Science.gov

Sample records for highly ionized gas

  1. Highly ionized gas in the Galactic halo

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Slavin, Jonathan D.

    1994-01-01

    We reexamine the values of electron density n(sub e) and gas pressure P/k in the interstellar medium (ISM) of the Galactic halo, as inferred from C IV emission and absorption lines and using current C IV atomic data. In a homogeneous model with 4.7 less than or equal to log T less than or equal to 5.3, the data are consistent with 0.01 less than or equal to n(sub e) less than or equal to 0.02/cu cm and 2200 less than or equal to P/k less than or equal to 3700/cu cm K, a factor of 2-3 higher than advocated by Martin & Bowyer (1990) and comparable to the thermal pressure in the disk. If some of the C IV absorption arises from nonemitting, photoionized gas, then the inferred density and pressure will increase accordingly. The volume filling factor for homogeneous models ranges from 0.5% to 5%. Because of the constraints arising from filling factor and radiated power, most of the C IV must arise from gas near the peak of the cooling curve, at log t less than or equal to 5.6. We relate both emission-line and absorption-line observations to recent models in which turbulent mixing layers and isobarically cooling supernova remnants (SNRs) provide significant amounts of halo gas at approximately 10(exp 5.3) K and process 20-40 solar mass/yr with a power of approximately 10(exp 41) ergs/sec. Since the observed C IV and N V absorption scale heights have been reported to differ, at 4.9 kpc and 1.6 kpc, respectively, we examine inhomogeneous models with different exponential scale heights of T, P, and SN energy input. The ISM may change its character with distance above the Galactic plane, as superbubbles and mixing layers dominate over isolated SNRs as the source of the C IV. For appropiate scale heights, the midplane pressure is twice the homogeneous values quoted above. The O IV lambda 1034 diffuse emission line, which can be used as a temperature diagnostic of the hot gas, is predicted to be comparable in strength to that of C IV lambda 1549 (approximately 6000 photons

  2. Ionization chamber for measurements of high-level tritium gas

    SciTech Connect

    Carstens, D.H.W.; David, W.R.

    1980-01-01

    The construction and calibration of a simple ionization-chamber apparatus for measurement of high level tritium gas is described. The apparatus uses an easily constructed but rugged chamber containing the unknown gas and an inexpensive digital multimeter for measuring the ion current. The equipment after calibration is suitable for measuring 0.01 to 100% tritium gas in hydrogen-helium mixes with an accuracy of a few percent. At both the high and low limits of measurements deviations from the predicted theoretical current are observed. These are briefly discussed.

  3. Ionization front in a high-current gas discharge

    NASA Astrophysics Data System (ADS)

    Choueiri, Edgar Y.; Randolph, Thomas M.

    2007-02-01

    Spectroscopic measurements of ion/neutral density ratio profiles are made inside the high-current, low-pressure discharge of a coaxial magnetoplasmadynamic thruster and show the existence of a thin ionization front, upstream in the discharge, that effectively ionizes the incoming gas to ionization levels above 50%. The measurements allow an estimate of the width of this ionization front to be on the order of a few millimeters. Due to the known existence of microturbulence in the plasma, which can produce suprathermal electrons, an explanation of the measurements based on the existence of a suprathermal tail in the electron energy distribution function is sought. A theoretical model for the width of the ionization front is combined with a multilevel excitation model for argon and shows that a Maxwellian electron distribution function cannot account for the small length scale of the ionization front, and that the latter is more consistent with an electron distribution function having a suprathermal population, the magnitude of which is estimated by comparing the model to the experiments.

  4. Ionization front in a high-current gas discharge

    SciTech Connect

    Choueiri, Edgar Y.; Randolph, Thomas M.

    2007-03-15

    Spectroscopic measurements of ion/neutral density ratio profiles are made inside the high-current, low-pressure discharge of a coaxial magnetoplasmadynamic thruster and show the existence of a thin ionization front, upstream in the discharge, that effectively ionizes the incoming gas to ionization levels above 50%. The measurements allow an estimate of the width of this ionization front to be on the order of a few millimeters. Due to the known existence of microturbulence in the plasma, which can produce suprathermal electrons, an explanation of the measurements based on the existence of a suprathermal tail in the electron energy distribution function is sought. A theoretical model for the width of the ionization front is combined with a multilevel excitation model for argon and shows that a Maxwellian electron distribution function cannot account for the small length scale of the ionization front, and that the latter is more consistent with an electron distribution function having a suprathermal population, the magnitude of which is estimated by comparing the model to the experiments.

  5. Ionization front in a high-current gas dischargea)

    NASA Astrophysics Data System (ADS)

    Choueiri, Edgar Y.; Randolph, Thomas M.

    2007-03-01

    Spectroscopic measurements of ion/neutral density ratio profiles are made inside the high-current, low-pressure discharge of a coaxial magnetoplasmadynamic thruster and show the existence of a thin ionization front, upstream in the discharge, that effectively ionizes the incoming gas to ionization levels above 50%. The measurements allow an estimate of the width of this ionization front to be on the order of a few millimeters. Due to the known existence of microturbulence in the plasma, which can produce suprathermal electrons, an explanation of the measurements based on the existence of a suprathermal tail in the electron energy distribution function is sought. A theoretical model for the width of the ionization front is combined with a multilevel excitation model for argon and shows that a Maxwellian electron distribution function cannot account for the small length scale of the ionization front, and that the latter is more consistent with an electron distribution function having a suprathermal population, the magnitude of which is estimated by comparing the model to the experiments.

  6. Properties of the highly ionized disk and halo gas toward two distant high-latitude stars

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Sembach, K. R.

    1994-01-01

    Goddard High Resolution Spectrograph (GHRS) intermediate -resolution observations of S III, Si III, Al III, Si IV, C IV, and N V absorption along the sight lines to HD 18100 (l = 217.9 deg, b = -62.7, d = 3.1 kpc, z = -2.8 kpc) and HD 100340 (l = 258.9 deg, b = +61.2 deg, d = 5.3 kpc, z = 4.6 kpc) are presented. These small science aperture spectra have resolutions ranging from 11 to 20 km/s full width at half maximum (FWHM) and S/N from 30 to 65 per diode substep. Strong absorption by moderately and highly ionized gas is seen in each direction. The absorption in the direction of the south Galactic polar region (HD 18100) is kinematically simple, while the absorption in the direction of north Galactic polar region (HD 100304) is kinematically complex. In each case the absorption by the highly ionized gas lies within the velocity range of absorption by neutral and weakly ionized gas. Along each sight line, the velocity dispersion determined from the unsaturated absorption lines increases with the energy required to create each ion. The logarithmic column densities for Al III, Si IV, C IV, and N V are log N(atoms/sq cm = 12.71, 13.10, 13.58, and 12.75 toward HD 18100 and log N = 12.88, 13.31, 13.83, and 13.04 toward HD 100340. Average ionic ratios among these species are very similar along the two sight lines. Differences in profile shape between the absorption for AL II, Si IV, C IV, and N V provide additional support for the claim of Savage, Sembach, & Cardelli (1994) that there exists two types of highly ionized gas in the interstellar medium. One type of highly ionized gas is responsible for the structured Si IV absorption and part of the C IV absorption. In this gas N(C IV)/N(Si IV) approximately 3.0 and N(C IV)/N(N V) greater than 6. The absorption by this gas seems to be associated with some type of self-regulating interface or mixing layer between the warm and hot interstellar medium. The other type of highly ionized gas is responsible for most of the N V

  7. High-field plasma acceleration in a high-ionization-potential gas

    NASA Astrophysics Data System (ADS)

    Corde, S.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Clausse, B.; Clayton, C. E.; Delahaye, J. P.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Walz, D.; Yakimenko, V.

    2016-06-01

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m-1, over ~20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources.

  8. High-field plasma acceleration in a high-ionization-potential gas

    PubMed Central

    Corde, S.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Clausse, B.; Clayton, C. E.; Delahaye, J. P.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Walz, D.; Yakimenko, V.

    2016-01-01

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ∼150 GV m−1, over ∼20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources. PMID:27312720

  9. High-field plasma acceleration in a high-ionization-potential gas.

    PubMed

    Corde, S; Adli, E; Allen, J M; An, W; Clarke, C I; Clausse, B; Clayton, C E; Delahaye, J P; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Litos, M; Lu, W; Marsh, K A; Mori, W B; Vafaei-Najafabadi, N; Walz, D; Yakimenko, V

    2016-01-01

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ∼150 GV m(-1), over ∼20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources. PMID:27312720

  10. High-field plasma acceleration in a high-ionization-potential gas

    DOE PAGESBeta

    Corde, S.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Clausse, B.; Clayton, C. E.; Delahaye, J. P.; Frederico, J.; Gessner, S.; et al

    2016-06-17

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. In our research, we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by upmore » to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m-1, over ~20 cm. Lastly, the results open new possibilities for the design of particle beam drivers and plasma sources.« less

  11. Ionization-based detectors for gas chromatography.

    PubMed

    Poole, Colin F

    2015-11-20

    The gas phase ionization detectors are the most widely used detectors for gas chromatography. The column and makeup gases commonly used in gas chromatography are near perfect insulators. This facilitates the detection of a minute number of charge carriers facilitating the use of ionization mechanisms of low efficiency while providing high sensitivity. The main ionization mechanism discussed in this report are combustion in a hydrogen diffusion flame (flame ionization detector), surface ionization in a plasma (thermionic ionization detector), photon ionization (photoionization detector and pulsed discharge helium ionization detector), attachment of thermal electrons (electron-capture detector), and ionization by collision with metastable helium species (helium ionization detector). The design, response characteristics, response mechanism, and suitability for fast gas chromatography are the main features summarized in this report. Mass spectrometric detection and atomic emission detection, which could be considered as ionization detectors of a more sophisticated and complex design, are not discussed in this report. PMID:25757823

  12. Energy resolution of gas ionization chamber for high-energy heavy ions

    NASA Astrophysics Data System (ADS)

    Sato, Yuki; Taketani, Atsushi; Fukuda, Naoki; Takeda, Hiroyuki; Kameda, Daisuke; Suzuki, Hiroshi; Shimizu, Yohei; Nishimura, Daiki; Fukuda, Mitsunori; Inabe, Naohito; Murakami, Hiroyuki; Yoshida, Koichi; Kubo, Toshiyuki

    2014-01-01

    The energy resolution is reported for high-energy heavy ions with energies of nearly 340 MeV/nucleon and was measured using a gas ionization chamber filled with a 90%Ar/10%CH4 gas mixture. We observed that the energy resolution is proportional to the inverse of the atomic number of incident ions and to the inverse-square-root of the gas thickness. These results are consistent with the Bethe-Bloch formula for the energy loss of charged particles and the Bohr expression for heavy ion energy straggling. In addition, the influence of high-energy δ-rays generated in the detector on the energy deposition is discussed.

  13. High performance mini-gas chromatography-flame ionization detector system based on micro gas chromatography column

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaofeng; Sun, Jianhai; Ning, Zhanwu; Zhang, Yanni; Liu, Jinhua

    2016-04-01

    Monitoring Volatile organic compounds (VOCs) was a very important measure for preventing environmental pollution, therefore, a mini gas chromatography (GC) flame ionization detector (FID) system integrated with a mini H2 generator and a micro GC column was developed for environmental VOC monitoring. In addition, the mini H2 generator was able to make the system explode from far away due to the abandoned use of a high pressure H2 source. The experimental result indicates that the fabricated mini GC FID system demonstrated high repeatability and very good linear response, and was able to rapidly monitor complicated environmental VOC samples.

  14. High performance mini-gas chromatography-flame ionization detector system based on micro gas chromatography column.

    PubMed

    Zhu, Xiaofeng; Sun, Jianhai; Ning, Zhanwu; Zhang, Yanni; Liu, Jinhua

    2016-04-01

    Monitoring Volatile organic compounds (VOCs) was a very important measure for preventing environmental pollution, therefore, a mini gas chromatography (GC) flame ionization detector (FID) system integrated with a mini H2 generator and a micro GC column was developed for environmental VOC monitoring. In addition, the mini H2 generator was able to make the system explode from far away due to the abandoned use of a high pressure H2 source. The experimental result indicates that the fabricated mini GC FID system demonstrated high repeatability and very good linear response, and was able to rapidly monitor complicated environmental VOC samples. PMID:27131686

  15. Relativistic ionization fronts in gas jets

    NASA Astrophysics Data System (ADS)

    Lemos, Nuno; Dias, J. M.; Gallacher, J. G.; Issac, R. C.; Fonseca, R. A.; Lopes, N. C.; Silva, L. O.; Mendonça, J. T.; Jaroszynski, D. A.

    2006-10-01

    A high-power ultra-short laser pulse propagating through a gas jet, ionizes the gas by tunnelling ionization, creating a relativistic plasma-gas interface. The relativistic ionization front that is created can be used to frequency up-shift electromagnetic radiation either in co-propagation or in counter-propagation configurations. In the counter-propagation configuration, ionization fronts can act as relativistic mirrors for terahertz radiation, leading to relativistic double Doppler frequency up-shift to the visible range. In this work, we identified and explored, the parameters that optimize the key features of relativistic ionization fronts for terahertz radiation reflection. The relativistic ionization front generated by a high power laser (TOPS) propagating in a supersonic gas jet generated by a Laval nozzle has been fully characterized. We have also performed detailed two-dimensional relativistic particle-in-cell simulations with Osiris 2.0 to analyze the generation and propagation of the ionization fronts.

  16. Determination of nitrogen monoxide in high purity nitrogen gas with an atmospheric pressure ionization mass spectrometer

    NASA Technical Reports Server (NTRS)

    Kato, K.

    1985-01-01

    An atmospheric pressure ionization mass spectrometric (API-MS) method was studied for the determination of residual NO in high purity N2 gas. The API-MS is very sensitive to NO, but the presence of O2 interferes with the NO measurement. Nitrogen gas in cylinders as sample gas was mixed with NO standard gas and/or O2 standard gas, and then introduced into the API-MS. The calibration curves of NO and O2 has linearity in the region of 0 - 2 ppm, but the slopes changed with every cylinder. The effect of O2 on NO+ peak was additive and proportional to O2 concentration in the range of 0 - 0.5 ppm. The increase in NO+ intensity due to O2 was (0.07 - 0.13)%/O2, 1 ppm. Determination of NO and O2 was carried out by the standard addition method to eliminate the influence of variation of slopes. The interference due to O2 was estimated from the product of the O2 concentration and the ratio of slope A to Slope B. Slope A is the change in the NO+ intensity with the O2 concentration. Slope B is the intensity with O2 concentration.

  17. Ionization effects in the generation of wake-fields by ultra-high contrast femtosecond laser pulses in argon gas

    SciTech Connect

    Makito, K.; Shin, J.-H.; Zhidkov, A.; Hosokai, T.; Masuda, S.; Kodama, R.

    2012-10-15

    Difference in mechanisms of wake-field generation and electron self-injection by high contrast femtosecond laser pulses in an initially neutral Argon gas and in pre-ionized plasma without ionization is studied via 2D particle-in-cell simulations including optical ionization of the media. For shorter laser pulses, 40 fs, ionization results only in an increase of the charge of accelerated electrons by factor of {approx}3 with qualitatively the same energy distribution. For longer pulses, 80 fs, a more stable wake field structure is observed in the neutral gas with the maximal energy of the accelerated electrons exceeding that in the fixed density plasma. In higher density Argon, an ionizing laser pulse converts itself to a complex system of solitons at a self-induced, critical density ramp.

  18. Gas amplified ionization detector for gas chromatography

    DOEpatents

    Huston, Gregg C.

    1992-01-01

    A gas-amplified ionization detector for gas chromatrography which possesses increased sensitivity and a very fast response time. Solutes eluding from a gas chromatographic column are ionized by UV photoionization of matter eluting therefrom. The detector is capable of generating easily measured voltage signals by gas amplification/multiplication of electron products resulting from the UV photoionization of at least a portion of each solute passing through the detector.

  19. The Properties and the Evolution of the Highly Ionized Gas in MR 2251-178

    NASA Technical Reports Server (NTRS)

    Kaspi, Shai; Netzer, hagai; Chelouche, Doron; George, Ian M.; Nandra, Kirpal; Turner, T. J.

    2004-01-01

    We present the first XMM-Newton observations of the radio-quiet quasar MR 2251-178 obtained in 2000 and 2002. The EPIC-pn spectra show a power-law continuum with a slope of Gamma = 1.6 at high energies absorbed by at least two warm absorbers (WAs) intrinsic to the source. The underlying continuum in the earlier observation shows a soft excess at low X-ray energies which can be modeled as an additional power-law with Gamma = 2.9. The spectra also show a weak narrow iron K alpha emission line. The high-resolution grating spectrum obtained in 2002 shows emission lines from N VI, O VII, O VIII, Ne IX, and Ne X, as well as absorption lines from the low-ionization ions of O III, O IV, and O V, and other confirmed and suspected weaker absorption lines. The O III - O V lines are consistent with the properties of the emission line gas observed as extended optical (O III) emission in this source. The signal-to-noise of the 2000 grating data is too low to detect any lines. We suggest a model for the high-resolution spectrum which consist of two or three warm-absorber (WA) components. The two-components model has a high-ionization WA with a column density of 10(exp 21.5)-10 (exp 21.8) sq cm and a low-ionization absorber with a column density of 10(exp 20.3) sq cm. In the three-components model we add a lower ionization component that produces the observed iron M-shell absorption lines. We investigate the spectral variations in MR 2251-178 over a period of 8.5 years using data from ASCA, BeppoSAX, and XMM-Newton. All X-ray observations can be fitted with the above two power laws and the two absorbers. The observed luminosity variations seems to correlate with variations in the soft X-ray continuum. The 8.5 year history of the source suggests a changing X-ray absorber due to material that enters and disappears from the line-of-sight on timescales of several months. We also present, for the first time, the entire FUSE spectrum of MR 2251-178. We detect emission from N III, C III

  20. Highly Ionized Gas in the Galactic Halo and the High Velocity Clouds Toward PG 1116+215

    NASA Astrophysics Data System (ADS)

    Ganguly, R.; Sembach, K. R.; Tripp, T. M.; Savage, B. D.

    2003-12-01

    Recent observations of extragalactic objects with FUSE have revealed the presence of high ionization OVI absorption associated with high velocity clouds (HVCs), defined as gas which lies at absolute velocities beyond 100 km/s in the Local Standard of Rest. We have acquired high spectral resolution observations with STIS ( ˜ 10 km/s) and FUSE ( ˜ 20 km/s) of the quasar PG 1116+215. The spectra show absorption at Vlsr=184km/s from a wide range of ionization species:CIV, OI, OVI, MgII, SiII, SiIII, SiIV, and FeII. The strong and broad O VI absorption in this HVC extends from ˜ 120 to 230 km/s with a weak wing of absorption to 300km/s. Although the HVC is not seen in HI 21 cm emission down to N(HI) ˜ 2x1018 cm-2, it is seen in the HI Lyman series up to at least the 918.13Å line. In addition, we have non-detection constraints on the column denisties of CI, NI, NV, and SII. We can rule out photoionization in an ultra-low density (n ˜ 10-6 cm-3) Local Group medium adopted by some investigators to explain the O VI and O VII absorption detected in several directions. We are currently in the process of determining if these data either support or rule out other models of HVCs, such as the Warm-Hot Intergalactic Medium, Dark Matter dominated mini-halos, or interactions with a low density (10-4-10-5 cm-3) Galactic corona or Local Group medium. In addition, we will also use abundance infomation to study the enrichment history and constrain possible sources for the high velocity gas, such as tidal debris from cannibalized galaxies.

  1. Warm and Diffuse Gas and High Ionization Rate Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Oka, T.; Morong, C. P.; Geballe, T. R.; Indriolo, N.; McCall, B. J.; Goto, M.; Usuda, T.

    2011-06-01

    Using 12 newly found bright dust-embedded stars distributed from 140 pc West to 120 pc East of Sgr A*, we have observed spectra of H_3^+ and CO in the Central Molecular Zone of the Galactic center. Sightlines toward the 12 stars have been observed at the Gemini South Observatory on Cerro Pachon, Chile, and those for 2 of the stars at the Subaru Telescope on Mauna Kea Hawaii. This has extended our previous longitudinal coverage by a factor of 7. Although complete coverage of various transitions have yet to be made for some stars, almost all sightlines showed high total column densities of H_3^+ and highly populated (J, K) = (3, 3) metastable level, demonstrating the prevalence of the warm and diffuse gas previously observed from the center to 30 pc East and high ionization rate in the environment. A few sightlines did not show strong H_3^+ absorptions. It remains to be seen whether this is due to the radial and transverse location of the stars or lack of H_3^+. While the velocity profiles of H_3^+ toward stars from the center to 30 pc East are similar apart from subtle variations, the velocity profiles of the wider regions vary greatly ^a. A remarkable similarity has been noted between the velocity profile of H_3^+ toward a star nicknamed Iota and those of H_2O^+ and 13CH^+ observed toward Sgr B2 by the HIFI instrument of the Herschel Space Observatory. Although all these ions exist in diffuse environment, this is surprising since H_3^+ favors environments with high H_2 fraction f(H_2) while H_2O^+ and CH^+ favors low f(H_2). Also the peak of Sgr B2 and Iota are separated by 17 pc. Possible interpretations of this will be discussed. T. R. Geballe and T. Oka, ApJ, 709, L70 (2010). M. Goto, T. Usuda, T. R. Geballe, N. Indriolo, B. J. McCall, Th. Henning, and T. Oka, PASJ (2011) in press. P. Schilke, et al., A&A, 521, L11 (2010). E. Falgarone, private communication

  2. Ionized gas kinematics at high resolution. IV. Star formation and a rotating core in the Medusa (NGC 4194)

    SciTech Connect

    Beck, Sara C.; Lacy, John; Turner, Jean; Greathouse, Thomas; Neff, Susan

    2014-05-20

    NGC 4194 is a post-merger starburst known as The Medusa for its striking tidal features. We present here a detailed study of the structure and kinematics of ionized gas in the central 0.65 kpc of the Medusa. The data include radio continuum maps with resolution up to 0.''18 (35 pc) and a 12.8 μm [Ne II] data cube with spectral resolution ∼4 km s{sup –1}: the first high-resolution, extinction-free observations of this remarkable object. The ionized gas has the kinematic signature of a core in solid-body rotation. The starburst has formed a complex of bright compact H II regions, probably excited by deeply embedded super star clusters, but none of these sources is a convincing candidate for a Galactic nucleus. The nuclei of the merger partners that created the Medusa have not yet been identified.

  3. Ionized Gas Kinematics at High Resolution. IV. Star Formation and a Rotating Core in the Medusa (NGC 4194)

    NASA Technical Reports Server (NTRS)

    Beck, Sara C.; Lacy, John; Neff, Susan Gale; Turner, Jean; Greathouse, Thomas; Neff, Susan

    2014-01-01

    NGC 4194 is a post-merger starburst known as The Medusa for its striking tidal features.We present here a detailed study of the structure and kinematics of ionized gas in the central 0.65 kpc of the Medusa. The data include radio continuum maps with resolution up to 0".18 (35 pc) and a 12.8 micron [Ne II] data cube with spectral resolution approx. 4 km/s: the first high-resolution, extinction-free observations of this remarkable object. The ionized gas has the kinematic signature of a core in solid-body rotation. The starburst has formed a complex of bright compact H II regions, probably excited by deeply embedded super star clusters, but none of these sources is a convincing candidate for a Galactic nucleus. The nuclei of the merger partners that created the Medusa have not yet been identified.

  4. Weakly ionized cosmic gas: Ionization and characterization

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.; Mendis, D. A.; Chow, V. W.

    1994-01-01

    Since collective plasma behavior may determine important transport processes (e.g., plasma diffusion across a magnetic field) in certain cosmic environments, it is important to delineate the parameter space in which weakly ionized cosmic gases may be characterized as plasmas. In this short note, we do so. First, we use values for the ionization fraction given in the literature, wherein the ionization is generally assumed to be due primarily to ionization by cosmic rays. We also discuss an additional mechanism for ionization in such environments, namely, the photoelectric emission of electrons from cosmic dust grains in an interstellar Far Ultra Violet (FUV) radiation field. Simple estimates suggest that under certain conditions this mechanism may dominate cosmic ray ionization, and possibly also the photoionization of metal atoms by the interstellar FUV field, and thereby lead to an enhanced ionization level.

  5. Present-day Galactic Evolution: Low-metallicity, Warm, Ionized Gas Inflow Associated with High-velocity Cloud Complex A

    NASA Astrophysics Data System (ADS)

    Barger, K. A.; Haffner, L. M.; Wakker, B. P.; Hill, Alex. S.; Madsen, G. J.; Duncan, A. K.

    2012-12-01

    The high-velocity cloud Complex A is a probe of the physical conditions in the Galactic halo. The kinematics, morphology, distance, and metallicity of Complex A indicate that it represents new material that is accreting onto the Galaxy. We present Wisconsin Hα Mapper kinematically resolved observations of Complex A over the velocity range of -250 to -50 km s-1 in the local standard of rest reference frame. These observations include the first full Hα intensity map of Complex A across (\\mathit {l, b}) = (124{^\\circ }, 18{^\\circ }) to (171°, 53°) and deep targeted observations in Hα, [S II] λ6716, [N II] λ6584, and [O I] λ6300 toward regions with high H I column densities, background quasars, and stars. The Hα data imply that the masses of neutral and ionized material in the cloud are similar, both being greater than 106 M ⊙. We find that the Bland-Hawthorn & Maloney model for the intensity of the ionizing radiation near the Milky Way is consistent with the known distance of the high-latitude part of Complex A and an assumed cloud geometry that puts the lower-latitude parts of the cloud at a distance of 7-8 kpc. This compatibility implies a 5% ionizing photon escape fraction from the Galactic disk. We also provide the nitrogen and sulfur upper abundance solutions for a series of temperatures, metallicities, and cloud configurations for purely photoionized gas; these solutions are consistent with the sub-solar abundances found by previous studies, especially for temperatures above 104 K or for gas with a high fraction of singly ionized nitrogen and sulfur.

  6. WHAM Observations of Ionized Gas in High-Velocity Interstellar Clouds

    NASA Astrophysics Data System (ADS)

    Reynolds, J. L.; Tufte, S. L.

    2003-12-01

    We have used the Wisconsin Hα Mapper (WHAM) spectrometer to study the C complex of high-velocity interstellar clouds. High-velocity clouds (HVCs) have been well-studied in the 21-cm line of neutral hydrogen and are thought to be located in the galactic halo, but their origins and role in galactic evolution are unknown. We study Hα emission, which gives us information about the ionized hydrogen content of the clouds, and other emission lines that allow us to investigate the temperature, density and other conditions in the clouds. The C complex has been studied extensively using ultraviolet absorption spectra from the FUSE and STIS instruments. By combining this information with our emission line data from the same sightlines, we can gain insight into the metallicity and other physical properties of the clouds. Our sightlines include PG1259+593, Mrk 817, Mrk 279, and PG1351+640. We measured Hα emission between 0.051 and 0.106 R in these directions. We placed 3σ upper limits on our nondetections of emission from [SII] λ 6716, [NII] λ 6583, and [OIII] λ 5007 for all of the sightlines. We find a hydrogen ionizing flux of 1.1 x 105 to 2.2 x 105 photons cm-2. Our observations imply a hydrogen ionization fraction of 0.40 to 0.72, an electron density of 0.006 to 0.25 cm-3, and temperature upper limits of 10,000 to 20,000 K, with Mrk 817 possibly as low as 6,000 K. Our results are consistent with previous metallicity calculations of 0.10 to 0.26 solar. Such a small amount of heavy elements suggests an extragalactic origin for the C complex. We acknowledge funding from the National Science Foundation through grant AST 02-06349, from a Research Corporation Cottrell College Science Award, and from the John S. Rogers Science Research Program at Lewis & Clark College.

  7. Highly ionized gas in the Gum nebula and elsewhere - A comparison of IUE and Copernicus satellite results

    NASA Technical Reports Server (NTRS)

    Edgar, Richard J.; Savage, Blair D.

    1992-01-01

    The data from six high-dispersion IUE echelle spectra are averaged in order to obtain an interstellar absorption line spectrum with an S/N of about 30 and a resolution of about 25 km/s. The interstellar lines of C IV and Si IV are very strong and broad and N V is detected. The profiles for these species and Al III are compared to the Copernicus satellite profiles for O VI. The high ionization lines toward HD 64760 are much stronger and broader than those recorded toward Zeta Pup and Gamma super 2 Vel, the two exciting stars of the Gum nebula. The profiles for Al III and Si IV are similar and considerably narrower than the O VI profile. An origin in photoionized Gum nebula gas is suggested as the most likely explanation for Al III and Si IV. The C IV profile has a high positive velocity wing extending to approximately +80 km/s, which is similar in appearance to the positive velocity portion of the O VI profile. It is inferred that a substantial part of the observed C IV has an origin in the collisionally ionized gas most likely rsponsible for the O VI.

  8. Ionization coefficients in gas mixtures

    NASA Astrophysics Data System (ADS)

    Marić, D.; Šašić, O.; Jovanović, J.; Radmilović-Rađenović, M.; Petrović, Z. Lj.

    2007-03-01

    We have tested the application of the common E/N ( E—electric field, N—gas number density) or Wieland approximation [Van Brunt, R.J., 1987. Common parametrizations of electron transport, collision cross section, and dielectric strength data for binary gas mixtures. J. Appl. Phys. 61 (5), 1773-1787.] and the common mean energy (CME) combination of the data for pure gases to obtain ionization coefficients for mixtures. Test calculations were made for Ar-CH4, Ar-N2, He-Xe and CH4-N2 mixtures. Standard combination procedure gives poor results in general, due to the fact that the electron energy distribution is considerably different in mixtures and in individual gases at the same values of E/N. The CME method may be used for mixtures of gases with ionization coefficients that do not differ by more than two orders of magnitude which is better than any other technique that was proposed [Marić, D., Radmilović-Rađenović, M., Petrović, Z.Lj., 2005. On parametrization and mixture laws for electron ionization coefficients. Eur. Phys. J. D 35, 313-321.].

  9. [S IV] in the NGC 5253 Supernebula: Ionized Gas Kinematics at High Resolution

    NASA Astrophysics Data System (ADS)

    Beck, Sara C.; Lacy, John H.; Turner, Jean L.; Kruger, Andrew; Richter, Matt; Crosthwaite, Lucian P.

    2012-08-01

    The nearby dwarf starburst galaxy NGC 5253 hosts a deeply embedded radio-infrared supernebula excited by thousands of O stars. We have observed this source in the 10.5 μm line of S +3 at 3.8 km s-1 spectral and 1farcs4 spatial resolution, using the high-resolution spectrometer TEXES on the IRTF. The line profile cannot be fit well by a single Gaussian. The best simple fit describes the gas with two Gaussians, one near the galactic velocity with FWHM 33.6 km s-1 and another of similar strength and FWHM 94 km s-1 centered ~20 km s-1 to the blue. This suggests a model for the supernebula in which gas flows toward us out of the molecular cloud, as in a "blister" or "champagne flow" or in the H II regions modelled by Zhu.

  10. Ionization in nearby interstellar gas

    NASA Technical Reports Server (NTRS)

    Frisch, P. C.; Welty, D. E.; York, D. G.; Fowler, J. R.

    1990-01-01

    Due to dielectric recombination, neutral magnesium represents an important tracer for the warm low-density gas around the solar system. New Mg I 2852 absorption-line data from IUE are presented, including detections in a few stars within 40 pc of the sun. The absence of detectable Mg I in Alpha CMa and other stars sets limits on the combined size and electron density of the interstellar cloud which gives rise to the local interstellar wind. For a cloud radius greater than 1 pc and density of 0.1/cu cm, the local cloud has a low fractional ionization, n(e)/n(tot) less than 0.05, if magnesium is undepleted, equilibrium conditions prevail, the cloud temperature is 11,750 K, and 80 percent of the magnesium in the sightline is Mg II.

  11. Increase in compact toroid mass by accelerator-region ionization of high-Z noble gas on CTIX

    NASA Astrophysics Data System (ADS)

    Horton, Robert D.; Hwang, David Q.; Liu, Fei; Hong, Sean; Klauser, Ruth; Evans, Russell W.; Buchenauer, Dean A.

    2012-10-01

    A promising technique for runaway electron (RE) mitigation in large-tokamak disruptions is the injection of compact toroid (CT) plasmas of high atomic number. With sufficient kinetic energy density, high-Z CTs can reach the tokamak magnetic axis where RE effects are strongest. At CT velocities of 100 km/s or more, penetration to the axis occurs on a sub-millisecond time scale. In addition to reducing avalanche RE production by collisions, high-Z CTs can cool RE by bremsstrahung effects. From theoretical calculations, using Xe ions, bremsstrahlung cooling exceeds the effect of collisions at RE energy above about 10 MeV, a value expected to be well exceeded in large tokamaks. Past experiments on the CTIX compact-toroid injector have demonstrated increased CT mass using snowplow accretion of puffed noble gas by an initial hydrogenic CT. These experiments will be continued using a higher ratio of accreted high-Z plasma to H plasma, to maximize CT kinetic energy density. Results will be compared with a 1D model using external circuit effects, coaxial railgun kinetics, and ionization. The model will be used to predict performance of CT injectors of greater energy, suitable for RE suppression on mid-sized tokamaks.

  12. Highly-Ionized Gas in the Galactic Halo: A FUSE Survey of O 6 Absorption toward 22 Halo Stars

    NASA Astrophysics Data System (ADS)

    Zsargo, J.; Sembach, K. R.; Howk, J. C.; Savage, B. D.

    2002-12-01

    Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of 22 Galactic halo stars are studied to determine the amount of O 6 in the Galactic halo between ~0.3 and ~10 kpc from the Galactic mid-plane. Strong O 6 λ 1031.93 absorption was detected toward 21 stars, and a reliable 3 σ upper limit was obtained toward HD 97991. The weaker member of the O 6 doublet at 1037.62 Å could be studied toward only six stars. The observed columns are reasonably consistent with a patchy exponential O 6 distribution with a mid-plane density of 1.7x10-8 cm-3 and scale height between 2.3 and 4 kpc. We do not see clear signs of strong high-velocity components in O 6 absorption along the Galactic sight lines, which indicates the general absence of high velocity O 6 within 2-5 kpc of the Galactic mid-plane. The correlation between the H 1 and O 6 intermediate velocity absorption is also poor. The O 6 velocity dispersions are much larger than the value of ~18 km/s expected from thermal broadening for gas at T ~ 3x105 K, the temperature at which O 6 is expected to reach its peak abundance in collisional ionization equilibrium. Turbulence, inflow, and outflow must have an effect on the shape of the O 6 profiles. Kinematical comparisons of O 6 with Ar 1 reveal that 9 of 21 sight lines are closely aligned in LSR velocity (|Δ VLSR| <=5 km/s ), while 8 of 21 exhibit significant velocity differences (|Δ VLSR| >= 15 km/s ). This dual behavior may indicate the presence of two different types of O 6-bearing environments toward the Galactic sight lines. Comparison of O 6 with other highly-ionized species suggests that the high ions are produced primarily by cooling hot gas in the Galactic fountain flow, and that turbulent mixing also has a significant contribution. The role of turbulent mixing is most important toward sight lines that sample supernova remnants like Loop I and IV. We are also able to show that the O 6 enhancement toward the Galactic center region that was observed in the FUSE

  13. IONIZED NITROGEN AT HIGH REDSHIFT

    SciTech Connect

    Decarli, R.; Walter, F.; Neri, R.; Cox, P.; Bertoldi, F.; Carilli, C.; Kneib, J. P.; Lestrade, J. F.; Maiolino, R.; Omont, A.; Richard, J.; Riechers, D.; Thanjavur, K.; Weiss, A.

    2012-06-10

    We present secure [N II]{sub 205{mu}m} detections in two millimeter-bright, strongly lensed objects at high redshift, APM 08279+5255 (z = 3.911) and MM 18423+5938 (z = 3.930), using the IRAM Plateau de Bure Interferometer. Due to its ionization energy [N II]{sub 205{mu}m} is a good tracer of the ionized gas phase in the interstellar medium. The measured fluxes are S([N II]{sub 205{mu}m}) = (4.8 {+-} 0.8) Jy km s{sup -1} and (7.4 {+-} 0.5) Jy km s{sup -1}, respectively, yielding line luminosities of L([N II]{sub 205{mu}m}) = (1.8 {+-} 0.3) Multiplication-Sign 10{sup 9} {mu}{sup -1} L{sub Sun} for APM 08279+5255 and L([N II]{sub 205{mu}m}) = (2.8 {+-} 0.2) Multiplication-Sign 10{sup 9} {mu}{sup -1} L{sub Sun} for MM 18423+5938. Our high-resolution map of the [N II]{sub 205{mu}m} and 1 mm continuum emission in MM 18423+5938 clearly resolves an Einstein ring in this source and reveals a velocity gradient in the dynamics of the ionized gas. A comparison of these maps with high-resolution EVLA CO observations enables us to perform the first spatially resolved study of the dust continuum-to-molecular gas surface brightness ({Sigma}{sub FIR}{proportional_to}{Sigma}{sup N}{sub CO}, which can be interpreted as the star formation law) in a high-redshift object. We find a steep relation (N = 1.4 {+-} 0.2), consistent with a starbursting environment. We measure a [N II]{sub 205{mu}m}/FIR luminosity ratio in APM 08279+5255 and MM 18423+5938 of 9.0 Multiplication-Sign 10{sup -6} and 5.8 Multiplication-Sign 10{sup -6}, respectively. This is in agreement with the decrease of the [N II]{sub 205{mu}m}/FIR ratio at high FIR luminosities observed in local galaxies.

  14. COMPLETE IONIZATION OF THE NEUTRAL GAS: WHY THERE ARE SO FEW DETECTIONS OF 21 cm HYDROGEN IN HIGH-REDSHIFT RADIO GALAXIES AND QUASARS

    SciTech Connect

    Curran, S. J.; Whiting, M. T.

    2012-11-10

    From the first published z {approx}> 3 survey of 21 cm absorption within the hosts of radio galaxies and quasars, Curran et al. found an apparent dearth of cool neutral gas at high redshift. From a detailed analysis of the photometry, each object is found to have a {lambda} = 1216 A continuum luminosity in excess of L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}, a critical value above which 21 cm has never been detected at any redshift. At these wavelengths, and below, hydrogen is excited above the ground state so that it cannot absorb in 21 cm. In order to apply the equation of photoionization equilibrium, we demonstrate that this critical value also applies to the ionizing ({lambda} {<=} 912 A) radiation. We use this to show, for a variety of gas density distributions, that upon placing a quasar within a galaxy of gas, there is always an ultraviolet luminosity above which all of the large-scale atomic gas is ionized. While in this state, the hydrogen cannot be detected or engage in star formation. Applying the mean ionizing photon rate of all of the sources searched, we find, using canonical values for the gas density and recombination rate coefficient, that the observed critical luminosity gives a scale length (3 kpc) similar that of the neutral hydrogen (H I) in the Milky Way, a large spiral galaxy. Thus, this simple yet physically motivated model can explain the critical luminosity (L {sub 912} {approx} L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}), above which neutral gas is not detected. This indicates that the non-detection of 21 cm absorption is not due to the sensitivity limits of current radio telescopes, but rather that the lines of sight to the quasars, and probably the bulk of the host galaxies, are devoid of neutral gas.

  15. Evaluation of gas chromatography - electron ionization - full scan high resolution Orbitrap mass spectrometry for pesticide residue analysis.

    PubMed

    Mol, Hans G J; Tienstra, Marc; Zomer, Paul

    2016-09-01

    Gas chromatography with electron ionization and full scan high resolution mass spectrometry with an Orbitrap mass analyzer (GC-EI-full scan Orbitrap HRMS) was evaluated for residue analysis. Pesticides in fruit and vegetables were taken as an example application. The relevant aspects for GC-MS based residue analysis, including the resolving power (15,000 to 120,000 FWHM at m/z 200), scan rate, dynamic range, selectivity, sensitivity, analyte identification, and utility of existing EI-libraries, are assessed and discussed in detail. The optimum acquisition conditions in full scan mode (m/z 50-500) were a resolving power of 60,000 and an automatic-gain-control target value of 3E6. These conditions provided (i) an optimum mass accuracy: within 2 ppm over a wide concentration range, with/without matrix, enabling the use of ±5 ppm mass extraction windows (ii) adequate scan speed: minimum 12 scans/peak, (iii) an intra-scan dynamic range sufficient to achieve LOD/LOQs ≤0.5 pg in fruit/vegetable matrices (corresponding to ≤0.5 μg kg(-1)) for most pesticides. EI-Orbitrap spectra were consistent over a very wide concentration range (5 orders) with good match values against NIST (EI-quadrupole) spectra. The applicability for quantitative residue analysis was verified by validation of 54 pesticides in three matrices (tomato, leek, orange) at 10 and 50 μg/kg. The method involved a QuEChERS-based extraction with a solvent switch into iso-octane, and 1 μL hot splitless injection into the GC-HRMS system. A recovery between 70 and 120% and a repeatability RSD <10% was obtained in most cases. Linearity was demonstrated for the range ≤5-250 μg kg(-1). The pesticides could be identified according to the applicable EU criteria for GC-HRMS (SANTE/11945/2015). GC-EI-full scan Orbitrap HRMS was found to be highly suited for quantitative pesticide residue analysis. The potential of qualitative screening to extend the scope makes it an attractive alternative to GC

  16. The distribution of warm ionized gas in NGC 891

    NASA Technical Reports Server (NTRS)

    Rand, Richard J.; Kulkarni, Shrinivas R.; Hester, J. Jeff

    1990-01-01

    Narrow-band imaging is presented of the edge-on spiral NGC 891 in the H-alpha and S II 6716, 6731 A forbidden lines. Emission from H II regions confined to the plane of the galaxy and from diffuse gas up to about 4 kpc off the plane is readily detected. The full radial extent of the diffuse emission in the plane is about 30 kpc. NGC 891 is found to have a surface density of diffuse ionized gas twice the Galactic value, a thicker ionized gas layer, and a larger surface density of ionized gas relative to neutral gas. These are interpreted as consequences of a relatively high level of star formation in this galaxy. Other star formation tracers indicate the same conclusion. Many vertical H-alpha filaments, or 'worms,' extending to over 2 kpc off the plane of the galaxy are seen. These worms are interpreted in terms of chimney models for the interstellar media of spirals.

  17. CO/H2, C/CO, OH/CO, and OH/O2 in dense interstellar gas: from high ionization to low metallicity

    NASA Astrophysics Data System (ADS)

    Bialy, Shmuel; Sternberg, Amiel

    2015-07-01

    We present numerical computations and analytic scaling relations for interstellar ion-molecule gas-phase chemistry down to very low metallicities (10-3 × solar), and/or up to high driving ionization rates. Relevant environments include the cool interstellar medium (ISM) in low-metallicity dwarf galaxies, early enriched clouds at the reionization and Pop-II star formation era, and in dense cold gas exposed to intense X-ray or cosmic ray sources. We focus on the behaviour for H2, CO, CH, OH, H2O and O2, at gas temperatures ˜100 K, characteristic of a cooled ISM at low metallicities. We consider shielded or partially shielded one-zone gas parcels, and solve the gas-phase chemical rate equations for the steady-state `metal-molecule abundances for a wide range of ionization parameters, ζ/n, and metallicties, Z '. We find that the OH abundances are always maximal near the H-to-H2 conversion points, and that large OH abundances persist at very low metallicities even when the hydrogen is predominantly atomic. We study the OH/O2, C/CO and OH/CO abundance ratios, from large to small, as functions of ζ/n and Z '. Much of the cold dense ISM for the Pop-II generation may have been OH-dominated and atomic rather than CO-dominated and molecular.

  18. Surface Ionization Gas Detection at SnO2 Surfaces

    NASA Astrophysics Data System (ADS)

    Krenkow, A.; Oberhüttinger, C.; Habauzit, A.; Kessler, M.; Göbel, J.; Müller, G.

    2009-05-01

    In surface ionization (SI) gas detection adsorbed analyte molecules are converted into ionic species at a heated solid surface and extracted into free space by an oppositely biased counter electrode. In the present work we consider the formation of positive and negative analyte gas ions at SnO2 surfaces. We find that SI leads to positive ion formation only, with the SI efficiency scaling with the ionization energy of the analyte gas molecules. Aromatic and aliphatic hydrocarbons with amine functional groups exhibit particularly high SI efficiencies.

  19. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  20. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  1. Enhanced metabolite profiling using a redesigned atmospheric pressure chemical ionization source for gas chromatography coupled to high-resolution time-of-flight mass spectrometry.

    PubMed

    Wachsmuth, Christian J; Hahn, Thomas A; Oefner, Peter J; Dettmer, Katja

    2015-09-01

    An improved atmospheric pressure chemical ionization (APCI II) source for gas chromatography-high-resolution time-of-flight mass spectrometry (GC-HRTOFMS) was compared to its first-generation predecessor for the analysis of fatty acid methyl esters, methoxime-trimethylsilyl derivatives of metabolite standards, and cell culture supernatants. Reductions in gas turbulences and chemical background as well as optimized heating of the APCI II source resulted in narrower peaks and higher repeatability in particular for late-eluting compounds. Further, APCI II yielded a more than fourfold median decrease in lower limits of quantification to 0.002-3.91 μM along with an average 20 % increase in linear range to almost three orders of magnitude with R (2) values above 0.99 for all metabolite standards investigated. This renders the overall performance of GC-APCI-HRTOFMS comparable to that of comprehensive two-dimensional gas chromatography (GC × GC)-electron ionization (EI)-TOFMS. Finally, the number of peaks with signal-to-noise ratios greater than 20 that could be extracted from metabolite fingerprints of pancreatic cancer cell supernatants upon switching from the APCI I to the APCI II source was more than doubled. Concomitantly, the number of identified metabolites increased from 36 to 48. In conclusion, the improved APCI II source makes GC-APCI-HRTOFMS a great alternative to EI-based GC-MS techniques in metabolomics and other fields. PMID:26092404

  2. The kinematics of the diffuse ionized gas in NGC 4666

    NASA Astrophysics Data System (ADS)

    Voigtländer, P.; Kamphuis, P.; Marcelin, M.; Bomans, D. J.; Dettmar, R.-J.

    2013-06-01

    Context. The global properties of the interstellar medium with processes such as infall and outflow of gas and a large scale circulation of matter and its consequences for star formation and chemical enrichment are important for the understanding of galaxy evolution. Aims: In this paper we studied the kinematics and morphology of the diffuse ionized gas (DIG) in the disk and in the halo of the star forming spiral galaxy NGC 4666 to derive information about its kinematical properties. Especially, we searched for infalling and outflowing ionized gas. Methods: We determined surface brightness, radial velocity, and velocity dispersion of the warm ionized gas via high spectral resolution (R ≈ 9000) Fabry-Pérot interferometry. This allows the determination of the global velocity field and the detection of local deviations from this velocity field. We calculated models of the DIG distribution and its kinematics for comparison with the measured data. In this way we determined fundamental parameters such as the inclination and the scale height of NGC 4666, and established the need for an additional gas component to fit our observed data. Results: We found individual areas, especially along the minor axis, with gas components reaching into the halo which we interpret as an outflowing component of the DIG. As the main result of our study, we were able to determine that the vertical structure of the DIG distribution in NGC 4666 is best modeled with two components of ionized gas, a thick and a thin disk with 0.8 kpc and 0.2 kpc scale height, respectively. Therefore, the enhanced star formation in NGC 4666 drives an outflow and also maintains a thick ionized gas layer reminiscent of the Reynold's layer in the Milky Way.

  3. GAS IONIZING AND COMPRESSING DEVICE

    DOEpatents

    Little, E.M.; Thomson, D.B.; Josephson, V.; Scott, F.R.

    1961-08-22

    A device is described for producing high energy gaseous plasmas. The device consists of a unitary refractory vessel having tapered end portions, a cylindrical middle portion, and means for spontaneously generating oppositely propelled plasma masses from the tapered end portions to a collision zone in the cylindrical middle portion. The means come from the spontaneous generation of diverging magnetic fields in the end portions and an axial magnetic field in the cylindrical portion. (AEC)

  4. Thermal conductivity of partially ionized gas mixtures

    NASA Astrophysics Data System (ADS)

    Armaly, B. F.; Sutton, K.

    1981-06-01

    A method is proposed for predicting the translational component of the thermal conductivity of partially ionized gas mixtures. It is approximate but simple in form and offers a significant improvement over commonly utilized approximations. It does not require large computer run times nor storage, thus it is suitable for use with complex flow fields and heat transfer calculations. Results for gas mixtures which are representative of the atmosphere of Jupiter, Earth, and Venus are presented and they compare favorably with results from detailed kinetic theory analyses.

  5. Viscosity of multicomponent partially ionized gas mixtures

    NASA Astrophysics Data System (ADS)

    Armaly, B. F.; Sutton, K.

    1980-07-01

    An approximate method is proposed for predicting the viscosity of partially ionized gas mixtures. This technique expresses the viscosity of a mixture in terms of the viscosities of the individual pure components, is simple in form, and does not require large computer run times or storage. Thus, the technique is suitable for use with complex flowfields and heat-transfer calculations. Results for gas mixtures which are representative of the atmospheres of Jupiter, Earth, and Venus, are presented and it is shown that the results compare favorably with detailed kinetic-theory analyses.

  6. Modification of nitrogen Townsend ionization coefficient in a N2 laser with a weak corona preionization and high gas pressure using laser output power measurements

    NASA Astrophysics Data System (ADS)

    Sarikhani, S.; Hariri, A.

    2013-05-01

    Based on the reported experimental measurements on the output power in a transversely excited nitrogen laser with a weak corona preionization and rate equations, a simulation study was made to describe the laser output power behavior. For the study, we first made a literature survey for the appropriate E/p functional dependences of nitrogen molecules on drift velocity vd, and the Townsend ionization coefficient α, to be applied for the laser operational characteristics of high gas pressures up to 1 atmosphere, and 20 < E/p < 1000 V cm-1 Torr-1. For the study when the corona UV preionization is applied, it was realized that it is necessary to modify the Townsend ionization coefficient to include the effect of the preionization for the laser system. This realization revealed that the Townsend coefficient upon utilizing the corona effect, (α/p)corona, can be viewed as a perturbation to be added to the (α/p)main due to the main gas discharge, where the total (α/p)t = (α/p)main + (α/p)corona was used for the calculation. We also introduced a single α/p relation with A* and B* coefficients to explain the gas discharge due to both the main and corona discharges. The results of the two approaches are introduced and have been compared with each other. The present study indicates that laser optical measurements, by themselves, constitute a reliable approach for understanding the physical quantities that are involved during plasma formation in a gas discharge. Details of the approach will be presented in this paper.

  7. High-temperature Ionization in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Desch, Steven J.; Turner, Neal J.

    2015-10-01

    We calculate the abundances of electrons and ions in the hot (≳500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains’ work functions. The charged species’ abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks’ dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge located where the temperature exceeds a threshold value ≈1000 K. The threshold is set by ambipolar diffusion except at the highest densities, where it is set by Ohmic resistivity. We find that the disk gas can be diffusively loaded onto the stellar magnetosphere at temperatures below a similar threshold. We investigate whether the “short-circuit” instability of current sheets can operate in disks and find that it cannot, or works only in a narrow range of conditions; it appears not to be the chondrule formation mechanism. We also suggest that thermionic emission is important for determining the rate of Ohmic heating in hot Jupiters.

  8. Laboratory and Ambient Measurements of Oxidized Organic Compounds in the Gas Phase Using Nitrate Ion Chemical Ionization Coupled with High Resolution Time-of-Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Massoli, P.; Stark, H.; Canagaratna, M. R.; Krechmer, J.; Lambe, A. T.; Isaacman-VanWertz, G. A.; Nowak, J. B.; Kimmel, J.; Kroll, J. H.; Jayne, J. T.; Worsnop, D. R.

    2015-12-01

    Chemical Ionization Mass Spectrometry (CIMS) is a widely used technique for molecular level characterization of inorganic and organic gas phase species. Here we present laboratory and ambient measurements of gaseous organic compounds by means of a High Resolution Time-of-Flight Chemical Ionization Mass Spectrometry (HR-ToF-CIMS) using nitrate ion (NO3-) chemistry, which recently has proven capable of selectively detecting oxidized organic molecules in the gas-phase via clustering with NO3- and its high order clusters. Such low and extremely low volatility organic compounds (LVOC, ELVOC) have an important role in particulate phase chemistry and formation of secondary organic aerosol (SOA). The HR-ToF-CIMS was deployed during the Southern Oxidant and Aerosol Study (SOAS) at the forest site in Centreville, AL (June 1 - July 15, 2013), where emissions were dominated by biogenic volatile organic compounds (BVOC), occasionally mixing with anthropogenic emissions. During SOAS, the HR-ToF-CIMS detected oxidation products of both isoprene (typically C5 LVOC) and terpenes (typically C10 ELVOC). The isoprene-related LVOC showed a diurnal cycle with a day time peak, while two groups of terpene ELVOC were identified, one peaking at night and one peaking during the day. Positive Matrix Factorization (PMF) analyses are applied to the dataset to further interpret these observations. The effect of anthropogenic pollution on the biogenic-dominated environment was also investigated during periods of elevated nitrous and sulfur dioxide levels. To further aid in interpretation of the SOAS dataset, oxidized organic molecules were produced via OH and O3 initiated oxidation of biogenic gas-phase precursors in targeted laboratory studies and detected using the HR-ToF-CIMS. Spectra were obtained in these studies over a range of simulated atmospheric conditions.

  9. The origin of the near-IR line emission from molecular, low and high ionization gas in the inner kiloparsec of NGC 6240

    NASA Astrophysics Data System (ADS)

    Ilha, Gabriele da Silva; Bianchin, Marina; Riffel, Rogemar A.

    2016-06-01

    The understating of the origin of the H2 line emission from the central regions of galaxies represents an important key to improve our knowledge about the excitation and ionization conditions of the gas in these locations. Usually these lines can be produced by Starburst, shocks and/or radiation from an active galactic nucleus (AGN). Luminous Infrared Galaxies (LIRG) represent ideal and challenging objects to investigate the origin of the H2 emission, as all processes above can be observed in a single object. In this work, we use K-band integral field spectroscopy to map the emission line flux distributions and kinematics and investigate the origin of the molecular and ionized gas line emission from inner 1.4×2.4~kpc2 of the LIRG NGC 6240, known to be the galaxy with strongest H2 line emission. The emission lines show complex profiles at locations between both nuclei and surrounding the northern nucleus, while at locations near the southern nucleus and at 1^'' west of the northern nucleus, they can be reproduced by a single Gaussian component. We found that the H2 emission is originated mainly by thermal processes, possible being dominated by heating of the gas by X-rays from the AGN at locations near both nuclei. For the region between the northern and southern nuclei shocks due to the interacting process may be the main excitation mechanism, as indicated by the high values of the H2 λ2.12 μ m/Brγ line ratio. A contribution of fluorescent excitation may also be important at locations near 1^'' west of the northern nucleus, which show the lowest line ratios. The [Fe ii]λ2.072 μ m/Brγ ratio show a similar trend as observed for H2 λ2.12 μ m/Brγ, suggesting that [Fe ii] and H2 line emission have similar origins. Finally, the [Ca viii]λ2.32 μ m coronal line emission is observed mainly in regions next to the nuclei, suggesting it is originated gas ionized by the radiation from the AGN.

  10. Viscosity Coefficient Curve Fits for Ionized Gas Species Grant Palmer

    NASA Technical Reports Server (NTRS)

    Palmer, Grant; Arnold, James O. (Technical Monitor)

    2001-01-01

    Viscosity coefficient curve fits for neutral gas species are available from many sources. Many do a good job of reproducing experimental and computational chemistry data. The curve fits are usually expressed as a function of temperature only. This is consistent with the governing equations used to derive an expression for the neutral species viscosity coefficient. Ionized species pose a more complicated problem. They are subject to electrostatic as well as intermolecular forces. The electrostatic forces are affected by a shielding phenomenon where electrons shield the electrostatic forces of positively charged ions beyond a certain distance. The viscosity coefficient for an ionized gas species is a function of both temperature and local electron number density. Currently available curve fits for ionized gas species, such as those presented by Gupta/Yos, are a function of temperature only. What they did was to assume an electron number density. The problem is that the electron number density they assumed was unrealistically high. The purpose of this paper is two-fold. First, the proper expression for determining the viscosity coefficient of an ionized species as a function of both temperature and electron number density will be presented. Then curve fit coefficients will be developed using the more realistic assumption of an equilibrium electron number density. The results will be compared against previous curve fits and against highly accurate computational chemistry data.

  11. Shock wave dispersion in weakly ionized gas

    NASA Astrophysics Data System (ADS)

    Kessaratikoon, Prasong

    2003-10-01

    Electrodeless microwave (MW) discharge in two straight, circular cylindrical resonant cavities in TE1,1,1 and TM0,1,2 modes were introduced to perform additional experimental studies on shock wave modification in non-equilibrium weakly ionized gases and to clarify the physical mechanisms of the shock wave modification process. The discharge was generated in 99.99% Ar at a gas pressure between 20 and 100 Torr and at a discharge power density less than 10.0 Watts/cm3. Power density used for operating the discharge was rather low in the present work, which was determined by evaluating the power loss inside the resonant cavity. It was found that the shock wave deflection signal amplitude was decreased while the shock wave local velocity was increased in the presence of the discharge. However, there was no apparent evidence of the multiple shock structure or the widening of the shock wave deflection signal, as observed in the d.c. glow discharge [3,5]. The shock wave always retained a more compact structure even in the case of strong dispersion in both the TE and the TM mode. The shock wave propagated faster through the discharge in the TE mode than in the TM mode. Discharge characteristics and local parameters such as gas temperature T g, electron density Ne, local electric field E, and average power density, were determined by using the MW discharge generated from an Argon gas mixture that contains 95% Ar, 5% H2, and traces of N2. The gas temperature was evaluated by using the amplitude reduction technique and the emission spectroscopy of Nitrogen. The gas temperature distribution was flat in the central region of the cavity. By comparing the gas temperature calculated from the shock wave local velocity and from the amplitude reduction technique, the present work was sufficiently accurate to indicate that the thermal effect is dominant. The electron density was obtained from measured line shapes of hydrogen Balmer lines by using the gas temperature and the well

  12. The distribution of warm ionized gas in NGC 891

    SciTech Connect

    Rand, R.J.; Kulkarni, S.R.; Hester, J.J. Infrared Processing and Analysis Center, Pasadena, CA )

    1990-03-01

    Narrow-band imaging is presented of the edge-on spiral NGC 891 in the H-alpha and S II 6716, 6731 A forbidden lines. Emission from H II regions confined to the plane of the galaxy and from diffuse gas up to about 4 kpc off the plane is readily detected. The full radial extent of the diffuse emission in the plane is about 30 kpc. NGC 891 is found to have a surface density of diffuse ionized gas twice the Galactic value, a thicker ionized gas layer, and a larger surface density of ionized gas relative to neutral gas. These are interpreted as consequences of a relatively high level of star formation in this galaxy. Other star formation tracers indicate the same conclusion. Many vertical H-alpha filaments, or 'worms,' extending to over 2 kpc off the plane of the galaxy are seen. These worms are interpreted in terms of chimney models for the interstellar media of spirals. 19 refs.

  13. Ionization measurements in small gas samples by single ion counting

    NASA Astrophysics Data System (ADS)

    Shchemelinin, S.; Breskin, A.; Chechik, R.; Pansky, A.; Colautti, P.; Conte, V.; De Nardo, L.; Tornielli, G.

    1996-01-01

    A new method for highly efficient measurements of the ionization statistics in small, wall-less, well-defined low density gas samples is proposed. It is based on counting ions, induced by radiation in a sensitive gas volume. The high resolution permits the measurement of spatial correlations between the number of ions induced in two distanced small sensitive volumes. Using tissue- or solid-equivalent gases, the method allows the accurate determination of the ionization statistics in the corresponding sub-nanometer volume of condensed matter. These data are of relevance to the modeling of microscopic phenomena related to the interaction of radiation with matter, such as in nanodosimetry and studies of radiation damage to solid state devices.

  14. The Diffuse Ionized Gas in the large telescopes era

    NASA Astrophysics Data System (ADS)

    Hidalgo-Gámez, A. M.

    2005-12-01

    In this workshop we summarize the ``state of the art'' of the Diffuse Ionized Gas. We present all the possible situations which can produce ionization outside an H II region, as well as some of the observations that can be performed with the GTC instrumentation and how relevant they can be in the undestanding of the ionization mechanisms of the DIG.

  15. Gas ionization sensors with carbon nanotube/nickel field emitters.

    PubMed

    Huang, Bohr-Ran; Lin, Tzu-Ching; Yang, Ying-Kan; Tzeng, Shien-Der

    2011-12-01

    Gas ionization sensors based on the field emission properties of the carbon nanotube/nickel (CNT/Ni) field emitters were first developed in this work. It is found that the breakdown electric field (E(b)) slightly decreases from 2.2 V/microm to 1.9 V/microm as the pressure of H2 gas increases from 0.5 Torr to 100 Torr. On the contrary, E(b) obviously increases from 2.9 V/microm to 6.5 V/microm as O2 gas pressure increases from 0.5 Torr to 100 Torr. This may be explained by the depression of the electron emission that caused by the adsorption of the O2 gas on the CNT emitters. The Raman spectra of the CNT/Ni emitters also show that more defects were generated on the CNTs after O2 gas sensing. The Joule heating effect under high current density as performing H2 sensing was also observed. These effects may contribute the pressure dependence on the breakdown electric field of the CNT/Ni gas ionization sensors. PMID:22409010

  16. Development of a High-Resolution H3O+ Chemical Ionization Mass Spectrometer for Gas-phase Hydrocarbons and its Application During the 2015 SONGNEX Aircraft Campaign

    NASA Astrophysics Data System (ADS)

    Koss, A.; Yuan, B.; De Gouw, J. A.; Warneke, C.; Stark, H.

