dots (CQDs) synthesized by electrochemical ablation of graphite have strong light-induced proton properties under visible light in solution, which can be used as an acid catalyst. The 5-10 nm CQDs' catalytic activity is strongly dependent on the illumination intensity and the temperature of the reaction system. As an effective visible light driven and controlled acid-catalyst, 5-10 nm CQDs can catalyze a series of organic reactions (esterification, Beckmann rearrangement and aldol condensation) with high conversion (34.7-46.2%, respectively) in water solution under visible light, while the 1-4 nm CQDs and 10-2000 nm graphite do not have such excellent catalytic activity. The use of 5-10 nm CQDs as a light responsive and controllable photocatalyst is truly a novel application of carbon-based nanomaterials, which may significantly push research in the current catalytic industry, environmental pollution and energy issues.Developing light-driven acid catalyst will be very meaningful for the controlled-acid catalytic processes towards a green chemical industry. Here, based on scanning electrochemical microscopy (SECM) and ΔpH testing, we demonstrate that the 5-10 nm carbon quantum dots (CQDs) synthesized by electrochemical ablation of graphite have strong light-induced proton properties under visible light in solution, which can be used as an acid catalyst. The 5-10 nm CQDs' catalytic activity is strongly dependent on the illumination intensity and the temperature of the reaction system. As an effective visible light driven and controlled acid-catalyst, 5-10 nm CQDs can catalyze a series of organic reactions (esterification, Beckmann rearrangement and aldol condensation) with high conversion (34

  2. Measurement of transmission efficiency for 400 MeV proton beam through collimator at Fermilab MuCool Test Area using Chromox-6 scintillation screen

    SciTech Connect

    Jana, M. R.; Chung, M.; Leonova, M.; Moretti, A.; Palmer, M.; Schwarz, T.; Tollestrup, A.; Yonehara, K.; Freemire, B.; Hanlet, P.; Torun, Y.

    2013-06-15

    The MuCool Test Area (MTA) at Fermilab is a facility to develop the technology required for ionization cooling for a future Muon Collider and/or Neutrino Factory. As part of this research program, feasibility studies of various types of RF cavities in a high magnetic field environment are in progress. As a unique approach, we have tested a RF cavity filled with a high pressure hydrogen gas with a 400 MeV proton beam in an external magnetic field (B = 3 T). Quantitative information about the number of protons passing through this cavity is an essential requirement of the beam test. The MTA is a flammable gas (hydrogen) hazard zone. Due to safety reasons, no active (energized) beam diagnostic instrument can be used. Moreover, when the magnetic field is on, current transformers (toroids) used for beam intensity measurements do not work due to the saturation of the ferrite material of the transformer. Based on these requirements, we have developed a passive beam diagnostic instrumentation using a combination of a Chromox-6 scintillation screen and CCD camera. This paper describes details of the beam profile and position obtained from the CCD image with B = 0 T and B = 3 T, and for high and low intensity proton beams. A comparison is made with beam size obtained from multi-wires detector. Beam transmission efficiency through a collimator with a 4 mm diameter hole is measured by the toroids and CCD image of the scintillation screen. Results show that the transmission efficiency estimated from the CCD image is consistent with the toroid measurement, which enables us to monitor the beam transmission efficiency even in a high magnetic field environment.

  3. Measurement of transmission efficiency for 400 MeV proton beam through collimator at Fermilab MuCool Test Area using Chromox-6 scintillation screen.

    PubMed

    Jana, M R; Chung, M; Freemire, B; Hanlet, P; Leonova, M; Moretti, A; Palmer, M; Schwarz, T; Tollestrup, A; Torun, Y; Yonehara, K

    2013-06-01

    The MuCool Test Area (MTA) at Fermilab is a facility to develop the technology required for ionization cooling for a future Muon Collider and∕or Neutrino Factory. As part of this research program, feasibility studies of various types of RF cavities in a high magnetic field environment are in progress. As a unique approach, we have tested a RF cavity filled with a high pressure hydrogen gas with a 400 MeV proton beam in an external magnetic field (B = 3 T). Quantitative information about the number of protons passing through this cavity is an essential requirement of the beam test. The MTA is a flammable gas (hydrogen) hazard zone. Due to safety reasons, no active (energized) beam diagnostic instrument can be used. Moreover, when the magnetic field is on, current transformers (toroids) used for beam intensity measurements do not work due to the saturation of the ferrite material of the transformer. Based on these requirements, we have developed a passive beam diagnostic instrumentation using a combination of a Chromox-6 scintillation screen and CCD camera. This paper describes details of the beam profile and position obtained from the CCD image with B = 0 T and B = 3 T, and for high and low intensity proton beams. A comparison is made with beam size obtained from multi-wires detector. Beam transmission efficiency through a collimator with a 4 mm diameter hole is measured by the toroids and CCD image of the scintillation screen. Results show that the transmission efficiency estimated from the CCD image is consistent with the toroid measurement, which enables us to monitor the beam transmission efficiency even in a high magnetic field environment. PMID:23822337

  4. Measurement of transmission efficiency for 400 MeV proton beam through collimator at Fermilab MuCool Test Area using Chromox-6 scintillation screen

    NASA Astrophysics Data System (ADS)

    Jana, M. R.; Chung, M.; Freemire, B.; Hanlet, P.; Leonova, M.; Moretti, A.; Palmer, M.; Schwarz, T.; Tollestrup, A.; Torun, Y.; Yonehara, K.

    2013-06-01

    The MuCool Test Area (MTA) at Fermilab is a facility to develop the technology required for ionization cooling for a future Muon Collider and/or Neutrino Factory. As part of this research program, feasibility studies of various types of RF cavities in a high magnetic field environment are in progress. As a unique approach, we have tested a RF cavity filled with a high pressure hydrogen gas with a 400 MeV proton beam in an external magnetic field (B = 3 T). Quantitative information about the number of protons passing through this cavity is an essential requirement of the beam test. The MTA is a flammable gas (hydrogen) hazard zone. Due to safety reasons, no active (energized) beam diagnostic instrument can be used. Moreover, when the magnetic field is on, current transformers (toroids) used for beam intensity measurements do not work due to the saturation of the ferrite material of the transformer. Based on these requirements, we have developed a passive beam diagnostic instrumentation using a combination of a Chromox-6 scintillation screen and CCD camera. This paper describes details of the beam profile and position obtained from the CCD image with B = 0 T and B = 3 T, and for high and low intensity proton beams. A comparison is made with beam size obtained from multi-wires detector. Beam transmission efficiency through a collimator with a 4 mm diameter hole is measured by the toroids and CCD image of the scintillation screen. Results show that the transmission efficiency estimated from the CCD image is consistent with the toroid measurement, which enables us to monitor the beam transmission efficiency even in a high magnetic field environment.

  5. High-efficiency 20 W yellow VECSEL.

    PubMed

    Kantola, Emmi; Leinonen, Tomi; Ranta, Sanna; Tavast, Miki; Guina, Mircea

    2014-03-24

    A high-efficiency optically pumped vertical-external-cavity surface-emitting laser emitting 20 W at a wavelength around 588 nm is demonstrated. The semiconductor gain chip emitted at a fundamental wavelength around 1170-1180 nm and the laser employed a V-shaped cavity. The yellow spectral range was achieved by intra-cavity frequency doubling using a LBO crystal. The laser could be tuned over a bandwidth of ~26 nm while exhibiting watt-level output powers. The maximum conversion efficiency from absorbed pump power to yellow output was 28% for continuous wave operation. The VECSEL's output could be modulated to generate optical pulses with duration down to 570 ns by directly modulating the pump laser. The high-power pulse operation is a key feature for astrophysics and medical applications while at the same time enables higher slope efficiency than continuous wave operation owing to decreased heating. PMID:24663985

  6. High efficiency novel window air conditioner

    DOE PAGESBeta

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  7. High efficiency novel window air conditioner

    SciTech Connect

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  8. NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells

    SciTech Connect

    Pintauro, Peter

    2012-07-09

    The objective of this proposal is to fabricate and characterize a new class of NanoCapillary Network (NCN) proton conducting membranes for hydrogen/air fuel cells that operate under high temperature, low humidity conditions. The membranes will be intelligently designed, where a high density interconnecting 3-D network of nm-diameter electrospun proton conducting polymer fibers is embedded in an inert (uncharged) water/gas impermeable polymer matrix. The high density of fibers in the resulting mat and the high ion-exchange capacity of the fiber polymer will ensure high proton conductivity. To further enhance water retention, molecular silica will be added to the sulfonated polymer fibers. The uncharged matrix material will control water swelling of the high ion-exchange capacity proton conducting polymer fibers and will impart toughness to the final nanocapillary composite membrane. Thus, unlike other fuel cell membranes, the role of the polymer support matrix will be decoupled from that of the proton-conducting channels. The expected final outcome of this 5-year project is the fabrication of fuel cell membranes with properties that exceed the DOE’s technical targets, in particular a proton conductivity of 0.1 S/cm at a temperature less than or equal to120°C and 25-50% relative humidity.

  9. High Relaxivity Gd(III)–DNA Gold Nanostars: Investigation of Shape Effects on Proton Relaxation

    PubMed Central

    Rotz, Matthew W.; Culver, Kayla S. B.; Parigi, Giacomo; MacRenaris, Keith W.; Luchinat, Claudio; Odom, Teri W.; Meade, Thomas J.

    2015-01-01

    Gadolinium(III) nanoconjugate contrast agents (CAs) have distinct advantages over their small-molecule counterparts in magnetic resonance imaging. In addition to increased Gd(III) payload, a significant improvement in proton relaxation efficiency, or relaxivity (r1), is often observed. In this work, we describe the synthesis and characterization of a nanoconjugate CA created by covalent attachment of Gd(III) to thiolated DNA (Gd(III)–DNA), followed by surface conjugation onto gold nanostars (DNA–Gd@stars). These conjugates exhibit remarkable r1 with values up to 98 mM−1 s−1. Additionally, DNA–Gd@stars show efficient Gd(III) delivery and biocompatibility in vitro and generate significant contrast enhancement when imaged at 7 T. Using nuclear magnetic relaxation dispersion analysis, we attribute the high performance of the DNA–Gd@stars to an increased contribution of second-sphere relaxivity compared to that of spherical CA equivalents (DNA–Gd@spheres). Importantly, the surface of the gold nanostar contains Gd(III)–DNA in regions of positive, negative, and neutral curvature. We hypothesize that the proton relaxation enhancement observed results from the presence of a unique hydrophilic environment produced by Gd(III)–DNA in these regions, which allows second-sphere water molecules to remain adjacent to Gd(III) ions for up to 10 times longer than diffusion. These results establish that particle shape and second-sphere relaxivity are important considerations in the design of Gd(III) nanoconjugate CAs. PMID:25723190

  10. Ion Desorption Stability in Superconducting High Energy Physics Proton Colliders

    SciTech Connect

    Turner, W.C.

    1995-05-29

    In this paper we extend our previous analysis of cold beam tube vacuum in a superconducting proton collider to include ion desorption in addition to thermal desorption and synchrotron radiation induced photodesorption. The new ion desorption terms introduce the possibility of vacuum instability. This is similar to the classical room temperature case but now modified by the inclusion of ion desorption coefficients for cryosorbed (physisorbed) molecules which can greatly exceed the coefficients for tightly bound molecules. The sojourn time concept for physisorbed H{sub 2} is generalized to include photodesorption and ion desorption as well as the usually considered thermal desorption. The ion desorption rate is density dependent and divergent so at the onset of instability the sojourn time goes to zero. Experimental data are used to evaluate the H{sub 2} sojourn time for the conditions of the Large Hadron Collider (LHC) and the situation is found to be stable. The sojourn time is dominated by photodesorption for surface density s(H{sub 2}) less than a monolayer and by thermal deposition for s(H{sub 2}) greater than a monolayer. For a few percent of a monolayer, characteristic of a beam screen, the photodesorption rate exceeds ion desorption rate by more than two orders of magnitude. The photodesorption rate corresponds to a sojourn time of approximately 100 sec. The paper next turns to the evaluation of stability margins and inclusion of gases heavier than H{sub 2} (CO, CO{sub 2} and CH{sub 4}), where ion desorption introduces coupling between molecular species. Stability conditions are worked out for a simple cold beam tube, a cold beam tube pumped from the ends and a cold beam tube with a co-axial perforated beam screen. In each case a simple inequality for stability of a single component is replaced by a determinant that must be greater than zero for a gas mixture. The connection with the general theory of feedback stability is made and it is shown that the gains

  11. Advanced high efficient liquid transport garments

    NASA Technical Reports Server (NTRS)

    Elkins, W.; Williams, W.

    1973-01-01

    The heat transfer characteristics, design, fabrication, and current and anticipated applications of a new liquid transport garment (LTG) are discussed. The new LTG is being constructed from highly efficient liquid transport modules which have been developed to replace the current tygon tubing networks for applications in Apollo and other liquid cooling garment designs.

  12. Novel Nanophosphors for High Efficiency Fluorescent Lamps

    SciTech Connect

    Alok M. Srivastava

    2005-09-30

    This is the Yearly Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. Our chief achievement, during the current contract period, pertains to the successful synthesis and characterization of coated phosphors. We demonstrated several synthesis techniques for the coating of micron sized commercial phosphors with quantum-splitting and UV emitting nanophosphors. We have also continued our fundamental investigations into the physical processes that determine the quantum efficiency of the nanophosphors and this has further helped codify a set of rules for the host lattice that support efficient quantum splitting and UV emission at room temperature. In this report we summarize the technical work completed under the Program, summarize our findings about the performance limits of the various technologies we investigated, and outline promising paths for future work.

  13. Single event upset and charge collection measurements using high energy protons and neutrons

    SciTech Connect

    Normand, E.; Oberg, D.L.; Wert, J.L.; Ness, J.D.; Majewski, P.P. ); Wender, S.; Gavron, A. )

    1994-12-01

    RAMs, microcontrollers and surface barrier detectors were exposed to beams of high energy protons and neutrons to measure the induced number of upsets as well as energy deposition. The WNR facility at Los Alamos provided a neutron spectrum similar to that of the atmospheric neutrons. Its effect on devices was compared to that of protons with energies of 200, 400, 500, and 800 MeV. Measurements indicate that SEU cross sections for 400 MeV protons are similar to those induced by the atmospheric neutron spectrum.

  14. Efficient circuit triggers high-current, high-voltage pulses

    NASA Technical Reports Server (NTRS)

    Green, E. D.

    1964-01-01

    Modified circuit uses diodes to effectively disconnect the charging resistors from the circuit during the discharge cycle. Result is an efficient parallel charging, high voltage pulse modulator with low voltage rating of components.

  15. High efficiency compound semiconductor concentrator photovoltaics

    NASA Technical Reports Server (NTRS)

    Borden, P.; Gregory, P.; Saxena, R.; Owen, R.; Moore, O.

    1980-01-01

    Special emphasis was given to the high yield pilot production of packaged AlGaAs/GaAs concentrator solar cells, using organometallic VPE for materials growth, the demonstration of a concentrator module using 12 of these cells which achieved 16.4 percent conversion efficiency at 50 C coolant inlet temperature, and the demonstration of a spectral splitting converter module that achieved in excess of 20 percent efficiency. This converter employed ten silicon and ten AlGaAs cells with a dichroic filter functioning as the beam splitter. A monolithic array of AlGaAs/GaAs solar cells is described.

  16. High Efficiency Solar Integrated Roof Membrane Product

    SciTech Connect

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  17. Refractory oxide hosts for a high power, broadly tunable laser with high quantum efficiency and method of making same

    DOEpatents

    Chen, Yok; Gonzalez, Roberto

    1986-01-01

    Refractory oxide crystals having high-quantum efficiency and high thermal stability for use as broadly tunable laser host materials. The crystals are formed by removing hydrogen from a single crystal of the oxide material to a level below about 10.sup.12 protons per cm.sup.3 and subsequently thermochemically reducing the oxygen content of the crystal to form sufficient oxygen anion vacancies so that short-lived F.sup.+ luminescence is produced when the crystal is optically excited.

  18. Refractory oxide hosts for a high power, broadly tunable laser with high quantum efficiency and method of making same

    DOEpatents

    Chen, Yok; Gonzalez, R.

    1985-07-03

    Refractory oxide crystals having high-quantum efficiency and high thermal stability for use as broadly tunable laser host materials. The crystals are formed by removing hydrogen from a single crystal of the oxide material to a level below about 10/sup 12/ protons per cm/sup 3/ and subsequently thermochemically reducing the oxygen content of the crystal to form sufficient oxygen anion vacancies so that short-lived F/sup +/ luminescence is produced when the crystal is optically excited.

  19. Isochoric heating of matter by laser-accelerated high-energy protons

    NASA Astrophysics Data System (ADS)

    Antici, P.; Fuchs, J.; Atzeni, S.; Benuzzi, A.; Brambrink, E.; Esposito, M.; Koenig, M.; Ravasio, A.; Schreiber, J.; Schiavi, A.; Audebert, P.

    2006-06-01

    We describe an experiment on isochoric heating of matter by intense laser-accelerated protons. The experiment was performed using the LULI 100 TW facility with 15-20 J on target energy and > 1019 W.cm - 2 maximum focused intensity. Focusing the laser on a 10 micron thick Au foil, we accelerated forward a laminar proton beam with a maximum energy of 16 MeV. This proton beam irradiated and heated a secondary target positioned after a variable vacuum gap. The heating was diagnosed by 1D and 2D time-resolved measurements of the optical self-emission of the heated target rear-surface. Detailed results as a function of the Z and the thickness of the secondary target as well as analysis, including a full modelling of the target heating with a 2D hydro-code (DUED) coupled to a proton energy deposition code, were obtained. We have also studied the efficiency of heating as a function of the primary target topology, i.e. either flat, which results in a diverging proton beam, or curved, which has the ability of focusing partly the proton beam.

  20. Thermal modeling of high efficiency AMTEC cells

    SciTech Connect

    Ivanenok, J.F. III; Sievers, R.K.; Crowley, C.J.

    1995-12-31

    Remotely condensed Alkali Metal Thermal to Electric Conversion (AMTEC) cells achieve high efficiency by thermally isolating the hot {beta} Alumina Solid Electrolyte (BASE) tube from the cold condensing region. In order to design high efficiency AMTEC cells the designer must understand the heat losses associated with the AMTEC process. The major parasitic heat losses are due to conduction and radiation, and significant coupling of the two mechanisms occurs. This paper describes an effort to characterize the thermal aspects of the model PL-6 AMTEC cell and apply this understanding to the design of a higher efficiency AMTEC cell, model PL-8. Two parallel analyses were used to model the thermal characteristics of PL-6. The first was a lumped node model using the classical electric circuit analogy and the second was a detailed finite-difference model. The lumped node model provides high speed and reasonable accuracy, and the detailed finite-difference model provides a more accurate, as well as visual, description of the cell temperature profiles. The results of the two methods are compared to the as-measured PL-6 data. PL-6 was the first cell to use a micromachined condenser to lower the radiation losses to the condenser, and it achieved a conversion efficiency of 15% (3 W output/20 W Input) at a temperature of 1050 K.

  1. Proton radiography experiments on shocked high explosive products.

    SciTech Connect

    Ferm, Eric N.; Dennsion, Steve; Lopez, Robert; Prestridge, Kathy; Quintana, John P.; Espinoza, Camilo; King, Gary Hogan Nick; Merrill, Frank; Kevin Morley,; Morris, Christopher L.; Pazuchanic, Peter

    2003-07-22

    We studied the propagation of detonation waves and reflections of normal incident detonation waves in explosive products using the 800 MeV proton radiography facility at LANSCE. Using this system, we obtain seven to twenty-one radiographic images of each experiment. We have examined the experimental wave velocity and density of the materials ahead and behind of the shocks as inferred from radiographs and compare them to standard explosive equations of state. Finally we compare the experiments with calculations of the experiments using the MESA hydrodynamics code.

  2. H- Ion Sources for High Intensity Proton Drivers

    SciTech Connect

    Johnson, Rolland Paul; Dudnikov, Vadim

    2015-02-20

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency, reliability and availability for pulsed operation as used in the ORNL Spallation Neutron Source . At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with 4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the aluminum nitride (AlN) discharge chamber for 32 days at high discharge power in an RF SPS with an external antenna. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. While this project demonstrated the advantages of the pulsed version of the SA RF SPS as an upgrade to the ORNL Spallation Neutron Source, it led to a possibility for upgrades to CW machines like the many cyclotrons used for commercial applications. Four appendices contain important details of the work carried out under this grant.

  3. High-Temperature High-Efficiency Solar Thermoelectric Generators

    SciTech Connect

    Baranowski, LL; Warren, EL; Toberer, ES

    2014-03-01

    Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000A degrees C to 100A degrees C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

  4. Detailed parametrization of neutrino and gamma-ray energy spectra from high energy proton-proton interactions

    NASA Astrophysics Data System (ADS)

    Supanitsky, A. D.

    2016-02-01

    Gamma rays and neutrinos are produced as a result of proton-proton interactions that occur in different astrophysical contexts. The detection of these two types of messengers is of great importance for the study of different physical phenomena, related to nonthermal processes, taking place in different astrophysical scenarios. Therefore, the knowledge of the energy spectrum of these two types of particles, as a function of the incident proton energy, is essential for the interpretation of the observational data. In this paper, parametrizations of the energy spectra of gamma rays and neutrinos, originated in proton-proton collisions, are presented. The energy range of the incident protons considered extends from 102 to 108 GeV . The parametrizations are based on Monte Carlo simulations of proton-proton interactions performed with the hadronic interaction models QGSJET-II-04 and EPOS-LHC, which have recently been updated with the data taken by the Large Hadron Collider.

  5. Results on damage induced by high-energy protons in LYSO calorimeter crystals

    NASA Astrophysics Data System (ADS)

    Dissertori, G.; Luckey, D.; Nessi-Tedaldi, F.; Pauss, F.; Quittnat, M.; Wallny, R.; Glaser, M.

    2014-05-01

    Lutetium-Yttrium Orthosilicate doped with Cerium (LYSO), as a bright scintillating crystal, is a candidate for calorimetry applications in strong ionising-radiation fields and large high-energy hadron fluences are expected at the CERN Large Hadron Collider after the planned High-Luminosity upgrade. There, proton-proton collisions will produce fast hadron fluences up to ~ 5 ×1014cm-2 in the large-rapidity regions of the calorimeters. The performance of LYSO has been investigated, after exposure to different fluences of 24 GeV c-1 protons. Measured changes in optical transmission as a function of proton fluence are presented, and the evolution over time due to spontaneous recovery at room temperature is studied. The activation of materials will also be an issue in the described environment. Studies of the ambient dose induced by LYSO and its evolution with time, in comparison with other scintillating crystals, have also been performed through measurements and FLUKA simulations.

  6. High-intensity laser-driven proton acceleration enhancement from hydrogen containing ultrathin targets

    SciTech Connect

    Dollar, F.; Reed, S. A.; Matsuoka, T.; Bulanov, S. S.; Chvykov, V.; Kalintchenko, G.; McGuffey, C.; Rousseau, P.; Thomas, A. G. R.; Willingale, L.; Yanovsky, V.; Krushelnick, K.; Maksimchuk, A.; Litzenberg, D. W.

    2013-09-30

    Laser driven proton acceleration experiments from micron and submicron thick targets using high intensity (2 × 10{sup 21} W/cm{sup 2}), high contrast (10{sup −15}) laser pulses show an enhancement of maximum energy when hydrogen containing targets were used instead of non-hydrogen containing. In our experiments, using thin (<1μm) plastic foil targets resulted in maximum proton energies that were consistently 20%–100% higher than when equivalent thickness inorganic targets, including Si{sub 3}N{sub 4} and Al, were used. Proton energies up to 20 MeV were measured with a flux of 10{sup 7} protons/MeV/sr.

  7. Report of the Snowmass M6 Working Group on high intensity proton sources

    SciTech Connect

    Weiren Chou and J. Wei

    2002-08-20

    The U.S. high-energy physics program needs an intense proton source, a 1-4 MW Proton Driver (PD), by the end of this decade. This machine will serve as a stand-alone facility that will provide neutrino superbeams and other high intensity secondary beams such as kaons, muons, neutrons, and anti-protons (cf. E1 and E5 group reports) and also serve as the first stage of a neutrino factory (cf. M1 group report). It can also be a high brightness source for a VLHC. Based on present accelerator technology and project construction experience, it is both feasible and cost-effective to construct a 1-4 MW Proton Driver. Two recent PD design studies have been made, one at FNAL and the other at the BNL. Both designed PD's for 1 MW proton beams at a cost of about U.S. $200M (excluding contingency and overhead) and both designs were upgradeable to 4 MW. An international collaboration between FNAL, BNL and KEK on high intensity proton facilities is addressing a number of key design issues. The superconducting (sc) RF cavities, cryogenics, and RF controls developed for the SNS can be directly adopted to save R&D efforts, cost, and schedule. PD studies are also actively being pursued at Europe and Japan.

  8. Laser-driven high-energy proton beam with homogeneous spatial profile from a nanosphere target

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Kim, I. J.; Psikal, J.; Kaufman, J.; Mocek, T.; Choi, I. W.; Stolcova, L.; Proska, J.; Choukourov, A.; Melnichuk, I.; Klimo, O.; Limpouch, J.; Sung, J. H.; Lee, S. K.; Korn, G.; Jeong, T. M.

    2015-07-01

    A high-energy, high-yield proton beam with a good homogeneous profile has been generated from a nanosphere target irradiated by a short (30-fs), intense (7 ×1020 W /cm2 ) laser pulse. A maximum proton energy of 30 MeV has been observed with a high proton number of 7 ×1010 in the energy range 5-30 MeV. A homogeneous spatial profile with a uniformity (standard deviation from an average value within 85% beam area) of 15% is observed with the nanosphere dielectric target. Particle-in-cell simulations show the enhancement of proton cutoff energy and proton number with the nanosphere target and reveal that the homogeneous beam profile is related with a broadened angular distribution of hot electrons, which is initiated by the nanosphere structure. The homogeneous spatial properties obtained with the nanosphere target will be advantageous in developing laser-driven proton sources for practical applications in which high-quality beams are required.

  9. High efficiency, low cost scrubber upgrades

    SciTech Connect

    Klingspor, J.S.; Walters, M.

    1998-07-01

    ABB introduced the LS-2 technology; a limestone based wet FGD system, which is capable of producing high purity gypsum from low grade limestone, in late 1995. Drawing from 30,000 MWe of worldwide wet FGD experience, ABB has incorporated several innovations in the new system designed to reduce the overall cost of SO{sub 2} compliance. Collectively, these improvements are referred to as LS-2. The improvements include a compact high efficiency absorber, a simple dry grinding system, a closed coupled flue gas reheat system, and a tightly integrated dewatering system. The compact absorber includes features such a high velocity spray zone, significantly improved gas-liquid contact system, compact reaction tank, and a high velocity mist eliminator. The LS-2 system is being demonstrated at Ohio Edison's Niles Plant at the 130 MWe level, and this turnkey installation was designed and erected in a 20-month period. At Niles, all of the gypsum is sold to a local wallboard manufacturer. Many of the features included in the LS-2 design and demonstrated at Niles can be used to improve the efficiency and operation of existing systems including open spray towers and tray towers. The SO{sub 2} removal efficiency can be significantly improved by installing the high efficiency LS-2 style spray header design and the unique wall rings. The absorber bypass can be eliminated or reduced by including the LS-2 style high velocity mist eliminator. Also, the LS-2 style spray header design combined with wall rings allow for an increase in absorber gas velocity at a maintained or improved performance without the need for costly upgrades of the absorber recycle pumps. the first upgrade using LS-2 technology was done at CPA's Coal Creek Station (2{times}545 MWe). The experience form the scrubber upgrade at Coal Creek is discussed along with operating results.

  10. Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH

    PubMed Central

    Yamaguchi, Akira; Inuzuka, Riko; Takashima, Toshihiro; Hayashi, Toru; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2014-01-01

    Manganese oxides have been extensively investigated as model systems for the oxygen-evolving complex of photosystem II. However, most bioinspired catalysts are inefficient at neutral pH and functional similarity to the oxygen-evolving complex has been rarely achieved with manganese. Here we report the regulation of proton-coupled electron transfer involved in water oxidation by manganese oxides. Pyridine and its derivatives, which have pKa values intermediate to the water ligand bound to manganese(II) and manganese(III), are used as proton-coupled electron transfer induction reagents. The induction of concerted proton-coupled electron transfer is demonstrated by the detection of deuterium kinetic isotope effects and compliance of the reactions with the libido rule. Although proton-coupled electron transfer regulation is essential for the facial redox change of manganese in photosystem II, most manganese oxides impair these regulatory mechanisms. Thus, the present findings may provide a new design rationale for functional analogues of the oxygen-evolving complex for efficient water splitting at neutral pH. PMID:24977746

  11. High efficiency low cost solar cell power

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Blocker, W.

    1978-01-01

    A concept for generating high-efficiency, low-cost, solar-cell power is outlined with reference to solar cell parameters, optical concentrators, and thermal control procedures. A design for a 12.5-kw power module for space operation is discussed noting the optical system, spectrum splitter, light conversion system, cell cooling, power conditioner, and tracking mechanism. It is found that for an unconcentrated array, efficiency approaches 60% when ten or more bandgaps are used. For a 12-band system, a computer program distributed bandgaps for maximum efficiency and equal cell currents. Rigid materials and thin films have been proposed for optical components and prisms, gratings, and dichroic mirrors have been recommended for spectrum splitting. Various radiator concepts are noted including that of Weatherston and Smith (1960) and Hedgepeth and Knapp (1978). The concept may be suitable for the Solar Power Satellite.

  12. High-efficiency silicon concentrator cell commercialization

    SciTech Connect

    Sinton, R.A.; Swanson, R.M.

    1993-05-01

    This report summarizes the first phase of a forty-one month program to develop a commercial, high-efficiency concentrator solar cell and facility for manufacturing it. The period covered is November 1, 1990 to December 31, 1991. This is a joint program between the Electric Power Research Institute (EPRI) and Sandia National Laboratories. (This report is also published by EPRI as EPRI report number TR-102035.) During the first year of the program, SunPower accomplished the following major objectives: (1) a new solar cell fabrication facility, which is called the Cell Pilot Line (CPL), (2) a baseline concentrator cell process has been developed, and (3) a cell testing facility has been completed. Initial cell efficiencies are about 23% for the baseline process. The long-range goal is to improve this efficiency to 27%.

  13. High efficiency electrotransformation of Lactobacillus casei.

    PubMed

    Welker, Dennis L; Hughes, Joanne E; Steele, James L; Broadbent, Jeff R

    2015-01-01

    We investigated whether protocols allowing high efficiency electrotransformation of other lactic acid bacteria were applicable to five strains of Lactobacillus casei (12A, 32G, A2-362, ATCC 334 and BL23). Addition of 1% glycine or 0.9 M NaCl during cell growth, limitation of the growth of the cell cultures to OD600 0.6-0.8, pre-electroporation treatment of cells with water or with a lithium acetate (100 mM)/dithiothreitol (10 mM) solution and optimization of electroporation conditions all improved transformation efficiencies. However, the five strains varied in their responses to these treatments. Transformation efficiencies of 10(6) colony forming units μg(-1) pTRKH2 DNA and higher were obtained with three strains which is sufficient for construction of chromosomal gene knock-outs and gene replacements. PMID:25670703

  14. Methodologies for high efficiency perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Park, Nam-Gyu

    2016-06-01

    Since the report on long-term durable solid-state perovskite solar cell in 2012, perovskite solar cells based on lead halide perovskites having organic cations such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)2PbI3 have received great attention because of superb photovoltaic performance with power conversion efficiency exceeding 22 %. In this review, emergence of perovskite solar cell is briefly introduced. Since understanding fundamentals of light absorbers is directly related to their photovoltaic performance, opto-electronic properties of organo lead halide perovskites are investigated in order to provide insight into design of higher efficiency perovskite solar cells. Since the conversion efficiency of perovskite solar cell is found to depend significantly on perovskite film quality, methodologies for fabricating high quality perovskite films are particularly emphasized, including various solution-processes and vacuum deposition method.

  15. Cell kill by megavoltage protons with high LET.

    PubMed

    Kuperman, Vadim Y

    2016-07-21

    The aim of the current study is to develop a radiobiological model which describes the effect of linear energy transfer (LET) on cell survival and relative biological effectiveness (RBE) of megavoltage protons. By assuming the existence of critical sites within a cell, analytical expression for cell survival S as a function of LET is derived. The obtained results indicate that in cases where dose per fraction is small, [Formula: see text] is a linear-quadratic (LQ) function of dose while both alpha and beta radio-sensitivities are non-linearly dependent on LET. In particular, in the current model alpha increases with increasing LET while beta decreases. Conversely, in the case of large dose per fraction, the LQ dependence of [Formula: see text] on dose is invalid. The proposed radiobiological model predicts cell survival probability and RBE which, in general, deviate from the results obtained by using conventional LQ formalism. The differences between the LQ model and that described in the current study are reflected in the calculated RBE of protons. PMID:27351166

  16. Cell kill by megavoltage protons with high LET

    NASA Astrophysics Data System (ADS)

    Kuperman, Vadim Y.

    2016-07-01

    The aim of the current study is to develop a radiobiological model which describes the effect of linear energy transfer (LET) on cell survival and relative biological effectiveness (RBE) of megavoltage protons. By assuming the existence of critical sites within a cell, analytical expression for cell survival S as a function of LET is derived. The obtained results indicate that in cases where dose per fraction is small, \\ln (S) is a linear–quadratic (LQ) function of dose while both alpha and beta radio-sensitivities are non-linearly dependent on LET. In particular, in the current model alpha increases with increasing LET while beta decreases. Conversely, in the case of large dose per fraction, the LQ dependence of \\ln (S) on dose is invalid. The proposed radiobiological model predicts cell survival probability and RBE which, in general, deviate from the results obtained by using conventional LQ formalism. The differences between the LQ model and that described in the current study are reflected in the calculated RBE of protons.

  17. Synthesis of proton conducting mesoporous materials and composite membranes for high temperature proton exchange membrane (PEM) fuel cells

    NASA Astrophysics Data System (ADS)

    Feng, Fangxia

    Tungstosilicate mesoporous materials (WMM) were synthesized using the ionic surfactant cetyltrimethylammonium bromide (C16H33N +(CH3)3Br- CTMABr) and non-ionic surfactants, including C12H25(OCH2CH 2)10OH (Brij 22, C12EO10OH), C 16H33(OCH2CH2)10OH (Brij 56, C16EO10OH), and C18H37(OCH 2CH2)10OH (Brij 76, C18EO10OH). The proton conductivities were measured by AC impedance spectroscopy. Using CTMABr, the highest W/Si ratio achieved for the molecular sieve product was 0.03. The conductivity ranged from 0.5 to 2.2 x 10-2 S/cm, where the highest conductivity was observed with the H3PO 4 based preparation. Non-ionic surfactants produced materials with a W/Si ratio as high as 0.05 without any dense WO3 impurities. These samples showed thicker pore walls (39A), higher thermal stability, and higher proton conductivity (4.0 x 10-2 S/cm). The WMMs were also employed to make a composite membrane with linear polyethyleneimine (PEI), 3-glycidoxypropyltrimethoxysilane (GLYMO), bis(trifluoromethanesulfonyl)imide (HTFSI). At 100°C and 100% relative humidity, the composite membrane with 30 wt.% calcined (at 500°C) WMM showed the highest conductivity of 6.1 x 10-2 S/cm. At 130°C and 20% relative humidity, the highest conductivity of 6.4 x 10-3 S/cm was obtained for the composite membrane with 30 wt.% as-synthesized WMM. Transparent free-standing mesoporous silica (MS) films were synthesized from a system of TMOS-Brij-Acid-H2O. The non-ionic surfactants used included Brij 22 (Cl2EO10OH), Brij 56 (C16EO 10OH), and Brij 76 (C18EO10OH). The acids used include HCl, H3PO4, and CF3SO3H. The effect of synthesis parameters on the synthesis and the proton conductivity of mesoporous silica were investigated. The Brij 56/CF3SO 3H based product showed the highest conductivity of 6.5 x 10 -2 S/cm at room temperature. Composite was prepared by combing TMOS, Brij surfactant, acid (HCl, H3PO4, or CF 3SO3H), N-[3-(trimethoxysilyl)propyl]-ethylenediamine (EDATMS), 3-glycidoxypropylmethoxysilane (GLYMO

  18. High throughput ab-intio modeling of proton transport in solid electrolytes

    NASA Astrophysics Data System (ADS)

    Balachandran, Janakiraman; Lin, Lianshan; Ganesh, Panchapakesan

    Solid oxide materials that can selectively transport protons have great potential for fuel cell applications. However several fundamental questions remain unanswered such as (a) How do the dopants organize at various dopant concentrations, (b) How spatial organization of dopants influence proton migration energy, (c) How disorder and strain in a material influence its ionic transport. In this work have developed an integrated high throughput framework to calculate proton transport properties by integrating open source packages (such as pymatgen, fireworks) The high throughput framework scales well on supercomputing clusters. We have used this framework to analyze over 100 perovskites compounds with over 12 different dopant atoms. These computational models enable us to obtain insights how the proton transport properties depend on host and dopant atoms. Further, we also perform ab-initio modeling to understand how dopants spatially organize at different dopant concentrations, and how this spatial organization affects proton conductivity. This analysis enabled us to obtain fundamental insights on why proton conductivity decreases in Y doped BaZrO3 at high dopant concentrations.