    2015-12-01

    In-situ time-of-flight chemical ionization mass spectrometers (ToF-CIMS) using H3O+ reagent ion chemistry (PTR-MS) are a relatively new technique in detection of gas-phase hydrocarbons, and recent improvements in instrument sensitivity, mass resolution, and ease of field deployment have expanded their use in atmospheric chemistry. The comparatively low-energy H3O+ ionization technique is ideal for measuring complex mixtures of hydrocarbons, and, compared to conventional quadrupole PTRMS, the newest generation of ToF-CIMS measure many more species simultaneously and with a sensitivity that is as high as a quadrupole PTR-MS. We describe here the development of a commercially available ToF CIMS into an H3O+CIMS suitable for deployment on aircraft, and its application during an aircraft campaign studying emissions from oil and natural gas extraction industry. We provide an overview of instrument development and specifications, including design, characterization, and field operation. We then discuss data processing and interpretation. First, we investigate determination of intensities of poorly resolved peaks. The mass resolution of the present instrument (m/Δm ~4500) enables separate analysis of many isobaric peaks, but peaks are also frequently not fully resolved. Using results from laboratory tests, we quantify how the accuracy can be limited by the overlap in neighboring peaks, and compare to theoretical predictions from literature. We then briefly describe our method for quality assurance of reported compounds, and correction for background and humidity effects. Finally, we present preliminary results from the first field deployment of this instrument during the Spring 2015 SONGNEX aircraft campaign. This campaign sampled emissions from oil and natural gas extraction regions and associated infrastructure in the Western and Central United States. We will highlight results that illustrate (1) new scientific capability from improved mass resolution, which

  17. Ionized gas at the edge of the central molecular zone

    NASA Astrophysics Data System (ADS)

    Langer, W. D.; Goldsmith, P. F.; Pineda, J. L.; Velusamy, T.; Requena-Torres, M. A.; Wiesemeyer, H.

    2015-04-01

    Context. The edge of the central molecular zone (CMZ) is the location where massive dense molecular clouds with large internal velocity dispersions transition to the surrounding more quiescent and lower CO emissivity region of the Galaxy. Little is known about the ionized gas surrounding the molecular clouds and in the transition region. Aims: We determine the properties of the ionized gas at the edge of the CMZ near Sgr E using observations of N+ and C+. Methods: We observed a small portion of the edge of the CMZ near Sgr E with spectrally resolved [C ii] 158 μm and [N ii] 205 μm fine structure lines at six positions with the GREAT instrument on SOFIA and in [C ii] using Herschel HIFI on-the-fly strip maps. We use the [N ii] spectra along with a radiative transfer model to calculate the electron density of the gas and the [C ii] maps to illuminate the morphology of the ionized gas and model the column density of CO-dark H2. Results: We detect two [C ii] and [N ii] velocity components, one along the line of sight to a CO molecular cloud at - 207 km s-1 associated with Sgr E and the other at -174 km s-1 outside the edge of another CO cloud. From the [N ii] emission we find that the average electron density is in the range of ~5 to 21 cm-3 for these features. This electron density is much higher than that of the disk's warm ionized medium, but is consistent with densities determined for bright diffuse H ii nebula. The column density of the CO-dark H2 layer in the -207 km s-1 cloud is ~1-2 × 1021 cm-2 in agreement with theoretical models. The CMZ extends further out in Galactic radius by ~7 to 14 pc in ionized gas than it does in molecular gas traced by CO. Conclusions: The edge of the CMZ likely contains dense hot ionized gas surrounding the neutral molecular material. The high fractional abundance of N+ and high electron density require an intense EUV field with a photon flux of order 106 to 107 photons cm-2 s-1, and/or efficient proton charge exchange with

  18. Turbulence in the Ionized Gas of the Orion Nebula

    NASA Astrophysics Data System (ADS)

    Arthur, S. J.; Medina, S.-N. X.; Henney, W. J.

    2016-08-01

    In order to study the nature, origin, and impact of turbulent velocity fluctuations in the ionized gas of the Orion Nebula, we apply a variety of statistical techniques to observed velocity cubes. The cubes are derived from high resolving power (R ≈ 40 000) longslit spectroscopy of optical emission lines that span a range of ionizations. From Velocity Channel Analysis (VCA), we find that the slope of the velocity power spectrum is consistent with predictions of Kolmogorov theory between scales of 8 and 22 arcsec (0.02 to 0.05 pc). The outer scale, which is the dominant scale of density fluctuations in the nebula, approximately coincides with the autocorrelation length of the velocity fluctuations that we determine from the second order velocity structure function. We propose that this is the principal driving scale of the turbulence, which originates in the autocorrelation length of dense cores in the Orion molecular filament. By combining analysis of the non-thermal line widths with the systematic trends of velocity centroid versus ionization, we find that the global champagne flow and smaller scale turbulence each contribute in equal measure to the total velocity dispersion, with respective root-mean-square widths of 4-5 km s-1. The turbulence is subsonic and can account for only one half of the derived variance in ionized density, with the remaining variance provided by density gradients in photoevaporation flows from globules and filaments. Intercomparison with results from simulations implies that the ionized gas is confined to a thick shell and does not fill the interior of the nebula.

  19. Development of a portable gas-filled ionization chamber

    NASA Astrophysics Data System (ADS)

    Chae, K. Y.; Cha, S. M.; Gwak, M. S.

    2014-02-01

    A new portable gas-filled ionization chamber has been designed and constructed at the Physics Department of Sung Kyun Kwan University. To overcome the maximum count rate of ˜105 particles per second of a conventional ionization chamber, which utilizes a Frisch grid, and to enhance the portability of a detector, we adopted the design of multiple electrodes and modified it from the original designs by Kimura et al. and Chae et al. The new design utilizes a stack of multiple electrodes installed perpendicular to the optical beam axis. This configuration provides a fast response time for the detector, which is essential for high-rate counting. The device has been tested with a 241Am ( t 1/2 = 432.2 years) radioactive α source, which mainly emits 5.486-MeV (branching ratio of 85%) and 5.443-MeV (branching ratio of 13%) α particles. An energy resolution of 6.3% was achieved.

  20. Simultaneous resonant enhanced multiphoton ionization and electron avalanche ionization in gas mixtures

    SciTech Connect

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2008-07-15

    Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.

  1. Fluid hydrogen at high density - Pressure ionization

    NASA Technical Reports Server (NTRS)

    Saumon, Didier; Chabrier, Gilles

    1992-01-01

    The Helmholtz-free-energy model for nonideal mixtures of hydrogen atoms and molecules by Saumon and Chabrier (1991) is extended to describe dissociation and ionization in similar mixtures in chemical equilibrium. A free-energy model is given that describes partial ionization in the pressure and temperature ionization region. The plasma-phase transition predicted by the model is described for hydrogen mixtures including such components as H2, H, H(+), and e(-). The plasma-phase transition has a critical point at Tc = 15,300 K and Pc = 0.614 Mbar, and thermodynamic instability is noted in the pressure-ionization regime. The pressure dissociation and ionization of fluid hydrogen are described well with the model yielding information on the nature of the plasma-phase transition. The model is shown to be valuable for studying dissociation and ionization in astrophysical objects and in high-pressure studies where pressure and temperature effects are significant.

  2. WHAM observations of ionized gas in the inner Milky Way

    NASA Astrophysics Data System (ADS)

    Hill, Alex S.; Haffner, L. Matthew; Benjamin, Robert A.; Gostisha, Martin; Barger, Kathleen

    2016-01-01

    We present Wisconsin H-Alpha Mapper (WHAM) observations of ionized gas in the southern Milky Way. We include spectroscopic maps of H-Alpha, [S II], and [N II]. The data includes the Scutum-Centaurus Arm, for which we measure an exponential scale height about 20% less than that in the Perseus Arm in the outer Galaxy. The H-alpha scale height suggests a lower electron scale height in both arms than is measured locally from pulsar dispersion. The [N II] and [S II] data provide information about the temperature and ionization state of the gas: gas in the warm ionized medium is generally warmer (≈8000 K) and in lower ionization states than gas in classical H II regions. WHAM research and operations are supported through NSF Award AST-1108911.

  3. Gas chromatography fractionation platform featuring parallel flame-ionization detection and continuous high-resolution analyte collection in 384-well plates.

    PubMed

    Jonker, Willem; Clarijs, Bas; de Witte, Susannah L; van Velzen, Martin; de Koning, Sjaak; Schaap, Jaap; Somsen, Govert W; Kool, Jeroen

    2016-09-01

    Gas chromatography (GC) is a superior separation technique for many compounds. However, fractionation of a GC eluate for analyte isolation and/or post-column off-line analysis is not straightforward, and existing platforms are limited in the number of fractions that can be collected. Moreover, aerosol formation may cause serious analyte losses. Previously, our group has developed a platform that resolved these limitations of GC fractionation by post-column infusion of a trap solvent prior to continuous small-volume fraction collection in a 96-wells plate (Pieke et al., 2013 [17]). Still, this GC fractionation set-up lacked a chemical detector for the on-line recording of chromatograms, and the introduction of trap solvent resulted in extensive peak broadening for late-eluting compounds. This paper reports advancements to the fractionation platform allowing flame ionization detection (FID) parallel to high-resolution collection of a full GC chromatograms in up to 384 nanofractions of 7s each. To this end, a post-column split was incorporated which directs part of the eluate towards FID. Furthermore, a solvent heating device was developed for stable delivery of preheated/vaporized trap solvent, which significantly reduced band broadening by post-column infusion. In order to achieve optimal analyte trapping, several solvents were tested at different flow rates. The repeatability of the optimized GC fraction collection process was assessed demonstrating the possibility of up-concentration of isolated analytes by repetitive analyses of the same sample. The feasibility of the improved GC fractionation platform for bioactivity screening of toxic compounds was studied by the analysis of a mixture of test pesticides, which after fractionation were subjected to a post-column acetylcholinesterase (AChE) assay. Fractions showing AChE inhibition could be unambiguously correlated with peaks from the parallel-recorded FID chromatogram. PMID:27485151

  4. Helium Ionization in the Diffuse Ionized Gas surrounding Ultra-compact HII regions

    NASA Astrophysics Data System (ADS)

    Anish Roshi, D.; Churchwell, Edward B.

    2016-01-01

    We observed radio recombination lines (RRLs) from regions surrounding three Ultra-compact HII (UCHII) regions at frequencies near 5 GHz. The observations were made with the Green Bank Telescope (GBT). From existing observations we know that helium in the diffuse ionized gas (DIR), located far from the ionizing source, is not fully ionized. The objectives of our observations are to determine (a) the distance from the ionizing stars where helium is under ionized for a variety of physical conditions and (b) whether the helium ionization depends on the age of the ionizing star. With these objectives, we observed RRLs towards 16 positions in the envelops of UCHII regions G10.15-0.34, G23.46-0.20 and G29.96-0.02. Helium lines were detected toward 10 of the observed positions and hydrogen RRLs were detected toward all the observed positions. The observed ratio of ionized helium to ionized hydrogen (He^+/H^+) at the positions where helium lines are detected range between 0.03 and 0.09. At positions where helium lines are not detected the upper limit on the ratio is ~ 0.05. We discuss the dependence of He^+/H^+ ratio on the distance from and age of the ionizing star clusters in the observed sources.

  5. Laser induced avalanche ionization in gases or gas mixtures with resonantly enhanced multiphoton ionization or femtosecond laser pulse pre-ionization

    SciTech Connect

    Shneider, Mikhail N.; Miles, Richard B.

    2012-08-15

    The paper discusses the requirements for avalanche ionization in gas or gas mixtures initiated by REMPI or femtosecond-laser pre-ionization. Numerical examples of dependencies on partial composition for Ar:Xe gas mixture with REMPI of argon and subsequent classic avalanche ionization of Xe are presented.

  6. Large Picture of the Galactic Center Studied by H_3^+: High Ionization Rate, Prevailing Warm and Diffuse Gas, and Non-Rotating Expanding Molecular Ring

    NASA Astrophysics Data System (ADS)

    Oka, Takeshi; Geballe, Thomas R.; Indriolo, Nick

    2013-06-01

    Following our initial studies of the diffuse interstellar medium in the Central Molecular Zone (CMZ) of the Galactic center (GC) toward two remarkable sightlines--one 140 pc to the West of Sgr A* near Sgr E, and the other 85 pc to the East of Sgr A* near Sgr B --we are in the process of using newly identified bright stars with smooth continua suitable for H_3^+ spectroscopy to both fill the gap between these sightlines and expand coverage to wider regions of the CMZ. So far we have identified 43 qualified stars, of which 24 have been at least partially observed (i.e., in at least one spectral setting). The high ionization rate (on the order of ζ˜3×10^{-15} s^{-1}) and the existence of warm (T˜250 K) and diffuse (n≤100 cm^{-3}) gas previously reported in the GC have also been observed in some of the new sightlines, indicating these conditions fill a large portion of the CMZ. The velocity profiles observed in the diffuse clouds, some of which show absorption extending ˜ 140 km s^{-1}, allow us to draw a velocity-longitude diagram. The high-velocity fronts of such a diagram reveal the existence of an expanding molecular ring (EMR) with radius of ˜ 140 pc and velocity of ˜ 140 km s^{-1}. This ring is similar to those previously reported but is qualitatively different in that it is not rotating, suggesting an expulsion rather than the gravitational potential as causing the EMR. Possible relations between our observations and other high energy events will be discussed. T. R. Geballe and T. Oka, ApJ, 709, L70 (2010). T. Oka, T. R. Geballe, M. Goto, T. Usuda, and B. J. McCall ApJ, 632, 882 (2005). N. Kaifu, T. Kato, and T. Iguchi, Nature, 238, 105 (1972). N. Z. Scoville, ApJ, 175, L127 (1972). Y. Sofue, PASJ, 47, 551 (1995).

  7. Influence of ionization on ultrafast gas-based nonlinear fiber optics.

    PubMed

    Chang, W; Nazarkin, A; Travers, J C; Nold, J; Hölzer, P; Joly, N Y; Russell, P St J

    2011-10-10

    We numerically investigate the effect of ionization on ultrashort high-energy pulses propagating in gas-filled kagomé-lattice hollow-core photonic crystal fibers by solving an established uni-directional field equation. We consider the dynamics of two distinct regimes: ionization induced blue-shift and resonant dispersive wave emission in the deep-UV. We illustrate how the system evolves between these regimes and the changing influence of ionization. Finally, we consider the effect of higher ionization stages. PMID:21997110

  8. Characterization of plant materials by pyrolysis-field ionization mass spectrometry: high-resolution mass spectrometry, time-resolved high-resolution mass spectrometry, and Curie-point pyrolysis-gas chromatography/mass spectrometry of spruce needles

    SciTech Connect

    Schulten, H.F.; Simmleit, N.; Mueller, R.

    1989-02-01

    In the course of a forest damage research project spruce needles are analyzed, without pretreatment except drying and milling, by in-source pyrolysis-field ionization mass spectrometry. The mass signals are assigned by using high-resolution mass measurements and thermal degradation products identified by Curie-point pyrolysis-gas chromatography. It is demonstrated that the thermal degradation products characterize the main chemical constituents of spruce needs such as polysaccharides and lignin. Furthermore, thermostable constituents such as lipids, steroids, and flavons are detected. The thermal degradation process is studied by temperature-programmed microfurnace pyrolysis in combination with time-resolved high-resolution mass spectrometry. The integrated interpretation of results achieved by the presented methods can be applied for the universal characterization of complex and in particular nonsoluble, polydisperse biological and geochemical materials.

  9. High power gas laser amplifier

    DOEpatents

    Leland, Wallace T.; Stratton, Thomas F.

    1981-01-01

    A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

  10. The ionization conditions in the Milky Way halo - Infalling gas toward the North Galactic Pole

    NASA Technical Reports Server (NTRS)

    Danly, Laura

    1992-01-01

    Observations of gas in the Milky Way halo are studied with an eye toward the theoretical predictions of the Galactic Fountain model for the production of halo gas. Data are shown that indicate significant variations in the ionization conditions in infalling halo gas in the northern galactic hemisphere. Understanding the nature of Milky Way halo gas plays a critical role in interpreting QSO absorption lines in the investigation of galaxies at high redshift.

  11. Diffuse Ionized Gas Line Strengths from Echelle Spectroscopy

    NASA Astrophysics Data System (ADS)

    Terndrup, D. M.; Peterson, R. C.

    1996-05-01

    We discuss serendipitous detections of several emission lines from the diffuse interstellar medium in high-resolution spectra of stars in Baade's Window and globular clusters near the Galactic center. Following Lehnert & Heckman (1994, ApJ, 426, L27), we show that the ratios of the strengths of the emission lines of Hα , [N II], and [S II] are inconsistent with those of H II regions, but match those of the diffuse ionized gas, suggesting this as its origin. We discuss these ratios and upper limits to the line strengths of [O I] lambda 6300 and He I lambda 5879. It is difficult to specify where the emitting gas is located along the line of sight to Baade's Window, since this is along the Galaxy's minor axis where the (low) gas velocity poses no constraint. However, we note that the two spectra acquired 1 arcmin apart in Baade's Window are indistinguishable, with equal line strengths and velocity widths. The emission lines are significantly fainter in the sky spectrum of a star in the globular cluster NGC 5927, where the gas velocity indicates that the emission probably does arise in or near the galactic disk.

  12. Ionization of vitamin C in gas phase: Theoretical study.

    PubMed

    Abyar, Fatemeh; Farrokhpour, Hossein

    2016-07-01

    In this work, the gas phase ionization energies and photoelectron spectra of four important conformers of vitamin C were calculated. Symmetry adapted cluster/configuration interaction methodology employing the single and double excitation operators (SAC-CI SD-R) along with D95++(d,p) basis set were used for the calculations. Thermochemistry calculations were also performed on all possible conformers of vitamin C to find the relative stability of conformers in the gas phase. The calculated ionization bands of each conformer were assigned by calculating the contribution of natural bonding orbital (NBO) in the calculated canonical molecular orbitals involved in the ionization. SAC-CI calculations showed that the first ionization band of vitamin C is related to the π electrons of CC bond of the ring of molecule although, there is the lone electron pairs of oxygen atoms and π electrons of CO bond in the molecule. PMID:27092998

  13. Axisymmetric model of the ionized gas in the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Rubin, R. H.; Simpson, J. P.; Haas, M. R.; Erickson, E. F.

    1991-01-01

    New ionization and thermal equilibrium models for the ionized gas in the Orion Nebula with an axisymmetric two-dimensional 'blister' geometry/density distribution are presented. The HII region is represented more realistically than in previous models, while the physical detail of the microphysics and radiative transfer of the earlier spherical modeling is maintained. The predicted surface brightnesses are compared with observations for a large set of lines at different positions to determine the best-fitting physical parameters. The model explains the strong singly ionized line emission along the lines of sight near the Trapezium.

  14. Application of FIGAERO (Filter Inlet for Gases and AEROsol) coupled to a high resolution time of flight chemical ionization mass spectrometer to field and chamber organic aerosol: Implications for carboxylic acid formation and gas-particle partitioning from monoterpene oxidation

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, F.; Mohr, C.; Ehn, M.; Rubach, F.; Mentel, T. F.; Kleist, E.; Wildt, J.; Thornton, J. A.

    2013-12-01

    We present measurements of a large suite of gas and particle phase carboxylic acid containing compounds made with a Filter Inlet for Gas and AEROsol (FIGAERO) coupled to a high resolution time of flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. A prototype operated with acetate negative ion proton transfer chemistry was deployed on the Julich Plant Atmosphere Chamber to study a-pinene oxidation, and a modified version was deployed at the SMEAR II forest station in Hyytiälä, Finland and SOAS, in Brent Alabama. We focus here on results from JPAC and Hyytiälä, where we utilized the same ionization method most selective towards carboxylic acids. In all locations, 100's of organic acid compounds were observed in the gas and particles and many of the same composition acids detected in the gas-phase were detected in the particles upon temperature programmed thermal desorption. Particulate organics detected by FIGAERO are highly correlated with organic aerosol mass measured by an AMS, providing additional volatility and molecular level information about collected aerosol. The fraction of a given compound measured in the particle phase follows expected trends with elemental composition, but many compounds would not be well described by an absorptive partitioning model assuming unity activity coefficients. Moreover the detailed structure in the thermal desorption signals reveals a contribution from thermal decomposition of large molecular weight organics and or oligomers with implications for partitioning measurements and model validation

  15. Novel analytical approach for brominated flame retardants based on the use of gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry with emphasis in highly brominated congeners.

    PubMed

    Portolés, Tania; Sales, Carlos; Gómara, Belén; Sancho, Juan Vicente; Beltrán, Joaquim; Herrero, Laura; González, María José; Hernández, Félix

    2015-10-01

    The analysis of brominated flame retardants (BFRs) commonly relies on the use of gas chromatography coupled to mass spectrometry (GC-MS) operating in electron ionization (EI) and electron capture negative ionization (ECNI) modes using quadrupole, triple quadrupole, ion trap, and magnetic sector analyzers. However, these brominated contaminants are examples of compounds for which a soft and robust ionization technique might be favorable since they show high fragmentation in EI and low specificity in ECNI. In addition, the low limits of quantification (0.01 ng/g) required by European Commission Recommendation 2014/118/EU on the monitoring of traces of BFRs in food put stress on the use of highly sensitive techniques/methods. In this work, a new approach for the extremely sensitive determination of BFRs taking profit of the potential of atmospheric pressure chemical ionization (APCI) combined with GC and triple quadrupole (QqQ) mass analyzer is proposed. The objective was to explore the potential of this approach for the BFRs determination in samples at pg/g levels, taking marine samples and a cream sample as a model. Ionization and fragmentation behavior of 14 PBDEs (congeners 28, 47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two novel BFRs, decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), in the GC-APCI-MS system has been investigated. The formation of highly abundant (quasi) molecular ion was the main advantage observed in relation to EI. Thus, a notable improvement in sensitivity and specificity was observed when using it as precursor ion in tandem MS. The improved detectability (LODs < 10 fg) achieved when using APCI compared to EI has been demonstrated, which is especially relevant for highly brominated congeners. Analysis of samples from an intercomparison exercise and samples from the marine field showed the potential of this approach for the reliable identification and quantification at very low

  16. Shock-wave structure in a partially ionized gas

    NASA Technical Reports Server (NTRS)

    Lu, C. S.; Huang, A. B.

    1974-01-01

    The structure of a steady plane shock in a partially ionized gas has been investigated using the Boltzmann equation with a kinetic model as the governing equation and the discrete ordinate method as a tool. The effects of the electric field induced by the charge separation on the shock structure have also been studied. Although the three species of an ionized gas travel with approximately the same macroscopic velocity, the individual distribution functions are found to be very different. In a strong shock the atom distribution function may have double peaks, while the ion distribution function has only one peak. Electrons are heated up much earlier than ions and atoms in a partially ionized gas. Because the interactions of electrons with atoms and with ions are different, the ion temperature can be different from the atom temperature.

  17. Ionization of NO at high temperature

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1991-01-01

    Space vehicles flying through the atmosphere at high speed are known to excite a complex set of chemical reactions in the atmospheric gases, ranging from simple vibrational excitation to dissociation, atom exchange, electronic excitation, ionization, and charge exchange. Simple arguments are developed for the temperature dependence of the reactions leading to ionization of NO, including the effect of vibrational electronic thermal nonequilibrium. NO ionization is the most important source of electrons at intermediate temperatures and at higher temperatures provides the trigger electrons that ionize atoms. Based on these arguments, recommendations are made for formulae which fit observed experimental results, and which include a dependence on both a heavy particle temperature and different vibration electron temperatures. In addition, these expressions will presumably provide the most reliable extrapolation of experimental results to much higher temperatures.

  18. Surface Ionization Gas Detection at SnO{sub 2} Surfaces

    SciTech Connect

    Krenkow, A.; Oberhuettinger, C.; Habauzit, A.; Kessler, M.; Goebel, J.; Mueller, G.

    2009-05-23

    In surface ionization (SI) gas detection adsorbed analyte molecules are converted into ionic species at a heated solid surface and extracted into free space by an oppositely biased counter electrode. In the present work we consider the formation of positive and negative analyte gas ions at SnO{sub 2} surfaces. We find that SI leads to positive ion formation only, with the SI efficiency scaling with the ionization energy of the analyte gas molecules. Aromatic and aliphatic hydrocarbons with amine functional groups exhibit particularly high SI efficiencies.

  19. Highly sensitive and selective analysis of urinary steroids by comprehensive two-dimensional gas chromatography combined with positive chemical ionization quadrupole mass spectrometry

    PubMed Central

    Zhang, Ying; Tobias, Herbert J.; Brenna, J. Thomas

    2014-01-01

    Comprehensive two dimensional gas chromatography (GC×GC) provides greater separation space than conventional GC. Because of fast peak elution, a time of flight mass spectrometer (TOFMS) is the usual structure-specific detector of choice. The quantitative capabilities of a novel GC×GC fast quadrupole MS were investigated with electron ionization (EI), and CH4 or NH3 positive chemical ionization (PCI) for analysis of endogenous urinary steroids targeted in anti-doping tests. Average precisions for steroid quantitative analysis from replicate urine extractions were 6% (RSD) for EI and 8% for PCI-NH3. The average limits of detection (LOD) calculated by quantification ions for 12 target steroids spiked into steroid-free urine matrix (SFUM) were 2.6 ng mL−1 for EI, 1.3 ng mL−1 for PCI-CH4, and 0.3 ng mL−1 for PCI-NH3, all in mass scanning mode. The measured limits of quantification (LOQ) with full mass scan GC×GC-qMS were comparable with the LOQ values measured by one-dimensional GC-MS in single ion monitoring (SIM) mode. PCI-NH3 yields fewer fragments and greater (pseudo)molecular ion abundances than EI or PCI-CH4. These data show a benchtop GC×GC-qMS system has the sensitivity, specificity, and resolution to analyze urinary steroids at normal urine concentrations, and that PCI-NH3, not currently available on most GC×GC-TOFMS instruments, is of particular value for generation of structure-specific ions. PMID:22606686

  20. Similarity of ionized gas nebulae around unobscured and obscured quasars

    NASA Astrophysics Data System (ADS)

    Liu, Guilin; Zakamska, Nadia L.; Greene, Jenny E.

    2014-08-01

    Quasar feedback is suspected to play a key role in the evolution of massive galaxies, by removing or reheating gas in quasar host galaxies and thus limiting the amount of star formation. In this paper, we continue our investigation of quasar-driven winds on galaxy-wide scales. We conduct Gemini Integral Field Unit spectroscopy of a sample of luminous unobscured (type 1) quasars, to determine the morphology and kinematics of ionized gas around these objects, predominantly via observations of the [O III] λ5007 Å emission line. We find that ionized gas nebulae extend out to ˜13 kpc from the quasar, that they are smooth and round, and that their kinematics are inconsistent with gas in dynamical equilibrium with the host galaxy. The observed morphological and kinematic properties are strikingly similar to those of ionized gas around obscured (type 2) quasars with matched [O III] luminosity, with marginal evidence that nebulae around unobscured quasars are slightly more compact. Therefore, in samples of obscured and unobscured quasars carefully matched in [O III] luminosity, we find support for the standard geometry-based unification model of active galactic nuclei, in that the intrinsic properties of the quasars, of their hosts and of their ionized gas appear to be very similar. Given the apparent ubiquity of extended ionized regions, we are forced to conclude that either the quasar is at least partially illuminating pre-existing gas or that both samples of quasars are seen during advanced stages of quasar feedback. In the latter case, we may be biased by our [O III]-based selection against quasars in the early `blow-out' phase, for example due to dust obscuration.

  1. The ionization sources of the diffuse ionized gas in nearby disk galaxies

    NASA Astrophysics Data System (ADS)

    Voges, Erica Susan

    Diffuse ionized gas (DIG) has been shown to be an important component of the interstellar medium (ISM), with its large filling factor (>= 20%) and a mass that makes it the most massive component of the Galactic ionized ISM. Given that it has been found to be ubiquitous in both the Galaxy and external disk galaxies, the energy source to create and maintain the DIG must necessarily be large. Massive OB stars are the only known sources with enough energy to power the DIG, and DIG is also linked morphologically to OB stars as it is brightest near bright star forming regions. However, the details of the location and spectral types of the ionizing stars, as well as the relevance of other ionizing mechanisms, are still not clear. I present the results of three different studies aimed at exploring the ionization sources of the DIG. Optical spectroscopy of DIG in M33 and NGC 891 using the Gemini-North telescope has been obtained to compare diagnostic emission line ratios with photoionization models. The first detection of (O I] l6300 was made in the DIG of M33. In M33, models in which ionizing photons leaking from H II regions are responsible for the ionization of the DIG best fit our observed line ratios. In NGC 891, we found evidence that shock ionization may need to be included along with photoionization in order to explain our observed emission line ratios. The diffuse Ha fraction in eight nearby galaxies was studied as a function of radius and star formation rate per unit area. We found no correlation with radius, but we did find that regions with higher star formation rates have lower diffuse fractions. Neither of these results had any dependence on galaxy type. These results have implications regarding the circumstances under which H II regions may be leaking ionizing photons and thus ionizing DIG. We also compared observed and predicted ionizing photon emission rates for 39 H II regions in the Large Magellanic Cloud. Our results indicate that five of the H II

  2. Screening of pesticides and polycyclic aromatic hydrocarbons in feeds and fish tissues by gas chromatography coupled to high-resolution mass spectrometry using atmospheric pressure chemical ionization.

    PubMed

    Nácher-Mestre, Jaime; Serrano, Roque; Portolés, Tania; Berntssen, Marc H G; Pérez-Sánchez, Jaume; Hernández, Félix

    2014-03-12

    This paper reports a wide-scope screening for detection and identification of pesticides and polycyclic aromatic hydrocarbons (PAHs) in feeds and fish tissues. QuEChERS sample treatment was applied, using freezing as an additional cleanup. Analysis was carried out by gas chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry with atmospheric pressure chemical ionization (GC-(APCI) QTOF MS). The qualitative validation was performed for over 133 representative pesticides and 24 PAHs at 0.01 and 0.05 mg/kg. Subsequent application of the screening method to aquaculture samples made it possible to detect several compounds from the target list, such as chlorpyrifos-methyl, pirimiphos-methyl, and ethoxyquin, among others. Light PAHs (≤4 rings) were found in both animal and vegetable samples. The reliable identification of the compounds was supported by accurate mass measurements and the presence of at least two representative m/z ions in the spectrum together with the retention time of the peak, in agreement with the reference standard. Additionally, the search was widened to include other pesticides for which standards were not available, thanks to the expected presence of the protonated molecule and/or molecular ion in the APCI spectra. This could allow the detection and tentative identification of other pesticides different from those included in the validated target list. PMID:24559176

  3. Miniature triaxial metastable ionization detector for gas chromatographic trace analysis of extraterrestrial volatiles

    NASA Technical Reports Server (NTRS)

    Woeller, F. H.; Kojiro, D. R.; Carle, G. C.

    1984-01-01

    The present investigation is concerned with a miniature metastable ionization detector featuring an unconventional electrode configuration, whose performance characteristics parallel those of traditional design. The ionization detector is to be incorporated in a flight gas chromatograph (GC) for use in the Space Shuttle. The design of the detector is discussed, taking into account studies which verified the sensitivity of the detector. The triaxial design of the detector is compared with a flat-plate style. The obtained results show that the principal goal of developing a miniature, highly sensitive ionization detector for flight applications was achieved. Improved fabrication techniques will utilize glass-to-metal seals and brazing procedures.

  4. Plasma wakefield acceleration in self-ionized gas or plasmas.

    PubMed

    Deng, S; Barnes, C D; Clayton, C E; O'Connell, C; Decker, F J; Erdem, O; Fonseca, R A; Huang, C; Hogan, M J; Iverson, R; Johnson, D K; Joshi, C; Katsouleas, T; Krejcik, P; Lu, W; Marsh, K A; Mori, W B; Muggli, P; Tsung, F

    2003-10-01

    Tunnel ionizing neutral gas with the self-field of a charged particle beam is explored as a possible way of creating plasma sources for a plasma wakefield accelerator [Bruhwiler et al., Phys. Plasmas (to be published)]. The optimal gas density for maximizing the plasma wakefield without preionized plasma is studied using the PIC simulation code OSIRIS [R. Hemker et al., in Proceeding of the Fifth IEEE Particle Accelerator Conference (IEEE, 1999), pp. 3672-3674]. To obtain wakefields comparable to the optimal preionized case, the gas density needs to be seven times higher than the plasma density in a typical preionized case. A physical explanation is given. PMID:14683089

  5. The effect of recombination radiation on the temperature and ionization state of partially ionized gas

    NASA Astrophysics Data System (ADS)

    Raičević, Milan; Pawlik, Andreas H.; Schaye, Joop; Rahmati, Alireza

    2014-01-01

    A substantial fraction of all ionizing photons originate from radiative recombinations. However, in radiative transfer calculations this recombination radiation is often assumed to be absorbed `on-the-spot' because for most methods the computational cost associated with the inclusion of gas elements as sources is prohibitive. We present a new, CPU and memory efficient implementation for the transport of ionizing recombination radiation in the TRAPHIC radiative transfer scheme. TRAPHIC solves the radiative transfer equation by tracing photon packets at the speed of light and in a photon-conserving manner in spatially adaptive smoothed particle hydrodynamics simulations. Our new implementation uses existing features of the TRAPHIC scheme to add recombination radiation at no additional cost in the limit in which the fraction of the simulation box filled with radiation approaches 1. We test the implementation by simulating an H II region in photoionization equilibrium and comparing to reference solutions presented in the literature, finding excellent agreement. We apply our implementation to discuss the evolution of the H II region to equilibrium. We show that the widely used case A and B approximations yield accurate ionization profiles only near the source and near the ionization front, respectively. We also discuss the impact of recombination radiation on the geometry of shadows behind optically thick absorbers. We demonstrate that the shadow region may be completely ionized by the diffuse recombination radiation field and discuss the important role of heating by recombination radiation in the shadow region.

  6. Real-time gas and particle-phase organic acids measurement at a forest site using chemical ionization high-resolution time-of-flight mass spectrometry during BEACHON-RoMBAS

    NASA Astrophysics Data System (ADS)

    Yatavelli, L. R.; Stark, H.; Kimmel, J.; Cubison, M.; Day, D. A.; Jayne, J.; Thornton, J. A.; Worsnop, D. R.; Jimenez, J. L.

    2011-12-01

    We present measurement of organic acids in gas and aerosol particles conducted in a ponderosa pine forest during July and August 2011 as part of the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS; http://tinyurl.com/BEACHON-RoMBAS). The measurement technique is based on chemical ionization, high-resolution time-of-flight mass spectrometry and utilizes a Micro-Orifice Volatilization Impactor [MOVI-CI-HR-ToFMS; Yatavelli et al., AS&T, 2010] to collect sub-micron aerosol particles while simultaneously measuring the gas-phase composition. The collected particles are subsequently analyzed by temperature-programmed thermal desorption. The reagent ion chosen for this campaign is the acetate anion (CH3C(O)O-, m/z 59), which reacts selectively via proton transfer with compounds that are stronger gas-phase acids than acetic acid [Veres et al., IJMS, 2008]. Preliminary results show substantial particle-phase concentrations of biogenic oxidation products such as hydroxy-glutaric acid, pinic acid, pinonic acid, and hydroxy-pinonic acid along with numerous lower and higher molecular weight organic acids. Correlations of the organic acid concentrations with meteorological, gas and aerosol parameters measured by other instrumentation are investigated in order to understand the formation, transformation, and partitioning of gas and particle-phase organic acids in a forested environment dominated by terpenes.

  7. A new mini gas ionization chamber for IBA applications

    NASA Astrophysics Data System (ADS)

    Müller, A. M.; Cassimi, A.; Döbeli, M.; Mallepell, M.; Monnet, I.; Simon, M. J.; Suter, M.; Synal, H.-A.

    2011-12-01

    Novel prototypes of high resolution gas ionization chambers ( GIC) were designed with increased compactness and simplicity of the setup. They have no Frisch-grid and a simple anode wire. Under certain operating conditions these mini detectors have an energy resolution comparable with that of state-of-the-art GICs of much higher complexity. They can be operated both under vacuum and atmospheric pressure. First measurements were made with protons in the energy range of 0.3-1.0 MeV. For protons at 0.3 MeV an energy resolution of about 12 keV was achieved. With a 72 MeV 129Xe beam a relative resolution of 1.4% was obtained. Due to their versatility and reduced size the detectors can easily be applied in the field of ion beam analysis ( IBA) and accelerator mass spectrometry ( AMS) . Since they are almost completely insensitive to radiation damage they are especially suited for use in high fluence applications such as scanning transmission ion microscopy ( STIM). A comparison of the radiation hardness of the mini GIC with a Si PIN diode was therefore performed. The GIC showed no peak shift or change in energy resolution at all after collecting 10 15 protons per cm 2 while the performance of the Si detector clearly started to degrade at 10 12 particles per cm 2.

  8. Ionized gas characteristics in the cavities of the gas and dust disc of the spiral galaxy NGC 6946

    NASA Astrophysics Data System (ADS)

    Efremov, Yu. N.; Afanasiev, V. L.; Egorov, O. V.

    2011-07-01

    The parameters of the ionized gas in NGC 6946 (in the [NII] λλ6548, 6583, H α and [SII] λλ6717, 6731 lines) are investigated with the SAO RAS BTA telescope along three positions of the long slit of the SCORPIO focal reducer, passing through a number of large and small cavities of the gaseous disc of the galaxy. These cavities correspond exactly to the cavities in warm dust, visible at 5 - 8µm. We found that everywhere in the direction of NGC 6946 the lines of ionized gas are decomposed into two Gaussians, one of which shows almost constant [SII]/H α and [NII]/H α ratios, as well as an almost constant radial velocity within the measurement errors (about -35… - 50 km/s). This component is in fact the foreground radiation from the diffuse ionized gas of our Galaxy, which is not surprising, given the low (12°) latitude of NGC 6946; a similar component is also present in the emission of neutral hydrogen. The analysis of the component of ionized gas, occurring inNGC 6946, has revealed that it shows signs of shock excitation in the cavities of the gaseous disc of the galaxy. This shock excitation is as well typical for the extraplanar diffuse ionized gas (EDIG), observed in a number of spiral galaxies at their high Z-coordinates. This can most likely be explained by low density of the gas in the NGC 6946 disc (with the usual photoionization) inside the cavities, due to what we see the spectral features of the EDIG gas of NGC 6946, projected onto them, and located outside the plane of the galaxy. In the absence of separation of ionized gas into two components by radial velocities, there is an increasing contribution to the integral line parameters by the EDIG of our Galaxy when the gas density in NGC 6946 decreases, which explains some strange results, obtained in the previous studies. Themorphology of warmdust, visible in the infrared range and HI is almost the same (except for the peripheral parts of the galaxy, where there are no sources of dust heating

  9. Observational model of the ionized gas in Seyfert and radio-galaxy nuclei*

    PubMed Central

    Osterbrock, Donald E.

    1978-01-01

    Equivalent widths of the total emission-line Hβ in Seyfert 1, Seyfert 2, and intermediate-type Seyfert galaxies, expressed in terms of the featureless continuum, all have approximately the same frequency distribution. This suggests that the energy-input mechanism to both the narrow-line, low-density gas and the broad-line, high-density gas is photoionization by the featureless continuum. The reason for the weakness of the narrow emission lines in extreme Seyfert 1 galaxies is then the absorption of most of the ionizing photons in the dense gas near the central source. The statistics of line widths can be fitted by a model in which the dense gas has typical rotational velocity 5000 km/sec and typical turbulent velocity 2000 km/sec. A model is proposed in which the dense gas forms a rotating, turbulent disk with dimension ≈0.1 pc and height/diameter ≈2/5. Seyfert 2 galaxies are objects with little dense gas, and intermediate-type Seyfert galaxies are objects in which the dense gas is optically thin to ionizing radiation at least along the poles. Most radio galaxies have strong narrow emission lines, suggesting that escape of radio plasma can only occur where some ionizing photons can also escape from the dense gas. Other predictions, implications, and tests of this model are discussed. Images PMID:16592488

  10. Resonance ionization spectroscopy: counting noble-gas atoms

    SciTech Connect

    Hurst, G.S.; Payne, M.G.; Chen, C.H.; Willis, R.D.; Lehmann, B.E.; Kramer, S.D.

    1981-06-01

    New work on the counting of noble gas atoms, using lasers for the selective ionization and detectors for counting individual particles (electrons or positive ions) is reported. When positive ions are counted, various kinds of mass analyzers (magnetic, quadrupole, or time-of-flight) can be incorporated to provide A selectivity. It is shown that a variety of interesting and important applications can be made with atom-counting techniques which are both atomic number (Z) and mass number (A) selective.

  11. Ionizing gas breakdown waves in strong electric fields.

    NASA Technical Reports Server (NTRS)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  12. Galaxy-Scale Clouds of Ionized Gas around AGN

    NASA Astrophysics Data System (ADS)

    Chojnowski, S. Drew; Keel, William C.

    2012-02-01

    The serendipitous 2007 discovery of the object now known (even by NED) as "Hanny's Voorwerp" (Lintott et al. 2009) set into motion a search for more examples of galaxy-scale clouds of highly-ionized gas in the vicinity of active galactic nuclei (AGN). Using a sample assembled primarily by 'citizen scientists' via a dedicated thread in the Galaxy Zoo Forum, we carried out the first part of a larger long- slit spectroscopic survey of such objects with the 2.1m telescope at Kitt Peak National Observatory (KPNO). Of the 30 objects targeted during seven nights (multiple exposures for several), extended emission clouds were observed in 15 objects, with [OIII]λ5007 emission occasionally extending >30 kpc from galaxy cores. A strong majority (11/15) of the extended emission clouds coincide with merging or otherwise violently disrupted systems, but more relevant to our search were the handful of clouds coinciding with isolated, symmetric galaxies lacking an obvious excitation mechanism. We present the results of part one in the hunt for Voorwerp analogues, much of which served to weed-out the more interesting objects to be targeted for future, multi-wavelength studies.

  13. Supernova remnants and diffuse ionized gas in M31

    NASA Astrophysics Data System (ADS)

    Walterbos, Rene; Braun, Robert

    1990-07-01

    Researchers have compiled an initial list of radio/optical supernova remnants (SNRs) in M31, by searching for radio identifications of emission-line sources with a high (SII)/H alpha ratio (greater than 0.60). The (SII) filter included both sulfur lines and the H alpha filter did not include (NII). This search revealed 11 SNRs, of which only two were known. In addition, researchers detected radio emission from 3 SNRs that were identified in previous optical surveys (D'Odorico et al., 1980), but that were outside the charge coupled device (CCD) fields. The 14 objects only include the most obvious candidates, but a full search is in progress and the researchers expect to find several more SNRs. Also not all optical SNRs show detectable radio emission and a pure optical list of SNR candidates based only on the ratio of (SII)/H alpha emission contains many more objects. Two conclusions are apparent. First, the radio properties of the SNRs in M31 are quite similar to those of Galactic SNRs as is illustrated. The brightnesses are not systematically lower as has been suggested in the past (Dickel and D'Odorico, 1984). Second, the slope of the relation is close to -2; this slope is expected from the intrinsic dependence between surface brightness and diameter. The radio luminosity of the SNRs does not seem to depend strongly on diameter, or age, contrary to model predictions. Selection effects, however, play an important role in these plots. The CCD images show widespread diffuse ionized gas with a ratio of (SII)/H alpha that is higher than that of discrete HII regions. Discrete HII regions typically show ratios between 0.2 to 0.3, while the diffuse gas in the arms consistently shows ratios of 0.5. Researchers can trace this gas across the spiral arms to emission measures below 5 pc cm (-6). Its properties seem to be similar to that of the diffuse gas in the solar neighborhood.

  14. 3D Modeling of Laser Propagation in Ionizing Gas and Plasma

    NASA Astrophysics Data System (ADS)

    Cooley, J.; Antonsen, T., Jr.; Huang, C.; Mori, W.

    2003-10-01

    The interaction of a high intensity laser with ionizing gas and plasmas is of current interest for both Laser Wakefield Accelerators and x-ray generation. We have developed a 3D fluid simulation code based on the same quasistatic approximation used in the 2D code WAKE [1]. The object oriented structure of the code also allows it to couple to the quickPIC particle code [2]. We will present 3D studies of the ionization scattering instability [3], which occurs when a laser pulse propagates in an ionizing gas. [1] P. Mora and T. Antonsen, Jr., Phys. Plasmas 4(1), January 1997 [2] J. Cooley, T. Antonsen, Jr., C. Huang, etal., Proceedings, Advanced Accelerator Concepts, 2002 [3] Z. Bian and T. Antonsen, Jr., Phys. Plasmas 8(7), July 2001 * work supported by NSF and DOE

  15. Hot interstellar gas and ionization of embedded clouds

    NASA Technical Reports Server (NTRS)

    Cheng, K.-P.; Bruhweiler, F.

    1990-01-01

    Researchers present detailed photoionization calculations for the instellar cloud in which the Sun is embedded. They consider the EUV radiation field with contribution from discrete stellar sources and from a thermal bremsstrahlung-radiative recombination spectrum emitted from the surrounding 10 to the 6th power k coronal substrate. They establish lower limits to the fractional ionization of hydrogen and helium of 0.17 and 0.29 respectively. The high He ionization fraction results primarily from very strong line emission below 500 A originating in the surrounding coronal substrate while the H ionization is dominated by the EUV radiation from the discrete stellar sources. The dual effects of thermal conduction and the EUV spectrum of the 10 to the 6th k plasma on ionization in the cloud skin are explored. The EUV radiation field and Auger ionization have insignificant effects on the resulting ionic column densities of Si IV, C IV, N V and O VI through the cloud skin. Calculations show that the abundances of these species are dominated by collisional ionization in the thermal conduction front. Because of a low charge exchange rate with hydrogen, the ionic column density ratios of N (CIII)/N (CII) and N (NII)/N (NI) are dominated by the EUV radiation field in the local interstellar medium. These ratios should be important diagnostics for the EUV radiation field and serve as surrogate indicators of the interstellar He and H ionization fraction respectively. Spacecraft such as Lyman which is designed to obtain high resolution spectral data down to the Lyman limit at 912 A could sample interstellar lines of these ions.

  16. The in-gas-jet laser ion source: Resonance ionization spectroscopy of radioactive atoms in supersonic gas jets

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Yu.; Ferrer, R.; Huyse, M.; Van den Bergh, P.; Van Duppen, P.

    2013-02-01

    New approaches to perform efficient and selective step-wise resonance ionization spectroscopy (RIS) of radioactive atoms in different types of supersonic gas jets are proposed. This novel application results in a major expansion of the in-gas laser ionization and spectroscopy (IGLIS) method developed at KU Leuven. Implementation of resonance ionization in the supersonic gas jet allows to increase the spectral resolution by one order of magnitude in comparison with the currently performed in-gas-cell ionization spectroscopy. Properties of supersonic beams, obtained from the de Laval-, the spike-, and the free jet nozzles that are important for the reduction of the spectral line broadening mechanisms in cold and low density environments are discussed. Requirements for the laser radiation and for the vacuum pumping system are also examined. Finally, first results of high-resolution spectroscopy in the supersonic free jet are presented for the 327.4 nm 3d104s 2S1/2→ 3d104p 2P1/2 transition in the stable 63Cu isotope using an amplified single mode laser radiation.

  17. Nonlinear optical response of multiply ionized noble-gas atoms

    NASA Astrophysics Data System (ADS)

    Tarazkar(1, 3), Maryam; Romanov(2, 3), Dmitri; Levis(1, 3), Robert

    2016-05-01

    Calculation of dynamic polarizabilities and hyperpolarizabilities of ionized species using ab initio methods presents computational and conceptual difficulties, as these ionized species often have open-shell electronic system. We use multi-configurational self-consistent field (MCSCF) method with extended basis sets for calculating dynamic polarizability and second-order hyperpolarizabilities of atomic noble gases and their multiply charged cations in non-resonant regime. The calculations were performed at wavelengths ranging from about 100 nm to the red of the first multi-photon resonance all the way toward the static regime. The results were benchmarked to those of CCSD calculations for ions of even-number charge. The second-order hyperpolarizability coefficients were found to decrease when the electrons are progressively removed from the system. At higher ionization states, these coefficients become less dispersive as a function of wavelength. The values and even the signs of the γ (2) coefficients were found to depend on the spin of the ionic quantum state. Thus, for Ne+3 and Ne+4, in low-spin states (2 Pu, and 1 Sg, respectively) the sign of γ (2) is positive, whereas in high-spin states (4 Su, and 3 Pg) the sign is negative. The calculated hyperpolarizabilities of multiply ionized atoms relate to experiments on very bright high-order harmonic generation in multiply ionized plasmas.

  18. A compact high resolution electrospray ionization ion mobility spectrometer.

    PubMed

    Reinecke, T; Kirk, A T; Ahrens, A; Raddatz, C-R; Thoben, C; Zimmermann, S

    2016-04-01

    Electrospray is a commonly used ionization method for the analysis of liquids. An electrospray is a dispersed nebular of charged droplets produced under the influence of a strong electrical field. Subsequently, ions are produced in a complex process initiated by evaporation of neutral solvent molecules from these droplets. We coupled an electrospray ionization source to our previously described high resolution ion mobility spectrometer with 75mm drift tube length and a drift voltage of 5kV. When using a tritium source for chemical gas phase ionization, a resolving power of R=100 was reported for this setup. We replaced the tritium source and the field switching shutter by an electrospray needle, a desolvation region with variable length and a three-grid shutter for injecting ions into the drift region. Preliminary measurements with tetraalkylammonium halides show that the current configuration with the electrospray ionization source maintains the resolving power of R=100. In this work, we present the characterization of our setup. One major advantage of our setup is that the desolvation region can be heated separately from the drift region so that the temperature in the drift region stays at room temperature even up to desolvation region temperatures of 100°C. We perform parametric studies for the investigation of the influence of temperature on solvent evaporation with different ratios of water and methanol in the solvent for different analyte substances. Furthermore, the setup is operated in negative mode and spectra of bentazon with different solvents are presented. PMID:26838374

  19. Aerodynamic Effects in Weakly Ionized Gas: Phenomenology and Applications

    SciTech Connect

    Popovic, S.; Vuskovic, L.

    2006-12-01

    Aerodynamic effects in ionized gases, often neglected phenomena, have been subject of a renewed interest in recent years. After a brief historical account, we discuss a selected number of effects and unresolved problems that appear to be relevant in both aeronautic and propulsion applications in subsonic, supersonic, and hypersonic flow. Interaction between acoustic shock waves and weakly ionized gas is manifested either as plasma-induced shock wave dispersion and acceleration or as shock-wave induced double electric layer in the plasma, followed by the localized increase of the average electron energy and density, as well as enhancement of optical emission. We describe the phenomenology of these effects and discuss several experiments that still do not have an adequate interpretation. Critical for application of aerodynamic effects is the energy deposition into the flow. We classify and discuss some proposed wall-free generation schemes with respect to the efficiency of energy deposition and overall generation of the aerodynamic body force.

  20. RESIDUAL-GAS-IONIZATION BEAM PROFILE MONITORS IN RHIC.

    SciTech Connect

    CONNOLLY, R.; MICHNOFF, R.; TEPIKIAN, S.

    2005-05-16

    Four ionization profile monitors (IPMs) in RHIC measure vertical and horizontal beam profiles in the two rings by measuring the distribution of electrons produced by beam ionization of residual gas. During the last three years both the collection accuracy and signal/noise ratio have been improved. An electron source is mounted across the beam pipe from the collector to monitor microchannel plate (MCP) aging and the signal electrons are gated to reduce MCP aging and to allow charge replenishment between single-turn measurements. Software changes permit simultaneous measurements of any number of individual bunches in the ring. This has been used to measure emittance growth rates on six bunches of varying intensities in a single store. Also the software supports FFT analysis of turn-by-turn profiles of a single bunch at injection to detect dipole and quadrupole oscillations.

  1. Residual-gas-ionization beam profile monitors in RHIC

    SciTech Connect

    Connolly, R.; Fite, J.; Jao, S.; Trabocchi, C.

    2010-05-02

    Four ionization profile monitors (IPMs) are in RHIC to measure vertical and horizontal beam profiles in the two rings. These work by measuring the distribution of electrons produced by beam ionization of residual gas. During the last two years both the collection accuracy and signal/noise ratio have been improved. An electron source is mounted across the beam pipe from the collector to monitor microchannel plate (MCP) aging and the signal electrons are gated to reduce MCP aging and to allow charge replenishment between single-turn measurements. Software changes permit simultaneous measurements of any number of individual bunches in the ring. This has been used to measure emittance growth rates on six bunches of varying intensities in a single store. Also the software supports FFT analysis of turn-by-turn profiles of a single bunch at injection to detect dipole and quadrupole oscillations.

  2. Approximate Thermodynamics State Relations in Partially Ionized Gas Mixtures

    SciTech Connect

    Ramshaw, J D

    2003-12-30

    In practical applications, the thermodynamic state relations of partially ionized gas mixtures are usually approximated in terms of the state relations of the pure partially ionized constituent gases or materials in isolation. Such approximations are ordinarily based on an artificial partitioning or separation of the mixture into its constituent materials, with material k regarded as being confined by itself within a compartment or subvolume with volume fraction {alpha}k and possessing a fraction {beta}k of the total internal energy of the mixture. In a mixture of N materials, the quantities {alpha}k and {beta}k constitute an additional 2N--2 independent variables. The most common procedure for determining these variables, and hence the state relations for the mixture, is to require that the subvolumes all have the same temperature and pressure. This intuitively reasonable procedure is easily shown to reproduce the correct thermal and caloric state equations for a mixture of neutral (non-ionized) ideal gases. Here we wish to point out that (a) this procedure leads to incorrect state equations for a mixture of partially ionized ideal gases, whereas (b) the alternative procedure of requiring that the subvolumes all have the same temperature and free electron density reproduces the correct thermal and caloric state equations for such a mixture. These results readily generalize to the case of partially degenerate and/or relativistic electrons, to a common approximation used to represent pressure ionization effects, and to two-temperature plasmas. This suggests that equating the subvolume electron number densities or chemical potentials instead of pressures is likely to provide a more accurate approximation even in nonideal plasma mixtures.

  3. Kinematics of the Diffuse Ionized Gas Disk of Andromeda

    NASA Astrophysics Data System (ADS)

    Thelen, Alexander; Howley, K.; Guhathakurta, P.; Dorman, C.; SPLASH Collaboration

    2012-01-01

    This research focuses on the flattened rotating diffuse ionized gas (DIG) disk of the Andromeda Galaxy (M31). For this we use spectra from 25 multislit masks obtained by the SPLASH collaboration using the DEIMOS spectrograph on the Keck-II 10-meter telescope. Each mask contains 200 slits covering the region around M32 (S of the center of M31), the major axis of M31, and the SE minor axis. DIG emission was serendipitously detected in the background sky of these slits. By creating a normalized "sky spectrum” to remove various other sources of emission (such as night sky lines) in the background of these slits, we have examined the rotation of the DIG disk using individual line-of-sight velocity measurements of Hα, [NII] and [SII] emission. his emission is probably the result of newly formed stars ionizing the gas in the disk. The measured IG rotation will be compared to the rotation of M31's stellar disk and HI gas disk, as well as models of an infinitely thin rotating disk, to better understand the relationship between the components of the galactic disk and its differential rotation. We wish to acknowledge the NSF for funding on this project.

  4. Ionization Gas Sensor using Aligned Multiwalled Carbon Nanotubes Array

    SciTech Connect

    Kermany, A. R.; Mohamed, N. M.; Singh, B. S. M.

    2011-05-25

    The challenge with current conventional gas sensors which are operating using semiconducting oxides is their size. After the introduction of nanotechnology and in order to reduce the dimension and consequently the power consumption and cost, new materials such as carbon nanotubes (CNTs) are being introduced. From previous works and characterization results, it was proven that the CNTs based gas sensor has better sensitivity, selectivity and faster response time in compared with semiconducting oxides based gas sensors. As in this work, a fabrication and successful testing of an ionization-based gas sensor using aligned Multiwalled CNTs (MWCNTs) as sensing element is discussed, in which MWCNTs array and Al film are used as anode and cathode plates respectively with electrode separation ranging from 80 {mu}m to 140 {mu}m. Aligned MWCNTs array was incorporated into a sensor configuration in the gas chamber for testing of gases such as argon, air, and mixed gas of 2%H{sub 2} in air. Obtained results show that among the three gases, argon has the lowest breakdown voltage whilst air has the highest value and the breakdown voltage was found to decrease as the electrode spacing was reduced from 140 {mu}m to 80 {mu}m for all three gases.

  5. Diffuse Ionized Gas in the Dwarf Galaxy DDO 53

    NASA Astrophysics Data System (ADS)

    Flores-Fajardo, N.; Hidalgo-Gámez, A. M.

    We study the diffuse ionized gas (DIG) in the M81 group dwarf irregular galaxy DDO 53. We use long-slit spectroscopy in order to determine the most interesting line ratios. We compare these ratios with classical and leaking photoionization, shocks and turbulent layer models. As other dwarf irregular galaxies, the spectral characteristics are very diferent to those of the DIG in spiral galaxies: the excitation is higher and the [SII/Hα] much lower. A combination of leakage photoionization models plus shocks will be able to explain these characteristics.

  6. Neutral Gas and Low-Redshift Starbursts: From Infall to Ionization

    NASA Astrophysics Data System (ADS)

    Jaskot, Anne; Oey, M. S.; Salzer, J. J.; Van Sistine, A.; Haynes, M. P.

    2014-01-01

    The interplay of gas inflows, star formation, and feedback drives galaxy evolution, and starburst galaxies provide important laboratories for probing these processes at their most extreme. With two samples of low-redshift starburst galaxies, we examine the conversion of neutral gas into stars and the subsequent effects of stellar feedback on the neutral interstellar medium (ISM). The ALFALFA Hα survey represents a complete, volume-limited sample of HI-selected galaxies with 21 cm spectra and Hα and R-band imaging. By contrasting the starburst galaxies with the rest of the gas-rich galaxy population, we investigate the roles of galaxy morphology, HI kinematics, and the atomic gas supply in triggering extreme levels of star formation. Both an elevated HI gas supply and an external disturbance are necessary to drive the starbursts. While neutral gas may fuel a starburst, it may also increase starbursts' optical depths and hinder the transport of ionizing radiation. In contrast to the expectations for high-redshift star-forming galaxies, neutral gas appears to effectively bar the escape of ionizing radiation in most low-redshift starbursts. To evaluate the impact of radiative feedback in extreme starbursts, we analyze optical spectra of the Green Pea galaxies, a low-redshift sample selected by their intense [O III] λ5007 emission and compact sizes. We use nebular photoionization and stellar population models to constrain the Peas' burst ages, ionizing sources, and optical depths and find that the Peas are likely optically thin to Lyman continuum (LyC) radiation. These young starbursts still generate substantial ionizing radiation, while recent supernovae may have carved holes in the ISM that enhance LyC photon escape into the intergalactic medium. While the ALFALFA survey demonstrates the role of external processes in triggering starbursts, the Green Peas show that starbursts' radiation can escape to affect their external environment.

  7. Diffuse Ionized Gas inside the Dwarf Irregular Galaxy NGC 6822

    NASA Astrophysics Data System (ADS)

    Hidalgo-Gámez, A. M.; Peimbert, A.

    2007-05-01

    We have studied the differences between the diffuse ionized gas (DIG) and the H II regions along a slit position in the local dwarf irregular galaxy NGC 6822. The slit position passes through the two most prominent H II regions: Hubble V and Hubble X. Important differences have been found in the excitation, ionization, and [N II] λ6584/Hα and [S II] λ6717/Hα line ratios between the DIG and the H II locations. Moreover, the values of all the line ratios are not similar to those in the DIG locations of spiral galaxies but are very similar to the values in other irregular galaxies, such as IC 10. We also determined the rate of recombination using the He I λ5875 line. Finally, we obtained a picture of the ionization sources of the DIG. We consider that the leakage of photons from the H II regions might explain most of the line ratios, except [N II]/Hα, which might be explained by turbulence. Based on observations collected at the European Southern Observatory, Chile, proposal 69.C-0203(A).

  8. Development of an ionization-type gas density monitor

    NASA Astrophysics Data System (ADS)

    Saaski, E. W.

    1980-12-01

    A battery operated electronic gas density monitor was developed for SF6 service in gas insulated substation equipment that is based on principles similar to ionization type fire alarms. The monitor has a resolution of 0.1 psia at 68 F and exhibits a linearity of from + or - 0.15 to + or - 0.6 psia at 68 F over the pressure range 30 to 75 psia, depending on ion chamber characteristics and operating voltage. A prototype unit exhibited a deviation from ideality of about 0.01% per degree Fahrenheit over the temperature range -30 F to 105 F and was found insensitive to water vapor in SF6 at levels in excess of 1000 ppM.

  9. IONIZED GAS IN THE FIRST 10 kpc OF THE INTERSTELLAR GALACTIC HALO: METAL ION FRACTIONS

    SciTech Connect

    Howk, J. Christopher; Consiglio, S. Michelle E-mail: smconsiglio@ucla.edu

    2012-11-10

    We present direct measures of the ionization fractions of several sulfur ions in the Galactic warm ionized medium (WIM). We obtained high-resolution ultraviolet absorption-line spectroscopy of post-asymptotic giant branch stars in the globular clusters Messier 3 [(l, b) = (42.{sup 0}2, +78.{sup 0}7), d = 10.2 kpc, and z = 10.0 kpc] and Messier 5 [(l, b) = (3.{sup 0}9, +46.{sup 0}8), d = 7.5 kpc, and z = +5.3 kpc] with the Hubble Space Telescope and Far Ultraviolet Spectroscopic Explorer to measure, or place limits on, the column densities of S I, S II, S III, S IV, S VI, and H I. These clusters also house millisecond pulsars, whose dispersion measures give an electron column density from which we infer the H II column in these directions. We find fractions of S{sup +2} in the WIM for the M 3 and M 5 sight lines x(S{sup +2}) {identical_to} N(S{sup +2})/N(S) = 0.33 {+-} 0.07 and 0.47 {+-} 0.09, respectively, with variations perhaps related to location. With negligible quantities of the higher ionization states, we conclude that S{sup +} and S{sup +2} account for all of the S in the WIM. We extend the methodology to study the ion fractions in the warm and hot ionized gas of the Milky Way, including the high ions Si{sup +3}, C{sup +3}, N{sup +4}, and O{sup +5}. The vast majority of the Galactic ionized gas is warm (T {approx} 10{sup 4} K) and photoionized (the WIM) or very hot (T > 4 Multiplication-Sign 10{sup 5} K) and collisionally ionized. The common tracer of ionized gas beyond the Milky Way, O{sup +5}, traces <1% of the total ionized gas mass of the Milky Way.

  10. The properties of spatial resolved ionized gas uncovered by CALIFA

    NASA Astrophysics Data System (ADS)

    Sanchez, Sebastian

    2015-08-01

    We present here the last results we obtained on the spatial resolved analysis of the the stellar populations and ionized gas of disk-dominated galaxies based on CALIFA data. CALIFA is an ongoing IFS survey of galaxies in the Local Univese (0.005ionized gas identifying the main properties of the HII-regions within the FoV. Both analyisis produce coherent analysis indicating that disk-galaxies growth inside out, with a chemical enrichment dominated by local processes, and limited effects of radial mixing or global outflows.

  11. Photoionized Mixing Layer Models of the Diffuse Ionized Gas

    NASA Astrophysics Data System (ADS)

    Binette, Luc; Flores-Fajardo, Nahiely; Raga, Alejandro C.; Drissen, Laurent; Morisset, Christophe

    2009-04-01

    It is generally believed that O stars, confined near the galactic midplane, are somehow able to photoionize a significant fraction of what is termed the "diffuse ionized gas" (DIG) of spiral galaxies, which can extend up to 1-2 kpc above the galactic midplane. The heating of the DIG remains poorly understood, however, as simple photoionization models do not reproduce the observed line ratio correlations well or the DIG temperature. We present turbulent mixing layer (TML) models in which warm photoionized condensations are immersed in a hot supersonic wind. Turbulent dissipation and mixing generate an intermediate region where the gas is accelerated, heated, and mixed. The emission spectrum of such layers is compared with observations of Rand of the DIG in the edge-on spiral NGC 891. We generate two sequence of models that fit the line ratio correlations between [S II]/Hα, [O I]/Hα, [N II]/[S II], and [O III]/Hβ reasonably well. In one sequence of models, the hot wind velocity increases, while in the other, the ionization parameter and layer opacity increase. Despite the success of the mixing layer models, the overall efficiency in reprocessing the stellar UV is much too low, much less than 1%, which compels us to reject the TML model in its present form.

  12. A Novel Method for Profiling and Quantifying Short- and Medium-Chain Chlorinated Paraffins in Environmental Samples Using Comprehensive Two-Dimensional Gas Chromatography-Electron Capture Negative Ionization High-Resolution Time-of-Flight Mass Spectrometry.

    PubMed

    Xia, Dan; Gao, Lirong; Zheng, Minghui; Tian, Qichang; Huang, Huiting; Qiao, Lin

    2016-07-19

    Chlorinated paraffins (CPs) are complex technical mixtures containing thousands of isomers. Analyzing CPs in environmental matrices is extremely challenging. CPs have broad, unresolved profiles when analyzed by one-dimensional gas chromatography (GC). Comprehensive two-dimensional GC (GC×GC) can separate CPs with a high degree of orthogonality. A novel method for simultaneously profiling and quantifying short- and medium-chain CPs, using GC×GC coupled with electron capture negative ionization high-resolution time-of-flight mass spectrometry, was developed. The method allowed 48 CP formula congener groups to be analyzed highly selectively in one injection through accurate mass measurements of the [M - Cl](-) ions in full scan mode. The correlation coefficients (R(2)) for the linear calibration curves for different chlorine contents were 0.982 for short-chain CPs and 0.945 for medium-chain CPs. The method was successfully used to determine CPs in sediment and fish samples. By using this method, with enhanced chromatographic separation and high mass resolution, interferences between CP congeners and other organohalogen compounds, such as toxaphene, are minimized. New compounds, with the formulas C9H14Cl6 and C9H13Cl7, were found in sediment and biological samples for the first time. The method was shown to be a powerful tool for the analysis of CPs in environmental samples. PMID:27183176

  13. Start-phase ionization dynamics in the laser plasma at low gas target densities

    NASA Astrophysics Data System (ADS)

    Belik, V. P.; Demidov, R. A.; Kalmykov, S. G.; Mozharov, A. M.; Petrenko, M. V.; Sasin, M. E.

    2013-12-01

    In Xe laser-produced-plasma sources of short-wave radiation, the laser-energy-to-EUV conversion efficiency (CE) proves substantially less than theoretical expectations. In the present work, a calculated estimate has been made which indicates that a long period of the primary ionization, lasting up to a moment when high-Z ions appear to emit short-wave photons, can be one of main causes for this. During that period the plasma remains low-ionized and absorbs weakly the laser energy. The estimate above has been experimentally confirmed with spectroscopic data and those on the effective ion charge derived from measured absorption of the laser radiation in the plasma. A preionization of the gas target with an ultraviolet (UV) excimer laser pulse is proposed as a method to accelerate the ionization process and consequently, to enhance CE.

  14. Ionization dynamics in the laser plasma in a low pressure gas target

    NASA Astrophysics Data System (ADS)

    Demidov, R. A.; Kalmykov, S. G.; Mozharov, A. M.; Petrenko, M. V.; Sasin, M. E.

    2012-11-01

    In Xe-laser-plasma short-wave-radiation sources, the laser-energy-to-EUV conversion efficiency (CE) turns out to be substantially lower than theoretical expectations. An estimation made in the present work is evidence of what a long period of the primary ionization, lasting up to a moment when high- Z ions appear to emit short-wave photons, can be considered as a main cause for the low CE values. During that period the plasma remains low-ionized and absorbs weakly the laser energy. Data deduced from laser light absorption measurements confirm the estimation above. A preionization of the gas target with the UV excimer laser pulse is proposed as a method to accelerate the ionization process.

  15. In-gas-cell laser ionization studies of plutonium isotopes at IGISOL

    NASA Astrophysics Data System (ADS)

    Pohjalainen, I.; Moore, I. D.; Kron, T.; Raeder, S.; Sonnenschein, V.; Tomita, H.; Trautmann, N.; Voss, A.; Wendt, K.

    2016-06-01

    In-gas-cell resonance laser ionization has been performed on long-lived isotopes of Pu at the IGISOL facility, Jyväskylä. This initiates a new programme of research towards high-resolution optical spectroscopy of heavy actinide elements which can be produced in sufficient quantities at research reactors and transported to facilities elsewhere. In this work a new gas cell has been constructed for fast extraction of laser-ionized elements. Samples of 238-240,242Pu and 244Pu have been evaporated from Ta filaments, laser ionized, mass separated and delivered to the collinear laser spectroscopy station. Here we report on the performance of the gas cell through studies of the mass spectra obtained in helium and argon, before and after the radiofrequency quadrupole cooler-buncher. This provides valuable insight into the gas phase chemistry exhibited by Pu, which has been additionally supported by measurements of ion time profiles. The resulting monoatomic yields are sufficient for collinear laser spectroscopy. A gamma-ray spectroscopic analysis of the Pu samples shows a good agreement with the assay provided by the Mainz Nuclear Chemistry department.

  16. INTEGRAL Field Spectroscopy of the Extended Ionized Gas in Arp 220

    NASA Astrophysics Data System (ADS)

    Colina, Luis; Arribas, Santiago; Clements, David

    2004-02-01

    Integral field optical spectroscopy with the INTEGRAL system has been used to investigate for the first time the two-dimensional kinematic and ionization properties of the extended, warm, ionized gas in Arp 220 over an area of 75.0"×40.0" (i.e., 28×15 kpc). The structure of the ionized gas is divided into well-identified regions associated with the X-ray-emitting plumes and extended lobes, previously studied in detail by McDowell and collaborators. The overall ionization state of the warm gas in the plumes and lobes, as traced by the [N II]/Hα line, is consistent with high-velocity shocks expanding in a neutral ambient medium. Changes in the ionization state of the gas along the major axis of the plumes are detected, in particular in the outer regions of the northwestern plume, where the transition between the main stellar body of the galaxy and a broad, low surface brightness tidal tail is located. If the plumes are produced by a starburst-driven galactic wind, the efficiency in the conversion of mechanical to radiation energy is a factor of at least 10 smaller than in galactic winds developed in edge-on spiral galaxies with well-defined rotation and axis of outflow. The kinematic properties of the lobes, with an average velocity of +8 km s-1 (east lobe) and -79 km s-1 (west lobe), are to a first order in agreement with the predictions of the merger scenario, according to which the lobes are tidally induced gas condensations produced during the merging process. The largest velocity gradients of 50 km s-1 kpc-1 and velocity deviations of up to +280 and -320 km s-1 from the systemic velocity are associated not with the plumes but with the outer stellar envelope and broad tidal tails at distances of up to 7.5 kpc, indicating that the large-scale kinematics of the extended ionized gas in Arp 220 is most likely dominated by the tidally induced motions, and not by galactic winds associated with nuclear starbursts. Based on observations with the William Herschel

  17. Ionized Gas Observation Toward a Nearby Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Nakanishi, K.; Sorai, K.; Nakai, N.; Kuno, N.; Matsubayashi, K.; Sugai, H.; Takano, S.; Kohno, K.; Nakajima, T.

    2015-12-01

    ALMA observation of a hydrogen recombination emission line toward NGC 253 was performed. NGC 253 is a prototypical starburst galaxy in the nearby universe. The recombination line was clearly detected in the central region of NGC 253 with a spatial resolution of few dozens of parsecs at the galaxy. The line and thermal free-free continuum emission show quite similar spatial distribution, and this fact shows the recombination line certainly traces ionized gas formed by young massive stars. Estimated electron temperature (6500-9000K) from the data are similar to those of Galactic HII regions. The recombination line has large velocity width at the center of the galaxy, and the velocity structure is quite different from that of molecular emission line.

  18. Chemical Abundances and Properties of the Ionized Gas in NGC 1705

    NASA Astrophysics Data System (ADS)

    Annibali, F.; Tosi, M.; Pasquali, A.; Aloisi, A.; Mignoli, M.; Romano, D.

    2015-11-01

    We obtained [O iii] narrow-band imaging and multi-slit MXU spectroscopy of the blue compact dwarf (BCD) galaxy NGC 1705 with FORS2@VLT to derive chemical abundances of planetary nebulae and H ii regions and, more in general, to characterize the properties of the ionized gas. The auroral [O iii]λ 4363 line was detected in all but 1 of the 11 analyzed regions, allowing for a direct estimate of their electron temperature. The only object for which the [O iii]λ 4363 line was not detected is a possible low-ionization PN, the only one detected in our data. For all the other regions, we derived the abundances of nitrogen, oxygen, neon, sulfur, and argon out to ˜1 kpc from the galaxy center. We detect for the first time in NGC 1705 a negative radial gradient in the oxygen metallicity of -0.24+/- 0.08 dex kpc-1. The element abundances are all consistent with values reported in the literature for other samples of dwarf irregular and BCD galaxies. However, the average (central) oxygen abundance, 12+{log}({{O}}/{{H}})=7.96+/- 0.04, is ˜0.26 dex lower than previous literature estimates for NGC 1705 based on the [O iii]λ 4363 line. From classical emission line diagnostic diagrams, we exclude a major contribution from shock excitation. On the other hand, the radial behavior of the emission line ratios is consistent with the progressive dilution of radiation with increasing distance from the center of NGC 1705. This suggests that the strongest starburst located within the central ˜150 pc is responsible for the ionization of the gas out to at least ˜1 kpc. The gradual dilution of the radiation with increasing distance from the center reflects the gradual and continuous transition from the highly ionized H ii regions in the proximity of the major starburst into the diffuse ionized gas.

  19. Astronomical redshifts of highly ionized regions

    NASA Astrophysics Data System (ADS)

    Hansen, Peter M.

    2014-07-01

    Astronomical or cosmological redshifts are an observable property of extragalactic objects and have historically been wholly attributed to the recessional velocity of that object. The question of other, or intrinsic, components of the redshift has been highly controversial since it was first proposed. This paper investigates one theoretical source of intrinsic redshift that has been identified. The highly ionized regions of Active Galactic Nuclei (AGN) and Quasi-Stellar Objects (QSO) are, by definition, plasmas. All plasmas have electromagnetic scattering characteristics that could contribute to the observed redshift. To investigate this possibility, one region of a generalized AGN was selected, the so called Broad Line Region (BLR). Even though unresolvable with current instrumentation, physical estimates of this region have been published for years in the astronomical literature. These data, selected and then averaged, are used to construct an overall model that is consistent with the published data to within an order of magnitude. The model is then subjected to a theoretical scattering investigation. The results suggest that intrinsic redshifts, derivable from the characteristics of the ambient plasma, may indeed contribute to the overall observed redshift of these objects.

  20. Non-equilibirum ionization and cooling of metal-enriched gas in the presence of a photoionization background

    NASA Astrophysics Data System (ADS)

    Oppenheimer, Benjamin D.; Schaye, Joop

    2013-09-01

    and non-equilibrium scenarios, and both with and without an EGB. Cooling efficiencies and diagnostics of the physical state of diffuse gas can become highly inaccurate if ionization equilibrium is assumed or if the existence of the ionizing background is ignored.

  1. High Velocity Gas Gun

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A video tape related to orbital debris research is presented. The video tape covers the process of loading a High Velocity Gas Gun and firing it into a mounted metal plate. The process is then repeated in slow motion.

  2. Ionizing potential waves and high-voltage breakdown streamers.

    NASA Technical Reports Server (NTRS)

    Albright, N. W.; Tidman, D. A.

    1972-01-01

    The structure of ionizing potential waves driven by a strong electric field in a dense gas is discussed. Negative breakdown waves are found to propagate with a velocity proportional to the electric field normal to the wavefront. This causes a curved ionizing potential wavefront to focus down into a filamentary structure, and may provide the reason why breakdown in dense gases propagates in the form of a narrow leader streamer instead of a broad wavefront.

  3. Background studies in gas ionizing x ray detectors

    NASA Technical Reports Server (NTRS)

    Eldridge, Hudson B.

    1989-01-01

    The background response of a gas ionizing proportional x ray detector is estimated by solving the one dimensional photon transport equation for two regions using Monte Carlo techniques. The solution was effected using the SSL VAX 780 and the CRAY XMP computers at Marshall Space Flight Center. The isotropic photon energy spectrum encompassing the range from 1 to 1000 KeV incident onto the first region, the shield, is taken so as to represent the measured spectrum at an altitude of 3 mb over Palastine, Texas. The differential energy spectrum deposited in the gas region, xenon, over the range of 0 to 100 KeV is written to an output file. In addition, the photon flux emerging from the shield region, tin, over the range of 1 to 1000 KeV is also tabulated and written to a separate file. Published tabular cross sections for photoelectric, elastic and inelastic Compton scattering as well as the total absorption coefficient are used. Histories of each incident photon as well as secondary photons from Compton and photoelectric interactions are followed until the photon either is absorbed or exits from the regions under consideration. The effect of shielding thickness upon the energy spectrum deposited in the xenon region for this background spectrum incident upon the tin shield was studied.

  4. The Impact of Diffuse Ionized Gas on Emission-line Ratios and Gas Metallicity Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Yan, Renbin; MaNGA Team

    2016-01-01

    Diffuse Ionized Gas (DIG) is prevalent in star-forming galaxies. Using a sample of galaxies observed by MaNGA, we demonstrate how DIG in star-forming galaxies impact the measurements of emission line ratios, hence the gas-phase metallicity measurements and the interpretation of diagnostic diagrams. We demonstrate that emission line surface brightness (SB) is a reasonably good proxy to separate HII regions from regions dominated by diffuse ionized gas. For spatially-adjacent regions or regions at the same radius, many line ratios change systematically with emission line surface brightness, reflecting a gradual increase of dominance by DIG towards low SB. DIG could significantly bias the measurement of gas metallicity and metallicity gradient. Because DIG tend to have a higher temperature than HII regions, at fixed metallicity DIG displays lower [NII]/[OII] ratios. DIG also show lower [OIII]/[OII] ratios than HII regions, due to extended partially-ionized regions that enhance all low-ionization lines ([NII], [SII], [OII], [OI]). The contamination by DIG is responsible for a substantial portion of the scatter in metallicity measurements. At different surface brightness, line ratios and line ratio gradients can differ systematically. As DIG fraction could change with radius, it can affect the metallicity gradient measurements in systematic ways. The three commonly used strong-line metallicity indicators, R23, [NII]/[OII], O3N2, are all affected in different ways. To make robust metallicity gradient measurements, one has to properly isolate HII regions and correct for DIG contamination. In line ratio diagnostic diagrams, contamination by DIG moves HII regions towards composite or LINER-like regions.

  5. High-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry and gas chromatography-flame ionization detection characterization of Delta5-polyenoic fatty acids in triacylglycerols from conifer seed oils.

    PubMed

    Lísa, Miroslav; Holcapek, Michal; Rezanka, Tomás; Kabátová, Nadezda

    2007-03-30

    Edible conifer seeds can serve as a source of triacylglycerols (TGs) with unusual Delta5 unsaturated polymethylene interrupted fatty acids (UPIFAs), such as cis-5,9-octadecadienoic (taxoleic), cis-5,9,12-octadecatrienoic (pinolenic), cis-5,11-eicosadienoic (keteleeronic) and cis-5,11,14-eicosatrienoic acids (sciadonic). Conifer seed oils from European Larch (Larix decidua), Norway Spruce (Picea abies) and European Silver Fir (Abies alba) have been analyzed by non-aqueous reversed-phase high-performance liquid chromatography (NARP-HPLC) with atmospheric pressure chemical ionisation (APCI)-MS detection. The influence of different positions of double bonds in Delta5-UPIFAs on the retention and fragmentation behavior is described and used for the successful identification of TGs in each oil. TGs containing Delta5-UPIFAs have a higher retention in comparison with common TGs found in plant oils with single methylene interrupted Delta6(9)-FAs and also significantly changed relative abundances of fragment ions in APCI mass spectra. Results obtained from HPLC/MS analyses are supported by validated GC/FID analyses of fatty acid methyl esters after the transesterification. The total content of Delta5-UPIFAs is about 32% for European Larch, 27% for Norway Spruce and 20% for European Silver Fir. In total, 20 FAs with acyl chain lengths from 16 to 24 carbon atoms and from 0 to 3 double bonds have been identified in 64 triacylglycerols from 3 conifer seed oils. PMID:17307191

  6. HIGH PRESSURE GAS REGULATOR

    DOEpatents

    Ramage, R.W.

    1962-05-01

    A gas regulator operating on the piston and feedback principle is described. The device is particularly suitable for the delicate regulation of high pressure, i.e., 10,000 psi and above, gas sources, as well as being perfectly adaptable for use on gas supplies as low as 50 psi. The piston is adjustably connected to a needle valve and the movement of the piston regulates the flow of gas from the needle valve. The gas output is obtained from the needle valve. Output pressure is sampled by a piston feedback means which, in turn, regulates the movement of the main piston. When the output is other than the desired value, the feedback system initiates movement of the main piston to allow the output pressure to be corrected or to remain constant. (AEC)

  7. Study of the surface ionization detector for gas chromatography.

    PubMed

    Li, Weiwei; Wu, Dapeng; Chen, Shiheng; Peng, Hong; Guan, Yafeng

    2011-09-23

    The structure of the surface ionization detector (SID) and the operation parameters of GC-SID were investigated to reduce peak tailing and to enhance sensitivity. The performances of the GC-SID, including its repeatability, linearity, sensitivity, selectivity, and tolerance towards water vapor, were evaluated systematically. Compared with nitrogen-phosphorus detector (NPD), the SID was able to detect fg level triethylamine, and selectively respond to alkylamines, some anilines, and some nitrogen heterocyclic compounds. Among alkylamines, the SID sensitivity to diisobutylamine was rather small. Even so, it was also still 10 times higher than that on NPD. The SID selectivity, defined as the sensitivity ratio between triethylamine and various tested non-nitrogen compounds, was higher than 10(6). It was found that the SID is highly tolerant towards water vapor, allowing direct injection of water sample. Finally, the GC-SID was applied to directly measure trace amines in headspace gases of rotted meat and trace simazine in tap water. The SID sensitivity to simazine was proven to be 5 times higher than that on flame ionization detector (FID). This study suggests that the SID is a promising GC detector. PMID:21839459

  8. High efficiency ionizer using a hollow cathode discharge plasma

    SciTech Connect

    Alessi, J.G.; Prelec, K.

    1984-01-01

    A proposal for an ionizer using a hollow cathode discharge plasma is described. Ionization is via the very high current density electron beam component in the plasma, as well as from charge exchange with plasma ions. Extraction of a He/sup +/ current corresponding to approximately 50% of the incoming atomic beam flux should be possible.

  9. Plasma channel created by ionization of gas by a surface wave

    SciTech Connect

    Konovalov, V. N.; Kuz’min, G. P.; Minaev, I. M. Rukhadze, A. A.; Tikhonevich, O. V.

    2015-09-15

    Conditions for gas ionization in the field of a slow surface wave excited by a microwave source are considered. The gas ionization rate and the plasma density distribution over the radius of the discharge tube were studied by the optical method. The experiments were conducted in a dielectric tube with a radius much smaller than the tube length, the gas pressure being ∼1–3 Torr. It is shown that the stationary distribution of the plasma density is determined by diffusion processes.

  10. Ionized gas velocity dispersion in nearby dwarf galaxies: looking at supersonic turbulent motions

    NASA Astrophysics Data System (ADS)

    Moiseev, Alexei V.; Lozinskaya, Tatiana A.

    2012-06-01

    We present the results of an ionized gas turbulent motions study in several nearby dwarf galaxies using a scanning Fabry-Perot interferometer with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS). Combining the ‘intensity-velocity dispersion’ diagrams (?) with two-dimensional maps of radial velocity dispersion, we found a number of common patterns pointing to the relation between the value of chaotic ionized gas motions and processes of current star formation. In five out of the seven analysed galaxies, we identified expanding shells of ionized gas with diameters of 80-350 pc and kinematic ages of 1-4 Myr. We also demonstrate that the ? diagrams may be useful for the search of supernova remnants, other small expanding shells or unique stars in nearby galaxies. As an example, a candidate luminous blue variable (LBV) was found in UGC 8508. We propose some additions to the interpretation, previously used by Muñoz-Tuñón et al. to explain the ? diagrams for giant star formation regions. In the case of dwarf galaxies, a major part of the regions with high velocity dispersion belongs to the diffuse low surface brightness emission, surrounding the star-forming regions. We attribute this to the presence of perturbed low-density gas with high values of turbulent velocities around the giant H II regions. Based on observations obtained with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. The observations were carried out with the financial support of the Ministry of Education and Science of Russian Federation (contracts no. 16.518.11.7073 and 16.552.11.7028).

  11. Ionized gas pressure correlates with star formation intensity in nearby starbursts

    NASA Astrophysics Data System (ADS)

    Jiang, Tianxing; Malhotra, Sangeeta; Yang, Huan

    2016-06-01

    We estimate the electron density of the ionized gas and thus the thermal pressure in HII regions; and compare that to the SFR (star formation rate) surface density for a combined sample of about 40 green peas and Lyman Break Analogs at z < 0.30. The electron density of the ionized gas is measured from sulfur line ratio ([SII] 6716 / 6731). We find that the SFR surface density is correlated with the electron density and the thermal pressure in HII regions for the star-forming galaxies with SFR surface density above a certain threshold. This work shows quantitatively the correlation between SFR surface density and electron density and that between SFR surface density and the thermal pressure in HII regions for the nearby starburst galaxies. This is consistent with theoretical models of disks (e.g. Kim et al. (2011) if we assume that the thermal pressure in HII regions is comparable to the total diffuse gas pressure at the midplane of the diffuse neutral gas. It is also in agreement with the results from star-forming galaxies at z ~ 2.5. We might infer that the starburst galaxies at low-redshift (z < 0.3) share similar physical properties to the galaxies at high redshift (z ~ 2.5).

  12. Analysis of the diffuse ionized gas database: DIGEDA

    NASA Astrophysics Data System (ADS)

    Flores-Fajardo, N.; Morisset, C.; Binette, L.

    2009-10-01

    Studies of the Diffuse Ionized Gas (DIG) have progressed without providing so far any strict criterion to distinguish DIGs from H II regions. In this work, we compile the emission line measurements of 29 galaxies that are available in the scientific literature, thereby setting up the first DIG database (DIGEDA). Making use of this database, we proceed to analyze the global properties of the DIG using the [NII]λ6583/Hα, [O I]λ6300/Hα, [O III]λ5007/Hβ and [SII]λ6716/Hα lines ratios, including the H α emission measure. This analysis leads us to conclude that the [N II]/Hα ratio provides an objective criterion for distinguishing whether an emission region is a DIG or an H II region, while the EM(Hα) is a useful quantity only when the galaxies are considered individually. Finally, we find that the emission regions of Irr galaxies classified as DIG in the literature appear in fact to be much more similar to H II regions than to the DIGs of spiral galaxies.

  13. Diffuse Ionized Gas in Irregular Galaxies. I. GR 8 and ESO 245-G05

    NASA Astrophysics Data System (ADS)

    Hidalgo-Gámez, A. M.

    2006-04-01

    We have studied the spectral characteristics of the diffuse ionized gas (DIG) in two irregular galaxies with low metallicities and intermediate star formation rates: ESO 245-G05 and GR 8. The [O III]/Hβ ratio in these galaxies is higher than in the DIG of spiral galaxies but not as high as in other irregular galaxies previously studied, such as IC 10 and NGC 6822. The [N II]/Hα and [S II]/Hα ratios have very small values, indicating the absence of shocks as the ionization source for this gas. This ionization can be explained in both galaxies with photon leakage from the H II regions as the only source. The percentage of photons that have escaped from the H II regions is small in ESO 245-G05, only 35%, but varies from 35% up to 60% in GR 8. We also investigated whether the differences found between spiral and irregular galaxies in the [O III]/Hβ and the [N II]/Hα ratios are due to differences in the metal content between these types of galaxies. Although the number of galaxies studied is not very large, it can be concluded that the [O III]/Hβ ratio is not related to the oxygen content, while the situation is more ambiguous for the [N II]/Hα ratio.

  14. Spatially resolved integral field spectroscopy of the ionized gas in IZw18

    NASA Astrophysics Data System (ADS)

    Kehrig, C.; Vílchez, J. M.; Pérez-Montero, E.; Iglesias-Páramo, J.; Hernández-Fernández, J. D.; Duarte Puertas, S.; Brinchmann, J.; Durret, F.; Kunth, D.

    2016-07-01

    We present a detailed 2D study of the ionized ionized interstellar medium (ISM) of IZw18 using new Potsdam Multi-Aperture Spectrophotometer-integral field unit (PMAS-IFU) optical observations. IZw18 is a high-ionization galaxy which is among the most metal-poor starbursts in the local Universe. This makes IZw18 a local benchmark for understanding the properties most closely resembling those prevailing at distant starbursts. Our IFU aperture (˜1.4 × 1.4 kpc2) samples the entire IZw18 main body and an extended region of its ionized gas. Maps of relevant emission lines and emission line ratios show that higher-excitation gas is preferentially located close to the north-west knot and thereabouts. We detect a Wolf-Rayet feature near the north-west knot. We derive spatially resolved and integrated physical-chemical properties for the ionized gas in IZw18. We find no dependence between the metallicity indicator R23 and the ionization parameter (as traced by [O III]/[O II]) across IZw18. Over ˜0.30 kpc2, using the [O III] λ4363 line, we compute Te[O III] values (˜15 000-25 000 K), and oxygen abundances are derived from the direct determinations of Te[O III]. More than 70 per cent of the higher-Te[O III] (≳22 000 K) spaxels are He IIλ4686-emitting spaxels too. From a statistical analysis, we study the presence of variations in the ISM physical-chemical properties. A galaxy-wide homogeneity, across hundreds of parsecs, is seen in O/H. Based on spaxel-by-spaxel measurements, the error-weighted mean of 12 + log(O/H) = 7.11 ± 0.01 is taken as the representative O/H for IZw18. Aperture effects on the derivation of O/H are discussed. Using our IFU data we obtain, for the first time, the IZw18 integrated spectrum.

  15. Alfvén ionization in an MHD-gas interactions code

    NASA Astrophysics Data System (ADS)

    Wilson, A. D.; Diver, D. A.

    2016-07-01

    A numerical model of partially ionized plasmas is developed in order to capture their evolving ionization fractions as a result of Alfvén ionization (AI). The mechanism of, and the parameter regime necessary for, AI is discussed and an expression for the AI rate based on fluid parameters, from a gas-MHD model, is derived. This AI term is added to an existing MHD-gas interactions' code, and the result is a linear, 2D, two-fluid model that includes momentum transfer between charged and neutral species as well as an ionization rate that depends on the velocity fields of both fluids. The dynamics of waves propagating through such a partially ionized plasma are investigated, and it is found that AI has a significant influence on the fluid dynamics as well as both the local and global ionization fraction.

  16. A reservoir of ionized gas in the galactic halo to sustain star formation in the Milky Way.

    PubMed

    Lehner, Nicolas; Howk, J Christopher

    2011-11-18

    Without a source of new gas, our Galaxy would exhaust its supply of gas through the formation of stars. Ionized gas clouds observed at high velocity may be a reservoir of such gas, but their distances are key for placing them in the galactic halo and unraveling their role. We have used the Hubble Space Telescope to blindly search for ionized high-velocity clouds (iHVCs) in the foreground of galactic stars. We show that iHVCs with 90 ≤ |v(LSR)| ≲ 170 kilometers per second (where v(LSR) is the velocity in the local standard of rest frame) are within one galactic radius of the Sun and have enough mass to maintain star formation, whereas iHVCs with |v(LSR)| ≳ 170 kilometers per second are at larger distances. These may be the next wave of infalling material. PMID:21868626

  17. Theoretical studies of highly ionized species

    NASA Astrophysics Data System (ADS)

    Dalgarno, A.; Victor, G. A.

    1980-10-01

    The calculations of the charge transfer recombination and ionization rate coefficients for a wide range of ionic systems in collision with hydrogen and helium at thermal energies were completed. For the carbon ions in hydrogen, the calculations were extended to energies of 100 ev. The importance of the processes in ionized plasmas was demonstrated by studies of the solar corona and of shock waves. Preliminary results were obtained on cross sections for the excitation of fine structure transitions by proton impacts. The mechanisms leading to the photodissociation of alkali metal dimers were identified and quantitative predictions were made for Li2. Calculations using the model potential method of properties of the Cu and Zn sequences were brought to a conclusion. Applications of the relativistic random phase approximation were made to the calculation of photoionization cross sections of magnesium-like and zinc-like ions and of oscillator strengths of mercury.

  18. Observations of feedback from radio-quiet quasars - I. Extents and morphologies of ionized gas nebulae

    NASA Astrophysics Data System (ADS)

    Liu, Guilin; Zakamska, Nadia L.; Greene, Jenny E.; Nesvadba, Nicole P. H.; Liu, Xin

    2013-04-01

    Black hole feedback - the strong interaction between the energy output of supermassive black holes and their surrounding environments - is routinely invoked to explain the absence of overly luminous galaxies, the black hole versus bulge correlations and the similarity of black hole accretion and star formation histories. Yet direct probes of this process in action are scarce and limited to small samples of active nuclei. In this paper, we present Gemini Integral Field Unit observations of the distribution of ionized gas around luminous, obscured, radio-quiet quasars at z ˜ 0.5. We detect extended ionized gas nebulae via [O III] λ5007 Å emission in every case, with a mean diameter of 28 kpc. These nebulae are nearly perfectly round, with Hβ surface brightness declining ∝R-3.5 ± 1.0. The regular morphologies of nebulae around radio-quiet quasars are in striking contrast with lumpy or elongated [O III] nebulae seen around radio galaxies at low and high redshifts. We present the uniformly measured size-luminosity relationship of [O III] nebulae around Seyfert 2 galaxies and type 2 quasars spanning six orders of magnitude in luminosity and confirm the flat slope of the correlation (R_{[O III]}∝ L_{[O III]}^{0.25± 0.02}). We propose a model of clumpy nebulae in which clouds that produce line emission transition from being ionization-bounded at small distances from the quasar to being matter-bounded in the outer parts of the nebula. The model - which has a declining pressure profile - qualitatively explains line ratio profiles and surface brightness profiles seen in our sample. It is striking that we see such smooth and round large-scale gas nebulosities in this sample, which are inconsistent with illuminated merger debris and which we suggest may be the signature of accretion energy from the nucleus reaching gas at large scales.

  19. Spatially Resolved Thermodynamics of the Partially Ionized Exciton Gas in GaAs.

    PubMed

    Bieker, S; Henn, T; Kiessling, T; Ossau, W; Molenkamp, L W

    2015-06-01

    We report on the observation of macroscopic free exciton photoluminescence (PL) rings that appear in spatially resolved PL images obtained on a high purity GaAs sample. We demonstrate that a spatial temperature gradient in the photocarrier system, which is due to nonresonant optical excitation, locally modifies the population balance between free excitons and the uncorrelated electron-hole plasma described by the Saha equation and accounts for the experimentally observed nontrivial PL profiles. The exciton ring formation is a particularly instructive manifestation of the spatially dependent thermodynamics of a partially ionized exciton gas in a bulk semiconductor. PMID:26196644

  20. Spatially Resolved Thermodynamics of the Partially Ionized Exciton Gas in GaAs

    NASA Astrophysics Data System (ADS)

    Bieker, S.; Henn, T.; Kiessling, T.; Ossau, W.; Molenkamp, L. W.

    2015-06-01

    We report on the observation of macroscopic free exciton photoluminescence (PL) rings that appear in spatially resolved PL images obtained on a high purity GaAs sample. We demonstrate that a spatial temperature gradient in the photocarrier system, which is due to nonresonant optical excitation, locally modifies the population balance between free excitons and the uncorrelated electron-hole plasma described by the Saha equation and accounts for the experimentally observed nontrivial PL profiles. The exciton ring formation is a particularly instructive manifestation of the spatially dependent thermodynamics of a partially ionized exciton gas in a bulk semiconductor.

  1. High pressure gas target

    NASA Astrophysics Data System (ADS)

    Gelbart, W.; Johnson, R. R.; Abeysekera, B.

    2012-12-01

    Compact, high pressure, high current gas target features all metal construction and semi-automatic window assembly change. The unique aspect of this target is the domed-shaped window. The Havar alloy window is electron beam welded to a metal ring, thus forming one, interchangeable assembly. The window assembly is sealed by knife-edges locked by a pneumatic toggle allowing a quick, in situ window change.

  2. Intensity correlation of ionizing background at high redshifts

    NASA Technical Reports Server (NTRS)

    Zuo, Lin

    1993-01-01

    Intensity correlation of ionizing background at high redshifts is discussed. The intensity correlation function xi(sub j) and the absorption line equivalent width correlation xi(sub 1/W) are discussed.

  3. Galaxy-scale Clouds Of Ionized Gas Around Agn - History And Obscuration

    NASA Astrophysics Data System (ADS)

    Chojnowski, Drew; Keel, W. C.

    2011-01-01

    Motivated by the discovery of Hanny's Voorwerp, a 45-kpc highly-ionized cloud near the spiral galaxy IC 2497, and accompanying evidence for strong variability of its AGN over 105 year scales, members of the Galaxy Zoo project have carried out surveys for similar (albeit smaller) ionized clouds around galaxies both with and without spectroscopic AGN. The color-composite SDSS images detect strong [OIII] in the g band at low z, allowing a useful color search of Galaxy Zoo targets. In addition, a targeted search was made of over 16,000 spectroscopic AGN and candidates. We used SDSS data to produce crude [OIII] images of the top candidates, and obtained long-slit optical spectra from KPNO and Lick for 30 of the most promising. Roughly half of the spectra showed extended [OIII]λ5007 emission, some exceeding 30 kpc in radial extent. Of the 16 extended clouds we identified, 11 lie in strongly interacting or merging systems, probably because these events leave cold gas out of the plane to be ionized. Most nuclei of extended cloud hosts are type 2 Seyferts. We consider the energy budgets, between ionizing luminosity required for the most distant line emission and the FIR output of the nucleus, to see whether any suggest strong variability rather than obscuration. Several galaxies have such strong mismatches that obscuration alone becomes implausible as an explanation for the strong ionizing continuum, and are candidates for fading events similar to that in IC 2497 and Hanny's Voorwerp. This project was funded by the National Science Foundation Research Experiences for Undergraduates (REU) program through grant NSF AST-1004872.

  4. Evaluation of Gas-filled Ionization Chamber Method for Radon Measurement at Two Reference Facilities

    SciTech Connect

    Ishikawa, Tetsuo; Tokonami, Shinji; Kobayashi, Yosuke; Sorimachi, Atsuyuki; Yatabe, Yoshinori; Miyahara, Nobuyuki

    2008-08-07

    For quality assurance, gas-filled ionization chamber method was tested at two reference facilities for radon calibration: EML (USA) and PTB (Germany). Consequently, the radon concentrations estimated by the ionization chamber method were in good agreement with the reference radon concentrations provided by EML as well as PTB.

  5. Preparation of the spacer for narrow electrode gap configuration in ionization-based gas sensor

    SciTech Connect

    Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti; Burhanudin, Zainal Arif

    2012-09-26

    Carbon nanotubes (CNTs) have started to be developed as the sensing element for ionization-based gas sensors due to the demand for improved sensitivity, selectivity, stability and other sensing properties beyond what can be offered by the conventional ones. Although these limitations have been overcome, the problems still remain with the conventional ionization-based gas sensors in that they are bulky and operating with large breakdown voltage and high temperature. Recent studies have shown that the breakdown voltage can be reduced by using nanostructured electrodes and narrow electrode gap. Nanostructured electrode in the form of aligned CNTs array with evenly distributed nanotips can enhance the linear electric field significantly. The later is attributed to the shorter conductivity path through narrow electrode gap. The paper presents the study on the design consideration in order to realize ionization based gas sensor using aligned carbon nanotubes array in an optimum sensor configuration with narrow electrode gap. Several deposition techniques were studied to deposit the spacer, the key component that can control the electrode gap. Plasma spray deposition, electron beam deposition and dry oxidation method were employed to obtain minimum film thickness around 32 {mu}m. For plasma spray method, sand blasting process is required in order to produce rough surface for strong bonding of the deposited film onto the surface. Film thickness, typically about 39 {mu}m can be obtained. For the electron beam deposition and dry oxidation, the film thickness is in the range of nanometers and thus unsuitable to produce the spacer. The deposited multilayer film consisting of copper, alumina and ferum on which CNTs array will be grown was found to be removed during the etching process. This is attributed to the high etching rate on the thin film which can be prevented by reducing the rate and having a thicker conductive copper film.

  6. Can the Lyman Continuum Leaked Out of H II Regions Explain Diffuse Ionized Gas?

    NASA Astrophysics Data System (ADS)

    Seon, Kwang-Il

    2009-09-01

    We present an attempt to explain the diffuse Hα emission of a face-on galaxy M 51 with the "standard" photoionization model, in which the Lyman continuum (Lyc) escaping from H II regions propagates large distances into the diffuse interstellar medium (ISM). The diffuse Hα emission of M 51 is analyzed using thin slab models and exponential disk models in the context of the "on-the-spot" approximation. The scale height of the ionized gas needed to explain the diffuse Hα emission with the scenario is found to be of the order of ~1-2 kpc, consistent with those of our Galaxy and edge-on galaxies. The model also provides a vertical profile, when the galaxy is viewed edge-on, consisting of two-exponential components. However, it is found that an incredibly low absorption coefficient of κ0 ≈ 0.4-0.8 kpc-1 at the galactic plane, or, equivalently, an effective cross section as low as σeff ~ 10-5 of the photoionization cross section at 912 Å is required to allow the stellar Lyc photons to travel through the H I disk. Such a low absorption coefficient is out of accord with the properties of the ISM. Furthermore, we found that even the model that has the diffuse ionized gas (DIG) phase only and no H I gas phase shows highly concentrated Hα emissions around H II regions, and can account for only lsim26% of the Hα luminosity of the DIG. This result places a strong constraint on the ionizing source of the DIG. We also report that the Hα intensity distribution functions not only of the DIG, but also of H II regions in M 51, appear to be lognormal.

  7. Determination of Ionization Potential of Calcium by High-Resolution Resonance Ionization Spectroscopy

    NASA Astrophysics Data System (ADS)

    Miyabe, Masabumi; Geppert, Christopher; Kato, Masaaki; Oba, Masaki; Wakaida, Ikuo; Watanabe, Kazuo; Wendt, Klaus D. A.

    2006-03-01

    High-resolution resonance ionization spectroscopy has been utilized to determine a precise ionization potential of Ca. Three-step resonance excitation with single-mode extended-cavity diode lasers populates long and unperturbed Rydberg series of 4snp (1P1) and 4snf (1F3) states in the range of n=20--150. Using an extended Ritz formula for quantum defects, the series convergence limit has been determined to be 49305.9240(20) cm-1 with the accuracy improved one order of magnitude higher than previously reported ones.

  8. Ionized gas and planetary nebulae in the bulge of the blue S0 galaxy NGC 5102

    NASA Technical Reports Server (NTRS)

    Mcmillan, Russet; Ciardullo, Robin; Jacoby, George H.

    1994-01-01

    We present the results of an investigation into the morphology and dynamics of ionized gas in the bulge of the gas-rich S0 galaxy NGC 5102. We show that the bulge of NGC 5102 contains a ring of ionized gas, approximately 1.3 kpc in diameter, which is centered well away from the nucleus. Through spectroscopy and (O III) lambda-5007 imaging, we show that the gas is excited by a low-velocity shock, which varies from approximately 50 to approximately 70 km/s along the ring. Fabry-Perot images in H-alpha confirm that the gas is moving slowly, and suggest that the structure is a supershell, approximately 10(exp 7) yr old. This age is significantly younger than the galaxy's nuclear starburst, which is approximately 2 x 10(exp 8) yr old. We also use our (O III) lambda-5007 images to identify planetary nebulae (PNs) in the bulge and inner disk of NGC 5102. Using the planetary nebula luminosity function, we derive a distance modulus to the galaxy of (m - M)(sub 0) = 27.47(sup +0.18)(sub -0.27), or 3.1(sup +0.3)(sub -0.4) Mpc, confirming its membership in the NGC 5128 group. Our derived value of 47.2(sup +12.2)(sub -9.2) x 10(exp -9) for the bolometric luminosity-specific PN density, alpha(sub 2.5), is higher than that observed for the bulge of M31 or the giant ellipticals of the Virgo Cluster, but not significantly different from that found for the small, normal ellipticals NGC 3377 or M32. The high value for alpha(sub 2.5) suggests that virtually all of NGC 5102's stars will someday evolve through the planetary nebula stage.

  9. Ionized gas and planetary nebulae in the bulge of the blue S0 galaxy NGC 5102

    NASA Astrophysics Data System (ADS)

    McMillan, R.; Ciardullo, R.; Jacoby, G. H.

    1994-11-01

    We present the results of an investigation into the morphology and dynamics of ionized gas in the bulge of the gas-rich S0 galaxy NGC 5102. We show that the bulge of NGC 5102 contains a ring of ionized gas, approximately 1.3 kpc in diameter, which is centered well away from the nucleus. Through spectroscopy and (O III) lambda-5007 imaging, we show that the gas is excited by a low-velocity shock, which varies from approximately 50 to approximately 70 km/s along the ring. Fabry-Perot images in H-alpha confirm that the gas is moving slowly, and suggest that the structure is a supershell, approximately 107 yr old. This age is significantly younger than the galaxy's nuclear starburst, which is approximately 2 x 108 yr old. We also use our (O III) lambda-5007 images to identify planetary nebulae (PNs) in the bulge and inner disk of NGC 5102. Using the planetary nebula luminosity function, we derive a distance modulus to the galaxy of (m - M)0 = 27.47+0.18-0.27, or 3.1+0.3-0.4 Mpc, confirming its membership in the NGC 5128 group. Our derived value of 47.2+12.2-9.2 x 10-9 for the bolometric luminosity-specific PN density, alpha2.5, is higher than that observed for the bulge of M31 or the giant ellipticals of the Virgo Cluster, but not significantly different from that found for the small, normal ellipticals NGC 3377 or M32. The high value for alpha2.5 suggests that virtually all of NGC 5102's stars will someday evolve through the planetary nebula stage.

  10. Jet-driven outflows of ionized gas in the nearby radio galaxy 3C 293

    NASA Astrophysics Data System (ADS)

    Mahony, E. K.; Oonk, J. B. R.; Morganti, R.; Tadhunter, C.; Bessiere, P.; Short, P.; Emonts, B. H. C.; Oosterloo, T. A.

    2016-01-01

    Fast outflows of gas, driven by the interaction between the radio jets and interstellar medium (ISM) of the host galaxy, are being observed in an increasing number of galaxies. One such example is the nearby radio galaxy 3C 293. In this paper we present integral field unit observations taken with OASIS on the William Herschel Telescope, enabling us to map the spatial extent of the ionized gas outflows across the central regions of the galaxy. The jet-driven outflow in 3C 293 is detected along the inner radio lobes with a mass outflow rate ranging from ˜0.05 to 0.17 M⊙ yr-1 (in ionized gas) and corresponding kinetic power of ˜0.5-3.5 × 1040 erg s-1. Investigating the kinematics of the gas surrounding the radio jets (i.e. not directly associated with the outflow), we find linewidths broader than 300 km s-1 up to 5 kpc in the radial direction from the nucleus (corresponding to 3.5 kpc in the direction perpendicular to the radio axis at maximum extent). Along the axis of the radio jet linewidths >400 km s-1 are detected out to 7 kpc from the nucleus and linewidths of >500 km s-1 at a distance of 12 kpc from the nucleus, indicating that the disturbed kinematics clearly extend well beyond the high surface brightness radio structures of the jets. This is suggestive of the cocoon structure seen in simulations of jet-ISM interaction and implies that the radio jets are capable of disturbing the gas throughout the central regions of the host galaxy in all directions.

  11. Dynamic self-organization phenomena in complex ionized gas systems: new paradigms and technological aspects

    NASA Astrophysics Data System (ADS)

    Vladimirov, S. V.; Ostrikov, K.

    2004-04-01

    An overview of dynamic self-organization phenomena in complex ionized gas systems, associated physical phenomena, and industrial applications is presented. The most recent experimental, theoretical, and modeling efforts to understand the growth mechanisms and dynamics of nano- and micron-sized particles, as well as the unique properties of the plasma-particle systems (colloidal, or complex plasmas) and the associated physical phenomena are reviewed and the major technological applications of micro- and nanoparticles are discussed. Until recently, such particles were considered mostly as a potential hazard for the microelectronic manufacturing and significant efforts were applied to remove them from the processing volume or suppress the gas-phase coagulation. Nowadays, fine clusters and particulates find numerous challenging applications in fundamental science as well as in nanotechnology and other leading high-tech industries.

  12. Cosmic ray studies with a gas Cherenkov counter in association with an ionization spectrometer

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.; Arens, J. F.; Siohan, F.; Yodh, G. B.; Simon, M.; Spiegelhauer, H.

    1980-01-01

    The results from a balloon-borne gas Cherenkov counter (threshold 16.5 GeV/nucleon) and an ionization spectrometer are presented. The gas Cherenkov counter provides an absolute energy distribution for the response of the calorimeter for 5 or = Z 26 nuclei of cosmic rays. The contribution of scintillation to the gas Cherenkov pulse height was obtained by independently selecting particles below the gas Cherenkov threshold using the ionization spectrometer. Energy spectra were derived by minimizing the chi squared between Monte Carlo simulted data and flight data. Best fit power laws, dN/dE = AE-gamma, were determined for C, N, O, Ne, Mg, and Si. The power laws, all consistent with E (-2.7) are not good fits to the data. A better fit is obtained using the spectrum derived from the spectrometer. The data from the ionization calorimeter and the gas Cherenkov are thus completely self-consistent.

  13. Shock Structure Analysis and Aerodynamics in a Weakly Ionized Gas Flow

    NASA Technical Reports Server (NTRS)

    Saeks, R.; Popovic, S.; Chow, A. S.

    2006-01-01

    The structure of a shock wave propagating through a weakly ionized gas is analyzed using an electrofluid dynamics model composed of classical conservation laws and Gauss Law. A viscosity model is included to correctly model the spatial scale of the shock structure, and quasi-neutrality is not assumed. A detailed analysis of the structure of a shock wave propagating in a weakly ionized gas is presented, together with a discussion of the physics underlying the key features of the shock structure. A model for the flow behind a shock wave propagating through a weakly ionized gas is developed and used to analyze the effect of the ionization on the aerodynamics and performance of a two-dimensional hypersonic lifting body.

  14. Femtosecond interferometry of propagation of a laminar ionization front in a gas

    SciTech Connect

    Gizzi, L. A.; Giulietti, A.; Giulietti, D.; Labate, L.; Tomassini, P.; Galimberti, M.; Koester, P.; Martin, Ph.; Ceccotti, T.; De Oliveira, P.; Monot, P.

    2006-09-15

    We use optical interferometry to investigate ultrafast ionization induced by an intense, ultrashort laser pulse propagating in a helium gas. Besides standard phase shift information, our interferograms show a localized region of fringe visibility depletion (FVD) that moves along the laser propagation axis at luminal velocity. We find that such a loss of visibility can be quantitatively explained by the ultrafast change of refractive index due to the field ionization of the gas in the laser pulse width. We demonstrate that by combining the post facto phase shift distribution with the probe pulse transit effect in the ionizing region, the analysis of the observed FVD yields significant information on the ultrafast dynamics of propagation of the ionization front in the gas.

  15. Femtosecond interferometry of propagation of a laminar ionization front in a gas.

    PubMed

    Gizzi, L A; Galimberti, M; Giulietti, A; Giulietti, D; Koester, P; Labate, L; Tomassini, P; Martin, Ph; Ceccotti, T; De Oliveira, P; Monot, P

    2006-09-01

    We use optical interferometry to investigate ultrafast ionization induced by an intense, ultrashort laser pulse propagating in a helium gas. Besides standard phase shift information, our interferograms show a localized region of fringe visibility depletion (FVD) that moves along the laser propagation axis at luminal velocity. We find that such a loss of visibility can be quantitatively explained by the ultrafast change of refractive index due to the field ionization of the gas in the laser pulse width. We demonstrate that by combining the post facto phase shift distribution with the probe pulse transit effect in the ionizing region, the analysis of the observed FVD yields significant information on the ultrafast dynamics of propagation of the ionization front in the gas. PMID:17025750

  16. Detection of trace levels of triclopyr using capillary gas chromatography-electron-capture negative-ion chemical ionization mass spectrometry.

    PubMed

    Begley, P; Foulger, B E

    1988-04-01

    Triclopyr, after esterification, is shown to be a suitable candidate for detection by gas chromatography-electron-capture negative-ion chemical ionization mass spectrometry forming a characteristic carboxylate anion which offers a high detection sensitivity. A detection limit of 70 fg reaching the ionizer is indicated. Low backgrounds and an absence of chemical interferences are shown for vegetation extracts, using a simple method of extraction and derivatisation. A similar behaviour is demonstrated for 2,4-D and 2,4,5-T. PMID:3379116

  17. Kinematics of ionized gas in the barred Seyfert galaxy NGC 4151

    NASA Astrophysics Data System (ADS)

    Asif, M. W.; Mundell, C. G.; Pedlar, A.

    2005-05-01

    We have determined the structure and kinematics of ionized gas in the weak oval bar of the archetypal Seyfert 1 galaxy, NGC 4151, using the TAURUS Fabry-Perot interferometer to simultaneously map the distribution and kinematics of Hβ emission. We also present broad-band ultraviolet imaging of the host galaxy, obtained with XMM-Newton, which shows the detailed distribution of star formation in the bar and in the optically faint outer spiral arms. We compare the distribution and kinematics of ionized gas with that previously determined in neutral hydrogen by Mundell & Shone; we suggest that the distribution of bright, patchy ultraviolet emission close to the HI shocks is consistent with ionization by star clusters that have formed in compressed pre-shock gas. These clusters then travel ballistically through the gaseous shock to ionize gas downstream along the leading edge of the bar. In addition, we detect, for the first time, ionized gas within the shock itself, which is streaming to smaller radii in the same manner as the neutral gas.

  18. Pulsed Discharge Helium Ionization Detector for Highly Sensitive Aquametry.

    PubMed

    Mowry, Curtis D; Pimentel, Adam S; Sparks, Elizabeth S; Moorman, Matthew W; Achyuthan, Komandoor E; Manginell, Ronald P

    2016-01-01

    Trace moisture quantitation is crucial in medical, civilian and military applications. Current aquametry technologies are limited by the sample volume, reactivity, or interferences, and/or instrument size, weight, power, cost, and complexity. We report for the first time on the use of a pulsed discharge helium ionization detector (PDHID-D2) (∼196 cm(3)) for the sensitive (limit of detection, 0.047 ng; 26 ppm), linear (r(2) >0.99), and rapid (< 2 min) quantitation of water using a small (0.2 - 5.0 μL) volume of liquid or gas. The relative humidity sensitivity was 0.22% (61.4 ppmv) with a limit of detection of less than 1 ng moisture with gaseous samples. The sensitivity was 10 to 100 to fold superior to competing technologies without the disadvantages inherent to these technologies. The PDHID-D2, due to its small footprint and low power requirement, has good size, weight, and power-portability (SWAPP) factors. The relatively low cost (∼$5000) and commercial availability of the PDHID-D2 makes our technique applicable to highly sensitive aquametry. PMID:26860562

  19. The kinematics of Milky Way halo gas. I - Observations of low-ionization species

    NASA Technical Reports Server (NTRS)

    Danly, Laura

    1989-01-01

    Ultraviolet interstellar line day observed with the IUE toward 70 halo stars and four extragalactic sight lines are analyzed in a study of the large-scale kinematic properties of the Milky Way halo gas. The motions of the low-ionization gas is focused on. Large systematic velocities are found, and a pronounced asymmetry in the absorption characteristics of halo gas toward the Galactic poles is indicated. In the north, substantial amounts of material are falling toward the disk at velocities up to about 120 km/s in the most extreme case. Toward the south, low-ionization material shows no extreme or systematic motions.

  20. Chemical-ionization visible and ultraviolet gas lasers: A concept

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.

    1975-01-01

    Charge-transfer reactions or Penning ionization reactions are used to produce population inversions between electronic states of molecular ions which should result in stimulated emission in ultraviolet and visible regions. Such lasers could be used in study of short-lived reaction intermediates, crystal structure and scattering, and photolysis.

  1. Investigation of ionized metal flux in enhanced high power impulse magnetron sputtering discharges

    SciTech Connect

    Stranak, Vitezslav; Hubicka, Zdenek; Cada, Martin; Drache, Steffen; Hippler, Rainer; Tichy, Milan

    2014-04-21

    The metal ionized flux fraction and production of double charged metal ions Me{sup 2+} of different materials (Al, Cu, Fe, Ti) by High Power Impulse Magnetron Sputtering (HiPIMS) operated with and without a pre-ionization assistance is compared in the paper. The Electron Cyclotron Wave Resonance (ECWR) discharge was employed as the pre-ionization agent providing a seed of charge in the idle time of HiPIMS pulses. A modified grid-free biased quartz crystal microbalance was used to estimate the metal ionized flux fraction ξ. The energy-resolved mass spectrometry served as a complementary method to distinguish particular ion contributions to the total ionized flux onto the substrate. The ratio between densities of doubly Me{sup 2+} and singly Me{sup +} charged metal ions was determined. It is shown that ECWR assistance enhances Me{sup 2+} production with respect of absorbed rf-power. The ECWR discharge also increases the metal ionized flux fraction of about 30% especially in the region of lower pressures. Further, the suppression of the gas rarefaction effect due to enhanced secondary electron emission of Me{sup 2+} was observed.

  2. Prediction of Shock Wave Structure in Weakly Ionized Gas Flow by Solving MGD Equation

    NASA Technical Reports Server (NTRS)

    Deng, Z. T.; Oviedo-Rojas, Ruben; Chow, Alan; Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    This paper reports the recent research results of shockwave structure predictions using a new developed code. The modified Rankine-Hugoniot relations across a standing normal shock wave are discussed and adopted to obtain jump conditions. Coupling a electrostatic body force to the Burnett equations, the weakly ionized flow field across the shock wave was solved. Results indicated that the Modified Rankine-Hugoniot equations for shock wave are valid for a wide range of ionization fraction. However, this model breaks down with small free stream Mach number and with large ionization fraction. The jump conditions also depend on the value of free stream pressure, temperature and density. The computed shock wave structure with ionization provides results, which indicated that shock wave strength may be reduced by existence of weakly ionized gas.

  3. Investigating the Diffuse Ionized Gas in the Magellanic Stream with Mapped WHAM Observations

    NASA Astrophysics Data System (ADS)

    Smart, Brianna; Haffner, L. Matthew; Barger, Kathleen; Hernandez, Mike

    2016-01-01

    We present early stages of an Hα survey of the Magellanic Stream using the Wisconsin H-Alpha Mapper (WHAM). While the neutral component of the Stream may extend 200° across the sky (Nidever et al. 2010), its ionized gas has not yet been studied in detail. Fox et al. 2014 find that the tidal debris in the Magellanic System contains twice as much ionized gas as neutral and may extend 30° away from the H I emission. However, such absorption-line studies are not sensitive to the overall morphology of the ionized gas. Using targeted Hα emission observations of the Magellanic Stream, Barger et al. 2015 find that although the warm ionized gas tracks the neutral gas, it often spans a few degrees away from the H I emission at slightly offset velocities. Using WHAM's unprecedented sensitivity to diffuse emission (~ 10s of mR) and its velocity resolution (12 km/s) to isolate Stream emission, we are now conducting the first full Hα survey of its ionized component. Here we present early results, including spatial and kinematic comparisons to the well-established neutral profile of the Stream. WHAM research and operations are supported through NSF Award AST-1108911.

  4. Evolution of a Maxwellian plasma driven by ion-beam-induced ionization of a gas

    SciTech Connect

    Oliver, B.V.; Ottinger, P.F.; Rose, D.V.

    1996-09-01

    The ionization of gas by intense (MeV, kA/cm{sup 2}) ion beams is investigated for the purpose of obtaining scaling relations for the rate of rise of the electron density, temperature, and conductivity of the resulting plasma. Various gases including He, N, and Ar at pressures of order 1 torr have been studied. The model is local and assumes a drifting Maxwellian electron distribution. In the limit that the beam to gas density ratio is small, the initial stage of ionization occurs on the beam impact ionization time and lasts on the order of a few nanoseconds. Thereafter, ionization of neutrals by the thermal electrons dominates electron production. The electron density does not grow exponentially, but proceeds linearly on a fast time scale {ital t}{sub th}={ital U}/({ital v}{sub {ital b}}{rho}{ital dE}/{ital dx}) associated with the time taken for the beam to lose energy {ital U} via collisional stopping in the gas, where {ital U} is the ionization potential of the gas, {ital v}{sub {ital b}} is the beam velocity, {rho} is the gas mass density, and {ital dE}/{ital dx} is the mass stopping power in units of eVcm{sup 2}/g. This results in a temperature with a slow time dependence and a conductivity with a linear rise time proportional to {ital t}{sub th}. {copyright} {ital 1996 American Institute of Physics.}

  5. High Rydberg states of DABCO: Spectroscopy, ionization potential, and comparison with mass analyzed threshold ionization

    NASA Astrophysics Data System (ADS)

    Boogaarts, Maarten G. H.; Holleman, Iwan; Jongma, Rienk T.; Parker, David H.; Meijer, Gerard; Even, Uzi

    1996-03-01

    Doubly-resonant excitation/vibrational autoionization is used to accurately determine the ionization potential (IP) of the highly symmetric caged amine 1,4 diazabicyclo[2,2,2]octane (DABCO). The IP of DABCO excited with one quantum of the ν24(e') vibration lies at (59 048.62±0.03) cm-1, based on fitting 56 components of the npxy Rydberg series (δ=0.406±0.002) to the Rydberg formula. Rydberg state transition energies and linewidths are determined using standard calibration and linefitting techniques. The IP determined from Rydberg state extrapolation is compared with that determined by mass analyzed threshold ionization (MATI). Effects of static electric fields on MATI signals measured for the high Rydberg states are discussed.

  6. Electron impact ionization of highly charged lithiumlike ions

    SciTech Connect

    Wong, K L

    1992-10-01

    Electron impact ionization cross sections can provide valuable information about the charge-state and power balance of highly charged ions in laboratory and astrophysical plasmas. In the present work, a novel technique based on x-ray measurements has been used to infer the ionization cross section of highly charged lithiumlike ions on the Livermore electron beam ion trap. In particular, a correspondence is established between an observed x ray and an ionization event. The measurements are made at one energy corresponding to approximately 2.3 times the threshold energy for ionization of lithiumlike ions. The technique is applied to the transition metals between Z=22 (titanium, Ti[sup 19+]) and Z=26 (iron, Fe[sup 23+]) and to Z=56 (barium, Ba[sup 53+]). The results for the transition metals, which have an estimated 17-33% uncertainty, are in good overall agreement with a relativistic distorted-wave calculation. However, less good agreement is found for barium, which has a larger uncertainty. Methods for properly accounting for the polarization in the x-ray intensities and for inferring the charge-state abundances from x-ray observations, which were developed for the ionization measurements, as well as an x-ray model that assists in the proper interpretation of the data are also presented.

  7. Ionization of highly excited helium atoms in an electric field

    SciTech Connect

    van de Water, W.; Mariani, D.R.; Koch, P.M.

    1984-11-01

    We present detailed measurements of ionization of highly excited triplet helium atoms in a static electric field. The atoms were prepared in states with energy E close to the saddle-point threshold E = -2(F(a.u.))/sup 1/2/. The electric field F was sufficiently strong for the states to be characterized by total spin S and absolute value of the magnetic quantum number M/sub L/. For M/sub L/ = 0 states the experiments measured ionization properties of adiabatic states. In another case, Vertical BarM/sub L/Vertical Bar = 2, they predominantly measured those of diabatic states. In both cases the ionization rate was found to be a highly nonmonotonic function of the field strength. The observations are analyzed in terms of a theory of the helium density of states in an electric field. A companion paper (D. A. Harmin, Phys. Rev. A 30, 2413 (1984)) develops in detail the general theory, which uses quantum defects to parametrize the effect of the core interaction. The agreement between measured and calculated ionization curves is good, indicating that the field ionization of a nonhydrogenic atom can now be understood in a detailed, quantitative, and predictive sense.

  8. The Massive Stellar Population in the Diffuse Ionized Gas of M33

    NASA Technical Reports Server (NTRS)

    Hoopes, Charles G.; Walterbos, Rene A. M.

    1995-01-01

    We compare Far-UV, H alpha, and optical broadband images of the nearby spiral galaxy M33, to investigate the massive stars associated with the diffuse ionized gas. The H-alpha/FUV ratio is higher in HII regions than in the DIG, possibly indicating that an older population ionizes the DIG. The broad-band colors support this conclusion. The HII region population is consistent with a young burst, while the DIG colors resemble an older population with constant star formation. Our results indicate that there may be enough massive field stars to ionize the DIG, without the need for photon leakage from HII regions.

  9. IONIZATION-DRIVEN FRAGMENTATION OF GAS OUTFLOWS RESPONSIBLE FOR FeLoBALs IN QUASARS

    SciTech Connect

    Bautista, Manuel A.; Dunn, Jay P.