  19. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly.

    PubMed

    Wu, Li-Zhu; Chen, Bin; Li, Zhi-Jun; Tung, Chen-Ho

    2014-07-15

    Conspectus One of the best solutions for meeting future energy demands is the conversion of water into hydrogen fuel using solar energy. The splitting of water into molecular hydrogen (H2) and oxygen (O2) using light involves two half-reactions: the oxidation of water to O2 and the reduction of protons to H2. To take advantage of the full range of the solar spectrum, researchers have extensively investigated artificial photosynthesis systems consisting of two photosensitizers and two catalysts with a Z-configuration: one photosensitizer-catalyst pair for H2 evolution and the other for O2 evolution. This type of complete artificial photosynthesis system is difficult to build and optimize; therefore, researchers typically study the reductive half-reaction and the oxidative half-reaction separately. To study the two half-reactions, researchers use a sacrificial electron donor to provide electrons for the reductive half-reaction, and a sacrificial electron acceptor to capture electrons for the oxidative half-reaction. After optimization, they can eliminate the added donors and acceptors as the two half reactions are coupled to a complete photocatalytic water spitting system. Most photocatalytic systems for the H2 evolution half-reaction consist of a photosensitizer, a catalyst, and a sacrificial electron donor. To promote photoinduced electron transfer and photocatalytic H2 production, these three components should be assembled together in a controlled manner. Researchers have struggled to design a photocatalytic system for H2 evolution that uses earth-abundant materials and is both efficient and durable. This Account reviews advances our laboratory has made in the development of new systems for photocatalytic H evolution that uses earth-abundant materials and is both efficient and durable. We used organometallic complexes and quantum-confined semiconductor nanocrystals (QDs) as photosensitizers, and [FeFe]-H2ase mimics and inorganic transition metal salts as catalysts

  20. Creation of High Efficient Firefly Luciferase

    NASA Astrophysics Data System (ADS)

    Nakatsu, Toru

    Firefly emits visible yellow-green light. The bioluminescence reaction is carried out by the enzyme luciferase. The bioluminescence of luciferase is widely used as an excellent tool for monitoring gene expression, the measurement of the amount of ATP and in vivo imaging. Recently a study of the cancer metastasis is carried out by in vivo luminescence imaging system, because luminescence imaging is less toxic and more useful for long-term assay than fluorescence imaging by GFP. However the luminescence is much dimmer than fluorescence. Then bioluminescence imaging in living organisms demands the high efficient luciferase which emits near infrared lights or enhances the emission intensity. Here I introduce an idea for creating the high efficient luciferase based on the crystal structure.

  1. High-rate counting efficiency of VLPC

    SciTech Connect

    Hogue, H.H.

    1998-11-01

    A simple model is applied to describe dependencies of Visible Light Photon Counter (VLPC) characteristics on temperature and operating voltage. Observed counting efficiency losses at high illumination, improved by operating at higher temperature, are seen to be a consequence of de-biasing within the VLPC structure. A design improvement to minimize internal de-biasing for future VLPC generations is considered. {copyright} {ital 1998 American Institute of Physics.}

  2. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1987-01-01

    Diode-laser-pumped solid-state laser oscillators and nonlinear processes were investigated. A new generation on nonplanar oscillator was fabricated, and it is anticipated that passive linewidths will be pushed to the kilohertz regime. A number of diode-pumped laser transitions were demonstrated in the rod configuration. Second-harmonic conversion efficiencies as high as 15% are routinely obtained in a servo-locked external resonant doubling crystal at 15 mW cw input power levels at 1064 nm.

  3. Highly efficient spin filtering of ballistic electrons

    NASA Astrophysics Data System (ADS)

    Steinmuller, S. J.; Trypiniotis, T.; Cho, W. S.; Hirohata, A.; Lew, W. S.; Vaz, C. A.; Bland, J. A.

    2004-04-01

    Spin dependent electron transport in hybrid Au/Co/Cu/NiFe/n-GaAs spin valve Schottky barrier structures was investigated using photoexcitation at various wavelengths. For excitation with the photon energy well above the Schottky barrier height we found a ˜2400% increase in helicity dependent photocurrent on switching the spin valve from parallel to antiparallel alignment. Our observations provide clear evidence for highly efficient spin filtering of spin polarized ballistic electrons.

  4. High Efficiency Thermoelectric Materials and Devices

    NASA Technical Reports Server (NTRS)

    Kochergin, Vladimir (Inventor)

    2013-01-01

    Growth of thermoelectric materials in the form of quantum well super-lattices on three-dimensionally structured substrates provide the means to achieve high conversion efficiency of the thermoelectric module combined with inexpensiveness of fabrication and compatibility with large scale production. Thermoelectric devices utilizing thermoelectric materials in the form of quantum well semiconductor super-lattices grown on three-dimensionally structured substrates provide improved thermoelectric characteristics that can be used for power generation, cooling and other applications..

  5. Efficient High-Pressure State Equations

    NASA Technical Reports Server (NTRS)

    Harstad, Kenneth G.; Miller, Richard S.; Bellan, Josette

    1997-01-01

    A method is presented for a relatively accurate, noniterative, computationally efficient calculation of high-pressure fluid-mixture equations of state, especially targeted to gas turbines and rocket engines. Pressures above I bar and temperatures above 100 K are addressed The method is based on curve fitting an effective reference state relative to departure functions formed using the Peng-Robinson cubic state equation Fit parameters for H2, O2, N2, propane, methane, n-heptane, and methanol are given.

  6. EGRET High Energy Capability and Multiwavelength Flare Studies and Solar Flare Proton Spectra

    NASA Technical Reports Server (NTRS)

    Chupp, Edward L.

    1997-01-01

    UNH was assigned the responsibility to use their accelerator neutron measurements to verify the TASC response function and to modify the TASC fitting program to include a high energy neutron contribution. Direct accelerator-based measurements by UNH of the energy-dependent efficiencies for detecting neutrons with energies from 36 to 720 MeV in NaI were compared with Monte Carlo TASC calculations. The calculated TASC efficiencies are somewhat lower (by about 20%) than the accelerator results in the energy range 70-300 MeV. The measured energy-loss spectrum for 207 MeV neutron interactions in NaI were compared with the Monte Carlo response for 200 MeV neutrons in the TASC indicating good agreement. Based on this agreement, the simulation was considered to be sufficiently accurate to generate a neutron response library to be used by UNH in modifying the TASC fitting program to include a neutron component in the flare spectrum modeling. TASC energy-loss data on the 1991 June 11 flare was transferred to UNH. Also included appendix: Gamma-rays and neutrons as a probe of flare proton spectra: the solar flare of 11 June 1991.

  7. Real Compton Scattering on Proton at High Momentum Transfers

    SciTech Connect

    A. Danagoulian; D.J. Hamilton; C.E. Hyde-Wright; V.H. Mamyan; A.M. Nathan; M. Roedelbronn; B. Wojtsekhowski

    2005-06-01

    The E99-114 experiment was carried out to measure the cross sections for Real Compton Scattering (RCS) on the proton in the kinematic range s = 5-11 GeV{sup 2}, -t = 2-7 GeV{sup 2}. In addition, a measurement of longitudinal and transverse polarization transfers was made at s = 6.9 GeV{sup 2} and -t = 4.0 GeV{sup 2}. These measurements were done to test the existing theoretical mechanisms for this process and will possibly lead to the determination of RCS form factors which are related to the Generalized Parton Distributions (GPD). The experiment was conducted in Hall A of Thomas Jefferson National Accelerator Facility (Jefferson Lab). Final results of polarization transfer measurements are presented.

  8. FFAG-BASED HIGH-INTENSITY PROTON DRIVERS.

    SciTech Connect

    RUGGIERO, A.G.

    2004-10-13

    This paper is the summary of a feasibility study of a Fixed-Field Alternating-Gradient (FFAG) Accelerator for Protons in the one-to-few GeV energy range, and average beam power of several MWatt. The example they have adopted here is a beam energy of 1 GeV and an average power of 10 MWatt, but of course the same design approach can be used with other beam parameters. The design principles, merits and limitations of the FFAG accelerators have been described previously. In particular, more advanced techniques to minimize magnet dimension and field strength have been recently proposed. The design makes use of a novel concept by which it is possible to cancel chromatic effects, thus making betatron tunes and functions independent of the particle momentum, with an Adjusted Field Profile. The example given here assumes a pulsed mode of operation at the repetition rate of 1.0 kHz.

  9. Laser generated proton beam focusing and high temperature isochoric heating of solid matter

    SciTech Connect

    Snavely, R. A.; Hatchett, S. P.; Key, M. H.; Langdon, A. B.; Lasinski, B. F.; MacKinnon, A. J.; Patel, P.; Town, R.; Wilks, S. C.; Zhang, B.; Akli, K.; Hey, D.; King, J.; Chen, Z.; Izawa, Y.; Kitagawa, Y.; Kodama, R.; Lei, A.; Tampo, M.; Tanaka, K. A.

    2007-09-15

    The results of laser-driven proton beam focusing and heating with a high energy (170 J) short pulse are reported. Thin hemispherical aluminum shells are illuminated with the Gekko petawatt laser using 1 {mu}m light at intensities of {approx}3x10{sup 18} W/cm{sup 2} and measured heating of thin Al slabs. The heating pattern is inferred by imaging visible and extreme-ultraviolet light Planckian emission from the rear surface. When Al slabs 100 {mu}m thick were placed at distances spanning the proton focus beam waist, the highest temperatures were produced at 0.94x the hemisphere radius beyond the equatorial plane. Isochoric heating temperatures reached 81 eV in 15 {mu}m thick foils. The heating with a three-dimensional Monte Carlo model of proton transport with self-consistent heating and proton stopping in hot plasma was modeled.

  10. A Nuclear Interaction Model for Understanding Results of Single Event Testing with High Energy Protons

    NASA Technical Reports Server (NTRS)

    Culpepper, William X.; ONeill, Pat; Nicholson, Leonard L.

    2000-01-01

    An internuclear cascade and evaporation model has been adapted to estimate the LET spectrum generated during testing with 200 MeV protons. The model-generated heavy ion LET spectrum is compared to the heavy ion LET spectrum seen on orbit. This comparison is the basis for predicting single event failure rates from heavy ions using results from a single proton test. Of equal importance, this spectra comparison also establishes an estimate of the risk of encountering a failure mode on orbit that was not detected during proton testing. Verification of the general results of the model is presented based on experiments, individual part test results, and flight data. Acceptance of this model and its estimate of remaining risk opens the hardware verification philosophy to the consideration of radiation testing with high energy protons at the board and box level instead of the more standard method of individual part testing with low energy heavy ions.

  11. Induction of high grade astrocytoma (HGA) by protons: Molecular mechanisms and RBE considerations

    NASA Astrophysics Data System (ADS)

    Dalrymple, G. V.; Leichner, P. K.; Harrison, K. A.; Cox, A. B.; Hardy, K. A.; Salmon, Y. L.; Mitchell, J. C.

    1994-10-01

    Protons of a specific energy, 55 MeV, have been found to induce primary high grade astrocytomas (HGA) in the Rhesus monkey (Macaca mulatta). Brain tumors of this type were not induced by protons of other energies (32-2,300 MeV). Induction of HGA has been identified in human patients who have had radiation therapy to the head. We believe that the induction of HGA in the monkey is a consequence of dose distribution, not some unique ``toxic'' property of protons. Comparison of the human experience with the monkey data indicates the RBE for induction of brain tumors to be about one. It is unlikely that protons cause an unusual change in oncogenic expression, as compared to conventional electromagnetic radiation.

  12. Measurement of high energy resolution inelastic proton scattering at and close to zero degrees

    NASA Astrophysics Data System (ADS)

    Tamii, A.; Fujita, Y.; Matsubara, H.; Adachi, T.; Carter, J.; Dozono, M.; Fujita, H.; Fujita, K.; Hashimoto, H.; Hatanaka, K.; Itahashi, T.; Itoh, M.; Kawabata, T.; Nakanishi, K.; Ninomiya, S.; Perez-Cerdan, A. B.; Popescu, L.; Rubio, B.; Saito, T.; Sakaguchi, H.; Sakemi, Y.; Sasamoto, Y.; Shimbara, Y.; Shimizu, Y.; Smit, F. D.; Tameshige, Y.; Yosoi, M.; Zenhiro, J.

    2009-07-01

    Measurements of inelastic proton scattering with high energy resolution at forward scattering angles including 0∘ are described. High-resolution halo-free beams were accelerated by the cyclotron complex at the Research Center for Nuclear Physics. Instrumental background events were minimized using the high-quality beam. The remaining instrumental background events were eliminated by applying a background subtraction method. As a result, clean spectra were obtained even for a heavy target nucleus such as Pb208. A high energy resolution of 20 keV (FWHM) and a scattering angle resolution of ±0.6∘ were achieved at an incident proton energy of 295 MeV.

  13. Three-hadron angular correlations in high-energy proton-proton and nucleus-nucleus collisions from perturbative QCD

    SciTech Connect

    Ayala, Alejandro; Ortiz, Antonio; Paic, Guy; Jalilian-Marian, Jamal; Magnin, J.; Tejeda-Yeomans, Maria Elena

    2011-08-15

    We study three-hadron azimuthal angular correlations in high-energy proton-proton and central nucleus-nucleus collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider at midrapidity. We use the leading-order parton matrix elements for 2{yields}3 processes and include the effect of parton energy loss in the quark-gluon plasma using the modified fragmentation function approach. For the case when the produced hadrons have either the same or not too different momenta, we observe two away-side peaks at 2{pi}/3 and 4{pi}/3. We consider the dependence of the angular correlations on energy loss parameters that have been used in studies of single inclusive hadron production at RHIC. Our results on the angular dependence of the cross section agree well with preliminary data by the PHENIX Collaboration. We comment on the possible contribution of 2{yields}3 processes to dihadron angular correlations and how a comparison of the two processes may help characterize the plasma further.

  14. Innermost Van Allen Radiation Belt for High Energy Protons at Saturn

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2008-01-01

    The high energy proton radiation belts of Saturn are energetically dominated by the source from cosmic ray albedo neutron decay (CRAND), trapping of protons from beta decay of neutrons emitted from galactic cosmic ray nuclear interactions with the main rings. These belts were originally discovered in wide gaps between the A-ring, Janus/Epimetheus, Mimas, and Enceladus. The narrow F and G rings significant affected the CRAND protons but did not produce total depletion. Voyager 2 measurements subsequently revealed an outermost CRAND proton belt beyond Enceladus. Although the source rate is small, the trapping times limited by radial magnetospheric diffusion are very long, about ten years at peak measured flux inwards of the G ring, so large fluxes can accumulate unless otherwise limited in the trapping region by neutral gas, dust, and ring body interactions. One proposed final extension of the Cassini Orbiter mission would place perikrone in a 3000-km gap between the inner D ring and the upper atmosphere of Saturn. Experience with CRAND in the Earth's inner Van Allen proton belt suggests that a similar innermost belt might be found in this comparably wide region at Saturn. Radial dependence of magnetospheric diffusion, proximity to the ring neutron source, and northward magnetic offset of Saturn's magnetic equator from the ring plane could potentially produce peak fluxes several orders of magnitude higher than previously measured outside the main rings. Even brief passes through such an intense environment of highly penetrating protons would be a significant concern for spacecraft operations and science observations. Actual fluxes are limited by losses in Saturn's exospheric gas and in a dust environment likely comparable to that of the known CRAND proton belts. The first numerical model of this unexplored radiation belt is presented to determine limits on peak magnitude and radial profile of the proton flux distribution.

  15. High efficiency crystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Sah, C. Tang

    1986-01-01

    A review of the entire research program since its inception ten years ago is given. The initial effort focused on the effects of impurities on the efficiency of silicon solar cells to provide figures of maximum allowable impurity density for efficiencies up to about 16 to 17%. Highly accurate experimental techniques were extended to characterize the recombination properties of the residual imputities in the silicon solar cell. A numerical simulator of the solar cell was also developed, using the Circuit Technique for Semiconductor Analysis. Recent effort focused on the delineation of the material and device parameters which limited the silicon efficiency to below 20% and on an investigation of cell designs to break the 20% barrier. Designs of the cell device structure and geometry can further reduce recombination losses as well as the sensitivity and criticalness of the fabrication technology required to exceed 20%. Further research is needed on the fundamental characterization of the carrier recombination properties at the chemical impurity and physical defect centers. It is shown that only single crystalline silicon cell technology can be successful in attaining efficiencies greater than 20%.

  16. Highly efficient fully transparent inverted OLEDs

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Winkler, T.; Hamwi, S.; Schmale, S.; Kröger, M.; Görrn, P.; Johannes, H.-H.; Riedl, T.; Lang, E.; Becker, D.; Dobbertin, T.; Kowalsky, W.

    2007-09-01

    One of the unique selling propositions of OLEDs is their potential to realize highly transparent devices over the visible spectrum. This is because organic semiconductors provide a large Stokes-Shift and low intrinsic absorption losses. Hence, new areas of applications for displays and ambient lighting become accessible, for instance, the integration of OLEDs into the windshield or the ceiling of automobiles. The main challenge in the realization of fully transparent devices is the deposition of the top electrode. ITO is commonly used as transparent bottom anode in a conventional OLED. To obtain uniform light emission over the entire viewing angle and a low series resistance, a TCO such as ITO is desirable as top contact as well. However, sputter deposition of ITO on top of organic layers causes damage induced by high energetic particles and UV radiation. We have found an efficient process to protect the organic layers against the ITO rf magnetron deposition process of ITO for an inverted OLED (IOLED). The inverted structure allows the integration of OLEDs in more powerful n-channel transistors used in active matrix backplanes. Employing the green electrophosphorescent material Ir(ppy) 3 lead to IOLED with a current efficiency of 50 cd/A and power efficiency of 24 lm/W at 100 cd/m2. The average transmittance exceeds 80 % in the visible region. The on-set voltage for light emission is lower than 3 V. In addition, by vertical stacking we achieved a very high current efficiency of more than 70 cd/A for transparent IOLED.

  17. High order magnetic optics for high dynamic range proton radiography at a kinetic energy of 800 MeV

    NASA Astrophysics Data System (ADS)

    Sjue, S. K. L.; Mariam, F. G.; Merrill, F. E.; Morris, C. L.; Saunders, A.

    2016-01-01

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the proton imaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane. Comparison with a series of static calibration images demonstrates the model's accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.

  18. High order magnetic optics for high dynamic range proton radiography at a kinetic energy of 800 MeV.

    PubMed

    Sjue, S K L; Mariam, F G; Merrill, F E; Morris, C L; Saunders, A

    2016-01-01

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the proton imaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane. Comparison with a series of static calibration images demonstrates the model's accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets. PMID:26827356

  19. High Efficiency Colloidal Quantum Dot Phosphors

    SciTech Connect

    Kahen, Keith

    2013-12-31

    The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 °C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 °C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of

  20. High purity efficient first Stokes Raman laser

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomeng; Liu, Qinyong; Li, Daijun; Du, Keming

    2015-02-01

    The subject of the solid-state Raman frequency conversion to the yellow frequency spectra has been an active topic since the mid 1990's, because of its application in bio-medical and astronomy fields. However, the yellow laser performance is often limited because of the cascade conversion to second or higher Stokes. This cascade conversion not only limits the conversion efficiency and the output power of the first Stokes, but also degrades the pulse and the beam profile of the first Stokes. We present a type of polarization coupled Raman resonator, in which the higher order ( the second Stokes and higher ) laser output can be dramatically suppressed. Our Raman resonator is pumped by a Q-switched and frequency doubled slab laser, and we can get an almost pure (P559/(P559 +P532)>99%) 559 nm yellow light output with an efficiency over 39% from 532 nm to 559 nm. The resonator includes a high reflection rear mirror, a KGW crystal, a polarization coupled input/output element, and a high reflection output coupler of 559 nm (R559 nm = 0.6). Furthermore, we have proposed an improvement of this polarization coupled Raman resonator. The theoretical calculations of the temporal and spatial dependent Raman conversion equations show that the conversion efficiency of the first order Stokes is greatly enhanced with an additionalλ/2 waveplate for 589 nm and the BBO crystal.

  1. Quantum wells for high-efficiency photovoltaics

    NASA Astrophysics Data System (ADS)

    Alonso-Álvarez, Diego; Ekins-Daukes, Nicholas

    2016-03-01

    Over the last couple of decades, there has been an intense research on strain balanced semiconductor quantum wells (QW) to increase the efficiency of multi-junction solar (MJ) solar cells grown monolithically on germanium. So far, the most successful application of QWs have required just to tailor a few tens of nanometers the absorption edge of a given subcell in order to reach the optimum spectral position. However, the demand for higher efficiency devices requiring 3, 4 or more junctions, represents a major difference in the challenges QWs must face: tailoring the absorption edge of a host material is not enough, but a complete new device, absorbing light in a different spectral region, must be designed. Among the most important issues to solve is the need for an optically thick structure to absorb enough light while keeping excellent carrier extraction using highly strained materials. Improvement of the growth techniques, smarter device designs - involving superlattices and shifted QWs, for example - or the use of quantum wires rather than QWs, have proven to be very effective steps towards high efficient MJ solar cells based on nanostructures in the last couple of years. But more is to be done to reach the target performances. This work discusses all these challenges, the limitations they represent and the different approaches that are being used to overcome them.

  2. New high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1985-01-01

    A design for silicon solar cells was investigated as an approach to increasing the cell open-circuit voltage and efficiency for flat-plate terrestrial photovoltaic applications. This deviates from past designs, where either the entire front surface of the cell is covered by a planar junction or the surface is textured before junction formation, which results in an even greater (up to 70%) junction area. The heavily doped front region and the junction space charge region are potential areas of high recombination for generated and injected minority carriers. The design presented reduces junction area by spreading equidiameter dot junctions across the surface of the cell, spaced about a diffusion length or less from each other. Various dot diameters and spacings allowed variations in total junction area. A simplified analysis was done to obtain a first-order design optimization. Efficiencies of up to 19% can be obtained. Cell fabrication involved extra masking steps for selective junction diffusion, and made surface passivation a key element in obtaining good collection. It also involved photolithography, with line widths down to microns. A method is demonstrated for achieving potentially high open-circuit voltages and solar-cell efficiencies.

  3. HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS

    SciTech Connect

    Baranec, Christoph; Riddle, Reed; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Dekany, Richard; Kulkarni, Shrinivas; Law, Nicholas M.; Ramaprakash, A. N.; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Punnadi, Sujit

    2014-07-20

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  4. Highly efficient Raman distributed feedback fibre lasers.

    PubMed

    Shi, Jindan; Alam, Shaif-ul; Ibsen, Morten

    2012-02-27

    We demonstrate highly efficient Raman distributed feedback (DFB) fibre lasers for the first time with up to 1.6 W of continuous wave (CW) output power. The DFB Bragg gratings are written directly into two types of commercially available passive germano-silica fibres. Two lasers of 30 cm length are pumped with up to 15 W of CW power at 1068 nm. The threshold power is ~2 W for a Raman-DFB (R-DFB) laser written in standard low-NA fibre, and only ~1 W for a laser written in a high-NA fibre, both of which oscillate in a narrow linewidth of <0.01 nm at ~1117 nm and ~1109 nm, respectively. The slope efficiencies are ~74% and ~93% with respect to absorbed pump power in the low-NA fibre and high-NA fibre respectively. Such high conversion efficiency suggests that very little energy is lost in the form of heat through inefficient energy transfer. Our results are supported by numerical simulations, and furthermore open up for the possibility of having narrow linewidth all-fibre laser sources in wavelength bands not traditionally covered by rare-earth doped silica fibres. Simulations also imply that this technology has the potential to produce even shorter R-DFB laser devices at the centimetre-level and with mW-level thresholds, if Bragg gratings formed in fibre materials with higher intrinsic Raman gain coefficient than silica are used. These materials include for example tellurite or chalcogenide glasses. Using glasses like these would also open up the possibility of having narrow linewidth fibre sources with DFB laser oscillating much further into the IR than what currently is possible with rare-earth doped silica glasses. PMID:22418313

  5. Redistribution of components in the niobium-silicon system under high-temperature proton irradiation

    SciTech Connect

    Afonin, N. N.; Logacheva, V. A. Khoviv, A. M.

    2011-12-15

    The redistribution of components in the niobium-silicon system during magnetron-assisted sputtering of niobium, vacuum annealing, and high-temperature proton irradiation is studied. It is established that, during magnetron-assisted sputtering followed by vacuum annealing, silicon penetrates through the metal film to the outer boundary of the film. Under high-temperature proton irradiation, the suppression of the diffusion of niobium into silicon is observed. This effect is attributed to the high concentration of radiation vacancies in the region of the Nb/Si interphase boundary.

  6. High neutronic efficiency, low current targets for accelerator-based BNCT applications

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1998-08-01

    The neutronic efficiency of target/filters for accelerator-based BNCT applications is measured by the proton current required to achieve a desirable neutron current at the treatment port (10{sup 9} n/cm{sup 2}/s). In this paper the authors describe two possible targeyt/filter concepts wihch minimize the required current. Both concepts are based on the Li-7 (p,n)Be-7 reaction. Targets that operate near the threshold energy generate neutrons that are close tothe desired energy for BNCT treatment. Thus, the filter can be extremely thin ({approximately} 5 cm iron). However, this approach has an extremely low neutron yield (n/p {approximately} 1.0({minus}6)), thus requiring a high proton current. The proposed solutino is to design a target consisting of multiple extremely thin targets (proton energy loss per target {approximately} 10 keV), and re-accelerate the protons between each target. Targets operating at ihgher proton energies ({approximately} 2.5 MeV) have a much higher yield (n/p {approximately} 1.0({minus}4)). However, at these energies the maximum neutron energy is approximately 800 keV, and thus a neutron filter is required to degrade the average neutron energy to the range of interest for BNCT (10--20 keV). A neutron filter consisting of fluorine compounds and iron has been investigated for this case. Typically a proton current of approximately 5 mA is required to generate the desired neutron current at the treatment port. The efficiency of these filter designs can be further increased by incorporating neutron reflectors that are co-axial with the neutron source. These reflectors are made of materials which have high scattering cross sections in the range 0.1--1.0 MeV.

  7. Neutralization and transport of high-current proton beams in a two-stage linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Golkowski, Cz.; Kerslick, G. S.; Nation, J. A.; Ivers, J.

    1992-03-01

    Experimental results on the propagation and transport efficiency of a 1 MV, 5 kA, 50 ns annular proton beam through a two-stage linear induction accelerator are presented. The beam is generated in a magnetically insulated diode and propagates with high-efficiency along a 0.6 T axial magnetic field to a second accelerating gap located 30 cm downstream. The second accelerating gap increases the beam energy to 1.3 MeV. A full-cusp geometry provides the magnetic insulation in both the diode and the second gap. We report in this paper an 86% (±5%) transport efficiency and an increase of 1.6° in the beam divergence for propagation through the post acceleration gap.

  8. REPORT OF THE SNOWMASS M6 WORKING GROUP ON HIGH INTENSITY PROTON SOURCES.

    SciTech Connect

    CHOU,W.; WEI,J.

    2001-08-14

    The M6 working group had more than 40 active participants (listed in Section 4). During the three weeks at Snowmass, there were about 50 presentations, covering a wide range of topics associated with high intensity proton sources. The talks are listed in Section 5. This group also had joint sessions with a number of other working groups, including E1 (Neutrino Factories and Muon Colliders), E5 (Fixed-Target Experiments), M1 (Muon Based Systems), T4 (Particle Sources), T5 (Beam dynamics), T7 (High Performance Computing) and T9 (Diagnostics). The M6 group performed a survey of the beam parameters of existing and proposed high intensity proton sources, in particular, of the proton drivers. The results are listed in Table 1. These parameters are compared with the requirements of high-energy physics users of secondary beams in Working Groups E1 and E5. According to the consensus reached in the E1 and E5 groups, the U.S. HEP program requires an intense proton source, a 1-4 MW Proton Driver, by the end of this decade.

  9. High Power Proton Accelerator Development at KAERI and its Vacuum System

    NASA Astrophysics Data System (ADS)

    Choi, Byung-Ho; Park, Mi Young; Kim, Kui Young; Kim, Kye Ryung; Kim, Jun Yeon; Cho, Yong-Sub

    The Proton Engineering Frontier Project (PEFP), approved and launched by the Korean government in July 2002, includes a 100 MeV proton linear accelerator (linac) development and programs for its utilization and application. The main goals in the first phase of the project, spanning from 2002 to 2005, were the design of a 100 MeV proton linac and the development of a 20 MeV linac consisting of a 50 keV proton injector, a 3 MeV radio frequency quadrupole (RFQ), and a 20 MeV drift tube linac (DTL). The 50 keV injector and 3 MeV RFQ have been installed and tested, and the 20 MeV DTL is being assembled, tuned and under a beam test. At the same time, the utilization programs using the proton beam have been planned, and some are now under way. The vacuum system of the 20 MeV proton linac and its related issues, especially in operation with a high duty, are discussed in detail.

  10. Wavelength Scaling of High Harmonic Generation Efficiency

    SciTech Connect

    Shiner, A. D.; Trallero-Herrero, C.; Kajumba, N.; Corkum, P. B.; Villeneuve, D. M.; Bandulet, H.-C.; Comtois, D.; Legare, F.; Giguere, M.; Kieffer, J-C.

    2009-08-14

    Using longer wavelength laser drivers for high harmonic generation is desirable because the highest extreme ultraviolet frequency scales as the square of the wavelength. Recent numerical studies predict that high harmonic efficiency falls dramatically with increasing wavelength, with a very unfavorable lambda{sup -(5-6)} scaling. We performed an experimental study of the high harmonic yield over a wavelength range of 800-1850 nm. A thin gas jet was employed to minimize phase matching effects, and the laser intensity and focal spot size were kept constant as the wavelength was changed. Ion yield was simultaneously measured so that the total number of emitting atoms was known. We found that the scaling at constant laser intensity is lambda{sup -6.3+}-{sup 1.1} in Xe and lambda{sup -6.5+}-{sup 1.1} in Kr over the wavelength range of 800-1850 nm, somewhat worse than the theoretical predictions.

  11. High energy proton-proton elastic scattering at the Large Hadron Collider and nucleon structure

    NASA Astrophysics Data System (ADS)

    Luddy, Richard Joseph

    To gain insight into the structure of the nucleon, we pursue the development of the phenomenological model of Islam et al. (IIFS model) for high energy elastic pp and p¯p scattering. We determine the energy dependence of the parameters of the IIFS model using the available elastic differential cross section data from SPS Collider and Tevatron and the known asymptotic behavior of sigmatot (s) and rho(s) from dispersion relation calculations and more recent analyses of Cudell et al. (COMPETE Collaboration). Next, we incorporate a high energy elastic valence quark-quark scattering amplitude into the model based on BFKL pomeron to describe small impact parameter (large | t|) pp collisions. Finally, we predict the pp elastic differential cross section at the unprecedented c.m. energy of s = 14.0 TeV at the Large Hadron Collider (LHC). This prediction assumes crucial significance---because of an approved experiment at LHC: TOTal and Elastic Measurement (TOTEM). The TOTEM group plans to measure pp elastic dsigma/dt at 14.0 TeV all the way from momentum transfer |t| = 0 to |t| ≃ 10 GeV 2. Their measurement will stringently test not only the diffraction and o-exchange descriptions of the original IIFS model, but also the additional valence quark-quark scattering contribution that we find to be dominant for large |t|. Successful quantitative verification of the predicted dsigma/dt will mean that our picture of the nucleon with an outer cloud of qq¯ condensed ground state, an inner core of topological baryonic charge, and a still smaller core of massless valence quarks provides a realistic description of nucleon structure.

  12. High Quantum Efficiency OLED Lighting Systems

    SciTech Connect

    Shiang, Joseph

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  13. Optimal conditions for high current proton irradiations at the university of Wisconsin's ion beam laboratory

    SciTech Connect

    Wetteland, C. J.; Field, K. G.; Gerczak, T. J.; Eiden, T. J.; Maier, B. R.; Albakri, O.; Sridharan, K.; Allen, T. R.

    2013-04-19

    The National Electrostatics Corporation's (NEC) Toroidal Volume Ion Source (TORVIS) source is known for exceptionally high proton currents with minimal service downtime as compared to traditional sputter sources. It has been possible to obtain over 150{mu}A of proton current from the source, with over 70{mu}A on the target stage. However, beam fluxes above {approx}1 Multiplication-Sign 10{sup 17}/m2-s may have many undesirable effects, especially for insulators. This may include high temperature gradients at the surface, sputtering, surface discharge, cracking or even disintegration of the sample. A series of experiments were conducted to examine the role of high current fluxes in a suite of ceramics and insulating materials. Results will show the optimal proton irradiation conditions and target mounting strategies needed to minimize unwanted macro-scale damage, while developing a procedure for conducting preliminary radiation experiments.

  14. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P. Mishra, L.; Kewlani, H.; Mittal, K. C.; Patil, D. S.

    2014-03-15

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, −2 to −4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10{sup −3} mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  15. High efficiency x-band TWT amplifiers

    SciTech Connect

    Naqvi, S.; Kerslick, G.S.; Nation, J.A.; Wang, Q.

    1997-12-31

    The authors report on a research program to increase the efficiency of relativistic traveling wave amplifiers to > 50%. The two stage amplifier consists of a bunching periodic structure with phase velocity and a decelerating section with phase velocity significantly lower than the beam velocity. The position of the decelerating stage with respect to the bunching stage is chosen such that the narrowest bunches are sustained in the decelerating field for the longest possible time before significant debunching occurs. Two schemes are under investigation. In the first scheme, a resistive sever is placed between the two stages to suppress temporal phenomena. In the second scheme, the bunching and decelerating stages merge into each other by a gradual change in the iris radius over a wavelength. An absorbing section in this case is placed before the start of the bunching stage. A Coaxial extraction geometry is used in both schemes. Efficiencies obtained from MAGIC simulations are comparable to those obtained in high efficiency klystrons (50--50%) but carry the important advantage of broad-bandwidth, low sensitivity on dimensions, low surface fields, and simplicity of design.

  16. High-efficiency concentrator silicon solar cells

    SciTech Connect

    Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. . Solid-State Electronics Lab.)

    1990-11-01

    This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

  17. Multi-bandgap high efficiency converter (RAINBOW)

    SciTech Connect

    Lewis, C.R.; Phillips, W.M.; Shields, V.B.; Stella, P.M.; Bekey, I.

    1997-12-31

    Many proposals have been made to increase solar array efficiency by using two or more cells with appropriately spaced bandgaps to span a greater portion of the incident spectrum. One such technique is to split the solar spectrum and focus each portion on a different cell bandgap. Each bandgap is selected to best match the input spectral portion and thus obtain maximum efficiency. This paper reports on the reexamination of the spectrally split, individually matched cell approach using modern-day optics and lightweight structures. The RAINBOW multi-bandgap system represents a unique combination of solar cells, concentrators and beam splitters. The use of separate cells offers the widest possible scope of material choices. Many different component combinations are possible. The relatively low temperature operation, due to reduced thermal input per cell, adds to the performance increase. Finally, RAINBOW is a flexible system which can readily expand as new high efficiency components are developed. Based to a large extent on data for real cells and optical components, RAINBOW is expected to convert over 40% of incident solar energy to electricity at the system level. This conclusion is based on preliminary analyses of cell and optics performances.

  18. High efficiency quadruple junction solar cells

    NASA Astrophysics Data System (ADS)

    Bestam, R.; Aissat, A.; Vilcot, J. P.

    2016-03-01

    This work focuses on the modeling and optimization of a structure based on InGaP/InGaAs/InGaAsN/Ge for photovoltaic. In this study we took into consideration the concentration effect of alloys x (In) and y (N) on the strain, the bandgap, the absorption and structure efficiency. It has been shown that the concentration of indium varies the strain and the bandgap. These two parameters change considerably the yield. Also it optimized the effect of alloys on the total absorption of the structure. For a concentration of indium x = 0.40 and y = 0.03 we had a absorption coefficient which is equal to 2 × 106 cm-1. We have found 50% efficiency for the multi-junction structure based on In0.55Ga0.45P/In0.40Ga0.60As/In0.30Ga0.70As0.97N0.03/Ge. To achieve a reliable high efficiency multi-junction structure, we just need to optimize the concentrations of different alloys.