    2010-07-10

    We show that time variations in the UV ionizing continuum of quasars, on scales of {approx}1 yr, affect the dynamic structure of the plasmas responsible for low-ionization broad absorption lines. Variations of the ionizing continuum produce non-equilibrium photoionization conditions over a significant fraction of the absorbing clouds and supersonically moving ionization fronts. When the flux drops, the contraction of the ionized region drives a supersonic cooling front toward the radiation source and a rarefaction wave in the opposite direction. The pressure imbalance is compensated by an increased speed of the cool gas relative to the front. When the flux recovers, the cool gas is re-ionized and re-heated by a supersonic ionization front traveling away from the radiation source and a forward shock is created. The re-heated clouds equilibrate to a temperature of {approx}10{sup 4} K and are observed to have different radial velocities than the main cloud. Such fragmentation seems consistent with the multicomponent structure of troughs seen in some objects. The velocity differences measured among various components in the quasars QSO 2359-1241 and SDSS J0318-0600 can be reproduced by our model if strong magnetic fields ({approx}10 mG) are present within the clouds.

  10. Ionization-driven Fragmentation of Gas Outflows Responsible for FeLoBALs in Quasars

    NASA Astrophysics Data System (ADS)

    Bautista, Manuel A.; Dunn, Jay P.

    2010-07-01

    We show that time variations in the UV ionizing continuum of quasars, on scales of ~1 yr, affect the dynamic structure of the plasmas responsible for low-ionization broad absorption lines. Variations of the ionizing continuum produce non-equilibrium photoionization conditions over a significant fraction of the absorbing clouds and supersonically moving ionization fronts. When the flux drops, the contraction of the ionized region drives a supersonic cooling front toward the radiation source and a rarefaction wave in the opposite direction. The pressure imbalance is compensated by an increased speed of the cool gas relative to the front. When the flux recovers, the cool gas is re-ionized and re-heated by a supersonic ionization front traveling away from the radiation source and a forward shock is created. The re-heated clouds equilibrate to a temperature of ~104 K and are observed to have different radial velocities than the main cloud. Such fragmentation seems consistent with the multicomponent structure of troughs seen in some objects. The velocity differences measured among various components in the quasars QSO 2359-1241 and SDSS J0318-0600 can be reproduced by our model if strong magnetic fields (~10 mG) are present within the clouds.

  11. Gas-phase chemiluminescence and chemi-ionization

    SciTech Connect

    Fontijn, A.

    1985-01-01

    The phenomena of chemiluminescence (or more broadly chemi-excitation) and chemi-ionization have major similarities from a fundamental kinetic and dynamic point of view. However, since the former has primarily been investigated using optical spectroscopic techniques and the latter largely by mass spectroscopic (and other gaseous electronic) methods, the two phenomena have apparently never, explicitly been discussed together in one volume. In addition to a number of review articles on each individual subject, several meetings and books have had chemiluminescence and bioluminescence as their theme and those have been dominated by condensed phase work. On the other hand, chemi-ionization is often discussed in the contest of gaseous electronics, plasma chemistry and combustion. It is the goal of this book to present a more unified understanding of the two phenomena.

  12. Observations of feedback from radio-quiet quasars - II. Kinematics of ionized gas nebulae

    NASA Astrophysics Data System (ADS)

    Liu, Guilin; Zakamska, Nadia L.; Greene, Jenny E.; Nesvadba, Nicole P. H.; Liu, Xin

    2013-12-01

    The prevalence and energetics of quasar feedback is a major unresolved problem in galaxy formation theory. In this paper, we present Gemini Integral Field Unit observations of ionized gas around 11 luminous, obscured, radio-quiet quasars at z ˜ 0.5 out to ˜15 kpc from the quasar; specifically, we measure the kinematics and morphology of [O III] λ5007 Å emission. The round morphologies of the nebulae and the large line-of-sight velocity widths (with velocities containing 80 per cent of the emission as high as 103 km s-1) combined with relatively small velocity difference across them (from 90 to 520 km s-1) point towards wide-angle quasi-spherical outflows. We use the observed velocity widths to estimate a median outflow velocity of 760 km s-1, similar to or above the escape velocities from the host galaxies. The line-of-sight velocity dispersion declines slightly towards outer parts of the nebulae (by 3 per cent kpc-1 on average). The majority of nebulae show blueshifted excesses in their line profiles across most of their extents, signifying gas outflows. For the median outflow velocity, we find dot{E}_kin between 4 × 1044 and 3 × 1045 erg s-1 and dot{M} between 2 × 103 and 2 × 104 M⊙ yr-1. These values are large enough for the observed quasar winds to have a significant impact on their host galaxies. The median rate of converting bolometric luminosity to kinetic energy of ionized gas clouds is ˜2 per cent. We report four new candidates for `superbubbles' - outflows that may have broken out of the denser regions of the host galaxy.

  13. [High Pressure Gas Tanks

    NASA Technical Reports Server (NTRS)

    Quintana, Rolando

    2002-01-01

    Four high-pressure gas tanks, the basis of this study, were especially made by a private contractor and tested before being delivered to NASA Kennedy Space Center. In order to insure 100% reliability of each individual tank the staff at KSC decided to again submit the four tanks under more rigorous tests. These tests were conducted during a period from April 10 through May 8 at KSC. This application further validates the predictive safety model for accident prevention and system failure in the testing of four high-pressure gas tanks at Kennedy Space Center, called Continuous Hazard Tracking and Failure Prediction Methodology (CHTFPM). It is apparent from the variety of barriers available for a hazard control that some barriers will be more successful than others in providing protection. In order to complete the Barrier Analysis of the system, a Task Analysis and a Biomechanical Study were performed to establish the relationship between the degree of biomechanical non-conformities and the anomalies found within the system on particular joints of the body. This relationship was possible to obtain by conducting a Regression Analysis to the previously generated data. From the information derived the body segment with the lowest percentage of non-conformities was the neck flexion with 46.7%. Intense analysis of the system was conducted including Preliminary Hazard Analysis (PHA), Failure Mode and Effect Analysis (FMEA), and Barrier Analysis. These analyses resulted in the identification of occurrences of conditions, which may be becoming hazardous in the given system. These conditions, known as dendritics, may become hazards and could result in an accident, system malfunction, or unacceptable risk conditions. A total of 56 possible dendritics were identified. Work sampling was performed to observe the occurrence each dendritic. The out of control points generated from a Weighted c control chart along with a Pareto analysis indicate that the dendritics "Personnel not

  14. Transfer ionization in collisions with a fast highly charged ion.

    PubMed

    Voitkiv, A B

    2013-07-26

    Transfer ionization in fast collisions between a bare ion and an atom, in which one of the atomic electrons is captured by the ion whereas another one is emitted, crucially depends on dynamic electron-electron correlations. We show that in collisions with a highly charged ion a strong field of the ion has a very profound effect on the correlated channels of transfer ionization. In particular, this field weakens (strongly suppresses) electron emission into the direction opposite (perpendicular) to the motion of the ion. Instead, electron emission is redirected into those parts of the momentum space which are very weakly populated in fast collisions with low charged ions. PMID:23931364

  15. A spiral-like disk of ionized gas in IC 1459: Signature of a merging collision

    NASA Technical Reports Server (NTRS)

    Goudfrooij, Paul; Norgaard-Nielsen, H. U.; Jorgensen, H. E.; Hansen, L.; Dejong, T.

    1990-01-01

    The authors report the discovery of a large (15 kpc diameter) H alpha + (NII) emission-line disk in the elliptical galaxy IC 1459, showing weak spiral structure. The line flux peaks strongly at the nucleus and is more concentrated than the stellar continuum. The major axis of the disk of ionized gas coincides with that of the stellar body of the galaxy. The mass of the ionized gas is estimated to be approx. 1 times 10 (exp 5) solar mass, less than 1 percent of the total mass of gas present in IC 1459. The total gas mass of 4 times 10(exp 7) solar mass has been estimated from the dust mass derived from a broad-band color index image and the Infrared Astronomy Satellite (IRAS) data. The authors speculate that the presence of dust and gas in IC 1459 is a signature of a merger event.

  16. A new in-gas-laser ionization and spectroscopy laboratory for off-line studies at KU Leuven

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Yu.; Creemers, P.; Ferrer, R.; Granados, C.; Gaffney, L. P.; Huyse, M.; Mogilevskiy, E.; Raeder, S.; Sels, S.; Van den Bergh, P.; Van Duppen, P.; Zadvornaya, A.

    2016-06-01

    The in-gas laser ionization and spectroscopy (IGLIS) technique is used to produce and to investigate short-lived radioactive isotopes at on-line ion beam facilities. In this technique, the nuclear reaction products recoiling out of a thin target are thermalized and neutralized in a high-pressure noble gas, resonantly ionized by the laser beams in a two-step process, and then extracted from the ion source to be finally accelerated and mass separated. Resonant ionization of radioactive species in the supersonic gas jet ensures very high spectral resolution because of essential reduction of broadening mechanisms. To obtain the maximum efficiency and the best spectral resolution, properties of the supersonic jet and the laser beams must be optimized. To perform these studies a new off-line IGLIS laboratory, including a new high-repetition-rate laser system and a dedicated off-line mass separator, has been commissioned. In this article, the specifications of the different components necessary to achieve optimum conditions in laser-spectroscopy studies of radioactive beams using IGLIS are discussed and the results of simulations are presented.

  17. Warp of the ionized gas layer in the outer Galaxy, traced by recombination line observations

    NASA Astrophysics Data System (ADS)

    Azcárate, I. N.; Cersosimo, J. C.

    We report results of H166α recombination line observations from the outer Galaxy in both the Northern and Southern Galactic Plane. The Southern observations were made with the 30 m antenna of the Instituto Argentino de Radioastronomía in Villa Elisa, Buenos Aires, Argentina, and the Northern ones ( more sensitive, high quality observations, performed with an ``state of the art'' receiver) with the 43 m antenna of the National Radio Astronomy Observatory, in Green Bank, West Virginia, USA. >From the two sets of observations we obtain evidence of the warp of the low-density ionized gas layer, traced by the H166α emission in the outer Milky Way, towards positive galactic latitudes in the Northern and towards negative latitudes in the Southern Galaxy. The warp of this tracer qualitatively agrees with that of the HI.

  18. A survey of the ISM in early-type galaxies. I. The ionized gas.

    NASA Astrophysics Data System (ADS)

    Macchetto, F.; Pastoriza, M.; Caon, N.; Sparks, W. B.; Giavalisco, M.; Bender, R.; Capaccioli, M.

    1996-12-01

    We present results of a CCD optical imaging survey of the ionized gas in 73 luminous elliptical and lenticular galaxies, selected from the RC3 catalog to represent a broad variety of X-ray, radio, infrared and kinematical properties. For each galaxy we have used broad-band R images and narrow-band images centered at the Hα and [NII] emission lines to derive the luminosity and distribution of the ionized gas. We found that a large fraction of E (72%) and S0 (85%) galaxies in our sample contain ionized gas. The gas morphology appears to be rather smooth for most galaxies; however ~12% of the sample galaxies show a very extended filamentary structure. According to the morphology and size of the gas distribution, the galaxies have been classified into three broad groups, named small disk (SD), regular extended (RE) and filamentary structure (F). The mean diameter of the emitting region ranges between 1 and 10kpc; the derived mass of the ionized gas ranges between 10^3^ and 10^5^ solar masses. A significant correlation between Hα+[NII] and X-ray luminosities is found for those galaxies (27% of the sample) for which we have detected ionized gas and are also listed as X-ray sources. However, there are relatively strong X-ray emitting galaxies for which we have not detected Hα+[NII] emission and objects which show emission-lines but are not listed either in the EINSTEIN or in the ROSAT databases. The distribution of datapoint and upper limits in this diagram suggests that galaxies with warm gas are also X-ray emitters, while there are X-ray emitters without measurable Hα+[NII] emission. Similar characteristics are present in the correlation between the infrared luminosity in the 12 μm band and L_Hα+[NII]_; correlations with other infrared wavelengths are weaker. A strong correlation was also found between the Hα+[NII] luminosity and the luminosity in the B band inside the region occupied by the line-emitting gas. We use these correlations to discuss the possible

  19. Black hole mass measurements using ionized gas discs: systematic dust effects

    SciTech Connect

    Baes, Maarten

    2008-10-08

    Using detailed Monte Carlo radiative transfer simulations in realistic models for galactic nuclei, we investigate the influence of interstellar dust in ionized gas discs on the rotation curves and the resulting black hole mass measurements. We find that absorption and scattering by interstellar dust leaves the shape of the rotation curves basically unaltered, but slightly decreases the central slope of the rotation curves. As a result, the ''observed'' black hole masses are systematically underestimated by some 10 to 20% for realistic optical depths. We therefore argue that the systematic effect of dust attenuation should be taken into account when estimating SMBH masses using ionized gas kinematics.

  20. Spectacular tails of ionized gas in the Virgo cluster galaxy NGC 4569

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Cuillandre, J. C.; Fossati, M.; Boissier, S.; Bomans, D.; Consolandi, G.; Anselmi, G.; Cortese, L.; Côté, P.; Durrell, P.; Ferrarese, L.; Fumagalli, M.; Gavazzi, G.; Gwyn, S.; Hensler, G.; Sun, M.; Toloba, E.

    2016-03-01

    Context. Using MegaCam at the CFHT, we obtained a deep narrow band Hα+[NII] wide-field image of NGC 4569 (M90), the brightest late-type galaxy in the Virgo cluster. The image reveals the presence of long tails of diffuse ionized gas, without any associated stellar component extending from the disc of the galaxy up to ≃80 kpc (projected distance) and with a typical surface brightness of a few 10-18 erg s-1 cm-2 arcsec-2. These features provide direct evidence that NGC 4569 is undergoing a ram-presure stripping event. The image also shows a prominent 8 kpc spur of ionized gas that is associated with the nucleus that spectroscopic data identify as an outflow. With some assumptions on the 3D distribution of the gas, we use the Hα surface brightness of these extended low-surface brightness features to derive the density and the mass of the gas that has been stripped during the interaction of the galaxy with the intracluster medium. The comparison with ad hoc chemo-spectrophotometric models of galaxy evolution indicates that the mass of the Hα emitting gas in the tail is a large fraction of that of the cold phase that has been stripped from the disc, suggesting that the gas is ionized within the tail during the stripping process. The lack of star-forming regions suggests that mechanisms other than photoionization are responsible for the excitation of the gas (shocks, heat conduction, magneto hydrodynamic waves). This analysis indicates that ram pressure stripping is efficient in massive (Mstar ≃ 1010.5 M⊙) galaxies located in intermediate-mass (≃1014 M⊙) clusters under formation. It also shows that the mass of gas expelled by the nuclear outflow is only ~1% than that removed during the ram pressure stripping event.Together these results indicate that ram pressure stripping, rather than starvation through nuclear feedback, can be the dominant mechanism that is responsible for the quenching of the star formation activity of galaxies in high density

  1. Ionization heating in rare-gas clusters under intense XUV laser pulses

    SciTech Connect

    Arbeiter, Mathias; Fennel, Thomas

    2010-07-15

    The interaction of intense extreme ultraviolet (XUV) laser pulses ({lambda}=32 nm, I=10{sup 11}-10{sup 14} W/cm{sup 2}) with small rare-gas clusters (Ar{sub 147}) is studied by quasiclassical molecular dynamics simulations. Our analysis supports a very general picture of the charging and heating dynamics in finite samples under short-wavelength radiation that is of relevance for several applications of free-electron lasers. First, up to a certain photon flux, ionization proceeds as a series of direct photoemission events producing a jellium-like cluster potential and a characteristic plateau in the photoelectron spectrum as observed in Bostedt et al. [Phys. Rev. Lett. 100, 133401 (2008)]. Second, beyond the onset of photoelectron trapping, nanoplasma formation leads to evaporative electron emission with a characteristic thermal tail in the electron spectrum. A detailed analysis of this transition is presented. Third, in contrast to the behavior in the infrared or low vacuum ultraviolet range, the nanoplasma energy capture proceeds via ionization heating, i.e., inner photoionization of localized electrons, whereas collisional heating of conduction electrons is negligible up to high laser intensities. A direct consequence of the latter is a surprising evolution of the mean energy of emitted electrons as function of laser intensity.

  2. Electron Injection in Laser Plasma Accelerators by High-Order Field Ionization

    SciTech Connect

    Chen, M.; Esarey, E.; Geddes, C. G. R.; Schroeder, C. B.; Leemans, W. P.

    2010-11-04

    Electron injection and trapping in a laser wakefield accelerator by high-order field ionization is studied theoretically and by particle-in-cell simulations. To obtain low energy spread beams we use a short region of gas mixture (H+N) near the start of the stage to trap electrons, while the remainder of the stage uses pure H and is injection-free. Effects of gas mix parameters, such as concentration and length, on the final electron injection number and beam quality are studied. Laser polarization and shape effects on injection number and final electron emittance are also shown.

  3. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  4. Ionization chamber

    DOEpatents

    Walenta, A.H.

    An ionization chamber is described which has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionizes the gas.

  5. Cosmic distribution of highly ionized metals and their physical conditions in the EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Rahmati, Alireza; Schaye, Joop; Crain, Robert A.; Oppenheimer, Benjamin D.; Schaller, Matthieu; Theuns, Tom

    2016-06-01

    We study the distribution and evolution of highly ionized intergalactic metals in the Evolution and Assembly of Galaxies and their Environment (EAGLE) cosmological, hydrodynamical simulations. EAGLE has been shown to reproduce a wide range of galaxy properties while its subgrid feedback was calibrated without considering gas properties. We compare the predictions for the column density distribution functions (CDDFs) and cosmic densities of Si IV, C IV, N V, O VI and Ne VIII absorbers with observations at redshift z = 0 to ˜6 and find reasonable agreement, although there are some differences. We show that the typical physical densities of the absorbing gas increase with column density and redshift, but decrease with the ionization energy of the absorbing ion. The typical metallicity increases with both column density and time. The fraction of collisionally ionized metal absorbers increases with time and ionization energy. While our results show little sensitivity to the presence or absence of AGN feedback, increasing/decreasing the efficiency of stellar feedback by a factor of 2 substantially decreases/increases the CDDFs and the cosmic densities of the metal ions. We show that the impact of the efficiency of stellar feedback on the CDDFs and cosmic densities is largely due to its effect on the metal production rate. However, the temperatures of the metal absorbers, particularly those of strong O VI, are directly sensitive to the strength of the feedback.

  6. Mapping the gas kinematics and ionization structure of four ultraluminous IRAS galaxies

    NASA Astrophysics Data System (ADS)

    Wilman, R. J.; Crawford, C. S.; Abraham, R. G.

    1999-10-01

    We present a study of the morphology, kinematics and ionization structure of the extended emission-line regions in four intermediate-redshift (0.118gas kinematics in the hyperluminous system IRAS F20460+1925 lack coherent structure, with a full width at half-maximum (FWHM) >1000kms-1 within 1arcsec of the nucleus, suggesting that any merger is well-advanced. Emission-line intensity ratios point to active galactic nucleus (AGN) photoionization for the excitation of this gas at the systemic velocity. An isolated blob ~8kpc from the nucleus with a much smaller velocity dispersion may lie in a structure similar to the photoionization cones seen in lower-luminosity objects. A second, spatially unresolved, narrow-line component is also present on nucleus, blueshifted by ~=990kms-1 from the systemic and plausibly powered by photoionizing shocks. IRAS F23060+0505 has more ordered kinematics, with a region of increased FWHM coincident with the blue half of a dipolar velocity field. The systemic velocity rotation curve is asymmetric in appearance, as a result either of the on-going merger or of nuclear dust obscuration. From a higher-resolution ISIS spectrum, we attribute the blue asymmetry in the narrow-line profiles to a spatially resolved nuclear outflow. Emission-line intensity ratios suggest shock+precursor ionization for the systemic component, consistent with the X-ray view of a heavily obscured AGN. The lower-luminosity objects IRAS F01217+0122 and F01003-2238 complete the sample. The former has a featureless velocity field with a high FWHM, a high-ionization AGN spectrum and a ~1Gyr old starburst continuum. IRAS F01003-2238 has a dipolar velocity field and an Hii region emission-line spectrum with a strong blue continuum. After correction for intrinsic extinction, the latter can be reproduced with ~107 O5 stars, sufficient to power the bolometric luminosity of the

  7. Properties of a weakly ionized NO gas sensor based on multi-walled carbon nanotubes

    SciTech Connect

    Zhang, Jingyuan; Zhang, Yong Pan, Zhigang; Yang, Shuang; Shi, Jinghui; Li, Shengtao; Min, Daomin; Wang, Xiaohua; Liu, Dingxin; Yang, Aijun; Li, Xin

    2015-08-31

    Nitric oxide NO is one of the major targets for environmental monitoring, but the existing NO sensors are limited by their low sensitivity and narrow test range. Here, a NO gas sensor employing multiwalled carbon nanotubes (MWCNTs) was fabricated, and its properties in NO–N{sub 2} mixture were investigated from both emission and ionization. The current I{sub e} passing through the nanotubes cathode was found to decrease with increasing NO concentration and increase linearly in different slopes with the extracting voltage U{sub e}. It is shown that the Schottky barrier of the MWCNTs calculated by I{sub e} increased with NO concentration due to the adsorption of NO gas, which restrained the electron emission and consequently weakened the ionization. The positive ion currents I{sub c} passing through the collecting electrode at different voltages of U{sub e} were found to monotonically decrease with increasing NO concentration, which was induced by both of the reduced electron emission and the consumption of the two excited metastable states N{sub 2}(A{sup 3}∑{sub u}{sup +}) and N{sub 2}(a′{sup 1}∑{sub u}{sup −}) by NO. The sensor exhibited high sensitivity at the low temperature of 30 °C. The calculated conductivity was found to be able to take place of I{sub c} for NO detection in a wide voltage range of 80–150 V U{sub e}.

  8. Highly ionized region surrounding SN Refsdal revealed by MUSE

    NASA Astrophysics Data System (ADS)

    Karman, W.; Grillo, C.; Balestra, I.; Rosati, P.; Caputi, K. I.; Di Teodoro, E.; Fraternali, F.; Gavazzi, R.; Mercurio, A.; Prochaska, J. X.; Rodney, S.; Treu, T.

    2016-01-01

    Supernova (SN) Refsdal is the first multiply imaged, highly magnified, and spatially resolved SN ever observed. The SN exploded in a highly magnified spiral galaxy at z = 1.49 behind the Frontier Fields cluster MACS1149, and provides a unique opportunity to study the environment of SNe at high z. We exploit the time delay between multiple images to determine the properties of the SN and its environment before, during, and after the SN exploded. We use the integral-field spectrograph MUSE on the VLT to simultaneously target all observed and model-predicted positions of SN Refsdal. We find Mg II emission at all positions of SN Refsdal, accompanied by weak Fe II* emission at two positions. The measured ratios of [O II] to Mg II emission of 10-20 indicate a high degree of ionization with low metallicity. Because the same high degree of ionization is found in all images, and our spatial resolution is too coarse to resolve the region of influence of SN Refsdal, we conclude that this high degree of ionization has been produced by previous SNe or a young and hot stellar population. We find no variability of the [O II] line over a period of 57 days. This suggests that there is no variation in the [O II] luminosity of the SN over this period, or that the SN has a small contribution to the integrated [O II] emission over the scale resolved by our observations.

  9. Cosmic ray studies with a gas Cerenkov counter in association with an ionization spectrometer

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.; Arens, J. F.; Siohan, F.; Simon, M.; Spiegelhauer, H.; Yodh, G. B.

    1980-01-01

    The results from a balloon-borne gas Cerenkov counter (threshold 16.5 GeV/nuc) and an ionization spectrometer are presented. The gas Cerenkov counter provides an absolute energy calibration for the response of the calorimeter for the Z range of 5-26 nuclei of cosmic rays. The contribution of scintillation to the gas Cerenkov pulse height has been obtained by independently selecting particles below the gas Cerenkov threshold using the ionization spectrometer. Energy spectra were derived by minimizing the chi-squared between a Monte Carlo simulated data and flight data. Best fit power laws were determined for C, N, O, Ne, Mg, and Si. The power laws, all consistent with E exp-2.7, are not good fits to the data. A better fit is obtained using the spectrum derived from the spectrometer.

  10. Measuring the Obscured Ionized Gas in the Center of the Nearby Face-on Spiral IC 342 with the GBT and EVLA

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Balser, D. S.; Chomiuk, L.; Goss, M.; Johnson, K. E.; Meier, D. S.; Pisano, D. J.

    2013-01-01

    Galactic centers represent a unique environment for star formation. Their high gas surface densities and short crossing times may lead to more efficient star formation than found in the disks of galaxies. Measuring the properties of the young massive clusters in galactic centers is critical to understanding star formation in this environment. One way to do this is to measure the properties of the gas ionized by the young massive clusters. Unfortunately, this gas is still obscured by the natal clouds of dust and gas surrounding the young massive clusters. Therefore, measuring the properties of this gas requires the use of an extinction-free ionized gas tracer like radio recombination lines. This poster presents radio recombination line observations of the center of the nearby face-on spiral galaxy IC 342. These observations constrain the density, filling factor, and kinematics of the obscured ionized gas in the center of this galaxy. The properties of the ionized gas are then used to constrain the properties of the young massive clusters and star formation efficiency in the center of IC 342.

  11. Sparsepak Observations of Diffuse Ionized Gas Halo Kinematics in NGC891

    NASA Astrophysics Data System (ADS)

    Heald, George H.; Rand, Richard J.; Benjamin, Robert A.; Bershady, Matthew A.

    We present WIYN SparsePak observations of the diffuse ionized gas (DIG) hallo of NGC891. Preliminary results of an analysis of the halo velocity field reveal a clear gradient of the azimuthal velocity with z which agrees with results for the neutral gas. The magnitude of the gradient has been determined, using two independent methods, to be approximately 15 km s-1 kpc-1.

  12. Ammonia quantitative analysis model based on miniaturized Al ionization gas sensor and non-linear bistable dynamic model.

    PubMed

    Ma, Rongfei

    2015-01-01

    In this paper, ammonia quantitative analysis based on miniaturized Al ionization gas sensor and non-linear bistable dynamic model was proposed. Al plate anodic gas-ionization sensor was used to obtain the current-voltage (I-V) data. Measurement data was processed by non-linear bistable dynamics model. Results showed that the proposed method quantitatively determined ammonia concentrations. PMID:25975362

  13. 40 CFR 1065.267 - Gas chromatograph with a flame ionization detector.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Gas chromatograph with a flame ionization detector. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon...

  14. 40 CFR 1065.267 - Gas chromatograph with a flame ionization detector.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Gas chromatograph with a flame ionization detector. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon...

  15. 40 CFR 1065.267 - Gas chromatograph with a flame ionization detector.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Gas chromatograph with a flame ionization detector. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon...

  16. Ionized gas diagnostics from protoplanetary discs in the Orion nebula and the abundance discrepancy problem

    NASA Astrophysics Data System (ADS)

    Mesa-Delgado, A.; Núñez-Díaz, M.; Esteban, C.; García-Rojas, J.; Flores-Fajardo, N.; López-Martín, L.; Tsamis, Y. G.; Henney, W. J.

    2012-10-01

    We present results from integral field spectroscopy of a field located near the Trapezium Cluster using the Potsdam Multi-Aperture Spectrophotometer (PMAS). The observed field contains a variety of morphological structures: five externally ionized protoplanetary discs (also known as proplyds), the high-velocity jet HH 514 and a bowshock. Spatial distribution maps are obtained for different emission line fluxes, the c(Hβ) extinction coefficient, electron densities and temperatures, ionic abundances of different ions from collisionally excited lines (CELs), C2 + and O2 + abundances from recombination lines (RLs) and the abundance discrepancy factor of O2 +, ADF(O2 +). We distinguish the three most prominent proplyds (177-341, 170-337 and 170-334) and analyse their impact on the spatial distributions of the above mentioned quantities. We find that collisional de-excitation has a major influence on the line fluxes in the proplyds. If this is not properly accounted for then physical conditions deduced from commonly used line ratios will be in error, leading to unreliable chemical abundances for these objects. We obtain the intrinsic emission of the proplyds 177-341, 170-337 and 170-334 by a direct subtraction of the background emission, though the last two present some background contamination due to their small sizes. A detailed analysis of 177-341 spectra making use of suitable density diagnostics reveals the presence of high-density gas (3.8 × 105 cm-3) in contrast to the typical values observed in the background gas of the nebula (3800 cm-3). We also explore how the background subtraction could be affected by the possible opacity of the proplyd and its effect on the derivation of physical conditions and chemical abundances of the proplyd 177-341. We construct a physical model for the proplyd 177-341 finding a good agreement between the predicted and observed line ratios. Finally, we find that the use of reliable physical conditions returns an ADF(O2 +) about zero

  17. An Ultra-Trace Analysis Technique for SF6 Using Gas Chromatography with Negative Ion Chemical Ionization Mass Spectrometry.

    PubMed

    Jong, Edmund C; Macek, Paul V; Perera, Inoka E; Luxbacher, Kray D; McNair, Harold M

    2015-07-01

    Sulfur hexafluoride (SF6) is widely used as a tracer gas because of its detectability at low concentrations. This attribute of SF6 allows the quantification of both small-scale flows, such as leakage, and large-scale flows, such as atmospheric currents. SF6's high detection sensitivity also facilitates greater usage efficiency and lower operating cost for tracer deployments by reducing quantity requirements. The detectability of SF6 is produced by its high molecular electronegativity. This property provides a high potential for negative ion formation through electron capture thus naturally translating to selective detection using negative ion chemical ionization mass spectrometry (NCI-MS). This paper investigates the potential of using gas chromatography (GC) with NCI-MS for the detection of SF6. The experimental parameters for an ultra-trace SF6 detection method utilizing minimal customizations of the analytical instrument are detailed. A method for the detection of parts per trillion (ppt) level concentrations of SF6 for the purpose of underground ventilation tracer gas analysis was successfully developed in this study. The method utilized a Shimadzu gas chromatography with negative ion chemical ionization mass spectrometry system equipped with an Agilent J&W HP-porous layer open tubular column coated with an alumina oxide (Al2O3) S column. The method detection limit (MDL) analysis as defined by the Environmental Protection Agency of the tracer data showed the method MDL to be 5.2 ppt. PMID:25452581

  18. H110 alpha observations of Sagittarius A West: Ionized gas at peculiar velocities at the galactic center

    NASA Technical Reports Server (NTRS)

    Yusef-Zadeh, Farhad; Zhao, Jun-Hui; Goss, W. M.

    1995-01-01

    We present Very Large Array measurements of H110 alpha radio recombination line emission from Sgr A West with a resolution of 11 x 20 arcsec. These observations detected a number of new kinematic components showing a dramatically different velocity field than expected from circular motion of ionized gas in Sgr A West about the dynamical center of the Galaxy. Recent high-resolution molecular observations show a cloud of absorbing gas at -180 km/s within 30 arcsec of the Galactic center. We find evidence of an ionized counterpart to this highly blueshifted molecular gas. This result places this highly blueshifted neutral gas in a hot UV dominated environment of the Galactic center. We suggest that the blueshifted clouds are photoionized externally by the intense UV radiation field at the Galactic center. We also detect H110 alpha emission from large-scale linear features known as the 'streamers', which run primarily perpendicular to the Galactic plane and lie exterior to the 'three-arm' spiral structure of Sgr A West and the circumstellar disk. These observations support an earlier suggestion that the streamers are thermal features whose kniematics deviate from circular motion.

  19. Dust and ionized gas in active radio elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Forbes, D. A.; Sparks, W. B.; Macchetto, F. D.

    1990-01-01

    The authors present broad and narrow bandwidth imaging of three southern elliptical galaxies which have flat-spectrum active radio cores (NGC 1052, IC 1459 and NGC 6958). All three contain dust and extended low excitation optical line emission, particularly extensive in the case of NGC 1052 which has a large H alpha + (NII) luminosity. Both NGC 1052 and IC 1459 have a spiral morphology in emission-line images. All three display independent strong evidence that a merger or infall event has recently occurred, i.e., extensive and infalling HI gas in NGC 1052, a counter-rotating core in IC 1459 and Malin-Carter shells in NGC 6958. This infall event is the most likely origin for the emission-line gas and dust, and the authors are currently investigating possible excitation mechanisms (Sparks et al. 1990).

  20. Bound-state beta decay of highly ionized atoms

    SciTech Connect

    Takahashi, K.; Boyd, R.N.; Mathews, G.J.; Yokoi, K.

    1987-10-01

    Nuclear ..beta.. decays of highly ionized atoms under laboratory conditions are studied. Theoretical predictions of ..beta..-decay rates are given for a few cases in which bound-state ..beta.. decay produces particularly interesting effects. A possible storage-ring experiment is proposed for measuring bound-state ..beta..-decay rates, which will be most easily applied to the decay of /sup 3/H/sup +/. .AE

  1. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): review.

    PubMed

    Li, Du-Xin; Gan, Lin; Bronja, Amela; Schmitz, Oliver J

    2015-09-01

    Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a "soft" ion source for preserving highly diagnostic molecular ion is desirable, as compared to the "hard" ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS. PMID:26388363

  2. Escape fraction of ionizing photons from high-redshift galaxies in cosmological SPH simulations

    NASA Astrophysics Data System (ADS)

    Yajima, Hidenobu; Choi, Jun-Hwan; Nagamine, Kentaro

    2011-03-01

    Combing the three-dimensional radiative transfer (RT) calculation and cosmological smoothed particle hydrodynamics (SPH) simulations, we study the escape fraction of ionizing photons (fesc) of high-redshift galaxies at z= 3-6. Our simulations cover the halo mass range of Mh= 109-1012 M⊙. We post-process several hundred simulated galaxies with the Authentic Radiative Transfer (ART) code to study the halo mass dependence of fesc. In this paper, we restrict ourselves to the transfer of stellar radiation from local stellar population in each dark matter halo. We find that the average fesc steeply decreases as the halo mass increases, with a large scatter for the lower-mass haloes. The low-mass haloes with Mh˜ 109 M⊙ have large values of fesc (with an average of ˜0.4), whereas the massive haloes with Mh˜ 1011 M⊙ show small values of fesc (with an average of ˜0.07). This is because in our simulations, the massive haloes show more clumpy structure in gas distribution, and the star-forming regions are embedded inside these clumps, making it more difficult for the ionizing photons to escape. On the other hand, in low-mass haloes, there are often conical regions of highly ionized gas due to the shifted location of young star clusters from the centre of dark matter halo, which allows the ionizing photons to escape more easily than in the high-mass haloes. By counting the number of escaped ionizing photons, we show that the star-forming galaxies can ionize the intergalactic medium at z= 3-6. The main contributor to the ionizing photons is the haloes with Mh≲ 1010 M⊙ owing to their high fesc. The large dispersion in fesc suggests that there may be various sizes of H II bubbles around the haloes even with the same mass in the early stages of reionization. We also examine the effect of UV background radiation field on fesc using simple, four different treatments of UV background.

  3. Numerical studies of the behavior of ionized residual gas in an energy recovering linac

    NASA Astrophysics Data System (ADS)

    Pöplau, Gisela; van Rienen, Ursula; Meseck, Atoosa

    2015-04-01

    Next generation light sources such as energy recovering linacs (ERLs) are highly sensitive to instabilities due to ionized residual gas, which must be mitigated for successful operation. Vacuum pumps are insufficient for removal of the ions, as the ions are trapped by the beam's electrical potential. Two effective measures are (i) introducing clearing gaps in the bunch train, and (ii) installing clearing electrodes which pull out the trapped ions from the electrical potential of the beam. In this paper, we present numerical studies on the behavior of ion clouds that interact with bunch trains in an ERL taking into account the effects of the clearing gaps and clearing electrodes. We present simulations with different compositions of the residual gas. Simulations are done using the MOEVE PIC Tracking software package developed at Rostock University, which has been upgraded to include the behavior of ion clouds in the environment of additional electromagnetic fields, such as generated by clearing electrodes. The simulations use the parameters of the Berlin Energy Recovery Linac Project (bERLinPro) to allow for the deduction of appropriate measures for bERLinPro 's design and operation.

  4. Kinematics of the Diffuse Ionized Gas Halos of NGC 891 and NGC 5775

    NASA Astrophysics Data System (ADS)

    Heald, G. H.; Rand, R. J.; Benjamin, R. A.; Bershady, M. A.; Collins, J. A.; Bland-Hawthorn, J.

    2005-12-01

    As part of an ongoing effort to characterize the nature of the disk-halo interaction in spiral galaxies, we present an investigation into the kinematics of the diffuse ionized gas (DIG) halos of two edge-on spirals, NGC 891 and NGC 5775. Observations of optical emission lines were obtained at high spectral resolution with the SparsePak fiber array at WIYN, and the TAURUS-II Fabry-Perot interferometer at the AAT, respectively. Detailed three-dimensional models of the galaxies were created and compared with the data, revealing the presence of a vertical gradient in rotational velocity in each case. The sense of the gradient corresponds to decreasing rotation speed with increasing height above the disk; the magnitude is approximately 15 km s-1 kpc-1 in NGC 891, and 8 km s-1 kpc-1 in NGC 5775. Qualitatively, this behavior is predicted by models of the disk-halo interaction which consider gas being lifted out of the disk, but quantitative agreement has not yet been achieved. We describe the results of our observations, present a comparison with a purely ballistic model of disk-halo flow, and discuss prospects for a better understanding of this critical process in the evolution of galaxies. This material is based on work partially supported by the National Science Foundation under Grant No. AST 99-86113.

  5. Ion energies in high power impulse magnetron sputtering with and without localized ionization zones

    SciTech Connect

    Yang, Yuchen; Tanaka, Koichi; Liu, Jason; Anders, André

    2015-03-23

    High speed imaging of high power impulse magnetron sputtering discharges has revealed that ionization is localized in moving ionization zones but localization disappears at high currents for high yield targets. This offers an opportunity to study the effect ionization zones have on ion energies. We measure that ions have generally higher energies when ionization zones are present, supporting the concept that these zones are associated with moving potential humps. We propose that the disappearance of ionization zones is caused by an increased supply of atoms from the target which cools electrons and reduces depletion of atoms to be ionized.

  6. Dissociation and ionization of molecular gas in the spiral arms of M51

    NASA Technical Reports Server (NTRS)

    Lees, J. F.; Lo, K. Y.

    1990-01-01

    Researchers derive the star formation rate and efficiency in the arm and interarm regions of M51 from observations of the molecular (Lo et al. 1987) and ionized (van der Hulst et al. 1988) phases of the interstellar medium, and show that the HI observations of Tilanus and Allen (1989) are consistent with dissociation of molecular gas by these young, massive stars if n sub H greater than or equal to 200 cm (-2). However, these stars are not able to dissociate or ionize all the gas, and at least 60 percent must remain molecular in the interarm regions. The efficiency of star formation in M51 seems to be similar to that in the Galaxy, and does not appear to be enhanced in the spiral arms. Therefore, the effect of the strong density wave may be only to concentrate the gas, and hence the young stars, to the arm regions.

  7. Hose instability and wake generation by an intense electron beam in a self-ionized gas.

    PubMed

    Deng, S; Barnes, C D; Clayton, C E; O'Connell, C; Decker, F J; Fonseca, R A; Huang, C; Hogan, M J; Iverson, R; Johnson, D K; Joshi, C; Katsouleas, T; Krejcik, P; Lu, W; Mori, W B; Muggli, P; Oz, E; Tsung, F; Walz, D; Zhou, M

    2006-02-01

    The propagation of an intense relativistic electron beam through a gas that is self-ionized by the beam's space charge and wakefields is examined analytically and with 3D particle-in-cell simulations. Instability arises from the coupling between a beam and the offset plasma channel it creates when it is perturbed. The traditional electron hose instability in a preformed plasma is replaced with this slower growth instability depending on the radius of the ionization channel compared to the electron blowout radius. A new regime for hose stable plasma wakefield acceleration is suggested. PMID:16486834

  8. Hose Instability and Wake Generation By An Intense Electron Beam in a Self-Ionized Gas

    SciTech Connect

    Deng, S.; Barnes, C.D.; Clayton, C.E.; O'Connell, C.; Decker, F.J.; Fonseca, R.A.; Huang, C.; Hogan, M.J.; Iverson, R.; Johnson, D.K.; Joshi, C.; Katsouleas, T.; Krejcik, P.; Lu, W.; Mori, W.B.; Muggli, P.; Oz, E.; Tsung, F.; Walz, D.; Zhou, M.; /Southern California U. /UCLA /SLAC

    2006-04-12

    The propagation of an intense relativistic electron beam through a gas that is self-ionized by the beam's space charge and wakefields is examined analytically and with 3D particle-in-cell simulations. Instability arises from the coupling between a beam and the offset plasma channel it creates when it is perturbed. The traditional electron hose instability in a preformed plasma is replaced with this slower growth instability depending on the radius of the ionization channel compared to the electron blowout radius. A new regime for hose stable plasma wakefield acceleration is suggested.

  9. High-resolution ionization detector and array of such detectors

    DOEpatents

    McGregor, Douglas S.; Rojeski, Ronald A.

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  10. VLT/MUSE view of the highly ionized outflow cones in the nearby starburst ESO338-IG04

    NASA Astrophysics Data System (ADS)

    Bik, A.; Östlin, G.; Hayes, M.; Adamo, A.; Melinder, J.; Amram, P.

    2015-04-01

    Context. The Lyα line is an important diagnostic for star formation at high redshift, but interpreting its flux and line profile is difficult because of the resonance nature of Lyα. Trends between the escape of Lyα photons and dust and properties of the interstellar medium (ISM) have been found, but detailed comparisons between Lyα emission and the properties of the gas in local high-redshift analogs are vital for understanding the relation between Lyα emission and galaxy properties. Aims: For the first time, we can directly infer the properties of the ionized gas at the same location and similar spatial scales of the extended Lyα halo around the local Lyα emitter and Lyman-break galaxy analog ESO 338-IG04. Methods: We obtained VLT/MUSE integral field spectra. We used ionization parameter mapping of the [S ii]/[O iii] line ratio and the kinematics of Hα to study the ionization state and kinematics of the ISM of ESO 338-IG04. Results: The velocity map reveals two outflows, one toward the north, the other toward the south of ESO 338. The ionization parameter mapping shows that the entire central area of the galaxy is highly ionized by photons leaking from the H ii regions around the youngest star clusters. Three highly ionized cones have been identified, of which one is associated with an outflow detected in the Hα. We propose a scenario where the outflows are created by mechanical feedback of the older clusters, while the highly ionized gas is caused by the hard ionizing photons emitted by the youngest clusters. A comparison with the Lyα map shows that the (approximately bipolar) asymmetries observed in the Lyα emission are consistent with the base of the outflows detected in Hα. No clear correlation with the ionization cones is found. Conclusions: The mechanical and ionization feedback of star clusters significantly changes the state of the ISM by creating ionized cones and outflows. The comparison with Lyα suggests that especially the outflows could

  11. Resonant production of high-lying states in the microwave ionization of Na

    NASA Astrophysics Data System (ADS)

    Arakelyan, A.; Gallagher, T. F.

    2016-01-01

    We report microwave ionization experiments with Rydberg states of Na using several microwave frequencies near 80 GHz. We observe substantial ionization of states as low as n =26 with microwave pulses of 170-V/cm amplitude. Unlike experiments at 38 and 17 GHz, microwave ionization is not always accompanied by the production of the extremely high-lying states just below the limit. It only occurs when the initial Rydberg state is in multiphoton resonance with the high-lying states. The resonance condition is apparent at 80 GHz because the ponderomotive energy shift of the limit, and of the high-lying states, is small compared to the microwave frequency, even at fields strong enough to produce ionization. At the lower microwave frequencies, the ponderomotive shift exceeds the microwave frequency, ensuring that the resonance condition is met and obscuring its importance. The same is true of many laser experiments.

  12. Ionization Processes in the Atmosphere of Titan (Research Note). III. Ionization by High-Z Nuclei Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Gronoff, G.; Mertens, C.; Lilensten, J.; Desorgher, L.; Fluckiger, E.; Velinov, P.

    2011-01-01

    Context. The Cassini-Huygens mission has revealed the importance of particle precipitation in the atmosphere of Titan thanks to in-situ measurements. These ionizing particles (electrons, protons, and cosmic rays) have a strong impact on the chemistry, hence must be modeled. Aims. We revisit our computation of ionization in the atmosphere of Titan by cosmic rays. The high-energy high-mass ions are taken into account to improve the precision of the calculation of the ion production profile. Methods. The Badhwahr and O Neill model for cosmic ray spectrum was adapted for the Titan model. We used the TransTitan model coupled with the Planetocosmics model to compute the ion production by cosmic rays. We compared the results with the NAIRAS/HZETRN ionization model used for the first time for a body that differs from the Earth. Results. The cosmic ray ionization is computed for five groups of cosmic rays, depending on their charge and mass: protons, alpha, Z = 8 (oxygen), Z = 14 (silicon), and Z = 26 (iron) nucleus. Protons and alpha particles ionize mainly at 65 km altitude, while the higher mass nucleons ionize at higher altitudes. Nevertheless, the ionization at higher altitude is insufficient to obscure the impact of Saturn s magnetosphere protons at a 500 km altitude. The ionization rate at the peak (altitude: 65 km, for all the different conditions) lies between 30 and 40/cu cm/s. Conclusions. These new computations show for the first time the importance of high Z cosmic rays on the ionization of the Titan atmosphere. The updated full ionization profile shape does not differ significantly from that found in our previous calculations (Paper I: Gronoff et al. 2009, 506, 955) but undergoes a strong increase in intensity below an altitude of 400 km, especially between 200 and 400 km altitude where alpha and heavier particles (in the cosmic ray spectrum) are responsible for 40% of the ionization. The comparison of several models of ionization and cosmic ray spectra (in

  13. High gas flow alpha detector

    DOEpatents

    Bolton, R.D.; Bounds, J.A.; Rawool-Sullivan, M.W.

    1996-05-07

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors. 4 figs.

  14. High gas flow alpha detector

    DOEpatents

    Bolton, Richard D.; Bounds, John A.; Rawool-Sullivan, Mohini W.

    1996-01-01

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors.

  15. Capillary photoionization: a high sensitivity ionization method for mass spectrometry.

    PubMed

    Haapala, Markus; Suominen, Tina; Kostiainen, Risto

    2013-06-18

    We present a capillary photoionization (CPI) method for mass spectrometric (MS) analysis of liquid and gaseous samples. CPI utilizes a heated transfer capillary with a vacuum ultraviolet transparent MgF2 window, through which vacuum UV light (10 eV) from an external source enters the capillary. The liquid or gaseous sample, together with dopant, is introduced directly into the heated transfer capillary between the atmosphere and the vacuum of the MS. Since the sample is vaporized and photoionized inside the capillary, ion transmission is maximized, resulting in good overall sensitivity for nonpolar and polar compounds. As in atmospheric pressure photoionization, ionization in CPI occurs either by proton transfer or by charge exchange reactions. The feasibility of CPI was demonstrated with selected nonpolar and polar compounds. A particular advantage of CPI is that it enables the analysis of nonvolatile and nonpolar compounds in liquid samples with high ionization efficiency. This is not possible with existing capillary ionization methods. The performance of CPI as an interface between GC and MS and its applicability for the analysis of steroids in biological samples are also demonstrated. The GC-CPI-MS method shows good chromatographic resolution, linearity (R(2) > 0.993), limits of detection (LOD) in the range of 2-6 pg/mL and repeatability of injection with relative standard deviations of 4-15%. PMID:23713722

  16. Molecular Ionization at High Intensities: Characterizing OPA Laser Pulses

    NASA Astrophysics Data System (ADS)

    McAcy, Collin; Karnemaat, Ryan; Marsh, Skyler; Foote, David; Uiterwaal, Cornelis

    2012-06-01

    Ultrashort laser pulses have long been the primary instruments of probing and analyzing intense-field molecular dynamics on femtosecond timescales. In particular, processes involving resonance-enhanced multiphoton ionization (REMPI) have provided insight into ionization and dissociation dynamics. Typically the scope of REMPI is limited by the laser properties; namely, REMPI is limited by the transition energies accessible by an integer number of photons. However, the ability to tune the energies of these photons adds flexibility to the available resonances and, for longer wavelengths, makes tunneling the dominant ionization process. Optical parametric amplification (OPA) provides these changes, but the nonlinear processes required for OPA could have complicating effects on pulse duration and focusability, distorting beam quality and compromising experiments. We present the parametric amplification of 800-nm, 50-fs laser pulses in a TOPAS-C system: we use autocorrelation, power measurements, and knife-edging techniques to determine output pulse duration, intensity, and focal characteristics as a function of wavelength. We also report on the effects such changes will have on the practicality of various techniques requiring high-intensity processes.

  17. Multiple ionization of atoms by highly charged ions

    NASA Astrophysics Data System (ADS)

    Tolstikhina, Inga Yu; Shevelko, V. P.

    2015-06-01

    A method is suggested for quickly and easily estimating multiple ionization (MI) cross sections of heavy atoms colliding with highly charged ions, using the independent-particle model (IPM). One-electron ionization probabilities p(b) are calculated using the geometrical model for p(0) values at zero impact parameter b and the relativistic Born approximation for one-electron ionization cross sections. Numerical results of MI cross sections are presented for Ne and Ar atoms colliding with Ar8+, Fe20+, Au24+, Bi67+ and U90+ ions at energies 1 MeV u{}-1-10 GeV u{}-1and compared with available experimental data and CTMC (classical trajectory Monte Carlo) calculations. The present method of calculation describes experimental dependencies of MI cross sections on the number of ejected electrons m within a factor of two to three. Numerical calculations show that at intermediate ion energies E = 1 - 10 MeV u{}-1, the contribution of MI cross sections to the total, i.e. summed over all m values, is quite large ˜35% and decreases with increasing energy.

  18. Very metal-poor galaxies: ionized gas kinematics in nine objects

    NASA Astrophysics Data System (ADS)

    Moiseev, A. V.; Pustilnik, S. A.; Kniazev, A. Y.

    2010-07-01

    The study of ionized gas morphology and kinematics in nine extremely metal-deficient (XMD) galaxies with the scanning Fabry-Perot interferometer on the Special Astrophysical Observatory (SAO) 6-m telescope is presented. Some of these very rare objects (with currently known range of O/H of 7.12 < 12 + log(O/H) < 7.65, or ) are believed to be the best proxies of `young' low-mass galaxies in the high-redshift Universe. One of the main goals of this study is to look for possible evidence of star formation (SF) activity induced by external perturbations. Recent results from HI mapping of a small subsample of XMD star-forming galaxies provided confident evidence for the important role of interaction-induced SF. Our observations provide complementary or new information that the great majority of the studied XMD dwarfs have strongly disturbed gas morphology and kinematics or the presence of detached components. We approximate the observed velocity fields by simple models of a rotating tilted thin disc, which allows us the robust detection of non-circular gas motions. These data, in turn, indicate the important role of current/recent interactions and mergers in the observed enhanced SF. As a by-product of our observations, we obtained data for two Low Surface Brightness (LSB) dwarf galaxies: Anon J012544+075957 that is a companion of the merger system UGC 993, and SAO 0822+3545 which shows off-centre, asymmetric, low star formation rate star-forming regions, likely induced by the interaction with the companion XMD dwarf HS 0822+3542. Based on observations obtained with the Special Astrophysical Observatory RAS 6-m telescope. E-mail: moisav@gmail.com (AVM); sap@sao.ru (SAP); akniazev@saao.ac.za (AYK)

  19. Amonia gas: an improved reagent for chemical ionization mass spectrometry of bile acid methyl ester acetates

    SciTech Connect

    DeMark, B.R.; Klein, P.D.

    1981-01-01

    The ammonia chemical ionization mass spectra of 28 methyl ester acetate derivatives of bile acids and related compounds have been determined by gas-liquid chromatography-mass spectrometry. Advantages of ammonia ionization over the previously studied isobutane ionization include a 130 to 270% enhancement in the sensitivity of base peak monitoring, and direct determination of molecular weight from the base peak (M + NH/sub 4//sup +/) in the mass spectrum of any of the derivatives. Minor ions in the ammonia spectra also allow selective detection of 3-keto compounds and can indicate unsaturation or double bond conjugation in the molecule. The significance of these studies for the detection and quantitation of bile acids is discussed. 2 tables.

  20. Ionization and heating of the gas in the Galactic center probed by H3+

    NASA Astrophysics Data System (ADS)

    Oka, Takeshi

    The 3.5-4.0 mum infrared spectrum of the molecular ion H _{3} (+) has emerged as a powerful probe to study the Central Molecular Zone (CMZ), a region with a radius of ˜150 pc at the center of our Milky Way Galaxy. Because of the ubiquity of cosmic rays, H _{3} (+) , produced by the reaction H _{2} + H _{2} (+) -> H _{3} (+) + H, exists wherever H _{2} abounds. Although H _{3} (+) is ˜ 10 (7) - 10 (8) times less abundant than H _{2}, its infrared spectrum is more readily observable than that of H _{2} because its dipole spectrum is ˜ 10 (9) times stronger than the quadrupole spectrum of H _{2}. In the CMZ H_{3}(+) is not only abundant (Geballe et al. 1999) but also pervasive. We have observed H_{3}(+) with column densities of ˜ 2×10(15) cm(-2) toward over 20 stars distributed from 140 pc West to 120 pc East of Sgr A* (Oka et al. 2005; Goto et al. 2008; Geballe & Oka 2010; Oka 2013). To date it has been detected toward every star in the Galactic center toward which it has been sought, suggesting that the surface-filling factor of H _{3}&^{+} in the CMZ is 100 %. Our observations and analyses exploiting the simple and fundamental natures of physics and chemistry of H _{3}$(+) have led us to the following three conclusions, each of which radically change the previous concept of the gas in the CMZ. The first two conclusions are firm. The third is less definitive but is likely. (1) A large volume of the CMZ is occupied by warm (˜ 250 K) and diffuse (< 100 cm (-3) ) molecular gas. Such gas replaces some or all of the ultra-hot (10 (7) - 10 (8) K) X-ray emitting plasma which some thought to dominate the region. The vast amount of diffuse molecular gas makes the term “Central Molecular Zone” even more fitting. (2) The ionization rate in the CMZ, zeta > 2 × 10 (-15) s (-1) , is higher than in dense clouds and diffuse clouds in the Galactic disk by more than 100 times and 10 times, respectively. The high value is ascribed to high cosmic ray fluxes due to high

  1. Photoionization and High Density Gas

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Bautista, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present results of calculations using the XSTAR version 2 computer code. This code is loosely based on the XSTAR v.1 code which has been available for public use for some time. However it represents an improvement and update in several major respects, including atomic data, code structure, user interface, and improved physical description of ionization/excitation. In particular, it now is applicable to high density situations in which significant excited atomic level populations are likely to occur. We describe the computational techniques and assumptions, and present sample runs with particular emphasis on high density situations.

  2. Ionization-induced blueshift of high-peak-power guided-wave ultrashort laser pulses in hollow-core photonic-crystal fibers

    SciTech Connect

    Fedotov, A. B.; Serebryannikov, E. E.; Zheltikov, A. M.

    2007-11-15

    Ionization-induced change in the refractive index of a gas is shown to give rise to a substantial spectral blueshift of megawatt light pulses transmitted through a gas-filled hollow photonic-crystal fiber (PCF). This effect suggests the ways of controlling not only the rate, but also the sign of the soliton frequency shift for high-peak-power ultrashort light pulses guided in hollow PCFs filled with Raman-active ionizing gases.

  3. STS-39 Critical Ionization Velocity (CIV) gas release from OV-103 payload bay

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A plume of nitrous oxide gas is released from a compressed gas canister mounted on the increased capacity adaptive payload carrier 1 (ICAPC-1) on the forward port side of Discovery's, Orbiter Vehicle (OV) 103's, payload bay (PLB). The gas release is part of the Critical Ionization Velocity (CIV) experiment conducted during STS-39. The Shuttle Pallet Satellite II (SPAS-II) 'parked' about two kilometers (km) away, is taking infrared, visible, and ultraviolet radiometric spatial, spectral, and temporal measurements of the gas plumes. Surrounding the CIV ICAPC-1 are: the ICAPC-2 payload support subsystem, radiometer, and Langmuir probe also mounted on the port side; the Space Test Payload 1 (STP-1) multipurpose experiment support structure (MPESS) (just beyond gas beam); and the Air Force Program 675 (AFP-675) experiment support structure (ESS).

  4. Qualitative Gas Chromatography-Mass Spectrometry Analyses Using Amines as Chemical Ionization Reagent Gases

    NASA Astrophysics Data System (ADS)

    Little, James L.; Howard, Adam S.

    2013-12-01

    Ammonia is a very useful chemical ionization (CI) reagent gas for the qualitative analyses of compounds by positive ion gas chromatography-mass spectrometry (GCMS). The gas is readily available, inexpensive, and leaves no carbon contamination in the MS source. Compounds of interest to our laboratory typically yield abundant protonated or ammoniated species, which are indicative of a compound's molecular weight. Nevertheless, some labile compounds fragment extensively by substitution and elimination reactions and yield no molecular weight information. In these cases, a CI reagent gas mixture of methylamine in methane prepared dynamically was found to be very useful in obtaining molecular weight data. Likewise, deuterated ammonia and deuterated methylamine are useful CI reagent gases for determining the exchangeable protons in organic compounds. Deuterated methylamine CI reagent gas is conveniently prepared by dynamically mixing small amounts of methylamine with excess deuterated ammonia.

  5. Investigation of nonthermal particle effects on ionization dynamics in high current density ion beam transport experiments

    NASA Astrophysics Data System (ADS)

    Chung, H. K.; MacFarlane, J. J.; Wang, P.; Moses, G. A.; Bailey, J. E.; Olson, C. L.; Welch, D. R.

    1997-01-01

    Light ion inertial fusion experiments require the presence of a moderate density background gas in the transport region to provide charge and current neutralization for a high current density ion beam. In this article, we investigate the effects of nonthermal particles such as beam ions or non-Maxwellian electron distributions on the ionization dynamics of the background gas. In particular, we focus on the case of Li beams being transported in an argon gas. Nonthermal particles as well as thermal electrons are included in time-dependent collisional-radiative calculations to determine time-dependent atomic level populations and charge state distributions in a beam-produced plasma. We also briefly discuss the effects of beam ions and energetic electrons on the visible and vacuum ultraviolet (VUV) spectral regions. It is found that the mean charge state of the gas, and hence the electron density, is significantly increased by collisions with energetic particles. This higher ionization significantly impacts the VUV spectral region, where numerous resonance lines occur. On the other hand, the visible spectrum tends to be less affected because the closely spaced excited states are populated by lower energy thermal electrons.

  6. The Use of Ionization Electron Columns for Space-Charge Compensation in High Intensity Proton Accelerators

    SciTech Connect

    Shiltsev, V.; Alexahin, Y.; Kamerdzhiev, V.; Kapin, V.; Kuznetsov, G.

    2009-01-22

    We discuss a recent proposal to use strongly magnetized electron columns created by beam ionization of the residual gas for compensation of space charge forces of high intensity proton beams in synchrotrons and linacs. The electron columns formed by trapped ionization electrons in a longitudinal magnetic field that assures transverse distribution of electron space charge in the column is the same as in the proton beam. Electrostatic electrodes are used to control the accumulation and release of the electrons. Ions are not magnetized and drift away without affecting the compensation. Possible technical solution for the electron columns is presented. We also discuss the first numerical simulation results for space-charge compensation in the FNAL Booster and results of relevant beam studies in the Tevatron.

  7. The use of ionization electron columns for space-charge compensation in high intensity proton accelerators

    SciTech Connect

    Shiltsev, V.; Alexahin, Y.; Kamerdzhiev, V.; Kapin, V.; Kuznetsov, G.; /Fermilab

    2009-01-01

    We discuss a recent proposal to use strongly magnetized electron columns created by beam ionization of the residual gas for compensation of space charge forces of high intensity proton beams in synchrotrons and linacs. The electron columns formed by trapped ionization electrons in a longitudinal magnetic field that assures transverse distribution of electron space charge in the column is the same as in the proton beam. Electrostatic electrodes are used to control the accumulation and release of the electrons. Ions are not magnetized and drift away without affecting the compensation. Possible technical solution for the electron columns is presented. We also discuss the first numerical simulation results for space-charge compensation in the FNAL Booster and results of relevant beam studies in the Tevatron.

  8. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula

    PubMed Central

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent

    2015-01-01

    In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)−CO−N2−noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system. PMID:26039983

  9. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula.

    PubMed

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent

    2015-06-01

    In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)-CO-N2-noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system. PMID:26039983

  10. WFPC2 Imaging of the Multiphase Halos of Two Spiral Galaxies: Dust and Ionized Gas

    NASA Astrophysics Data System (ADS)

    Rueff, Katherine; Pitterle, M.; Hirschauer, A.; Lehner, N.; Howk, C.

    2006-12-01

    We present high-resolution optical images of the interstellar medium (ISM) in the thick disks of the spiral galaxies NGC 4013 and NGC 4302. Our broadband (BVI) images acquired with the Hubble Space Telescope’s WFPC2 show extensive extraplanar dust clouds seen in absorption against the background stellar light, while our narrow-band H-alpha images taken with the WIYN 3.5-m telescope show the diffuse ionized gas (DIG) in these galaxies. The dusty, thick disk clouds visible in our WFPC2 images, which can be found to heights approaching 2 kpc from the midplanes of these galaxies, trace a phase of the ISM that shows significant structure on quite small scales. In general this material is seen to be highly filamentary. By contrast, the thick disk DIG in these galaxies has significantly smoother distribution. We note several unresolved knots of H-alpha emission which may represent thick disk H II regions. We discuss the relationship of the dust-bearing clouds and the DIG in these galaxies.

  11. Ionized gas discs in elliptical and S0 galaxies at z < 1

    NASA Astrophysics Data System (ADS)

    Jaffé, Yara L.; Aragón-Salamanca, Alfonso; Ziegler, Bodo; Kuntschner, Harald; Zaritsky, Dennis; Rudnick, Gregory; Poggianti, Bianca M.; Hoyos, Carlos; Halliday, Claire; Demarco, Ricardo

    2014-06-01

    We analyse the extended, ionized-gas emission of 24 early-type galaxies (ETGs) at 0 < z < 1 from the ESO Distant Cluster Survey (EDisCS). We discuss different possible sources of ionization and favour star formation as the main cause of the observed emission. 10 galaxies have disturbed gas kinematics, while 14 have rotating gas discs. In addition, 15 galaxies are in the field, while 9 are in the infall regions of clusters. This implies that, if the gas has an internal origin, this is likely stripped as the galaxies get closer to the cluster centre. If the gas instead comes from an external source, then our results suggest that this is more likely acquired outside the cluster environment, where galaxy-galaxy interactions more commonly take place. We analyse the Tully-Fisher relation of the ETGs with gas discs, and compare them to EDisCS spirals. Taking a matched range of redshifts, MB < -20, and excluding galaxies with large velocity uncertainties, we find that, at fixed rotational velocity, ETGs are 1.7 mag fainter in MB than spirals. At fixed stellar mass, we also find that ETGs have systematically lower specific star formation rates than spirals. This study constitutes an important step forward towards the understanding of the evolution of the complex ISM in ETGs by significantly extending the look-back-time baseline explored so far.

  12. Quantification of dimethindene in plasma by gas chromatography-mass fragmentography using ammonia chemical ionization.

    PubMed

    Kauert, G; Herrle, I; Wermeille, M

    1993-08-11

    A gas chromatographic-mass fragmentographic method using ammonia chemical ionization for the determination of dimethindene in human plasma is described. The drug was isolated from plasma by liquid-liquid extraction with hexane-2-methylbutanol. Plasma components were separated on a capillary column coated with chemically bonded methyl silicone. For detection of dimethindene, its quasi-molecular ion (M + H+) was mass fragmentographically monitored after chemical ionization with ammonia as reagent gas. Dimethindene was quantified using methaqualone as the internal standard: the quantification limit in plasma was 0.2 ng/ml, the within-run precision was 8.0% and the inter-run precision 5.6%. The plasma concentration-time profile was established after a single dose of 4 mg of dimethindene with an average maximum concentration of 5.5 ng/ml, detectable up to 48 h post application. PMID:8408399

  13. Al III, Si IV, and C IV absorption toward zeta Ophiuchi: Evidence for photionized and collisionally ionized gas

    NASA Technical Reports Server (NTRS)

    Sembach, Kenneth R.; Savage, Blair D.; Jenkins, Edward B.

    1994-01-01

    We present Goddard High-Resolution Spectrograph observations at 3.5 km/s resolution and signal-to-noise ratios of 30 to 60 for the Al III, Si IV, and N V absorption lines in the far-ultraviolet spectrum of the O9.5 V star zeat Ophiuchi. The measurement reveal three types of highly ionized gas along the 140 pc line of sight. (1) Narrow components of Al III (b = 4.3 km/s, the mean value of (v(helio)) = -7.8 km/s; b = 3.2 km/s, the mean value of (v(sub helio)) = -14.4 km/s) and Si IV (b = 5.3 km/s, the mean value of (v(sub helio)) = -15.0 km/s) trace photionized gas in the expanding H II region surrounding zeta Oph. The observed magnitude and direction of the velocity offset between the Al III and Si IV profiles can be explained by models of H II regions that incorporate expansion. Narrow C IV absorption associated with the H II region is not detected. Predictions of the expected amounts of Si IV and C IV overestimate the column densities of these ions by factors of 30 and more than 10, respectively. The discrepancy may be due to the effects of elemental depletions in the gas and/or to the interaction of the stellar wind with surrounding matter. (2) Broad (b = 15 to 18 km/s) and weak Si IV and C IV absorption components are detected near the mean value of (v(sub helio)) = -26 km/s. The high-ionization species associated with these absorption components are probably produced by electron collisional ionization in a heated gas. This absorption may be physically related to the zeta Oph bow shock ot to a cloud complex situated within the local interstellar medium at d less than 60 pc. The C IV to Si IV column density ratio in this gas is 8, a factor of 6 less than conductive interface models predict, but this discrepancy may be removed by considering the effects of self-photoionization within the cooling gas in the model calculations. (3) A broad (b = 13 km/s) and weak C IV absorption feature detected at the mean value of (v(sub helio)) = -61 km/s is not seen in other

  14. Ionization steps and phase-space metamorphoses in the pulsed microwave ionization of highly excited hydrogen atoms

    SciTech Connect

    Bayfield, J.E.; Luie, S.Y.; Perotti, L.C.; Skrzypkowski, M.P.

    1996-01-01

    As the peak electric field of the microwave pulse is increased, steps in the classical microwave ionization probability of the highly excited hydrogen atom are produced by phase-space metamorphosis. They arise from new layers of Kolmogorov-Arnold-Moser (KAM) islands being exposed as KAM surfaces are destroyed. Both quantum numerical calculations and laboratory experiments exhibit the ionization steps, showing that such metamorphoses influence pulsed semiclassical systems. {copyright} {ital 1996 The American Physical Society.}

  15. Highly ionized disc and transient outflows in the Seyfert galaxy IRAS 18325-5926

    NASA Astrophysics Data System (ADS)

    Iwasawa, K.; Fabian, A. C.; Kara, E.; Reynolds, C. S.; Miniutti, G.; Tombesi, F.

    2016-08-01

    We report on strong X-ray variability and the Fe K-band spectrum of the Seyfert galaxy IRAS 18325-5926 obtained from the 2001 XMM-Newton EPIC pn observation with a duration of ~120 ks. While the X-ray source is highly variable, the 8-10 keV band shows larger variability than that of the lower energies. Amplified 8-10 keV flux variations are associated with two prominent flares of the X-ray source during the observation. The Fe K emission is peaked at 6.6 keV with moderate broadening. It is likely to originate from a highly ionized disc with an ionization parameter of log ξ ≃ 3. The Fe K line flux responds to the main flare, which supports its disc origin. A short burst of the Fe line flux has no relation to the continuum brightness, for which we have no clear explanation. We also find transient, blueshifted Fe K absorption features that can be identified with high-velocity (~0.2c) outflows of highly ionized gas, as found in other active galaxies. The deepest absorption feature appears only briefly (~1 h) at the onset of the main flare and disappears when the flare declines. The rapid evolution of the absorption spectrum makes this source peculiar among the active galaxies with high-velocity outflows. Another detection of the absorption feature also precedes the other flare. The variability of the absorption feature partly accounts for the excess variability in the 8-10 keV band where the absorption feature appears. Although no reverberation measurement is available, the black hole mass of ~2 × 106M⊙ is inferred from the X-ray variability. When this mass is assumed, the black hole is accreting at around the Eddington limit, which may fit the highly ionized disc and strong outflows observed in this galaxy.

  16. High Power Pulsed Gas Lasers

    NASA Astrophysics Data System (ADS)

    Witteman, W. J.

    1987-09-01

    Gas lasers have shown to be capable of delivering tens of terrawatt aspeak power or tens of kilowatt as average power. The efficiencies of most high power gas lasers are relatively high compared with other types of lasers. For instance molecular lasers, oscillating on low lying vibrational levels, and excimer lasers may have intrinsic efficiencies above 10%.The wavelengths of these gas lasers cover the range from the far infrared to the ultra-violet region, say from 12000 to 193 nm. The most important properties are the scalability, optical homogeneity of the excited medium, and the relatively low price per watt of output power. The disadvantages may be the large size of the systems and the relatively narrow line width with limited tunability compared with solid state systems producing the same peak power. High power gas lasers group into three main categories depending on the waste-heat handling capacity.

  17. Investigating the Diffuse Ionized Gas throughout the Magellanic Cloud System with WHAM

    NASA Astrophysics Data System (ADS)

    Smart, Brianna; Haffner, L. Matthew; Barger, Kathleen; Madsen, Gregory J.; Hill, Alex S.

    2015-01-01

    We present early stages of an H-α survey of the Magellanic System using the Wisconsin H-α Mapper (WHAM). Our maps of the Small Magellanic Cloud, Large Magellanic Cloud, and Magellanic Bridge are the most sensitive kinematic maps of ionized gas throughout the System. With a velocity resolution of 12 km/s, WHAM observations can cleanly separate diffuse emission at Magellanic velocities from that of the Milky Way and terrestrial sources. These new maps of the SMC and LMC compliment observations of the Magellanic Bridge by Barger et al. (2013), who found H-alpha emission extending throughout and beyond the observed H I emission. Using WHAM's unprecedented sensitivity to the limit of atmospheric line confusion (~ 10s of mR), we find that ionized gas emission extends at least 5 degrees beyond the traditional boundary of the SMC when compared to recent deep-imaging surveys (e.g., MCELS; Smith et al. 2005). The diffuse ionized emission extent is similar to the neutral gas extent as traced by 21 cm. We present spectra comparing H I and H-alpha kinematic signatures throughout the emission region, which are dominated by galactic rotation. Multi-wavelength observations are also underway in [S II] and [N II] for the SMC and LMC. WHAM research and operations are supported through NSF Award AST-1108911.

  18. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    SciTech Connect

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  19. High-efficiency electron ionizer for a mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Darrach, Murray R. (Inventor); Orient, Otto J. (Inventor)

    2001-01-01

    The present invention provides an improved electron ionizer for use in a quadrupole mass spectrometer. The improved electron ionizer includes a repeller plate that ejects sample atoms or molecules, an ionizer chamber, a cathode that emits an electron beam into the ionizer chamber, an exit opening for excess electrons to escape, at least one shim plate to collimate said electron beam, extraction apertures, and a plurality of lens elements for focusing the extracted ions onto entrance apertures.

  20. Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source.

    PubMed

    Mühlberger, F; Saraji-Bozorgzad, M; Gonin, M; Fuhrer, K; Zimmermann, R

    2007-11-01

    Orthogonal acceleration time-of-flight mass spectrometers (oaTOFMS), which are exhibiting a pulsed orthogonal extraction of ion bunches into the TOF mass analyzer from a continuous primary ion beam, are well-suited for continuous ionization methods such as electron impact ionization (EI). Recently an electron beam pumped rare gas excimer lamp (EBEL) was introduced, which emits intensive vacuum UV (VUV) radiation at, e.g., 126 nm (argon excimer) and is well suited as the light source for soft single photon ionization (SPI) of organic molecules. In this paper, a new compact oaTOFMS system which allows switching between SPI, using VUV-light from an EBEL-light source, and conventional EI is described. With the oaTOFMS system, EBEL-SPI and EI mass spectral transients can be recorded at very high repetition rates (up to 100 kHz), enabling high duty cycles and therefore good detection efficiencies. By using a transient recorder card with the capability to perform on-board accumulation of the oaTOF transients, final mass spectra with a dynamic range of 106 can be saved to the hard disk at a rate of 10 Hz. As it is possible to change the ionization modes (EI and SPI) rapidly, a comprehensive monitoring of complex gases with highly dynamic compositions, such as cigarette smoke, is possible. In this context, the EI based mass spectra address the bulk composition (compounds such as water, oxygen, carbon dioxide, etc. in the up to percentage concentration range) as well as some inorganic trace gases such as argon, sulfur dioxide, etc. down to the low ppm level. The EBEL-SPI mass spectra on the other hand are revealing the organic composition down to the lower ppb concentration range. PMID:17900147

  1. H-alpha LEGUS: Unveiling the Interplay Between Stars, Star Clusters, and Ionized Gas

    NASA Astrophysics Data System (ADS)

    Chandar, Rupali

    2014-10-01

    We propose to obtain narrow-band, H-alpha observations for a significant subset of the star-forming, nearby galaxies recently targeted by the LEGUS treasury program (GO-13364). LEGUS is observing these galaxies in five broad-band filters: NUV, U, B, V, and I. The new H-alpha observations will reveal thousands of previously undetected HII regions, including those ionized by stellar clusters and single massive stars, allow us to measure their luminosities and sizes, and to separate discrete sources from diffuse ionized gas. We will use our narrow-band imaging survey to: (1) establish the connection between star and cluster formation, and determine the prevelance with which isolated massive stars form in different galaxies; (2) determine whether the initial cluster mass function is universal; (3) investigate the size evolution of ionized gas bubbles, and how this depends on cluster age and mass, as well as on local galactic conditions; and (4) place stringent limits on the leakage of ionizing photons from HII regions, and better understand how the interplay between properties of the ionizing source and the morphology of the HII region impacts leakage. The broad goal of this study is to better understand how feedback from massive stars affects the surrounding medium. Ultimately, the interplay between feedback and the ISM on these scales will enable a better understanding of galaxy-scale outflows in the early universe, a process critical to galaxy evolution. This program naturally lends itself to an improvement of the scientific output by involving the general public via an already established Citizen Science program.

  2. High efficiency gas burner

    DOEpatents

    Schuetz, Mark A.

    1983-01-01

    A burner assembly provides for 100% premixing of fuel and air by drawing the air into at least one high velocity stream of fuel without power assist. Specifically, the nozzle assembly for injecting the fuel into a throat comprises a plurality of nozzles in a generally circular array. Preferably, swirl is imparted to the air/fuel mixture by angling the nozzles. The diffuser comprises a conical primary diffuser followed by a cusp diffuser.

  3. THE CURIOUS CASE OF GLASS I: HIGH IONIZATION AND VARIABILITY OF DIFFERENT TYPES

    SciTech Connect

    Kruger, Andrew J.; Richter, Matthew J.; Carr, John S.; Najita, Joan R.; Moerchen, Margaret M.; Doppmann, Greg W.; Seifahrt, Andreas

    2013-02-20

    Our Spitzer IRS observation of the infrared companion Glass Ib revealed fine-structure emission with high ionization ([Ne III]/[Ne II] = 2.1 and [S IV]/[S III] = 0.6) that indicates that the gas is likely illuminated by hard radiation. While models suggest that extreme-ultraviolet radiation could be present in T Tauri stars, this is the first detection of [S IV] and such a high [Ne III]/[Ne II] ratio in a young star. We also find that Glass Ib displays the molecules HCN, CO{sub 2}, and H{sub 2}O in emission. Here we investigate the Glass I binary system and consider possible mechanisms that may have caused the high ionization, whether from an outflow or disk irradiation. We also model the spectral energy distributions of Glass Ia and Ib to test if the system is a young member of the Chameleon I star-forming region, and we consider other possible classifications for the system. We find that Glass Ib is highly variable, showing changes in continuum strength and emission features at optical, near-infrared, and mid-infrared wavelengths. The optical light curve indicates that a central stellar component in Glass Ib became entirely visible for 2.5 years beginning in mid-2002 and possibly displayed periodic variability with repeated, short-period dimming during that time. As the fine-structure emission was not detected in observations before or after our Spitzer IRS observation, we explore whether the variable nature of Glass Ib is related to the gas being highly ionized, possibly due to variable accretion or an X-ray flare.

  4. INTEGRAL-FIELD STELLAR AND IONIZED GAS KINEMATICS OF PECULIAR VIRGO CLUSTER SPIRAL GALAXIES

    SciTech Connect

    Cortés, Juan R.; Hardy, Eduardo; Kenney, Jeffrey D. P. E-mail: ehardy@nrao.cl

    2015-01-01

    We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5 m telescope in order to look for kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. Two-dimensional maps of the stellar velocity V, stellar velocity dispersion σ, and the ionized gas velocity (Hβ and/or [O III]) are presented for the galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between the optical and kinematical major axes are found in several galaxies. While in some cases this is due to a bar, in other cases it seems to be associated with gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxies have signatures of kinematically distinct stellar components, which are likely signatures of accretion or mergers. For all of our galaxies, we compute the angular momentum parameter λ {sub R}. An evaluation of the galaxies in the λ {sub R} ellipticity plane shows that all but two of the galaxies have significant support from random stellar motions, and have likely experienced gravitational interactions. This includes some galaxies with very small bulges and truncated/compact Hα morphologies, indicating that such galaxies cannot be fully explained by simple ram pressure stripping, but must have had significant gravitational encounters. Most of the sample galaxies show evidence for ICM-ISM stripping as well as gravitational interactions, indicating that the evolution of a significant fraction of cluster galaxies is likely strongly impacted by both effects.

  5. Separation of low first ionization potential ions from high first ionization potential neutrals in the low chromosphere

    NASA Astrophysics Data System (ADS)

    Athay, R. Grant

    1994-03-01

    Spectroscopic data from two flights of the Naval Research Laboratory's High Resolution Telescope and Spectrograph (HRTS) are analyzed for evidence of variations in relative abundances in the low chromosphere. Comparisons of sunspot, active region, and quiet-Sun data from HRTS II reveal decreases of intensities of sunspot lines from the first ionization stages of elements with low first ionization potential relative to both the active region and the quiet Sun. C I lines, however, are more intense in the sunspot than either the active region or the quiet Sun. Within a sunspot in Spacelab II data, the C I line at 156.1 nm is near its average intensity, whereas the Fe II line at 156.3 is much weaker than average. Both spots suggest a relative high value for the C I/Fe II abundance ratio. Within the zone of the same magnetic polarity as the sunspot (leading polarity) in the Spacelab II data, the brightest plages in C I show large C I/Fe II intensity ratios similar to those found in the sunspot. By contrast, the zones of following polarity on either side of the leading polarity show several well-defined areas of unusually low C I/Fe II intensity ratios associated with dark features in C I. The plages within these same zones have near normal or somewhat enhanced values for the C I/Fe II intensity ratios. It is noteworthy, also, that many of the brightest areas in C I do not coincide spatially with the brightest regions in Fe II. Neither do the darkest areas in C I align well with the darkest areas in Fe II. The association of high C I/Fe II intensity ratios with the zone of leading polarity and low-intensity ratios with zones of following polarity suggests that the iron abundance is dependent on the field polarity and is relatively low in the sunspot and the brighter plages in the zone of leading polarity and relatively high in C I dark flocculi in zones of following polarity. Failure of the brightest and darkest features in C I to align with the brightest and darkest

  6. Dopant Enriched Nitrogen Gas Combined with Sheathless Capillary Electrophoresis-Electrospray Ionization-Mass Spectrometry for Improved Sensitivity and Repeatability in Glycopeptide Analysis.

    PubMed

    Kammeijer, Guinevere S M; Kohler, Isabelle; Jansen, Bas C; Hensbergen, Paul J; Mayboroda, Oleg A; Falck, David; Wuhrer, Manfred

    2016-06-01

    Over the last years, numerous strategies have been proposed to enhance both ionization efficiency and spray stability in electrospray ionization (ESI), in particular for nanospray applications. In nano-liquid chromatography-mass spectrometry (nano-LC-ESI-MS), a better ESI performance has been observed when a coaxial gas flow is added around the ESI emitter. Moreover, enrichment of the gas with an organic dopant has led to an improved desolvation and ionization efficiency with an overall enhanced sensitivity. In this study, the use of a dopant enriched nitrogen (DEN)-gas combined with sheathless capillary electrophoresis (CE)-ESI-MS was evaluated for glycopeptide analysis. Using acetonitrile as a dopant, an increased sensitivity was observed compared to conventional sheathless CE-ESI-MS. Up to 25-fold higher sensitivities for model glycopeptides were obtained, allowing for limits of detection unachieved by state-of-the-art nano-LC-ESI-MS. The effect of DEN-gas on the repeatability and intermediate precision was also investigated. When compared to previously reported nano-LC-ESI-MS measurements, similar values were found for CE-ESI-MS with DEN-gas. The enhanced repeatability fosters the use of DEN-gas sheathless CE-ESI-MS in protein glycosylation analysis, where precision is essential. The use of DEN-gas opens new avenues for highly sensitive sheathless CE-ESI-MS approaches in glycoproteomics research, by significantly improving sensitivity and precision. PMID:27119460

  7. Diamagnetic Effect in a Partially-Ionized High-Beta Plasma

    NASA Astrophysics Data System (ADS)

    Fruchtman, Amnon; Shinohara, Shunjiro

    2015-11-01

    Balance between magnetic pressure and plasma pressure is expected in fully ionized plasmas confined by a magnetic field. The magnetic force on the plasma is due to a current carried by the plasma which is diamagnetic. The magnetic field inside the plasma is then lowered by that current. In a partially-ionized plasma, however, the plasma pressure is balanced not only by the magnetic field pressure but also by neural-gas pressure. In that case the diamagnetic effect of the plasma, even if high beta, is expected to be lower. We calculate the steady-state of a cylindrical low temperature magnetized partially-ionized plasma (such as rf plasma source). We solve for the radial dependencies of the plasma density, the neutral density, and the magnetic field profile. Neutral pressure gradient is established by neutral depletion under the plasma pressure. We demonstrate how neutral depletion affects the diamagnetic effect of a high beta plasma. This work was partially supported by JSPS, Japan, and by ISF, Israel.

  8. High-sensitivity elemental ionization for quantitative detection of halogenated compounds.

    PubMed

    Wang, Haopeng; Minardi, Carina S; Badiei, Hamid; Kahen, Kaveh; Jorabchi, Kaveh

    2015-12-21

    The rising importance of organohalogens in environmental, pharmaceutical, and biological applications has drawn attention to analysis of these compounds in recent years. Elemental mass spectrometry (MS) is particularly advantageous in this regard because of its ability to quantify without compound-specific standards. However, low sensitivity of conventional elemental MS for halogens has hampered applications of this powerful method in organohalogen analyses. To this end, we have developed a high-sensitivity elemental ion source compatible with widely available atmospheric-sampling mass spectrometers. We utilize a helium-oxygen plasma for atomization followed by negative ion formation in plasma afterglow, a configuration termed as plasma-assisted reaction chemical ionization (PARCI). The effect of oxygen on in-plasma and afterglow reactions is investigated, leading to fundamental understanding of ion generation processes as well as optimized operating conditions. Coupled to a gas chromatograph, PARCI shows constant ionization efficiency for F, Cl, and Br regardless of the chemical structure of the compounds. Negative ionization in the afterglow improves halide ion formation efficiency and eliminates isobaric interferences, offering sub-picogram elemental detection for F, Cl, and Br using low-resolution MS. Notably, the detection limit for F is about one order of magnitude better than other elemental MS techniques. The high sensitivity and facile adoptability of PARCI pave the way for combined elemental-molecular characterization, a comprehensive analytical scheme for rapid identification and quantification of organohalogens. PMID:26549767

  9. Atmospheric pressure ionization and gas phase ion mobility studies of isomeric dihalogenated benzenes using different ionization techniques

    NASA Astrophysics Data System (ADS)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2004-03-01

    Ion mobility spectrometry (IMS) featuring different ionization techniques was used to analyze isomeric ortho-, meta- and para-dihalogenated benzenes in order to assess how structural features affect ion formation and drift behavior. The structure of the product ions formed was investigated by atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and IMS-MS coupling. Photoionization provided [M]+ ions for chlorinated and fluorinated compounds while bromine was cleaved from isomers of dibromobenzene and bromofluorobenzene. This ionization technique does not permit the different isomers to be distinguished. Comparable ions and additional clustered ions were obtained using 63Ni ionization. Depending on the chemical constitution, different clustered ions were observed in ion mobility spectra for the separate isomers of dichlorobenzene and dibromobenzene. Corona discharge ionization permits the most sensitive detection of dihalogenated compounds. Only clustered product ions were obtained. Corona discharge ionization enables the classification of different structural isomers of dichlorobenzene, dibromobenzene and bromofluorobenzene.

  10. P-MaNGA Galaxies: emission-lines properties - gas ionization and chemical abundances from prototype observations

    NASA Astrophysics Data System (ADS)

    Belfiore, F.; Maiolino, R.; Bundy, K.; Thomas, D.; Maraston, C.; Wilkinson, D.; Sánchez, S. F.; Bershady, M.; Blanc, G. A.; Bothwell, M.; Cales, S. L.; Coccato, L.; Drory, N.; Emsellem, E.; Fu, H.; Gelfand, J.; Law, D.; Masters, K.; Parejko, J.; Tremonti, C.; Wake, D.; Weijmans, A.; Yan, R.; Xiao, T.; Zhang, K.; Zheng, T.; Bizyaev, D.; Kinemuchi, K.; Oravetz, D.; Simmons, A.

    2015-05-01

    MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) is a 6-yr Sloan Digital Sky Survey (SDSS-IV) survey that will obtain spatially resolved spectroscopy from 3600 to 10 300 Å for a representative sample of over 10 000 nearby galaxies. In this paper, we present the analysis of nebular emission-line properties using observations of 14 galaxies obtained with P-MaNGA, a prototype of the MaNGA instrument. By using spatially resolved diagnostic diagrams, we find extended star formation in galaxies that are centrally dominated by Seyfert/LINER-like emission, which illustrates that galaxy characterizations based on single fibre spectra are necessarily incomplete. We observe extended low ionization nuclear emission-line regions (LINER)-like emission (up to 1Re) in the central regions of three galaxies. We make use of the Hα equivalent width [EW(Hα)] to argue that the observed emission is consistent with ionization from hot evolved stars. We derive stellar population indices and demonstrate a clear correlation between Dn(4000) and EW(HδA) and the position in the ionization diagnostic diagram: resolved galactic regions which are ionized by a Seyfert/LINER-like radiation field are also devoid of recent star formation and host older and/or more metal-rich stellar populations. We also detect extraplanar LINER-like emission in two highly inclined galaxies, and identify it with diffuse ionized gas. We investigate spatially resolved metallicities and find a positive correlation between metallicity and star formation rate surface density. We further study the relation between N/O versus O/H on resolved scales. We find that, at given N/O, regions within individual galaxies are spread towards lower metallicities, deviating from the sequence defined by galactic central regions as traced by Sloan 3-arcsec fibre spectra. We suggest that the observed dispersion can be a tracer for gas flows in galaxies: infalls of pristine gas and/or the effect of a galactic fountain.

  11. Far-IR spectroscopy of the galactic center: Neutral and ionized gas in the central 10 pc of the galaxy

    NASA Technical Reports Server (NTRS)

    Hollenbach, D. J.; Watson, D. M.; Townes, C. H.; Dinerstein, H. L.; Hollenbach, D.; Lester, D. F.; Werner, M.; Storey, J. W. V.

    1983-01-01

    The 3P1 - 3P2 fine structure line emission from neutral atomic oxygen at 63 microns in the vicinity of the galactic center was mapped. The emission is extended over more than 4' (12 pc) along the galactic plane, centered on the position of Sgr A West. The line center velocities show that the O I gas is rotating around the galactic center with an axis close to that of the general galactic rotation, but there appear also to be noncircular motions. The rotational velocity at R is approximately 1 pc corresponds to a mass within the central pc of about 3 x 10(6) solar mass. Between 1 and 6 pc from the center the mass is approximately proportional to radius. The (O I) line probability arises in a predominantly neutral, atomic region immediately outside of the ionized central parsec of out galaxy. Hydrogen densities in the (O I) emitting region are 10(3) to 10(6) cm(-3) and gas temperatures are or = 100 K. The total integrated luminosity radiated in the line is about 10(5) solar luminosity, and is a substantial contribution to the cooling of the gas. Photoelectric heating or heating by ultraviolet excitation of H2 at high densities (10(5) cm(-3)) are promising mechanisms for heating of the gas, but heating due to dissipation of noncircular motions of the gas may be an alternative possibility. The 3P1 - 3P0 fine structure line of (O III) at 88 microns toward Sgr A West was also detected. The (O III) emission comes from high density ionized gas (n 10(4) cm(-3)), and there is no evidence for a medium density region (n 10(3) cm(-3)), such as the ionized halo in Sgr A West deduced from radio observations. This radio halo may be nonthermal, or may consist of many compact, dense clumps of filaments on the inner edges of neutral condensations at R or = 2 pc.

  12. Dense clumps of ionized gas near Pi Scorpii, as revealed by the fine-structure excitation of N II

    NASA Technical Reports Server (NTRS)

    Bertoldi, Frank; Jenkins, Edward B.

    1992-01-01

    The column density and the emission of the ionized gas along the line of sight toward the B1 V + B2 V binary star Pi Sco are measured on the basis of the fine-structure absorption lines of the ground state N II. It is found that the bulk of this ionized gas must be clumped on a length scale of 0.025 pc, which is far smaller than the observed size of the diffuse H II region surrounding Pi Sco of about 6 pc. The observed column density of S III toward Pi Sco yields an upper limit on the distance of the absorbing, clumped gas from the star of less than about 0.02 pc, assuming that both the N II and S III absorption arise from the same gas. The possibility that the ionized gas originates from a photoevaporating circumstellar disk directly surrounding Pi Sco is excluded, since such a disk would have an unusual size of order 0.025 pc and would have had to survive for the estimated age of Pi Sco of 5-8 Myr. The derived mean density of the clumped gas is of order 40/cu cm, so that the gas is at a pressure that far exceeds the mean pressure in the H II region. It is concluded that the ionized gas could originate from evaporation flows off a cluster of compact neutral objects that evaporate due to the ionizing radiation of Pi Sco.

  13. Baryonic distributions in galaxy dark matter haloes - I. New observations of neutral and ionized gas kinematics

    NASA Astrophysics Data System (ADS)

    Richards, Emily E.; van Zee, L.; Barnes, K. L.; Staudaher, S.; Dale, D. A.; Braun, T. T.; Wavle, D. C.; Dalcanton, J. J.; Bullock, J. S.; Chandar, R.

    2016-07-01

    We present a combination of new and archival neutral hydrogen (H I) observations and new ionized gas spectroscopic observations for 16 galaxies in the statistically representative Extended Disk Galaxy Explore Science kinematic sample. H I rotation curves are derived from new and archival radio synthesis observations from the Very Large Array (VLA) as well as processed data products from the Westerbork Radio Synthesis Telescope (WSRT). The H I rotation curves are supplemented with optical spectroscopic integral field unit (IFU) observations using SparsePak on the WIYN 3.5 m telescope to constrain the central ionized gas kinematics in 12 galaxies. The full rotation curves of each galaxy are decomposed into baryonic and dark matter halo components using 3.6μm images from the Spitzer Space Telescope for the stellar content, the neutral hydrogen data for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. Differences in the inferred distribution of mass are illustrated under fixed stellar mass-to-light ratio (M/L) and maximum disc/bulge assumptions in the rotation curve decomposition.

  14. Baryonic Distributions in Galaxy Dark Matter Haloes I: New Observations of Neutral and Ionized Gas Kinematics

    NASA Astrophysics Data System (ADS)

    Richards, Emily E.; van Zee, L.; Barnes, K. L.; Staudaher, S.; Dale, D. A.; Braun, T. T.; Wavle, D. C.; Dalcanton, J. J.; Bullock, J. S.; Chandar, R.

    2016-04-01

    We present a combination of new and archival neutral hydrogen (HI) observations and new ionized gas spectroscopic observations for sixteen galaxies in the statistically representative EDGES kinematic sample. HI rotation curves are derived from new and archival radio synthesis observations from the Very Large Array (VLA) as well as processed data products from the Westerbork Radio Synthesis Telescope (WSRT). The HI rotation curves are supplemented with optical spectroscopic integral field unit (IFU) observations using SparsePak on the WIYN 3.5 m telescope to constrain the central ionized gas kinematics in twelve galaxies. The full rotation curves of each galaxy are decomposed into baryonic and dark matter halo components using 3.6μm images from the Spitzer Space Telescope for the stellar content, the neutral hydrogen data for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. Differences in the inferred distribution of mass are illustrated under fixed stellar mass-to-light ratio (M/L) and maximum disc/bulge assumptions in the rotation curve decomposition.

  15. Gas chromatography-microchip atmospheric pressure chemical ionization-mass spectrometry.

    PubMed

    Ostman, Pekka; Luosujärvi, Laura; Haapala, Markus; Grigoras, Kestas; Ketola, Raimo A; Kotiaho, Tapio; Franssila, Sami; Kostiainen, Risto

    2006-05-01

    An atmospheric pressure chemical ionization (APCI) microchip is presented for combining a gas chromatograph (GC) to a mass spectrometer (MS). The chip includes capillary insertion channel, stopper, vaporizer channel, nozzle and nebulizer gas inlet fabricated on the silicon wafer, and a platinum heater sputtered on a glass wafer. These two wafers are joined by anodic bonding creating a two-dimensional version of an APCI microchip. The sample from GC is directed via heated transfer line capillary to the vaporizer channel of the APCI chip. The etched nozzle forms narrow sample plume, which is ionized by an external corona discharge needle, and the ions are analyzed by a mass spectrometer. The GC-microchip APCI-MS combination provides an efficient method for qualitative and quantitative analysis. The spectra produced by microchip APCI show intensive protonated molecule and some fragmentation products as in classical chemical ionization for structure elucidation. In quantitative analysis the GC-microchip APCI-MS showed good linearity (r(2) = 0.9989) and repeatability (relative standard deviation 4.4%). The limits of detection with signal-to-noise ratio of three were between 0.5 and 2 micromol/L with MS mode using selected ion monitoring and 0.05 micromol/L with MS/MS using multiple reaction monitoring. PMID:16642989

  16. High ratio recirculating gas compressor

    DOEpatents

    Weinbrecht, John F.

    1989-01-01

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor.

  17. High ratio recirculating gas compressor

    DOEpatents

    Weinbrecht, J.F.

    1989-08-22

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor. 10 figs.

  18. Ionization-induced effects in the soliton dynamics of high-peak-power femtosecond pulses in hollow photonic-crystal fibers

    SciTech Connect

    Serebryannikov, E. E.; Zheltikov, A. M.

    2007-07-15

    Ionization phenomena are shown to modify the soliton propagation dynamics of high-peak-power laser pulses in hollow-core photonic-crystal fibers (PCFs). Based on the numerical solution of the pulse-evolution equation for a high-peak-power laser field in an ionizing gas medium in a hollow PCF, we demonstrate that hollow PCFs filled with gases having high ionization potentials I{sub p} can support soliton transmission regimes for gigawatt femtosecond laser pulses. In hollow PCFs filled with low-I{sub p} gases, on the other hand, the ionization-induced change in the refractive index of the gas leads to a blueshifting of soliton transients, pushing their spectrum beyond the point of zero group-velocity dispersion, thus preventing the formation of stable high-peak-power solitons.

  19. Propagation direction reversal of ionization zones in the transition between high and low current magnetron sputtering

    SciTech Connect

    School of Materials Science and Engineering, State Key Lab for Materials Processing and Die & Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Department of Physics, University of California Berkeley, Berkeley, California 94720, USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA; Yang, Yuchen; Liu, Jason; Liu, Lin; Anders, André

    2014-12-11

    Past research has revealed the propagation of dense, asymmetric ionization zones in both high and low current magnetron discharges. Here we report about the direction reversal of ionization zone propagation as observed with fast cameras. At high currents, zones move in the E B direction with velocities of 103 to 104 m/s. However at lower currents, ionization zones are observed to move in the opposite, the -E B direction, with velocities ~;; 103 m/s. It is proposed that the direction reversal is associated with the local balance of ionization and supply of neutrals in the ionization zone.

  20. Quantitative determination of terbutaline and orciprenaline in human plasma by gas chromatography/negative ion chemical ionization/mass spectrometry.

    PubMed

    Leis, H J; Gleispach, H; Nitsche, V; Malle, E

    1990-06-01

    A method for the determination of unconjugated terbutaline and orciprenaline in human plasma is described. The assay is based on stable isotope dilution gas chromatography/negative ion chemical ionization/mass spectrometry. An inexpensive and rapid method for preparation of stable isotope labelled analogues as well as their use in quantitative gas chromatography/mass spectrometry is shown. A highly efficient sample work-up procedure with product recoveries of more than 95% is presented. The method developed permits quantitative measurement of terbutaline and orciprenaline in human plasma down to 100 pg ml-1, using 1 ml of sample. Plasma levels of terbutaline after oral administration of 5 mg of terbutaline sulphate were estimated. PMID:2357489

  1. MAGNETIZED GAS IN THE SMITH HIGH VELOCITY CLOUD

    SciTech Connect

    Hill, Alex S.; McClure-Griffiths, Naomi M.; Mao, S. A.; Benjamin, Robert A.; Lockman, Felix J. E-mail: naomi.mcclure-griffiths@csiro.au E-mail: benjamir@uww.edu

    2013-11-01

    We report the first detection of magnetic fields associated with the Smith High Velocity Cloud. We use a catalog of Faraday rotation measures toward extragalactic radio sources behind the Smith Cloud, new H I observations from the Robert C. Byrd Green Bank Telescope, and a spectroscopic map of Hα from the Wisconsin H-Alpha Mapper Northern Sky Survey. There are enhancements in rotation measure (RM) of ≈100 rad m{sup –2} which are generally well correlated with decelerated Hα emission. We estimate a lower limit on the line-of-sight component of the field of ≈8 μG along a decelerated filament; this is a lower limit due to our assumptions about the geometry. No RM excess is evident in sightlines dominated by H I or Hα at the velocity of the Smith Cloud. The smooth Hα morphology of the emission at the Smith Cloud velocity suggests photoionization by the Galactic ionizing radiation field as the dominant ionization mechanism, while the filamentary morphology and high (≈1 Rayleigh) Hα intensity of the lower-velocity magnetized ionized gas suggests an ionization process associated with shocks due to interaction with the Galactic interstellar medium. The presence of the magnetic field may contribute to the survival of high velocity clouds like the Smith Cloud as they move from the Galactic halo to the disk. We expect these data to provide a test for magnetohydrodynamic simulations of infalling gas.

  2. Forbidden line emission from highly ionized atoms in tokamak plasmas

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Bhatia, A. K.

    1982-01-01

    Considerable interest in the observation of forbidden spectral lines from highly ionized atoms in tokamak plasmas is related to the significance of such observations for plasma diagnostic applications. Atomic data for the elements Ti Cr, Mn, Fe, Ni, and Kr have been published by Feldman et al. (1980) and Bhatia et al. (1980). The present investigation is concerned with collisional excitation rate coefficients and radiative decay rates, which are interpolated for ions of elements between calcium, and krypton and for levels of the 2s2 2pk, 2s 2p(k+1), and 2p(k+2) configurations, and for the O I, N I, C I, B I, and Be I isoelectronic sequences. The provided interpolated atomic data can be employed to calculate level populations and relative line intensities for ions of the considered sequences, taking into account levels of the stated configurations. Important plasma diagnostic information provided by the forbidden lines includes the ion temperature

  3. Extreme ultraviolet spectra of highly ionized oxygen and fluorine

    NASA Technical Reports Server (NTRS)

    Pegg, D. J.; Griffin, P. M.; Haselton, H. H.; Laubert, R.; Mowat, J. R.; Thoe, R. S.; Peterson, R. S.; Sellin, I. A.

    1974-01-01

    The foil-excitation method has been used to study the extreme ultraviolet spectra of highly ionized oxygen and fluorine. Several previously unreported lines in heliumlike fluorine are reported and other newly reported lines in heliumlike oxygen have been measured to higher accuracy. Included in the measurements are certain heliumlike oxygen transitions of significance in interpretation of solar-flare spectral observations. The wavelength determinations are usually in good agreement with calculated results which includes relativistic corrections, but discrepancies arise when nonrelativistic calculations are used. A comparison of the present results and those recently obtained by theta-pinch and laser-induced plasma sources is made for both heliumlike and lithiumlike ions; a few discrepancies occur, with results in most cases in better agreement with relativistically corrected calculations. Certain unidentified lines in the spectra may be attributable to radiative transitions between quartet states of lithiumlike ions.

  4. Satellites to Delta n = 1 transitions between high-lying levels of multiply ionized atoms

    NASA Astrophysics Data System (ADS)

    Koenig, R.; Kolk, K.-H.; Koshelev, K. N.; Kunze, H.-J.

    1989-04-01

    In a theta pinch discharge satellites to Delta n = 1 transitions between high-lying levels are observed for the ions Si IX, Si X, and Si XI, but not for Si XII. They are identified as Delta n = 1 transitions between the corresponding levels of doubly excited systems. At high densities, the series of Rydberg levels above their respective thermal limit are collisionally coupled to their ionization limit. The intensity ratio of a transition to that of its satellite thus offers the unique possibility of measuring the ratio of the population density in the ground energy level of the next ionization stage to that in the lowest excited levels of this ion.

  5. The Ionized Gas and Nuclear Environment in NGC 3783. IV; Variability and Modeling of the 900 ks CHANDRA Spectrum

    NASA Technical Reports Server (NTRS)

    Netzer, Hagai; Kaspi, Shai; Behar, Ehud; Brandt, W. N.; Chelouche, Doron; George, Ian M.; Crenshaw, D. Michael; Gabel, Jack R.; Hamann, Frederick W.; George, Steven B.

    2003-01-01

    We present a detailed analysis of the 900 ks spectrum of NGC3783 obtained by Chandra in 2000-2001 (Kaspi et al. 2002). We split the data in various ways to look for time dependent and luminosity dependent spectral variations. This analysis, the measured equivalent widths of a large number of X-ray lines, and our photoionization calculations, lead us to the following conclusions: 1) NGC 3783 fluctuated in luminosity, by a factor N 1.5, during individual 170 ks observations. The fluctuations were not associated with significant spectral variations. 2) On a longer time scale, of 20-120 days, we discovered two very different spectral shapes that are noted the high state and the low state spectra. The observed changes between the two can be described as the appearance and disappearance of a soft continuum component. The spectral variations are not related, in a simple way, to the brightening or the fading of the short wavelength continuum, as observed in other objects. NGC3783 seems to be the first AGN to show this unusual behavior. 3) The appearance of the soft continuum component is consistent with beeing the only spectral variation and there is no need to invoke changes in the absorber s opacity. In particular, all absorption lines with reliable measurements show the same equivalent width, within the observational uncertainties, during high and low states. 4) Photoionization model calculations show that a combination of three ionization components, each split into two kinematic components, explain very well the intensity of almost all absorption lines and the bound-free absorption. The components span a large range of ionization and a total column of about 3 x 10(exp 22) per square centimeter Moreover, all components are thermally stable and are situated on the vertical branch of the stability curve.. This means that they are in pressure equilibrium and perhaps occupy the same volume of space. This is the first detection of such a multi-component equilibrium gas in

  6. WARM IONIZED GAS REVEALED IN THE MAGELLANIC BRIDGE TIDAL REMNANT: CONSTRAINING THE BARYON CONTENT AND THE ESCAPING IONIZING PHOTONS AROUND DWARF GALAXIES

    SciTech Connect

    Barger, K. A.; Haffner, L. M.; Bland-Hawthorn, J. E-mail: haffner@astro.wisc.edu

    2013-07-10

    The Magellanic System includes some of the nearest examples of galaxies disturbed by galaxy interactions. These interactions have redistributed much of their gas into the halos of the Milky Way (MW) and the Magellanic Clouds. We present Wisconsin H{alpha} Mapper kinematically resolved observations of the warm ionized gas in the Magellanic Bridge over the velocity range of +100 to +300 km s{sup -1} in the local standard of rest reference frame. These observations include the first full H{alpha} intensity map and the corresponding intensity-weighted mean velocity map of the Magellanic Bridge across (l, b) = (281 Degree-Sign .5, -30 Degree-Sign .0) to (302. Degree-Sign 5, -46. Degree-Sign 7). Using the H{alpha} emission from the Small Magellanic Cloud (SMC)-Tail and the Bridge, we estimate that the mass of the ionized material is between (0.7-1.7) Multiplication-Sign 10{sup 8} M{sub Sun }, compared to 3.3 Multiplication-Sign 10{sup 8} M{sub Sun} for the neutral mass over the same region. The diffuse Bridge is significantly more ionized than the SMC-Tail, with an ionization fraction of 36%-52% compared to 5%-24% for the Tail. The H{alpha} emission has a complex multiple-component structure with a velocity distribution that could trace the sources of ionization or distinct ionized structures. We find that incident radiation from the extragalactic background and the MW alone are insufficient to produced the observed ionization in the Magellanic Bridge and present a model for the escape fraction of the ionizing photons from both the SMC and Large Magellanic Cloud (LMC). With this model, we place an upper limit of 4.0% for the average escape fraction of ionizing photons from the LMC and an upper limit of 5.5% for the SMC. These results, combined with the findings of a half a dozen other studies for dwarf galaxies in different environments, provide compelling evidence that only a small percentage of the ionizing photons escape from dwarf galaxies in the present epoch to

  7. Ionized gas outflow in the isolated S0 galaxy NGC 4460

    NASA Astrophysics Data System (ADS)

    Moiseev, Alexei; Karachentsev, Igor; Kaisin, Serafim

    2010-04-01

    We used integral-field and long-slit spectroscopy to study a bright extended nebulosity recently discovered in the isolated lenticular galaxy NGC 4460 during an Hα survey of nearby galaxies. An analysis of archival Sloan Digital Sky Survey, GALEX and Hubble Space Telescope images indicates that current star formation is entirely concentrated in the central kiloparsec of the galaxy disc. The observed ionized gas parameters (morphology, kinematics and ionization state) can be explained by a gas outflow above the plane of the galaxy, caused by star formation in the circumnuclear region. Galactic wind parameters in NGC 4460 (outflow velocity, total kinetic energy) are several times smaller, compared with the known galactic wind in NGC 253, which is explained by the substantially lower total star formation rate. We discuss the cause of the star formation processes in NGC 4460 and in two other known isolated lenticular (S0) and elliptical (E) galaxies of the Local Volume: NGC 404 and 855. We provide evidence suggesting that the feeding of isolated galaxies by intergalactic gas on a cosmological time-scale is a steady process without significant variations. Based on observations collected with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences, which is operated under the financial support of the Science Department of Russia (registration number 01-43). E-mail: moisav@gmail.com

  8. Ionized gas in the circumgalactic vicinity of the M81 galaxy group

    NASA Astrophysics Data System (ADS)

    Al Najm, M. N.; Polikarpova, O. L.; Shchekinov, Yu. A.

    2016-04-01

    The dynamics of the dust and gas in the tidal region of the M81 galaxy group have been analyzed, and the drift of the dust relative to the gas has been estimated, including the drift due to the action of radiation pressure from stars in M81. It is concluded that a large fraction of the gas in the tidal region is in the form of ionized hydrogen HII that shields the observedHI gas from the extragalactic Lyman continuum: the observed atomic gas could be only 10% of the total mass of gas. Only then it is possible to satisfactorily explain the excess dust abundance, which exceeds the Galactic value by a factor of six. By analogy, extended HI disks in galaxies with sizes appreciably larger than the stellar disks could be surrounded by HII envelopes with a comparable or greater mass. Such disks could play an important role in supporting prolonged star formation in galaxies with extended HI disks. Associated observational manifestations are discussed. Such HII envelopes outside HI disks could be detectable in absorption in Ly α and lines of ions of heavy elements.

  9. Interplay of mulitphoton and tunneling ionization in short-wavelength-driven high-order harmonic generation

    SciTech Connect

    Gkortsas, Vasileios-Marios; Bhardwaj, Siddharth; Lai, Chien-Jen; Hong, Kyung-Han; Falcao-Filho, Edilson L.; Kaertner, Franz X.

    2011-07-15

    High-order harmonic generation efficiency is theoretically modeled and compared with experiments using 400 and 800 nm driver pulses. It is shown that, for a short drive wavelength and a Keldysh parameter larger than 1, the Ammosov-Delone-Krainov (ADK) ionization model does not give a good agreement between theory and experiment. Since the ADK ionization model only accounts for tunnel ionization, it underestimates the yield of low-order harmonics from the wings of the driver pulse. In contrast, the Yudin-Ivanov ionization model [Phys. Rev. A 64, 013409 (2001)], which accounts for both tunnel and multiphoton ionization, gives much better agreement with the experimental results.

  10. Headspace gas chromatography-flame ionization detector method for organic solvent residue analysis in dietary supplements.

    PubMed

    Jeong, Mijeong Lee; Zahn, Michael; Trinh, Thao; Jia, Qi; Ma, Wenwen

    2006-01-01

    An analytical method has been developed for the identification and quantification of 20 organic solvent residues in dietary supplements. The method utilizes a headspace sampler interfaced with gas chromatography and flame ionization detection. With split injection (5:1) and a DB-624 column, most of the organic solvents are separated in 9 min. The method has been validated and was found to be relatively simple and fast, and it can be applied to most common organic solvent residues. With the mass detector, the method was able to identify organic solvents beyond the 20 standards tested. PMID:17225592

  11. NEBULAR: Spectrum synthesis for mixed hydrogen-helium gas in ionization equilibrium

    NASA Astrophysics Data System (ADS)

    Schirmer, Mischa

    2016-08-01

    NEBULAR synthesizes the spectrum of a mixed hydrogen helium gas in collisional ionization equilibrium. It is not a spectral fitting code, but it can be used to resample a model spectrum onto the wavelength grid of a real observation. It supports a wide range of temperatures and densities. NEBULAR includes free-free, free-bound, two-photon and line emission from HI, HeI and HeII. The code will either return the composite model spectrum, or, if desired, the unrescaled atomic emission coefficients. It is written in C++ and depends on the GNU Scientific Library (GSL).

  12. Integral Field Unit Observations of NGC 891: Kinematics of the Diffuse Ionized Gas Halo

    NASA Astrophysics Data System (ADS)

    Heald, George H.; Rand, Richard J.; Benjamin, Robert A.; Bershady, Matthew A.

    2006-08-01

    We present high and moderate spectral resolution spectroscopy of diffuse ionized gas (DIG) emission in the halo of NGC 891. The data were obtained with the SparsePak integral field unit at the WIYN Observatory. The wavelength coverage includes the [N II] λλ6548, 6583, Hα, and [S II] λλ6716, 6731 emission lines. Position-velocity (PV) diagrams, constructed using spectra extracted from four SparsePak pointings in the halo, are used to examine the kinematics of the DIG. Using two independent methods, a vertical gradient in azimuthal velocity is found to be present in the northeast quadrant of the halo, with magnitude approximately 15-18 km s-1 kpc-1, in agreement with results from H I observations. The kinematics of the DIG suggests that this gradient begins at approximately 1 kpc above the midplane. In another part of the halo, the southeast quadrant, the kinematics is markedly different and suggest rotation at about 175 km s-1, much slower than the disk but with no vertical gradient. We use an entirely ballistic model of disk-halo flow in an attempt to reproduce the kinematics observed in the northeast quadrant. Analysis shows that the velocity gradient predicted by the ballistic model is far too shallow. Based on intensity cuts made parallel to the major axis in the ballistic model and an Hα image of NGC 891 from the literature, we conclude that the DIG halo is much more centrally concentrated than the model, suggesting that hydrodynamics dominate over ballistic motion in shaping the density structure of the halo. Velocity dispersion measurements along the minor axis of NGC 891 seem to indicate a lack of radial motions in the halo, but the uncertainties do not allow us to set firm limits.

  13. [Identification of high-lying odd energy levels of uranium by resonant ionization mass spectrometry].

    PubMed

    Du, H; Shi, G; Huang, M; Jin, C

    2000-06-01

    Single-colour and two-colour multiphoton resonant ionization spectra of uranium atom were studied extensively with a Nd:YAG laser-pumped dye laser atomic beam apparatus time-of-flight mass spectrometer in our laboratory. The energy locations of high-lying odd-parity levels in the region 33,003-34,264 cm-1, measured by a two-colour three-step ionization technique, were reported here. The angular momentum quantum number J was uniquely assigned for these levels by using angular momentum selection rules. PMID:12958925

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, EXPLOSIVES DETECTION TECHNOLOGY, SRI INSTRUMENTS, MODEL 8610C, GAS CHROMATOGRAPH/THERMIONIC IONIZATION DETECTION

    EPA Science Inventory

    The SRI Model 86 1 OC gas chromatograph (GC) is a transportable instrument that can provide on-site analysis of soils for explosives. Coupling this transportable gas chromatograph with a thermionic ionization detector (TID) allows for the determination of explosives in soil matri...

  15. Kinematics of the ionized gas around ultra-luminous X-ray sources in nearby spiral galaxies.

    NASA Astrophysics Data System (ADS)

    Fuentes-Carrera, Isaura L.; Sánchez Cruces, Mónica; Rosado, Margarita; Benitez-Benitez, Claudia; Salinas-Martínez, Alfredo; Aguilera, Verónica; Cruz-Reyes, Mariana

    2016-07-01

    We present scanning Fabry-Perot observations of the ionized gas surrounding ultra-luminous X-ray sources in four nearby spiral galaxies. We identify non-circular motions that may be associated with either isotropically or beamed expanding gas. Most of the sources observed show asymmetrical distribution of the ionized emission as well as asymmetrical distribution of gas motions. We also study the location of these sources in the context of the whole galaxy in different wavelengths. This work is part of an analysis to determine the nature of these sources and their correlation (if any) with the kinematics of host galaxy.

  16. Filling factors and scale heights of the diffuse ionized gas in the Milky Way

    NASA Astrophysics Data System (ADS)

    Berkhuijsen, E. M.; Mitra, D.; Mueller, P.

    2006-01-01

    The combination of dispersion measures of pulsars, distances from the model of Cordes & Lazio (\\cite{cordes+lazio02}) and emission measures from the WHAM survey enabled a statistical study of electron densities and filling factors of the diffuse ionized gas (DIG) in the Milky Way. The emission measures were corrected for absorption and contributions from beyond the pulsar distance. For a sample of 157 pulsars at |b|>5° and 60° < ℓ < 360°, located in mainly interarm regions within about 3 kpc from the Sun, we find that: (1) The average volume filling factor along the line of sight /line{f}v and the mean density in ionized clouds /line{n}c are inversely correlated: /line{f}v(/line{n}c ) = (0.0184± 0.0011) /line{n}c{ -1.07± 0.03} for the ranges 0.03 < /line{n}c < 2 {cm-3 and 0.8 > /line{f}v > 0.01. This relationship is very tight. The inverse correlation of /line{f}v and /line{n}c causes the well-known constancy of the average electron density along the line of sight. As /line{f}v(z) increases with distance from the Galactic plane |z|, the average size of the ionized clouds increases with |z|. (2) For |z| < 0.9 kpc the local density in clouds nc (z) and local filling factor f(z) are inversely correlated because the local electron density ne (z) = f(z) nc (z) is constant. We suggest that f(z) reaches a maximum value of >0.3 near |z| = 0.9 kpc, whereas nc (z) continues to decrease to higher |z|, thus causing the observed flattening in the distribution of dispersion measures perpendicular to the Galactic plane above this height. (3) For |z| < 0.9 kpc the local distributions nc (z), f(z) and ne2(z) have the same scale height which is in the range 250 < h ⪉ 500 pc. (4) The average degree of ionization of the warm atomic gas /line{I}w (z) increases towards higher |z| similarly to /line{f}v (z). Towards |z| = 1 kpc, /line{f}v (z) = 0.24± 0.05 and /line{I}w (z) = 0.24± 0.02. Near |z| = 1 kpc most of the warm, atomic hydrogen is ionized.

  17. Ionized gas kinematics within the inner kiloparsec of the Seyfert galaxy NGC 1365

    NASA Astrophysics Data System (ADS)

    Lena, Davide; Robinson, Andrew; Storchi-Bergmann, Thaisa; Couto, Guilherme S.; Schnorr-Müller, Allan; Riffel, Rogemar A.

    2016-07-01

    We observed the nuclear region of the galaxy NGC 1365 with the integral field unit of the Gemini Multi Object Spectrograph mounted on the GEMINI-South telescope. The field of view covers 13 × 6 arcsec2(1173 × 541 pc2) centred on the nucleus, at a spatial resolution of 52 pc. The spectral coverage extends from 5600 to 7000 Å, at a spectral resolution R = 1918. NGC 1365 hosts a Seyfert 1.8 nucleus, and exhibits a prominent bar extending out to 100 arcsec (9 kpc) from the nucleus. The field of view lies within the inner Lindblad resonance. Within this region, we found that the kinematics of the ionized gas (as traced by [O I], [N II], Hα, and [S II]) is consistent with rotation in the large-scale plane of the galaxy. While rotation dominates the kinematics, there is also evidence for a fan-shaped outflow, as found in other studies based on the [O III] emission lines. Although evidence for gas inflowing along nuclear spirals has been found in a few barred galaxies, we find no obvious signs of such features in the inner kiloparsec of NGC 1365. However, the emission lines exhibit a puzzling asymmetry that could originate from gas which is slower than the gas responsible for the bulk of the narrow-line emission. We speculate that it could be tracing gas which lost angular momentum, and is slowly migrating from the inner Lindblad resonance towards the nucleus of the galaxy.

  18. Ionized gas kinematics within the inner kiloparsec of the Seyfert galaxy NGC 1365

    NASA Astrophysics Data System (ADS)

    Lena, Davide; Robinson, Andrew; Storchi-Bergmann, Thaisa; Couto, Guilherme S.; Schnorr-Müller, Allan; Riffel, Rogemar A.

    2016-04-01

    We observed the nuclear region of the galaxy NGC 1365 with the integral field unit of the Gemini Multi Object Spectrograph mounted on the GEMINI-South telescope. The field of view covers 13″ × 6″ (1173 × 541 pc2) centered on the nucleus, at a spatial resolution of 52 pc. The spectral coverage extends from 5600 Å to 7000 Å, at a spectral resolution R = 1918. NGC 1365 hosts a Seyfert 1.8 nucleus, and exhibits a prominent bar extending out to 100″ (9 kpc) from the nucleus. The field of view lies within the inner Lindblad resonance. Within this region, we found that the kinematics of the ionized gas (as traced by [OI], [NII], Hα, and [SII]) is consistent with rotation in the large-scale plane of the galaxy. While rotation dominates the kinematics, there is also evidence for a fan-shaped outflow, as found in other studies based on the [OIII] emission lines. Although evidence for gas inflowing along nuclear spirals has been found in a few barred galaxies, we find no obvious signs of such features in the inner kiloparsec of NGC 1365. However, the emission lines exhibit a puzzling asymmetry that could originate from gas which is slower than the gas responsible for the bulk of the narrow-line emission. We speculate that it could be tracing gas which lost angular momentum, and is slowly migrating from the inner Lindblad resonance towards the nucleus of the galaxy.

  19. Interrelated structures of the transport shock and collisional relaxation layer in a multitemperature, multilevel ionized gas

    NASA Technical Reports Server (NTRS)

    Vinolo, A. R.; Clarke, J. H.

    1972-01-01

    The gas dynamic structures of the transport shock and the downstream collisional relaxation layer are evaluated for partially ionized monatomic gases. Elastic and inelastic collisional nonequilibrium effects are taken into consideration. Three electronic levels are accounted for in the microscopic model of the atom. Nonequilibrium processes with respect to population of levels and species plus temperature are considered. By using an asymptotic technique the shock morphology is found on a continuum flow basis. The asymptotic procedure gives two distinct layers in which the nonequilibrium effects to be considered are different. A transport shock appears as the inner solution to an outer collisional relaxation layer in which the gas reaches local equilibrium. A family of numerical examples is displayed for different flow regimes. Argon and helium models are used in these examples.

  20. High-quality electron beams from beam-driven plasma accelerators by wakefield-induced ionization injection.

    PubMed

    Martinez de la Ossa, A; Grebenyuk, J; Mehrling, T; Schaper, L; Osterhoff, J

    2013-12-13

    We propose a new and simple strategy for controlled ionization-induced trapping of electrons in a beam-driven plasma accelerator. The presented method directly exploits electric wakefields to ionize electrons from a dopant gas and capture them into a well-defined volume of the accelerating and focusing wake phase, leading to high-quality witness bunches. This injection principle is explained by example of three-dimensional particle-in-cell calculations using the code OSIRIS. In these simulations a high-current-density electron-beam driver excites plasma waves in the blowout regime inside a fully ionized hydrogen plasma of density 5×10(17)cm-3. Within an embedded 100  μm long plasma column contaminated with neutral helium gas, the wakefields trigger ionization, trapping of a defined fraction of the released electrons, and subsequent acceleration. The hereby generated electron beam features a 1.5 kA peak current, 1.5  μm transverse normalized emittance, an uncorrelated energy spread of 0.3% on a GeV-energy scale, and few femtosecond bunch length. PMID:24483670

  1. High order harmonic generation in dual gas multi-jets

    SciTech Connect

    Tosa, Valer E-mail: calin.hojbota@itim-cj.ro; Hojbota, Calin E-mail: calin.hojbota@itim-cj.ro

    2013-11-13

    High order harmonic generation (HHG) in gas media suffers from a low conversion efficiency that has its origins in the interaction of the atom/molecule with the laser field. Phase matching is the main way to enhance the harmonic flux and several solutions have been designed to achieve it. Here we present numerical results modeling HHG in a system of multi-jets in which two gases alternate: the first gas jet (for example Ne) generates harmonics and the second one which ionizes easier, recover the phase matching condition. We obtain configurations which are experimentally feasible with respect to pressures and dimensions of the jets.

  2. Highly Elliptical Orbits for Arctic observations: Assessment of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Trichtchenko, L. D.; Nikitina, L. V.; Trishchenko, A. P.; Garand, L.

    2014-12-01

    The ionizing radiation environment was analyzed for a variety of potential Highly Elliptical Orbits (HEOs) with orbital periods ranging from 6 h to 24 h suitable to continuously monitor the Arctic region. Several models available from the ESA Space Environment Information System (SPENVIS) online tool were employed, including the new-generation AE9/AP9 model for trapped radiation. Results showed that the Total Ionizing Dose (TID) has a well-pronounced local minimum for the 14-h orbit, which is nearly identical to the overall minimum observed for the longest orbital period (24 h). The thickness of slab aluminum shielding required to keep the annual TID below 10, 5 and 3.33 krad (i.e. 150, 75 and 50 krad for 15 years of mission duration) for a 14-h orbit is 2.1, 2.7 and 3.1 mm respectively. The 16-h orbit requires an additional 0.5 mm of aluminum to achieve the same results, while the 24-h orbit requires less shielding in the order of 0.2-0.3 mm. Comparison between the AE8/AP8 and AE9/AP9 models was conducted for all selected orbits. Results demonstrated that differences ranged from -70% to +170% depending on orbit geometry. The vulnerability to the Single Event Effect (SEE) was compared for all orbits by modeling the Linear Energy Transfer (LET) for long-term conditions and for the 5 min “worst case” scenario. The analysis showed no preference among orbits with periods longer than 15 h, and in order to keep the 14-h orbit at the same level, the shielding should be increased by ∼33% or approximately by 1 mm. To keep the Single Event Upset (SEU) rate produced by the “worst case” event at the same order of magnitude as for the “statistical” long-term case, the thickness of aluminum should be as high as 22 mm. The overall conclusion from a space environment point of view is that all HEO orbits with periods equal to or longer than 14 h can be regarded as good candidates for operational missions. Therefore, selection of orbit should be based on other criteria

  3. Nitrogen compounds' formation in aqueous solutions under high ionizing radiation: An overview

    NASA Astrophysics Data System (ADS)

    Dey, G. R.

    2011-03-01

    Generation of NO2- and NO3- in aqueous phase within high ionizing radiation zone is normal phenomena. Their formation mechanisms, and controls still remain a challenge with reference to creation of corrosive environment. Nitrogen in such system relates mainly to air ingress, and from added nitrogen compounds, which are used to control pH and dissolved oxygen. Under radiation environment these compounds receive low to high doses, which affect the compounds' subsequent aqueous chemistry, leading to NO2-/ NO3- formation. In γ-radiolysis of N 2-water, formation of NO3- takes place both in gas and liquid phases reactions wherein rad OH remains a significant contributor. On the other hand, in aerated aqueous ammonia/azide radiolysis, NO2- was generated following different mechanisms. With this diverse chemical changes, our objective was to analyze the data generated so far on nitrogen, and its specific compounds in aqueous media for systematic understanding and for further growth in the subject.