  19. Propensity and Risk Assessment for Solar Particle Events: Consideration of Integral Fluence at High Proton Energies

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Hayat, Matthew J.; Feiveson, alan H.; Cucinotta, Francis A.

    2008-01-01

    For future space missions with longer duration, exposure to large solar particle events (SPEs) with high energy levels is the major concern during extra-vehicular activities (EVAs) on the lunar and Mars surface. The expected SPE propensity for large proton fluence was estimated from a non-homogeneous Poisson model using the historical database for measurements of protons with energy > 30 MeV, Phi(sub 30). The database includes a continuous data set for the past 5 solar cycles. The resultant SPE risk analysis for a specific mission period was made including the 95% confidence level. In addition to total particle intensity of SPE, the detailed energy spectra of protons especially at high energy levels were recognized as extremely important parameter for the risk assessment, since there remains a significant cancer risks from those energetic particles for large events. Using all the recorded proton fluence of SPEs for energies >60 and >100 MeV, Phi(sub 60) and Phi(sub 100), respectively, the expected propensities of SPEs abundant with high energy protons were estimated from the same non-homogeneous Poisson model and the representative cancer risk was analyzed. The dependencies of risk with different energy spectra, for e.g. between soft and hard SPEs, were evaluated. Finally, we describe approaches to improve radiation protection of astronauts and optimize mission planning for future space missions.

  20. High precision measurement of the proton charge radius: The PRad experiment

    SciTech Connect

    Meziane, Mehdi

    2013-11-01

    The recent high precision measurements of the proton charge radius performed at PSI from muonic hydrogen Lamb shift puzzled the hadronic physics community. A value of 0.8418 {+-} 0.0007 fm was extracted which is 7{sigma} smaller than the previous determinations obtained from electron-proton scattering experiments and based on precision spectroscopy of electronic hydrogen. An additional extraction of the proton charge radius from electron scattering at Mainz is also in good agreement with these "electronic" determinations. An independent measurement of the proton charge radius from unpolarized elastic ep scattering using a magnetic spectrometer free method was proposed and fully approved at Jefferson Laboratory in June 2012. This novel technique uses the high precision calorimeter HyCal and a windowless hydrogen gas target which makes possible the extraction of the charge radius at very forward angles and thus very low momentum transfer Q{sup 2} up to 10{sup -4} (GeV/c){sup 2} with an unprecedented sub-percent precision for this type of experiment. In this paper, after a review of the recent progress on the proton charge radius extraction and the new high precision experiment PRad will be presented.

  1. High Efficiency, Illumination Quality OLEDs for Lighting

    SciTech Connect

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In

  2. Pulsed Laser Deposition of High Temperature Protonic Films

    NASA Technical Reports Server (NTRS)

    Dynys, Fred W.; Berger, M. H.; Sayir, Ali

    2006-01-01

    Pulsed laser deposition has been used to fabricate nanostructured BaCe(0.85)Y(0.15)O3- sigma) films. Protonic conduction of fabricated BaCe(0.85)Y(0.15)O(3-sigma) films was compared to sintered BaCe(0.85)Y(0.15)O(3-sigma). Sintered samples and laser targets were prepared by sintering BaCe(0.85)Y(0.15)O(3-sigma) powders derived by solid state synthesis. Films 1 to 8 micron thick were deposited by KrF excimer laser on porous Al2O3 substrates. Thin films were fabricated at deposition temperatures of 700 to 950 C at O2 pressures up to 200 mTorr using laser pulse energies of 0.45 - 0.95 J. Fabricated films were characterized by X-ray diffraction, electron microscopy and electrical impedance spectroscopy. Single phase BaCe(0.85)Y(0.15)O(3-sigma) films with a columnar growth morphology are observed with preferred crystal growth along the [100] or [001] direction. Results indicate [100] growth dependence upon laser pulse energy. Electrical conductivity of bulk samples produced by solid state sintering and thin film samples were measured over a temperature range of 100 C to 900 C. Electrical conduction behavior was dependent upon film deposition temperature. Maximum conductivity occurs at deposition temperature of 900 oC; the electrical conductivity exceeds the sintered specimen. All other deposited films exhibit a lower electrical conductivity than the sintered specimen. Activation energy for electrical conduction showed dependence upon deposition temperature, it varied

  3. Temporal relationship between high-energy proton acceleration and magnetic field changes during solar flares

    NASA Astrophysics Data System (ADS)

    Kurt, Victoria; Yushkov, Boris

    Understanding of the association of the magnetic field evolution in the corona and the temporal evolution of electromagnetic emissions produced by the accelerated particles during a solar flare can provide information about the nature of the energy-release process and its location. Recent high-spatial-resolution observations in HXR, UV and radio emissions allow one to study in detail a structure of two-ribbon flare site. According to these observations, the flare process can be divided into two different intervals with different temporal evolution of morphological structure: loop contraction during impulsive phase and subsequent loop expansion. Оn the other hand, the appearance of high-energy protons (with energy >300 MeV - an energy threshold of the pion production) in the solar atmosphere can be revealed from an emerging pion-decay component of high-energy gamma-ray emission. The present work is based on comparison of measurements of high-energy gamma-rays performed with the SONG detector onboard the CORONAS-F mission and reported observations of magnetic field evolution, such as HXR foot points (FP) separation and flare shear temporal behavior, or motion of UV/radio loops. We reliably identified the pion-decay component of gamma-ray emission in the course of five events attended with suitable spatial observations, namely, 2001 August 25, 2002 August 24, 2003 October 28, 2003 October 29, and 2005 January 20, and determined its onset time. We found that in these events the pion-decay emission occurred when the distance between conjugated foot-points of flare loops ceased to decrease and began to increase, i.e. changed from shrinkage to expansion. This result leads to the conclusion that the most efficient proton acceleration up to >300 MeV coincided in time with the radical reconfiguration of the magnetic field in the flare site. Earlier we found that the pion-decay emission onset in the 2003 October 28 flare was close to the time of maximum change rate of the

  4. High Proton Conductivity of Zinc Oxalate Coordination Polymers Mediated by a Hydrogen Bond with Pyridinium.

    PubMed

    Yamada, Teppei; Nankawa, Takuya

    2016-09-01

    A novel metal-organic framework, (Hpy)2[Zn2(ox)3]·nH2O (n = 0, 1), having a pyridinium cation, was newly synthesized, and the crystal structures were determined. The hydrated compound shows a high proton conductivity of 2.2 × 10(-3) S cm(-1) at 298 K and 98% relative humidity. Single crystal XRD analysis revealed a rotational displacement factor for the hydrated pyridinium ring and elongated water site that is thought to cause the high proton conductivity. PMID:27552647

  5. High-Aperture-Efficiency Horn Antenna

    NASA Technical Reports Server (NTRS)

    Pickens, Wesley; Hoppe, Daniel; Epp, Larry; Kahn, Abdur

    2005-01-01

    A horn antenna (see Figure 1) has been developed to satisfy requirements specific to its use as an essential component of a high-efficiency Ka-band amplifier: The combination of the horn antenna and an associated microstrip-patch antenna array is required to function as a spatial power divider that feeds 25 monolithic microwave integrated-circuit (MMIC) power amplifiers. The foregoing requirement translates to, among other things, a further requirement that the horn produce a uniform, vertically polarized electromagnetic field in its patches identically so that the MMICs can operate at maximum efficiency. The horn is fed from a square waveguide of 5.9436-mm-square cross section via a transition piece. The horn features cosine-tapered, dielectric-filled longitudinal corrugations in its vertical walls to create a hard boundary condition: This aspect of the horn design causes the field in the horn aperture to be substantially vertically polarized and to be nearly uniform in amplitude and phase. As used here, cosine-tapered signifies that the depth of the corrugations is a cosine function of distance along the horn. Preliminary results of finite-element simulations of performance have shown that by virtue of the cosine taper the impedance response of this horn can be expected to be better than has been achieved previously in a similar horn having linearly tapered dielectric- filled longitudinal corrugations. It is possible to create a hard boundary condition by use of a single dielectric-filled corrugation in each affected wall, but better results can be obtained with more corrugations. Simulations were performed for a one- and a three-corrugation cosine-taper design. For comparison, a simulation was also performed for a linear- taper design (see Figure 2). The three-corrugation design was chosen to minimize the cost of fabrication while still affording acceptably high performance. Future designs using more corrugations per wavelength are expected to provide better

  6. Vacuum MOCVD fabrication of high efficience cells

    NASA Technical Reports Server (NTRS)

    Partain, L. D.; Fraas, L. M.; Mcleod, P. S.; Cape, J. A.

    1985-01-01

    Vacuum metal-organic-chemical-vapor-deposition (MOCVD) is a new fabrication process with improved safety and easier scalability due to its metal rather than glass construction and its uniform multiport gas injection system. It uses source materials more efficiently than other methods because the vacuum molecular flow conditions allow the high sticking coefficient reactants to reach the substrates as undeflected molecular beams and the hot chamber walls cause the low sticking coefficient reactants to bounce off the walls and interact with the substrates many times. This high source utilization reduces the materials costs power device and substantially decreases the amounts of toxic materials that must be handled as process effluents. The molecular beams allow precise growth control. With improved source purifications, vacuum MOCVD has provided p GaAs layers with 10-micron minority carrier diffusion lengths and GaAs and GaAsSb solar cells with 20% AMO efficiencies at 59X and 99X sunlight concentration ratios. Mechanical stacking has been identified as the quickest, most direct and logical path to stacked multiple-junction solar cells that perform better than the best single-junction devices. The mechanical stack is configured for immediate use in solar arrays and allows interconnections that improve the system end-of-life performance in space.

  7. Efficient high-permeability fracturing offshore

    SciTech Connect

    Phillipi, M.; Farabee, M.

    1996-12-31

    Offshore operators can more efficiently and effectively perform high-permeability and conventional hydraulic fracture treatments by blending treatment slurries under microprocessor control, adding undiluted acid on-the-fly, and altering sand concentrations and other slurry properties instantaneously. A two-skid system has been designed with these considerations in mind. The system, which can be shipped efficiently in ISO containers, has been tested on fluids up to 210-cp viscosity and can step or ramp sand concentrations up to a maximum of 20 lb/gal. All additives, including acid treatments, are added on-the-fly; leftover additives and acids may be stored for future jobs. The system may be applied in most conditions, including offshore wells requiring conventional or high-permeability fracture treatments and certain land-based wells in remote areas where a compact skid is needed. Three significant benefits have resulted from using the compact-skid system: offshore operators have been able to ship the skid system at 20% of shipping costs of non-ISO equipment; on-the-fly mixing has prevented material waste associated with batch-mixing; and volumes pumped on actual jobs have closely matched job designs. Data have been collected from several Gulf of Mexico jobs run with the two-part skid system that has been designed for conducting hydraulic fracture treatments from offshore rigs.

  8. ABSOLUTE MEASUREMENT OF THE POLARIZATION OF HIGH ENERGY PROTON BEAMS AT RHIC

    SciTech Connect

    MAKDISI,Y.; BRAVAR, A. BUNCE, G. GILL, R.; HUANG, H.; ET AL.

    2007-06-25

    The spin physics program at the Relativistic Heavy Ion Collider (RHIC) requires knowledge of the beam polarization to better than 5%. Such a goal is made the more difficult by the lack of knowledge of the analyzing power of high energy nuclear physics processes. To overcome this, a polarized hydrogen jet target was constructed and installed at one intersection region in RHIC where it intersects both beams and utilizes the precise knowledge of the jet atomic hydrogen beam polarization to measure the analyzing power in proton-proton elastic scattering in the Nuclear Coulomb Interference (CNI) region at the prescribed RHIC proton beam energy. The reverse reaction is used to assess the absolute beam polarization. Simultaneous measurements taken with fast high statistics polarimeters that measure the p-Carbon elastic scattering process also in the CNI region use the jet results to calibrate the latter.

  9. In-air ion beam analysis with high spatial resolution proton microbeam

    NASA Astrophysics Data System (ADS)

    Jakšić, M.; Chokheli, D.; Fazinić, S.; Grilj, V.; Skukan, N.; Sudić, I.; Tadić, T.; Antičić, T.

    2016-03-01

    One of the possible ways to maintain the micrometre spatial resolution while performing ion beam analysis in the air is to increase the energy of ions. In order to explore capabilities and limitations of this approach, we have tested a range of proton beam energies (2-6 MeV) using in-air STIM (Scanning Ion Transmission Microscopy) setup. Measurements of the spatial resolution dependence on proton energy have been compared with SRIM simulation and modelling of proton multiple scattering by different approaches. Results were used to select experimental conditions in which 1 micrometre spatial resolution could be obtained. High resolution in-air microbeam could be applied for IBIC (Ion Beam Induced Charge) tests of large detectors used in nuclear and high energy physics that otherwise cannot be tested in relatively small microbeam vacuum chambers.

  10. High-Efficiency Microwave Power Amplifier

    NASA Technical Reports Server (NTRS)

    Sims, Williams H.

    2005-01-01

    A high-efficiency power amplifier that operates in the S band (frequencies of the order of a few gigahertz) utilizes transistors operating under class-D bias and excitation conditions. Class-D operation has been utilized at lower frequencies, but, until now, has not been exploited in the S band. Nominally, in class D operation, a transistor is switched rapidly between "on" and "off" states so that at any given instant, it sustains either high current or high voltage, but not both at the same time. In the ideal case of zero "on" resistance, infinite "off" resistance, zero inductance and capacitance, and perfect switching, the output signal would be a perfect square wave. Relative to the traditional classes A, B, and C of amplifier operation, class D offers the potential to achieve greater power efficiency. In addition, relative to class-A amplifiers, class-D amplifiers are less likely to go into oscillation. In order to design this amplifier, it was necessary to derive mathematical models of microwave power transistors for incorporation into a larger mathematical model for computational simulation of the operation of a class-D microwave amplifier. The design incorporates state-of-the-art switching techniques applicable only in the microwave frequency range. Another major novel feature is a transmission-line power splitter/combiner designed with the help of phasing techniques to enable an approximation of a square-wave signal (which is inherently a wideband signal) to propagate through what would, if designed in a more traditional manner, behave as a more severely band-limited device (see figure). The amplifier includes an input, a driver, and a final stage. Each stage contains a pair of GaAs-based field-effect transistors biased in class D. The input signal can range from -10 to +10 dBm into a 50-ohm load. The table summarizes the performances of the three stages

  11. Novel Nanophosphors for High Efficiency Fluorescent Lamps

    SciTech Connect

    Alok Srivatava

    2007-03-31

    This is the Final Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet (UV) emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. Our work started by investigating through modeling calculations the requirement for the particle size of the NCP. Our work to develop suitable nanocrystalline phosphors started with the known oxide quantum splitting and UV emitting phosphors. We demonstrated several synthesis techniques for the production of high quality nanocrystalline materials that crystallizes in the desired phase and with the desired particle size. In collaboration with our subcontractor we demonstrated the feasibility for the manufacture of NC phosphors. We also demonstrated novel techniques of coating the NCP on the surface of micron sized phosphors. Our chief achievement pertains to the successful testing of the coated hybrid phosphor systems in linear fluorescent lamps. In linear fluorescent lamp tests, we have demonstrated up to 7% increase in the efficacy of hybrid phosphors over the conventional (uncoated) phosphors. We have also demonstrated the improvement in the lumen maintenance of the coated phosphors. A hybrid phosphor system based on the commercial red emitting phosphor, Y{sub 2}O{sub 3}:Eu{sup 3+} did not show the anticipated improvement in lamp efficacy. We explored the reasons for this observation

  12. Efficient Compression of High Resolution Climate Data

    NASA Astrophysics Data System (ADS)

    Yin, J.; Schuchardt, K. L.

    2011-12-01

    resolution climate data can be massive. Those data can consume a huge amount of disk space for storage, incur significant overhead for outputting data during simulation, introduce high latency for visualization and analysis, and may even make interactive visualization and analysis impossible given the limit of the data that a conventional cluster can handle. These problems can be alleviated by with effective and efficient data compression techniques. Even though HDF5 format supports compression, previous work has mainly focused on employ traditional general purpose compression schemes such as dictionary coder and block sorting based compression scheme. Those compression schemes mainly focus on encoding repeated byte sequences efficiently and are not well suitable for compressing climate data consist mainly of distinguished float point numbers. We plan to select and customize our compression schemes according to the characteristics of high-resolution climate data. One observation on high resolution climate data is that as the resolution become higher, values of various climate variables such as temperature and pressure, become closer in nearby cells. This provides excellent opportunities for predication-based compression schemes. We have performed a preliminary estimation of compression ratios of a very simple minded predication-based compression ratio in which we compute the difference between current float point number with previous float point number and then encoding the exponent and significance part of the float point number with entropy-based compression scheme. Our results show that we can achieve higher compression ratios between 2 and 3 in lossless compression, which is significantly higher than traditional compression algorithms. We have also developed lossy compression with our techniques. We can achive orders of magnitude data reduction while ensure error bounds. Moreover, our compression scheme is much more efficient and introduces much less overhead

  13. High efficiency recombineering in lactic acid bacteria

    PubMed Central

    van Pijkeren, Jan-Peter; Britton, Robert A.

    2012-01-01

    The ability to efficiently generate targeted point mutations in the chromosome without the need for antibiotics, or other means of selection, is a powerful strategy for genome engineering. Although oligonucleotide-mediated recombineering (ssDNA recombineering) has been utilized in Escherichia coli for over a decade, the successful adaptation of ssDNA recombineering to Gram-positive bacteria has not been reported. Here we describe the development and application of ssDNA recombineering in lactic acid bacteria. Mutations were incorporated in the chromosome of Lactobacillus reuteri and Lactococcus lactis without selection at frequencies ranging between 0.4% and 19%. Whole genome sequence analysis showed that ssDNA recombineering is specific and not hypermutagenic. To highlight the utility of ssDNA recombineering we reduced the intrinsic vancomymycin resistance of L. reuteri >100-fold. By creating a single amino acid change in the d-Ala-d-Ala ligase enzyme we reduced the minimum inhibitory concentration for vancomycin from >256 to 1.5 µg/ml, well below the clinically relevant minimum inhibitory concentration. Recombineering thus allows high efficiency mutagenesis in lactobacilli and lactococci, and may be used to further enhance beneficial properties and safety of strains used in medicine and industry. We expect that this work will serve as a blueprint for the adaptation of ssDNA recombineering to other Gram-positive bacteria. PMID:22328729

  14. Tips for selecting highly efficient cyclones

    SciTech Connect

    Amrein, D.L.

    1995-05-01

    Cyclone dust collectors have been used--and misused--all over the world for more than 100 years. One reason for the misuse is a common perception among users that all cyclones are created equal--that is, as long as a cyclone resembles a cylinder with an attached cone, it will do its job. However, to maximize separation efficiency in a specific application requires a precise cyclone design, engineered to exact fit many possible variables. A well-designed cyclone, for instance, can achieve efficiencies as high s 99.9+% when operated properly within the envelope of its specifications. Nonetheless, cyclones are often used only as first-stage filters for performing crude separations, with final collections being carried out by more-costly baghouses and scrubbers. Compared with baghouses and scrubbers, cyclones have two important considerations in their favor. One, they are almost invariably safer--in terms of the potential for generating fires and explosions--than fabric filters. Second, cyclones have lower maintenance costs since there are no filter media to replace. The paper discusses the operation, design, and troubleshooting of cyclones.

  15. Highly Efficient Vector-Inversion Pulse Generators

    NASA Technical Reports Server (NTRS)

    Rose, Franklin

    2004-01-01

    Improved transmission-line pulse generators of the vector-inversion type are being developed as lightweight sources of pulsed high voltage for diverse applications, including spacecraft thrusters, portable x-ray imaging systems, impulse radar systems, and corona-discharge systems for sterilizing gases. In this development, more than the customary attention is paid to principles of operation and details of construction so as to the maximize the efficiency of the pulse-generation process while minimizing the sizes of components. An important element of this approach is segmenting a pulse generator in such a manner that the electric field in each segment is always below the threshold for electrical breakdown. One design of particular interest, a complete description of which was not available at the time of writing this article, involves two parallel-plate transmission lines that are wound on a mandrel, share a common conductor, and are switched in such a manner that the pulse generator is divided into a "fast" and a "slow" section. A major innovation in this design is the addition of ferrite to the "slow" section to reduce the size of the mandrel needed for a given efficiency.

  16. An iron-iron hydrogenase mimic with appended electron reservoir for efficient proton reduction in aqueous media.

    PubMed

    Becker, René; Amirjalayer, Saeed; Li, Ping; Woutersen, Sander; Reek, Joost N H

    2016-01-01

    The transition from a fossil-based economy to a hydrogen-based economy requires cheap and abundant, yet stable and efficient, hydrogen production catalysts. Nature shows the potential of iron-based catalysts such as the iron-iron hydrogenase (H2ase) enzyme, which catalyzes hydrogen evolution at rates similar to platinum with low overpotential. However, existing synthetic H2ase mimics generally suffer from low efficiency and oxygen sensitivity and generally operate in organic solvents. We report on a synthetic H2ase mimic that contains a redox-active phosphole ligand as an electron reservoir, a feature that is also crucial for the working of the natural enzyme. Using a combination of (spectro)electrochemistry and time-resolved infrared spectroscopy, we elucidate the unique redox behavior of the catalyst. We find that the electron reservoir actively partakes in the reduction of protons and that its electron-rich redox states are stabilized through ligand protonation. In dilute sulfuric acid, the catalyst has a turnover frequency of 7.0 × 10(4) s(-1) at an overpotential of 0.66 V. This catalyst is tolerant to the presence of oxygen, thereby paving the way for a new generation of synthetic H2ase mimics that combine the benefits of the enzyme with synthetic versatility and improved stability. PMID:26844297

  17. An iron-iron hydrogenase mimic with appended electron reservoir for efficient proton reduction in aqueous media

    PubMed Central

    Becker, René; Amirjalayer, Saeed; Li, Ping; Woutersen, Sander; Reek, Joost N. H.

    2016-01-01

    The transition from a fossil-based economy to a hydrogen-based economy requires cheap and abundant, yet stable and efficient, hydrogen production catalysts. Nature shows the potential of iron-based catalysts such as the iron-iron hydrogenase (H2ase) enzyme, which catalyzes hydrogen evolution at rates similar to platinum with low overpotential. However, existing synthetic H2ase mimics generally suffer from low efficiency and oxygen sensitivity and generally operate in organic solvents. We report on a synthetic H2ase mimic that contains a redox-active phosphole ligand as an electron reservoir, a feature that is also crucial for the working of the natural enzyme. Using a combination of (spectro)electrochemistry and time-resolved infrared spectroscopy, we elucidate the unique redox behavior of the catalyst. We find that the electron reservoir actively partakes in the reduction of protons and that its electron-rich redox states are stabilized through ligand protonation. In dilute sulfuric acid, the catalyst has a turnover frequency of 7.0 × 104 s−1 at an overpotential of 0.66 V. This catalyst is tolerant to the presence of oxygen, thereby paving the way for a new generation of synthetic H2ase mimics that combine the benefits of the enzyme with synthetic versatility and improved stability. PMID:26844297

  18. Proton acceleration in the interaction of high power laser and cryogenic hydrogen targets

    NASA Astrophysics Data System (ADS)

    Mishra, Rohini; Fiuza, Frederico; Glenzer, Siegfried

    2014-10-01

    High intensity laser driven ion acceleration has attracted great interest due to many prospective applications ranging from inertial confinement fusion, cancer therapy, particle accelerators. Particle-in-Cell (PIC) simulations are performed to model and design experiments at MEC for high power laser interaction with cryogenic hydrogen targets of tunable density and thickness. Preliminary 1D and 2D simulations, using fully relativistic particle-in-cell code PICLS, show a unique regime of proton acceleration, e.g. ~ 300 MeV peak energy protons are observed in the 1D run for interaction of ~1020 W/cm2, 110 fs intense laser with 6nc dense (nc = 1021 cm-3) and 2 micron thin target. The target is relativistically under-dense for the laser and we observe that a strong (multi-terawatt) shock electric field is produced and protons are reflected to high velocities by this field. Further, the shock field and the laser field keep propagating through the hydrogen target and meets up with target normal sheath acceleration (TNSA) electric field produced at the target rear edge and vacuum interface and this superposition amplifies the TNSA fields resulting in higher proton energy. In addition, the electrons present at the rear edge of the target continue to gain energy via strong interaction with laser that crosses the target and these accelerated electrons maintains higher electric sheath fields which further provides acceleration to protons. We will also present detailed investigation with 2D PICLS simulations to gain a better insight of such physical processes to characterize multidimensional effects and establish analytical scaling between laser and target conditions for the optimization of proton acceleration.

  19. Efficiency measurement and uncertainty discussion of an electric engine powered by a "self-breathing" and "self-humidified" proton exchange membrane fuel cell.

    PubMed

    Schiavetti, Pierluigi; Del Prete, Zaccaria

    2007-08-01

    The efficiency of an automotive engine based on a "self-breathing" and "self-humidified" proton exchange membrane fuel cell stack (PEM FC) connected to a dc brushless electrical motor was measured under variable power load conditions. Experiments have been carried out on a small scale 150 W engine model. After determining the fuel cell static polarization curve and the time response to power steps, the system was driven to copy on the test bench a "standard urban load cycle" and its instantaneous efficiencies were measured at an acquisition rate of 5 Hz. The integral system efficiency over the entire urban load cycle, comprising the losses of the unavoidable auxiliary components of the engine, was then calculated. The fuel cell stack was operated mainly in "partial" dead-end mode, with a periodic anode flow channel purging, and one test was carried out in "pure" dead-end mode, with no anode channel purging. An uncertainty analysis of the efficiencies was carried out, taking into account either type A and type B evaluation methods, strengthening the discussion about the outcomes obtained for a system based on this novel simplified FC type. For our small scale engine we measured over the standard urban cycle, on the basis of the H(2) high heating value (HHV), a tank-to-wheel integral efficiency of (18.2+/-0.8)%, when the fuel cell was operated with periodic flow channel purging, and of (21.5+/-1.3)% in complete dead-end operation mode. PMID:17764355

  20. High efficiency Brayton cycles using LNG

    DOEpatents

    Morrow, Charles W.

    2006-04-18

    A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

  1. Highly ordered surface structure of large-scale porphyrin aggregates assembled from protonated TPP and water

    NASA Astrophysics Data System (ADS)

    Udal'tsov, Alexander V.; Bolshakova, Anastasia V.; Vos, Johannes G.

    2014-05-01

    Large-scale aggregates assembled from protonated meso-tetraphenylporphine (TPP) dimers and water have been investigated by IR and resonance Raman spectroscopy and also by scanning electron microscopy (SEM). It was found that the properties of water confined in the aggregates depend on the physical state of the support. When the aggregates were deposited on a solid CaF2 plate, they showed properties consistent with a quasi-crystalline structure. But when the aggregates were dispersed in oil, their IR characteristics were different; the vibration bands of the confined water were like those of water in liquid state. A doublet at about 1000 cm-1, components of which have been attributed to specific vibrations of H3O+ and H2O bound in the structure of water-porphyrin dimeric complex, was found in IR and resonance Raman spectra (λex = 441.6 nm) of protonated TPP aggregates. This doublet indicates the hydrogen ion involving in the vibrational system of water-porphyrin dimeric complex with hydrogen bonding by similar way as in so-called Zundel cation. The resonance Raman spectrum shows evidence for proton sharing between protonated water dimer and N groups of the pyrrole rings. SEM results indicate that the large-scale aggregates of the protonated porphyrin possess highly ordered structure, are only observed when using extremely pure water.

  2. High power, high efficiency diode pumped Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Dahan, Asaf; Ter-Gabrielyan, Nikolay; Pattnaik, Radha K.; Dubinskii, Mark

    2016-06-01

    We demonstrate a high power high efficiency Raman fiber laser pumped directly by a laser diode module at 976 nm. 80 Watts of CW power were obtained at a wavelength of 1020 nm with an optical-to-optical efficiency of 53%. When working quasi-CW, at a duty cycle of 30%, 85 W of peak power was produced with an efficiency of 60%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the 2nd Stokes. In addition, significant brightness enhancement of the pump beam is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge, this is the highest power Raman fiber laser directly pumped by laser diodes, which also exhibits a record efficiency for such a laser. In addition, it is the highest power Raman fiber laser (regardless of pumping source) demonstrated based on a GRIN fiber.

  3. A High-Efficiency Superhydrophobic Plasma Separator

    PubMed Central

    Liu, Changchun; Liao, Shih-Chuan; Song, Jinzhao; Mauk, Michael G.; Li, Xuanwen; Wu, Gaoxiang; Ge, Dengteng; Greenberg, Robert M.; Yang, Shu; Bau, Haim H.

    2016-01-01

    To meet stringent limit-of-detection specifications for low abundance target molecules, a relatively large volume of plasma is needed for many blood-based clinical diagnostics. Conventional centrifugation methods for plasma separation are not suitable for on-site testing or bedside diagnostics. Here, we report a simple, yet high-efficiency, clamshell-style, superhydrophobic plasma separator that is capable of separating a relatively large volume of plasma from several hundred microliters of whole blood (finger-prick blood volume). The plasma separator consists of a superhydrophobic top cover with a separation membrane and a superhydrophobic bottom substrate. Unlike previously reported membrane-based plasma separators, the separation membrane in our device is positioned at the top of the sandwiched whole blood film to increase the membrane separation capacity and plasma yield. In addition, the device’s superhydrophobic characteristics (i) facilitates the formation of well-defined, contracted, thin blood film with a high contact angle; (ii) minimizes biomolecular adhesion to surfaces; (iii) increases blood clotting time; and (iv) reduces blood cell hemolysis. The device demonstrated a “blood in-plasma out” capability, consistently extracting 65±21.5 μL of plasma from 200 μL of whole blood in less than 10 min without electrical power. The device was used to separate plasma from Schistosoma mansoni genomic DNA-spiked whole blood with a recovery efficiency of > 84.5 ± 25.8 %. The S. mansoni genomic DNA in the separated plasma was successfully tested on our custom-made microfluidic chip by using loop mediated isothermal amplification (LAMP) method. PMID:26732765

  4. A high-efficiency superhydrophobic plasma separator.

    PubMed

    Liu, Changchun; Liao, Shih-Chuan; Song, Jinzhao; Mauk, Michael G; Li, Xuanwen; Wu, Gaoxiang; Ge, Dengteng; Greenberg, Robert M; Yang, Shu; Bau, Haim H

    2016-02-01

    To meet stringent limit-of-detection specifications for low abundance target molecules, a relatively large volume of plasma is needed for many blood-based clinical diagnostics. Conventional centrifugation methods for plasma separation are not suitable for on-site testing or bedside diagnostics. Here, we report a simple, yet high-efficiency, clamshell-style, superhydrophobic plasma separator that is capable of separating a relatively large volume of plasma from several hundred microliters of whole blood (finger-prick blood volume). The plasma separator consists of a superhydrophobic top cover with a separation membrane and a superhydrophobic bottom substrate. Unlike previously reported membrane-based plasma separators, the separation membrane in our device is positioned at the top of the sandwiched whole blood film to increase the membrane separation capacity and plasma yield. In addition, the device's superhydrophobic characteristics (i) facilitates the formation of well-defined, contracted, thin blood film with a high contact angle; (ii) minimizes biomolecular adhesion to surfaces; (iii) increases blood clotting time; and (iv) reduces blood cell hemolysis. The device demonstrated a "blood in-plasma out" capability, consistently extracting 65 ± 21.5 μL of plasma from 200 μL of whole blood in less than 10 min without electrical power. The device was used to separate plasma from Schistosoma mansoni genomic DNA-spiked whole blood with a recovery efficiency of >84.5 ± 25.8%. The S. mansoni genomic DNA in the separated plasma was successfully tested on our custom-made microfluidic chip by using loop mediated isothermal amplification (LAMP) method. PMID:26732765

  5. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Wang, Yi-Qing; Fan, Zhen; Taft, Charles; Maaref, Shahin; Bailey, Sheila (Technical Monitor)

    2003-01-01

    Solar energy is a renewable, nonpolluting, and most abundant energy source for human exploration of a remote site or outer space. In order to generate appreciable electrical power in space or on the earth, it is necessary to collect sunlight from large areas and with high efficiency due to the low density of sunlight. Future organic or polymer (plastic) solar cells appear very attractive due to their unique features such as light weight, flexible shape, tunability of energy band-gaps via versatile molecular or supramolecular design, synthesis, processing and device fabrication schemes, and much lower cost on large scale industrial production. It has been predicted that supramolecular and nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration due to improved electronic ultrastructure and morphology in comparison to polymer composite system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel block copolymer system containing donor and acceptor blocks covalently attached. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (RO-PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (SF-PPV). The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block has a strong PL emission at around 560 nm, and acceptor block has a strong PL emission at around 520 nm, the PL emissions of final block copolymers are severely quenched. This verifies the expected electron transfer and charge separation due to interfaces of donor and acceptor nano phase separated blocks. The system therefore has potential for variety light harvesting applications, including high efficient photovoltaic applications.

  6. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    NASA Technical Reports Server (NTRS)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2014-01-01

    The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were

  7. Centrality-dependent forward J/ψ production in high energy proton-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Ducloué, B.; Lappi, T.; Mäntysaari, H.

    2016-03-01

    Forward J/ψ production and suppression in high energy proton-nucleus collisions can be an important probe of gluon saturation. In an earlier work we studied this process in the Color Glass Condensate framework and showed that using the Glauber approach to extrapolate the dipole cross section of a proton to a nucleus leads to results closer to experimental data than previous calculations in this framework. Here we investigate the centrality dependence of the nuclear suppression in this model and show a comparison of our results with recent LHC data.

  8. Recoil polarization measurements of the proton electromagnetic form factor ratio at high momentum transfer

    SciTech Connect

    Andrew Puckett

    2009-12-01

    Electromagnetic form factors are fundamental properties of the nucleon that describe the effect of its internal quark structure on the cross section and spin observables in elastic lepton-nucleon scattering. Double-polarization experiments have become the preferred technique to measure the proton and neutron electric form factors at high momentum transfers. The recently completed GEp-III experiment at the Thomas Jefferson National Accelerator Facility used the recoil polarization method to extend the knowledge of the proton electromagnetic form factor ratio GpE/GpM to Q2 = 8.5 GeV2. In this paper we present the preliminary results of the experiment.

  9. Proton Radiotherapy for High-Risk Pediatric Neuroblastoma: Early Outcomes and Dose Comparison

    SciTech Connect

    Hattangadi, Jona A.; Rombi, Barbara; Yock, Torunn I.; Broussard, George; Friedmann, Alison M.; Huang, Mary; Chen, Yen-Lin E.; Lu, Hsiao-Ming; Kooy, Hanne; MacDonald, Shannon M.

    2012-07-01

    Purpose: To report the early outcomes for children with high-risk neuroblastoma treated with proton radiotherapy (RT) and to compare the dose distributions for intensity-modulated photon RT (IMRT), three-dimensional conformal proton RT (3D-CPT), and intensity-modulated proton RT to the postoperative tumor bed. Methods and Materials: All patients with high-risk (International Neuroblastoma Staging System Stage III or IV) neuroblastoma treated between 2005 and 2010 at our institution were included. All patients received induction chemotherapy, surgical resection of residual disease, high-dose chemotherapy with stem cell rescue, and adjuvant 3D-CPT to the primary tumor sites. The patients were followed with clinical examinations, imaging, and laboratory testing every 6 months to monitor disease control and side effects. IMRT, 3D-CPT, and intensity-modulated proton RT plans were generated and compared for a representative case of adjuvant RT to the primary tumor bed followed by a boost. Results: Nine patients were treated with 3D-CPT. The median age at diagnosis was 2 years (range 10 months to 4 years), and all patients had Stage IV disease. All patients had unfavorable histologic characteristics (poorly differentiated histologic features in 8, N-Myc amplification in 6, and 1p/11q chromosomal abnormalities in 4). The median tumor size at diagnosis was 11.4 cm (range 7-16) in maximal dimension. At a median follow-up of 38 months (range 11-70), there were no local failures. Four patients developed distant failure, and, of these, two died of disease. Acute side effects included Grade 1 skin erythema in 5 patients and Grade 2 anorexia in 2 patients. Although comparable target coverage was achieved with all three modalities, proton therapy achieved substantial normal tissue sparing compared with IMRT. Intensity-modulated proton RT allowed additional sparing of the kidneys, lungs, and heart. Conclusions: Preliminary outcomes reveal excellent local control with proton therapy

  10. Possibilities of polarized protons in Sp anti p S and other high energy hadron colliders

    SciTech Connect

    Courant, E.D.