  4. Dust and ionized gas in elliptical galaxies: Signatures of merging collisions

    NASA Technical Reports Server (NTRS)

    Goudfrooij, Paul; Dejong, Teije

    1993-01-01

    Traditionally elliptical galaxies were thought to be essentially devoid of interstellar matter. However, recent advances in instrumental sensitivity have caused a renaissance of interest in dust and gas in - or associated with - elliptical galaxies. In particular, the technique of co-adding IRAS survey scans has led to the detection of more than half of all ellipticals with BT less than 11 mag. in the Revised Shapley-Ames catalog, indicating the presence of 10(exp 7) - 10(exp 8) solar mass of cold interstellar matter (Jura et al. 1987). In addition, CCD multi-color surface photometry shows dust patches in about 30 percent of the cases studied to date (e.g., Veron-Cetty & Veron 1988). Thorough study of the gas and dust in ellipticals is important to (1) determine its origin (mass-loss from late-type stars, merging collisions with other galaxies or accretion inflows from cooling X-ray gas), and (2) investigate the 3-D shape of ellipticals, as can be derived from the orientation of the dust lanes and the 2-D velocity field of the gas. An important result of our comprehensive CCD imaging program is that a relevant fraction (approximately 40 percent) of the sample objects exhibits dust patches within extended H-alpha+(NII) line-emitting filaments. This common occurrence can be easily accounted for if the dust and gas have an external origin, i.e., mergers or interactions with gas-rich galaxies. Evidence supporting this suggestion: (1) the ionized gas is usually dynamically decoupled from the stellar velocity field (see, e.g., Sharples et al. 1983, Bertola & Bettoni 1988); (2) it is shown in a companion paper (Goudfrooij et al. 1992) that internal stellar mass loss alone can not account for the dust content of elliptical galaxies.

  5. Differential cross sections for ionization of methane, ammonia, and water vapor by high velocity ions

    SciTech Connect

    Wilson, W.E.; Miller, J.H.; Toburen, L.H.; Manson, S.T.

    1984-06-01

    Cross sections, differential in the energy of secondary electrons, for ionization of methane, ammonia, and water vapor by high energy protons are presented. The results are based on a model that uses photoabsorption and ion impact ionization data to evaluate the coefficients in Bethe's asymptotic cross section for inelastic scattering of high velocity ions. Model cross sections are compared with previously published data and new data on ionization of methane and water vapor by 3.0 and 4.2 MeV protons. The simple, analytic model should be very useful in transport calculations where differential ionization cross sections over a broad range of primary and secondary energies are needed.

  6. Analysis of solids with a secondary-neutral microprobe based on electron-gas post-ionization.

    PubMed

    Bieck, W; Gnaser, H; Oechsner, H

    1995-10-01

    The detection sensitivity and the lateral resolution in electron-gas SNMS have been improved in a newly developed secondary-neutral microprobe. This instrument combines the high post-ionization efficiency provided by the electron component of an rf-plasma (post-ionization probability alpha(0) of some 10(-2)) with a high-transmission magnetic mass spectrometer. Using the plasma as an effective primary ion source, secondary-neutral intensities of up to 10(9) cps can be realized for 1 keV Ar(+) ion bombardment and a primary current density of 1 mA/cm(2). To obtain laterally resolved secondary-neutral micrographs, a 20 keV-Ga(+)-ion beam produced in a liquid-metal ion source (LMIS) is utilized for sputter excitation. At Ga(+)-ion-beam currents of about 6 nA a spot size on the target of 1 microm is possible. The detection sensitivity in this operation mode is on the order of

  7. Numerical models for the diffuse ionized gas in galaxies. I. Synthetic spectra of thermally excited gas with turbulent magnetic reconnection as energy source

    NASA Astrophysics Data System (ADS)

    Hoffmann, T. L.; Lieb, S.; Pauldrach, A. W. A.; Lesch, H.; Hultzsch, P. J. N.; Birk, G. T.

    2012-08-01

    Aims: The aim of this work is to verify whether turbulent magnetic reconnection can provide the additional energy input required to explain the up to now only poorly understood ionization mechanism of the diffuse ionized gas (DIG) in galaxies and its observed emission line spectra. Methods: We use a detailed non-LTE radiative transfer code that does not make use of the usual restrictive gaseous nebula approximations to compute synthetic spectra for gas at low densities. Excitation of the gas is via an additional heating term in the energy balance as well as by photoionization. Numerical values for this heating term are derived from three-dimensional resistive magnetohydrodynamic two-fluid plasma-neutral-gas simulations to compute energy dissipation rates for the DIG under typical conditions. Results: Our simulations show that magnetic reconnection can liberate enough energy to by itself fully or partially ionize the gas. However, synthetic spectra from purely thermally excited gas are incompatible with the observed spectra; a photoionization source must additionally be present to establish the correct (observed) ionization balance in the gas.

  8. A detailed analysis of the high-resolution X-ray spectra of NGC 3516: variability of the ionized absorbers

    SciTech Connect

    Huerta, E. M.; Krongold, Y.; Jimenez-Bailon, E.; Nicastro, F.; Mathur, S.; Longinotti, A. L.

    2014-09-20

    The 1.5 Seyfert galaxy NGC 3516 presents a strong time variability in X-rays. We re-analyzed the nine observations performed in 2006 October by XMM-Newton and Chandra in the 0.3 to 10 keV energy band. An acceptable model was found for the XMM-Newton data fitting the EPIC-PN and RGS spectra simultaneously; later, this model was successfully applied to the contemporary Chandra high-resolution data. The model consists of a continuum emission component (power law + blackbody) absorbed by four ionized components (warm absorbers), and 10 narrow emission lines. Three absorbing components are warm, producing features only in the soft X-ray band. The fourth ionization component produces Fe XXV and Fe XXVI in the hard-energy band. We study the time response of the absorbing components to the well-detected changes in the X-ray luminosity of this source and find that the two components with the lower ionization state show clear opacity changes consistent with gas close to photoionization equilibrium. These changes are supported by the models and by differences in the spectral features among the nine observations. On the other hand, the two components with higher ionization state do not seem to respond to continuum variations. The response time of the ionized absorbers allows us to constrain their electron density and location. We find that one component (with intermediate ionization) must be located within the obscuring torus at a distance 2.7 × 10{sup 17} cm from the central engine. This outflowing component likely originated in the accretion disk. The three remaining components are at distances larger than 10{sup 16}-10{sup 17} cm. Two of the absorbing components in the soft X-rays have similar outflow velocities and locations. These components may be in pressure equilibrium, forming a multi-phase medium, if the gas has metallicity larger than the solar one (≳ 5 Z {sub ☉}). We also search for variations in the covering factor of the ionized absorbers (although partial

  9. A 2D multiwavelength study of the ionized gas and stellar population in the giant H II region NGC 588

    NASA Astrophysics Data System (ADS)

    Monreal-Ibero, A.; Relaño, M.; Kehrig, C.; Pérez-Montero, E.; Vílchez, J. M.; Kelz, A.; Roth, M. M.; Streicher, O.

    2011-05-01

    Giant H II regions (GHIIRs) in nearby galaxies are a local sample in which we can study in detail processes in the interaction of gas, dust and newly formed stars which are analogous to those which occurred in episodes of higher intensity in which much of the current stellar population was born. Here, we present an analysis of NGC 588, a GHIIR in M33, based on optical Integral Field Spectroscopy data obtained with the Potsdam Multi-Aperture Spectrophotometer at the 3.5-m telescope of the Calar Alto Observatory, CAHA, together with Spitzer infrared images at 8 and 24 μm. The extinction distribution measured in the optical shows complex structure, with three maxima which correlate in position with those of the emission at 24 and 8 μm. Furthermore, the Hα luminosity absorbed by the dust within the H II region reproduces the structure observed in the 24-μm image, supporting the use of the 24-μm band as a valid tracer of recent star formation. A velocity difference of ˜50 km s-1 was measured between the areas of high and low surface brightness, which would be expected if NGC 588 were an evolved GHIIR. We have carefully identified the areas which contribute most to the line ratios measured in the integrated spectrum. Those line ratios which are used in diagnostic diagrams proposed by Baldwin, Phillips & Terlevich (i.e. the BPT diagrams) show a larger range of variation in the low surface brightness areas. The ranges are ˜0.5-1.2 dex for [N II]λ6584/Hα, 0.7-1.7 dex for [S II]λλ6717,6731/Hα and 0.3-0.5 dex for [O III]λ5007/Hβ, with higher values of [N II]λ6584/Hα and [S II]λλ6717,6731/Hα, and lower values of [O III]λ5007/Hβ in the areas of lower surface brightness. Ratios corresponding to large ionization parameter (U) are found between the peak of the emission in Hβ and the main ionizing source decreasing radially outwards within the region. Differences between the integrated and local values of the U tracers can be as high as ˜0.8 dex, notably when

  10. The integrated radio continuum spectrum of M33 - Evidence for free-free absorption by cool ionized gas

    NASA Technical Reports Server (NTRS)

    Israel, F. P.; Mahoney, M. J.; Howarth, N.

    1992-01-01

    We present measurements of the integrated radio continuum flux density of M33 at frequencies between 22 and 610 MHz and discuss the radio continuum spectrum of M33 between 22 MHz and 10 GHz. This spectrum has a turnover between 500 and 900 MHz, depending on the steepness of the high frequency radio spectrum of M33. Below 500 MHz the spectrum is relatively flat. We discuss possible mechanisms to explain this spectral shape and consider efficient free-free absorption of nonthermal emission by a cool (not greater than 1000 K) ionized gas to be a very likely possibility. The surface filling factor of both the nonthermal and the thermal material appears to be small (of order 0.001), which could be explained by magnetic field/density fluctuations in the M 33 interstellar medium. We briefly speculate on the possible presence of a nuclear radio source with a steep spectrum.

  11. Drag coefficient of the weakly ionized plasma in the high Knudsen number regime

    SciTech Connect

    Chu, H.-Y.; Si, M.-C.; Lin, S.-B.

    2009-06-15

    The drag force acting on a micron-sized polystyrene particle in the high Knudsen number regime is investigated. Analysis of the particle trajectories in stationary neutral argon gas environment suggests the damping time constant {tau}{proportional_to}p{sup -1.20{+-}}{sup 0.04} and Epstein drag force coefficient {delta}=1.40. The neutral drag coefficient is compared with the drag coefficient measurement in dust-free plasma. The phenomena of the reduced drag in weakly viscous and weakly ionized rf plasma are also observed in this report. It is shown that the slight changes in rf power and pressure would enhance the reduced drag effect, which suggests that there is an additional electrostatic force acting along the particle motion in the plasma.

  12. High Harmonic Spectroscopy of Multichannel Dynamics in Strong-Field Ionization

    SciTech Connect

    Mairesse, Y.; Higuet, J.; Fabre, B.; Mevel, E.; Constant, E.; Dudovich, N.; Shafir, D.; Patchkovskii, S.; Walters, Z.; Smirnova, O.; Ivanov, M. Yu.

    2010-05-28

    We perform high harmonic generation spectroscopy of aligned nitrogen molecules to characterize the attosecond dynamics of multielectron rearrangement during strong-field ionization. We use the spectrum and ellipticity of the harmonic light to reconstruct the relative phase between different ionization continua participating in the ionization, and thus determine the shape and location of the hole left in the molecule by strong-field ionization. Our interferometric technique uses transitions between the ionic states, induced by the laser field on the subcycle time scale.

  13. A Desorbed Gas Molecular Ionization Mechanism for Arcing Onset in Solar Arrays Immersed in a Low-Density Plasma

    NASA Technical Reports Server (NTRS)

    Galofaro, J.; Vayner, B.; Ferguson, D.; Degroot, W.

    2002-01-01

    Previous experimental studies have hypothesized that the onset of Solar Array Arc (SAA) initiation in low-density space plasmas is caused by a desorbed gas molecular ionization mechanism. Indeed past investigations performed at the NASA Glenn Plasma Interaction Facility tend to not only support the desorbed gas molecular ionization mechanism, but have gone as far as identifying the crucial molecular species that must be present for molecular ion dominated process to occur. When electrical breakdown occurs at a triple junction site on a solar array panel, a quasi-neutral plasma cloud is ejected. Assuming the main component of the expelled plasma cloud by weight is due to water vapor, the fastest process available is due to HO molecules and OH(+) ions, or more succinctly, dissociative molecular-ion dominated recombination processes: H2O(+) + e(-) yields H* + OH*. Recently published spectroscopic observations of solar array arc spectra in ground tests have revealed the well-known molecular OH band (302 to 309nm), as well as the molecular SiH band (387nm peak), and the molecular CH band (432nm peak). Note that the OH band is observed in emission arcs where water vapor is present. Strong atomic lines were also observed for H(sub beta) at 486nm and H(sub alpha) at 656.3nm in prior ground testing. Independent supporting evidence of desorbed gas molecular ionization mechanisms also come from measurements of arc current pulse widths at different capacitances. We will revisit an earlier first order approximation demonstrating the dependence of arc current pulse widths on the square root of the capacitance. The simple arc current pulse width model will be then be used to estimate the temperature of the arc plasma (currently believed to be somewhere in the range of 3 to 5 eV). The current paper then seeks to extend the outlined work by including numerous vacuum chamber measurements obtained with a quadrupole mass spectrometer. A small solar array was mounted inside the vacuum

  14. The Association of X-ray Emission, Ionized Gas, and Dust Extinction in NGC 5846

    NASA Astrophysics Data System (ADS)

    Goudfrooij, P.; Trinchieri, G.

    1996-12-01

    A very important discovery of recent X-ray satellites has been the detection of a hot interstellar medium (ISM) in early-type galaxies. In case of `isolated' early-type galaxies, the typical mass of this hot coronal gas component is a few percent of the luminous mass, its temperature is of order 10(7) K, and its electron density in the central regions is of order 10(-2) cm(-3) . This hot medium is a hostile environment for dust grains:\\ thermal sputtering destroys the grains on a typical timescale of only 10(7) yr (Draine & Salpeter 1979, ApJ 231, 77). Hence, the ISM in these objects is not expected to contain any significant amount of dust. However, recent studies have shown that about 50% of all bright elliptical galaxies have been detected by IRAS at 100 mu m (Knapp et al. 1989, ApJS 60, 329), indicating the presence of 10(4) - 10(7) Msun of dust. Thus, the presence of dust in elliptical galaxies is now beyond dispute. However, significant controversy has remained concerning the relationship between the different components of the ISM of these galaxies, in particular whether galaxy interactions or cooling-flows dictate that interplay (see, e.g., Sparks et al. 1989, ApJ 345, 153; Fabian et al. 1994, ApJ 425, 40). E.g., X-ray-emitting early-type galaxies have been shown to often exhibit Hα emission (e.g., Trinchieri & Di Serego Alighieri 1991, AJ 101, 1647). This can be understood in terms of the cooling-flow scenario in which the Hα emission is due to gas cooling down from the hot component; however, it can as well be due to cool ISM having been accreted during a galaxy interaction, in which case the excess X-ray emission at the Hα -emitting filaments is due to excess cooling of the hot gas through heating by electron conduction of dust grains associated with the ionized gas (de Jong et al. 1990, A&A 232, 317; Goudfrooij et al. 1994, A&AS 105, 341). The presence of dust associated with the ionized gas filaments is crucial to this controversy, in view of the

  15. Use of electron ionization and atmospheric pressure chemical ionization in gas chromatography coupled to time-of-flight mass spectrometry for screening and identification of organic pollutants in waters.

    PubMed

    Portolés, Tania; Mol, Johannes G J; Sancho, Juan V; Hernández, Félix

    2014-04-25

    A new approach has been developed for multiclass screening of organic contaminants in water based on the use of gas chromatography coupled to hybrid quadrupole high-resolution time-of-flight mass spectrometry with atmospheric pressure chemical ionization (GC-(APCI)QTOF MS). The soft ionization promoted by the APCI source allows effective and wide-scope screening based on the investigation of the molecular ion and/or protonated molecule. This is in contrast to electron ionization (EI) where ionization typically results in extensive fragmentation, and diagnostic ions and/or spectra need to be known a priori to facilitate detection of the analytes in the raw data. Around 170 organic contaminants from different chemical families were initially investigated by both approaches, i.e. GC-(EI)TOF and GC-(APCI)QTOF, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and a notable number of pesticides and relevant metabolites. The new GC-(APCI)QTOF MS approach easily allowed widening the number of compounds investigated (85 additional compounds), with more pesticides, personal care products (UV filters, musks), polychloronaphthalenes (PCNs), antimicrobials, insect repellents, etc., most of them considered as emerging contaminants. Both GC-(EI)TOF and GC-(APCI)QTOF methodologies have been applied, evaluating their potential for a wide-scope screening in the environmental field. PMID:24674644

  16. Gas gain operations with single photon resolution using an integrating ionization chamber in small-angle X-ray scattering experiments

    NASA Astrophysics Data System (ADS)

    Menk, R. H.; Sarvestani, A.; Besch, H. J.; Walenta, A. H.; Amenitsch, H.; Bernstorff, S.

    2000-01-01

    In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. Initially, MicroCAT was thought of as a shielding grid (Frisch-grid) but later was used as an active electron amplification device that enables single X-ray photon resolution measurements at low fluxes even with integrating readout electronics. Moreover, the adjustable gas gain that continuously covers the entire range from pure ionization chamber mode up to high gas gains (30 000 and more) provides stable operation yielding a huge dynamic range of about 10 8 and more. First measurements on biological samples using small angle X-ray scattering techniques with synchrotron radiation will be presented.

  17. Interrelated structures of the transport shock and collisional relaxation layer in a multitemperature, multilevel ionized gas

    NASA Technical Reports Server (NTRS)

    Vinolo, A. R.; Clarke, J. H.

    1973-01-01

    The gas dynamic structures of the transport shock and the downstream collisional relaxation layer are evaluated for partially ionized monatomic gases. Elastic and inelastic collisional nonequilibrium effects are taken into consideration. In the microscopic model of the atom, three electronic levels are accounted for. By using an asymptotic technique, the shock morphology is found on a continuum flow basis. This procedure gives two distinct layers in which the nonequilibrium effects to be considered are different. A transport shock appears as the inner solution to an outer collisional relaxation layer. The results show four main interesting points: (1) on structuring the transport shock, ionization and excitation rates must be included in the formulation, since the flow is not frozen with respect to the population of the different electronic levels; (2) an electron temperature precursor appears at the beginning of the transport shock; (3) the collisional layer is rationally reduced to quadrature for special initial conditions, which (4) are obtained from new Rankine-Hugoniot relations for the inner shock.

  18. Ionization-induced dynamics of ultrashort laser pulses focused in a dense gas

    NASA Astrophysics Data System (ADS)

    Efimenko, E. S.; Kim, A. V.; Quiroga-Teixeiro, M.

    2009-10-01

    In the present paper we address several aspects of ionization-induced laser-gas interaction. First, we consider the ionization dynamics of an ultrashort laser pulse in the presence of additional electromagnetic perturbations, and show theoretically via dispersion relation analysis and numerically via 2D FDTD simulation that ionizationinduced scattering can occur even in the case of limited spatial and temporal scales and significantly affects pulse dynamics. Second, for the case of tight focusing of laser beam we show on the basis of numerical simulation that for 2D TE- and TM-polarized pulses there is a critical angle which delimits two qualitatively different regimes. For angles exceeding the critical one, the formed plasma distribution may become microstructured, otherwise the plasma structures are smooth. It is also shown than the critical angle and plasma-field dynamics depend significantly on pulse spectrum. Finally, we consider the impact of the electron collisions and Kerr nonlinearity and determine the boundaries within which the role of these effects is crucial.

  19. Measurement of photon flux with a miniature gas ionization chamber in a Material Testing Reactor

    NASA Astrophysics Data System (ADS)

    Fourmentel, D.; Filliatre, P.; Villard, J. F.; Lyoussi, A.; Reynard-Carette, C.; Carcreff, H.

    2013-10-01

    Nuclear heating measurements in Material Testing Reactors (MTR) are crucial for the design of the experimental devices and the prediction of the temperature of the hosted samples. Nuclear heating in MTR materials (except fuel) is mainly due to the energy deposition by the photon flux. Therefore, the photon flux is a key input parameter for the computer codes which simulate nuclear heating and temperature reached by samples/devices under irradiation. In the Jules Horowitz MTR under construction at the CEA Cadarache, the maximal expected nuclear heating levels will be about 15 to 18 W g-1 and it will be necessary to assess this parameter with the best accuracy. An experiment was performed at the OSIRIS reactor to combine neutron flux, photon flux and nuclear heating measurements to improve the knowledge of the nuclear heating in MTR. There are few appropriate sensors for selective measurement of the photon flux in MTR even if studies and developments are ongoing. An experiment, called CARMEN-1, was conducted at the OSIRIS MTR and we used in particular a gas ionization chamber based on miniature fission chamber design to measure the photon flux. In this paper, we detail Monte-Carlo simulations to analyze the photon fluxes with ionization chamber measurements and we compare the photon flux calculations to the nuclear heating measurements. These results show a good accordance between photon flux measurements and nuclear heating measurement and allow improving the knowledge of these parameters.

  20. Gas Chromatography/Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry for Fingerprinting the Macondo Oil Spill.

    PubMed

    Lobodin, Vladislav V; Maksimova, Ekaterina V; Rodgers, Ryan P

    2016-07-01

    We report the first application of a new mass spectrometry technique (gas chromatography combined to atmospheric pressure chemical ionization tandem mass spectrometry, GC/APCI-MS/MS) for fingerprinting a crude oil and environmental samples from the largest accidental marine oil spill in history (the Macondo oil spill, the Gulf of Mexico, 2010). The fingerprinting of the oil spill is based on a trace analysis of petroleum biomarkers (steranes, diasteranes, and pentacyclic triterpanes) naturally occurring in crude oil. GC/APCI enables soft ionization of petroleum compounds that form abundant molecular ions without (or little) fragmentation. The ability to operate the instrument simultaneously in several tandem mass spectrometry (MS/MS) modes (e.g., full scan, product ion scan, reaction monitoring) significantly improves structural information content and sensitivity of analysis. For fingerprinting the oil spill, we constructed diagrams and conducted correlation studies that measure the similarity between environmental samples and enable us to differentiate the Macondo oil spill from other sources. PMID:27281271

  1. Numerical simulations of turbulent ionized gas flows in the circumsolar protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Marov, M. Ya.; Kuksa, M. M.

    2015-09-01

    An axisymmetric protoplanetary disk model that takes into account the interaction of turbulent gas flows with the magnetic field is considered. A closed system of equations of homogeneous compressible magnetohydrodynamics in the regime of developed turbulence in the gravitational and magnetic fields of a star has been constructed. Apart from the traditional probability-theoretical averaging of the MHD equations, the weighted Favre averaging is used. The approach by A.V. Kolesnichenko and M.Ya. Marov to modeling the turbulent transport coefficients in a weakly ionized disk has been implemented. It allows the inverse effects of the generated magnetic field on a turbulent gas flow and the dissipation of turbulence through kinematic and magnetic viscosities to be taken into account. A parallel code for numerically solving the system of averaged MHD equations has been developed. The averaged gas density and velocity distributions as well as the configuration of the disk's intrinsic magnetic field at a distance of 1 AU from the star have been obtained through numerical simulations. The assumption that the vertical (parallel to the disk's rotation axis) magnetic induction component changes much more profoundly in height than in radius and, hence, gives grounds to take into account its gradient in the model of the turbulent kinematic viscosity coefficient has been confirmed.

  2. Identifying Extraplanar Diffuse Ionized Gas in a Sample of MaNGA Galaxies

    NASA Astrophysics Data System (ADS)

    Hubbard, Ryan J.; Diamond-Stanic, Aleksandar M.; MaNGA Team

    2016-01-01

    The efficiency with which galaxies convert gas into stars is driven by the continuous cycle of accretion and feedback processes within the circumgalactic medium. Extraplanar diffuse ionized gas (eDIG) can provide insights into the tumultuous processes that govern the evolution of galactic disks because eDIG emission traces both inflowing and outflowing gas. With the help of state-of-the-art, spatially-resolved spectroscopy from MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), we developed a computational method to identify eDIG based on the strength of and spatial extent of optical emission lines for a diverse sample of 550 nearby galaxies. This sample includes roughly half of the MaNGA galaxies that will become publicly available in summer 2016 as part of the Thirteenth Data Release of the Sloan Digital Sky Survey. We identified signatures of eDIG in 8% of the galaxies in this sample, and we found that these signatures are particularly common among galaxies with active star formation and inclination angles >45 degrees. Our analysis of the morphology, incidence, and kinematics of eDIG has important implications for current models of accretion and feedback processes that regulate star formation in galaxies. We acknowledge support from the Astrophysics REU program at the University of Wisconsin-Madison, the National Astronomy Consortium, and The Grainger Foundation.

  3. The susceptibility of TaOx-based memristors to high dose rate ionizing radiation and total ionizing dose

    DOE PAGESBeta

    McLain, Michael Lee; Sheridan, Timothy J.; Hjalmarson, Harold Paul; Mickel, Patrick R.; Hanson, Donald J.; McDonald, Joseph K.; Hughart, David Russell; Marinella, Matthew J.

    2014-11-11

    This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaOx) memristors. Transient data were obtained during the pulsed exposures for dose rates ranging from approximately 5.0 ×107 rad(Si)/s to 4.7 ×108 rad(Si)/s and for pulse widths ranging from 50 ns to 50 μs. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of ~3.0 ×108 rad(Si)/s. This is the first dose rate study on any type of memristive memory technology. Inmore » addition to assessing the tolerance of TaOx memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. As a result, numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages.« less

  4. High-temperature gas filtration

    SciTech Connect

    Schiffer, H.P.; Laux, S.; Renz, U. . Lehrstuhl fuer Waermeuebertragung und Klimatechnik)

    1992-10-01

    High-temperature, high-pressure filtration is important to the development of fluidized-bed combustion (FBC) technology. This volume describes the commissioning and testing of a pilot-scale filter module rated at 1 to 4 bar pressure and up to 900[degrees]C. The module consists of an array of six porous sintered silicon carbide filter elements, designed to be cleaned on-line by jet pulses of compressed air. More than 2000 hours of exposure were achieved with FBC combustion gas with inlet dust concentrations of 500 to 40,000 ppM[sub w] at 200 to 650[degrees]C. Another 3500 hours of operation were achieved with simulated gas and injected dust. The filter elements were subjected to 60,000 cleaning cycles. No dust penetration through the filter modules was detected. After an initial stabilizing period, pressure drop remained moderate at less that 50 mbar (0.7 psi). The energy expended in pulse cleaning was negligible. No crusty deposits of dust were found on the filter elements during inspections, and no irreversible blinding occurred.

  5. Emission-Line Ratios and Variations in Temperature and Ionization State in the Diffuse Ionized Gas of Five Edge-on Galaxies

    NASA Astrophysics Data System (ADS)

    Otte, B.; Gallagher, J. S., III; Reynolds, R. J.

    2002-06-01

    We present spectroscopic observations of ionized gas in the disk-halo regions of five edge-on galaxies, covering a wavelength range from [O II] 3727 Å to [S II] 6716.4 Å. The inclusion of the [O II] emission provides additional constraints on the properties of the diffuse ionized gas (DIG), in particular, the origin of the observed spatial variations in the line intensity ratios. We have derived electron temperatures, ionization fractions, and abundances along the slit. Our data include slit positions both parallel and perpendicular to the galactic disks. This allowed us to examine variations in the line intensity ratios with height above the midplane, as well as with distance from the galactic centers. The observed increase in the [O II]/Hα line ratio toward the halo seems to require an increase in electron temperature caused by a nonionizing heating mechanism. We conclude that gradients in the electron temperature can play a significant role in the observed variations in the optical emission-line ratios from extraplanar DIG.

  6. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Ha; Szili, Endre J.; Jenkins, A. Toby A.; Short, Robert D.

    2014-09-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine.

  7. Identification of volatiles by headspace gas chromatography with simultaneous flame ionization and mass spectrometric detection.

    PubMed

    Tiscione, Nicholas B; Yeatman, Dustin Tate; Shan, Xiaoqin; Kahl, Joseph H

    2013-10-01

    Volatiles are frequently abused as inhalants. The methods used for identification are generally nonspecific if analyzed concurrently with ethanol or require an additional analytical procedure that employs mass spectrometry. A previously published technique utilizing a capillary flow technology splitter to simultaneously quantitate and confirm ethyl alcohol by flame ionization and mass spectrometric detection after headspace sampling and gas chromatographic separation was evaluated for the detection of inhalants. Methanol, isopropanol, acetone, acetaldehyde, toluene, methyl ethyl ketone, isoamyl alcohol, isobutyl alcohol, n-butyl alcohol, 1,1-difluoroethane, 1,1,1-trifluoroethane, 1,1,1,2-tetrafluoroethane (Norflurane, HFC-134a), chloroethane, trichlorofluoromethane (Freon®-11), dichlorodifluoromethane (Freon®-12), dichlorofluoromethane (Freon®-21), chlorodifluoromethane (Freon®-22) and 1,2-dichlorotetrafluoroethane (Freon®-114) were validated for qualitative identification by this method. The validation for qualitative identification included evaluation of matrix effects, sensitivity, carryover, specificity, repeatability and ruggedness/robustness. PMID:24005155

  8. The Effect of the Argon Carrier Gas in the Multiphoton Dissociation-Ionization of Tetracene

    PubMed Central

    Poveda, Juan Carlos; Román, Alejandro San; Guerrero, Alfonso; Álvarez, Ignacio; Cisneros, Carmen

    2008-01-01

    The multiphoton dissociation-ionization of tetracene at 355 nm using 6.5 nanosecond laser pulses, with and without argon as a carrier gas (CG), has been studied and compared. Ion fragments were analyzed in a time-of-flight mass spectrometer and separated according to their mass-to-charge ratio (m/z). The results show that the dynamic of photodissociation at ∼1010 W cm−2 intensities is strongly influenced by the CG. The suppression of fragmentation channels primarily those relating to the formation of the CHm+ (m = 2, 4), C2H4+ and C5H4+2 ions. CH5+ and CH6+ were observed which have not been reported before in photodissociation tetracene experiments. PMID:19325732

  9. Self-detection of x-ray Fresnel transmissivity using photoelectron-induced gas ionization

    NASA Astrophysics Data System (ADS)

    Stoupin, Stanislav

    2016-01-01

    Electric response of an x-ray mirror enclosed in a gas flow ionization chamber was studied under the conditions of total external reflection for hard x-rays. It is shown that the electric response of the system as a function of the incidence angle is defined by x-ray Fresnel transmissivity and photon-electron attenuation properties of the mirror material. A simple interpretation of quantum yield of the system is presented. The approach could serve as a basis for non-invasive in situ diagnostics of hard x-ray optics, easy access to complementary x-ray transmissivity data in x-ray reflectivity experiments, and might also pave the way to advanced schemes for angle and energy resolving x-ray detectors.

  10. Rapid measurement of phytosterols in fortified food using gas chromatography with flame ionization detection.

    PubMed

    Duong, Samantha; Strobel, Norbert; Buddhadasa, Saman; Stockham, Katherine; Auldist, Martin; Wales, Bill; Orbell, John; Cran, Marlene

    2016-11-15

    A novel method for the measurement of total phytosterols in fortified food was developed and tested using gas chromatography with flame ionization detection. Unlike existing methods, this technique is capable of simultaneously extracting sterols during saponification thus significantly reducing extraction time and cost. The rapid method is suitable for sterol determination in a range of complex fortified foods including milk, cheese, fat spreads, oils and meat. The main enhancements of this new method include accuracy and precision, robustness, cost effectiveness and labour/time efficiencies. To achieve these advantages, quantification and the critical aspects of saponification were investigated and optimised. The final method demonstrated spiked recoveries in multiple matrices at 85-110% with a relative standard deviation of 1.9% and measurement uncertainty value of 10%. PMID:27283669

  11. Dispersion of seed vapor and gas ionization in an MHD second stage combustor and channel

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.

    1992-07-01

    An approach is introduced for the simulation of a magnetohydrodynamic system consisting of a second stage combustor, a convergent nozzle, and a channel. The simulation uses an Argonne integral combustion flow computer code and another Argonne channel computer code to predict flow, thermal and electric properties in the seed particle laden reacting flow in the system. The combustion code is a general hydrodynamics computer code for two-phase, two-dimensional, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for gaseous and condensed phases. The channel code is a multigrid three-dimensional computer code for compressible flow subject to magnetic and electric interactions. Results of this study suggests that (1) the processes of seed particle evaporation, seed vapor dispersion, and gas ionization in the reacting flow are critical to the evaluation of the downstream channel performance and (2) particle size, loading, and inlet profile have strong effects on wall deposition and plasma temperature development.

  12. Dispersion of seed vapor and gas ionization in an MHD second stage combustor and channel

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.

    1992-01-01

    An approach is introduced for the simulation of a magnetohydrodynamic system consisting of a second stage combustor, a convergent nozzle, and a channel. The simulation uses an Argonne integral combustion flow computer code and another Argonne channel computer code to predict flow, thermal and electric properties in the seed particle laden reacting flow in the system. The combustion code is a general hydrodynamics computer code for two-phase, two-dimensional, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for gaseous and condensed phases. The channel code is a multigrid three-dimensional computer code for compressible flow subject to magnetic and electric interactions. Results of this study suggests that (1) the processes of seed particle evaporation, seed vapor dispersion, and gas ionization in the reacting flow are critical to the evaluation of the downstream channel performance and (2) particle size, loading, and inlet profile have strong effects on wall deposition and plasma temperature development.

  13. THE KINEMATICS AND IONIZATION OF NUCLEAR GAS CLOUDS IN CENTAURUS A

    SciTech Connect

    Bicknell, Geoffrey V.; Sutherland, Ralph S.; Neumayer, Nadine E-mail: Ralph.Sutherland@anu.edu.au

    2013-03-20

    Neumayer et al. established the existence of a blueshifted cloud in the core of Centaurus A, within a few parsecs of the nucleus and close to the radio jet. We propose that the cloud has been impacted by the jet, and that it is in the foreground of the jet, accounting for its blueshifted emission on the southern side of the nucleus. We consider both shock excitation and photoionization models for the excitation of the cloud. Shock models do not account for the [Si VI] and [Ca VIII] emission line fluxes. However, X-ray observations indicate a source of ionizing photons in the core of Centaurus A; photoionization by the inferred flux incident on the cloud can account for the fluxes in these lines relative to Brackett-{gamma}. The power-law slope of the ionizing continuum matches that inferred from synchrotron models of the X-rays. The logarithm of the ionization parameter is -1.9, typical of that in Seyfert galaxies and consistent with the value proposed for dusty ionized plasmas. The model cloud density depends upon the Lorentz factor of the blazar and the inclination of our line of sight to the jet axis. For acute inclinations, the inferred density is consistent with expected cloud densities. However, for moderate inclinations of the jet to the line of sight, high Lorentz factors imply cloud densities in excess of 10{sup 5} cm{sup -3} and very low filling factors, suggesting that models of the gamma-ray emission should incorporate jet Lorentz factors {approx}< 5.

  14. KINEMATICS OF IONIZED GAS AT 0.01 AU OF TW Hya

    SciTech Connect

    Goto, M.; Linz, H.; Henning, Th.; Carmona, A.; Stecklum, B.; Meeus, G.; Usuda, T.

    2012-03-20

    We report two-dimensional spectroastrometry of Br{gamma} emission of TW Hya to study the kinematics of the ionized gas in the star-disk interface region. The spectroastrometry with the integral field spectrograph SINFONI at the Very Large Telescope is sensitive to the positional offset of the line emission down to the physical scale of the stellar diameter ({approx}0.01 AU). The centroid of Br{gamma} emission is displaced to the north with respect to the central star at the blue side of the emission line, and to the south at the red side. The major axis of the centroid motion is P.A. = -20 Degree-Sign , which is nearly equal to the major axis of the protoplanetary disk projected on the sky, previously reported by CO submillimeter spectroscopy (P.A. = -27 Degree-Sign ). The line-of-sight motion of the Br{gamma} emission, in which the northern side of the disk is approaching toward us, is also consistent with the direction of the disk rotation known from the CO observation. The agreement implies that the kinematics of Br{gamma} emission is accounted for by the ionized gas in the inner edge of the disk. A simple modeling of the astrometry, however, indicates that the accretion inflow similarly well reproduces the centroid displacements of Br{gamma}, but only if the position angles of the centroid motion and the projected disk ellipse are a chance coincidence. No clear evidence of disk wind is found.

  15. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Rondo, L.; Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-03-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  16. CONSTRAINING STELLAR FEEDBACK: SHOCK-IONIZED GAS IN NEARBY STARBURST GALAXIES

    SciTech Connect

    Hong, Sungryong; Calzetti, Daniela; Gallagher, John S. III; Martin, Crystal L.; Conselice, Christopher J.; Pellerin, Anne

    2013-11-01

    We investigate the properties of feedback-driven shocks in eight nearby starburst galaxies using narrow-band imaging data from the Hubble Space Telescope. We identify the shock-ionized component via the line diagnostic diagram [O III] (λ5007)/Hβ versus [S II] (λλ6716, 6731) (or [N II] (λ6583))/Hα, applied to resolved regions 3-15 pc in size. We divide our sample into three sub-samples: sub-solar, solar, and super-solar, for consistent shock measurements. For the sub-solar sub-sample, we derive three scaling relations: (1) L{sub shock}∝SFR{sup 0.62}, (2) L{sub shock}∝Σ{sub SFR,{sub HL}} {sup 0.92}, and (3) L{sub shock}/L{sub tot}∝(L{sub H} /L{sub ☉,{sub H}}){sup –0.65}, where L{sub shock} is the Hα luminosity from shock-ionized gas, Σ{sub SFR,{sub HL}} the star formation rate (SFR) per unit half-light area, L{sub tot} the total Hα luminosity, and L{sub H} /L{sub ☉,{sub H}} the absolute H-band luminosity from the Two Micron All Sky Survey normalized to solar luminosity. The other two sub-samples do not have enough number statistics, but appear to follow the first scaling relation. The energy recovered indicates that the shocks from stellar feedback in our sample galaxies are fully radiative. If the scaling relations are applicable in general to stellar feedback, our results are similar to those by Hopkins et al. for galactic superwinds. This similarity should, however, be taken with caution at this point, as the underlying physics that enables the transition from radiative shocks to gas outflows in galaxies is still poorly understood.

  17. Ionization monitor with improved ultra-high megohm resistor

    DOEpatents

    Burgess, Edward T.

    1988-11-05

    An ionization monitor measures extremely small currents using a resistor containing a beta emitter to generate ion-pairs which are collected as current when the device is used as a feedback resistor in an electrometer circuit. By varying the amount of beta emitter, the resistance of the resistor may be varied.

  18. High resolution resonance ionization imaging detector and method

    DOEpatents

    Winefordner, James D.; Matveev, Oleg I.; Smith, Benjamin W.

    1999-01-01

    A resonance ionization imaging device (RIID) and method for imaging objects using the RIID are provided, the RIID system including a RIID cell containing an ionizable vapor including monoisotopic atoms or molecules, the cell being positioned to intercept scattered radiation of a resonance wavelength .lambda..sub.1 from the object which is to be detected or imaged, a laser source disposed to illuminate the RIID cell with laser radiation having a wavelength .lambda..sub.2 or wavelengths .lambda..sub.2, .lambda..sub.3 selected to ionize atoms in the cell that are in an excited state by virtue of having absorbed the scattered resonance laser radiation, and a luminescent screen at the back surface of the RIID cell which presents an image of the number and position of charged particles present in the RIID cell as a result of the ionization of the excited state atoms. The method of the invention further includes the step of initially illuminating the object to be detected or imaged with a laser having a wavelength selected such that the object will scatter laser radiation having the resonance wavelength .lambda..sub.1.

  19. Heating of the Interstellar Diffuse Ionized Gas via the Dissipation of Turbulence

    NASA Astrophysics Data System (ADS)

    Minter, Anthony H.; Spangler, Steven R.

    1997-08-01

    We have recently published observations that specify most of the turbulent and mean plasma characteristics for a region of the sky containing the interstellar diffuse ionized gas (DIG). These observations have provided virtually all of the information necessary to calculate the heating rate from dissipation of turbulence. We have calculated the turbulent dissipation heating rate employing two models for the interstellar turbulence. The first is a customary modeling as a superposition of magnetohydrodynamic waves. The second is a fluid-turbulence-like model based on the ideas of Higdon. This represents the first time that such calculations have been carried out with full and specific interstellar turbulence parameters. The wave model of interstellar turbulence encounters the severe difficulty that plausible estimates of heating by Landau damping exceed the radiative cooling capacity of the interstellar DIG by 3-4 orders of magnitude. Clearly interstellar turbulence does not behave like an ensemble of obliquely propagating fast magnetosonic waves. The heating rate due to two other wave dissipation mechanisms, ion-neutral collisional damping and the parametric decay instability, are comparable to the cooling capacity of the diffuse ionized medium. We find that the fluid-like turbulence model is an acceptable and realistic model of the turbulence in the interstellar medium once the effects of ion-neutral collisions are included in the model. This statement is contingent on an assumption that the dissipation of such turbulence because of Landau damping is several orders of magnitude less than that from an ensemble of obliquely propagating magnetosonic waves with the same energy density. Arguments as to why this may be the case are made in the paper. Rough parity between the turbulent heating rate and the radiative cooling rate in the DIG also depends on the hydrogen ionization fraction being in excess of 90% or on a model-dependent lower limit to the heating rate being

  20. Electrosonic spray ionization. A gentle technique for generating folded proteins and protein complexes in the gas phase and for studying ion-molecule reactions at atmospheric pressure.

    PubMed

    Takáts, Zoltán; Wiseman, Justin M; Gologan, Bogdan; Cooks, R Graham

    2004-07-15

    Electrosonic spray ionization (ESSI), a variant on electrospray ionization (ESI), employs a traditional micro ESI source with supersonic nebulizing gas. The high linear velocity of the nebulizing gas provides efficient pneumatic spraying of the charged liquid sample. The variable electrostatic potential can be tuned to allow efficient and gentle ionization. This ionization method is successfully applied to aqueous solutions of various proteins at neutral pH, and its performance is compared to that of the nanospray and micro ESI techniques. Evidence for efficient desolvation during ESSI is provided by the fact that the peak widths for various multiply charged protein ions are an order of magnitude narrower than those for nanospray. Narrow charge-state distributions compared to other ESI techniques are observed also; for most of the proteins studied, more than 90% of the protein ions can be accumulated in one charge state using ESSI when optimizing conditions. The fact that the abundant charge state is normally as low or lower than that recorded by ESI or nanospray indicates that folded protein ions are generated. The sensitivity of the ionization technique to high salt concentrations is comparable to that of nanospray, but ESSI is considerably less sensitive to high concentrations of organic additives such as glycerol or 2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris base). Noncovalent complexes are observed in the case of myoglobin, protein kinase A/ATP complex, and other proteins. The extent of dissociation of protein ions in ESSI is comparable to or even smaller than that in the case of nanospray, emphasizing the gentle nature of the method. The unique features of ESSI are ascribed to very efficient spraying and the low internal energy supplied to the ions. Evidence is provided that the method is capable of generating fully desolvated protein ions at atmospheric pressure. This allows the technique to be used for the study of ion-molecule reactions at atmospheric

  1. The Ionized Gas in Nearby Galaxies as Traced by the [N II] 122 and 205 μm Transitions

    NASA Astrophysics Data System (ADS)

    Herrera-Camus, R.; Bolatto, A.; Smith, J. D.; Draine, B.; Pellegrini, E.; Wolfire, M.; Croxall, K.; de Looze, I.; Calzetti, D.; Kennicutt, R.; Crocker, A.; Armus, L.; van der Werf, P.; Sandstrom, K.; Galametz, M.; Brandl, B.; Groves, B.; Rigopoulou, D.; Walter, F.; Leroy, A.; Boquien, M.; Tabatabaei, F. S.; Beirao, P.

    2016-08-01

    The [N ii] 122 and 205 μm transitions are powerful tracers of the ionized gas in the interstellar medium. By combining data from 21 galaxies selected from the Herschel KINGFISH and Beyond the Peak surveys, we have compiled 141 spatially resolved regions with a typical size of ˜1 kpc, with observations of both [N ii] far-infrared lines. We measure [N ii] 122/205 line ratios in the ˜0.6–6 range, which corresponds to electron gas densities of n e ˜ 1–300 cm‑3, with a median value of n e = 30 cm‑3. Variations in the electron density within individual galaxies can be as high as a factor of ˜50, frequently with strong radial gradients. We find that n e increases as a function of infrared color, dust-weighted mean starlight intensity, and star-formation rate (SFR) surface density (ΣSFR). As the intensity of the [N ii] transitions is related to the ionizing photon flux, we investigate their reliability as tracers of the SFR. We derive relations between the [N ii] emission and SFR in the low-density limit and in the case of a log-normal distribution of densities. The scatter in the correlation between [N ii] surface brightness and ΣSFR can be understood as a property of the n e distribution. For regions with n e close to or higher than the [N ii] line critical densities, the low-density limit [N ii]-based SFR calibration systematically underestimates the SFR because the [N ii] emission is collisionally quenched. Finally, we investigate the relation between [N ii] emission, SFR, and n e by comparing our observations to predictions from the MAPPINGS-III code.

  2. Excitation and ionization of highly charged ions by electron impact

    SciTech Connect

    Sampson, D.H.

    1989-11-15

    Two approaches for very rapid calculation of atomic data for high temperature plasma modeling have been developed. The first uses hydrogenic basis states and has been developed and applied in many papers discussed in previous progress reports. Hence, it is only briefly discussed here. The second is a very rapid, yet accurate, fully relativistic approach that has been developed over the past two or three years. It is described in more detail. Recently it has been applied to large scale production of atomic data. Specifically, it has been used to calculate relativistic distorted wave collision strengths and oscillator strengths for the following: all transitions from the ground level to the n=3 and 4 excited levels in the 71 Neon-like ions with nuclear charge number Z in the range 22 {le} Z {le} 92; all transitions among the 2s{sub {1/2}}, 2p{sub {1/2}} and 2p{sub 3/2} levels and from them to all nlj levels with n=3,4 and 5 in the 85 Li-like ions with 8 {le} Z {le} 92; all transitions among the 3s{sub {1/2}}, 3p{sub 3/2}, 3d{sub 3/2} and 3d{sub 5/2} levels and from them to all nlj levels with n=4 and 5 in the 71 Na-like ions with 22 {le} Z {le} 92; and all transitions among 4s{sub {1/2}}, 4p{sub {1/2}}, 4p{sub 3/2}, 4d{sub 3/2}, 4d{sub 5/2}, 4f{sub 5/2} and 4f{sub 7/2} levels and from them to all nlj levels with n=5 in the 33 Cu-like ions with 60 {le} Z {le} 92. Also the program has been extended to give cross-sections for excitation to specific magnetic sublevels of the target ion by an electron beam and very recently it has been extended to give relativistic distorted wave cross sections for ionization of highly charged ions by electron impact.

  3. High Energy Gas Fracturing Test

    SciTech Connect

    Schulte, R.

    2001-02-27

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed two tests of a high-energy gas fracturing system being developed by Western Technologies of Crossville, Tennessee. The tests involved the use of two active wells located at the Naval Petroleum Reserve No. 3 (NPR-3), thirty-five miles north of Casper, Wyoming (See Figure 1). During the testing process the delivery and operational system was enhanced by RMOTC, Western Technologies, and commercial wireline subcontractors. RMOTC has assisted an industrial client in developing their technology for high energy gas fracturing to a commercial level. The modifications and improvements implemented during the technology testing process are instrumental in all field testing efforts at RMOTC. The importance of well selection can also be critical in demonstrating the success of the technology. To date, significant increases in well productivity have been clearly proven in well 63-TPX-10. Gross fluid production was initially raised by a factor of three. Final production rates increased by a factor of six with the use of a larger submersible pump. Well productivity (bbls of fluid per foot of drawdown) increased by a factor of 15 to 20. The above results assume that no mechanical damage has occurred to the casing or cast iron bridge plug which could allow well production from the Tensleep ''B'' sand. In the case of well 61-A-3, a six-fold increase in total fluid production was seen. Unfortunately, the increase is clouded by the water injection into the well that was necessary to have a positive fluid head on the propellant tool. No significant increase in oil production was seen. The tools which were retrieved from both 63-TPX-10 and 61-A-3 indicated a large amount of energy, similar to high gram perforating, had been expended downhole upon the formation face.

  4. Identification of nitroaromatics in diesel exhaust particulate using gas chromatography/negative ion chemical ionization mass spectrometry and other techniques

    SciTech Connect

    Newton, D.L.; Erickson, M.D.; Tomer, K.B.; Pellizzari, E.D.; Gentry, P.

    1982-04-01

    A series of nitroaromatic compounds were identified in diesel exhaust particulate extract. Isomers of nitroanthracene (and/or nitrophenanthrene) and nitropyrene (and/or nitrofluoranthene) were unequivocally identified. Alkyl homologues of nitroanthracene through C/sub 3/-alkyl-nitroanthracene were tentatively identified. In addition, a C/sub 18/H/sub 11/NO/sub 2/ isomer was tentatively identified. The nitro-substituted polynuclear aromatic hydrocarbons (PAHs) were found in two fractions of diesel exhaust particulate extract collected from a low-pressure liquid chromatography (LPLC) column. One of the two fractions containing nitroaromatic constitutents accounted for a large percentage of the mutagenicity of the crude particulate extract. Initial identification were made by using high-resolution gas chromatography/electron impact mass spectrometry/computer (GC/EIMS) and negative ion chemical ionization mass specrometry/computer (GC/NICIMS). These identifications were confirmed by direct probe high-resolution mass spectrometry (HRMS) and gas chromatography/Fourier transform infrared spectrometry (GC/FT IR). The relative merit of each analytical technique for the determination of nitroaromatics is discussed with emphasis on the usefulness of GC/NICIMS as a means of analyzing for nitro-substituted PAHs.

  5. Plasma ionization frequency, edge-to-axis density ratio, and density on axis of a cylindrical gas discharge

    SciTech Connect

    Palacio Mizrahi, J. H.

    2014-06-15

    A rigorous derivation of expressions, starting from the governing equations, for the ionization frequency, edge-to-axis ratio of plasma density, plasma density at the axis, and radially averaged plasma density in a cylindrical gas discharge has been obtained. The derived expressions are simple and involve the relevant parameters of the discharge: Cylinder radius, axial current, and neutral gas pressure. The found expressions account for ion inertia, ion temperature, and changes in plasma ion collisionality.

  6. Determination of BROMATE AT PARTS-PER-TRILLION LEVELS BY GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH NEGATIVE CHEMICAL IONIZATION

    EPA Science Inventory

    The ozonation of bromide-containing source waters produces bromate as a class 2B carcinogenic disinfection by-product. The present work describes the determination of bromate by gas chromatography-negative chemical ionization mass spectrometry (GC-NCIMS) following a bromate react...

  7. Direct gas-phase detection of nerve and blister warfare agents utilizing active capillary plasma ionization mass spectrometry.

    PubMed

    Wolf, J-C; Schaer, M; P Siegenthaler, P; Zenobi, R

    2015-01-01

    Ultrasensitive direct gas-phase detection of chemical warfare agents (CWAs) is demonstrated utilizing active capillary plasma ionization and triple quadrupole mass spectrometry (MS) instrumentation. Four G- agents, two V-agents and various blistering agents [including sulfur mustard (HD)] were detected directly in the gas phase with limits of detection in the low parts per trillion (ng m(-3)) range. The direct detection of HD was shown for dry carrier gas conditions, but signals vanished when humidity was present, indicating a possible direct detection of HD after sufficient gas phase pretreatment. The method provided sufficient sensitivity to monitor directly the investigated volatile CWAs way below their corresponding minimal effect dose, and in most cases even below the eight hours worker exposure concentration. In general, the ionization is very soft, with little to no in-source fragmentation. Especially for the G-agents, some dimer formation occurred at higher concentrations. This adds complexity, but also further selectivity, to the corresponding mass spectra. Our results show that the active capillary plasma ionization is a robust, sensitive, "plug and play" ambient ionization source suited (but not exclusively) to the very sensitive detection of CWAs. It has the potential to be used with portable MS instrumentation. PMID:26307710

  8. Ionization of highly charged iodine ions near the Bohr velocity

    NASA Astrophysics Data System (ADS)

    Zhou, Xianming; Cheng, Rui; Lei, Yu; Sun, Yuanbo; Ren, Jieru; Liu, Shidong; Deng, Jiachuan; Zhao, Yongtao; Xiao, Guoqing

    2015-01-01

    We have measured the L-shell X-rays of iodine from the collisions of 3 MeV Iq+(q=15,20,22,25,26) ions with an iron target. It is found that the X-ray yield decreases with the increasing initial charge state. The energy of the subshell X-ray has a blue shift, which is independent of the projectile charge state. In addition, the relative intensity ratios of Lβ1,3,4 and Lβ2,15 to Lα1,2 X-ray are obtained and compared with the theoretical calculations. That they are larger than for a singly ionized atom can be understood by the multiple ionization effect of the outer-shell electrons.

  9. Dust trap formation in a non-self-sustained discharge with external gas ionization

    SciTech Connect

    Filippov, A. V. Babichev, V. N.; Pal’, A. F.; Starostin, A. N.; Cherkovets, V. E.; Rerikh, V. K.; Taran, M. D.

    2015-11-15

    Results from numerical studies of a non-self-sustained gas discharge containing micrometer dust grains are presented. The non-self-sustained discharge (NSSD) was controlled by a stationary fast electron beam. The numerical model of an NSSD is based on the diffusion drift approximation for electrons and ions and self-consistently takes into account the influence of the dust component on the electron and ion densities. The dust component is described by the balance equation for the number of dust grains and the equation of motion for dust grains with allowance for the Stokes force, gravity force, and electric force in the cathode sheath. The interaction between dust grains is described in the self-consistent field approximation. The height of dust grain levitation over the cathode is determined and compared with experimental results. It is established that, at a given gas ionization rate and given applied voltage, there is a critical dust grain size above which the levitation condition in the cathode sheath cannot be satisfied. Simulations performed for the dust component consisting of dust grains of two different sizes shows that such grains levitate at different heights, i.e., size separation of dust drains levitating in the cathode sheath of an NSSD takes place.

  10. Signature of superradiance from a nitrogen-gas plasma channel produced by strong-field ionization

    NASA Astrophysics Data System (ADS)

    Li, Guihua; Jing, Chenrui; Zeng, Bin; Xie, Hongqiang; Yao, Jinping; Chu, Wei; Ni, Jielei; Zhang, Haisu; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2014-03-01

    Recently, Yao et al. demonstrated the creation of coherent emissions in nitrogen gas with two-color (800 nm + 400 nm) ultrafast laser pulses [J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, and Z. Xu, New J. Phys. 15, 023046 (2013), 10.1088/1367-2630/15/2/023046]. Based on this two-color scheme, here we report on systematic investigation of temporal characteristics of the radiation emitted at 391 nm [N2+: B2Σu+(ν =0) -X2Σg+(ν =0)] by experimentally examining its temporal profiles with the increase of the plasma channel induced by the intense 800-nm femtosecond laser pulses at a nitrogen-gas pressure of ˜25 mbar. We reveal unexpected temporal profiles of the coherent emissions, which show significant superradiance signatures owing to the cooperation of an ensemble of excited N2+ molecules that are coherently radiating in phase. Our findings shed more light on the mechanisms behind the coherent laserlike emissions induced by strong-field ionization of molecules.

  11. Production of highly ionized species in high-current pulsed cathodic arcs

    SciTech Connect

    Sangines, R.; Israel, A. M.; Falconer, I. S.; McKenzie, D. R.; Bilek, M. M. M.

    2010-05-31

    Time resolved optical diagnostic techniques were used to study the production of highly ionized species in aluminum plasma produced by a centered-triggered high-current pulsed cathodic arc. Controlling the spacing between cathode spots enabled a correlation between a reduction in the mean charge state and an increase in the spacing of cathode spots to be observed. As the cathode current was increased, the distances between spots were reduced and these charge states were produced for longer times. Strong cathode spot coupling is proposed as a mechanism for the production of high charge states.

  12. Highly ionized xenon and volumetric weighting in restricted focal geometries

    NASA Astrophysics Data System (ADS)

    Strohaber, J.; Kolomenskii, A. A.; Schuessler, H. A.

    2015-08-01

    The ionization of xenon atoms subjected to 42 fs, 800 nm pulses of radiation from a Ti:Sapphire laser was investigated. In our experiments, a maximum laser intensity of ˜ 2 × 10 15 W / cm 2 was used. Xenon ions were measured using a time-of-flight ion mass spectrometer having an entrance slit with dimensions of 12 μ m × 400 μ m . The observed yields Xe n + ( n = 1 - 7 ) were partially free of spatial averaging. The ion yields showed sequential and nonsequential multiple ionization and dip structures following saturation. To investigate the dip structures and to perform a comparison between experimental and simulated data, with the goal of clarifying the effects of residual spatial averaging, we derived a hybrid analytical-numerical solution for the integration kernel in restricted focal geometries. We simulated xenon ionization using Ammosov-Delone-Krainov and Perelomov-Popov-Terent'ev theories and obtained agreement with the results of observations. Since a large number of experiments suffer from spatial averaging, the results presented are important to correctly interpret experimental data by taking into account spatial averaging.

  13. HIGHLY IONIZED PLASMA IN THE HALO OF A LUMINOUS SPIRAL GALAXY NEAR z = 0.225

    SciTech Connect

    Narayanan, Anand; Savage, Blair D.; Wakker, Bart P. E-mail: savage@astro.wisc.ed

    2010-04-01

    We present analyses of the physical conditions in the z(O{sub VI})=0.22496 and z(O{sub VI})=0.22638 multiphase absorption systems detected in the ultraviolet Hubble Space Telescope/STIS and FUSE spectra of the quasar H 1821+643 (m{sub V} = 14.2, z{sub em} = 0.297). Both absorbers are likely associated with the extended halo of a {approx}2L*{sub B} Sbc-Sc galaxy situated at a projected distance of {approx}116 h {sup -1}{sub 71} kpc from the sight line. The z = 0.22496 absorber is detected in C II, C III, C IV, O III, O VI, Si II, Si III, and H I (Ly alpha-Lytheta) at >3sigma significance. The components of Si III and Si II are narrow with implied temperatures of T {approx}< 3 x 10{sup 4} K. The low and intermediate ions in this absorber are consistent with an origin in a T {approx} 10{sup 4} K photoionized gas with [Si/H] and [C/H] of {approx}-0.6 dex. In contrast, the broader O VI absorption is likely produced in collisionally ionized plasma under nonequilibrium conditions. The z(O{sub VI})=0.22638 system has broad Ly alpha (BLA) and C III absorption offset by v = -53 km s{sup -1} from O VI. The H I and C III line widths for the BLA imply T = 1.1 x 10{sup 5} K. For non-equilibrium cooling we obtain [C/H] {approx}-1.5 dex and N(H) = 3.2 x 10{sup 18} cm{sup -2} in the BLA. The O VI, offset from the BLA with no detected H I or C III, is likely collisionally ionized at T {approx} 3 x 10{sup 5} K. From the observed multiphase properties and the proximity to a luminous galaxy, we propose that the z = 0.22496 absorber is an extragalactic analog of a highly ionized Galactic HVC, in which the O VI is produced in transition temperature plasma (T {approx} 10{sup 5} K) at the interface layers between the warm (T < 5 x 10{sup 4} K) HVC gas phase and the hot (T {approx}> 10{sup 6} K) coronal halo of the galaxy. The z = 0.22638 O VI-BLA absorber could be tracing a cooling condensing fragment in the nearby galaxy's hot gaseous halo.

  14. High potential recovery -- Gas repressurization

    SciTech Connect

    Madden, M.P.

    1998-05-01

    The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

  15. An approach toward quantification of organic compounds in complex environmental samples using high-resolution electrospray ionization mass spectrometry

    SciTech Connect

    Nguyen, Tran B.; Nizkorodov, Sergey; Laskin, Alexander; Laskin, Julia

    2013-01-07

    Quantitative analysis of individual compounds in complex mixtures using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) is complicated by differences in the ionization efficiencies of analyte molecules in the mixture, resulting in signal suppression during ionization. However, the ability to obtain concentration estimates of compounds in an environmental sample is important for data interpretation and comparison. We introduce an approach for estimating mass concentrations of analytes observed in a multicomponent mixture by HR-ESI-MS, without prior separation. The approach relies on a calibration of the instrument using appropriate standards added to the mixture of studied analytes. An illustration of how the proposed calibration can be applied in practice is provided for aqueous extracts of isoprene photooxidation organic aerosol, with multifunctional organic acids standards. We show that the observed ion sensitivities in ESI-MS are positively correlated with the “adjusted mass,” defined as a product of the molecular mass and the H/C ratio in the molecule (adjusted mass = H/C x molecular mass). The correlation of the observed ESI sensitivity with adjusted mass is justified by considering trends of the physical and chemical properties of organic compounds that affect ionization in the positive ion mode, i.e., gas-phase basicity, polarizability, and molecular size.

  16. Evidence for the interaction of the IRS 16 wind with the ionized and molecular gas at the Galactic center

    NASA Technical Reports Server (NTRS)

    Yusef-Zadeh, Farhad; Wardle, Mark

    1993-01-01

    We present a number of high-resolution radio images showing evidence for the dynamical interaction of the outflow arising from the IRS 16 complex with the ionized gas associated with the Northern Arm of Sgr A West, and with the northwestern segment of the circumnuclear molecular disk which engulfs the inner few parsecs of the Galactic center. We suggest that the wind disturbs the dynamics of the Northern Arm within 0.1 pc of the center, is responsible for the waviness of the arm at larger distances, and is collimated by Sgr A West and the circumnuclear disk. The waviness is discussed in terms of the Rayleigh-Taylor instability induced by the ram pressure of the wind incident on the surface of the Northern Arm. Another consequence of this interaction is the strong mid-IR polarization of the Northern Arm in the vicinity of the IRS 16 complex which is explained as a result of the ram pressure of the wind compressing the gas and the magnetic field.

  17. Ionization and acceleration of heavy ions in high-Z solid target irradiated by high intensity laser

    NASA Astrophysics Data System (ADS)

    Kawahito, D.; Kishimoto, Y.