    1984-01-01

    The requirements for collisions with polarized protons in hadron colliders above 200 GeV are listed and briefly discussed. Particular attention is given to the use of the ''Siberan snake'' to eliminate depolarizing resonances, which occur when the spin precession frequency equals a frequency contained in the spectrum of the field seen by the beam. The Siberian snake is a device which makes the spin precession frequency essentially constant by using spin rotators, which precess the spin by 180/sup 0/ about either the longitudinal or transverse horizontal axis. It is concluded that operation with polarized protons should be possible at all the high energy hadron colliders. (LEW)

  11. High energy proton irradiation induced pinning centers in Bi-2212 and Bi-2223 superconductors

    SciTech Connect

    Willis, J.O.; Safar, H.; Cho, J.H.

    1995-12-01

    Bi-2212 single crystals and Bi-2223/Ag-sheathed tapes were irradiated with high energy protons. TEM images reveal the production of randomly oriented (splayed) columnar defects with an amorphous core of {approximately}10 nm diameter caused by the fissioning of Bi nuclei. The critical current density J{sub c} and irreversibility line both substantially increased with the proton dose for both crystals and tapes, especially for the magnetic field parallel to the c axis. An irradiated tape had a J{sub c} value {approximately}100 times greater than that of an unirradiated one at 1 T and 75 K.

  12. Resistively enhanced proton acceleration via high-intensity laser interactions with cold foil targets

    SciTech Connect

    Gibbon, Paul

    2005-08-01

    The acceleration of MeV protons by high-intensity laser interaction with foil targets is studied using a recently developed plasma simulation technique. Based on a hierarchical N-body tree algorithm, this method provides a natural means of treating three-dimensional, collisional transport effects hitherto neglected in conventional explicit particle-in-cell simulations. For targets with finite resistivity, hot electron transport is strongly inhibited, even at temperatures in the MeV range. This leads to suppression of ion acceleration from the rear of the target and an enhancement in energies and numbers of protons originating from the front.

  13. Interaction of High-Energy Proton Beam with a Thin Target and Multiplicities of Neutron

    SciTech Connect

    Demirkol, I.; Tatar, M.; Safak, M. S.; Arasoglu, A.; Tel, E.

    2007-04-23

    An important ingredient in the performance of accelerator driven systems for energy production, waste transmutation and other applications are the number of spallation neutrons produced per incident proton. The neutron multiplicities, angular and energy distributions are usually calculated using simulation codes. We have presented multiplicities of the neutrons emitted in the interaction of a high-energy proton (1500 MeV) with a thin target Pb, Bi. In this study we have used the code ISABEL to calculate multiplicities of the neutron emitted. The results obtained have been compared with the available data.

  14. J/ψ production and suppression in high-energy proton-nucleus collisions

    DOE PAGESBeta

    Ma, Yan -Qing; Venugopalan, Raju; Zhang, Hong -Fei

    2015-10-02

    In this study, we apply a color glass condensate+nonrelativistic QCD (CGC+NRQCD) framework to compute J/ψ production in deuteron-nucleus collisions at RHIC and proton-nucleus collisions at the LHC. Our results match smoothly at high p⊥ to a next-to-leading order perturbative QCD+NRQCD computation. Excellent agreement is obtained for p⊥ spectra at the RHIC and LHC for central and forward rapidities, as well as for the normalized ratio RpA of these results to spectra in proton-proton collisions. In particular, we observe that the RpA data are strongly bounded by our computations of the same for each of the individual NRQCD channels; this resultmore » provides strong evidence that our description is robust against uncertainties in initial conditions and hadronization mechanisms.« less

  15. J/ψ production and suppression in high-energy proton-nucleus collisions

    SciTech Connect

    Ma, Yan -Qing; Venugopalan, Raju; Zhang, Hong -Fei

    2015-10-02

    In this study, we apply a color glass condensate+nonrelativistic QCD (CGC+NRQCD) framework to compute J/ψ production in deuteron-nucleus collisions at RHIC and proton-nucleus collisions at the LHC. Our results match smoothly at high p⊥ to a next-to-leading order perturbative QCD+NRQCD computation. Excellent agreement is obtained for p⊥ spectra at the RHIC and LHC for central and forward rapidities, as well as for the normalized ratio RpA of these results to spectra in proton-proton collisions. In particular, we observe that the RpA data are strongly bounded by our computations of the same for each of the individual NRQCD channels; this result provides strong evidence that our description is robust against uncertainties in initial conditions and hadronization mechanisms.

  16. Proton acceleration with high intensity lasers interacting on micro-cone targets

    NASA Astrophysics Data System (ADS)

    D'Humieres, Emmanuel; Cowan, Tom; Gaillard, Sandrine; Le Galloudec, Nathalie; Rassuchine, Jennifer; Sentoku, Yasuhiko

    2006-10-01

    In the last few years, intense research has been conducted on laser-accelerated ion sources and their applications [1,2]. Proton beams accelerated from solid planar targets have exceptional properties that open new opportunities for ion beam generation and control. Experiments conducted at LANL and LULI have shown that high intensity lasers interacting on micro-cone targets can produce proton beams more collimated and more energetic than with planar targets. These micro-cone targets are composed of a curved cone attached to a micro-table. 2D PIC simulations were performed to understand the experiments and separate the effect of the cone from the effect of the micro-table. These new targets could help increase the laser-accelerated protons maximum energy to the 100 MeV range. [1] J. Fuchs et al., Nature Physics 2, 48 (2006). [2] T.Toncian et al., Science Vol. 312, 21 April 2006, p.410-413.

  17. Nitrogen Dioxide Variations Caused by Penetration of Solar Protons into the High-Latitude Atmosphere

    NASA Astrophysics Data System (ADS)

    Kasatkina, E. A.; Shumilov, O. I.; Kyro, E.; Fadel, K.; Turyansky, V. A.; Kivi, R.

    2003-03-01

    The results of spectroscopic measurements of the NO2 total content during the solar proton event of the GLE (Ground Level Event) type on May 2, 1998, at the Murmansk (Φ" = 64.5°) and Sodankyla (Φ" = 63.7°) stations are presented. The vertical profiles of the nitrogen oxide (NO) distribution in the stratosphere according to the UARS satellite data during another GLE event on July 14, 2000, are also presented. It is shown that the high-energy solar protons penetrating into the atmosphere lead to a considerable increase in the nitrogen oxide concentration and the GLE on May 2, 1998, resulted in an increase of the NO2 total content according to the ground-based observations at high latitudes. It is worth noting that no decrease of the total ozone content (TOC) was recorded during these proton events according to the ground-based measurements at high latitudes. The corresponding calculations of the nitrogen oxide changes during proton events based on the homogeneous photochemical theory are presented. The interrelation between all the quantities measured, as well as their relation to the calculated values, is considered. It is shown that a considerable increase of nitrogen oxides in the atmosphere does not always result in an ozone concentration depletion. The results presented indicate a need to provide simultaneous ground-based and satellite measurements of nitrogen oxides and ozone at high latitudes.

  18. Development of high performance proton-conducting solid electrolytes

    SciTech Connect

    Linkous, C.A.; Kopitzke, R.W.

    1998-08-01

    This work seeks to improve the efficiency of fuel cell and electrolyzer operation by developing solid electrolytes that will function at higher temperatures. Two objectives were pursued: (1) determine the mechanism of hydrolytic decomposition of aromatic sulfonic acid ionomers, with the intent of identifying structural weaknesses that can be avoided in future materials; and (2) identify new directions in solid electrolyte development. After evaluating a number of aromatic sulfonates, it became apparent that no common mechanism was going to be found; instead, each polymer had its own sequence of degradation steps, involving some combination of desulfonation and/or chain scission. For electrochemical cell operation at temperatures > 200 C, it will be necessary to develop solid electrolytes that do not require sulfonic acids and do not require water to maintain its conductivity mechanism.

  19. High intensity proton acceleration at the Brookhaven AGS -- An update

    SciTech Connect

    Ahrens, L.; Alessi, J.; Blaskiewicz, M.

    1997-07-01

    The AGS accelerator complex is into its third year of 60+ {times} 10{sup 12} (teraproton = Tp) per cycle operation. The hardware making up the complex as configured in 1997 is briefly mentioned. The present level of accelerator performance is discussed. This includes beam transfer efficiencies at each step in the acceleration process, i.e. losses; which are a serious issue at this intensity level. Progress made in understanding beam behavior at the Linac-to-Booster (LtB) injection, at the Booster-to-AGS (BtA) transfer as well as across the 450 ms AGS accumulation porch is presented. The state of transition crossing, with the gamma-tr jump is described. Coherent effects including those driven by space charge are important at all of these steps.

  20. STATUS OF SLOW EXTRACTION OF HIGH INTENSITY PROTONS FROM BROOKHAVEN'S AGS.

    SciTech Connect

    BROWN,K.A.AHRENS,L.BRENNAN,J.M.GLENN,J.W.ROSER,T.RUSSO,T.TSOUPAS,N.SMITH,K.ZENO,K.

    2003-05-12

    The Brookhaven AGS third integer resonant extraction system allows the AGS to provide high quality, high intensity 25.5 GeV/c proton beams simultaneously to four target stations and as many as 8 experiments. With the increasing intensities (over 7 x 10{sup 13} protons/pulse) and associated longer spill periods (2.4 to 3 seconds long), we continue to run with low losses and high quality low modulation continuous current beams. We have an active program of high energy physics experiments, including the high precision measurement of the muons magnetic moment [1] and the discovery of the rare Kaon decay, K+ {yields} {pi} + {nu}{bar {nu}} [2]. This program is continuing into the future with the rare symmetry violating process experiments [3] currently being designed to operate at the AGS. In this paper, we will present results from operation of high intensity slow extraction, the problems we encounter, and our solutions to those problems.

  1. Longitudinal proton probing of ultrafast and high-contrast laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Albertazzi, B.; Antici, P.; Bocker, J.; Borghesi, M.; Chen, S.; Dervieux, V.; d'Humières, E.; Lancia, L.; Nakatsutsumi, M.; Shepherd, R.; Romagnagni, L.; Sentoku, Y.; Swantusch, M.; Willi, O.; Pépin, H.; Fuchs, J.

    2013-11-01

    We have performed an experiment aimed at measuring self-generated magnetic fields produced in solids by high electron currents following high-intensity and high contrast short-pulse laser irradiation. This was done using longitudinal high resolution proton deflectometry. The experiment was performed at the Titan-JLF laser facility with a high-power short-pulse beam (700 fs, ˜ 110 J) split into two beams irradiating two solid targets. One beam is used for the generation of protons and the other beam for the generation of the ultra-high currents of electrons and of the associated magnetic fields. This capability allows us to study the spatio-temporal evolution of the magnetic fields and its dependence on the laser intensity and target material.

  2. High efficiency, high pulse energy fiber laser system

    NASA Astrophysics Data System (ADS)

    Bowers, Mark S.; Henrie, Jason; Garske, Megan; Templeman, Dan; Afzal, Robert

    2013-05-01

    We report a master-oscillator/power-amplifier laser system featuring a polarizing and coilable 40-micron-core Yb-doped photonic crystal fiber as the final-stage amplifier. The laser source generates 3.4 ns pulses at a repetition rate 19 kHz, with maximum pulse energy 1.2 mJ, maximum average power 22.8 W, near diffraction-limited (M2 < 1.1) beam quality, and 20% electrical to optical efficiency in a compact package. This pulsed-fiber laser flight system provides high pulse energy, average power, peak power, diffraction limited beam quality, and high efficiency all in a thermally and mechanically stable compact package.

  3. High order magnetic optics for high dynamic range proton radiography at a kinetic energy 800 MeV

    DOE PAGESBeta

    Sjue, Sky K. L.; Morris, Christopher L.; Merrill, Frank Edward; Mariam, Fesseha Gebre; Saunders, Alexander

    2016-01-14

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the protonimaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane.more » Furthermore, comparison with a series of static calibrationimages demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.« less

  4. Fabrication BaZrO3/PBI-based nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Hooshyari, Khadijeh; Javanbakht, Mehran; Shabanikia, Akbar; Enhessari, Morteza

    2015-02-01

    Novel PBI (polybenzimidazole)-BaZrO3 (PBZ) nanocomposite membranes have been prepared for the high temperature proton exchange membrane (HT-PEM) fuel cells. The results showed that the water uptake, acid doping level and proton conductivity of the PBZ nanocomposite membranes were higher than that of virgin PBI membrane due to the presence of perovskite structure BaZrO3 nanoparticles, which as protonic conductor can perform as a special pathway for hydrogen transport. The proton conductivity of the PBZ nanocomposite membranes with 13 mol phosphoric acid per PBI repeat unit was obtained 125 mS/cm at 180 °C and 5% relative humidity. It was found that the performance of the fuel cells increases by increasing temperature; this was explained by faster reaction kinetic and higher proton conductivity. The power density and current density at 0.5 V 180 °C with 5% relative humidity were observed 0.56 W/cm2 and 1.12 A/cm2, respectively for PBZ nanocomposite membranes containing 4 wt% of the nanofillers. The results suggested that PBZ nanocomposite membranes are promising electrolytes for HT-PEM fuel cells with improved proton conductivity.

  5. White LED with High Package Extraction Efficiency

    SciTech Connect

    Yi Zheng; Matthew Stough

    2008-09-30

    The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W{sub e} using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat

  6. Involvement of the Artemis Protein in the Relative Biological Efficiency Observed With the 76-MeV Proton Beam Used at the Institut Curie Proton Therapy Center in Orsay

    SciTech Connect

    Calugaru, Valentin; Nauraye, Catherine; Cordelières, Fabrice P.; Biard, Denis; De Marzi, Ludovic; Hall, Janet; Favaudon, Vincent; Mégnin-Chanet, Frédérique

    2014-09-01

    Purpose: Previously we showed that the relative biological efficiency for induced cell killing by the 76-MeV beam used at the Institut Curie Proton Therapy Center in Orsay increased with depth throughout the spread-out Bragg peak (SOBP). To investigate the repair pathways underlying this increase, we used an isogenic human cell model in which individual DNA repair proteins have been depleted, and techniques dedicated to precise measurements of radiation-induced DNA single-strand breaks (SSBs) and double-strand breaks (DSBs). Methods and Materials: The 3-Gy surviving fractions of HeLa cells individually depleted of Ogg1, XRCC1, and PARP1 (the base excision repair/SSB repair pathway) or of ATM, DNA-PKcs, XRCC4, and Artemis (nonhomologous end-joining pathway) were determined at the 3 positions previously defined in the SOBP. Quantification of incident SSBs and DSBs by the alkaline elution technique and 3-dimensional (3D) immunofluorescence of γ-H2AX foci, respectively, was performed in SQ20 B cells. Results: We showed that the amount of SSBs and DSBs depends directly on the particle fluence and that the increase in relative biological efficiency observed in the distal part of the SOBP is due to a subset of lesions generated under these conditions, leading to cell death via a pathway in which the Artemis protein plays a central role. Conclusions: Because therapies like proton or carbon beams are now being used to treat cancer, it is even more important to dissect the mechanisms implicated in the repair of the lesions generated by these particles. Additionally, alteration of the expression or activity of the Artemis protein could be a novel therapeutic tool before high linear energy transfer irradiation treatment.

  7. Tailored Materials for High Efficiency CIDI Engines

    SciTech Connect

    Grant, G.J.; Jana, S.

    2012-03-30

    The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in

  8. High Efficiency Diffusion Molecular Retention Tumor Targeting

    PubMed Central

    Guo, Yanyan; Yuan, Hushan; Cho, Hoonsung; Kuruppu, Darshini; Jokivarsi, Kimmo; Agarwal, Aayush; Shah, Khalid; Josephson, Lee

    2013-01-01

    Here we introduce diffusion molecular retention (DMR) tumor targeting, a technique that employs PEG-fluorochrome shielded probes that, after a peritumoral (PT) injection, undergo slow vascular uptake and extensive interstitial diffusion, with tumor retention only through integrin molecular recognition. To demonstrate DMR, RGD (integrin binding) and RAD (control) probes were synthesized bearing DOTA (for 111 In3+), a NIR fluorochrome, and 5 kDa PEG that endows probes with a protein-like volume of 25 kDa and decreases non-specific interactions. With a GFP-BT-20 breast carcinoma model, tumor targeting by the DMR or IV methods was assessed by surface fluorescence, biodistribution of [111In] RGD and [111In] RAD probes, and whole animal SPECT. After a PT injection, both probes rapidly diffused through the normal and tumor interstitium, with retention of the RGD probe due to integrin interactions. With PT injection and the [111In] RGD probe, SPECT indicated a highly tumor specific uptake at 24 h post injection, with 352%ID/g tumor obtained by DMR (vs 4.14%ID/g by IV). The high efficiency molecular targeting of DMR employed low probe doses (e.g. 25 ng as RGD peptide), which minimizes toxicity risks and facilitates clinical translation. DMR applications include the delivery of fluorochromes for intraoperative tumor margin delineation, the delivery of radioisotopes (e.g. toxic, short range alpha emitters) for radiotherapy, or the delivery of photosensitizers to tumors accessible to light. PMID:23505478

  9. A New High Efficiency Segmented Thermoelectric Unicouple

    NASA Technical Reports Server (NTRS)

    Caillat, T.; Fleurial, J.-P.; Snyder, G. J.; Zoltan, A.; Zoltan, D.; Borshchevsky, A.

    2000-01-01

    To achieve high thermal-to-electric energy conversion efficiency, it is desirable to operate thermoelectric generator devices over large temperature gradients and also to maximize the thermoelectric performance of the materials used to build the devices. However, no single thermoelectric material is suitable for use over a very wide range of temperatures (approx. 300 - 1000 K). It is therefore necessary to use different materials in each temperature range where they possess optimum performance. This can be achieved in two ways: 1) multistage thermoelectric generators where each stage operates over a fixed temperature difference and is electrically insulated but thermally in contact with the other stages and 2) segmented generators where the p- and n-legs are formed of different segments joined in series. The concept of integrating new thermoelectric materials developed at the Jet Propulsion Laboratory (JPL) into a segmented thermoelectric generator has been presented in detail in earlier publications . This new generator is expected to operate over a 300-973 K temperature difference and will use novel segmented legs based on a combination of state-of-the-art thermoelectric materials and novel p-type Zn4Sb3, p-type CeFe4Sb12-based alloys and n-type CoSb3-based alloys. An increase in the conversion efficiency of about 60% is expected compared to conventional Bi2Te3- and PbTe-based generators. We present in this paper the latest experimental results from the bonding studies between the different segments of the p-legs, n-legs, and p-leg to n-leg interconnect. Evaluation of the bond quality was done by measuring the contact resistance across the joints as well as by detailed microstructure investigations to reveal any potential interdiffusion. Among the materials investigated as inter-layers between the different segments of the legs, Pd-Ag joining alloys have been found to provide mechanically stable and low electrical resistance bonds.

  10. High efficiency shale oil recovery. [Kilntrol program

    SciTech Connect

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency is first being demonstrated at bench scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications, now completed, provide for a great improvement in the operation and make the data and analysis more exact. Last quarter we reported on equipment modifications and refurbishments which resulted in a sophisticated analytical rotary kiln. As we began operating the equipment this quarter, we observed that the software package was inadequate for our purpose and that the appropriate software could not be purchased as a shelf item. Therefore, we were required to modify the equipment interface and to write our own software. The quartz sand kiln calibration runs have been completed and the results are included in this report. Computer Interface: The computer interface was designed on CTR-05, DAS-08 and MUX-32 Boards from ComputerBoards Inc. We purchased a software program, Control EG by Quinn-Curtis, to use with these boards. As we began operating the equipment we realized that the software control was inadequately sensitive for our system as it would not provide time-proportioning output. This problem was resolved by writing our own software and providing time-proportioning duty cycles for the output to each of five heaters. We have entitled this program Kilntrol.'' It is included in the Appendix of this report.

  11. Target R and D for high power proton beam applications

    SciTech Connect

    Fabich, A.

    2008-02-21

    High power targets are one of the major issues in an accelerator complex for future HEP physic studies. The paper will review status of studies worldwide. It will focus on the status of the MERIT mercury-jet target experiment at CERN.

  12. Enhanced Proton Translocating Pyrophosphatase Activity Improves Nitrogen Use Efficiency in Romaine Lettuce1[C][W][OA

    PubMed Central

    Paez-Valencia, Julio; Sanchez-Lares, Jonathan; Marsh, Ellen; Dorneles, Liane T.; Santos, Mirella P.; Sanchez, Diego; Winter, Alexander; Murphy, Sean; Cox, Jennifer; Trzaska, Marcin; Metler, Jason; Kozic, Alex; Facanha, Arnoldo R.; Schachtman, Daniel; Sanchez, Charles A.; Gaxiola, Roberto A.

    2013-01-01

    Plant nitrate (NO3−) acquisition depends on the combined activities of root high- and low-affinity NO3− transporters and the proton gradient generated by the plasma membrane H+-ATPase. These processes are coordinated with photosynthesis and the carbon status of the plant. Here, we present the characterization of romaine lettuce (Lactuca sativa ‘Conquistador’) plants engineered to overexpress an intragenic gain-of-function allele of the type I proton translocating pyrophosphatase (H+-PPase) of Arabidopsis (Arabidopsis thaliana). The proton-pumping and inorganic pyrophosphate hydrolytic activities of these plants are augmented compared with control plants. Immunohistochemical data show a conspicuous increase in H+-PPase protein abundance at the vasculature of the transgenic plants. Transgenic plants displayed an enhanced rhizosphere acidification capacity consistent with the augmented plasma membrane H+-ATPase proton transport values, and ATP hydrolytic capacities evaluated in vitro. These transgenic lines outperform control plants when challenged with NO3− limitations in laboratory, greenhouse, and field scenarios. Furthermore, we report the characterization of a lettuce LsNRT2.1 gene that is constitutive up-regulated in the transgenic plants. Of note, the expression of the LsNRT2.1 gene in control plants is regulated by NO3− and sugars. Enhanced accumulation of 15N-labeled fertilizer by transgenic lettuce compared with control plants was observed in greenhouse experiments. A negative correlation between the level of root soluble sugars and biomass is consistent with the strong root growth that characterizes these transgenic plants. PMID:23307651

  13. Proton delocalization under extreme conditions of high pressure and temperature

    SciTech Connect

    Goncharov, Alexander F.; Crowhurst, Jonathan

    2008-10-02

    Knowledge of the behaviour of light hydrogen-containing molecules under extreme conditions of high pressure and temperature is crucial to a comprehensive understanding of the fundamental physics and chemistry that is relevant under such conditions. It is also vital for interpreting the results of planetary observations, in particular those of the gas giants, and also for various materials science applications. On a fundamental level, increasing pressure causes the redistribution of the electronic density, which results in a modification of the interatomic potentials followed by a consequent qualitative change in the character of the associated bonding. Ultimately, at sufficiently high pressure, one may anticipate a transformation to a homogeneously bonded material possessing unusual physical properties (e.g. a quantum fluid). As temperature increases so does the concentration of ionised species leading ultimately to a plasma. Considerable improvements have recently been made in both the corresponding experimental and theoretical investigations. Here we review recent results for hydrogen and water that reveal unexpected routes of transformation to nonmolecular materials. We stress the importance of quantum effects, which remain significant even at high temperatures.

  14. Study of the effects of high-energy proton beams on escherichia coli

    NASA Astrophysics Data System (ADS)

    Park, Jeong Chan; Jung, Myung-Hwan

    2015-10-01

    Antibiotic-resistant bacterial infection is one of the most serious risks to public health care today. However, discouragingly, the development of new antibiotics has progressed little over the last decade. There is an urgent need for alternative approaches to treat antibiotic-resistant bacteria. Novel methods, which include photothermal therapy based on gold nano-materials and ionizing radiation such as X-rays and gamma rays, have been reported. Studies of the effects of high-energy proton radiation on bacteria have mainly focused on Bacillus species and its spores. The effect of proton beams on Escherichia coli (E. coli) has been limitedly reported. Escherichia coli is an important biological tool to obtain metabolic and genetic information and is a common model microorganism for studying toxicity and antimicrobial activity. In addition, E. coli is a common bacterium in the intestinal tract of mammals. In this research, the morphological and the physiological changes of E. coli after proton irradiation were investigated. Diluted solutions of cells were used for proton beam radiation. LB agar plates were used to count the number of colonies formed. The growth profile of the cells was monitored by using the optical density at 600 nm. The morphology of the irradiated cells was observed with an optical microscope. A microarray analysis was performed to examine the gene expression changes between irradiated samples and control samples without irradiation. E coli cells have observed to be elongated after proton irradiation with doses ranging from 13 to 93 Gy. Twenty-two were up-regulated more than twofold in proton-irradiated samples (93 Gy) compared with unexposed one.

  15. High-resolution Hybrid Simulations of Kinetic Plasma Turbulence at Proton Scales

    NASA Astrophysics Data System (ADS)

    Franci, Luca; Landi, Simone; Matteini, Lorenzo; Verdini, Andrea; Hellinger, Petr

    2015-10-01

    We investigate properties of plasma turbulence from magnetohydrodynamic (MHD) to sub-ion scales by means of two-dimensional, high-resolution hybrid particle-in-cell simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we add a spectrum of large-scale magnetic and kinetic fluctuations with energy equipartition and vanishing correlation. Once the turbulence is fully developed, we observe an MHD inertial range, where the spectra of the perpendicular magnetic field and the perpendicular proton bulk velocity fluctuations exhibit power-law scaling with spectral indices of -5/3 and -3/2, respectively. This behavior is extended over a full decade in wavevectors and is very stable in time. A transition is observed around proton scales. At sub-ion scales, both spectra steepen, with the former still following a power law with a spectral index of ∼ -3. A -2.8 slope is observed in the density and parallel magnetic fluctuations, highlighting the presence of compressive effects at kinetic scales. The spectrum of the perpendicular electric fluctuations follows that of the proton bulk velocity at MHD scales, and flattens at small scales. All these features, which we carefully tested against variations of many parameters, are in good agreement with solar wind observations. The turbulent cascade leads to on overall proton energization with similar heating rates in the parallel and perpendicular directions. While the parallel proton heating is found to be independent on the resistivity, the number of particles per cell, and the resolution employed, the perpendicular proton temperature strongly depends on these parameters.

  16. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Fan, Zben; Taft, Charles; Wang, Yi-Qing; Maaref, Shahin; Mackey, Willie R. (Technical Monitor)

    2001-01-01

    In man's mission to the outer space or a remote site, the most abundant, renewable, nonpolluting, and unlimited external energy source is light. Photovoltaic (PV) materials can convert light into electrical power. In order to generate appreciable electrical power in space or on the Earth, it is necessary to collect sunlight from large areas due to the low density of sunlight, and this would be very costly using current commercially available inorganic solar cells. Future organic or polymer based solar cells seemed very attractive due to several reasons. These include lightweight, flexible shape, ultra-fast optoelectronic response time (this also makes organic PV materials attractive for developing ultra-fast photo detectors), tunability of energy band-gaps via molecular design, versatile materials synthesis and device fabrication schemes, and much lower cost on large-scale industrial production. It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks will facilitate the charge separation and migration due to improved electronic ultrastructure and morphology in comparison to current polymer composite photovoltaic system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel donor-bridge-acceptor block copolymer system for potential high-efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene, the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene, and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes the holes, the acceptor block stabilizes the electrons. The bridge block is designed to hinder

  17. Counterfactual quantum key distribution with high efficiency

    SciTech Connect

    Sun Ying; Wen Qiaoyan

    2010-11-15

    In a counterfactual quantum key distribution scheme, a secret key can be generated merely by transmitting the split vacuum pulses of single particles. We improve the efficiency of the first quantum key distribution scheme based on the counterfactual phenomenon. This scheme not only achieves the same security level as the original one but also has higher efficiency. We also analyze how to achieve the optimal efficiency under various conditions.

  18. Lifetime test on a high-performance dc microwave proton source

    SciTech Connect

    Sherman, J.D.; Hodgkins, D.J.; Lara, P.D.; Schneider, J.D.; Stevens, R.R. Jr.

    1995-05-01

    Powerful CW proton linear accelerators (100 mA at 0.5--1 GeV) are being proposed for spallation neutron source applications.These production accelerators require high availability and reliability. A microwave proton source, which has already demonstrated several key beam requirements, was operated for one week (170 hours) in a dc mode to test the reliability and lifetime of its plasma generator. The source was operated with 570 W of microwave (2.45 GHz) discharge power and with a 47-kV extraction voltage. This choice of operating parameters gave a proton current density of 250-mA/cm{sup 2} at 83% proton fraction, which is sufficient for a conservative dc injector design. The beam current was 60--65 mA over most of the week, and was sufficiently focused for RFQ injection. Total beam availability, defined as 47-keV beam-on time divided by elapsed time, was 96.2%. Spark downs in the high voltage column and a gas flow control problem caused all the downtime; no plasma generator failures were observed.

  19. High current proton source based on ECR discharge sustained by 37.5 GHz gyrotron radiation

    NASA Astrophysics Data System (ADS)

    Skalyga, V.; Izotov, I.; Sidorov, A.; Razin, S.; Zorin, V.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2012-10-01

    Formation of hydrogen ion beams with high intensity and low transverse emittance is one of the key challenges in accelerator technology. Present work is devoted to experimental investigation of proton beam production from dense plasma (Ne > 1013 cm-3) of an ECR discharge sustained by 37.5 GHz, 100 kW gyrotron radiation at SMIS 37 facility at IAP RAS. The anticipated advantages of the SMIS 37 gasdynamic ion source over the current state-of-the-art proton source technology based on 2.45 GHz hydrogen discharges are described. Experimental result obtained with different extraction configurations i.e. single- and multi-aperture systems are presented. It was demonstrated that ultra bright proton beam with approximately 4.5 mA current and 0.03 π·mm·mrad normalized emittance can be produced with the single-aperture (1 mm in diameter) extraction, the corresponding brightness being 5 A/(π·mm·mrad)2. For production of high current beams a multi-aperture extractor was used resulting to a record of 200 mA / 1.1 π·mm·mrad normalized emittance proton beam. The species fraction i.e. the ratio of H+ to H2+ current was recorded to be > 90 % for all extraction systems. A possibility of further enhancement of the beam parameters by improvements of the extraction system and its power supply is discussed.

  20. Highly Efficient Contactless Electrical Energy Transmission System

    NASA Astrophysics Data System (ADS)

    Ayano, Hideki; Nagase, Hiroshi; Inaba, Hiromi

    This paper proposes a new concept for a contactless electrical energy transmission system for an elevator and an automated guided vehicle. The system has rechargeable batteries on the car and electrical energy is supplied at a specific place. When electric power is supplied to the car, it runs automatically and approaches the battery charger. Therefore, a comparatively large gap is needed between the primary transformer at the battery charger and the secondary transformer on the car in order to prevent damage which would be caused by a collision. In this case, a drop of the transformer coupling rate due to the large gap must be prevented. In conventional contactless electrical energy transmission technology, since electric power is received by a pick-up coil from a power line, a large-sized transformer is required. And when the distance over which the car runs is long, the copper loss of the line also increases. The developed system adopts a high frequency inverter using a soft switching method to miniaturize the transformer. The system has a coupling rate of 0.88 for a transformer gap length of 10mm and can operate at 91% efficiency.

  1. Multi-petascale highly efficient parallel supercomputer

    SciTech Connect

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen -Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Smith, Brian; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2015-07-14

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.

  2. High-Resolution Proton Nuclear Magnetic Resonance Analysis of Metastatic Cancer Cells

    NASA Astrophysics Data System (ADS)

    Mountford, Carolyn E.; Wright, Lesley C.; Holmes, Kerry T.; MacKinnon, Wanda B.; Gregory, Patricia; Fox, Richard M.

    1984-12-01

    High-resolution proton nuclear magnetic resonance (NMR) studies of intact cancer cells revealed differences between cells with the capacity to metastasize and those that produce locally invasive tumors. The NMR resonances that characterize the metastatic cells were associated with an increased ratio of cholesterol to phospholipid and an increased amount of plasma membrane--bound cholesterol ester. High-resolution NMR spectroscopy could therefore be used to assess the metastatic potential of primary tumors.

  3. Proton irradiation robustness of dielectric mirrors for high-finesse Fabry-Pérot resonators in the near-infrared spectral range

    NASA Astrophysics Data System (ADS)

    Chen, Qun-Feng; Nevsky, Alexander; Schiller, Stephan; Campa, Erwin Portuondo; Lecomte, Steve; Parker, David

    2014-08-01

    We demonstrate that a proton irradiation with fluences of 3.6 × 1010/cm2 at low energy (<36 MeV) and 1.46 × 1010/cm2 at high energy (40 and 90 MeV combined) on the dielectric mirrors of Fabry-Pérot cavities with a finesse of about 700,000 causes less than 5 % change in the finesse. Furthermore, no influence on the coupling efficiency to the cavities was observed, the efficiency being approximately 70 %. The irradiation was carried out with a spectrum approximating the proton energy spectrum of a highly elliptic Earth orbit with duration of 5 years, proposed for the Space-Time Explorer and Quantum Equivalence Space Test (STE-QUEST) mission [http://sci.esa.int/ste-quest/].

  4. New High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kinder, James D.

    2004-01-01

    Fuel cells are receiving a considerable amount of attention for potential use in a variety of areas, including the automotive industry, commercial power generation, and personal electronics. Research at the NASA Glenn Research Center has focused on the development of fuel cells for use in aerospace power systems for aircraft, unmanned air vehicles, and space transportation systems. These applications require fuel cells with higher power densities and better durability than what is required for nonaerospace uses. In addition, membrane cost is a concern for any fuel cell application. The most widely used membrane materials for proton exchange membrane (PEM) fuel cells are based on sulfonated perfluorinated polyethers, typically Nafion 117, Flemion, or Aciplex. However, these polymers are costly and do not function well at temperatures above 80 C. At higher temperatures, conventional membrane materials dry out and lose their ability to conduct protons, essential for the operation of the fuel cell. Increasing the operating temperature of PEM fuel cells from 80 to 120 C would significantly increase their power densities and enhance their durability by reducing the susceptibility of the electrode catalysts to carbon monoxide poisoning. Glenn's Polymers Branch has focused on developing new, low-cost membranes that can operate at these higher temperatures. A new series of organically modified siloxane (ORMOSIL) polymers were synthesized for use as membrane materials in a high-temperature PEM fuel cell. These polymers have an organic portion that can allow protons to transport through the polymer film and a cross-linked silica network that gives the polymers dimensional stability. These flexible xerogel polymer films are thermally stable, with decomposition onset as high as 380 C. Two types of proton-conducting ORMOSIL films have been produced: (1) NASA-A, which can coordinate many highly acid inorganic salts that facilitate proton conduction and (2) NASA-B, which has been

  5. High-Efficiency Klystron For Television Transmitters

    NASA Technical Reports Server (NTRS)

    Ramins, Peter; Dayton, James; Mccune, Earl, Sr.; Kosmahl, Henry

    1990-01-01

    Improved klystron designed for use as final amplifier in ultrahigh-frequency (UHF) television transmitter. New device incorporates multistage depressed collector (MSDC) of advanced design to increase efficiency by recovering, from spent electron beam, some of residual kinetic energy otherwise dissipated as heat. Concept applied to increase efficiencies of microwave communication, equipment, radar systems, and particle-beam accelerators.

  6. A Simpler Energy Transfer Efficiency Model to Predict Relative Biological Effect for Protons and Heavier Ions

    PubMed Central

    Jones, Bleddyn

    2015-01-01

    The aim of this work is to predict relative biological effectiveness (RBE) for protons and clinically relevant heavier ions, by using a simplified semi-empirical process based on rational expectations and published experimental results using different ion species. The model input parameters are: Z (effective nuclear charge) and radiosensitivity parameters αL and βL of the control low linear energy transfer (LET) radiation. Sequential saturation processes are assumed for: (a) the position of the turnover point (LETU) for the LET–RBE relationship with Z, and (b) the ultimate value of α at this point (αU) being non-linearly related to αL. Using the same procedure for β, on the logical assumption that the changes in β with LET, although smaller than α, are symmetrical with those of α, since there is symmetry of the fall off of LET–RBE curves with increasing dose, which suggests that LETU must be identical for α and β. Then, using iso-effective linear quadratic model equations, the estimated RBE is scaled between αU and αL and between βU and βL from for any input value of Z, αL, βL, and dose. The model described is fitted to the data of Barendsen (alpha particles), Weyrather et al. (carbon ions), and Todd for nine different ions (deuterons to Argon), which include variations in cell surviving fraction and dose. In principle, this new system can be used to complement the more complex methods to predict RBE with LET such as the local effect and MKM models which already have been incorporated into treatment planning systems in various countries. It would be useful to have a secondary check to such systems, especially to alert clinicians of potential risks by relatively easy estimation of relevant RBEs. In clinical practice, LET values smaller than LETU are mostly encountered, but the model extends to higher values beyond LETU for other purposes such as radiation, protection, and astrobiology. Considerable further research is required, perhaps in a

  7. RF properties of 1050 MHz, β = 0.49 Elliptical cavity for High Current Proton Acceleration

    NASA Astrophysics Data System (ADS)

    Roy, Amitava; Mondal, J.; Mittal, K. C.