    2016-05-01

    In the interaction between high intensity laser and solid film, an ionization dynamics inside the solid is dominated by fast time scale convective propagation of the internal sheath field and the slow one by impact ionization due to heated high energy electrons coupled with nonlocal heat transport. Furthermore, ionization and acceleration due to the localized external sheath field which co- propagates with Al ions constituting the high energy front in the vacuum region. Through this process, the maximum charge state and then q/A increase in the rear side, so that ions near the front are further accelerated to high energy.

  18. Densities and filling factors of the diffuse ionized gas in the Solar neighbourhood

    NASA Astrophysics Data System (ADS)

    Berkhuijsen, E. M.; Müller, P.

    2008-10-01

    Aims: We analyse electron densities and filling factors of the diffuse ionized gas (DIG) in the Solar neighbourhood. Methods: We have combined dispersion measures and emission measures towards 38 pulsars at distances known to better than 50%, from which we derived the mean density in clouds, N_c, and their volume filling factor, F_v, averaged along the line of sight. The emission measures were corrected for absorption by dust and contributions from beyond the pulsar distance. Results: The scale height of the electron layer for our sample is 0.93± 0.13 kpc and the midplane electron density is 0.023± 0.004 cm-3, in agreement with earlier results. The average density along the line of sight is < n_e> = 0.018± 0.002 cm-3 and is nearly constant. Since < n_e> = F_vN_c, an inverse relationship between Fv and Nc is expected. We find F_v(N_c) = (0.011± 0.003) N_c-1.20± 0.13, which holds for the ranges N_c= 0.05-1 cm-3 and F_v= 0.4-0.01. Near the Galactic plane the dependence of Fv on Nc is significantly stronger than away from the plane. Fv does not systematically change along or perpendicular to the Galactic plane, but the spread about the mean value of 0.08± 0.02 is considerable. The total pathlength through the ionized regions increases linearly to about 80 pc towards |z| = 1 kpc. Conclusions: Our study of Fv and Nc of the DIG is the first one based on a sample of pulsars with known distances. We confirm the existence of a tight, nearly inverse correlation between Fv and Nc in the DIG. The exact form of this relation depends on the regions in the Galaxy probed by the pulsar sample. The inverse F_v-Nc relation is consistent with a hierarchical, fractal density distribution in the DIG caused by turbulence. The observed near constancy of < n_e> then is a signature of fractal structure in the ionized medium, which is most pronounced outside the thin disk.

  19. Numerical models of steady-state and pulsating flows of self-ionizing gas in plasma accelerator channels

    NASA Astrophysics Data System (ADS)

    Brushlinskii, K. V.; Kozlov, A. N.; Konovalov, V. S.

    2015-08-01

    This paper continues the series of numerical investigations of self-ionizing gas flows in plasma accelerator channels with an azimuthal magnetic field. The mathematical model is based on the equations of dynamics of a three-component continuous medium consisting of atoms, ions, and electrons; the model is supplemented with the equation of ionization and recombination kinetics within the diffusion approximation with account for photoionization and photorecombination. It also takes into account heat exchange, which in this case is caused by radiative heat conductance. Upon a short history of the issue, the proposed model, numerical methods, and results for steady-state and pulsating flows are described.

  20. Anomalous abundances of solar energetic particles and coronal gas: Coulomb effects and First Ionization Potential (FIP) ordering

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1985-01-01

    The first ionization potential (FIP) ordering of elemental abundances in solar energetic particles and in the corona which can both be explained Coulomb effects is discussed. Solar energetic particles (SEP) and coronal gas have anomalous abundances relative to the photosphere. The anomalies are similar in both cases: which led to the conclusion that SEP acceleration is not selective, but merely preserves the source abundances. It is argued that SEP acceleration can be selective, because identical selectivity operates to determine the coronal abundances. The abundance anomalies are ordered by first ionization potential (FIP).

  1. High quality electron beam acceleration by ionization injection in laser wakefields with mid-infrared dual-color lasers

    NASA Astrophysics Data System (ADS)

    Zeng, Ming; Luo, Ji; Chen, Min; Mori, Warren B.; Sheng, Zheng-Ming; Hidding, Bernhard

    2016-06-01

    For the laser wakefield acceleration, suppression of beam energy spread while keeping sufficient charge is one of the key challenges. In order to achieve this, we propose bichromatic laser ionization injection with combined laser wavelengths of 2.4 μ m and 0.8 μ m for wakefield excitation and triggering electron injection via field ionization, respectively. A laser pulse at 2.4 μ m wavelength enables one to drive an intense acceleration structure with a relatively low laser power. To further reduce the requirement of laser power, we also propose to use carbon dioxide as the working gas medium, where carbon acts as the injection element. Our three dimensional particle-in-cell simulations show that electron beams at the GeV energy level with both low energy spreads (around 1%) and high charges (several tens of picocoulomb) can be obtained by the use of this scheme with laser peak power totaling sub-100 TW.

  2. IZI: INFERRING THE GAS PHASE METALLICITY (Z) AND IONIZATION PARAMETER (q) OF IONIZED NEBULAE USING BAYESIAN STATISTICS

    SciTech Connect

    Blanc, Guillermo A.; Kewley, Lisa; Vogt, Frédéric P. A.; Dopita, Michael A.

    2015-01-10

    We present a new method for inferring the metallicity (Z) and ionization parameter (q) of H II regions and star-forming galaxies using strong nebular emission lines (SELs). We use Bayesian inference to derive the joint and marginalized posterior probability density functions for Z and q given a set of observed line fluxes and an input photoionization model. Our approach allows the use of arbitrary sets of SELs and the inclusion of flux upper limits. The method provides a self-consistent way of determining the physical conditions of ionized nebulae that is not tied to the arbitrary choice of a particular SEL diagnostic and uses all the available information. Unlike theoretically calibrated SEL diagnostics, the method is flexible and not tied to a particular photoionization model. We describe our algorithm, validate it against other methods, and present a tool that implements it called IZI. Using a sample of nearby extragalactic H II regions, we assess the performance of commonly used SEL abundance diagnostics. We also use a sample of 22 local H II regions having both direct and recombination line (RL) oxygen abundance measurements in the literature to study discrepancies in the abundance scale between different methods. We find that oxygen abundances derived through Bayesian inference using currently available photoionization models in the literature can be in good (∼30%) agreement with RL abundances, although some models perform significantly better than others. We also confirm that abundances measured using the direct method are typically ∼0.2 dex lower than both RL and photoionization-model-based abundances.

  3. The nature and origin of diffuse ionized gas in the halos of nearby edge-on galaxies

    NASA Astrophysics Data System (ADS)

    Miller, Scott Timothy

    In an effort to constrain the source of ionization and the nature of the extraplanar diffuse ionized gas (eDIG) in nearby edge-on disk galaxies, a number of innovative observational techniques are used to acquire deep narrow- band images and long-slit spectra of these objects down to unprecedented flux levels (few 10-18 erg s-1 cm 2 arcsec-2). 17 edge-on galaxies were imaged in narrowband Hα and Hα + [N II] in an effort to statistically analyze the morphology and general characteristics of the eDIG. Although the galaxies in the imaging sample cover a broad range in total Hα luminosity, the eDIG Hα emission represents a rather constant 10 15% of the total luminosity. A cross-correlation analysis of the intensity of the extraplanar emission with that of the disk emission confirms the existence of a connection between the disk and halo emission in several objects. The second portion of the thesis focuses on the analysis of deep long-slit spectra of 9 previously imaged edge-on galaxies with known eDIG line emission. Hα, [N II]λ6583, and [S II]λ6716 are observed in all 9 galaxies up to |z| = few kpc, and many other lines (such as [O III]λ5007, [O I]λ6300, and He I λ5876) are observed to lower heights in a majority of them. We find that in 7 out of the 9 objects, a general increase in the [N II]/Hα and [S II]/Hα line ratios is observed with height, as has been detected previously in other galaxies. Comparing the measured line ratios with a number of ionization models suggests that photoionization by massive OB stars alone is generally inadequate to ionize the halo gas. The best fit to the data is obtained using a combined photoionization/turbulent mixing layer (TML) model. Strong correlations between halo emission and disk H II regions support the theory that OB star associations are the primary source of ionization of the extraplanar gas. TML and shock models suggest that supernovae events play a supporting role as well, in both the ionizing of the gas in

  4. Laser-induced resonance states as dynamic suppressors of ionization in high-frequency short pulses

    SciTech Connect

    Barash, Danny; Orel, Ann E.; Baer, Roi

    2000-01-01

    An adiabatic-Floquet formalism is used to study the suppression of ionization in short laser pulses. In the high-frequency limit the adiabatic equations involve only the pulse envelope where transitions are purely ramp effects. For a short-ranged potential having a single-bound state we show that ionization suppression is caused by the appearance of a laser-induced resonance state, which is coupled by the pulse ramp to the ground state and acts to trap ionizing flux. (c) 1999 The American Physical Society.

  5. Development of a highly-sensitive Penning ionization electron spectrometer using the magnetic bottle effect

    NASA Astrophysics Data System (ADS)

    Ota, Masahiro; Ishiguro, Yuki; Nakajima, Yutaro; Miyauchi, Naoya; Yamakita, Yoshihiro

    2016-02-01

    This paper reports on a highly-sensitive retarding-type electron spectrometer for a continuous source of electrons, in which the electron collection efficiency is increased by utilizing the magnetic bottle effect. This study demonstrates an application to Penning ionization electron spectroscopy using collisional ionization with metastable He*(23S) atoms. Technical details and performances of the instrument are presented. This spectrometer can be used for studies of functional molecules and assemblies, and exterior electron densities are expected to be selectively observed by the Penning ionization.

  6. Double electron ionization in Compton scattering of high energy photons by helium atoms

    SciTech Connect

    Amusia, M.Y.; Mikhailov, A.I.

    1995-08-01

    The cross section for double-electron ionization of two-electron atoms and ions in Compton scattering of high energy photons is calculated. It is demonstrated that its dependence on the incoming photon frequency is the same as that for single-electron ionization. The ratio of {open_quotes}double-to-single{close_quotes} ionization in Compton scattering was found to be energy independent and almost identical with the corresponding value for photoionization. For the He atom it is 1.68%. This surprising result deserves experimental verification.

  7. Temperature, Density, Ionization Rate, and Morphology of Diffuse Gas Near the Galactic Center Probed by H_3^+

    NASA Astrophysics Data System (ADS)

    Oka, Takeshi; Geballe, Thomas R.; Goto, Miwa; Usuda, Tomonori

    2014-06-01

    Since last year, infrared spectra of H_3^+ and CO have been obtained toward nine stars (designated by us α+, β, γ, γ-, δ, θ, κ, λ, and λ-) along the Galactic plane from 138 pc to the west of Sgr A* to 115 pc east, using IRCS of the Subaru Telescope and GNIRS of the Gemini North Observatory. All of the objects lie within the Central Molecular Zone (CMZ), a region of radius ˜150 pc at the center of the Galaxy. All sightlines except that toward λ (a red giant not suitable for H_3^+ spectroscopy) have high H_3^+ column densities on the order of a few times 1015 cm-2. The metastable R(3,3)^l absorption line was sought on seven sightlines (α+, β, γ, γ-, δ, θ, κ), each of which showed significant signal except κ for which detection of this line was inconclusive. These results indicate that the long (at least several tens of parsecs) columns of warm (T ˜ 250 K) and diffuse (n ≤ 100 cm-3) gas in which a high ionization rate of ζ of a few times 10-15 s-1 exists, found earlier by us on sightlines passing through the central 30 pc of the CMZ are present over nearly the entire CMZ. The velocity profiles of the H_3^+ absorption lines provide information on the morphology of the diffuse gas in the CMZ. The velocity profile toward star λ- (2MASS J17482472-2824313) observed by GNIRS is particularly noteworthy. The sightline toward this star, located 115 pc to the east of Sgr A*, shows the presence of warm diffuse gas near 0 radial velocity and complements an identical result at the west end (on sightlines toward α+ and previously observed sources α and β). Stars nearer to the center of the CMZ show the warm diffuse gas at negative velocities only. Although many more stars need to be observed, the results to date suggest the existence of an expanding molecular ring of diffuse gas which is, unlike previously reported, not rotating but purely expanding. Oka, T., Geballe, T. R., Goto, M., Usuda, T., and McCall, B. J. 2005, ApJ, 632 882 Goto, M., Usuda, T

  8. Self-injection and acceleration of electrons during ionization of gas atoms by a short laser pulse

    SciTech Connect

    Singh, K.P.

    2006-04-15

    Using a relativistic three-dimensional single-particle code, acceleration of electrons created during the ionization of nitrogen and oxygen gas atoms by a laser pulse has been studied. Barrier suppression ionization model has been used to calculate ionization time of the bound electrons. The energy gained by the electrons peaks for an optimum value of laser spot size. The electrons created near the tail do not gain sufficient energy for a long duration laser pulse. The electrons created at the tail of pulse escape before fully interacting with the trailing part of the pulse for a short duration laser pulse, which causes electrons to retain sufficient energy. If a suitable frequency chirp is introduced then energy of the electrons created at the tail of the pulse further increases.

  9. Observations of columnal recombination in the ionization tracks of energetic heavy nuclei in an argon-methane gas mixture

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, Mark E.

    1990-01-01

    Measurements of ionization signals resulting from the passage of energetic heavy nuclei through a gas mixture consisting of 95 mol percent Ar plus 5 mol percent CH4, at an absolute pressure of 3 atm are presented. The measurements take place under a uniform electric field perpendicular to the ionization track. The signals were compared to the calculated energy losses, with an assumption of proportionality between energy loss rate and ionization rate. Significant deviations from proportionality are found for energy loss rate grater than about 3000 MeV sq cm/g, while fractional deviations are found to be proportional to the energy loss rate (dE/dx) exp m, where m is equal to about two. These results are attributed to the columnal recombination.

  10. High-order harmonic cutoff extension of the O{sub 2} molecule due to ionization suppression

    SciTech Connect

    Shan Bing; Tong Xiaomin; Zhao Zengxiu; Chang Zenghu; Lin, C.D.

    2002-12-01

    High-order harmonic generation has been observed experimentally from O{sub 2} molecules at the saturation ionization intensity. The harmonic cutoff extends far beyond the cutoff of Xe despite both have nearly equal ionization potentials. In contrast, the harmonic spectra for N{sub 2} and Ar, which have almost the same ionization potentials, are essentially close to each other. We show the extension of harmonic cutoff in O{sub 2} is a consequence of ionization suppression. Using a simple modified tunneling ionization model for molecules, we predict both the harmonic cutoff extension and the ionization suppression semiquantitatively.

  11. Rapid high mass resolution mass spectrometry using matrix-assisted ionization.

    PubMed

    Trimpin, Sarah; Thawoos, Shameemah; Foley, Casey D; Woodall, Daniel W; Li, Jing; Inutan, Ellen D; Stemmer, Paul M

    2016-07-15

    Matrix-assisted ionization (MAI) is demonstrated to be a robust and sensitive analytical method capable of analyzing proteins such as cholera toxin B-subunit and pertussis toxin mutant from conditions containing relatively high amounts of inorganic salts, buffers, and preservatives without the need for prior sample clean-up or concentration. By circumventing some of the sample preparation steps, MAI simplifies and accelerates the analytical workflow for biological samples in complex media. The benefits of multiply charged ions characteristic of electrospray ionization (ESI) and the robustness of matrix-assisted laser desorption/ionization (MALDI) can be obtained from a single method, making it well suited for analysis of proteins and other biomolecules at ultra-high resolution as demonstrated on an Orbitrap Fusion where protein subunits were resolved for which MALDI-time-of-flight failed. MAI results are compared with those obtained with ESI, MALDI, and laserspray ionization methods and fundamental commonalities discussed. PMID:26835606

  12. Integral Field Unit Observations of NGC 4302: Kinematics of the Diffuse Ionized Gas Halo

    NASA Astrophysics Data System (ADS)

    Heald, George H.; Rand, Richard J.; Benjamin, Robert A.; Bershady, Matthew A.

    2007-07-01

    We present moderate-resolution spectroscopy of extraplanar diffuse ionized gas (EDIG) emission in the edge-on spiral galaxy NGC 4302. The spectra were obtained with the SparsePak integral field unit (IFU) at the WIYN Observatory. The wavelength coverage of the observations includes the [N II] λ6548, 6583, Hα, and [S II] λ6716, 6731 emission lines. The spatial coverage of the IFU includes the entirety of the EDIG emission noted in previous imaging studies of this galaxy. The spectra are used to construct position-velocity (PV) diagrams at several ranges of heights above the midplane. Azimuthal velocities are directly extracted from the PV diagrams using the envelope-tracing method and indicate an extremely steep drop-off in rotational velocity with increasing height, with magnitude ~30 km s-1 kpc-1. We find evidence for a radial variation in the velocity gradient on the receding side. We have also performed artificial observations of galaxy models in an attempt to match the PV diagrams. The results of a statistical analysis also favor a gradient of ~30 km s-1 kpc-1. We compare these results with an entirely ballistic model of disk-halo flow and find a strong dichotomy between the observed kinematics and those predicted by the model. The disagreement is worse than we have found for other galaxies in previous studies. The conclusions of this paper are compared to results for two other galaxies, NGC 5775 and NGC 891. We find that the vertical gradient in rotation speed, per unit EDIG scale height, for all three galaxies is consistent with a constant magnitude (within the errors) of approximately 15-25 km s-1 per scale height, independent of radius. This relationship is also true within the galaxy NGC 4302. We also discuss how the gradient depends on the distribution and morphology of the EDIG and the star formation rates of the galaxies, and consequences for the origin of the gas.

  13. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    PubMed Central

    Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Abstract Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI‐APi‐TOF (Chemical Ionization‐Atmospheric Pressure interface‐Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI‐APi‐TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4‐H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self‐contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit. PMID:27610289

  14. [Determination of cyflufenamid residue in carrots by gas chromatography-negative chemical ionization mass spectrometry].

    PubMed

    Yang, Wenquan; Shen, Weijian; Zhao, Zengyun; Xu, Jinzhong; Shen, Chongyu; Wu, Bin

    2008-07-01

    A method was developed for the determination of cyflufenamid residue in carrots by solid phase extraction-gas chromatography-negative chemical ionization mass spectrometry (SPE-GC-NCI/MS). Cyflufenamid residue was extracted with ethyl acetate from carrots. The extract was cleaned-up by an active carbon SPE column connected to a neutral alumina SPE column. The analysis was carried out by the GC-NCI/MS with selected ion monitoring mode. The recoveries of cyflufenamid in carrot samples were in the range from 74.9% to 94.6% at four spiked levels, 0.005, 0.01, 0.02, 0.04 mg/kg, and the relative standard deviations (RSD) were less than 9.7% for inter-days. The linearity of the method was good in the range from 10 to 1000 ng/mL, and the limit of detection (LOD) was 0.001 mg/kg, and the limit of quantitation (LOQ) was 0.005 mg/kg. The method is selective without interference and is suitable for the determination and confirmation of cyflufenamid residue in carrots. PMID:18959256

  15. Ethanol analysis by headspace gas chromatography with simultaneous flame-ionization and mass spectrometry detection.

    PubMed

    Tiscione, Nicholas B; Alford, Ilene; Yeatman, Dustin Tate; Shan, Xiaoqin

    2011-09-01

    Ethanol is the most frequently identified compound in forensic toxicology. Although confirmation involving mass spectrometry is desirable, relatively few methods have been published to date. A novel technique utilizing a Dean's Switch to simultaneously quantitate and confirm ethyl alcohol by flame-ionization (FID) and mass spectrometric (MS) detection after headspace sampling and gas chromatographic separation is presented. Using 100 μL of sample, the limits of detection and quantitation were 0.005 and 0.010 g/dL, respectively. The zero-order linear range (r(2) > 0.990) was determined to span the concentrations of 0.010 to 1.000 g/dL. The coefficient of variation of replicate analyses was less than 3.1%. Quantitative accuracy was within ±8%, ±6%, ±3%, and ±1.5% at concentrations of 0.010, 0.025, 0.080, and 0.300 g/dL, respectively. In addition, 1,1-difluoroethane was validated for qualitative identification by this method. The validated FID-MS method provides a procedure for the quantitation of ethyl alcohol in blood by FID with simultaneous confirmation by MS and can also be utilized as an identification method for inhalants such as 1,1-difluoroethane. PMID:21871160

  16. Do Radio Jets Contribute to Driving Ionized Gas Outflows in Moderate Luminosity Type 2 AGN?

    NASA Astrophysics Data System (ADS)

    Fowler, Julia; Sajina, Anna; Lacy, Mark

    2016-01-01

    This poster examines the role of AGN-driven feedback in low to intermediate power radio galaxies. We begin with [OIII] measurements of ionized gas outflows in 29 moderate AGN-luminosity z~0.3-0.7 dust-obscured Type 2 AGN. We aim to examine the relative role of the AGN itself, of star-formation and of nascent radio jets in driving these outflows. The strength of the AGN and star formation are based on the [OIII] luminosities, and the far-IR luminosities respectively. For the radio jets, we present multi-frequency radio (X, S, and L-bands) JVLA imaging of our sample, which allows us both to constrain the overall radio power, but also look for signatures of young radio sources, including Giga-hertz Peaked Spectrum (GPS) sources, as well as small-scale jets. While radio jet-driven outflows are well known for powerful radio-loud galaxies, this study allows us to constrain the degree to which this mechanism is significant at more modest radio luminosities of L5GHz~10^22-25 W/Hz.

  17. Nondipole Ionization Dynamics of Atoms in Superintense High-Frequency Attosecond Pulses

    NASA Astrophysics Data System (ADS)

    Førre, M.; Hansen, J. P.; Kocbach, L.; Selstø, S.; Madsen, L. B.

    2006-07-01

    The ionization of H(1s) in superintense, high-frequency, attosecond pulses is studied beyond the dipole approximation. We identify a unique nondipole 3rd lobe in the angular distribution of the ejected electron and show that this lobe has a well-defined classical counterpart. The ionization is likely to occur in the direction opposite to the laser propagation direction, which is fully understood from an analysis of the classical dynamics.

  18. Measurement of L-shell electron-impact ionization cross sections for highly charged uranium ions

    SciTech Connect

    Stoehlker, T.; Kraemer, A. |; Elliott, S.R.; Marrs, R.E.; Scofield, J.H.

    1997-10-01

    L-shell electron-impact ionization cross sections for highly charged uranium ions from fluorinelike U{sup 83+} through lithiumlike U{sup 89+} have been measured at 45-, 60-, and 75-keV electron energy. The cross sections were obtained from x-ray measurements of the equilibrium ionization balance in an electron beam ion trap. The measured cross sections agree with recent relativistic distorted wave calculations. {copyright} {ital 1997} {ital The American Physical Society}

  19. LARGE-SCALE SHOCK-IONIZED AND PHOTOIONIZED GAS IN M83: THE IMPACT OF STAR FORMATION

    SciTech Connect

    Hong, Sungryong; Calzetti, Daniela; Dopita, Michael A.; Blair, William P.; Whitmore, Bradley C.; Bond, Howard E.; Balick, Bruce; Carollo, Marcella; Disney, Michael J.; Frogel, Jay A.; Hall, Donald; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.; O'Connell, Robert W.; Paresce, Francesco; Saha, Abhijit; Silk, Joseph I.; Trauger, John T.; Walker, Alistair R.

    2011-04-10

    We investigate the ionization structure of the nebular gas in M83 using the line diagnostic diagram, [O III](5007 A)/H{beta} versus [S II](6716 A+6731 A)/H{alpha}, with the newly available narrowband images from the Wide Field Camera 3 (WFC3) of the Hubble Space Telescope (HST). We produce the diagnostic diagram on a pixel-by-pixel (0.''2 x 0.''2) basis and compare it with several photo- and shock-ionization models. We select four regions from the center to the outer spiral arm and compare them in the diagnostic diagram. For the photoionized gas, we observe a gradual increase of the log ([O III]/H{beta}) ratios from the center to the spiral arm, consistent with the metallicity gradient, as the H II regions go from super-solar abundance to roughly solar abundance from the center out. Using the diagnostic diagram, we separate the photoionized from the shock-ionized component of the gas. We find that the shock-ionized H{alpha} emission ranges from {approx}2% to about 15%-33% of the total, depending on the separation criteria used. An interesting feature in the diagnostic diagram is a horizontal distribution around log ([O III]/H{beta}) {approx} 0. This feature is well fit by a shock-ionization model with 2.0 Z{sub sun} metallicity and shock velocities in the range of 250-350 km s{sup -1}. A low-velocity shock component, <200 km s{sup -1}, is also detected and is spatially located at the boundary between the outer ring and the spiral arm. The low-velocity shock component can be due to (1) supernova remnants located nearby, (2) dynamical interaction between the outer ring and the spiral arm, and (3) abnormal line ratios from extreme local dust extinction. The current data do not enable us to distinguish among those three possible interpretations. Our main conclusion is that, even at the HST resolution, the shocked gas represents a small fraction of the total ionized gas emission at less than 33% of the total. However, it accounts for virtually all of the mechanical

  20. Large-scale Shock-ionized and Photoionized Gas in M83: The Impact of Star Formation

    NASA Astrophysics Data System (ADS)

    Hong, Sungryong; Calzetti, Daniela; Dopita, Michael A.; Blair, William P.; Whitmore, Bradley C.; Balick, Bruce; Bond, Howard E.; Carollo, Marcella; Disney, Michael J.; Frogel, Jay A.; Hall, Donald; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.; O'Connell, Robert W.; Paresce, Francesco; Saha, Abhijit; Silk, Joseph I.; Trauger, John T.; Walker, Alistair R.; Windhorst, Rogier A.; Young, Erick T.; Mutchler, Max

    2011-04-01

    We investigate the ionization structure of the nebular gas in M83 using the line diagnostic diagram, [O III](5007 Å)/Hβ versus [S II](6716 Å+6731 Å)/Hα, with the newly available narrowband images from the Wide Field Camera 3 (WFC3) of the Hubble Space Telescope (HST). We produce the diagnostic diagram on a pixel-by-pixel (0farcs2 × 0farcs2) basis and compare it with several photo- and shock-ionization models. We select four regions from the center to the outer spiral arm and compare them in the diagnostic diagram. For the photoionized gas, we observe a gradual increase of the log ([O III]/Hβ) ratios from the center to the spiral arm, consistent with the metallicity gradient, as the H II regions go from super-solar abundance to roughly solar abundance from the center out. Using the diagnostic diagram, we separate the photoionized from the shock-ionized component of the gas. We find that the shock-ionized Hα emission ranges from ~2% to about 15%-33% of the total, depending on the separation criteria used. An interesting feature in the diagnostic diagram is a horizontal distribution around log ([O III]/Hβ) ≈ 0. This feature is well fit by a shock-ionization model with 2.0 Z sun metallicity and shock velocities in the range of 250-350 km s-1. A low-velocity shock component, <200 km s-1, is also detected and is spatially located at the boundary between the outer ring and the spiral arm. The low-velocity shock component can be due to (1) supernova remnants located nearby, (2) dynamical interaction between the outer ring and the spiral arm, and (3) abnormal line ratios from extreme local dust extinction. The current data do not enable us to distinguish among those three possible interpretations. Our main conclusion is that, even at the HST resolution, the shocked gas represents a small fraction of the total ionized gas emission at less than 33% of the total. However, it accounts for virtually all of the mechanical energy produced by the central starburst in M83.

  1. Study of solid/gas phase photocatalytic reactions by electron ionization mass spectrometry.

    PubMed

    Nuño, Manuel; Ball, Richard J; Bowen, Chris R

    2014-08-01

    This paper describes a novel methodology for the real-time study of solid-gas phase photocatalytic reactions in situ. A novel reaction chamber has been designed and developed to facilitate the investigation of photoactive materials under different gas compositions. UV irradiation in the wavelength of ranges 376-387 and 381-392 nm was provided using specially designed high efficiency light emitting diode arrays. The experiments used air containing 190 ppm NO2 in a moist environment with a relative humidity of 0.1%. Photocatalytic samples consisting of pressed pellets of rutile and anatase crystalline forms of TiO2 were monitored over a period of 150 min. An ultra-high vacuum right angled bleed valve allowed a controlled flow of gas from the main reaction chamber at atmospheric pressure to a residual gas analyser operating at a vacuum of 10(-5)  mbar. The apparatus and methodology have been demonstrated to provide high sensitivity (ppb). The rate of degradation of NO2 attributed to reaction at the TiO2 surface was sensitive to both crystal structures (anatase or rutile) and wavelength of irradiation. PMID:25044899

  2. Role of elastic scattering in high-order above threshold ionization

    NASA Astrophysics Data System (ADS)

    Chen, Zhang-Jin; Ye, Jian-Mian; Xu, Yang-Bing

    2015-10-01

    We investigate the target and intensity dependence of plateau in high-order above threshold ionization (HATI) by simulating the two-dimensional (2D) momentum distributions and the energy spectra of photoelectrons in HATI of rare gas atoms through using the quantitative rescattering model. The simulated results are compared with the existing experimental measurements. It is found that the slope of the plateau in the HATI photoelectron energy spectrum highly depends on the structure of elastic scattering differential cross section (DCS) of laser-induced returning electron with its parent ion. The investigations of the long- and short-range potential effects in the DCSs reveal that the short-range potential, which reflects the structure of the target, plays an essential role in generating the HATI photoelectron spectra. Project supported by the National Natural Science Foundation of China (Grant No. 11274219), the STU Scientific Research Foundation for Talents, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China.

  3. HPF HIGH PRESSURE FACILITY GAS ANALYSIS SYSTEM IN BASEMENT / HIGH TEMPERATURE GAS FACILITY IN THE E

    NASA Technical Reports Server (NTRS)

    1980-01-01

    HPF HIGH PRESSURE FACILITY GAS ANALYSIS SYSTEM IN BASEMENT / HIGH TEMPERATURE GAS FACILITY IN THE ENGINE RESEARCH BUILDING ERB TEST CELL CE-13 / AUTOMATIC SCAN VALUE SYSTEM ON THE SECOND FLOOR OF THE INSTRUMENT RESEARCH LABORATORY IRL

  4. High velocity gas in external galaxies

    NASA Technical Reports Server (NTRS)

    Kamphuis, J.; Vanderhulst, J. M.; Sancisi, R.

    1990-01-01

    Two nearby, nearly face-on spiral galaxies, M 101 and NGC 6946, observed in the HI with the Westerbork Synthesis Radio Telescope (WSRT) as part of a program to search for high velocity gas in other galaxies, are used to illustrate the range of properties of high velocity gas in other galaxies found thusfar.

  5. High-Resolution Emission-Line Imaging of Seyfert Galaxies. II. Evidence for Anisotropic Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew S.; Ward, Martin J.; Haniff, Christopher A.

    1988-11-01

    In the preceding paper, we describe a direct imaging survey of Seyfert galaxies with "linear" radio structures and find that the major axes and spatial scales of the circumnuclear emission-line gas are very similar to those of the radio continuum sources. In the present paper, the nature of this close connection between thermal and relativistic gases is assessed in detail. Models in which the kinetic energy of the radio jets or plasmoids powers shock waves, which ionize the gas, seem energetically feasible but disagree with the off-nuclear line intensity ratios. Ionization by relativistic electrons is negligible, but they may contribute to the heating of the gas. We favor a scenario in which the radio jets and plasmoids shock, accelerate, and compress ambient and entrained gas, but the dominant source of ionization is the nonstellar nuclear ultraviolet continuum. This ultraviolet source appears to be partially beamed along the axis of the radio jet. Photoionization by ultraviolet synchrotron radiation generated via shocks in the ejecta may also contribute, especially in Seyfert 2 galaxies. A comparison between the number of ionizing photons, N_i_, inferred by extrapolation of the directly observed continuum, and the number of ionizing photons, N_Hβ_, required to generate the Hβ emission has been made for six galaxies in our sample. In at least two galaxies, we find N_i_ << N_Hβ_, suggesting that the gas is exposed to a higher ionizing flux than inferred from direct observations of the nucleus, and supporting the idea of partial beaming. Similarly, the energy in the continuum between 100 A and 1 micron, if emitted isotropically, is inadequate to fuel the thermal nuclear infrared sources, implying that the radiating dust is heated by a more luminous optical-ultraviolet source. We speculate that the nuclear infrared emission of Seyfert 2 galaxies arises from dust in molecular clouds exposed to the partially beamed radiation, and we predict that the 10 micron

  6. Compact, high energy gas laser

    DOEpatents

    Rockwood, Stephen D.; Stapleton, Robert E.; Stratton, Thomas F.

    1976-08-03

    An electrically pumped gas laser amplifier unit having a disc-like configuration in which light propagation is radially outward from the axis rather than along the axis. The input optical energy is distributed over a much smaller area than the output optical energy, i.e., the amplified beam, while still preserving the simplicity of parallel electrodes for pumping the laser medium. The system may thus be driven by a comparatively low optical energy input, while at the same time, owing to the large output area, large energies may be extracted while maintaining the energy per unit area below the threshold of gas breakdown.

  7. High-performance gas sensors with temperature measurement

    PubMed Central

    Zhang, Yong; Li, Shengtao; Zhang, Jingyuan; Pan, Zhigang; Min, Daomin; Li, Xin; Song, Xiaoping; Liu, Junhua

    2013-01-01

    There are a number of gas ionization sensors using carbon nanotubes as cathode or anode. Unfortunately, their applications are greatly limited by their multi-valued sensitivity, one output value corresponding to several measured concentration values. Here we describe a triple-electrode structure featuring two electric fields with opposite directions, which enable us to overcome the multi-valued sensitivity problem at 1 atm in a wide range of gas concentrations. We used a carbon nanotube array as the first electrode, and the two electric fields between the upper and the lower interelectrode gaps were designed to extract positive ions generated in the upper gap, hence significantly reduced positive ion bombardment on the nanotube electrode, which allowed us to maintain a high electric field near the nanotube tips, leading to a single-valued sensitivity and a long nanotube life. We have demonstrated detection of various gases and simultaneously monitoring temperature, and a potential for applications. PMID:23405281

  8. Multiple-injection high-throughput gas chromatography analysis.

    PubMed

    Schafer, Wes; Wang, Heather; Welch, Christopher J

    2016-08-01

    Multiple-injection techniques have been shown to be a simple way to perform high-throughput analysis where the entire experiment resides in a single chromatogram, simplifying the data analysis and interpretation. In this study, multiple-injection techniques are applied to gas chromatography with flame ionization detection and mass detection to significantly increase sample throughput. The unique issues of implementing a traditional "Fast" injection mode of multiple-injection techniques with gas chromatography and mass spectrometry are discussed. Stacked injections are also discussed as means to increase the throughput of longer methods where mass detection is unable to distinguish between analytes of the same mass and longer retentions are required to resolve components of interest. Multiple-injection techniques are shown to increase instrument throughput by up to 70% and to simplify data analysis, allowing hits in multiple parallel experiments to be identified easily. PMID:27292909

  9. Simulation of ionization effects for high-density positron drivers in future plasma wakefield experiments

    SciTech Connect

    Bruhwiler, D.L.; Dimitrov, D.A.; Cary, J.R.; Esarey, E.; Leemans, W.P.

    2003-05-12

    The plasma wakefield accelerator (PWFA) concept has been proposed as a potential energy doubler for present or future electron-positron colliders. Recent particle-in-cell (PIC) simulations have shown that the self-fields of the required electron beam driver can tunnel ionize neutral Li, leading to plasma wake dynamics differing significantly from that of a preionized plasma. It has also been shown, for the case of a preionized plasma, that the plasma wake of a positron driver differs strongly from that of an electron driver. We will present new PIC simulations, using the OOPIC code, showing the effects of tunneling ionization on the plasma wake generated by high-density positron drivers. The results will be compared to previous work on electron drivers with tunneling ionization and positron drivers without ionization. Parameters relevant to the energy doubler and the upcoming E-164x experiment at the Stanford Linear Accelerator Center will be considered.

  10. Analysis of human breath samples using a modified thermal desorption: gas chromatography electrospray ionization interface.

    PubMed

    Reynolds, James C; Jimoh, Modupe A; Guallar-Hoyas, Cristina; Creaser, Colin S; Siddiqui, Salman; Paul Thomas, C L

    2014-09-01

    A two-stage thermal desorption/secondary electrospray ionization/time-of-flight mass spectrometry for faster targeted breath profiling has been studied. A new secondary electrospray ionization (SESI) source was devised to constrain the thermal desorption plume and promote efficient mixing in the ionization region. Further, a chromatographic pre-separation stage was introduced to suppress interferences from siloxanes associated with thermal desorption profiles of exhaled breath samples.In vitro tests with 5-nonanone indicated an increased sensitivity and a lowered limit-of-detection, both by a factor of ~4, the latter to an on-trap mass of 14.3 ng, equivalent to a sampled breath concentration of 967 pptv. Analysis of the mass spectrometric responses from 20 breath samples acquired sequentially from a single participant indicated enhanced reproducibility (reduced relative standard deviations (RSD) for 5-nonanone, benzaldehyde and 2-butanone were 28 %, 16% and 14% respectively. The corresponding values for an open SESI source were that 5-nonanone was not detected, with %RSD of 39% for benzaldehyde and 31% for 2-butanone).The constrained source with chromatographic pre-separation resulted in an increase in the number of detectable volatile organic compounds (VOCs) from 260 mass spectral peaks with an open SESI source to 541 peaks with the constrained source with pre-separation. Most of the observed VOCs were present at trace levels, at less than 2.5% of the intensity of the base peak.Seventeen 2.5 dm(3) distal breath samples were collected from asthma patients and healthy controls respectively, and subjected to comparative high-throughput screening using thermal desorption/SESI/time-of-flight mass spectrometry (TD-SESI-ToFMS). Breath metabolites were detected by using a background siloxane ion (hexamethylcyclotrisiloxane m/z 223.0642) as an internal lockmass. Eleven breath metabolites were selected from the breath research literature and successfully targeted

  11. Identification of Guest-Host Inclusion Complexes in the Gas Phase by Electrospray Ionization-Mass Spectrometry

    ERIC Educational Resources Information Center

    Mendes, De´bora C.; Ramamurthy, Vaidhyanathan; Da Silva, Jose´ P.

    2015-01-01

    In this laboratory experiment, students follow a step-by-step procedure to prepare and study guest-host complexes in the gas phase using electrospray ionization-mass spectrometry (ESI-MS). Model systems are the complexes of hosts cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) with the guest 4-styrylpyridine (SP). Aqueous solutions of CB7 or CB8…

  12. Dynamics of ionization-induced electron injection in the high density regime of laser wakefield acceleration

    SciTech Connect

    Desforges, F. G.; Paradkar, B. S. Ju, J.; Audet, T. L.; Maynard, G.; Cros, B.; Hansson, M.; Senje, L.; Persson, A.; Lundh, O.; Wahlström, C.-G.; Dobosz-Dufrénoy, S.; Monot, P.; Vay, J.-L.

    2014-12-15

    The dynamics of ionization-induced electron injection in high density (∼1.2 × 10{sup 19} cm{sup −3}) regime of laser wakefield acceleration is investigated by analyzing the betatron X-ray emission. In such high density operation, the laser normalized vector potential exceeds the injection-thresholds of both ionization-injection and self-injection due to self-focusing. In this regime, direct experimental evidence of early on-set of ionization-induced injection into the plasma wave is given by mapping the X-ray emission zone inside the plasma. Particle-In-Cell simulations show that this early on-set of ionization-induced injection, due to its lower trapping threshold, suppresses the trapping of self-injected electrons. A comparative study of the electron and X-ray properties is performed for both self-injection and ionization-induced injection. An increase of X-ray fluence by at least a factor of two is observed in the case of ionization-induced injection due to increased trapped charge compared to self-injection mechanism.

  13. Stars and Ionized Gas in the S0 Galaxy NGC 7743: An Inclined Large-scale Gaseous Disk

    NASA Astrophysics Data System (ADS)

    Katkov, Ivan Yu.; Moiseev, Alexei V.; Sil'chenko, Olga K.

    2011-10-01

    We used deep, long-slit spectra and integral-field spectral data to study the stars, ionized gas kinematics, and stellar population properties in the lenticular barred galaxy NGC 7743. We show that ionized gas at distances larger than 1.5 kpc from the nucleus settles in the disk, which is significantly inclined toward the stellar disk of the galaxy. Making different assumptions about the geometry of the disks and including different sets of emission lines in the fitting, under the assumption of thin, flat-disk circular rotation, we obtain the full possible range of angles between the disks to be 34° ± 9° or 77° ± 9°. The most probable origin of the inclined disk is the external gas accretion from a satellite orbiting the host galaxy, with a corresponding angular momentum direction. The published data on the H I distribution around NGC 7743 suggest that the galaxy has a gas-rich environment. The emission-line ratio diagrams imply the domination of shock waves in the ionization state of the gaseous disk, whereas the contribution of photoionization from recent star formation seems to be negligible. In some parts of the disk, a difference between the velocities of the gas emitting from the forbidden lines and Balmer lines is detected. This may be caused by the mainly shock-excited inclined disk, whereas some fraction of the Balmer-line emission is produced by a small amount of gas excited by young stars in the main stellar disk of NGC 7743. In the circumnuclear region (R < 200 pc), some evidence of the active galactic nucleus jet's interaction with an ambient interstellar medium was found. Based on the observations collected with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences, which is operated under the financial support of the Science Department of Russia (registration number 01-43).

  14. A kinematic study of the neutral and ionized gas in the irregular dwarf galaxies IC4662 and NGC5408

    NASA Astrophysics Data System (ADS)

    van Eymeren, Janine; Koribalski, Bärbel S.; López-Sánchez, Ángel R.; Dettmar, Ralf-Jürgen; Bomans, Dominik J.

    2010-09-01

    The feedback between massive stars and the interstellar medium is one of the most important processes in the evolution of dwarf galaxies. This interaction results in numerous neutral and ionized gas structures that have been found both in the disc and in the halo of these galaxies. However, their origin and fate are still poorly understood. We here present new HI and optical data of two Magellanic irregular dwarf galaxies in the Local Volume: IC4662 and NGC5408. The HI line data were obtained with the Australia Telescope Compact Array and are part of the `Local Volume HI Survey'. They are complemented by optical images and spectroscopic data obtained with the European Southern Observatory (ESO) New Technology Telescope and the ESO 3.6-m telescope. Our main aim is to study the kinematics of the neutral and ionized gas components in order to search for outflowing gas structures and to make predictions about their fate. Therefore, we perform a Gaussian decomposition of the HI and Hα line profiles. We find the HI gas envelopes of IC4662 and NGC5408 to extend well beyond the optical discs, with HI to optical diameter ratios of above 4. The optical disc is embedded into the central HI maximum in both galaxies. However, higher resolution HI maps show that the HI intensity peaks are typically offset from the prominent HII regions. While NGC5408 shows a fairly regular HI velocity field, which allows us to derive a rotation curve, IC4662 reveals a rather twisted HI velocity field, possibly caused by a recent merger event. We detect outflows with velocities between 20 and 60 kms-1 in our Hα spectra of both galaxies, sometimes with HI counterparts of similar velocity. We suggest the existence of expanding superbubbles, especially in NGC5408. This is also supported by the detection of full width at half-maxima as high as 70 kms-1 in Hα, which cannot be explained by thermal broadening alone. In the case of NGC5408, we compare our results with the escape velocity of the galaxy

  15. Plasma Production via Field Ionization

    SciTech Connect

    O'Connell, C.L.; Barnes, C.D.; Decker, F.; Hogan, M.J.; Iverson, R.; Krejcik, P.; Siemann, R.; Walz, D.R.; Clayton, C.E.; Huang, C.; Johnson, D.K.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.; Zhou, M.; Deng, S.; Katsouleas, T.; Muggli, P.; Oz, E.; /Southern California U.

    2007-01-02

    Plasma production via field ionization occurs when an incoming particle beam is sufficiently dense that the electric field associated with the beam ionizes a neutral vapor or gas. Experiments conducted at the Stanford Linear Accelerator Center explore the threshold conditions necessary to induce field ionization by an electron beam in a neutral lithium vapor. By independently varying the transverse beam size, number of electrons per bunch or bunch length, the radial component of the electric field is controlled to be above or below the threshold for field ionization. Additional experiments ionized neutral xenon and neutral nitric oxide by varying the incoming beam's bunch length. A self-ionized plasma is an essential step for the viability of plasma-based accelerators for future high-energy experiments.

  16. Determination of fluoride in toothpaste using headspace solid-phase microextraction and gas chromatography-flame ionization detection.

    PubMed

    Wejnerowska, Grazyna; Karczmarek, Anna; Gaca, Jerzy

    2007-05-25

    A new method for determination of fluoride in toothpaste employing the headspace solid-phase microextraction (HS-SPME) followed by gas chromatography/flame ionization detection (GC/FID) has been proposed. It is a development of the method for determination of fluoride using trimethylchlorosilane (TMCS) as the derivatization reagent to form trimethylfluorosilane (TMFS), with the liquid/liquid extraction (LLE) step replaced by HS-SPME. To introduce the latter, it was necessary to determine the conditions of the reaction and to optimize the two stages of the SPME procedure: extraction and desorption. The parameters of the SPME analysis using carboxen/polydimethylsiloxane (CAR/PDMS) fiber were defined and compared with the corresponding ones for the LLE method, used as a reference. Also, these two methods were compared with respect to their linearity, precision, and accuracy. Results from toothpaste analyses using these two methods were highly correlated, indicating the potential to use the SPME extraction as an inexpensive and solventfree alternative to the LLE method. PMID:17070826

  17. Simultaneous generation of quasi-monoenergetic electron and betatron X-rays from nitrogen gas via ionization injection

    SciTech Connect

    Huang, K.; Yan, W. C.; Li, M. H.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Chen, L. M.; Li, D. Z.; Chen, Z. Y.; Ge, X. L.; Liu, F.; Hafz, N. M.; Zhang, J.

    2014-11-17

    Upon the interaction of 60 TW Ti: sapphire laser pulses with 4 mm long supersonic nitrogen gas jet, a directional x-ray emission was generated along with the generation of stable quasi-monoenergetic electron beams having a peak energy of 130 MeV and a relative energy spread of ∼ 20%. The betatron x-ray emission had a small divergence of 7.5 mrad and a critical energy of 4 keV. The laser wakefield acceleration process was stimulated in a background plasma density of merely 5.4 × 10{sup 17 }cm{sup −3} utilizing ionization injection. The non-self-focusing and stable propagation of the laser pulse in the pure nitrogen gaseous plasma should be responsible for the simultaneous generation of the high-quality X-ray and electron beams. Those ultra-short and naturally-synchronized beams could be applicable to ultrafast pump-probe experiments.

  18. Determination of free amino compounds in betalainic fruits and vegetables by gas chromatography with flame ionization and mass spectrometric detection.

    PubMed

    Kugler, Florian; Graneis, Stephan; Schreiter, Pat P-Y; Stintzing, Florian C; Carle, Reinhold

    2006-06-14

    Amino acids and amines are the precursors of betalains. Therefore, the profiles of free amino compounds in juices obtained from cactus pears [Opuntia ficus-indica (L.) Mill. cv. Bianca, cv. Gialla, and cv. Rossa], pitaya fruits [Selenicereus megalanthus (K. Schumann ex Vaupel) Moran, Hylocereus polyrhizus (Weber) Britton & Rose, and Hylocereus undatus (Haworth) Britton & Rose], and in extracts from differently colored Swiss chard [Beta vulgaris L. ssp. cicla (L.) Alef. cv. Bright Lights] petioles and red and yellow beets (B. vulgaris L. ssp. vulgaris var. conditiva Alef. cv. Burpee's Golden) were investigated for the first time. Amino compounds were derivatized with propyl chloroformate. While gas chromatography (GC) with mass spectrometry was used for peak assignment, GC flame ionization detection was applied for quantification of individual compounds. Whereas proline was the major free amino compound of cactus pear and pitaya fruit juices, glutamine dominated in Swiss chard stems and beets, respectively. Interestingly, extremely high concentrations of dopamine were detected in Swiss chard stems and beets. Furthermore, the cleavage of betaxanthins caused by derivatization in alkaline reaction solutions is demonstrated for the first time. Amino acids and amines thus released might increase the actual free amino compound contents of the respective sample. To evaluate the contribution of betaxanthin cleavage to total amino acid and amine concentration, isolated betaxanthins were derivatized according to the "EZ:faast" method prior to quantification of the respective amino compounds released. On a molar basis, betaxanthin contribution to overall amino compound contents was always below 6.4%. PMID:16756361

  19. Impact ionization in N-polar AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Killat, N. E-mail: Martin.Kuball@bristol.ac.uk; Uren, M. J.; Kuball, M. E-mail: Martin.Kuball@bristol.ac.uk; Keller, S.; Kolluri, S.; Mishra, U. K.

    2014-08-11

    The existence of impact ionization as one of the open questions for GaN device reliability was studied in N-polar AlGaN/GaN high electron mobility transistors. Electroluminescence (EL) imaging and spectroscopy from underneath the device gate contact revealed the presence of hot electrons in excess of the GaN bandgap energy even at moderate on-state bias conditions, enabling impact ionization with hole currents up to several hundreds of pA/mm. The detection of high energy luminescence from hot electrons demonstrates that EL analysis is a highly sensitive tool to study degradation mechanisms in GaN devices.

  20. Discovery of nine extended ionized gas clouds in a z = 0.4 cluster

    SciTech Connect

    Yagi, Masafumi; Koyama, Yusei; Kodama, Tadayuki; Gu, Liyi; Nakata, Fumiaki; Hattori, Takashi; Yoshida, Michitoshi

    2015-02-01

    From deep Hα imaging data of Suprime-Cam/Subaru, we discovered nine extended ionized gas clouds (EIG) around galaxies in the Abell 851 cluster (A851) at z = 0.4. We surveyed a 30 × 25 arcmin region, and the EIGs were found only near the cluster center (<2.3 arcmin ∼ 750 kpc). The parent galaxies of the EIGs are star-forming or post-starburst galaxies, all of which are spectroscopically confirmed members of the cluster. Four out of the nine parent galaxies show distortion of stellar distribution in the disk, which can be a sign of recent interaction, and the interaction may have made the EIGs. On the other hand, six parent galaxies (one overlaps those exhibiting distortion) show Hα emission without stars, which implies ram pressure stripping. The spectrum of the brightest parent galaxy shows a post-starburst signature and resembles the Hα stripped galaxies found in the Coma cluster. Meanwhile, two brightest parent galaxies in A851 are more massive than the EIG parent galaxies in the Coma cluster. This is consistent with a “downsizing” of star-forming galaxies, though it is still within the statistical variance. We also analyzed Suprime-Cam data of another z=0.39 cluster, CL0024+17, but found no EIGs. The key difference between A851 and CL0024+17 would be the existence of a subcluster colliding with the main body of A851, in which six or seven out of the nine parent galaxies in A851 exist, and the fraction of EIGs in the subcluster is significantly higher than the main subcluster of A851 and CL0024+17.

  1. Hα and [SII] emission from warm Ionized GAS in the Scutum-Centaurus Arm

    SciTech Connect

    Hill, Alex S.; Benjamin, Robert A.; Gostisha, Martin C.; Haffner, L. Matthew; Barger, Kathleen A.

    2014-06-01

    We present Wisconsin H-Alpha Mapper [SII] λ6716 and Hα spectroscopic maps of the warm ionized medium (WIM) in the Scutum-Centaurus Arm at Galactic longitudes 310° < l < 345°. Using extinction-corrected Hα intensities (I{sub Hα}{sup c}), we measure an exponential scale height of electron density squared in the arm of H{sub n{sub e{sup 2}}}=0.30 kpc (assuming a distance of 3.5 kpc), intermediate between that observed in the inner Galaxy and in the Perseus Arm. The [S II]/Hα line ratio is enhanced at large |z| and in sightlines with faint I{sub Hα}{sup c}. We find that the [S II]/Hα line ratio has a power-law relationship with I{sub Hα}{sup c} from a value of ≈1.0 at I{sub Hα}{sup c}<0.2 R (Rayleighs) to a value of ≈0.08 at I{sub Hα}{sup c}≳100 R. The line ratio is better correlated with Hα intensity than with height above the plane, indicating that the physical conditions within the WIM vary systematically with electron density. We argue that the variation of the line ratio with height is a consequence of the decrease of electron density with height. Our results reinforce the well-established picture in which the diffuse Hα emission is due primarily to emission from in situ photoionized gas, with scattered light only a minor contributor.

  2. Determination of polycyclic aromatic hydrocarbons [PAHs] in processed meat products using gas chromatography - flame ionization detector.

    PubMed

    Olatunji, Olatunde S; Fatoki, Olalekan S; Opeolu, Beatrice O; Ximba, Bhekumusa J

    2014-08-01

    The concentrations of polycyclic aromatic hydrocarbons (PAHs) in smoked, grilled and boiled meats were determined using gas chromatography - flame ionization detector (GC-FID). PAHs in the processed meats were extracted in n-hexane after hydrolysis with methanolic KOH. Clean-up was achieved using solid phase extraction in neutral-Si/basic-Si/acidic-Si/neutral-Si frits. The fractions, benzo[k]fluoranthene (BkP), benzo[a]pyrene (BaP), indeno[123-cd]pyrene (IP) and benzo[ghi]perylene (BghiP) were separated and quantified using GC-FID. The method and instrument limits of detections were 0.1, 0.1, 0.2, 0.3μg/kg and 0.5, 0.5, 1.0, 1.5μg/kg, respectively, for BkP, BaP, IP and BghiP. The method's recovery and precision generally varied between 83.69% and 94.25% with relative standard deviation (RSD) of 3.18-15.60%; and 90.38-96.71% with relative standard deviation (RSD) of 1.82-12.87% respectively. The concentration of BkP, BaP, IP and BghiP in smoked, grilled and boiled meat samples were ranged 0.64-31.54μg/kg, 0.07-7.04μg/kg, 0.09-15.03, 0.51-46.67μg/kg and 0.01-5.11μg/kg, respectively. PMID:24629971

  3. Discovery of Nine Extended Ionized Gas Clouds in a z = 0.4 Cluster

    NASA Astrophysics Data System (ADS)

    Yagi, Masafumi; Gu, Liyi; Koyama, Yusei; Nakata, Fumiaki; Kodama, Tadayuki; Hattori, Takashi; Yoshida, Michitoshi

    2015-02-01

    From deep Hα imaging data of Suprime-Cam/Subaru, we discovered nine extended ionized gas clouds (EIG) around galaxies in the Abell 851 cluster (A851) at z = 0.4. We surveyed a 30 × 25 arcmin region, and the EIGs were found only near the cluster center (\\lt 2.3 arcmin ˜ 750 kpc). The parent galaxies of the EIGs are star-forming or post-starburst galaxies, all of which are spectroscopically confirmed members of the cluster. Four out of the nine parent galaxies show distortion of stellar distribution in the disk, which can be a sign of recent interaction, and the interaction may have made the EIGs. On the other hand, six parent galaxies (one overlaps those exhibiting distortion) show Hα emission without stars, which implies ram pressure stripping. The spectrum of the brightest parent galaxy shows a post-starburst signature and resembles the Hα stripped galaxies found in the Coma cluster. Meanwhile, two brightest parent galaxies in A851 are more massive than the EIG parent galaxies in the Coma cluster. This is consistent with a “downsizing” of star-forming galaxies, though it is still within the statistical variance. We also analyzed Suprime-Cam data of another z=0.39 cluster, CL0024+17, but found no EIGs. The key difference between A851 and CL0024+17 would be the existence of a subcluster colliding with the main body of A851, in which six or seven out of the nine parent galaxies in A851 exist, and the fraction of EIGs in the subcluster is significantly higher than the main subcluster of A851 and CL0024+17.

  4. SIGGMA: A SURVEY OF IONIZED GAS IN THE GALAXY, MADE WITH THE ARECIBO TELESCOPE

    SciTech Connect

    Liu, B.; McIntyre, T.; Terzian, Y.; Minchin, R.; Anderson, L.; Churchwell, E.; Lebron, M.; Roshi, D. Anish

    2013-10-01

    A Survey of Ionized Gas in the Galaxy, made with the Arecibo telescope (SIGGMA), uses the Arecibo L-band Feed Array (ALFA) to fully sample the Galactic plane (30 Degree-Sign {<=} l {<=} 75 Degree-Sign and -2 Degree-Sign {<=} b {<=} 2 Degree-Sign ; 175 Degree-Sign {<=} l {<=} 207 Degree-Sign and -2 Degree-Sign {<=} b {<=} 1 Degree-Sign ) observable with the telescope in radio recombination lines (RRLs). Processed data sets are being produced in the form of data cubes of 2 Degree-Sign (along l) Multiplication-Sign 4 Degree-Sign (along b) Multiplication-Sign 151 (number of channels), archived and made public. The 151 channels cover a velocity range of 600 km s{sup -1} and the velocity resolution of the survey changes from 4.2 km s{sup -1} to 5.1 km s{sup -1} from the lowest frequency channel to the highest frequency channel. RRL maps with 3.'4 resolution and a line flux density sensitivity of {approx}0.5 mJy will enable us to identify new H II regions, measure their electron temperatures, study the physics of photodissociation regions with carbon RRLs, and investigate the origin of the extended low-density medium. Twelve Hn{alpha} lines fall within the 300 MHz bandpass of ALFA; they are resampled to a common velocity resolution to improve the signal-to-noise ratio (S/N) by a factor of three or more and preserve the line width. SIGGMA will produce the most sensitive fully sampled RRL survey to date. Here, we discuss the observing and data reduction techniques in detail. A test observation toward the H II region complex S255/S257 has detected Hn{alpha} and Cn{alpha} lines with S/N > 10.

  5. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  6. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers. PMID:26486514

  7. High tolerance for ionizable residues in the hydrophobic interior of proteins

    PubMed Central

    Isom, Daniel G.; Cannon, Brian R.; Castañeda, Carlos A.; Robinson, Aaron; García-Moreno E., Bertrand

    2008-01-01

    Internal ionizable groups are quite rare in water-soluble globular proteins. Presumably, this reflects the incompatibility between charges and the hydrophobic environment in the protein interior. Here we show that proteins can have an inherently high tolerance for internal ionizable groups. The 25 internal positions in staphylococcal nuclease were substituted one at a time with Lys, Glu, or Asp without abolishing enzymatic activity and without detectable changes in the conformation of the protein. Similar results with substitutions of 6 randomly chosen internal positions in ribonuclease H with Lys and Glu suggest that the ability of proteins to tolerate internal ionizable groups might be a property common to many proteins. Eighty-six of the 87 substitutions made were destabilizing, but in all but one case the proteins remained in the native state at neutral pH. By comparing the stability of each variant protein at two different pH values it was established that the pKa values of most of the internal ionizable groups are shifted; many of the internal ionizable groups are probably neutral at physiological pH values. These studies demonstrate that special structural adaptations are not needed for ionizable groups to exist stably in the hydrophobic interior of proteins. The studies suggest that enzymes and other proteins that use internal ionizable groups for functional purposes could have evolved through the random accumulation of mutations that introduced ionizable groups at internal positions, followed by evolutionary adaptation and optimization to modulate stability, dynamics, and other factors necessary for function. PMID:19004768

  8. Intensity-dependent enhancements in high-order above-threshold ionization

    SciTech Connect

    Milosevic, D. B.; Hasovic, E.; Gazibegovic-Busuladzic, A.; Busuladzic, M.; Becker, W.

    2007-11-15

    The very pronounced intensity-dependent enhancements of groups of peaks of high-order above-threshold-ionization spectra of rare-gas atoms are investigated using an improved version of the strong-field approximation, which realistically models the respective atom. Two types of enhancements are found and explained in terms of constructive interference of the contributions of a large number of long quantum orbits. The first type is observed for intensities slightly below channel closings. Its intensity dependence is comparatively smooth and it is generated by comparatively few (of the order of 20) orbits. The second type occurs precisely at channel closings and exhibits an extremely sharp intensity dependence. It requires constructive interference of a very large number of long orbits (several hundreds) and generates cusps in the electron spectrum at integer multiples of the laser-photon energy. An interpretation of these enhancements as a threshold phenomenon is also given. An interplay of different types of the threshold anomalies is observed. The position of both types of enhancements, in the photoelectron-energy--laser-intensity plane, shifts to the next channel closing intensity with the change of the ground-state parity. The enhancements gradually disappear with decreasing laser pulse duration. This confirms the interpretation of enhancements as a consequence of the interference of long strong-laser-field-induced quantum orbits.

  9. Design and Performance of a High-Flux Electrospray Ionization Source for Ion Soft-Landing

    SciTech Connect

    Gunaratne, Kalupathirannehelage Don D.; Prabhakaran, Venkateshkumar; Ibrahim, Yehia M.; Norheim, Randolph V.; Johnson, Grant E.; Laskin, Julia

    2015-01-01

    We report the design and evaluation of a new high-intensity electrospray ionization source for ion soft-landing experiments. The source incorporates a dual ion funnel, which enables operation with a higher gas load through an expanded heated inlet into the additional first region of differential pumping. This capability allowed us to examine the effect of the inner diameter (ID) of the heated stainless steel inlet on the total ion current transmitted through the dual funnel interface and, more importantly, the mass-selected ion current delivered to the deposition target. The ion transmission of the dual funnel is similar to the transmission of the single funnel used in our previous soft landing studies. However, substantially higher ion currents were obtained using larger ID heated inlets and an orthogonal inlet geometry, in which the heated inlet is positioned perpendicular to the direction of ion propagation through the instrument. The highest ion currents were obtained using the orthogonal geometry and a 1.4 mm ID heated inlet. The corresponding stable deposition rate of ~1 μg of mass-selected ions per day will facilitate future studies focused on the controlled deposition of biological molecules on substrates and preparation of materials for studies in catalysis, energy storage, and self-assembly

  10. Large area neutron detector based on Li6 ionization chamber with integrated body-moderator of high density polyethylene

    SciTech Connect

    Ianakiev, Kiril D.; Swinhoe, Martyn T.; Chung, Kiwhan; Makela, Mark F.

    2009-06-30

    A detector was developed and funded by DHS to be a lower cost alternative to 3He detectors. A 6Li foil-lined ionization chamber was prepared with fill gas at one atmosphere and pulse mode operation. The high-density polyethylene (HOPE) body serves also as a neutron moderator. All electrodes, including high voltage bias supply, are hermetically sealed within the plastic slabs.