    2008-04-01

    BARC is developing technology for the accelerator driven subcritical system (ADSS) that will be mainly utilized for the transmutation of nuclear waste and enrichment of U233. Design and development of superconducting medium velocity cavity has been taken up as a part of the accelerator driven subcritical system project. We have studied RF properties of 1050 MHz, β = 0.49 single cell Elliptical cavity for possible use in High Current Proton Accelerator. Cavity shape optimization studies have been done by means of 2D cavity tuning code SUPERFISH and 3D High Frequency Simulation code CST Microwave Studio. The cavity peak electric and magnetic fields, power dissipation Pc, quality factor Q and effective shunt impedante ZT2 were calculated for various cavity dimensions using these codes. Based on these analyses a list of design parameter for the inner cell of the cavity has been suggested for possible use in high current proton accelerator.

  8. Intrinsic fluctuations of the proton saturation momentum scale in high multiplicity p+p collisions

    SciTech Connect

    McLerran, Larry; Tribedy, Prithwish

    2015-11-02

    High multiplicity events in p+p collisions are studied using the theory of the Color Glass Condensate. Here, we show that intrinsic fluctuations of the proton saturation momentum scale are needed in addition to the sub-nucleonic color charge fluctuations to explain the very high multiplicity tail of distributions in p+p collisions. It is presumed that the origin of such intrinsic fluctuations is non-perturbative in nature. Classical Yang Mills simulations using the IP-Glasma model are performed to make quantitative estimations. Furthermore, we find that fluctuations as large as O(1) of the average values of the saturation momentum scale can lead to rare high multiplicity events seen in p+p data at RHIC and LHC energies. Using the available data on multiplicity distributions we try to constrain the distribution of the proton saturation momentum scale and make predictions for the multiplicity distribution in 13 TeV p+p collisions.

  9. High-Brightness Picosecond Proton Beam Source Based on BNL TW CO2 Laser: Proof-of-Principle Experiments

    SciTech Connect

    Pogorelsky, I. V.; Pavlishin, I. V.; Yakimenko, V.; Shkolnikov, P. L.; Pukhov, A.

    2006-11-27

    We initiate study of a high-brightness multi-MeV ion and proton beam source driven by a picosecond CO2 laser. High-energy, collimated particle beams will originate from the rear surface of laser-irradiated foils by a process called Target Normal Sheath Acceleration (TNSA). The expected advantage of using a CO2 gas laser for this application rather than the ultra-fast solid state lasers is the 100-fold increase of the electron ponderomotive potential for the same laser intensity due to a 10 times longer CO2 laser wavelength. This promises to provide substantial enhancement in energy efficiency and particle yield, and will facilitate the advancement of the TNSA technique towards practical applications.

  10. Survival of tumor cells after proton irradiation with ultra-high dose rates

    PubMed Central

    2011-01-01

    Background Laser acceleration of protons and heavy ions may in the future be used in radiation therapy. Laser-driven particle beams are pulsed and ultra high dose rates of >109 Gy s-1may be achieved. Here we compare the radiobiological effects of pulsed and continuous proton beams. Methods The ion microbeam SNAKE at the Munich tandem accelerator was used to directly compare a pulsed and a continuous 20 MeV proton beam, which delivered a dose of 3 Gy to a HeLa cell monolayer within < 1 ns or 100 ms, respectively. Investigated endpoints were G2 phase cell cycle arrest, apoptosis, and colony formation. Results At 10 h after pulsed irradiation, the fraction of G2 cells was significantly lower than after irradiation with the continuous beam, while all other endpoints including colony formation were not significantly different. We determined the relative biological effectiveness (RBE) for pulsed and continuous proton beams relative to x-irradiation as 0.91 ± 0.26 and 0.86 ± 0.33 (mean and SD), respectively. Conclusions At the dose rates investigated here, which are expected to correspond to those in radiation therapy using laser-driven particles, the RBE of the pulsed and the (conventional) continuous irradiation mode do not differ significantly. PMID:22008289

  11. Detecting cavitation in mercury exposed to a high-energy pulsed proton beam.

    PubMed

    Manzi, Nicholas J; Chitnis, Parag V; Holt, R Glynn; Roy, Ronald A; Cleveland, Robin O; Riemer, Bernie; Wendel, Mark

    2010-04-01

    The Oak Ridge National Laboratory Spallation Neutron Source employs a high-energy pulsed proton beam incident on a mercury target to generate short bursts of neutrons. Absorption of the proton beam produces rapid heating of the mercury, resulting in the formation of acoustic shock waves and the nucleation of cavitation bubbles. The subsequent collapse of these cavitation bubbles promote erosion of the steel target walls. Preliminary measurements using two passive cavitation detectors (megahertz-frequency focused and unfocused piezoelectric transducers) installed in a mercury test target to monitor cavitation generated by proton beams with charges ranging from 0.041 to 4.1 muC will be reported on. Cavitation was initially detected for a beam charge of 0.082 muC by the presence of an acoustic emission approximately 250 mus after arrival of the incident proton beam. This emission was consistent with an inertial cavitation collapse of a bubble with an estimated maximum bubble radius of 0.19 mm, based on collapse time. The peak pressure in the mercury for the initiation of cavitation was predicted to be 0.6 MPa. For a beam charge of 0.41 muC and higher, the lifetimes of the bubbles exceeded the reverberation time of the chamber ( approximately 300 mus), and distinct windows of cavitation activity were detected, a phenomenon that likely resulted from the interaction of the reverberation in the chamber and the cavitation bubbles. PMID:20370004

  12. Detecting cavitation in mercury exposed to a high-energy pulsed proton beam

    SciTech Connect

    Manzi, Nicholas J; Chitnis, Parag V; Holt, Ray G; Roy, Ronald A; Cleveland, Robin O; Riemer, Bernie; Wendel, Mark W

    2010-01-01

    The Oak Ridge National Laboratory Spallation Neutron Source employs a high-energy pulsed proton beam incident on a mercury target to generate short bursts of neutrons. Absorption of the proton beam produces rapid heating of the mercury, resulting in the formation of acoustic shock waves and the nucleation of cavitation bubbles. The subsequent collapse of these cavitation bubbles promote erosion of the steel target walls. Preliminary measurements using two passive cavitation detectors (megahertz-frequency focused and unfocused piezoelectric transducers) installed in a mercury test target to monitor cavitation generated by proton beams with charges ranging from 0.041 to 4.1 C will be reported on. Cavitation was initially detected for a beam charge of 0.082 C by the presence of an acoustic emission approximately 250 s after arrival of the incident proton beam. This emission was consistent with an inertial cavitation collapse of a bubble with an estimated maximum bubble radius of 0.19 mm, based on collapse time. The peak pressure in the mercury for the initiation of cavitation was predicted to be 0.6 MPa. For a beam charge of 0.41 C and higher, the lifetimes of the bubbles exceeded the reverberation time of the chamber (~300 s), and distinct windows of cavitation activity were detected, a phenomenon that likely resulted from the interaction of the reverberation in the chamber and the cavitation bubbles.

  13. Proton acceleration from high-contrast short pulse lasers interacting with sub-micron thin foils

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2016-02-01

    A theoretical study complemented with published experimental data of proton acceleration from sub-micron (thickness < 1 μm) foils irradiated by ultra-high contrast ( >1010 ) short pulse lasers is presented. The underlying physics issues pertinent to proton acceleration are addressed using two-dimensional particle-in-cell simulations. For laser energy ɛ≤4 J (intensity I ≤5 ×1020 W/cm 2 ), simulation predictions agree with experimental data, both exhibiting scaling superior to Target Normal Sheath Acceleration's model. Anomalous behavior was observed for ɛ>4 J ( I >5 ×1020 W/cm 2 ), for which the measured maximum proton energies were much lower than predicted by scaling and these simulations. This unexpected behavior could not be explained within the frame of the model, and we conjecture that pre-pulses preceding the main pulse by picoseconds may be responsible. If technological issues can be resolved, energetic proton beams could be generated for a wide range of applications such as nuclear physics, radiography, and medical science.

  14. Energy Loss of High Intensity Focused Proton Beams Penetrating Metal Foils

    NASA Astrophysics Data System (ADS)

    McGuffey, C.; Qiao, B.; Kim, J.; Beg, F. N.; Wei, M. S.; Evans, M.; Fitzsimmons, P.; Stephens, R. B.; Chen, S. N.; Fuchs, J.; Nilson, P. M.; Canning, D.; Mastrosimone, D.; Foord, M. E.

    2014-10-01

    Shortpulse-laser-driven intense ion beams are appealing for applications in probing and creating high energy density plasmas. Such a beam isochorically heats and rapidly ionizes any target it enters into warm dense matter with uncertain transport and stopping properties. Here we present experimental measurements taken with the 1.25 kJ, 10 ps OMEGA EP BL shortpulse laser of the proton and carbon spectra after passing through metal foils. The laser irradiated spherically curved C targets with intensity 4×1018 W/cm2, producing proton beams with 3 MeV slope temperature and a sharp low energy cutoff at 5 MeV which has not been observed on lower energy, shorter pulse intense lasers. The beam either diverged freely or was focused to estimated 1016 p +/cm2 ps by a surrounding structure before entering the metal foils (Al or Ag and a Cu tracer layer). The proton and ion spectra were altered by the foil depending on material and whether or not the beam was focused. Transverse proton radiography probed the target with ps temporal and 10 micron spatial resolution, indicating an electrostatic field on the foil may also have affected the beam. We present complementary particle-in-cell simulations of the beam generation and transport to the foils. This work was supported by the DOE/NNSA National Laser User Facility program, Contract DE-SC0001265.

  15. High efficiency quasi-monochromatic infrared emitter

    NASA Astrophysics Data System (ADS)

    Brucoli, Giovanni; Bouchon, Patrick; Haïdar, Riad; Besbes, Mondher; Benisty, Henri; Greffet, Jean-Jacques

    2014-02-01

    Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

  16. High efficiency quasi-monochromatic infrared emitter

    SciTech Connect

    Brucoli, Giovanni; Besbes, Mondher; Benisty, Henri Greffet, Jean-Jacques; Bouchon, Patrick; Haïdar, Riad

    2014-02-24

    Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

  17. A high-efficiency energy conversion system

    SciTech Connect

    Belcher, A.E.

    1996-12-31

    A fundamentally new method for converting pressure into rotative motion is introduced. A historical background is given and an idealized non-turbine Brayton cycle engine and associated equations are described. Salient features are explained, together with suggested applications. Concerns over global warming, unacceptable levels of air pollution, and the need for more efficient utilization of nonrenewable energy resources, are issues which continue to plague us. The situation is further exacerbated by the possibility that underdeveloped countries, under pressure to expand their economies, might adopt power generating systems which could produce high levels of emissions. This scenario could easily develop if equipment, which once complied with stringent standards, failed to be adequately maintained through the absence of a reliable technical infrastructure. The Brayton cycle manometric engine has the potential for eliminating, or at least mitigating, many of the above issues. It is therefore of considerable importance to all populations, irrespective of demographic or economic considerations. This engine is inherently simple--the engine proper has only one moving part. It has no pistons, vanes, or other such conventional occlusive devices, yet it is a positive displacement machine. Sealing is achieved by what can best be described as a series of traveling U-tube manometers. Its construction does not require precision engineering nor the use of exotic materials, making it easy to maintain with the most rudimentary resources. Rotational velocity is low, and its normal life cycle is expected to extend to several decades. These advantages more than offset the machine`s large size. It is suited only to large and medium-scale stationary applications.

  18. Criticality of Low-Energy Protons in Single-Event Effects Testing of Highly-Scaled Technologies

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan Allen; Marshall, Paul W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.; Phan, A. M.; Seidleck, C. M.

    2014-01-01

    We report low-energy proton and alpha particle SEE data on a 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) static random access memory (SRAM) that demonstrates the criticality of understanding and using low-energy protons for SEE testing of highly-scaled technologies

  19. High efficiency silicon solar cell review

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P. (Editor)

    1975-01-01

    An overview is presented of the current research and development efforts to improve the performance of the silicon solar cell. The 24 papers presented reviewed experimental and analytic modeling work which emphasizes the improvment of conversion efficiency and the reduction of manufacturing costs. A summary is given of the round-table discussion, in which the near- and far-term directions of future efficiency improvements were discussed.

  20. High Efficient Cryocooler for Liquid Hydrogen System

    NASA Astrophysics Data System (ADS)

    Nakagome, H.

    2006-04-01

    Conversion into Hydrogen Energy Society is advanced focusing on the application to a fuel cell electric vehicle. As volume and weight density of liquid hydrogen are large, it is the method which was most excellent as the storage method of hydrogen. However, in order to store liquid hydrogen stably over a long period of time, decreasing the loss of energy, development of an efficient small cryocooler becomes important. This paper reports the research about improvement in the refrigeration efficiency of a two-stage GM cryocooler. In order that the GM cryocooler may operate by the Simon expansion, it carries out asymptotic of the COP of the GM cryocooler to the Carnot COP as a compression ratio is lowered. When experimented based on this view, it was checked that refrigeration efficiency rises with reduction in a compression ratio. Furthermore, if the compression ratio is lowered, refrigeration efficiency will fall rapidly. The peak value of the refrigeration efficiency in 20K level attained 28%Carnot. It was verified by optimization of the compression ratio of the GM cryocooler that refrigeration efficiency can be improved significantly. Therefore, sharp reduction of the energy consumption of a liquid hydrogen system will be attained by applying the result of this research.

  1. Oriented MOF-polymer Composite Nanofiber Membranes for High Proton Conductivity at High Temperature and Anhydrous Condition

    PubMed Central

    Wu, Bin; Pan, Jiefeng; Ge, Liang; Wu, Liang; Wang, Huanting; Xu, Tongwen

    2014-01-01

    The novel oriented electrospun nanofiber membrane composed of MOFs and SPPESK has been synthesized for proton exchange membrane fuel cell operating at high temperature and anhydrous conditions. It is clear that the oriented nanofiber membrane displays the higher proton conductivity than that of the disordered nanofiber membrane or the membrane prepared by conventional solvent-casting method (without nanofibers). Nanofibers within the membranes are significantly oriented. The proton conductivity of the oriented nanofiber membrane can reach up to (8.2 ± 0.16) × 10−2 S cm−1 at 160°C under anhydrous condition for the highly orientation of nanofibers. Moreover, the oxidative stability and resistance of methanol permeability of the nanofibers membrane are obviously improved with an increase in orientation of nanofibers. The observed methanol permeability of 0.707 × 10−7 cm2 s−1 is about 6% of Nafion-115. Consequently, orientated nanofibers membrane is proved to be a promising material as the proton exchange membrane for potential application in direct methanol fuel cells. PMID:25082522

  2. Development of an abort gap monitor for high-energy proton rings

    SciTech Connect

    Beche, Jean-Francois; Byrd, John; De Santis, Stefano; Denes, Peter; Placidi, Massimo; Turner, William; Zolotorev, Max

    2004-05-03

    The fill pattern in proton synchrotrons usually features an empty gap, longer than the abort kicker raise time, for machine protection. This gap is referred to as the ''abort gap'' and any particles, which may accumulate in it due to injection errors and diffusion between RF buckets, would be lost inside the ring, rather than in the beam dump, during the kicker firing. In large proton rings, due to the high energies involved, it is vital to monitor the build up of charges in the abort gap with a high sensitivity. We present a study of an abort gap monitor based on a photomultiplier with a gated microchannel plate, which would allow for detecting low charge densities by monitoring the synchrotron radiation emitted. We show results of beam test experiments at the Advanced Light Source using a Hamamatsu 5916U MCP-PMT and compare them to the specifications for the Large Hadron Collider

  3. High current proton beams production at Simple Mirror Ion Source 37.

    PubMed

    Skalyga, V; Izotov, I; Razin, S; Sidorov, A; Golubev, S; Kalvas, T; Koivisto, H; Tarvainen, O

    2014-02-01

    This paper presents the latest results of high current proton beam production at Simple Mirror Ion Source (SMIS) 37 facility at the Institute of Applied Physics (IAP RAS). In this experimental setup, the plasma is created and the electrons are heated by 37.5 GHz gyrotron radiation with power up to 100 kW in a simple mirror trap fulfilling the ECR condition. Latest experiments at SMIS 37 were performed using a single-aperture two-electrode extraction system. Proton beams with currents up to 450 mA at high voltages below 45 kV were obtained. The maximum beam current density was measured to be 600 mA/cm(2). A possibility of further improvement through the development of an advanced extraction system is discussed. PMID:24593436

  4. R & D on Very-High-Current Superconducting Proton Linac, Final Report

    SciTech Connect

    Ben-Zvi, Ilan

    2013-03-31

    The aim of this R&D project was to develop a superconducting cavity for a very-­ high-current proton accelerator. The particular application motivating the proposal was a LHC upgrade called the Superconducting Proton Linac, or SPL. Under the grant awarded to Stony Brook University the cavity was designed, a prototype copper cavity, followed by the niobium cavity, were built. A new set of HOM dampers was developed. The cavity has outstanding RF performance parameters – low surface fields, low power loss and all HOMs are fully damped. In fact, it is a “universal cavity” in the sense that it is suited for the acceleration of high-­current protons and well as high current electrons. Its damping of HOM modes is so good that it can see service in a multi-pass linac or an Energy Recovery Linac in addition to the easier service in a single-pass linac. Extensive measurements were made on the cavities and couplers, with the exception of the cold test of the niobium cavity. At the time of this report the cavity has been chemically processed and is ready for vertical testing which will be carried out shortly.

  5. First direct-write lithography results on the Guelph high resolution proton microprobe

    NASA Astrophysics Data System (ADS)

    Wang, L. P.; de Kerckhove, D.

    2011-10-01

    The recently completed high-resolution proton microprobe at the University of Guelph is Canada's first one-micron nuclear microprobe, which represents the country's state-of-the-art technology for various nuclear microprobe applications, e.g. direct-write microlithography. Its probe-forming system is comprised of a triplet Oxford Micro beams magnetic quadrupole lenses, along with high-precision objective slits. High energy protons coming off a 3 MV particle accelerator can achieve a nominal resolution of one micro and a beam current of several hundred of picoamperes when arriving at the target. This proton probe is ideal for the use of direct-write lithography with the incorporation of a magnetic scanning system and motorized sample stage. Preliminary lithography results have been obtained using spin-coated PMMA photoresist as specimen. The beam spot size, beam range and straggling inside the substrate and the exposure conditions are investigated by using scanning electron microscopy. This facility is the first in Canada to perform focused direct-write ion beam lithography, which is ideal for modification and machining of polymer and semiconductor materials for biological, microfluidic and ultimate lab-on-chip applications.

  6. High Efficiency Thermoelectric Generators Using New Very High Performance Materials

    NASA Astrophysics Data System (ADS)

    Fleurial, Jean-Pierre; Ewell, Richard; Caillat, Thierry; Vandersande, Jan

    1994-07-01

    Extensive theoretical and experimental studies have resulted in reasonable performance improvements (from an average ZT of 0.62 up to 0.75) of the state of the art high temperature SiGe thermoelectric materials in the last 5 years. However, significantly higher material conversion efficiencies are needed to make thermoelectrics competitive and economically attractive. A new approach that looks at radically different compounds and alloys was recently started at JPL and a new family of materials with great potential has been discovered. A real breakthrough was achieved when maximum ZT values of 2.0 were obtained to date on one of these materials in the 300-400C temperature range. Initial analysis of various experimental tests have confirmed its good mechanical and physico-chemical properties. Substantial increases in conversion efficiency and specific power are predicted (60-90%) by incorporating this new material into state of the art space nuclear power systems such as Radioisotope Thermoelectric Generators (RTG).

  7. High and low energy proton radiation damage in p/n InP MOCVD solar cells

    NASA Technical Reports Server (NTRS)

    Rybicki, George; Weinberg, Irving; Scheiman, Dave; Vargas-Aburto, Carlos

    1995-01-01

    InP p(+)nn(+) MOCVD solar cells were irradiated with 0.2 MeV and 10 MeV protons to a fluence of 10(exp 13)/sq cm. The degradation of power output, IV behavior, carrier concentration and defect concentration were observed at intermediate points throughout the irradiations. The 0.2 MeV proton irradiated solar cells suffered much greater and more rapid degradation in power output than those irradiated with 10 meV protons. The efficiency losses were accompanied by larger increases in the recombination currents in the 0.2 MeV proton irradiated solar cells. The low energy proton irradiations also had a larger impact on the series resistance of the solar cells. Despite the radiation induced damage, the carrier concentration in the base of the solar cells showed no reduction after 10 MeV or 0.2 MeV proton irradiations and even increased during irradiation with 0.2 MeV protons. In a DLTS study of the irradiated samples, the minority carrier defects H4 and H5 at E(v) + 0.33 and E(v) + 0.52 eV and the majority carrier defects E7 and E10 at E(c)- 0.39 and E(c)-0.74 eV, were observed. The defect introduction rates for the 0.2 MeV proton irradiations were about 20 times higher than for the 10 MeV proton irradiations. The defect E10, observed here after irradiation, has been shown to act as a donor in irradiated n-type InP and may be responsible for obscuring carrier removal. The results of this study are consistent with the much greater damage produced by low energy protons whose limited range causes them to stop in the active region of the solar cell.

  8. Acceleration of Ultra-Low Emittance Proton and Ion Beams with High Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Cowan, Thomas E.

    2002-11-01

    Intense beams of several MeV protons and ions, generated by the interaction of high-intensity short pulse lasers with thin foils, have been observed by many researchers in recent years.(S.P. Hatchett et al., Phys. Plasmas 7, 2076 (2000); T.E. Cowan et al., Nucl. Inst. Meth. A 455, 130 (2000); R.A. Snavely et al., Phys. Rev. Lett. 85, 2945 (2000); S.C. Wilks et al., Phys. Plasmas 8, 532 (2000); E. Clark et al., Phys. Rev. Lett. 84, 670 (2000).) In experiments performed at the 100 TW LULI laser, we have succeeded to control the ion acceleration process to produce ultra high quality proton beams, whose transverse emittance is <0.006 π mm-mrad (rms-normalized), a factor of 100 lower than is typical of conventional RF linear accelerators. Within the envelope of the entire beam, we could focus individual proton beamlets to 100 nm spatial scales. This required control of the laser-plasma interaction, of the transport of MA currents of relativistic electrons through the target substrate, and of the surface topology and source material layering on the target foil rear-surface.(M. Roth et al., Phys. Rev. ST Accel. Beams 5, 061002 (2002).) By varying the source material, we also accelerated light ion beams, such as He-like fluorine, to over 5 MeV/nucleon.(M. Hegelich et al., Phys. Rev. Lett. 89, 085002 (2002).) From PIC simulations we understand the highest-energy and lowest-divergence proton acceleration as a transient laser-driven virtual cathode effect occurring at the target rear-surface. We have also confirmed the acceleration of ions from the front surface (A. Maksimchuk et al., Phys. Rev. Lett. 84, 4108 (2000).), which we find exhibits an intense low-energy component, but only a tenuous high-energy component, in agreement with PIC simulations. This work was performed with corporate support of General Atomics.

  9. High efficiency klystron for the SPS application

    NASA Technical Reports Server (NTRS)

    Larue, A. D.

    1980-01-01

    The enhancement of klystron efficiency through the use of collector depression, that is by recovering energy from the spent electron beam after microwave amplification, was investigated. Design considerations included noise, harmonics, cooling, and service life. The mod anode, to be employed for beam control, and the depressed collector, used in spent electron beam energy recovery, are described.

  10. A multi-addressable switch based on the dimethyldihydropyrene photochrome with remarkable proton-triggered photo-opening efficiency.

    PubMed

    Roldan, Diego; Cobo, Saioa; Lafolet, Frédéric; Vilà, Neus; Bochot, Constance; Bucher, Christophe; Saint-Aman, Eric; Boggio-Pasqua, Martial; Garavelli, Marco; Royal, Guy

    2015-01-01

    A series of photochromic derivatives based on the trans-10b,10c-dimethyl-10b,10c-dihydropyrene (DHP, "closed form") skeleton has been synthesized and their photoisomerization leading to the corresponding cyclophanediene (CPD, "open form") isomers has been investigated by UV/Vis and (1) H NMR spectroscopies. Substitution of the DHP core with electron-withdrawing pyridinium groups was found to have major effects on the photoisomerization efficiency, the most remarkable examples being to enhance the quantum yield of the opening reaction and to allow fast and quantitative conversions at much lower radiant energies. This effect was rationalized by theoretical calculations. We also show that the reverse reaction, that is, going from the open form to the closed form, can be electrochemically triggered by oxidation of the CPD unit and that the photo-opening properties of pyridine-substituted DHPs can be efficiently tuned by protonation, the system behaving as a multi-addressable molecular switch. These multi-addressable photochromes show promise for the development of responsive materials. PMID:25358895

  11. Energy efficiency indicators for high electric-load buildings

    SciTech Connect

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  12. The Use of Ionization Electron Columns for Space-Charge Compensation in High Intensity Proton Accelerators

    SciTech Connect

    Shiltsev, V.; Alexahin, Y.; Kamerdzhiev, V.; Kapin, V.; Kuznetsov, G.

    2009-01-22

    We discuss a recent proposal to use strongly magnetized electron columns created by beam ionization of the residual gas for compensation of space charge forces of high intensity proton beams in synchrotrons and linacs. The electron columns formed by trapped ionization electrons in a longitudinal magnetic field that assures transverse distribution of electron space charge in the column is the same as in the proton beam. Electrostatic electrodes are used to control the accumulation and release of the electrons. Ions are not magnetized and drift away without affecting the compensation. Possible technical solution for the electron columns is presented. We also discuss the first numerical simulation results for space-charge compensation in the FNAL Booster and results of relevant beam studies in the Tevatron.

  13. High-field proton magnetic resonance spectroscopy reveals metabolic effects of normal brain aging

    PubMed Central

    Harris, Janna L.; Yeh, Hung-Wen; Swerdlow, Russell H.; Choi, In-Young; Lee, Phil; Brooks, William M.

    2014-01-01

    Altered brain metabolism is likely to be an important contributor to normal cognitive decline and brain pathology in elderly individuals. To characterize the metabolic changes associated with normal brain aging, we used high-field proton magnetic resonance spectroscopy in vivo to quantify 20 neurochemicals in the hippocampus and sensorimotor cortex of young adult and aged rats. We found significant differences in the neurochemical profile of the aged brain when compared with younger adults, including lower aspartate, ascorbate, glutamate, and macromolecules, and higher glucose, myo-inositol, N-acetylaspartylglutamate, total choline, and glutamine. These neurochemical biomarkers point to specific cellular mechanisms that are altered in brain aging, such as bioenergetics, oxidative stress, inflammation, cell membrane turnover, and endogenous neuroprotection. Proton magnetic resonance spectroscopy may be a valuable translational approach for studying mechanisms of brain aging and pathology, and for investigating treatments to preserve or enhance cognitive function in aging. PMID:24559659

  14. Durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Jheng, Li-Cheng; Chang, Wesley Jen-Yang; Hsu, Steve Lien-Chung; Cheng, Po-Yang

    2016-08-01

    Two types of porous polybenzimidazole (PBI) membranes with symmetric and asymmetric morphologies were fabricated by the template-leaching method and characterized by scanning electron microscope (SEM). Their physicochemical properties were compared in terms of acid-doping level, proton conductivity, mechanical strength, and oxidative stability. The durability of fuel cell operation is one of the most challenging for the PBI based membrane electrode assembly (MEA) used in high-temperature proton exchange membrane fuel cells (HT-PEMFCs). In the present work, we carried out a long-term steady-state fuel cell test to compare the effect of membrane structure on the cell voltage degradation. It has also been demonstrated that the asymmetrically porous PBI could bring some notable improvements on the durability of fuel cell operation, the fuel crossover problem, and the phosphoric acid leakage.

  15. The use of ionization electron columns for space-charge compensation in high intensity proton accelerators

    SciTech Connect

    Shiltsev, V.; Alexahin, Y.; Kamerdzhiev, V.; Kapin, V.; Kuznetsov, G.; /Fermilab

    2009-01-01

    We discuss a recent proposal to use strongly magnetized electron columns created by beam ionization of the residual gas for compensation of space charge forces of high intensity proton beams in synchrotrons and linacs. The electron columns formed by trapped ionization electrons in a longitudinal magnetic field that assures transverse distribution of electron space charge in the column is the same as in the proton beam. Electrostatic electrodes are used to control the accumulation and release of the electrons. Ions are not magnetized and drift away without affecting the compensation. Possible technical solution for the electron columns is presented. We also discuss the first numerical simulation results for space-charge compensation in the FNAL Booster and results of relevant beam studies in the Tevatron.

  16. High Precision Measurement of the Proton Elastic Form Factor Ratio at Low Q2

    SciTech Connect

    Xiaohui Zhan

    2009-12-01

    A high precision measurement of the proton elastic form factor ratio µpGEp/GMp in the range Q2 = 0.3–0.7 GeV2/c2 was performed using recoil polarimetry in Jefferson Lab Hall A. In this low Q2 range, previous data from LEDEX [5] along with many fits and calculations [2, 3, 4] indicate substantial deviations of the ratio from unity. In this new measurement, with 80% polarized electron beam for 24 days, we are able to achieve <1% statistical uncertainty. Preliminary results are a few percent lower than expected from previous world data and fits, indicating a smaller GEp at this region. Beyond the intrinsic interest in nucleon structure, the improved form factor measurements also have implications for DVCS, determinations of the proton Zemach radius and strangeness form factors through parity violation experiments.

  17. Reduction of proton acceleration in high-intensity laser interaction with solid two-layer targets

    SciTech Connect

    Wei, M. S.; Davies, J. R.; Clark, E. L.; Beg, F. N.; Gopal, A.; Tatarakis, M.; Willingale, L.; Nilson, P.; Dangor, A. E.; Norreys, P. A.; Zepf, M.; Krushelnick, K.

    2006-12-15

    Reduction of proton acceleration in the interaction of a high-intensity, picosecond laser with a 50-{mu}m aluminum target was observed when 0.1-6 {mu}m of plastic was deposited on the back surface (opposite side of the laser). The maximum energy and number of energetic protons observed at the back of the target were greatly reduced in comparison to pure aluminum and plastic targets of the same thickness. This is attributed to the effect of the interface between the layers. Modeling of the electron propagation in the targets using a hybrid code showed strong magnetic-field generation at the interface and rapid surface heating of the aluminum layer, which may account for the results.

  18. Highly cooperative and hysteretic response of the skeletal muscle ryanodine receptor to changes in proton concentrations.

    PubMed Central

    Ma, J; Zhao, J

    1994-01-01

    Ryanodine receptors are key molecules in excitation-contraction coupling of skeletal muscle. They form the pore of the calcium release channel, which is regulated by Ca and ATP. Multiple proton titration sites are involved in controlling the different open states of the channel, as indicated by the following: i) the channel had a biphasic response to changes in proton concentrations around neutral pH; ii) the activities of the channel were inhibited by acidic pHs in a highly cooperative manner; and iii) the channel exhibited pronounced hysteresis to changes in pH. Four distinct conductance states can be identified in the single ryanodine-activated calcium release channel. The distribution of the multiple conductance states depends on the level of [Ca], ATP, and pH in the recording solution. The data are consistent with the multimeric structure of the skeletal muscle ryanodine receptor. Images FIGURE 3 PMID:7948677

  19. In situ proton irradiation-induced creep at very high temperature

    NASA Astrophysics Data System (ADS)

    Campbell, Anne A.; Was, Gary S.

    2013-02-01

    This objective of this work was to develop an experimental facility that can perform in situ high temperature proton irradiation-induced creep experiments on a range of materials. This was achieved by designing an irradiation chamber and stage that allows for load application and removal, provides a method for controlling and monitoring temperature and proton flux, and a means to make in situ measurement of dimensional change of the samples during the experiment. Initial experiments on POCO Graphite Inc. ZXF-5Q grade ultra-fine grain samples irradiated at 1000 °C at a damage rate of 1.15 × 10-6 dpa/s exhibited a linear dependence of measured creep rate on applied stress over a range of stresses from 10 MPa to 40 MPa.

  20. Proton-silicon interaction potential extracted from high-resolution measurements of crystal rainbows

    NASA Astrophysics Data System (ADS)

    Petrović, S.; Nešković, N.; Ćosić, M.; Motapothula, M.; Breese, M. B. H.

    2015-10-01

    This study provides a way to produce very accurate ion-atom interaction potentials. We present the high-resolution measurements of angular distributions of protons of energies between 2.0 and 0.7 MeV channeled in a 55 nm thick (0 0 1) silicon membrane. Analysis is performed using the theory of crystal rainbows in which the Molière's interaction potential is modified to make it accurate both close to the channel axis and close to the atomic strings defining the channel. This modification is based on adjusting the shapes of the rainbow lines appearing in the transmission angle plane, with the resulting theoretical angular distributions of transmitted protons being in excellent agreement with the corresponding experimental distributions.

  1. Langmuir probe diagnostics of plasma in high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P.; Kewlani, H.; Mishra, L.; Mittal, K. C.; Patil, D. S.

    2013-07-15

    A high current Electron Cyclotron Resonance (ECR) proton ion source has been developed for low energy high intensity proton accelerator at Bhabha Atomic Research Centre. Langmuir probe diagnostics of the plasma generated in this proton ion source is performed using Langmuir probe. The diagnostics of plasma in the ion source is important as it determines beam parameters of the ion source, i.e., beam current, emittance, and available species. The plasma parameter measurement in the ion source is performed in continuously working and pulsed mode using hydrogen as plasma generation gas. The measurement is performed in the ECR zone for operating pressure and microwave power range of 10{sup −4}–10{sup −3} mbar and 400–1000 W. An automated Langmuir probe diagnostics unit with data acquisition system is developed to measure these parameters. The diagnostics studies indicate that the plasma density and plasma electron temperature measured are in the range 5.6 × 10{sup 10} cm{sup −3} to 3.8 × 10{sup 11} cm{sup −3} and 4–14 eV, respectively. Using this plasma, ion beam current of tens of mA is extracted. The variations of plasma parameters with microwave power, gas pressure, and radial location of the probe have been studied.

  2. The effect of irradiation with high-energy protons on 4H-SiC detectors

    SciTech Connect

    Kazukauskas, V. Jasiulionis, R.; Kalendra, V.; Vaitkus, J.-V.

    2007-03-15

    The effect of irradiation of 4H-SiC ionizing-radiation detectors with various doses (as high as 10{sup 16} cm{sup -2}) of 24-GeV protons is studied. Isotopes of B, Be, Li, He, and H were produced in the nuclear spallation reactions of protons with carbon. Isotopes of Al, Mg, Na, Ne, F, O, and N were produced in the reactions of protons with silicon. The total amount of the produced stable isotopes varied in proportion with the radiation dose from 1.2 x 10{sup 11} to 5.9 x 10{sup 13} cm{sup -2}. It is shown that, at high radiation doses, the contact characteristics of the detectors change appreciably. The potential-barrier height increased from the initial value of 0.7-0.75 eV to 0.85 eV; the rectifying characteristics of the Schottky contacts deteriorated appreciably. These effects are attributed to the formation of a disordered structure of the material as a result of irradiation.

  3. Regolith Biological Shield for a Lunar Outpost from High Energy Solar Protons

    NASA Astrophysics Data System (ADS)

    Pham, Tai T.; El-Genk, Mohamed S.

    2008-01-01

    Beyond Earth atmosphere, natural space radiation from Galactic Cosmic Rays and Solar Energetic Protons (SEPs) represents a significant hazard to both manned and robotic missions. For lunar settlements, protecting astronauts from SEPs is a key safety issue that needs to be addressed by identifying appropriate shielding materials. This paper investigates the interaction of SEPs with the lunar regolith, and quantifies the effectiveness of the regolith as a biological shield for a human habitat, compared to aluminum, presently the standard shielding material. Also calculated is the shielding thickness to reduce the dose in the habitat to those recommended by International Radiation Protection Committee and by NASA for operation on the international space station. The present calculations are for the most energetic solar event of February 1956, which included high energy protons up to 1000 MeV. Results show that the lunar regolith is as effective as aluminum for shielding lunar outposts. A large thickness of the regolith (~30 g/cm2) would be needed to reduce the dose in the habitat from high energy protons below the 30 days flight crew limit of 25 Rem (or 250 mSv) and significantly more shielding would be needed (~150 g/cm2) to reduce the dose down to the limit for radiation workers of 5 Rem (or 50 mSv).

  4. Intial characterization fo a commerical electron gun for profiling high intensity proton beams in Project X

    SciTech Connect

    Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.; Thangaraj, J.C.T.; Zhang, D.; Blokland, W.; /Oak Ridge

    2011-03-01

    Measuring the profile of a high-intensity proton beam is problematic in that traditional invasive techniques such as flying wires don't survive the encounter with the beam. One alternative is the use of an electron beam as a probe of the charge distribution in the proton beam as was done at the Spallation Neutron Source at ORNL. Here we present an initial characterization of the beam from a commercial electron gun from Kimball Physics, intended for use in the Fermilab Main Injector for Project X. Despite the fact that the horizontal spot size is abnormally large in the high current measurement, the spot size at the downstream cross X2 is reasonable in the context of measuring the deflection. A thin foil OTR would help with the beam heating and should be tried. The next phase of this experiment is to simulate the proton beam with a pair of current carrying wires and to design and construct a fast deflector. Some of the remaining issues to be considered include determining the minimum beam current needed to observe the deflected beam for a given sweep time and the impact of longitudinal variations in the charge density of the bunch.

  5. Regolith Biological Shield for a Lunar Outpost from High Energy Solar Protons

    SciTech Connect

    Pham, Tai T.; El-Genk, Mohamed S.

    2008-01-21

    Beyond Earth atmosphere, natural space radiation from Galactic Cosmic Rays and Solar Energetic Protons (SEPs) represents a significant hazard to both manned and robotic missions. For lunar settlements, protecting astronauts from SEPs is a key safety issue that needs to be addressed by identifying appropriate shielding materials. This paper investigates the interaction of SEPs with the lunar regolith, and quantifies the effectiveness of the regolith as a biological shield for a human habitat, compared to aluminum, presently the standard shielding material. Also calculated is the shielding thickness to reduce the dose in the habitat to those recommended by International Radiation Protection Committee and by NASA for operation on the international space station. The present calculations are for the most energetic solar event of February 1956, which included high energy protons up to 1000 MeV. Results show that the lunar regolith is as effective as aluminum for shielding lunar outposts. A large thickness of the regolith ({approx}30 g/cm{sup 2}) would be needed to reduce the dose in the habitat from high energy protons below the 30 days flight crew limit of 25 Rem (or 250 mSv) and significantly more shielding would be needed ({approx}150 g/cm{sup 2}) to reduce the dose down to the limit for radiation workers of 5 Rem (or 50 mSv)

  6. High-diffraction-efficiency pseudorandom encoding.

    PubMed

    Yang, Y; Stark, H; Gurkan, D; Lawson, C L; Cohn, R W

    2000-02-01

    Pseudorandom encoding (PRE) is a statistics-based procedure in which a pure-phase spatial light modulator (SLM) can yield, on the average, the prescribed diffraction pattern specified by the user. We seek to combine PRE with the optimization of an aperture-based target function. The target function is a fully complex input transmittance, unrealizable by a phase-only SLM, that generates a prescribed light intensity. The optimization is done to increase the diffraction efficiency of the overall process. We compare three optimization methods-Monte Carlo simulation, a genetic algorithm, and a gradient search-for maximizing the diffraction efficiency of a spot-array generator. Calculated solutions are then encoded by PRE, and the resulting diffraction patterns are computer simulated. Details on the complexity of each procedure are furnished, as well as comparisons on the quality, such as uniformity of the output spot array. PMID:10680630

  7. High efficiency annual denuder for formaldehyde monitoring

    SciTech Connect

    Cecchini, F.; Febo, A.; Possanzini, M.

    1985-01-01

    A practical and correct methodology for evaluating CH/sub 2/O in air without sampling artifact formation is presented. Formaldehyde is collected on an annual denuder coated with bisulfite-triethanolamine. The sorbent layer is extracted with water and the solution analyzed by the chromotropic acid (CTA) procedure. Sorption efficiency and loading capacity have been investigated along with storage stability. Results of laboratory validation studies have indicated that a small annual denuder was able to sample about 300 ..mu..g CH/sub 2/O without an appreciable decrease in the initial collection efficiency (99% at 2.5 1 min/sup -1/). Tests on storage stability before and after exposure have also demonstrated that both oxidation of bisulfite and release of CH/sub 2/O did not occur for time periods as long as 1 month.

  8. Highly efficient self-replicating RNA enzymes.

    PubMed

    Robertson, Michael P; Joyce, Gerald F

    2014-02-20

    An RNA enzyme has been developed that catalyzes the joining of oligonucleotide substrates to form additional copies of itself, undergoing self-replication with exponential growth. The enzyme also can cross-replicate with a partner enzyme, resulting in their mutual exponential growth and enabling self-sustained Darwinian evolution. The opportunity for inventive evolution within this synthetic genetic system depends on the diversity of the evolving population, which is limited by the catalytic efficiency of the enzyme. Directed evolution was used to improve the efficiency of the enzyme and increase its exponential growth rate to 0.14 min(-1), corresponding to a doubling time of 5 min. This is close to the limit of 0.21 min(-1) imposed by the rate of product release, but sufficient to enable more than 80 logs of growth per day. PMID:24388759

  9. Highly Efficient Protein Misfolding Cyclic Amplification

    PubMed Central

    Ostapchenko, Valeriy G.; Savtchenk, Regina; Alexeeva, Irina; Rohwer, Robert G.; Baskakov, Ilia V.

    2011-01-01

    Protein misfolding cyclic amplification (PMCA) provides faithful replication of mammalian prions in vitro and has numerous applications in prion research. However, the low efficiency of conversion of PrPC into PrPSc in PMCA limits the applicability of PMCA for many uses including structural studies of infectious prions. It also implies that only a small sub-fraction of PrPC may be available for conversion. Here we show that the yield, rate, and robustness of prion conversion and the sensitivity of prion detection are significantly improved by a simple modification of the PMCA format. Conducting PMCA reactions in the presence of Teflon beads (PMCAb) increased the conversion of PrPC into PrPSc from ∼10% to up to 100%. In PMCAb, a single 24-hour round consistently amplified PrPSc by 600-700-fold. Furthermore, the sensitivity of prion detection in one round (24 hours) increased by 2-3 orders of magnitude. Using serial PMCAb, a 1012-fold dilution of scrapie brain material could be amplified to the level detectible by Western blotting in 3 rounds (72 hours). The improvements in amplification efficiency were observed for the commonly used hamster 263K strain and for the synthetic strain SSLOW that otherwise amplifies poorly in PMCA. The increase in the amplification efficiency did not come at the expense of prion replication specificity. The current study demonstrates that poor conversion efficiencies observed previously have not been due to the scarcity of a sub-fraction of PrPC susceptible to conversion nor due to limited concentrations of essential cellular cofactors required for conversion. The new PMCAb format offers immediate practical benefits and opens new avenues for developing fast ultrasensitive assays and for producing abundant quantities of PrPSc in vitro. PMID:21347353

  10. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  11. Parasitic slow extraction of extremely weak beam from a high-intensity proton rapid cycling synchrotron

    NASA Astrophysics Data System (ADS)

    Zou, Ye; Tang, Jingyu; Yang, Zheng; Jing, Hantao

    2014-02-01

    This paper proposes a novel method to extract extremely weak beam from a high-intensity proton rapid cycling synchrotron (RCS) in the parasitic mode, while maintaining the normal fast extraction. The usual slow extraction method from a synchrotron by employing third-order resonance cannot be applied in a high-intensity RCS due to a very short flat-top at the extraction energy and the strict control on beam loss. The proposed parasitic slow extraction method moves the beam to scrape a scattering foil prior to the fast beam extraction by employing either a local orbit bump or momentum deviation or their combination, so that the halo part of the beam will be scattered. A part of the scattered particles will be extracted from the RCS and guided to the experimental area. The slow extraction process can last about a few milliseconds before the beam is extracted by the fast extraction system. The method has been applied to the RCS of China Spallation Neutron Source. With 1.6 GeV in the extraction energy, 62.5 μA in the average current and 25 Hz in the repetition rate for the RCS, the proton intensity by the slow extraction method can be up to 2×104 protons per cycle or 5×105 protons per second. The extracted beam has also a good time structure of approximately uniform in a spill which is required for many applications such as detector tests. Detailed studies including the scattering effect in the foil, the local orbit bump by the bump magnets and dispersive orbit bump by modifying the RF pattern, the multi-particle simulations by ORBIT and TURTLE codes, and some technical features for the extraction magnets are presented.

  12. High efficiency pump for space helium transfer

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael G.; Swift, Walter L.; Sixsmith, Herbert

    1991-01-01

    A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space.

  13. Criticality of Low-Energy Protons in Single-Event Effects Testing of Highly-Scaled Technologies

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Marshall, Paul W.; Rodbell, Kenneth P.; Gordon, Michael S.; LaBel, Kenneth A.; Schwank, James R.; Dodds, Nathaniel A.; Castaneda, Carlos M.; Berg, Melanie D.; Kim, Hak S.; Phan, Anthony M.; Seidleck, Christina M.

    2014-01-01

    We report low-energy proton and low-energy alpha particle single-event effects (SEE) data on a 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) latches and static random access memory (SRAM) that demonstrates the criticality of using low-energy protons for SEE testing of highly-scaled technologies. Low-energy protons produced a significantly higher fraction of multi-bit upsets relative to single-bit upsets when compared to similar alpha particle data. This difference highlights the importance of performing hardness assurance testing with protons that include energy distribution components below 2 megaelectron-volt. The importance of low-energy protons to system-level single-event performance is based on the technology under investigation as well as the target radiation environment.

  14. The effects of proton irradiation on the reliability of InAlN/GaN high electron mobility transistors

    SciTech Connect

    Liu, L.; Lo, C. F.; Xi, Y. Y.; Wang, Y.l.; Kim, H.-Y.; Kim, J.; Pearton, S. J.; Laboutin, O.; Cao, Yu; Johnson, Wayne J.; Kravchenko, Ivan I; Ren, F.

    2012-01-01

    We have investigated the effect of proton irradiation on reliability of InAlN/GaN high electron mobility transistors (HEMTs). Devices were subjected to 5-15 MeV proton irradiations with a fixed dose of 5 1015 cm-2, or to a different doses of 2 1011, 5 1013 or 2 1015 cm-2 of protons at a fixed energy of 5 MeV. During off-state electrical stressing, the typical critical voltage for un-irradiated devices was 45 to 55 V. By sharp contrast, no critical voltage was detected for proton irradiated HEMTs up to 100 V, which was instrument-limited. After electrical stressing, no degradation was observed for the drain or gate current-voltage characteristics of the proton-irradiated HEMTs. However, the drain current decreased ~12%, and the reverse bias gate leakage current increased more than two orders of magnitude for un-irradiated HEMTs as a result of electrical stressing.

  15. Synchrotron based proton drivers

    SciTech Connect

    Weiren Chou

    2002-09-19

    Proton drivers are the proton sources that produce intense short proton bunches. They have a wide range of applications. This paper discusses the proton drivers based on high-intensity proton synchrotrons. It gives a review of the high-intensity proton sources over the world and a brief report on recent developments in this field in the U.S. high-energy physics (HEP) community. The Fermilab Proton Driver is used as a case study for a number of challenging technical design issues.

  16. PMMA lens with high efficiency and reliability

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Ichiro; Abe, Koji; Fujita, Katsuhiro

    2013-09-01

    Polymethyl Methacrylate (PMMA) Fresnel lenses are increasingly being used in concentrated photovoltaic (CPV) systems installed outdoors and, accordingly, emphasis is being placed on the durability of such lenses with regard to light transmittance when subject to ultraviolet (UV) light and dust exposure. Accelerated testing methods for evaluating durability under UV exposure were established, allowing development of a lens material with improved UV resistance. Simultaneously, through a proprietary molding method, a Fresnel lens that boasts favorable light concentration efficiency with little deformation even after prolonged outdoor use was developed. Moreover, the lens incorporates a new hard-coat finish that possesses sand durability and UV resistance comparable to that of tempered glass.

  17. Optimum angle-cut of collimator for dense objects in high-energy proton radiography

    NASA Astrophysics Data System (ADS)

    Hai-Bo, Xu; Na, Zheng

    2016-02-01

    The use of minus identity lenses with an angle-cut collimator can achieve high contrast images in high-energy proton radiography. This article presents the principles of choosing the angle-cut aperture of the collimator for different energies and objects. Numerical simulation using the Monte Carlo code Geant4 has been implemented to investigate the entire radiography for the French test object. The optimum angle-cut apertures of the collimators are also obtained for different energies. Supported by NSAF (11176001) and Science and Technology Developing Foundation of China Academy of Engineering Physics (2012A0202006)

  18. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres.

    PubMed

    Zamora, Héctor; Plaza, Jorge; Cañizares, Pablo; Lobato, Justo; Rodrigo, Manuel A

    2016-05-23

    This work evaluates the use of carbon nanospheres (CNS) in microporous layers (MPL) of high temperature proton exchange membrane fuel cell (HT-PEMFC) electrodes and compares the characteristics and performance with those obtained using conventional MPL based on carbon black. XRD, hydrophobicity, Brunauer-Emmett-Teller theory, and gas permeability of MPL prepared with CNS were the parameters evaluated. In addition, a short life test in a fuel cell was carried out to evaluate performance under accelerated stress conditions. The results demonstrate that CNS is a promising alternative to traditional carbonaceous materials because of its high electrochemical stability and good electrical conductivity, suitable to be used in this technology. PMID:27076055

  19. WE-E-BRE-07: High-Throughput Mapping of Proton Biologic Effect

    SciTech Connect

    Bronk, L; Guan, F; Kerr, M; Dinh, J; Titt, U; Mirkovic, D; Lin, S; Mohan, R; Grosshans, D

    2014-06-15

    Purpose: To systematically relate the relative biological effectives (RBE) of proton therapy to beam linear energy transfer (LET) and dose. Methods: Using a custom irradiation apparatus previously characterized by our group, H460 NSCLCs were irradiated using a clinical 80MeV spot scanning proton beam. Utilizing this system allowed for high-throughput clonogenic assays performed in 96-well tissue culture plates as opposed to the traditional 6-well technique. Each column in the 96-well plate received a set LET-dose combination. By altering the total number of dose repaintings, numerous dose-LET configurations were examined to effectively generate surviving fraction (SF) data over the entire Bragg peak. The clonogenic assay was performed post-irradiation using an INCell Analyzer for colony quantification. SF data were fit to the linear-quadratic model for analysis. Results: Irradiation with increasing LETs resulted in decreased cell survival largely independent of dose. A significant correlation between LET and SF was identified by two-way ANOVA and the extra sum-of-squares F test. This trend was obscured at the lower LET values in the plateau region of the Bragg peak; however, it was clear for LET values at and beyond the Bragg peak. Data fits revealed the SF at a dose of 2Gy (SF2) to be 0.48 for the lowest tested LET (1.55keV/um), 0.47 at the end of the plateau region (4.74keV/um) and 0.33 for protons at the Bragg peak (10.35keV/um). Beyond the Bragg peak we measured SF2s of 0.16 for 15.01keV/um, 0.02 for 16.79keV/um, and 0.004 for 18.06keV/um. Conclusion: We have shown that our methodology enables high-content automated screening for proton irradiations over a range of LETs. The observed decrease in cellular SF in high LET regions confirms an increased RBE of the radiation and suggests further evaluation of proton RBE values is necessary to optimize clinical outcomes. Rosalie B. Hite Graduate Fellowship in Cancer Research, NIH Program Project Grant P01CA021239.

  20. Efficient proton acceleration and focusing by an ultraintense laser interacting with a parabolic double concave target with an extended rear

    SciTech Connect

    Bake, Muhammad Ali; Xie, Bai-Song; Aimidula, Aimierding; Wang, Hong-Yu

    2013-07-15

    A new scheme for acceleration and focusing of protons via an improved parabolic double concave target irradiated by an ultraintense laser pulse is proposed. When an intense laser pulse illuminates a concave target, the hot electrons are concentrated on the focal region of the rear cavity and they form a strong space-charge-separation field, which accelerates the protons. For a simple concave target, the proton energy spectrum becomes very broad outside the rear cavity because of transverse divergence of the electromagnetic fields. However, particle-in-cell simulations show that, when the concave target has an extended rear, the hot electrons along the wall surface induce a transverse focusing sheath field, resulting in a clear enhancement of proton focusing, which makes the lower proton energy spread, while, leads to a little reduction of the proton bunch peak energy.

  1. Efficient proton acceleration and focusing by an ultraintense laser interacting with a parabolic double concave target with an extended rear

    NASA Astrophysics Data System (ADS)

    Bake, Muhammad Ali; Xie, Bai-Song; Aimidula, Aimierding; Wang, Hong-Yu

    2013-07-01

    A new scheme for acceleration and focusing of protons via an improved parabolic double concave target irradiated by an ultraintense laser pulse is proposed. When an intense laser pulse illuminates a concave target, the hot electrons are concentrated on the focal region of the rear cavity and they form a strong space-charge-separation field, which accelerates the protons. For a simple concave target, the proton energy spectrum becomes very broad outside the rear cavity because of transverse divergence of the electromagnetic fields. However, particle-in-cell simulations show that, when the concave target has an extended rear, the hot electrons along the wall surface induce a transverse focusing sheath field, resulting in a clear enhancement of proton focusing, which makes the lower proton energy spread, while, leads to a little reduction of the proton bunch peak energy.

  2. High intensity proton injector for facility of antiproton and ion research.

    PubMed

    Berezov, R; Brodhage, R; Chauvin, N; Delferriere, O; Fils, J; Hollinger, R; Ivanova, V; Tuske, O; Ullmann, C

    2016-02-01

    The high current ion source with the low energy beam transport (LEBT) will serve as injector into the proton LINAC to provide primary proton beam for the production of antiprotons. The pulsed ion source developed and built in CEA/Saclay operates with a frequency of 2.45 GHz based on ECR plasma production with two coils with 87.5 mT magnetic field necessary for the electron cyclotron resonance. The compact LEBT consists of two solenoids with a maximum magnetic field of 500 mT including two integrated magnetic steerers to adjust the horizontal and vertical beam positions. The total length of the compact LEBT is 2.3 m and was made as short as possible to reduced emittance growth along the beam line. To measure ion beam intensity behind the pentode extraction system, between solenoids and at the end of the beam line, two current transformers and a Faraday cup are installed. To get information about the beam quality and position, the diagnostic chamber with different equipment will be installed between the two solenoids. This article reports the current status of the proton injector for the facility of antiproton and ion research. PMID:26931923

  3. High intensity proton injector for facility of antiproton and ion research

    NASA Astrophysics Data System (ADS)

    Berezov, R.; Brodhage, R.; Chauvin, N.; Delferriere, O.; Fils, J.; Hollinger, R.; Ivanova, V.; Tuske, O.; Ullmann, C.

    2016-02-01

    The high current ion source with the low energy beam transport (LEBT) will serve as injector into the proton LINAC to provide primary proton beam for the production of antiprotons. The pulsed ion source developed and built in CEA/Saclay operates with a frequency of 2.45 GHz based on ECR plasma production with two coils with 87.5 mT magnetic field necessary for the electron cyclotron resonance. The compact LEBT consists of two solenoids with a maximum magnetic field of 500 mT including two integrated magnetic steerers to adjust the horizontal and vertical beam positions. The total length of the compact LEBT is 2.3 m and was made as short as possible to reduced emittance growth along the beam line. To measure ion beam intensity behind the pentode extraction system, between solenoids and at the end of the beam line, two current transformers and a Faraday cup are installed. To get information about the beam quality and position, the diagnostic chamber with different equipment will be installed between the two solenoids. This article reports the current status of the proton injector for the facility of antiproton and ion research.

  4. Using high-intensity laser-generated energetic protons to radiograph directly driven implosions.

    PubMed

    Zylstra, A B; Li, C K; Rinderknecht, H G; Séguin, F H; Petrasso, R D; Stoeckl, C; Meyerhofer, D D; Nilson, P; Sangster, T C; Le Pape, S; Mackinnon, A; Patel, P

    2012-01-01

    The recent development of petawatt-class lasers with kilojoule-picosecond pulses, such as OMEGA EP [L. Waxer et al., Opt. Photonics News 16, 30 (2005)], provides a new diagnostic capability to study inertial-confinement-fusion (ICF) and high-energy-density (HED) plasmas. Specifically, petawatt OMEGA EP pulses have been used to backlight OMEGA implosions with energetic proton beams generated through the target normal sheath acceleration (TNSA) mechanism. This allows time-resolved studies of the mass distribution and electromagnetic field structures in ICF and HED plasmas. This principle has been previously demonstrated using Vulcan to backlight six-beam implosions [A. J. Mackinnon et al., Phys. Rev. Lett. 97, 045001 (2006)]. The TNSA proton backlighter offers better spatial and temporal resolution but poorer spatial uniformity and energy resolution than previous D(3)He fusion-based techniques [C. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006)]. A target and the experimental design technique to mitigate potential problems in using TNSA backlighting to study full-energy implosions is discussed. The first proton radiographs of 60-beam spherical OMEGA implosions using the techniques discussed in this paper are presented. Sample radiographs and suggestions for troubleshooting failed radiography shots using TNSA backlighting are given, and future applications of this technique at OMEGA and the NIF are discussed. PMID:22299955

  5. Development of a high-current microwave ion source for proton linac application systems

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Hara, S.; Hae, T.; Iga, T.; Saitou, K.; Amemiya, K.; Hiramoto, K.; Kakiuchi, S.

    2004-05-01

    A microwave hydrogen ion source was developed to improve reliability, and to increase operation time of proton linac application systems. The ion source needs no filament in the discharge chamber, which leads to better reliability and less maintenance time. The developed source produced a maximum hydrogen ion beam current of 70 mA (high current density of 360 mA/cm2, beam energy of 30 keV) with a 5 mm diam extraction aperture and 1.2 kW microwave power. The proton fraction was increased with an increase in rf power and reached around 90% at 1 kW. Measured 90% beam normalized emittance was 0.4 π mm mrad. Rise times of rf power and beam current to 90% of the final values were about 30 and 35 μs, respectively, at a pulse operation mode with 400 μs pulse width and 100 Hz repetition rate. The dynamic range of beam currents was enlarged (3-63 mA) in the pulse mode with a modified rf wave form to assist ignition of microwave discharge. These performance parameters will be desirable for pulse operation accelerator applications like proton therapy systems. A long time operation stability (150 h) was confirmed with a beam current of 51 mA; change in the current was 2%.

  6. Recent Results on High-Energy Spin Phenomena of Gluons and Sea-Quarks in Polarized Proton-Proton Collisions at Rhic at Bnl

    NASA Astrophysics Data System (ADS)

    Surrow, Bernd

    2014-01-01

    The STAR experiment at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory is carrying out a spin physics program in high-energy polarized proton collisions at √ {s} = 200 GeV and √ {s} = 500 GeV to gain a deeper insight into the spin structure and dynamics of the proton. One of the main objectives of the spin physics program at RHIC is the precise determination of the polarized gluon distribution function. The STAR detector is well suited for the reconstruction of various final states involving jets, π0, π±, e± and γ, which allows to measure several different processes. Recent results suggest a gluon spin contribution to the proton spin at the same level as the quark spin contribution itself. The production of W bosons in polarized p+p collisions at √ {s} = 500 GeV opens a new era in the study of the spin-flavor structure of the proton. W-(+) bosons are produced in \\bar {u} + d (\\bar {d} + u) collisions and can be detected through their leptonic decays, e- + \\bar {ν }e (e++ν e), where only the respective charged lepton is measured. Results of W-(+) production suggest a large asymmetry between the polarization of anti-u and anti-d quarks.

  7. High-Performance Genetically Targetable Optical Neural Silencing via Light-Driven Proton Pumps

    PubMed Central

    Chow, Brian Y.; Han, Xue; Dobry, Allison S.; Qian, Xiaofeng; Chuong, Amy S.; Li, Mingjie; Henninger, Michael A.; Belfort, Gabriel M.; Lin, Yingxi; Monahan, Patrick E.; Boyden, Edward S.

    2009-01-01

    The ability to silence the activity of genetically specified neurons in a temporally precise fashion would open up the ability to investigate the causal role of specific cell classes in neural computations, behaviors, and pathologies. Here we show that members of the class of light-driven outward proton pumps can mediate very powerful, safe, multiple-color silencing of neural activity. The gene archaerhodopsin-31 (Arch) from Halorubrum sodomense enables near-100% silencing of neurons in the awake brain when virally expressed in mouse cortex and illuminated with yellow light. Arch mediates currents of several hundred picoamps at low light powers, and supports neural silencing currents approaching 900 pA at light powers easily achievable in vivo. In addition, Arch spontaneously recovers from light-dependent inactivation, unlike light-driven chloride pumps that enter long-lasting inactive states in response to light. These properties of Arch are appropriate to mediate the optical silencing of significant brain volumes over behaviourally-relevant timescales. Arch function in neurons is well tolerated because pH excursions created by Arch illumination are minimized by self-limiting mechanisms to levels comparable to those mediated by channelrhodopsins2,3 or natural spike firing. To highlight how proton pump ecological and genomic diversity may support new innovation, we show that the blue-green light-drivable proton pump from the fungus Leptosphaeria maculans4 (Mac) can, when expressed in neurons, enable neural silencing by blue light, thus enabling alongside other developed reagents the potential for independent silencing of two neural populations by blue vs. red light. Light-driven proton pumps thus represent a high-performance and extremely versatile class of “optogenetic” voltage and ion modulator, which will broadly empower new neuroscientific, biological, neurological, and psychiatric investigations. PMID:20054397

  8. Advantages of a soft protective layer for good signal-to-noise ratio proton radiographs in high debris environments

    NASA Astrophysics Data System (ADS)

    Renard-Le Galloudec, Nathalie; Cobble, J.; Nelson, S. L.; Merwin, A.; Paudel, Y.; Shrestha, I.; Osborne, G. C.; Williamson, K. M.; Kantsyrev, V. L.

    2011-12-01

    Proton radiography is a very powerful diagnostic but in some high debris environments it may be challenging to get a good signal-to-noise ratio radiograph to gain insights into the electric and magnetic field topology, and thus the basic physics. Such environments are produced for example on z-pinches and also on lasers such as the National Ignition Facility. We demonstrate here the feasibility of clean, very high signal-to-noise ratio proton radiographs in extremely hostile environments.

  9. Hydrogenated Graphenes by Birch Reduction: Influence of Electron and Proton Sources on Hydrogenation Efficiency, Magnetism, and Electrochemistry.

    PubMed

    Eng, Alex Yong Sheng; Sofer, Zdeněk; Huber, Štěpán; Bouša, Daniel; Maryško, Miroslav; Pumera, Martin

    2015-11-16

    Interest in chemical functionalisation of graphenes today is largely driven by associated changes to its physical and material properties. Functionalisation with hydrogen was employed to obtain hydrogenated graphenes (also termed graphane if fully hydrogenated), which exhibited properties including fluorescence, magnetism and a tuneable band gap. Although the classical Birch reduction has been employed for hydrogenation of graphite oxide, variation exists between the choice of alkali metals and alcohols/water as quenching agents. A systematic study of electron (Li, Na, K, Cs) and proton sources (tBuOH, iPrOH, MeOH, H2O) has been performed to identify optimal conditions. The proton source exerted a great influence on the resulting hydrogenation with water and out-performed alcohols, and the lowest carbon-to-hydrogen ratio was observed with sodium and water with composition of C1.4H1O0.3. Although ferromagnetism at room temperature correlates well with increasing hydrogen concentrations, small contributions from trace iron impurities cannot be completely eliminated. In contrast, hydrogenated graphenes exhibit a significant paramagnetic moment at low temperatures that has no correlation with impurities, and therefore, originates from the carbon system. This is in comparison to graphene, which is strongly diamagnetic, and concentrations of paramagnetic centres in hydrogenated graphenes are one order of magnitude larger than that in graphite. Nonetheless, hydrogenation over a particular level might also excessively disrupt intrinsic sp(2) conjugation, resulting in unintended reduction of electrochemical properties. This was observed with heterogeneous electron-transfer rates and it was postulated that hydrogenated graphenes should generally have high defect densities, but only moderately high hydrogenation, should they be employed as electrode materials. PMID:26457373

  10. High Efficiency Thermoelectric Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed; Saber, Hamed; Caillat, Thierry

    2004-01-01

    The work performed and whose results presented in this report is a joint effort between the University of New Mexico s Institute for Space and Nuclear Power Studies (ISNPS) and the Jet Propulsion Laboratory (JPL), California Institute of Technology. In addition to the development, design, and fabrication of skutterudites and skutterudites-based segmented unicouples this effort included conducting performance tests of these unicouples for hundreds of hours to verify theoretical predictions of the conversion efficiency. The performance predictions of these unicouples are obtained using 1-D and 3-D models developed for that purpose and for estimating the actual performance and side heat losses in the tests conducted at ISNPS. In addition to the performance tests, the development of the 1-D and 3-D models and the development of Advanced Radioisotope Power systems for Beginning-Of-Life (BOM) power of 108 We are carried out at ISNPS. The materials synthesis and fabrication of the unicouples are carried out at JPL. The research conducted at ISNPS is documented in chapters 2-5 and that conducted at JP, in documented in chapter 5. An important consideration in the design and optimization of segmented thermoelectric unicouples (STUs) is determining the relative lengths, cross-section areas, and the interfacial temperatures of the segments of the different materials in the n- and p-legs. These variables are determined using a genetic algorithm (GA) in conjunction with one-dimensional analytical model of STUs that is developed in chapter 2. Results indicated that when optimized for maximum conversion efficiency, the interfacial temperatures between various segments in a STU are close to those at the intersections of the Figure-Of-Merit (FOM), ZT, curves of the thermoelectric materials of the adjacent segments. When optimizing the STUs for maximum electrical power density, however, the interfacial temperatures are different from those at the intersections of the ZT curves, but

  11. A high-efficiency double quantum dot heat engine

    NASA Astrophysics Data System (ADS)

    Liu, Y. S.; Yang, X. F.; Hong, X. K.; Si, M. S.; Chi, F.; Guo, Y.

    2013-08-01

    High-efficiency heat engine requires a large output power at the cost of less input heat energy as possible. Here we propose a heat engine composed of serially connected two quantum dots sandwiched between two metallic electrodes. The efficiency of the heat engine can approach the maximum allowable Carnot efficiency ηC. We also find that the strong intradot Coulomb interaction can induce additional work regions for the heat engine, whereas the interdot Coulomb interaction always suppresses the efficiency. Our results presented here indicate a way to fabricate high-efficiency quantum-dot thermoelectric devices.

  12. Proton interrogation

    SciTech Connect

    Morris, Christopher L

    2008-01-01

    Energetic proton beams may provide an attractive alternative when compared to electromagnetic and neutron beams for active interrogation of nuclear threats because: they have large fission cross sections, long mean free paths and high penetration, and proton beams can be manipulated with magnetic optics. We have measured time-dependent cross sections for delayed neutrons and gamma-rays using the 800 MeV proton beam from the Los Alamos Neutron Science Center for a set of bare and shielded targets. The results show significant signals from both unshielded and shielded nuclear materials. Results will be presented.

  13. Efficient voxel navigation for proton therapy dose calculation in TOPAS and Geant4

    NASA Astrophysics Data System (ADS)

    Schümann, J.; Paganetti, H.; Shin, J.; Faddegon, B.; Perl, J.

    2012-06-01

    A key task within all Monte Carlo particle transport codes is ‘navigation’, the calculation to determine at each particle step what volume the particle may be leaving and what volume the particle may be entering. Navigation should be optimized to the specific geometry at hand. For patient dose calculation, this geometry generally involves voxelized computed tomography (CT) data. We investigated the efficiency of navigation algorithms on currently available voxel geometry parameterizations in the Monte Carlo simulation package Geant4: G4VPVParameterisation, G4VNestedParameterisation and G4PhantomParameterisation, the last with and without boundary skipping, a method where neighboring voxels with the same Hounsfield unit are combined into one larger voxel. A fourth parameterization approach (MGHParameterization), developed in-house before the latter two parameterizations became available in Geant4, was also included in this study. All simulations were performed using TOPAS, a tool for particle simulations layered on top of Geant4. Runtime comparisons were made on three distinct patient CT data sets: a head and neck, a liver and a prostate patient. We included an additional version of these three patients where all voxels, including the air voxels outside of the patient, were uniformly set to water in the runtime study. The G4VPVParameterisation offers two optimization options. One option has a 60-150 times slower simulation speed. The other is compatible in speed but requires 15-19 times more memory compared to the other parameterizations. We found the average CPU time used for the simulation relative to G4VNestedParameterisation to be 1.014 for G4PhantomParameterisation without boundary skipping and 1.015 for MGHParameterization. The average runtime ratio for G4PhantomParameterisation with and without boundary skipping for our heterogeneous data was equal to 0.97: 1. The calculated dose distributions agreed with the reference distribution for all but the G4

  14. Efficient voxel navigation for proton therapy dose calculation in TOPAS and Geant4.

    PubMed

    Schümann, J; Paganetti, H; Shin, J; Faddegon, B; Perl, J

    2012-06-01

    A key task within all Monte Carlo particle transport codes is 'navigation', the calculation to determine at each particle step what volume the particle may be leaving and what volume the particle may be entering. Navigation should be optimized to the specific geometry at hand. For patient dose calculation, this geometry generally involves voxelized computed tomography (CT) data. We investigated the efficiency of navigation algorithms on currently available voxel geometry parameterizations in the Monte Carlo simulation package Geant4: G4VPVParameterisation, G4VNestedParameterisation and G4PhantomParameterisation, the last with and without boundary skipping, a method where neighboring voxels with the same Hounsfield unit are combined into one larger voxel. A fourth parameterization approach (MGHParameterization), developed in-house before the latter two parameterizations became available in Geant4, was also included in this study. All simulations were performed using TOPAS, a tool for particle simulations layered on top of Geant4. Runtime comparisons were made on three distinct patient CT data sets: a head and neck, a liver and a prostate patient. We included an additional version of these three patients where all voxels, including the air voxels outside of the patient, were uniformly set to water in the runtime study. The G4VPVParameterisation offers two optimization options. One option has a 60-150 times slower simulation speed. The other is compatible in speed but requires 15-19 times more memory compared to the other parameterizations. We found the average CPU time used for the simulation relative to G4VNestedParameterisation to be 1.014 for G4PhantomParameterisation without boundary skipping and 1.015 for MGHParameterization. The average runtime ratio for G4PhantomParameterisation with and without boundary skipping for our heterogeneous data was equal to 0.97: 1. The calculated dose distributions agreed with the reference distribution for all but the G4Phantom

  15. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Seidensticker, R. G.; Rai-Choudhury, P.

    1985-01-01

    High-efficiency dendritic cells were discussed. The influence of twin planes and heat treatment on the location and effect of trace impurities was of particular interest. Proper heat treatment often increases efficiency by causing impurities to pile up at twin planes. Oxide passivation had a beneficial effect on efficiency. A very efficient antireflective (AR) coating of zinc selenide and magnesium fluoride was designed and fabricated. An aluminum back-surface reflector was also effective.

  16. Proton Transport

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The transport of protons across membranes is an essential process for both bioenergetics of modern cells and the origins of cellular life. All living systems make use of proton gradients across cell walls to convert environmental energy into a high-energy chemical compound, adenosine triphosphate (ATP), synthesized from adenosine diphosphate. ATP, in turn, is used as a source of energy to drive many cellular reactions. The ubiquity of this process in biology suggests that even the earliest cellular systems were relying on proton gradient for harvesting environmental energy needed to support their survival and growth. In contemporary cells, proton transfer is assisted by large, complex proteins embedded in membranes. The issue addressed in this Study was: how the same process can be accomplished with the aid of similar but much simpler molecules that could have existed in the protobiological milieu? The model system used in the study contained a bilayer membrane made of phospholipid, dimyristoylphosphatidylcholine (DMPC) which is a good model of the biological membranes forming cellular boundaries. Both sides of the bilayer were surrounded by water which simulated the environment inside and outside the cell. Embedded in the membrane was a fragment of the Influenza-A M$_2$ protein and enough sodium counterions to maintain system neutrality. This protein has been shown to exhibit remarkably high rates of proton transport and, therefore, is an excellent model to study the formation of proton gradients across membranes. The Influenza M$_2$ protein is 97 amino acids in length, but a fragment 25 amino acids long. which contains a transmembrane domain of 19 amino acids flanked by three amino acids on each side. is sufficient to transport protons. Four identical protein fragments, each folded into a helix, aggregate to form small channels spanning the membrane. Protons are conducted through a narrow pore in the middle of the channel in response to applied voltage. This

  17. Biomimetic Transmembrane Channels with High Stability and Transporting Efficiency from Helically Folded Macromolecules.

    PubMed

    Lang, Chao; Li, Wenfang; Dong, Zeyuan; Zhang, Xin; Yang, Feihu; Yang, Bing; Deng, Xiaoli; Zhang, Chenyang; Xu, Jiayun; Liu, Junqiu

    2016-08-01

    Membrane channels span the cellular lipid bilayers to transport ions and molecules into cells with sophisticated properties including high efficiency and selectivity. It is of particular biological importance in developing biomimetic transmembrane channels with unique functions by means of chemically synthetic strategies. An artificial unimolecular transmembrane channel using pore-containing helical macromolecules is reported. The self-folding, shape-persistent, pore-containing helical macromolecules are able to span the lipid bilayer, and thus result in extraordinary channel stability and high transporting efficiency for protons and cations. The lifetime of this artificial unimolecular channel in the lipid bilayer membrane is impressively long, rivaling those of natural protein channels. Natural channel mimics designed by helically folded polymeric scaffolds will display robust and versatile transport-related properties at single-molecule level. PMID:27356157

  18. Printing highly efficient organic solar cells.

    PubMed

    Hoth, Claudia N; Schilinsky, Pavel; Choulis, Stelios A; Brabec, Christoph J

    2008-09-01

    The technological attraction in organic solar cells is their compatibility to printing processes. However, up to today, nearly no literature on "printed" organic solar cells have been published and the major body of the research work was done by spin coating or blading techniques. Transferring the spin-coating or doctor blading process currently used for the fabrication of bulk heterojunction solar cell to a printing process holds morphological challenges that have not been observed or reported up to today. We highlight these challenges and we show that inkjet printing of organic bulk heterojunction solar cells requires completely novel approaches and skill sets compared to the current state of the art. By adjusting the chemical properties of the poly(3-hexylthiophene) polymer donor and by using our recently developed inkjet solvent mixture, we have gained control over the nanomorphology of poly(3-hexylthiophene):fullerene blends during the printing process and report a new record power conversion efficiency of 3.5% for inkjet printed poly(3-hexylthiophene):fullerene based solar cells. PMID:18683989

  19. Efficient high-capacity steganography technique

    NASA Astrophysics Data System (ADS)

    Abdulla, Alan A.; Jassim, Sabah A.; Sellahewa, Harin

    2013-05-01

    Performance indicators characterizing modern steganographic techniques include capacity (i.e. the quantity of data that can be hidden in the cover medium), stego quality (i.e. artifacts visibility), security (i.e. undetectability), and strength or robustness (intended as the resistance against active attacks aimed to destroy the secret message). Fibonacci based embedding techniques have been researched and proposed in the literature to achieve efficient steganography in terms of capacity with respect to stego quality. In this paper, we investigated an innovative idea that extends Fibonacci-like steganography by bit-plane(s) mapping instead of bit-plane(s) replacement. Our proposed algorithm increases embedding capacity using bit-plane mapping to embed two bits of the secret message in three bits of a pixel of the cover, at the expense of a marginal loss in stego quality. While existing Fibonacci embedding algorithms do not use certain intensities of the cover for embedding due to the limitation imposed by the Zeckendorf theorem, our proposal solve this problem and make all intensity values candidates for embedding. Experimental results demonstrate that the proposed technique double the embedding capacity when compared to existing Fibonacci methods, and it is secure against statistical attacks such as RS, POV, and difference image histogram (DIH).

  20. Beam Dynamics Aspects of High Current Beams in a Superconducting Proton Linac

    NASA Astrophysics Data System (ADS)

    Bellomo, Giovanni; Pagani, Carlo; Pierini, Paolo

    1997-05-01

    High current CW proton linac accelerators have been recently proposed for nuclear waste transmutation and concurrent energy production. In most of the designs the high energy part (100 MeV up to 1-2 GeV) of the linac employs low frequency superconducting structures (352-700 MHz). Here we present beam dynamics issues for the high current (10-50 mA) beams in the superconducting section of such an accelerator, based on 352 MHz β-graded, LEP style cavities, as proposed at Linac 96(C. Pagani, G. Bellomo, P. Pierini, ``A High Current Proton Linac with 352 MHz SC Cavities'', Proceedings of the XVIII Int. Linear Acc. Conf., eds. C. Hill, M. Vretenar, CERN 96-07, 15 November 1996). In particular, smooth beam propagation along the linac has been reached with decreasing phase advances along the linac, and the design has been updated to match the beam dynamics results. Mismatching oscillations are discussed, as they are considered to cause beam halo and, consequently, beam losses.

  1. Summary of the advanced high efficiency concepts subcontractors review meeting

    SciTech Connect

    Not Available

    1983-10-01

    Brief summaries are given of presentations on the topics of: new ideas for photovoltaic conversion; a high efficiency bulk graded band gap/pn junction solar cell structure at high concentration ratios; development of high efficiency graded band gap p+-p-n GaAlAs/GaAs solar cells; an advanced AlGaAs-GaAs high efficiency concentrator solar cell; GaAs solar cell with low surface recombination; theory of advanced high-efficiency concentrator cells; III-V high efficiency photovoltaic cells; advanced high efficiency concentrator cells; monolithic two-color/three-terminal GaAsP/GaAsSb solar cells; high-efficiency thin-film and multijunction solar cells; review of the NASA space photovoltaic program; review of the Air Force space photovoltaic program; the Air Force manufacturing program; an overview of Sandia FY84 advanced concentrator cell research; thin film gallium arsenide solar cell research; fabrication of monocrystalline GaAs solar cells utilizing sacrificial NaCl substrates; and progress toward development of high efficiency GaAs solar cells on silicon substrates. (LEW)

  2. An improved permanent magnet quadrupole design with larger good field region for high intensity proton linacs

    NASA Astrophysics Data System (ADS)

    Mathew, Jose V.; Rao, S. V. L. S.; Krishnagopal, S.; Singh, P.

    2013-11-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA), being developed at the Bhabha Atomic Research Centre (BARC) will produce a 20 MeV, 30 mA, continuous wave (CW) proton beam. At these low velocities, space-charge forces dominate, and could lead to larger beam sizes and beam halos. Hence in the design of the focusing lattice of the LEHIPA drift tube linac (DTL) using permanent magnet quadrupoles (PMQs), a larger good field region is preferred. Here we study, using the two dimensional (2D) and three dimensional (3D) simulation codes PANDIRA and RADIA, four different types of cylindrical PMQ designs: 16-segment trapezoidal Halbach configuration, bullet-nosed geometry and 8- and 16-segment rectangular geometries. The trapezoidal Halbach geometry is used in a variety of accelerators since it provides very high field gradients in small bores, while the bullet-nosed geometry, which is a combination of the trapezoidal and rectangular designs, is used in some DTLs. This study shows that a larger good field region is possible in the 16-segment rectangular design as compared to the Halbach and bullet-nosed designs, making it more attractive for high-intensity proton linacs. An improvement in good-field region by ˜16% over the Halbach design is obtained in the optimized 16-segment rectangular design, although the field gradient is lower by ˜20%. Tolerance studies show that the rectangular segment PMQ design is substantially less sensitive to the easy axis orientation errors and hence will be a better choice for DTLs.

  3. Start-to-end simulations for the proposed Fermilab high intensity proton source

    SciTech Connect

    Carneiro, Jean-Paul; Johnson, D.E.; Webber, R.C.; /Fermilab

    2007-06-01

    A High Intensity Proton Source consisting in an 8 GeV superconducting H-minus linac and transfer line to the Main Injector has been proposed. The primary mission is to increase the intensity of the Fermilab Main Injector for the production of neutrino superbeams. Start-to-end simulations from the RFQ to the stripping foil using the simulation code TRACK (ANL) is presented in this paper. In particular, we will study the impact of jitter errors on the H-minus phase space at the stripping foil.

  4. Proton conducting membranes for high temperature fuel cells with solid state water free membranes

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Yen, Shiao-Pin S. (Inventor)

    2006-01-01

    A water free, proton conducting membrane for use in a fuel cell is fabricated as a highly conducting sheet of converted solid state organic amine salt, such as converted acid salt of triethylenediamine with two quaternized tertiary nitrogen atoms, combined with a nanoparticulate oxide and a stable binder combined with the converted solid state organic amine salt to form a polymeric electrolyte membrane. In one embodiment the membrane is derived from triethylenediamine sulfate, hydrogen phosphate or trifiate, an oxoanion with at least one ionizable hydrogen, organic tertiary amine bisulfate, polymeric quaternized amine bisulfate or phosphate, or polymeric organic compounds with quaternizable nitrogen combined with Nafion to form an intimate network with ionic interactions.

  5. High-resolution proton nuclear magnetic resonance characterization of seminolipid from bovine spermatozoa.

    PubMed

    Alvarez, J G; Storey, B T; Hemling, M L; Grob, R L

    1990-06-01

    The high-resolution one- and two-dimensional proton nuclear magnetic resonance (1H-NMR) characterization of seminolipid from bovine spermatozoa is presented. The 1H-NMR data was confirmed by gas-liquid chromatography-mass spectrometric analysis of the partially methylated alditol acetates of the sugar unit, mild alkaline methanolysis of the glyceryl ester, mobility on normal phase and diphasic thin-layer chromatography (HPTLC), and fast atom bombardment mass spectrometry (FAB-MS). The structure of the molecule corresponds to 1-O-hexadecyl-2-O-hexadecanoyl-3-O-beta-D-(3'-sulfo)-galactopyranosyl- sn-glycerol. PMID:2373957

  6. Investigation into the effects of high-Z nano materials in proton therapy

    NASA Astrophysics Data System (ADS)

    Ahmad, R.; Royle, G.; Lourenço, A.; Schwarz, M.; Fracchiolla, F.; Ricketts, K.

    2016-06-01

    High-Z nano materials have been previously shown to increase the amount of dose deposition within the tumour due to an increase in secondary electrons. This study evaluates the effects of high-Z nano materials in combination with protons, and the impact of proton energy, nanoparticle material and concentration. These effects were studied in silico through Monte Carlo simulation and experimentally through a phantom study, with particular attention to macroscale changes to the Bragg peak in the presence of nanoparticles. Three nanoparticle materials were simulated (gold, silver and platinum) at three concentrations (0.01, 0.1 and 6.5 mg ml‑1) at two clinical proton energies (60 and 226 MeV). Simulations were verified experimentally using Gafchromic film measurements of gold nanoparticles suspended in water at two available high concentrations (5.5 mg ml‑1 and 1.1 mg ml‑1). A significant change to Bragg peak features was evident, where at 226 MeV and 6.5 mg ml‑1, simulations of gold showed a 4.7 mm longitudinal shift of the distal edge and experimentally at 5.5 mg ml‑1, a shift of 2.2 mm. Simulations showed this effect to be material dependent, where platinum having the highest physical density caused the greatest shift with increasing concentration. A dose enhancement of 6%  ±  0.05 and 5%  ±  0.15 (60 MeV and 226 MeV, respectively) was evident with gold at 6.5 mg ml‑1 to water alone, compared to the 21%  ±  0.53 observed experimentally as dose to film with 5.5 mg ml‑1 of gold nanoparticles suspended in water at 226 MeV. The introduction of nanoparticles has strong potential to enhance dose in proton therapy, however the changes to the Bragg peak distribution that occur with high concentrations need to be accounted for to ensure tumour coverage.

  7. Investigation into the effects of high-Z nano materials in proton therapy.

    PubMed

    Ahmad, R; Royle, G; Lourenço, A; Schwarz, M; Fracchiolla, F; Ricketts, K

    2016-06-21

    High-Z nano materials have been previously shown to increase the amount of dose deposition within the tumour due to an increase in secondary electrons. This study evaluates the effects of high-Z nano materials in combination with protons, and the impact of proton energy, nanoparticle material and concentration. These effects were studied in silico through Monte Carlo simulation and experimentally through a phantom study, with particular attention to macroscale changes to the Bragg peak in the presence of nanoparticles. Three nanoparticle materials were simulated (gold, silver and platinum) at three concentrations (0.01, 0.1 and 6.5 mg ml(-1)) at two clinical proton energies (60 and 226 MeV). Simulations were verified experimentally using Gafchromic film measurements of gold nanoparticles suspended in water at two available high concentrations (5.5 mg ml(-1) and 1.1 mg ml(-1)). A significant change to Bragg peak features was evident, where at 226 MeV and 6.5 mg ml(-1), simulations of gold showed a 4.7 mm longitudinal shift of the distal edge and experimentally at 5.5 mg ml(-1), a shift of 2.2 mm. Simulations showed this effect to be material dependent, where platinum having the highest physical density caused the greatest shift with increasing concentration. A dose enhancement of 6%  ±  0.05 and 5%  ±  0.15 (60 MeV and 226 MeV, respectively) was evident with gold at 6.5 mg ml(-1) to water alone, compared to the 21%  ±  0.53 observed experimentally as dose to film with 5.5 mg ml(-1) of gold nanoparticles suspended in water at 226 MeV. The introduction of nanoparticles has strong potential to enhance dose in proton therapy, however the changes to the Bragg peak distribution that occur with high concentrations need to be accounted for to ensure tumour coverage. PMID:27224304

  8. Investigation of efficient shock acceleration of ions using high energy lasers in low density targets

    NASA Astrophysics Data System (ADS)

    Antici, P.; Gauthier, M.; D'Humieres, E.; Albertazzi, B.; Beaucourt, C.; Böker, J.; Chen, S.; Dervieux, V.; Feugeas, J. L.; Glesser, M.; Levy, A.; Nicolai, P.; Romagnani, L.; Tikhonchuk, V.; Pepin, H.; Fuchs, J.

    2012-10-01

    Intense research is being conducted on sources of laser-accelerated ions and their applications that have the potential of becoming novel particle sources. In most experiments, a high intensity and short laser pulse interacts with a solid density target. It was recently shown that a promising way to accelerate ions to higher energies and in a collimated beam is to use under-dense or near-critical density targets instead of solid ones. In these conditions, simulations have revealed that protons are predicted to be accelerated by a collisionless shock mechanism that significantly increases their energy. We present recent experiments performed on the 100 TW LULI laser (France) and the TITAN facility at LLNL, USA. The near critical density plasma was prepared by exploding thin solid foils by a long laser pulse. The plasma density profile was controlled by varying the target thickness and the delay between the long and the short laser pulse. When exploding the target, we obtained proton energies that are comparable if not higher than what was obtained under similar laser conditions, but with solid targets which make them a promising candidate for an efficient proton source.

  9. Transmission calculation by empirical numerical model and Monte Carlo simulation in high energy proton radiography of thick objects

    NASA Astrophysics Data System (ADS)

    Zheng, Na; Xu, Hai-Bo

    2015-10-01

    An empirical numerical model that includes nuclear absorption, multiple Coulomb scattering and energy loss is presented for the calculation of transmission through thick objects in high energy proton radiography. In this numerical model the angular distributions are treated as Gaussians in the laboratory frame. A Monte Carlo program based on the Geant4 toolkit was developed and used for high energy proton radiography experiment simulations and verification of the empirical numerical model. The two models are used to calculate the transmission fraction of carbon and lead step-wedges in proton radiography at 24 GeV/c, and to calculate radial transmission of the French Test Object in proton radiography at 24 GeV/c with different angular cuts. It is shown that the results of the two models agree with each other, and an analysis of the slight differences is given. Supported by NSAF (11176001) and Science and Technology Developing Foundation of China Academy of Engineering Physics (2012A0202006)

  10. 40 CFR 761.71 - High efficiency boilers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false High efficiency boilers. 761.71... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid containing a PCB concentration of ≥50 ppm, but boiler shall comply with the...

  11. 40 CFR 761.71 - High efficiency boilers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false High efficiency boilers. 761.71... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid containing a PCB concentration of ≥50 ppm, but boiler shall comply with the...

  12. Some approaches for fabricating high-efficiency OLEDs

    NASA Astrophysics Data System (ADS)

    Jou, Jwo-Huei; Wang, Wei-Ben; Shen, Shih-Ming; Wu, Ming-Hsuan

    2009-08-01

    High-efficiency is strongly desired for organic light-emitting diodes (OLEDs) to be fully realized as the future display and lighting technology. To replace current illumination tools, such as incandescent bulbs and fluorescent tubes, for examples, OLEDs with much higher efficiency are demanded. We will present herein some approaches for fabricating high-efficiency OLEDs of blue and white emission. Besides employing highly efficient electroluminescent guests and thin device architecture, low injection barriers to carriers, high carrier-transporting character, effective carrier/exciton confinement, balanced carrier-injection, exciton generation on host, effective host-to-guest energy-transfer and improved light-coupling efficiency are essential. Amongst, the incorporation of nano-dots in emissive- and non-emissive-layers can markedly improve the device efficiency. The enhancement is especially marked as small polymeric nano-dots are incorporated into the non-emissive layers. Since the incorporation is not in the emissive layer, the efficiency improvement mechanism works for both fluorescent and phosphorescent devices. Importantly, the efficiency improvement is also a strong function of the surface charge density of the nano-dots. Regardless positively or negatively charged, the improvement becomes more pronounced as the charge density increases. Results regarding some lately achieved extraordinarily highly-efficient OLEDs containing nano-dots with high surface charge will be presented.

  13. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Astrophysics Data System (ADS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-10-01

    250 Watts of heat input, we expect this prototype to produce over 300 Watts of electrical energy output for a system energy conversion efficiency of over 12%. This low risk, near term design provides advances relative to present radioisotope thermophotovoltaic generators and has the additional advantage of allowing component and system development and testing to begin immediately. Improved cells and filters can easily be incorporated in this baseline system if they should become available in the future.

  14. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Technical Reports Server (NTRS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-01-01

    250 Watts of heat input, we expect this prototype to produce over 300 Watts of electrical energy output for a system energy conversion efficiency of over 12%. This low risk, near term design provides advances relative to present radioisotope thermophotovoltaic generators and has the additional advantage of allowing component and system development and testing to begin immediately. Improved cells and filters can easily be incorporated in this baseline system if they should become available in the future.

  15. Biologically inspired highly efficient buoyancy engine

    NASA Astrophysics Data System (ADS)

    Akle, Barbar; Habchi, Wassim; Abdelnour, Rita; Blottman, John, III; Leo, Donald

    2012-04-01

    Undersea distributed networked sensor systems require a miniaturization of platforms and a means of both spatial and temporal persistence. One aspect of this system is the necessity to modulate sensor depth for optimal positioning and station-keeping. Current approaches involve pneumatic bladders or electrolysis; both require mechanical subsystems and consume significant power. These are not suitable for the miniaturization of sensor platforms. Presented in this study is a novel biologically inspired method that relies on ionic motion and osmotic pressures to displace a volume of water from the ocean into and out of the proposed buoyancy engine. At a constant device volume, the displaced water will alter buoyancy leading to either sinking or floating. The engine is composed of an enclosure sided on the ocean's end by a Nafion ionomer and by a flexible membrane separating the water from a gas enclosure. Two electrodes are placed one inside the enclosure and the other attached to the engine on the outside. The semi-permeable membrane Nafion allows water motion in and out of the enclosure while blocking anions from being transferred. The two electrodes generate local concentration changes of ions upon the application of an electrical field; these changes lead to osmotic pressures and hence the transfer of water through the semi-permeable membrane. Some aquatic organisms such as pelagic crustacean perform this buoyancy control using an exchange of ions through their tissue to modulate its density relative to the ambient sea water. In this paper, the authors provide an experimental proof of concept of this buoyancy engine. The efficiency of changing the engine's buoyancy is calculated and optimized as a function of electrode surface area. For example electrodes made of a 3mm diameter Ag/AgCl proved to transfer approximately 4mm3 of water consuming 4 Joules of electrical energy. The speed of displacement is optimized as a function of the surface area of the Nafion

  16. Polyelectrolyte microcapsules as ionic liquid reservoirs within ionomer membrane to confer high anhydrous proton conductivity

    NASA Astrophysics Data System (ADS)

    Zhang, Haoqin; Wu, Wenjia; Li, Yifan; Liu, Yong; Wang, Jingtao; Zhang, Bing; Liu, Jindun

    2015-04-01

    Herein, novel composite membranes are prepared by embedding methacrylic acid polyelectrolyte microcapsules (PMCs) into sulfonated poly(ether ether ketone) (SPEEK) matrix, followed by impregnating imidazole-type ionic liquids (ILs). Within the composite membrane, the lumens of PMCs act as IL reservoirs, which provide large space for IL storage and thus significantly elevate the IL uptake. The IL leaching measurement suggests that the cross-linked shells of PMCs manipulate the IL release, endowing the composite membrane with high IL retention. Moreover, the high IL retention renders the composite membrane more anhydrous hopping sites (e.g., the imidazole groups on IL and the acid-base pairs between imidazole and sulfonic acid groups), imparting a facilitated proton conduction via Grotthuss mechanism. In particular, the composite membrane containing 12% PMCs achieves a high anhydrous proton conductivity of 33.7 mS cm-1 at 150 °C. The same membrane also exhibits a surprising steady-state IL retention of 36.9% after leaching in liquid water.

  17. Intrinsic fluctuations of the proton saturation momentum scale in high multiplicity p+p collisions

    DOE PAGESBeta

    McLerran, Larry; Tribedy, Prithwish

    2015-11-02

    High multiplicity events in p+p collisions are studied using the theory of the Color Glass Condensate. Here, we show that intrinsic fluctuations of the proton saturation momentum scale are needed in addition to the sub-nucleonic color charge fluctuations to explain the very high multiplicity tail of distributions in p+p collisions. It is presumed that the origin of such intrinsic fluctuations is non-perturbative in nature. Classical Yang Mills simulations using the IP-Glasma model are performed to make quantitative estimations. Furthermore, we find that fluctuations as large as O(1) of the average values of the saturation momentum scale can lead to raremore » high multiplicity events seen in p+p data at RHIC and LHC energies. Using the available data on multiplicity distributions we try to constrain the distribution of the proton saturation momentum scale and make predictions for the multiplicity distribution in 13 TeV p+p collisions.« less

  18. Monoenergetic proton emission from nuclear reaction induced by high intensity laser-generated plasma

    SciTech Connect

    Torrisi, L.; Cavallaro, S.; Giuffrida, L.; Cutroneo, M.; Krasa, J.; Margarone, D.; Velyhan, A.; Ullschmied, J.; Kravarik, J.; Wolowski, J.; Szydlowski, A.; Rosinski, M.

    2012-02-15

    A 10{sup 16} W/cm{sup 2} Asterix laser pulse intensity, 1315 nm at the fundamental frequency, 300 ps pulse duration, was employed at PALS laboratory of Prague, to irradiate thick and thin primary CD{sub 2} targets placed inside a high vacuum chamber. The laser irradiation produces non-equilibrium plasma with deutons and carbon ions emission with energy of up to about 4 MeV per charge state, as measured by time-of-flight (TOF) techniques by using ion collectors and silicon carbide detectors. Accelerated deutons may induce high D-D cross section for fusion processes generating 3 MeV protons and 2.5 MeV neutrons, as measured by TOF analyses. In order to increase the mono-energetic proton yield, secondary CD{sub 2} targets can be employed to be irradiated by the plasma-accelerated deutons. Experiments demonstrated that high intensity laser pulses can be employed to promote nuclear reactions from which characteristic ion streams may be developed. Results open new scenario for applications of laser-generated plasma to the fields of ion sources and ion accelerators.

  19. Dosimetric characteristics of four PTW microDiamond detectors in high-energy proton beams

    NASA Astrophysics Data System (ADS)

    Marsolat, F.; De Marzi, L.; Patriarca, A.; Nauraye, C.; Moignier, C.; Pomorski, M.; Moignau, F.; Heinrich, S.; Tromson, D.; Mazal, A.

    2016-09-01

    Small diamond detectors are useful for the dosimetry of high-energy proton beams. However, linear energy transfer (LET) dependence has been observed in the literature with such solid state detectors. A novel synthetic diamond detector has recently become commercially available from the manufacturer PTW-Freiburg (PTW microDiamond type 60019). This study was designed to thoroughly characterize four microDiamond detectors in clinical proton beams, in order to investigate their response and their reproducibility in high LET regions. Very good dosimetric characteristics were observed for two of them, with good stability of their response (deviation less than 0.4% after a pre-irradiation dose of approximately 12 Gy), good repeatability (coefficient of variation of 0.06%) and a sensitivity of approximately 0.85 nC Gy‑1. A negligible dose rate dependence was also observed for these two microDiamonds with a deviation of the sensitivity less than 0.7% with respect to the one measured at the reference dose rate of 2.17 Gy min‑1, in the investigated dose rate range from 1.01 Gy min‑1 to 5.52 Gy min‑1. Lateral dose profile measurements showed the high spatial resolution of the microDiamond oriented with its stem perpendicular to the beam axis and with its small sensitive thickness of about 1 μm in the scanning profile direction. Finally, no significant LET dependence was found with these two diamond dosimeters in comparison to a reference ionization chamber (model IBA PPC05). These good results were in accordance to the literature. However, this study showed also a non reproducibility between the devices in terms of stability, sensitivity and LET dependence, since the two other microDiamonds characterized in this work showed different dosimetric characteristics making them not suitable for proton beam dosimetry with a maximum difference of the peak-to-plateau ratio of 6.7% relative to the reference ionization chamber in a clinical 138 MeV proton beam.

  20. Dosimetric characteristics of four PTW microDiamond detectors in high-energy proton beams.

    PubMed

    Marsolat, F; De Marzi, L; Patriarca, A; Nauraye, C; Moignier, C; Pomorski, M; Moignau, F; Heinrich, S; Tromson, D; Mazal, A

    2016-09-01

    Small diamond detectors are useful for the dosimetry of high-energy proton beams. However, linear energy transfer (LET) dependence has been observed in the literature with such solid state detectors. A novel synthetic diamond detector has recently become commercially available from the manufacturer PTW-Freiburg (PTW microDiamond type 60019). This study was designed to thoroughly characterize four microDiamond detectors in clinical proton beams, in order to investigate their response and their reproducibility in high LET regions. Very good dosimetric characteristics were observed for two of them, with good stability of their response (deviation less than 0.4% after a pre-irradiation dose of approximately 12 Gy), good repeatability (coefficient of variation of 0.06%) and a sensitivity of approximately 0.85 nC Gy(-1). A negligible dose rate dependence was also observed for these two microDiamonds with a deviation of the sensitivity less than 0.7% with respect to the one measured at the reference dose rate of 2.17 Gy min(-1), in the investigated dose rate range from 1.01 Gy min(-1) to 5.52 Gy min(-1). Lateral dose profile measurements showed the high spatial resolution of the microDiamond oriented with its stem perpendicular to the beam axis and with its small sensitive thickness of about 1 μm in the scanning profile direction. Finally, no significant LET dependence was found with these two diamond dosimeters in comparison to a reference ionization chamber (model IBA PPC05). These good results were in accordance to the literature. However, this study showed also a non reproducibility between the devices in terms of stability, sensitivity and LET dependence, since the two other microDiamonds characterized in this work showed different dosimetric characteristics making them not suitable for proton beam dosimetry with a maximum difference of the peak-to-plateau ratio of 6.7% relative to the reference ionization chamber in a clinical 138 MeV proton beam. PMID:27499356

  1. Vacuum testing of high efficiency AMTEC cells

    SciTech Connect

    Schuller, M.; Phillips, P.H.; Reiners, E.; Merrill, J.; Crowley, C.; Izenson, M.

    1996-12-31

    The Phillips Laboratory Power and Thermal Management Division (PL/VTP), in cooperation with JPL, AMPS, Creare, and ORION, is performing vacuum testing of high performance Alkali Metal Thermal to Electric Conversion (AMTEC) cells, including the Micro-Machined Evaporator (MME) and PL-9A cells. The MME cell was designed to test an improved evaporator, which should allow long term operation at evaporator temperatures as high as 1,100 K. The PL-9A cell was designed and built by AMPS under contract to ORION to test an improved heat shield assembly. The testing at Phillips Lab is done in a vacuum test stand which simulates the environment of an AMTEC cell operating as part of a spacecraft power system. The test configuration consists of the MME cell (later replaced by by the PL-9A cell) in the center of an array of six other AMTEC cells. The seven cells are encased in multifoil insulation. Testing shows that there is little difference between cell current/voltage performance when measured in vacuum tests compared to guard heater tests. The author are also examining the differences between fast I-V curve sweeps, recorded manually, with the cell operating at constant heat input, over a period of five minutes or less, and equilibrium I-V curve sweeps, in which the cell reaches thermal equilibrium at each data point.

  2. Microalgae--novel highly efficient starch producers.

    PubMed

    Brányiková, Irena; Maršálková, Barbora; Doucha, Jiří; Brányik, Tomáš; Bišová, Kateřina; Zachleder, Vilém; Vítová, Milada

    2011-04-01

    The freshwater alga Chlorella, a highly productive source of starch, might substitute for starch-rich terrestrial plants in bioethanol production. The cultivation conditions necessary for maximizing starch content in Chlorella biomass, generated in outdoor scale-up solar photobioreactors, are described. The most important factor that can affect the rate of starch synthesis, and its accumulation, is mean illumination resulting from a combination of biomass concentration and incident light intensity. While 8.5% DW of starch was attained at a mean light intensity of 215 µmol/(m2 s1), 40% of DW was synthesized at a mean light intensity 330 µmol/(m2 s1). Another important factor is the phase of the cell cycle. The content of starch was highest (45% of DW) prior to cell division, but during the course of division, its cellular level rapidly decreased to about 13% of DW in cells grown in light, or to about 4% in those kept in the dark during the division phase. To produce biomass with high starch content, it is necessary to suppress cell division events, but not to disturb synthesis of starch in the chloroplast. The addition of cycloheximide (1 mg/L), a specific inhibitor of cytoplasmic protein synthesis, and the effect of element limitation (nitrogen, sulfur, phosphorus) were tested. The majority of the experiments were carried out in laboratory-scale photobioreactors, where culture treatments increased starch content to up to about 60% of DW in the case of cycloheximide inhibition or sulfur limitation. When the cells were limited by phosphorus or nitrogen supply, the cellular starch content increased to 55% or 38% of DW, respectively, however, after about 20 h, growth of the cultures stopped producing starch, and the content of starch again decreased. Sulfur limited and cycloheximide-treated cells maintained a high content of starch (60% of DW) for up to 2 days. Sulfur limitation, the most appropriate treatment for scaled-up culture of starch-enriched biomass

  3. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    SciTech Connect

    Anirban Mukherjee; Kwang-Bok Yi; Elizabeth J. Podlaha; Douglas P. Harrison

    2001-11-01

    Mixed metal oxides containing CeO{sub 2} and ZrO{sub 2} are being studied as high temperature desulfurization sorbents capable of achieving the DOE Vision 21 target of 1 ppmv of less H{sub 2}S. The research is justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeO{sub n} (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and should have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} has been developed and the products have been characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} have been prepared. XRD showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Phase separation did not occur when the solid solutions were heat treated at 700 C. A flow reactor system constructed of quartz and teflon has been constructed, and a gas chromatograph equipped with a pulsed flame photometric detector (PFPD) suitable for measuring sub-ppmv levels of H{sub 2}S has been purchased with LSU matching funds. Preliminary desulfurization tests using commercial CeO{sub 2} and CeO{sub 2}-ZrO{sub 2} in highly reducing gas compositions has confirmed that CeO{sub 2}-ZrO{sub 2} is more effective than CeO{sub 2} in removing H{sub 2}S. At 700 C the product H{sub 2}S concentration using CeO{sub 2}-ZrO{sub 2} sorbent was near the 0.1 ppmv PFPD detection limit during the prebreakthrough period.

  4. High efficiency lithium-thionyl chloride cell

    NASA Astrophysics Data System (ADS)

    Doddapaneni, N.

    1981-10-01

    The main objectives are to evaluate the polarization characteristics of Teflon bonded carbon electrodes in the Li/SOCl2 system and to improve cathode performance at high discharge rates and low operating temperatures (-40 F to 32 F). During the report period, we have studied the half-cell polarization and discharge performance characteristics of Li/SOCl2 cells with and without improved cathodes. In addition, the effect of catalysts on cyclic volt-ammograms and electrolyte viscosity and conductivity relationships with operating temperature have been examined. Electrolyte properties in Li/SOCL2 systems are found to contribute significantly towards the cathode overpotential. Cathodes doped with catalysts greatly minimized the activation polarization throughout the operating temperatures.

  5. Compact and highly efficient laser pump cavity

    DOEpatents

    Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  6. 2250-MHz High Efficiency Microwave Power Amplifier (HEMPA)

    NASA Technical Reports Server (NTRS)

    Sims, W. Herbert; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    Tnis paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  7. Energy efficient engine high-pressure turbine detailed design report

    NASA Technical Reports Server (NTRS)

    Thulin, R. D.; Howe, D. C.; Singer, I. D.

    1982-01-01

    The energy efficient engine high-pressure turbine is a single stage system based on technology advancements in the areas of aerodynamics, structures and materials to achieve high performance, low operating economics and durability commensurate with commercial service requirements. Low loss performance features combined with a low through-flow velocity approach results in a predicted efficiency of 88.8 for a flight propulsion system. Turbine airfoil durability goals are achieved through the use of advanced high-strength and high-temperature capability single crystal materials and effective cooling management. Overall, this design reflects a considerable extension in turbine technology that is applicable to future, energy efficient gas-turbine engines.

  8. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    SciTech Connect

    Kwang-Bok Yi; Anirban Mukherjee; Elizabeth J. Podlaha; Douglas P. Harrison

    2004-03-01

    Mixed metal oxides containing ceria and zirconia have been studied as high temperature desulfurization sorbents with the objective of achieving the DOE Vision 21 target of 1 ppmv or less H{sub 2}S in the product gas. The research was justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeOn (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and was postulated to have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} mixtures was developed and the products were characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} were prepared. XRD analysis showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Unfortunately, the quantity of CeO{sub 2}-ZrO{sub 2} that could be prepared electrochemically was too small to permit desulfurization testing. Also during year 01 a laboratory-scale fixed-bed reactor was constructed for desulfurization testing. All components of the reactor and analytical systems that were exposed to low concentrations of H{sub 2}S were constructed of quartz, Teflon, or silcosteel. Reactor product gas composition as a function of time was determined using a Varian 3800 gas chromatograph equipped with a pulsed flame photometric detector (PFPD) for measuring low H{sub 2}S concentrations from approximately 0.1 to 10 ppmv, and a thermal conductivity detector (TCD) for higher concentrations of H{sub 2}S. Larger quantities of CeO{sub 2}-ZrO{sub 2} mixtures from other sources, including mixtures prepared in this laboratory using a coprecipitation procedure, were obtained

  9. High-temperature annealing of proton irradiated beryllium - A dilatometry-based study

    NASA Astrophysics Data System (ADS)

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Ghose, Sanjit; Savkliyildiz, Ilyas

    2016-08-01

    Ssbnd 200 F grade beryllium has been irradiated with 160 MeV protons up to 1.2 1020 cm-2 peak fluence and irradiation temperatures in the range of 100-200 °C. To address the effect of proton irradiation on dimensional stability, an important parameter in its consideration in fusion reactor applications, and to simulate high temperature irradiation conditions, multi-stage annealing using high precision dilatometry to temperatures up to 740 °C were conducted in air. X-ray diffraction studies were also performed to compliment the macroscopic thermal study and offer a microscopic view of the irradiation effects on the crystal lattice. The primary objective was to qualify the competing dimensional change processes occurring at elevated temperatures namely manufacturing defect annealing, lattice parameter recovery, transmutation 4He and 3H diffusion and swelling and oxidation kinetics. Further, quantification of the effect of irradiation dose and annealing temperature and duration on dimensional changes is sought. The study revealed the presence of manufacturing porosity in the beryllium grade, the oxidation acceleration effect of irradiation including the discontinuous character of oxidation advancement, the effect of annealing duration on the recovery of lattice parameters recovery and the triggering temperature for transmutation gas diffusion leading to swelling.

  10. Isochoric heating of matter by laser-accelerated high-energy protons

    NASA Astrophysics Data System (ADS)

    Fuchs, Julien; Mancic, Ana; Robiche, Jerome; Antici, Patrizio; Lancia, Livia; Audebert, Patrick; Combis, Patrick; Renaudin, Patrick; Kimura, Tomoaki; Kodama, Ryosuke; Nakatsutsumi, Motoaki

    2008-04-01

    Producing matter at a high temperature (1-25 eV) and solid density is of prime interest for fundamental plasma physics or ICF. The use of laser-based high energy proton beams to achieve such state of matter is interesting since they are short (< 1 ps) and they deposit their energy volumetrically; thus can heat, before they expand, much thicker samples than allowed using laser-heating. We performed, using two intense short pulses of the LULI 100 TW facility, experiments to characterize the achieved state of matter, coupled to a detailed hydro-modeling. A laser-generated proton beam irradiated and heated a secondary target positioned after a vacuum gap. Three diagnostics were used: (i) 1D time-resolved optical self-emission of the heated target rear-surface at two wavelengths, (ii) time-resolved interferometry of a chirped probe beam reflecting off the heated target rear-surface, (iii) x-ray absorption spectroscopy through the heated target using a laser-produced backlighter detecting its Kα-edge softening.

  11. High-temperature supercapacitor with a proton-conducting metal pyrophosphate electrolyte

    NASA Astrophysics Data System (ADS)

    Hibino, Takashi; Kobayashi, Kazuyo; Nagao, Masahiro; Kawasaki, Shinji

    2015-01-01

    Expanding the range of supercapacitor operation to temperatures above 100°C is important because this would enable capacitors to operate under the severe conditions required for next-generation energy storage devices. In this study, we address this challenge by the fabrication of a solid-state supercapacitor with a proton-conducting Sn0.95Al0.05H0.05P2O7 (SAPO)-polytetrafluoroethylene (PTFE) composite electrolyte and a highly condensed H3PO4 electrode ionomer. At a temperature of 200°C, the SAPO-PTFE electrolyte exhibits a high proton conductivity of 0.02 S cm-1 and a wide withstanding voltage range of +/-2 V. The H3PO4 ionomer also has good wettability with micropore-rich activated carbon, which realizes a capacitance of 210 F g-1 at 200°C. The resulting supercapacitor exhibits an energy density of 32 Wh kg-1 at 3 A g-1 and stable cyclability after 7000 cycles from room temperature to 150°C.

  12. High-temperature supercapacitor with a proton-conducting metal pyrophosphate electrolyte

    PubMed Central

    Hibino, Takashi; Kobayashi, Kazuyo; Nagao, Masahiro; Kawasaki, Shinji

    2015-01-01

    Expanding the range of supercapacitor operation to temperatures above 100°C is important because this would enable capacitors to operate under the severe conditions required for next-generation energy storage devices. In this study, we address this challenge by the fabrication of a solid-state supercapacitor with a proton-conducting Sn0.95Al0.05H0.05P2O7 (SAPO)-polytetrafluoroethylene (PTFE) composite electrolyte and a highly condensed H3PO4 electrode ionomer. At a temperature of 200°C, the SAPO-PTFE electrolyte exhibits a high proton conductivity of 0.02 S cm−1 and a wide withstanding voltage range of ±2 V. The H3PO4 ionomer also has good wettability with micropore-rich activated carbon, which realizes a capacitance of 210 F g−1 at 200°C. The resulting supercapacitor exhibits an energy density of 32 Wh kg−1 at 3 A g−1 and stable cyclability after 7000 cycles from room temperature to 150°C. PMID:25600936

  13. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    SciTech Connect

    Kwang-Bok Yi; Elizabeth J. Podlaha; Douglas P. Harrison

    2003-11-01

    Mixed metal oxides containing CeO{sub 2} and ZrO{sub 2} are being studied as high temperature desulfurization sorbents capable of achieving the DOE Vision 21 target of 1 ppmv or less H{sub 2}S. The research is justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeOn (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and should have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} was developed and the products were characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} were prepared. XRD analysis showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Unfortunately, the quantity of CeO{sub 2}-ZrO{sub 2} that could be prepared electrochemically was too small to permit full desulfurization testing. Also during year 01 a laboratory-scale fixed-bed reactor was constructed for desulfurization testing. All components of the reactor and analytical systems that may be exposed to low concentrations of H{sub 2}S are constructed of quartz, Teflon, or silcosteel. Reactor product gas composition as a function of time is determined using a Varian 3800 gas chromatograph equipped with a pulsed flame photometric detector (PFPD) for measuring low H{sub 2}S concentrations (<{approx}10 ppmv) and a thermal conductivity detector (TCD) for higher concentrations of H{sub 2}S. Larger quantities of CeO{sub 2}-ZrO{sub 2} mixtures from other sources, including mixtures prepared in this laboratory using a coprecipitation procedure, have been obtained. Much of the work during year 02 consisted of

  14. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    SciTech Connect

    Kwang-Bok Yi; Elizabeth J. Podlaha; Douglas P. Harrison

    2002-11-01

    Mixed metal oxides containing CeO{sub 2} and ZrO{sub 2} are being studied as high temperature desulfurization sorbents capable of achieving the DOE Vision 21 target of 1 ppmv or less H{sub 2}S. The research is justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeO{sub n} (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and should have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} was developed and the products were characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} were prepared. XRD showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Unfortunately, the quantity of CeO{sub 2}-ZrO{sub 2} that could be prepared electrochemically was too small to permit full testing in our desulfurization reactor. Also during year 01 a laboratory-scale fixed-bed reactor was constructed for desulfurization testing. All components of the reactor and analytical systems that may be exposed to low concentrations of H{sub 2}S are constructed of quartz, Teflon, or silcosteel. Reactor product gas composition as a function of time is determined using a Varian 3800 gas chromatograph equipped with a pulsed flame photometric detector (PFPD) for measuring low H{sub 2}S concentrations ({approx}< 10 ppmv) and a thermal conductivity detector (TCD) for higher concentrations of H{sub 2}S. Larger quantities of CeO{sub 2}-ZrO{sub 2} mixtures from other sources, including mixtures prepared in this laboratory using a coprecipitation procedure, have been obtained. Characterization and desulfurization

  15. Competition in rotation-alignment between high-j neutrons and protons in transfermium nuclei

    SciTech Connect

    Al-Khudair, Falih; Long Guilu; Sun Yang

    2009-03-15

    The study of rotation-alignment of quasiparticles probes sensitively the properties of high-j intruder orbits. The distribution of very-high-j orbits, which are consequences of the fundamental spin-orbit interaction, links with the important question of single-particle levels in superheavy nuclei. With the deformed single-particle states generated by the standard Nilsson potential, we perform Projected Shell Model calculations for transfermium nuclei where detailed spectroscopy experiments are currently possible. Specifically, we study the systematical behavior of rotation-alignment and associated band-crossing phenomenon in Cf, Fm, and No isotopes. Neutrons and protons from the high-j orbits are found to compete strongly in rotation-alignment, which gives rise to testable effects. Observation of these effects will provide direct information on the single-particle states in the heaviest nuclear mass region.

  16. Shielding Benchmark Experiments Through Concrete and Iron with High-Energy Proton and Heavy Ion Accelerators

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Sasaki, M.; Nunomiya, T.; Nakao, N.; Kim, E.; Kurosawa, T.; Taniguchi, S.; Iwase, H.; Uwamino, Y.; Shibata, T.; Ito, S.; Fukumura, A.; Perry, D. R.; Wright, P.

    The deep penetration of neutrons through thick shield has become a very serious problem in the shielding design of high-energy, high-intensity accelerator facility. In the design calculation, the Monte Carlo transport calculation through thick shields has large statistical errors and the basic nuclear data and model used in the existing Monte Carlo codes are not well evaluated because of very few experimental data. It is therefore strongly needed to do the deep penetration experiment as shielding benchmark for investigating the calculation accuracy. Under this circumference, we performed the following two shielding experiments through concrete and iron, one with a 800 MeV proton accelerator of the Rutherford Appleton Laboratory (RAL), England and the other with a high energy heavy iron accelerator of the National Institute of Radiological Sciences (NIRS), Japan. Here these two shielding benchmark experiments are outlined.

  17. A prediction model for bipolar RAMs in a high energy ion/proton environment

    NASA Technical Reports Server (NTRS)

    Myers, D. K.; Price, W. E.; Nichols, D. K.

    1981-01-01

    A model has been developed which predicts the relative susceptibility of bipolar RAMs to heavy ion and proton upset. During the course of evaluating this model, physical and electrical variations were also evaluated indicating that the minimum internal signal level is the primary upset susceptibility indicator. Unfortunately, all of the physical and electrical variations expected during a normal product development cycle are in direct opposition to improved high-energy particle upset tolerance. Hence, a trade-off between highly susceptible, low power (medium speed) devices must be made against the less susceptible, higher power (high speed) equivalent device, taking into account the systems trade-off with respect to system power, software, error correction procedures and/or circuit redundancy.

  18. Radiation protection studies for a high-power 160 MeV proton linac

    NASA Astrophysics Data System (ADS)

    Mauro, Egidio; Silari, Marco

    2009-07-01

    CERN is presently designing a new chain of accelerators to replace the present Proton Synchrotron (PS) complex: a 160 MeV room-temperature H - linac (Linac4) to replace the present 50 MeV proton linac injector, a 3.5 GeV Superconducting Proton Linac (SPL) to replace the 1.4 GeV PS Booster (PSB) and a 50 GeV synchrotron (named PS2) to replace the 26 GeV PS. Linac4 has been funded and the civil engineering work started in October 2008, whilst the SPL is in an advanced stage of design. Beyond injecting into the future 50 GeV PS, the ultimate goal of the SPL is to generate a 4 MW beam for the production of intense neutrino beams. The radiation protection design is driven by the latter requirement. This work summarizes the radiation protection studies conducted for Linac4. FLUKA Monte Carlo simulations, complemented by analytical estimates, were performed to evaluate the propagation of neutrons through the waveguide, ventilation and cable ducts placed along the accelerator, to estimate the radiological impact of the accelerator in its low-energy section, where the access area is located, and to calculate the induced radioactivity in the air and in the components of the accelerator. The latter study is particularly important for maintenance interventions and final disposal of radioactive waste. Two possible layouts for the CCDTL section of the machine were considered in order to evaluate the feasibility, from the radiological standpoint, of replacing electromagnetic quadrupoles with permanent magnet quadrupoles with a high content of cobalt.

  19. High-resolution hybrid simulations of turbulence from inertial to sub-proton scales

    NASA Astrophysics Data System (ADS)

    Franci, Luca; Hellinger, Petr; Landi, Simone; Matteini, Lorenzo; Verdini, Andrea

    2015-04-01

    We investigate properties of turbulence from MHD scales to ion scales by means of two-dimensional, large-scale, high-resolution hybrid particle-in-cell simulations, which to our knowledge constitute the most accurate hybrid simulations of ion scale turbulence ever presented so far. We impose an initial ambient magnetic field perpendicular to the simulation box, and we add a spectrum of large-scale, linearly polarized Alfvén waves, balanced and Alfvénically equipartitioned, on average. When turbulence is fully developed, we observe an inertial range which is characterized by the power spectrum of perpendicular magnetic field fluctuations following a Kolmogorov law with spectral index close to -5/3, while the proton bulk velocity fluctuations exhibit a less steeper slope with index close to -3/2. Both these trends hold over a full decade. A definite transition is observed at a scale of the order of the proton inertial length, above which both spectra steepen, with the perpendicular magnetic field still exhibiting a power law with spectral index about -3 over another full decade. The spectrum of perpendicular electric fluctuations follows the one of the proton bulk velocity at MHD scales and reaches a sort of plateau at small scales. The turbulent nature of our data is also supported by the presence of intermittency. This is revealed by the non-Gaussianity of the probability distribution functions of MHD primitive variables increasing as approaching kinetic scales. All these features are in good agreement with solar wind observations.

  20. Intergalactic Magnetic Field and Arrival Direction of Ultra-High-Energy Protons

    NASA Astrophysics Data System (ADS)

    Ryu, Dongsu; Das, Santabrata; Kang, Hyesung

    2010-02-01

    We studied how the intergalactic magnetic field (IGMF) affects the propagation of super-Greisen-Zatsepin-Kuz'min (GZK) protons that originate from extragalactic sources within the local GZK sphere. To this end, we set up hypothetical sources of ultra-high-energy cosmic rays (UHECRs), virtual observers, and the magnetized cosmic web in a model universe constructed from cosmological structure formation simulations. We then arranged a set of reference objects mimicking active galactic nuclei (AGNs) in the local universe, with which correlations of simulated UHECR events are analyzed. With our model IGMF, the deflection angle between the arrival direction of super-GZK protons and the sky position of their actual sources is quite large with a mean value of langθrang ~ 15° and a median value of \\tilde{θ}˜ 7°-10°. On the other hand, the separation angle between the arrival direction and the sky position of nearest reference objects is substantially smaller with langSrang ~ 3fdg5-4°, which is similar to the mean angular distance in the sky to nearest neighbors among the reference objects. This is a direct consequence of our model that the sources, observers, reference objects, and the IGMF all trace the matter distribution of the universe. The result implies that extragalactic objects lying closest to the arrival direction of UHECRs are not necessarily their actual sources. With our model for the distribution of reference objects, the fraction of super-GZK proton events, whose closest AGNs are true sources, is less than 1/3. We discussed implications of our findings for correlation studies of real UHECR events.

  1. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10Â MeV

    NASA Astrophysics Data System (ADS)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Kroll, F.; Blažević, A.; Bagnoud, V.; Roth, M.

    2014-03-01

    We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 109 particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E0 at FWHM). A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf) field is applied via a rf cavity for energy compression at a synchronous phase of -90 deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  2. Summary of high-efficiency solar-cell research

    NASA Technical Reports Server (NTRS)

    Kachare, R.

    1985-01-01

    High-efficiency solar-cell activities supporting efforts to achieve the DOE Five-Year Plan goals are summarized. Specific objectives are to identify and resolve key generic problems that limit cell efficiency to below theoretically predicted values and to design and fabricate cells having efficiences equal to or greater than 20% (AM1.5). Theoretical curves for various p-n junction cells were shown. The effects of practical barriers on cell efficiency was depicted along with the modeling parameters. Cell design parameters used in the analyses were described. The usefulness and present limitations of the existing modeling capabilities were presented. The historical evolution of the efficiencies of cells made from web and edge-defined film-fed growth (EFG) silicon ribbons were also described. The status of contemporary higher-efficiency technical capabilities and future activities to raise efficiencies were stated.

  3. A high brightness proton injector for the Tandetron accelerator at Jožef Stefan Institute

    NASA Astrophysics Data System (ADS)

    Pelicon, Primož; Podaru, Nicolae C.; Vavpetič, Primož; Jeromel, Luka; Ogrinc Potocnik, Nina; Ondračka, Simon; Gottdang, Andreas; Mous, Dirk J. M.

    2014-08-01

    Jožef Stefan Institute recently commissioned a high brightness H- ion beam injection system for its existing tandem accelerator facility. Custom developed by High Voltage Engineering Europa, the multicusp ion source has been tuned to deliver at the entrance of the Tandetron™ accelerator H- ion beams with a measured brightness of 17.1 A m-2 rad-2 eV-1 at 170 μA, equivalent to an energy normalized beam emittance of 0.767 π mm mrad MeV1/2. Upgrading the accelerator facility with the new injection system provides two main advantages. First, the high brightness of the new ion source enables the reduction of object slit aperture and the reduction of acceptance angle at the nuclear microprobe, resulting in a reduced beam size at selected beam intensity, which significantly improves the probe resolution for micro-PIXE applications. Secondly, the upgrade strongly enhances the accelerator up-time since H and He beams are produced by independent ion sources, introducing a constant availability of 3He beam for fusion-related research with NRA. The ion beam particle losses and ion beam emittance growth imply that the aforementioned beam brightness is reduced by transport through the ion optical system. To obtain quantitative information on the available brightness at the high-energy side of the accelerator, the proton beam brightness is determined in the nuclear microprobe beamline. Based on the experience obtained during the first months of operation for micro-PIXE applications, further necessary steps are indicated to obtain optimal coupling of the new ion source with the accelerator to increase the normalized high-energy proton beam brightness at the JSI microprobe, currently at 14 A m-2 rad-2 eV-1, with the output current at 18% of its available maximum.

  4. An Efficient Computational Model to Predict Protonation at the Amide Nitrogen and Reactivity along the C–N Rotational Pathway

    PubMed Central

    Szostak, Roman; Aubé, Jeffrey

    2015-01-01

    N-protonation of amides is critical in numerous biological processes, including amide bonds proteolysis and protein folding, as well as in organic synthesis as a method to activate amide bonds towards unconventional reactivity. A computational model enabling prediction of protonation at the amide bond nitrogen atom along the C–N rotational pathway is reported. Notably, this study provides a blueprint for the rational design and application of amides with a controlled degree of rotation in synthetic chemistry and biology. PMID:25766378

  5. High efficiency IMPATT diodes for 60 GHz intersatellite link applications

    NASA Technical Reports Server (NTRS)

    Haugland, E. J.

    1984-01-01

    Intersatellite links are expected to play an increasingly important role in future satellite systems. Improved components are required to properly utilize the wide bandwidth allocated for intersatellite link applications around 60 GHz. IMPATT diodes offer the highest potential performance as solid state power sources for a 60 GHz transmitter. Presently available devices do not have the desired power and efficiency. High efficiency, high power IMPATT diodes for intersatellite link applications are being developed by NASA and other government agencies. The development of high efficiency 60 GHz IMPATT diodes by NASA is described.

  6. M2 Proton Channel: Toward a Model of a Primitive Proton Pump

    NASA Astrophysics Data System (ADS)

    Wei, Chenyu; Pohorille, Andrew

    2015-06-01

    Transmembrane proton transfer was essential to early cellular systems in order to transduce energy for metabolic functions. The reliable, efficient and controlled generation of proton gradients became possible only with the emergence of active proton pumps. On the basis of features shared by most modern proton pumps we identify the essential mechanistic steps in active proton transport. Further, we discuss the mechanism of action of a small, transmembrane M2 proton channel from influenza A virus as a model for proton transport in protocells. The M2 channel is a 94-residue long, α-helical tetramer that is activated at low pH and exhibits high selectivity and directionality. A shorter construct, built of transmembrane fragments that are only 24 amino acids in length, exhibits very similar proton transport properties. Molecular dynamics simulations on the microsecond time-scale carried out for the M2 channel provided atomic level details on the activation of the channel in response to protonation of the histidine residue, His37. The pathway of proton conduction is mediated by His37, which accepts and donates protons at different interconverting conformation states when pH is lower than 6.5. The Val27 and Trp41 gates and the salt bridge between Asp44 and Arg45 further enhance the directionality of proton transport. It is argued that the architecture and the mechanism of action similar to that found in the M2 channel might have been the perfect starting point for evolution towards the earliest proton pumps, indicating that active proton transport could have readily emerged from simple, passive proton channels.

  7. M2 proton channel: toward a model of a primitive proton pump.

    PubMed

    Wei, Chenyu; Pohorille, Andrew

    2015-06-01

    Transmembrane proton transfer was essential to early cellular systems in order to transduce energy for metabolic functions. The reliable, efficient and controlled generation of proton gradients became possible only with the emergence of active proton pumps. On the basis of features shared by most modern proton pumps we identify the essential mechanistic steps in active proton transport. Further, we discuss the mechanism of action of a small, transmembrane M2 proton channel from influenza A virus as a model for proton transport in protocells. The M2 channel is a 94-residue long, α-helical tetramer that is activated at low pH and exhibits high selectivity and directionality. A shorter construct, built of transmembrane fragments that are only 24 amino acids in length, exhibits very similar proton transport properties. Molecular dynamics simulations on the microsecond time-scale carried out for the M2 channel provided atomic level details on the activation of the channel in response to protonation of the histidine residue, His37. The pathway of proton conduction is mediated by His37, which accepts and donates protons at different interconverting conformation states when pH is lower than 6.5. The Val27 and Trp41 gates and the salt bridge between Asp44 and Arg45 further enhance the directionality of proton transport. It is argued that the architecture and the mechanism of action similar to that found in the M2 channel might have been the perfect starting point for evolution towards the earliest proton pumps, indicating that active proton transport could have readily emerged from simple, passive proton channels. PMID:25777465

  8. High and Low Energy Proton Radiation Damage in p/n InP MOCVD Solar Cells

    NASA Technical Reports Server (NTRS)

    Rybicki, George; Weinberg, Irv; Scheiman, Dave; Vargas-Aburto, Carlos; Uribe, Roberto

    1995-01-01

    InP p(+)/n/n(+) solar cells, fabricated by metal organic chemical vapor deposition, (MOCVD) were irradiated with 0.2 MeV and 10 MeV protons to a fluence of 10(exp 13)/sq cm. The power output degradation, IV behavior, carrier concentration and defect concentration were observed at intermediate points throughout the irradiations. The 0.2 MeV proton-irradiated solar cells suffered much greater and more rapid degradation in power output than those irradiated with 10 MeV protons. The efficiency losses were accompanied by larger increases in the recombination currents in the 0.2 MeV proton-irradiated solar cells. The low energy proton irradiations also had a larger impact on the series resistance of the solar cells. Despite the radiation induced damage, the carrier concentration in the base of the solar cells showed no reduction after 10 MeV or 0.2 MeV proton irradiations and even increased during irradiation with 0.2 MeV protons. In a deep level transient spectroscopy (DLTS) study of the irradiated samples, the minority carrier defects H4 and H5 at E(sub v) + 0.33 and E(sub v) + 0.52 eV and the majority carrier defects E7 and El0 at E(sub c) - 0.39 and E(sub c) - 0.74 eV, were observed. The defect introduction rates for the 0.2 MeV proton irradiations were about 20 times higher than for the 10 MeV proton irradiations. The defect El0, observed here after irradiation, has been shown to act as a donor in irradiated n-type InP and may be responsible for obscuring carrier removal. The results of this study are consistent with the much greater damage produced by low energy protons whose limited range causes them to stop in the active region of the solar cell.

  9. Narrow Energy Spread Protons and Ions from High-Intensity, High-Contrast Laser Solid Target Interactions

    SciTech Connect

    Dollar, Franklin; Matsuoka, Takeshi; McGuffey, Christopher; Bulanov, Stepan S.; Chvykov, Vladimir; Kalintchenko, Galina; Thomas, Alec G. R.; Willingale, Louise; Yanovsky, Victor; Maksimchuk, Anatoly; Krushelnick, Karl; Davis, Jack; Petrov, George

    2010-11-04

    Recent simulations show that an idealized, high intensity, short pulse laser can generate quasi-monoenergetic proton beams with energies over 100 MeV in an interaction with a thin film. However, most short pulse laser facilities with sufficient intensity have difficulty controlling the nanosecond and picosecond contrast necessary to realize such a regime. Experiments were performed to investigate proton and ion acceleration from a high contrast, short pulse laser by employing dual plasma mirrors along with a deformable mirror at the HERCULES laser facility at the Center for Ultrafast Optical Sciences, University of Michigan. Plasma mirrors were characterized, allowing a 50% throughput with an intensity contrast increase of 105. The focal spot quality was also exceptional, showing a 1.1 micron full width at half maximum (FWHM) focal diameter. Experiments were done using temporally cleaned 30 TW, 32 fs pulses to achieve an intensity of up to 10{sup 21} Wcm{sup -2} on Si{sub 3}N{sub 4} and Mylar targets with thicknesses ranging 50 nm to 13 microns. Proton beams with energy spreads below 2 MeV were observed from all thicknesses, peaking with energies up to 10.3 MeV and an energy spread of 0.8 MeV. Similar narrow energy spreads were observed for oxygen, nitrogen, and carbon at the silicon nitride thickness of 50 nm with energies up to 24 MeV with an energy spread of 3 MeV, whereas the energy spread is greatly increased at a larger thickness. Maximum energies were confirmed with CR39 track detectors, while a Thomson ion spectrometer was used to gauge the monoenergetic nature of the beam.

  10. Influence of higher order modes on the beam stability in the high power superconducting proton linac

    NASA Astrophysics Data System (ADS)

    Schuh, Marcel; Gerigk, Frank; Tückmantel, Joachim; Welsch, Carsten P.

    2011-05-01

    Higher order modes (HOMs) can severely limit the operation of superconducting cavities in a linear accelerator with high beam current, high duty factor, and complex pulse structure. The full HOM spectrum has to be analyzed in order to identify potentially dangerous modes already during the design phase and to define their damping requirements. For this purpose a dedicated beam simulation code simulation of higher order mode dynamics (SMD) focused on beam-HOM interaction was developed, taking into account important effects like the HOM frequency spread, beam input jitter, different chopping patterns, as well as klystron and alignment errors. Here, SMD is used to investigate the influence of HOMs in detail in the superconducting proton linac at CERN and their potential to drive beam instabilities in the longitudinal and transverse plane.

  11. Production of Actinium-225 via High Energy Proton Induced Spallation of Thorium-232

    SciTech Connect

    Harvey, James T.; Nolen, Jerry; Vandergrift, George; Gomes, Itacil; Kroc, Tom; Horwitz, Phil; McAlister, Dan; Bowers, Del; Sullivan, Vivian; Greene, John

    2011-12-30

    The science of cancer research is currently expanding its use of alpha particle emitting radioisotopes. Coupled with the discovery and proliferation of molecular species that seek out and attach to tumors, new therapy and diagnostics are being developed to enhance the treatment of cancer and other diseases. This latest technology is commonly referred to as Alpha Immunotherapy (AIT). Actinium-225/Bismuth-213 is a parent/daughter alpha-emitting radioisotope pair that is highly sought after because of the potential for treating numerous diseases and its ability to be chemically compatible with many known and widely used carrier molecules (such as monoclonal antibodies and proteins/peptides). Unfortunately, the worldwide supply of actinium-225 is limited to about 1,000mCi annually and most of that is currently spoken for, thus limiting the ability of this radioisotope pair to enter into research and subsequently clinical trials. The route proposed herein utilizes high energy protons to produce actinium-225 via spallation of a thorium-232 target. As part of previous R and D efforts carried out at Argonne National Laboratory recently in support of the proposed US FRIB facility, it was shown that a very effective production mechanism for actinium-225 is spallation of thorium-232 by high energy proton beams. The base-line simulation for the production rate of actinium-225 by this reaction mechanism is 8E12 atoms per second at 200 MeV proton beam energy with 50 g/cm2 thorium target and 100 kW beam power. An irradiation of one actinium-225 half-life (10 days) produces {approx}100 Ci of actinium-225. For a given beam current the reaction cross section increases slightly with energy to about 400 MeV and then decreases slightly for beam energies in the several GeV regime. The object of this effort is to refine the simulations at proton beam energies of 400 MeV and above up to about 8 GeV. Once completed, the simulations will be experimentally verified using 400 MeV and 8 Ge

  12. Design and Development of Highly Sulfonated Polymers as Proton Exchange Membranes for High Temperature Fuel Cell Applications

    NASA Astrophysics Data System (ADS)

    Dang, Thuy D.; Bai, Zongwu; Yoonessi, Mitra

    A series of high molecular weight, highly sulfonated poly(arylenethioethersulfone) (SPTES) polymers were synthesized by polycondensation, which allowed controlled sulfonation of up to 100 mol %. The SPTES polymers were prepared via step growth polymerization of sulfonated aromatic difluorosulfone, aromatic difluorosulfone, and 4,4 '-thiobisbenzenthiol in sulfolane solvent at the temperature up to 180 °C. The composition and incorporation of the sulfonated repeat unit into the polymers were confirmed by 1H nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy. Solubility tests on the SPTES polymers confirmed that no cross-linking and probably no branching occurred during the polymerizations. The end-capping groups were introduced in the SPTES polymers to control the molecular weight distribution and reduce the water solubility of the polymers. Tough, ductile membranes formed via solvent-casting exhibited increased water absorption with increasing degrees of sulfonation. The polymerizations conducted with the introduction of end-capping groups resulted in a wide variation in polymer proton conductivity, which spanned a range of 100 -300 mS cm-1, measured at 65 °C and 85 % relative humidity. The measured proton conductivities at elevated temperatures and high relative humidities are up to three times higher than that of the state-of-the-art Nafion-H proton exchange membrane under nearly comparable conditions. The thermal and mechanical properties of the SPTES polymers were investigated by TGA, DMA, and tensile measurements. The SPTES polymers show high glass transition temperatures (Tg), ˜220 °C, depending on the degree of sulfonation in polymerization. SPTES-50 polymer shows a Tg of 223 °C, with high tensile modulus, high tensile strengths at break and at yield as well as elongation at break. Wide angle X-ray scattering of the polymers shows two broad scattering features centered at 4.5 Å and 3.3 Å, the latter peak being

  13. Production of ACTINIUM-225 via High Energy Proton Induced Spallation of THORIUM-232

    NASA Astrophysics Data System (ADS)

    Harvey, James; Nolen, Jerry A.; Kroc, Thomas; Gomes, Itacil; Horwitz, E. Philip.; McAlister, Daniel R.

    2010-06-01

    The science of cancer research is currently expanding its use of alpha particle emitting radioisotopes. Coupled with the discovery and proliferation of molecular species that seek out and attach to tumors, new therapy and diagnostics are being developed to enhance the treatment of cancer and other diseases. This latest technology is commonly referred to as Alpha Immunotherapy (AIT). Actinium-225/Bismuth-213 is a parent/daughter alpha-emitting radioisotope pair that is highly sought after because of the potential for treating numerous diseases and its ability to be chemically compatible with many known and widely used carrier molecules (such as monoclonal antibodies and proteins/peptides). The object of this effort is to refine the simulations for producing actinium-225 at proton beam energies of 400 MeV and above up to about 8 GeV. Once completed, the simulations will be experimentally verified using 400 MeV and 8 GeV protons available at Fermi National Accelerator Laboratory. Targets will be processed at Argonne National Laboratory to separate and purify the actinium-225 that will subsequently be transferred to NorthStar laboratory facilities for product quality testing and comparison to the product quality of ORNL produced actinium-225, which is currently the industry standard. The test irradiations at FNAL will produce 1-20 mCi per day which is more than sufficient for quantitative evaluation of the proposed production process.

  14. Neutronic performance of the MEGAPIE spallation target under high power proton beam

    NASA Astrophysics Data System (ADS)

    Michel-Sendis, F.; Chabod, S.; Letourneau, A.; Panebianco, S.; Zanini, L.

    2010-07-01

    The MEGAPIE project, aiming at the construction and operation of a megawatt liquid lead-bismuth spallation target, constitutes the first step in demonstrating the feasibility of liquid heavy metal target technologies as spallation neutron sources. In particular, MEGAPIE is meant to assess the coupling of a high power proton beam with a window-concept heavy liquid metal target. The experiment has been set at the Paul Scherrer Institute (PSI) in Switzerland and, after a 4-month long irradiation, has provided unique data for a better understanding of the behavior of such a target under realistic irradiation conditions. A complex neutron detector has been developed to provide an on-line measurement of the neutron fluency inside the target and close to the proton beam. The detector is based on micrometric fission chambers and activation foils. These two complementary detection techniques have provided a characterization of the neutron flux inside the target for different positions along its axis. Measurements and simulation results presented in this paper aim to provide important recommendations for future accelerator driven systems (ADS) and neutron source developments.

  15. Monte Carlo approach for hadron azimuthal correlations in high energy proton and nuclear collisions

    NASA Astrophysics Data System (ADS)

    Ayala, Alejandro; Dominguez, Isabel; Jalilian-Marian, Jamal; Magnin, J.; Tejeda-Yeomans, Maria Elena

    2012-09-01

    We use a Monte Carlo approach to study hadron azimuthal angular correlations in high-energy proton-proton and central nucleus-nucleus collisions at the BNL Relativistic Heavy Ion Collider energies at midrapidity. We build a hadron event generator that incorporates the production of 2→2 and 2→3 parton processes and their evolution into hadron states. For nucleus-nucleus collisions we include the effect of parton energy loss in the quark-gluon plasma using a modified fragmentation function approach. In the presence of the medium, for the case when three partons are produced in the hard scattering, we analyze the Monte Carlo sample in parton and hadron momentum bins to reconstruct the angular correlations. We characterize this sample by the number of partons that are able to hadronize by fragmentation within the selected bins. In the nuclear environment the model allows hadronization by fragmentation only for partons with momentum above a threshold pTthresh=2.4 GeV. We argue that one should treat properly the effect of those partons with momentum below the threshold, because their interaction with the medium may lead to showers of low-momentum hadrons along the direction of motion of the original partons as the medium becomes diluted.

  16. Electrical properties of as-grown and proton-irradiated high purity silicon

    NASA Astrophysics Data System (ADS)

    Krupka, Jerzy; Karcz, Waldemar; Kamiński, Paweł; Jensen, Leif

    2016-08-01

    The complex permittivity of as-grown and proton-irradiated samples of high purity silicon obtained by the floating zone method was measured as a function of temperature at a few frequencies in microwave spectrum by employing the quasi TE011 and whispering gallery modes excited in the samples under test. The resistivity of the samples was determined from the measured imaginary part of the permittivity. The resistivity was additionally measured at RF frequencies employing capacitive spectroscopy as well as in a standard direct current experiment. The sample of as-grown material had the resistivity of ∼85 kΩ cm at room temperature. The sample irradiated with 23-MeV protons had the resistivity of ∼500 kΩ cm at 295 K and its behavior was typical of the intrinsic material at room and at elevated temperatures. For the irradiated sample, the extrinsic conductivity region is missing and at temperatures below 250 K hopping conductivity occurs. Thermal cycle hysteresis of the resistivity for the sample of as-grown material is observed. After heating and subsequent cooling of the sample, its resistivity decreases and then slowly (∼50 h) returns to the initial value.

  17. High efficiency hydrocarbon-free resonance transition potassium laser

    NASA Astrophysics Data System (ADS)

    Zweiback, Jason; Hager, Gordon; Krupke, William F.

    2009-05-01

    We experimentally demonstrate a high efficiency potassium laser using a 0.15 nm bandwidth alexandrite laser as the pump source. The laser uses naturally occurring helium as the buffer gas. We achieve a 64% slope efficiency and a 57% optical to optical conversion. A pulsed laser model shows good agreement with the data.

  18. Efficient High Performance Collective Communication for Distributed Memory Environments

    ERIC Educational Resources Information Center

    Ali, Qasim

    2009-01-01

    Collective communication allows efficient communication and synchronization among a collection of processes, unlike point-to-point communication that only involves a pair of communicating processes. Achieving high performance for both kernels and full-scale applications running on a distributed memory system requires an efficient implementation of…

  19. Dependence on proton energy of degradation of AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Liu, L.; Xi, Y. Y.; Wang, Y.l.; Ren, F.; Pearton, S. J.; Kim, H.-Y.; Kim, J.; Fitch, Robert C; Walker, Dennis E; Chabak, Kelson D; Gillespie, James k; Tetlak, Stephen E; Via, Glen D; Crespo, Antonio; Kravchenko, Ivan I

    2013-01-01

    The effects of proton irradiation energy on dc, small signal, and large signal rf characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) were investigated. AlGaN/GaN HEMTs were irradiated with protons at fixed fluence of 51015/cm2 and energies of 5, 10, and 15 MeV. Both dc and rf characteristics revealed more degradation at lower irradiation energy, with reductions of maximum transconductance of 11%, 22%, and 38%, and decreases in drain saturation current of 10%, 24%, and 46% for HEMTs exposed to 15, 10, and 5MeV protons, respectively. The increase in device degradation with decreasing proton energy is due to the increase in linear energy transfer and corresponding increase in nonionizing energy loss with decreasing proton energy in the active region of the HEMTs. After irradiation, both subthreshold drain leakage current and reverse gate current decreased more than 1 order of magnitude for all samples. The carrier removal rate was in the range 121 336 cm1 over the range of proton energies employed in this study

  20. Monoenergetic proton backlighter for measuring E and B fields and for radiographing implosions and high-energy density plasmas (invited)

    SciTech Connect

    Li, C. K.; Seguin, F. H.; Frenje, J. A.; Rygg, J. R.; Petrasso, R. D.; Town, R. P. J.; Amendt, P. A.; Hatchett, S. P.; Landen, O. L.; Mackinnon, A. J.; Patel, P. K.; Smalyuk, V. A.; Knauer, J. P.; Sangster, T. C.; Stoeckl, C.

    2006-10-15

    A novel monoenergetic proton backlighter source and matched imaging detector have been utilized on the OMEGA laser system to study electric (E) and magnetic (B) fields generated by laser-plasma interactions and will be utilized in the future to radiograph implosions and high-energy density (HED) plasmas. The backlighter consists of an imploding glass microballoon with D {sup 3}He fuel, producing 14.7 MeV D {sup 3}He protons and 3 MeV DD protons that are then passed through a mesh that divides the protons into beamlets. For quantitative study of E+B field structure, monoenergetic protons have several unique advantages compared to the broad energy spectrum used in previous experiments. Recent experiments have been performed with a single laser beam (intensity of {approx}10{sup 14} W/cm{sup 2}) interacting with a CH foil, and B fields of {approx}0.5 MG and E fields of {approx}1.5x10{sup 8} V/m have been measured using proton deflectometry. LASNEX simulations are being used to interpret these experiments. Additional information will also be presented on the application of this technique to measuring E and B fields associated with Hohlraums and directly driven implosions, to radiographically mapping the areal density ({rho}R) distribution in imploded capsules, and to radiographing HED plasmas.