  11. BAT AGN spectroscopic survey-II. X-ray emission and high-ionization optical emission lines

    NASA Astrophysics Data System (ADS)

    Berney, Simon; Koss, Michael; Trakhtenbrot, Benny; Ricci, Claudio; Lamperti, Isabella; Schawinski, Kevin; Baloković, Mislav; Crenshaw, D. Michael; Fischer, Travis; Gehrels, Neil; Harrison, Fiona; Hashimoto, Yasuhiro; Ichikawa, Kohei; Mushotzky, Richard; Oh, Kyuseok; Stern, Daniel; Treister, Ezequiel; Ueda, Yoshihiro; Veilleux, Sylvain; Winter, Lisa

    2015-12-01

    We investigate the relationship between X-ray and optical line emission in 340 nearby (z ≃ 0.04) AGN selected above 10 keV using Swift BAT. We find a weak correlation between the extinction corrected [O III] and hard X-ray luminosity (L_[O III]^{int} ∝ L_{14-195}) with a large scatter (RPear = 0.64, σ = 0.62 dex) and a similarly large scatter with the intrinsic 2-10 keV to [O III] luminosities (RPear = 0.63, σ = 0.63 dex). Correlations of the hard X-ray fluxes with the fluxes of high-ionization narrow lines ([O III], He II, [Ne III] and [Ne V]) are not significantly better than with the low-ionization lines (H α, [S II]). Factors like obscuration or physical slit size are not found to be a significant part of the large scatter. In contrast, the optical emission lines show much better correlations with each other (σ = 0.3 dex) than with the X-ray flux. The inherent large scatter questions the common usage of narrow emission lines as AGN bolometric luminosity indicators and suggests that other issues such as geometrical differences in the scattering of the ionized gas or long-term AGN variability are important.

  12. The temperature and ionization structure of the emitting gas in HII galaxies: implications for the accuracy of abundance determinations

    NASA Astrophysics Data System (ADS)

    Hägele, Guillermo F.; Pérez-Montero, Enrique; Díaz, Ángeles I.; Terlevich, Elena; Terlevich, Roberto

    2006-10-01

    We propose a methodology to perform a self-consistent analysis of the physical properties of the emitting gas of HII galaxies adequate to the data that can be obtained with the 21st century technology. This methodology requires the production and calibration of empirical relations between the different line temperatures that should supersede currently used ones based on very simple, and poorly tested, photoionization model sequences. As a first step to reach these goals, we have obtained simultaneous blue to far red long-slit spectra with the William Herschel Telescope (WHT) of three compact HII galaxies selected from the Sloan Digital Sky Survey (SDSS) Data Release 2 (DR2) spectral catalogue using the INAOE Virtual Observatory superserver. Our spectra cover the range from 3200 to 10500Å, including the Balmer jump, the [OII]λλ3727, 29Å lines, the [SIII]λλ9069, 9532Å doublet as well as various weak auroral lines such as [OIII]λ4363Å and [SIII]λ6312Å. For the three objects, we have measured at least four line temperatures, T([OIII]), T([SIII]), T([OII]) and T([SII]), and the Balmer continuum temperature T(Bac). These measurements and a careful and realistic treatment of the observational errors yield total oxygen abundances with accuracies between 5 and 9 per cent. These accuracies are expected to improve as better calibrations based on more precise measurements, both on electron temperatures and densities, are produced. We have compared our obtained spectra with those downloaded from the SDSS DR3 finding a satisfactory agreement. The analysis of these spectra yields values of line temperatures and elemental ionic and total abundances which are in general agreement with those derived from the WHT spectra, although for most quantities they can only be taken as estimates since, due to the lack of direct measurements of the required lines, theoretical models had to be used whose uncertainties are impossible to quantify. The ionization structure found for the

  13. TIME-VARYING FLAME IONIZATION SENSING APPLIED TO NATURAL GAS AND PROPANE BLENDS IN A PRESSURIZED LEAN PREMIXED (LPM) COMBUSTOR

    SciTech Connect

    D. L. Straub; B. T. Chorpening; E. D. Huckaby; J. D. Thornton; W. L. Fincham

    2008-06-13

    In-situ monitoring of combustion phenomena is a critical need for optimal operation and control of advanced gas turbine combustion systems. The concept described in this paper is based on naturally occurring flame ionization processes that accompany the combustion of hydrocarbon fuels. Previous work has shown that flame ionization techniques may be applied to detect flashback, lean blowout, and some aspects of thermo-acoustic combustion instabilities. Previous work has focused on application of DC electric fields. By application of time-varying electric fields, significant improvements to sensor capabilities have been observed. These data have been collected in a lean premixed combustion test rig operating at 0.51-0.76 MPa (5-7.5 atm) with air preheated to 588 K (600°F). Five percent of the total fuel flow is injected through the centerbody tip as a diffusion pilot. The fuel composition is varied independently by blending approximately 5% (volume) propane with the pipeline natural gas. The reference velocity through the premixing annulus is kept constant for all conditions at a nominal value of 70 m/s. The fuel-air equivalence ratio is varied independently from 0.46 – 0.58. Relative to the DC field version, the time-varying combustion control and diagnostic sensor (TV-CCADS) shows a significant improvement in the correlation between the measured flame ionization current and local fuel-air equivalence ratio. In testing with different fuel compositions, the triangle wave data show the most distinct change in flame ionization current in response to an increase in propane content. Continued development of this sensor technology will improve the capability to control advanced gas turbine combustion systems, and help address issues associated with variations in fuel supplies.

  14. Highly ionized physical vapor deposition plasma source working at very low pressure

    SciTech Connect

    Stranak, V.; Herrendorf, A.-P.; Drache, S.; Hippler, R.; Cada, M.; Hubicka, Z.; Tichy, M.

    2012-04-02

    Highly ionized discharge for physical vapor deposition at very low pressure is presented in the paper. The discharge is generated by electron cyclotron wave resonance (ECWR) which assists with ignition of high power impulse magnetron sputtering (HiPIMS) discharge. The magnetron gun (with Ti target) was built into the single-turn coil RF electrode of the ECWR facility. ECWR assistance provides pre-ionization effect which allows significant reduction of pressure during HiPIMS operation down to p = 0.05 Pa; this is nearly more than an order of magnitude lower than at typical pressure ranges of HiPIMS discharges. We can confirm that nearly all sputtered particles are ionized (only Ti{sup +} and Ti{sup ++} peaks are observed in the mass scan spectra). This corresponds well with high plasma density n{sub e} {approx} 10{sup 18} m{sup -3}, measured during the HiPIMS pulse.

  15. Highly ionized physical vapor deposition plasma source working at very low pressure

    NASA Astrophysics Data System (ADS)

    Stranak, V.; Herrendorf, A.-P.; Drache, S.; Cada, M.; Hubicka, Z.; Tichy, M.; Hippler, R.

    2012-04-01

    Highly ionized discharge for physical vapor deposition at very low pressure is presented in the paper. The discharge is generated by electron cyclotron wave resonance (ECWR) which assists with ignition of high power impulse magnetron sputtering (HiPIMS) discharge. The magnetron gun (with Ti target) was built into the single-turn coil RF electrode of the ECWR facility. ECWR assistance provides pre-ionization effect which allows significant reduction of pressure during HiPIMS operation down to p = 0.05 Pa; this is nearly more than an order of magnitude lower than at typical pressure ranges of HiPIMS discharges. We can confirm that nearly all sputtered particles are ionized (only Ti+ and Ti++ peaks are observed in the mass scan spectra). This corresponds well with high plasma density ne ˜ 1018 m-3, measured during the HiPIMS pulse.

  16. High frequency electromagnetic resistive instability in a Hall thruster under the effect of ionization

    SciTech Connect

    Singh, Sukhmander; Malik, Hitendra K.; Nishida, Yasushi

    2013-10-15

    Two types of high frequency electromagnetic resistive instabilities are found to occur in a Hall thruster plasma in the presence of collisions and ionization, out of which one of lower growth rate (called lower magnitude high frequency instability (LMHFI)) is sensitive to the axial component of the wave vector. The effects of ionization, collisions, and electron drift velocity on the growth rates of these instabilities are studied in greater details. The LMHFI grows faster in the presence of ionization but shows weaker dependence on the electrons' E(vector sign)×B(vector sign) drift, contrary to the case of other instability (called higher magnitude high frequency instability) which is sensitive to the azimuthal wave number and collisions.

  17. High frequency electromagnetic resistive instability in a Hall thruster under the effect of ionization

    NASA Astrophysics Data System (ADS)

    Singh, Sukhmander; Malik, Hitendra K.; Nishida, Yasushi

    2013-10-01

    Two types of high frequency electromagnetic resistive instabilities are found to occur in a Hall thruster plasma in the presence of collisions and ionization, out of which one of lower growth rate (called lower magnitude high frequency instability (LMHFI)) is sensitive to the axial component of the wave vector. The effects of ionization, collisions, and electron drift velocity on the growth rates of these instabilities are studied in greater details. The LMHFI grows faster in the presence of ionization but shows weaker dependence on the electrons' E→×B→ drift, contrary to the case of other instability (called higher magnitude high frequency instability) which is sensitive to the azimuthal wave number and collisions.

  18. Warm ionized gas in CALIFA early-type galaxies. 2D emission-line patterns and kinematics for 32 galaxies

    NASA Astrophysics Data System (ADS)

    Gomes, J. M.; Papaderos, P.; Kehrig, C.; Vílchez, J. M.; Lehnert, M. D.; Sánchez, S. F.; Ziegler, B.; Breda, I.; Dos Reis, S. N.; Iglesias-Páramo, J.; Bland-Hawthorn, J.; Galbany, L.; Bomans, D. J.; Rosales-Ortega, F. F.; Cid Fernandes, R.; Walcher, C. J.; Falcón-Barroso, J.; García-Benito, R.; Márquez, I.; Del Olmo, A.; Masegosa, J.; Mollá, M.; Marino, R. A.; González Delgado, R. M.; López-Sánchez, Á. R.; Califa Collaboration

    2016-04-01

    Context. The morphological, spectroscopic, and kinematical properties of the warm interstellar medium (wim) in early-type galaxies (ETGs) hold key observational constraints to nuclear activity and the buildup history of these massive, quiescent systems. High-quality integral field spectroscopy (IFS) data with a wide spectral and spatial coverage, such as those from the CALIFA survey, offer an unprecedented opportunity for advancing our understanding of the wim in ETGs. Aims: This article centers on a 2D investigation of the wim component in 32 nearby (≲150 Mpc) ETGs from CALIFA, complementing a previous 1D analysis of the same sample. Methods: The analysis presented here includes Hα intensity and equivalent width (EW) maps and radial profiles, diagnostic emission-line ratios, and ionized-gas and stellar kinematics. It is supplemented by τ-ratio maps, which are a more efficient means to quantify the role of photoionization by the post-AGB stellar component than alternative mechanisms (e.g., AGN, low-level star formation). Results: Confirming and strengthening our previous conclusions, we find that ETGs span a broad continuous sequence in the properties of their wim, exemplified by two characteristic classes. The first (type i) comprises systems with a nearly constant EW(Hα) in their extranuclear component, which quantitatively agrees with (but is no proof of) the hypothesis that photoionization by the post-AGB stellar component is the main driver of extended wim emission. The second class (type ii) stands for virtually wim-evacuated ETGs with a very low (≤0.5 Å), outwardly increasing EW(Hα). These two classes appear indistinguishable from one another by their LINER-specific emission-line ratios in their extranuclear component. Here we extend the tentative classification we proposed previously by the type i+, which is assigned to a subset of type i ETGs exhibiting ongoing low-level star-forming activity in their periphery. This finding along with faint

  19. Impact of electron ionization on the generation of high-order harmonics from molecules

    SciTech Connect

    Brener, S.; Moiseyev, N.; Ivanov, M. V.

    2003-08-01

    When the laser frequency is tuned to be equal to the molecular electronic excitation, high-order harmonics are generated due to the electronic dipole transitions between the corresponding two potential-energy surfaces (PES). A natural, often taken, choice is the PES of the field-free molecular system. In this special choice the ionization phenomenon is not considered. Only the effect of the dissociation is considered. The method we developed enables one to remain within the framework of the 2-PES approximation and yet to include also the ionization effect in the calculations of molecular high-order harmonic generation spectra. In this approach the coupling between the electronic and nuclear motions is taken into consideration by using coupled complex adiabatic PES. As an illustrative numerical example, we calculated the high harmonic generation (HHG) spectra of H{sub 2}{sup +} in a 730-nm laser with the intensity of 8.77x10{sup 13} W/cm{sup 2}. The inclusion of the ionization in our approach not only enables the electrons to tunnel through the effective static potential barrier, but also apply an asymmetric force which accelerates the electron before ionization takes place. Therefore, indirectly the inclusion of the ionization by the laser field may lead eventually to an enhanced HHG spectra in comparison with the calculated one when the ''natural'' choice of the field-free 2PES is taken.

  20. Method of producing a high pressure gas

    DOEpatents

    Bingham, Dennis N.; Klingler, Kerry M.; Zollinger, William T.

    2006-07-18

    A method of producing a high pressure gas is disclosed and which includes providing a container; supplying the container with a liquid such as water; increasing the pressure of the liquid within the container; supplying a reactant composition such as a chemical hydride to the liquid under pressure in the container and which chemically reacts with the liquid to produce a resulting high pressure gas such as hydrogen at a pressure of greater than about 100 pounds per square inch of pressure; and drawing the resulting high pressure gas from the container.

  1. Gas-Phase Synthesis of Singly and Multiply Charged Polyoxovanadate Anions Employing Electrospray Ionization and Collision Induced Dissociation

    SciTech Connect

    Al Hasan, Naila M.; Johnson, Grant E.; Laskin, Julia

    2013-09-01

    Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of multiply charged vanadium oxide cluster anions including VxOyn- and VxOyCln- ions (x = 1 − 14, y= 2 − 36, n = 1 − 3), protonated clusters, and ligand-bound VxOyn- species. These cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L= Et4N+, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCln- and VxOyCl(L)(n-1)- clusters predominantly containing 14 vanadium atoms. Accurate mass measurement using high-resolution mass spectrometry (m/∆m = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl(1-2)- and VxOy(1-2)- anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions generated from solution. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster ions originating directly from solution produced comparatively complex CID spectra. These results indicate that low-energy CID results in formation of stable cage-like structures of VxOyCl and VxOy anions. Furthermore, solution-phase synthesis of one precursor cluster combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of multiply charged gas-phase metal oxide clusters for subsequent investigations of structure and reactivity.

  2. Gas-Phase Synthesis of Singly and Multiply Charged Polyoxovanadate Anions Employing Electrospray Ionization and Collision Induced Dissociation

    NASA Astrophysics Data System (ADS)

    Al Hasan, Naila M.; Johnson, Grant E.; Laskin, Julia

    2013-09-01

    Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy n- and VxOyCln- ions (x = 1-14, y = 2-36, n = 1-3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N+, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCln- and VxOyCl(L)(n-1)- clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl(1-2)- and VxOy (1-2)- anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a

  3. The Townsend coefficient of ionization in atmospheric pressure rare gas plasma

    NASA Astrophysics Data System (ADS)

    Zvereva, G.

    2015-12-01

    In the work the influence of the processes characteristic for atmospheric pressure heavy inert gases discharge plasma on the value of the first Townsend ionization coefficient were investigated. Krypton plasma was considered. Calculations have shown that the greatest impact on the value of the first Townsend ionization coefficient has dissociative recombination of molecular ions, followed by descending influence processes occur: stepwise ionization, the electron-electron collisions and superelastic ones. The effect of these processes begins to appear at concentrations of electrons and excited particles higher than 1012 cm-3. At times shorter than the time of molecular ions formation, when dissociative recombination is absent, should expect a significant increase of the ionization coefficient.

  4. Detection and Mapping of Decoupled Stellar and Ionized Gas Structures in the Ultraluminous Infrared Galaxy IRAS 12112+0305.

    PubMed

    Colina; Arribas; Borne; Monreal

    2000-04-10

    Integral field optical spectroscopy with the INTEGRAL fiber-fed system and Hubble Space Telescope optical imaging are used to map the complex stellar and warm ionized gas structure in the ultraluminous infrared galaxy IRAS 12112+0305. Images reconstructed from wavelength-delimited extractions of the integral field spectra reveal that the observed ionized gas distribution is decoupled from the stellar main body of the galaxy, with the dominant continuum and emission-line regions separated by projected distances of up to 7.5 kpc. The two optical nuclei are detected as apparently faint emission-line regions, and their optical properties are consistent with being dust-enshrouded weak [O i] LINERs. The brightest emission-line region is associated with a faint (mI=20.4), giant H ii region of 600 pc diameter, in which a young ( approximately 5 Myr) massive cluster of about 2x107 M middle dot in circle dominates the ionization. Internal reddening toward the line-emitting regions and the optical nuclei ranges from 1 to 8 mag in the visual. Taking the reddening into account, the overall star formation in IRAS 12112+0305 is dominated by starbursts associated with the two nuclei and corresponds to a star formation rate of 80 M middle dot in circle yr-1. PMID:10727379

  5. Ionization of the diffuse gas in galaxies: Hot low-mass evolved stars at work

    NASA Astrophysics Data System (ADS)

    Flores-Fajardo, N.; Morisset, C.; Stasinska, G.; Binette, L.

    2011-10-01

    The Diffuse Ionized Medium (DIG) is visible through its faint optical line emission outside classical HII regions (Reynolds 1971) and turns out to be a major component of the interstellar medium in galaxies. OB stars in galaxies likely represent the main source of ionizing photons for the DIG. However, an additional source is needed to explain the increase of [NII]/Hα, [SII]/Hα with galactic height.

  6. Observation of Impact Ionization of Shallow States in Sub-Kelvin, High-Purity Germanium

    NASA Astrophysics Data System (ADS)

    Phipps, A.; Sadoulet, B.; Sundqvist, K. M.

    2016-01-01

    We report on the observation of impact ionization processes involving shallow impurity states in a sub-Kelvin, high-purity n-type germanium detector similar to those used by direct detection dark matter experiments such as the Cryogenic Dark Matter Search. An optical fiber is used to generate packets of charge carriers near one surface of the detector. The charge carriers drift to the opposite surface by application of an electric field. The resulting drift current is measured by a high-speed charge amplifier. The onset of impact ionization for both electron and hole transport is clearly observed in the drift current as the applied electric field is increased above ≈ 5 V/cm. We present the effective charge collection efficiency and trapping length as a function of applied electric field for electrons and holes. We estimate the impact ionization cross section to be on the order of 5× 10^{-13} {cm}^2.

  7. Observation of Impact Ionization of Shallow States in Sub-Kelvin, High-Purity Germanium

    NASA Astrophysics Data System (ADS)

    Phipps, A.; Sadoulet, B.; Sundqvist, K. M.

    2016-07-01

    We report on the observation of impact ionization processes involving shallow impurity states in a sub-Kelvin, high-purity n-type germanium detector similar to those used by direct detection dark matter experiments such as the Cryogenic Dark Matter Search. An optical fiber is used to generate packets of charge carriers near one surface of the detector. The charge carriers drift to the opposite surface by application of an electric field. The resulting drift current is measured by a high-speed charge amplifier. The onset of impact ionization for both electron and hole transport is clearly observed in the drift current as the applied electric field is increased above ≈ 5 V/cm. We present the effective charge collection efficiency and trapping length as a function of applied electric field for electrons and holes. We estimate the impact ionization cross section to be on the order of 5× 10^{-13} mathrm {cm}^2.

  8. Observation of Impact Ionization of Shallow States in Sub-Kelvin, High-Purity Germanium

    NASA Astrophysics Data System (ADS)

    Phipps, A.; Sadoulet, B.; Sundqvist, K. M.

    2016-07-01

    We report on the observation of impact ionization processes involving shallow impurity states in a sub-Kelvin, high-purity n-type germanium detector similar to those used by direct detection dark matter experiments such as the Cryogenic Dark Matter Search. An optical fiber is used to generate packets of charge carriers near one surface of the detector. The charge carriers drift to the opposite surface by application of an electric field. The resulting drift current is measured by a high-speed charge amplifier. The onset of impact ionization for both electron and hole transport is clearly observed in the drift current as the applied electric field is increased above ≈ 5 V/cm. We present the effective charge collection efficiency and trapping length as a function of applied electric field for electrons and holes. We estimate the impact ionization cross section to be on the order of 5× 10^{-13} {cm}^2.

  9. HF echoes from ionization potentially produced by high-altitude discharges

    SciTech Connect

    Roussel-Dupre, R.A.; Blanc, E.

    1997-03-01

    The presence of ionization associated with high-altitude discharges has been detected using an HF radar operating at 2.2, 2.5, and 2.8 MHz. On several occasions, oblique echoes lasting several hundred ms at night and 1{r_arrow}10s during the day were observed. The echoes turned on in several interpulse times of 70 ms and were generally correlated with strong lightning activity prior to onset. The angles of arrival of sferics detected at three goniometer stations were used to determine the distance to thunderstorms. The data are consistent with specular reflections from columns of ionization produced at 55{endash}65 km altitude and having minimum electron densities of 6{times}10{sup 4}{endash}10{sup 5}cm{sup {minus}3}. The source of the ionization is believed to be high-altitude discharges.{copyright} 1997 American Geophysical Union

  10. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    PubMed

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible. PMID:26233382

  11. Partially ionized gas flow and heat transfer in the separation, reattachment, and redevelopment regions downstream of an abrupt circular channel expansion.

    NASA Technical Reports Server (NTRS)

    Back, L. H.; Massier, P. F.; Roschke, E. J.

    1972-01-01

    Heat transfer and pressure measurements obtained in the separation, reattachment, and redevelopment regions along a tube and nozzle located downstream of an abrupt channel expansion are presented for a very high enthalpy flow of argon. The ionization energy fraction extended up to 0.6 at the tube inlet just downstream of the arc heater. Reattachment resulted from the growth of an instability in the vortex sheet-like shear layer between the central jet that discharged into the tube and the reverse flow along the wall at the lower Reynolds numbers, as indicated by water flow visualization studies which were found to dynamically model the high-temperature gas flow. A reasonably good prediction of the heat transfer in the reattachment region where the highest heat transfer occurred and in the redevelopment region downstream can be made by using existing laminar boundary layer theory for a partially ionized gas. In the experiments as much as 90 per cent of the inlet energy was lost by heat transfer to the tube and the nozzle wall.

  12. Highly blueshifted H I gas toward the Galactic center

    NASA Technical Reports Server (NTRS)

    Yusef-Zadeh, Farhad; Lasenby, Anthony; Marshall, Jennifer

    1993-01-01

    Gusten and Downes (1981) discovered the presence of -190 km/s absorbing H I gas toward the Galactic center. Using the VLA in its most compact hybrid configuration, we were able to image the distribution of this high-negative-velocity H I spectral feature with a spatial and spectral resolution of about 25 arcsec and 6.2 km/s, respectively. The blueshifted H I gas is dominated by systematic radial motion as great as -210 km/s and is localized to within several arcmin of the dynamical center of the Galaxy. We show a striking column of diffuse H I gas extending for several arcmin in the direction along the rotation axis of the molecular disk encircling the Galactic center. The H I optical depth distribution indicates that a total of about 3000 solar masses of neutral material, with -211 to -160 km/sec velocity, appears to be associated with this feature. This unusual kinematic feature appears to coexist with two systems of rotationally supported ionized (Sgr A West) and molecular (circumnuclear disk) gas.

  13. Ionization of pesticides using a far-ultraviolet femtosecond laser in gas chromatography/time-of-flight mass spectrometry.

    PubMed

    Hashiguchi, Yuichi; Zaitsu, Shin-ichi; Imasaka, Totaro

    2013-09-01

    The fourth harmonic emission (200 nm) of a femtosecond Ti:sapphire laser (35 fs) was generated and used in the multiphoton ionization of 49 pesticides in gas chromatography/time-of-flight mass spectrometry. The limit of detection was improved when the ionization source from the third harmonic emission (267 nm) was replaced with the fourth harmonic emission for several pesticide molecules that contained no conjugated double bonds since their absorption bands are located in the far-ultraviolet region. This analytical instrument was used in the analysis of a series of real samples including potatoes, carrots, and cabbage, and a signal suspected to arise from di-allate was observed for the potato sample. ᅟ PMID:23624954

  14. Investigation of ionization-induced electron injection in a wakefield driven by laser inside a gas cell

    NASA Astrophysics Data System (ADS)

    Audet, T. L.; Hansson, M.; Lee, P.; Desforges, F. G.; Maynard, G.; Dobosz Dufrénoy, S.; Lehe, R.; Vay, J.-L.; Aurand, B.; Persson, A.; Gallardo González, I.; Maitrallain, A.; Monot, P.; Wahlström, C.-G.; Lundh, O.; Cros, B.

    2016-02-01

    Ionization-induced electron injection was investigated experimentally by focusing a driving laser pulse with a maximum normalized potential of 1.2 at different positions along the plasma density profile inside a gas cell, filled with a gas mixture composed of 99 %H2+1 %N2 . Changing the laser focus position relative to the gas cell entrance controls the accelerated electron bunch properties, such as the spectrum width, maximum energy, and accelerated charge. Simulations performed using the 3D particle-in-cell code WARP with a realistic density profile give results that are in good agreement with the experimental ones. The interest of this regime for optimizing the bunch charge in a selected energy window is discussed.

  15. Charge Identification of Highly Ionizing Particles in Desensitized Nuclear Emulsion Using High Speed Read-Out System

    SciTech Connect

    Toshito, T.; Kodama, K.; Yusa, K.; Ozaki, M.; Amako, K.; Kameoka, S.; Murakami, K.; Sasaki, T.; Aoki, S.; Ban, T.; Fukuda, T.; Naganawa, N.; Nakamura, T.; Natsume, M.; Niwa, K.; Takahashi, S.; Kanazawa, M.; Kanematsu, N.; Komori, M.; Sato, S.; Asai, M.; /Nagoya U. /Aichi U. of Education /Gunma U., Maebashi /JAXA, Sagamihara /KEK, Tsukuba /Kobe U. /Chiba, Natl. Inst. Rad. Sci. /SLAC /Toho U.

    2006-05-10

    We performed an experimental study of charge identification of heavy ions from helium to carbon having energy of about 290 MeV/u using an emulsion chamber. Emulsion was desensitized by means of forced fading (refreshing) to expand a dynamic range of response to highly charged particles. For the track reconstruction and charge identification, the fully automated high speed emulsion read-out system, which was originally developed for identifying minimum ionizing particles, was used without any modification. Clear track by track charge identification up to Z=6 was demonstrated. The refreshing technique has proved to be a powerful technique to expand response of emulsion film to highly ionizing particles.

  16. Probing the extent and content of low ionization gas in galaxies: QSO absorption and HI emission

    NASA Technical Reports Server (NTRS)

    Womble, Donna S.

    1993-01-01

    The small projected separations of some QSO's and low-redshift galaxies provide unique opportunities to study the extent and content of gas in galaxies through observation of absorption in the QSO spectra. Observations of these systems provide valuable information on the connection between the absorbing gas and the galaxy, as well as detailed information on the morphology and environment of the galaxy itself. While there is direct evidence that galaxies can produce the intervening-type QSO absorption lines, over the past decade, the study of such 'QSO-galaxy pairs' (at low redshift) has been considered unsuccessful because new detections of absorption were seldom made. A fundamental problem concerning the relation between these low-redshift systems and those seen at moderate to high redshift remains unresolved. Direct and indirect measures of galaxy absorption cross sections at moderate to high redshifts (z is approximately greater than 20.5) are much larger than the optical and HI sizes of local galaxies. However, direct comparison of the low and moderate to high redshift systems is difficult since different ions are observed in different redshift regimes. Observations are presented for a new sample of QSO-galaxy pairs. Nine new QSO's which shine through nearby galaxies (on the sky-plane) were observed to search for CaII absorption in the QSO spectra at the foreground galaxy redshifts.

  17. Effect of Coulomb Collisions on the Gravitational Settling of Low and High First Ionization Potential Elements

    NASA Astrophysics Data System (ADS)

    Bø, Iselin M. Th.; Esser, Ruth; Lie-Svendsen, Øystein

    2013-05-01

    We model the effect of gravitational settling in the upper chromosphere on O, Fe, Si, and Ne, studying whether Coulomb collisions between ionized low First Ionization Potential (FIP) elements and protons is sufficient to cause abundance enhancements relative to oxygen. We find that low-FIP abundance enhancements comparable to observed values can be obtained provided the hydrogen ionization degree lies in the approximate range 10%-30%, which agrees with chromospheric models. Lower or higher hydrogen ionization causes the FIP-effect to become smaller or absent (depletion of all heavy elements). Iron must be almost fully ionized in order to become enriched relative to high-FIP elements, and this requires a high iron photoionization rate. The time scale necessary to produce the enrichment increases rapidly with increasing H ionization. For iron in a background from a semiempirical chromospheric model, with an H ion fraction of the order of 30%-40% in the upper chromosphere, 1-2 hr of settling is required to produce enhancements comparable to observations. The absolute abundance (relative to H), which monotonically decreases with time during settling, has by that time decreased by less than 50% in the same altitude region. With the same background conditions, the silicon abundance is more strongly enhanced by the settling than the iron abundance. The high-FIP element neon is depleted, relative to O and low-FIP elements, in the same background and altitude region where iron is enhanced, typically by 50% or more relative to O after 1-2 hr of settling.

  18. EFFECT OF COULOMB COLLISIONS ON THE GRAVITATIONAL SETTLING OF LOW AND HIGH FIRST IONIZATION POTENTIAL ELEMENTS

    SciTech Connect

    Bo, Iselin M. Th.; Esser, Ruth; Lie-Svendsen, Oystein E-mail: ruth.esser@uit.no

    2013-05-20

    We model the effect of gravitational settling in the upper chromosphere on O, Fe, Si, and Ne, studying whether Coulomb collisions between ionized low First Ionization Potential (FIP) elements and protons is sufficient to cause abundance enhancements relative to oxygen. We find that low-FIP abundance enhancements comparable to observed values can be obtained provided the hydrogen ionization degree lies in the approximate range 10%-30%, which agrees with chromospheric models. Lower or higher hydrogen ionization causes the FIP-effect to become smaller or absent (depletion of all heavy elements). Iron must be almost fully ionized in order to become enriched relative to high-FIP elements, and this requires a high iron photoionization rate. The time scale necessary to produce the enrichment increases rapidly with increasing H ionization. For iron in a background from a semiempirical chromospheric model, with an H ion fraction of the order of 30%-40% in the upper chromosphere, 1-2 hr of settling is required to produce enhancements comparable to observations. The absolute abundance (relative to H), which monotonically decreases with time during settling, has by that time decreased by less than 50% in the same altitude region. With the same background conditions, the silicon abundance is more strongly enhanced by the settling than the iron abundance. The high-FIP element neon is depleted, relative to O and low-FIP elements, in the same background and altitude region where iron is enhanced, typically by 50% or more relative to O after 1-2 hr of settling.

  19. A high dynamic range current dosimeter for space ionization radiation measurement

    NASA Astrophysics Data System (ADS)

    Lei, Sheng-jie; Wei, Zhi-yong; Fang, Mei-hua; Chen, Guo-yun; Zhang, Zi-xia; Huang, San-bo

    2011-08-01

    A dosimeter for space ionization radiation field is developed, energy deposited in the sensitivity volume of ionization chamber induces an output current signal as weak as 10-14A, and the dynamic range of the signal is very high. Now, an ionization chamber is designed and a variable gain current feedback preamp module is designed for the weak output current amplification is connected to output of the ionization chamber anode. The amplifier module includes I-V converter with T shaped resistance net, zero correct circuit, low pass filter, voltage linear amplifier circuit, gain control circuit and voltage output circuit. A complete analysis of this current preamp with respect to its circuit structure, dynamic properties, its equivalent input noise and the temperature effect is given. The effects of stray impedances on the behavior of the current feedback preamp are taken into account and the techniques necessary to achieve an optimum stable electrometer, with respect to noise, Dc drift, leakage currents, are applied. Experiments show that the energy of dosimeter deposited in the sensitivity volume of ionization chamber induces an output current signal as weak as 10-14A, the current preamp can detect weak current effectively with the range from 100fA to 10μA through switchable gain.

  20. HF echoes from ionization potentially produced by high-altitude discharges

    SciTech Connect

    Roussel-Dupre, R.; Fitzgerald, T.J.; Symbalisty, E.

    1997-04-01

    In this paper the authors report on recent radar measurements taken during the month of October 1994 with the LDG HF radar in the Ivory Coast, Africa as part of the International Equatorial Electrojet Year. The purpose of this experimental effort in part was to study the effects of thunderstorms on the ionosphere. At the same time, the authors decided to carry out a set of experiments of an exploratory nature to look for echoes that could potentially arise from ionization produced in the mesosphere. The two leading candidates for producing transient ionization in the mesosphere are meteors and high-altitude discharges. Each is discussed in the context of these measurements.

  1. An evaluation of ionizing radiation emitted by high power microwave generators

    SciTech Connect

    Lovell, C.D. ); Bolch, W.E. . Dept. of Environmental Engineering Sciences)

    1992-02-01

    Ionizing radiation emitted by electron-beam driven high power microwave (HPM) generators were measured in the near and far-field using lithium fluoride (LiF) thermoluminescent dosimeters (TLDs). Simplified photon energy spectra were determined by measuring radiation transmission, at electron beam energies of 300 to 650 keV, through various thicknesses of steel and lead attenuators. These data were used to calculate the effective energy of the x-rays produced by interactions between the electrons and the walls or other structures of the HPM generators. Operators were polled to determine locations of burn marks or other visible damage to locate potential ionizing radiation source regions. 27 refs.

  2. Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity.

    PubMed

    Hao, Yajiang; Inhester, Ludger; Hanasaki, Kota; Son, Sang-Kil; Santra, Robin

    2015-07-01

    We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging. PMID:26798806

  3. Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity

    PubMed Central

    Hao, Yajiang; Inhester, Ludger; Hanasaki, Kota; Son, Sang-Kil; Santra, Robin

    2015-01-01

    We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging. PMID:26798806

  4. The Lack of Influence of Metallicity on Cooling and Collapse of Ionized Gas in Small Protogalactic Halos

    NASA Astrophysics Data System (ADS)

    Jappsen, A.-K.; Glover, S. C. O.; Klessen, R. S.; Mac Low, M.-M.

    2005-12-01

    We study the influence of low levels of metal enrichment on the cooling and collapse of ionized gas in small protogalactic halos. We use three-dimensional, smoothed particle hydrodynamics simulations, run with the publicly available parallel code GADGET (Springel et al. 2001). We implement a sink particle algorithm. This allows us to safely represent gas that has collapsed beyond the resolution limit without causing numerical errors within the resolved regions of the simulation. We also include the necessary framework for following the non-equilibrium chemistry of H2 in the protogalactic gas, and a treatment of radiative heating and cooling. Our initial conditions represent protogalaxies forming within a fossil H ii region---a previously ionized H ii region that has not yet had time to cool and recombine. Prior to cosmological reionization, such regions should be relatively common, since the characteristic lifetimes of the likely ionizing sources are significantly shorter than a Hubble time. We show that in these regions, H2 is the dominant and most effective coolant, even in the presence of small amounts of metals. It is the amount of H2 which forms that controls whether or not the gas can collapse and form stars. For metallicities Z ≤ 10-3 Z⊙, we find that metal line cooling alters the density and temperature evolution of the gas by less than 1% compared to the metal-free case at densities below 1 cm-3 and temperatures above 2000 K. However, at higher densities and lower temperatures, metal line cooling does become rather more important, and will affect the ability of the gas to fragment. We also show that an external ultraviolet background delays or suppresses the cooling and collapse of the gas regardless of whether or not it is metal-enriched. RSK and A-KJ acknowledge support from the Emmy Noether Program of the Deutsche Forschungsgemeinschaft (grant no. KL1358/1). M-MML acknowledges support from NSF grants AST99-85392 and AST03-07854, and NASA grant NAG5

  5. Virtual Frisch-grid ionization chambers filled with high-pressure Xe

    NASA Astrophysics Data System (ADS)

    Bolotnikov, Aleksey E.; Austin, Robert; Bolozdynya, Alexander; Richards, John D.

    2004-10-01

    New approaches to the design of high-pressure Xe (HPXe) ionization chambers are described. HPXe ionization chambers represent a well-known technique for detecting gamma rays in the energy range between 50 keV and 3 MeV. Since the HPXe detector is an electron-only carrier device, its commonly accepted design includes a Frisch-grid-a metal mesh employed for the electrostatic shielding from the immobile positive ions. The grid is a key element of the device"s design which provides good energy resolution of the detector, typically 2-3% FWHM at 662 keV. However, the grid makes the design more complex and less rugged, especially for field applications. Recently, we developed several designs of HPXe ionization chambers without shielding grids. The results obtained from the testing of these devices are presented here.

  6. ARE MOLECULAR OUTFLOWS AROUND HIGH-MASS STARS DRIVEN BY IONIZATION FEEDBACK?

    SciTech Connect

    Peters, Thomas; Klessen, Ralf S.; Klaassen, Pamela D.; Mac Low, Mordecai-Mark; Banerjee, Robi

    2012-11-20

    The formation of massive stars exceeding 10 M {sub Sun} usually results in large-scale molecular outflows. Numerical simulations, including ionization, of the formation of such stars show evidence for ionization-driven molecular outflows. Here we examine whether the outflows seen in these models reproduce the observations. We compute synthetic ALMA and CARMA maps of CO emission lines of the outflows, and compare their signatures to existing single-dish and interferometric data. We find that the ionization-driven models can only reproduce weak outflows around high-mass star-forming regions. We argue that expanding H II regions probably do not represent the dominant mechanism for driving observed outflows. We suggest instead that observed outflows are driven by the collective action of the outflows from the many lower-mass stars that inevitably form around young massive stars in a cluster.

  7. Spin dynamics in relativistic ionization with highly charged ions in super-strong laser fields

    NASA Astrophysics Data System (ADS)

    Klaiber, Michael; Yakaboylu, Enderalp; Müller, Carsten; Bauke, Heiko; Paulus, Gerhard G.; Hatsagortsyan, Karen Z.

    2014-03-01

    Spin dynamics and induced spin effects in above-threshold ionization of hydrogenlike highly charged ions in super-strong laser fields are investigated. Spin-resolved ionization rates in the tunnelling regime are calculated by employing two versions of a relativistic Coulomb-corrected strong-field approximation (SFA). An intuitive simpleman model is developed which explains the derived scaling laws for spin flip and spin asymmetry effects. The intuitive model as well as our ab initio numerical simulations support the analytical results for the spin effects obtained in the dressed SFA where the impact of the laser field on the electron spin evolution in the bound state is taken into account. In contrast, the standard SFA is shown to fail in reproducing spin effects in ionization even at a qualitative level. The anticipated spin-effects are expected to be measurable with modern laser techniques combined with an ion storage facility.

  8. A High-Pressure Hollow Cathode Ionization Source for In-Situ Detection of Organic Molecules

    NASA Technical Reports Server (NTRS)

    Beegle, L. W.; Kanik, I.

    2001-01-01

    We have designed, constructed and characterized a new high-pressure (1-5 Torr) hollow cathode discharge source (HCDS) that can be utilized as an ionizer in a wide variety of mass analyzers. Additional information is contained in the original extended abstract.

  9. A high-frequency electrospray driven by gas volume charges

    SciTech Connect

    Lastochkin, Dmitri; Chang, H.-C.

    2005-06-15

    High-frequency (>10 kHz) ac electrospray is shown to eject volatile dielectric liquid drops by an entirely different mechanism from dc sprays. The steady dc Taylor conic tip is absent and continuous spraying of submicron drops is replaced by individual dynamic pinchoff events involving the entire drop. We attribute this spraying mechanism to a normal Maxwell force produced by an undispersed plasma cloud in front of the meniscus that produces a visible glow at the spherical tip. The volume charge within the cloud is formed by electron-induced gas ionization of the evaporated liquid and produces a large normal field that is much higher than the nominal applied field such that drop ejection occurs at a voltage (at high frequencies) that is as much as ten times lower than that for dc sprays. The ejection force is sensitive to the liquid properties (but not its electrolyte composition), the ac frequency and trace amounts of inert gases, which are believed to catalyze the ionization reactions. As electroneutral drops are ejected, due to the large (>100) ratio between individual drop ejection time and the ac frequency, this mechanism can produce large (microns) electroneutral drops at relatively low voltages.

  10. Final Report: Ionization chemistry of high temperature molecular fluids

    SciTech Connect

    Fried, L E

    2007-02-26

    With the advent of coupled chemical/hydrodynamic reactive flow models for high explosives, understanding detonation chemistry is of increasing importance to DNT. The accuracy of first principles detonation codes, such as CHEETAH, are dependent on an accurate representation of the species present under detonation conditions. Ionic species and non-molecular phases are not currently included coupled chemistry/hydrodynamic simulations. This LDRD will determine the prevalence of such species during high explosive detonations, by carrying out experimental and computational investigation of common detonation products under extreme conditions. We are studying the phase diagram of detonation products such as H{sub 2}O, or NH{sub 3} and mixtures under conditions of extreme pressure (P > 1 GPa) and temperature (T > 1000K). Under these conditions, the neutral molecular form of matter transforms to a phase dominated by ions. The phase boundaries of such a region are unknown.

  11. Quantitative and fingerprinting analysis of Atractylodes rhizome based on gas chromatography with flame ionization detection combined with chemometrics.

    PubMed

    Liu, Qiutao; Kong, Dandan; Luo, Jiaoyang; Kong, Weijun; Guo, Weiying; Yang, Meihua

    2016-07-01

    This study assessed the feasibility of gas chromatography with flame ionization detection fingerprinting combined with chemometrics for quality analysis of Atractylodes rhizome. We extracted essential oils from 20 Atractylodes lancea and Atractylodes koreana samples by hydrodistillation. The variation in extraction yields (1.33-4.06%) suggested that contents of the essential oils differed between species. The volatile components (atractylon, atractydin, and atractylenolide I, II, and III) were quantified by gas chromatography with flame ionization detection and confirmed by gas chromatography with mass spectrometry, and the results demonstrated that the number and content of volatile components differed between A. lancea and A. koreana. We then calculated the relative peak areas of common components and similarities of samples by comparing the chromatograms of A. lancea and A. koreana extracts. Also, we employed several chemometric techniques, including similarity analysis, hierarchical clustering analysis, principal component analysis, and partial least-squares discriminate analysis, to analyze the samples. Results were consistent across analytical methods and showed that samples could be separated according to species. Five volatile components in the essential oils were quantified to further validate the results of the multivariate statistical analysis. The method is simple, stable, accurate, and reproducible. Our results provide a foundation for quality control analysis of A. lancea and A. koreana. PMID:27133960

  12. A high efficiency thermal ionization source adapted to mass spectrometers

    SciTech Connect

    Chamberlin, E.P.; Olivares, J.A.

    1994-07-01

    The high-temperature ion source used on the isotope separators at Los Alamos is unsuitable for mass spectrometry use, because it is bulky, expensive to fabricate, requires careful assembly, etc. A modified source was designed, using the following objectives: reduced number of parts and complexity, one-piece crucible, modular construction, little or no water cooling. The source is shown mounted on a quadrupole mass spectrometer; the ion beam is matched into a sector-type mass spectrometer.

  13. High contrast Kr gas jet Kα x-ray source for high energy density physics experimentsa)

    NASA Astrophysics Data System (ADS)

    Kugland, N. L.; Neumayer, P.; Döppner, T.; Chung, H.-K.; Constantin, C. G.; Girard, F.; Glenzer, S. H.; Kemp, A.; Niemann, C.

    2008-10-01

    A high contrast 12.6keV Kr Kα source has been demonstrated on the petawatt-class Titan laser facility using strongly clustering Kr gas jet targets. The contrast ratio (Kα to continuum) is 65, with a competitive ultrashort pulse laser to x-ray conversion efficiency of 10-5. Filtered shadowgraphy indicates that the Kr Kα and Kβ x rays are emitted from a roughly 1×2mm2 emission volume, making this source suitable for area backlighting and scattering. Spectral calculations indicate a typical bulk electron temperature of 50-70eV (i.e., mean ionization state 13-16), based on the observed ratio of Kα to Kβ. Kr gas jets provide a debris-free high energy Kα source for time-resolved diagnosis of dense matter.

  14. High resolution gas volume change sensor

    SciTech Connect

    Dirckx, Joris J. J.; Aernouts, Jef E. F.; Aerts, Johan R. M.

    2007-05-15

    Changes of gas quantity in a system can be measured either by measuring pressure changes or by measuring volume changes. As sensitive pressure sensors are readily available, pressure change is the commonly used technique. In many physiologic systems, however, buildup of pressure influences the gas exchange mechanisms, thus changing the gas quantity change rate. If one wants to study the gas flow in or out of a biological gas pocket, measurements need to be done at constant pressure. In this article we present a highly sensitive sensor for quantitative measurements of gas volume change at constant pressure. The sensor is based on optical detection of the movement of a droplet of fluid enclosed in a capillary. The device is easy to use and delivers gas volume data at a rate of more than 15 measurements/s and a resolution better than 0.06 {mu}l. At the onset of a gas quantity change the sensor shows a small pressure artifact of less than 15 Pa, and at constant change rates the pressure artifact is smaller than 10 Pa or 0.01% of ambient pressure.

  15. Highly ionized atoms observed with Copernicus. [stellar O lines

    NASA Technical Reports Server (NTRS)

    York, D. G.

    1974-01-01

    Based on high-resolution observations using the Princeton satellite/spectrometer on Copernicus the O VI doublet is discussed in detail, in conjunction with data for the resonance lines of N V, Si IV, and S IV reported in five stars. The temperature, density, and the possible extent of the O VI producing region are discussed. The ratio N(S IV)/N(O VI) is used to derive a lower limit to the temperature in the O VI producing region. In near pressure equilibrium with normal interstellar clouds and H II regions minimum densities are found to be consistent with a hot plasma.

  16. Application of gas chromatography/flame ionization detector-based metabolite fingerprinting for authentication of Asian palm civet coffee (Kopi Luwak).

    PubMed

    Jumhawan, Udi; Putri, Sastia Prama; Yusianto; Bamba, Takeshi; Fukusaki, Eiichiro

    2015-11-01

    Development of authenticity screening for Asian palm civet coffee, the world-renowned priciest coffee, was previously reported using metabolite profiling through gas chromatography/mass spectrometry (GC/MS). However, a major drawback of this approach is the high cost of the instrument and maintenance. Therefore, an alternative method is needed for quality and authenticity evaluation of civet coffee. A rapid, reliable and cost-effective analysis employing a universal detector, GC coupled with flame ionization detector (FID), and metabolite fingerprinting has been established for discrimination analysis of 37 commercial and non-commercial coffee beans extracts. gas chromatography/flame ionization detector (GC/FID) provided higher sensitivity over a similar range of detected compounds than GC/MS. In combination with multivariate analysis, GC/FID could successfully reproduce quality prediction from GC/MS for differentiation of commercial civet coffee, regular coffee and coffee blend with 50 wt % civet coffee content without prior metabolite details. Our study demonstrated that GC/FID-based metabolite fingerprinting can be effectively actualized as an alternative method for coffee authenticity screening in industries. PMID:25912451

  17. LOW-IONIZATION OUTFLOWS IN HIGH EDDINGTON RATIO QUASARS

    SciTech Connect

    Marziani, Paola; Sulentic, Jack W.; Plauchu-Frayn, Ilse; Del Olmo, Ascension

    2013-02-20

    The broad Mg II {lambda}2800 doublet has been frequently studied in connection with its potentially important role as a virial estimator of black hole mass in high-redshift quasars. An important task, therefore, is the identification of any line components that are likely related to broadening by non-virial motions. High signal-to-noise median composite spectra (binned in the {sup f}our-dimensional eigenvector 1'' context of Sulentic et al.) were constructed for the brightest 680 Sloan Digital Sky Survey Data Release 7 quasars in the 0.4 {<=} z {<=} 0.75 range where both Mg II {lambda}2800 and H{beta} are recorded in the same spectra. Composite spectra representing 90% of the quasars confirm previous findings that FWHM(Mg II {lambda}2800) is about 20% narrower than FWHM(H{beta}). The situation is clearly different for the most extreme (Population A) sources, which are the highest Eddington radiators in the sample. In the median spectra of these sources, FWHM Mg II {lambda}2800 is equal to or greater than FWHM(H{beta}) and shows a significant blueshift relative to H{beta}. We interpret the Mg II {lambda}2800 blueshift as the signature of a radiation-driven wind or outflow in the highest accreting quasars. In this interpretation, the Mg II {lambda}2800 line width-affected by blueshifted emission-is unsuitable for virial mass estimation in Almost-Equal-To 10% of quasars.

  18. Restoration of RI-beams from a projectile fragment separator by Laser Ionization gas Catcher-PALIS-

    SciTech Connect

    Sonoda, T.; Takamine, A.; Schury, P.; Yamazaki, Y.; Wada, M.; Okada, K.; Yoshida, A.; Kubo, T.; Matsuo, Y.; Furukawa, T.; Wakui, T.; Shinozuka, T.; Iimura, H.; Katayama, I.; Ohtani, S.; Wollnik, H.; Schuessler, H. A.; Kudryavtsev, Yu.; Van Duppen, P.; Huyse, M.

    2009-03-17

    A fragment separator at heavy ion accelerator facilities is a versatile instrument to provide wide variety of radioactive isotope (RI) beams. However, more than 99.99% of precious RI-ions are simply dumped in the slits or elsewhere in the fragment separator. A novel concept to restore such RI-ions for parasitic slow RI-beams is proposed. Installation of a laser ionization gas catcher in the vicinity of the first or second focal point of the fragment separator enables to collect dead isotopes in the slits. The design concept and expected performance are discussed.

  19. A simple and sensitive quantitation of N,N-dimethyltryptamine by gas chromatography with surface ionization detection.

    PubMed

    Ishii, A; Seno, H; Suzuki, O; Hattori, H; Kumazawa, T

    1997-01-01

    A simple and sensitive method for determination of N,N-dimethyltryptamine (DMT) by gas chromatography (GC) with surface ionization detection (SID) is presented. Whole blood or urine, containing DMT and gramine (internal standard), was subjected to solid-phase extraction with a Sep-Pak C18 cartridge before analysis by GC-SID. The calibration curve was linear in the DMT range of 1.25-20 ng/mL blood or urine. The detection limit of DMT was about 0.5 ng/mL (10 pg on-column). The recovery of both DMT and gramine spiked in biological fluids was above 86%. PMID:9013290

  20. Experimental observations of the expansion of an optical-field-induced ionization channel in a gas jet target

    SciTech Connect

    Dunne, M.; Afshar-Rad, T.; Edwards, J.; MacKinnon, A.J.; Viana, S.M.; Willi, O. ); Pert, G. )

    1994-02-14

    The evolution of an optical-field-ionized channel created by a 3.5 ps KrF laser pulse in a low density nitrogen gas jet target (10[sup 17] ions cm[sup [minus]3]) has been studied using Moire deflectometry. This allowed the density profiles in the channel and its lateral expansion to be quantitatively measured for the first time. The results were reproduced well by hydrocode simulations and analytical models. In addition, structured Raman backscatter signals indicated very low longitudinal electron velocities in the rising part of the pulse, as confirmed by 2D PIC code simulations.

  1. Ultrafast ionization and fragmentation dynamics of molecules at high x-ray intensity

    NASA Astrophysics Data System (ADS)

    Son, Sang-Kil

    2016-05-01

    X-ray free-electron lasers (XFEL) open a new era in science and technology, offering many unique opportunities that have not been conceivable with conventional light sources. Because of their very high x-ray photon fluence within very short pulse duration, materials interacting with XFEL undergo significant radiation damage -- they possibly become highly ionized and then explode. To comprehend underlying physics, it is crucial to understand detailed ionization and fragmentation dynamics of atoms and molecules during intense XFEL pulses. We have developed the XMOLECULE toolkit to describe molecular x-ray-induced processes and to simulate radiation damage dynamics of molecules. In this talk, I will present a theoretical framework of XFEL-matter interaction, namely x-ray multiphoton absorption. Then I will discuss recent results of ultrafast x-ray-induced explosion of methyl iodide (CH3 I) molecules. Charge state distribution and kinetic energy releases of fragments are calculated to probe ionization and fragmentation dynamics, and compared with recent experimental results. It will be demonstrated that ionization of heavy-atom-containing molecules at high x-ray intensity is much enhanced in comparison with the isolated atomic case, due to ultrafast charge rearrangement during x-ray multiphoton absorption.

  2. DENSITY OF WARM IONIZED GAS NEAR THE GALACTIC CENTER: LOW RADIO FREQUENCY OBSERVATIONS

    SciTech Connect

    Roy, Subhashis

    2013-08-10

    We have observed the Galactic center (GC) region at 0.154 and 0.255 GHz with the Giant Metrewave Radio Telescope. A total of 62 compact likely extragalactic (EG) sources are detected. Their scattering sizes decrease linearly with increasing angular distance from the GC up to about 1 Degree-Sign . The apparent scattering sizes of the sources are more than an order of magnitude less than predicted earlier by the NE2001 model of Galactic electron distribution within 359. Degree-Sign 5 < l < 0. Degree-Sign 5 and -0. Degree-Sign 5 < b < 0. Degree-Sign 5 (Hyperstrong Scattering Region) of the Galaxy. High free-free optical depths ({tau}) are observed toward most of the extended non-thermal sources within 0. Degree-Sign 6 from the GC. Significant variation of {tau} indicates that the absorbing medium is patchy at an angular scale of {approx}10' and n{sub e} is {approx}10 cm{sup -3}, which matches the NE2001 model. This model predicts the EG sources to be resolved out from 1.4 GHz interferometric surveys. However, out of 10 EG sources expected in the region, 8 likely EG are present in the 1.4 GHz catalog. Ionized interfaces of dense molecular clouds to the ambient medium are most likely responsible for strong scattering and low radio frequency absorption. However, dense GC clouds traced by CS J = 1-0 emission are found to have a narrow distribution of {approx}0. Degree-Sign 2 across the Galactic plane. Angular distribution of most EG sources seen through the so-called Hyperstrong Scattering Region are random in b, and typically {approx}7 out of 10 sources will not be seen through the dense molecular clouds, which explains why most of them are not scatter broadened at 1.4 GHz.

  3. Potential of atmospheric pressure chemical ionization source in gas chromatography tandem mass spectrometry for the screening of urinary exogenous androgenic anabolic steroids.

    PubMed

    Raro, M; Portolés, T; Pitarch, E; Sancho, J V; Hernández, F; Garrostas, L; Marcos, J; Ventura, R; Segura, J; Pozo, O J

    2016-02-01

    The atmospheric pressure chemical ionization (APCI) source for gas chromatography-mass spectrometry analysis has been evaluated for the screening of 16 exogenous androgenic anabolic steroids (AAS) in urine. The sample treatment is based on the strategy currently applied in doping control laboratories i.e. enzymatic hydrolysis, liquid-liquid extraction (LLE) and derivatization to form the trimethylsilyl ether-trimethylsilyl enol ether (TMS) derivatives. These TMS derivatives are then analyzed by gas chromatography tandem mass spectrometry using a triple quadrupole instrument (GC-QqQ MS/MS) under selected reaction monitoring (SRM) mode. The APCI promotes soft ionization with very little fragmentation resulting, in most cases, in abundant [M + H](+) or [M + H-2TMSOH](+) ions, which can be chosen as precursor ions for the SRM transitions, improving in this way the selectivity and sensitivity of the method. Specificity of the transitions is also of great relevance, as the presence of endogenous compounds can affect the measurements when using the most abundant ions. The method has been qualitatively validated by spiking six different urine samples at two concentration levels each. Precision was generally satisfactory with RSD values below 25 and 15% at the low and high concentration level, respectively. Most the limits of detection (LOD) were below 0.5 ng mL(-1). Validation results were compared with the commonly used method based on the electron ionization (EI) source. EI analysis was found to be slightly more repeatable whereas lower LODs were found for APCI. In addition, the applicability of the developed method has been tested in samples collected after the administration of 4-chloromethandienone. The highest sensitivity of the APCI method for this compound, allowed to increase the period in which its administration can be detected. PMID:26772132

  4. Age and hormonal status as determinants of cataractogenesis induced by ionizing radiation. I. Densely ionizing (high-LET) radiation.

    PubMed

    Dynlacht, Joseph R; Valluri, Shailaja; Garrett, Joy; Mendonca, Marc S; Lopez, Jennifer T; Caperell-Grant, Andrea; Bigsby, Robert M

    2011-01-01

    Astronauts participating in extended lunar missions or the projected mission to Mars would likely be exposed to significant doses of high-linear energy transfer (LET) heavy energetic charged (HZE) particles. Exposure to even relatively low doses of such space radiation may result in a reduced latent period for and an increased incidence of lens opacification. However, the determinants of cataractogenesis induced by densely ionizing radiation have not been clearly elucidated. In the current study, we show that age at the time of exposure is a key determinant of cataractogenesis in rats whose eyes have been exposed to 2 Gy of (56)Fe ions. The rate of progression of cataractogenesis was significantly greater in the irradiated eyes of 1-year-old rats compared to young (56-day-old) rats. Furthermore, older ovariectomized rats that received exogenous estrogen treatment (17-β-estradiol) commencing 1 week prior to irradiation and continuing throughout the period of observation of up to approximately 600 days after irradiation showed an increased incidence of cataracts and faster progression of opacification compared to intact rats with endogenous estrogen or ovariectomized rats. The same potentiating effect (higher incidence, reduced latent period) was observed for irradiated eyes of young rats. Modulation of estrogen status in the 1-year-old animals (e.g., removal of estrogen by ovariectomy or continuous exposure to estrogen) did not increase the latent period or reduce the incidence to that of intact 56-day-old rats. Since the rapid onset and progression of cataracts in 1-year-old compared to 56-day-old rats was independent of estrogen status, we conclude that estrogen cannot account for the age-dependent differences in cataractogenesis induced by high-LET radiation. PMID:21175345

  5. Two-dimensional metallicity distribution of the ionized gas in NGC 628 and NGC 6946

    NASA Astrophysics Data System (ADS)

    Cedrés, B.; Cepa, J.; Bongiovanni, Á.; Castañeda, H.; Sánchez-Portal, M.; Tomita, A.

    2012-09-01

    Aims: We present here two H II region catalogues with azimuthal resolution for the two grand design galaxies NGC 628 and NGC 6946. With the help of these catalogues, we study several properties of the star-forming processes occurring in spiral galaxies. Methods: We obtained direct imaging in the narrow-band filters centred at Hα, Hβ, [O II]λ3727, and [O III]λλ4959, 5007 and their respective continua. After the calibration and correction of the data, we obtained for each H II region the de-reddened fluxes in the aforementioned lines, the size, the Hα equivalent width, and, using two different empirical calibrations, the metallicity. Employing a method based on the Delaunay triangulation, a two-dimensional (2D) representation of the metallicity was obtained. Results: Data for 209 H II regions of NGC 628 and 226 H II regions of NGC 6946 are obtained. The radial behaviours of the Hα equivalent width, the excitation, and the oxygen abundance are derived. Two-dimensional representations of the metallicity and the excitation are calculated for the galaxies in the study. The two empirical calibrations of the metallicity are compared. Conclusions: The behaviours of the extinction and the Hα equivalent width are similar to those presented in the literature. The oxygen abundance gradients obtained in this study agree with previously published values. However, more regions were examined than in previous studies. We find a difference of about 0.6 dex between the two empirical calibrations employed. Finally, the 2D representations of the metallicity reveal high metallicity knots in NGC 628, and for NGC 6946 a high metallicity azimuthal structure is discovered. These high metallicity regions seem to be linked to the arms of the galaxies and are probably produced by an increase in the temperature of the ionizing clusters in the H II regions, which may be linked to variations in the initial mass functions of the galaxies between the arm and interarm regions. Full Tables 4

  6. High Power Light Gas Helicon Plasma Source For VASMIR

    NASA Technical Reports Server (NTRS)

    Squire, J. P.; Chang-Diaz, F. R.; Glover, T. W.; Jacobson, V. T.; McCaskill, G. E.; Winter, D. S.; Baity, F. W.; Carter, M. D.; Goulding, R. H.

    2004-01-01

    The VASIMR space propulsion development effort relies on a high power (greater than 10kW) helicon source to produce a dense flowing plasma (H, D and He) target for ion cyclotron resonance (ICR) acceleration of the ions. Subsequent expansion in an expanding magnetic field (magnetic nozzle) converts ion lunetic energy to directed momentum. This plasma source must have critical features to enable an effective propulsion device. First, it must ionize most of the input neutral flux of gas, thus producing a plasma stream with a high degree of ionization for application of ICR power. This avoids propellant waste and potential power losses due to charge exchange. Next, the plasma stream must flow into a region of high magnetic field (approximately 0.5 T) for efficient ICR acceleration. Third, the ratio of input power to plasma flux must be low, providing an energy per ion-electron pair approaching 100 eV. Lastly, the source must be robust and capable of very long life-times (years). In our helicon experiment (VX-10) we have measured a ratio of input gas to plasma flux near 100%. The plasma flows from the helicon region (B approximately 0.1 T) into a region with a peak magnetic field of 0.8 T. The energy input per ion-electron pair has been measured at 300 plus or minus 100 eV. Recent results at Oak Ridge National Laboratory (ORNL) show an enhanced efficiency mode of operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 3.5 kW of input power. An upgrade to a power level of 10 kW is underway. Much of our recent work has been with a Boswell double-saddle antenna design. We are also converting the antenna design to a helical type. With these modifications, we anticipate an improvement in the ionization efficiency. This paper presents the results from scaling the helicon in the VX-10 device from 3.5 to 10 kW. We also compare the operation with a double-saddle to a helical antenna design. Finally, we

  7. Uncovering the Spectral Energy Distribution in Active Galaxies Using High Ionization Mid-Infrared Emission Lines

    NASA Technical Reports Server (NTRS)

    Melendez, M.; Kraemer, S. B.; Weaver, K. A.; Mushotzky, R. F.

    2011-01-01

    The shape of the spectral energy distribution of active galaxies in the EUV soft X-ray band (13.6 eV to 1 keV) is uncertain because obscuration by dust and gas can hamper our view of the continuum. To investigate the shape of the spectral energy distribution in this energy band, we have generated a set of photoionization models which reproduce the small dispersion found in correlations between high-ionization mid-infrared emission lines in a sample of hard X-ray selected AGN. Our calculations show that a broken power-law continuum model is sufficient to reproduce the [Ne V]14.32 microns/[Ne III], [Ne V]24.32 microns/[O IV]25.89 micron and [O IV] 25.89 microns/[Ne III] ratios, and does not require the addition of a "big bump" EUV model component. We constrain the EUV-soft X-ray slope, alpha(sub i), to be between 1.5 - 2.0 and derive a best fit of alpha(sub i) approx. 1.9 for Seyfert 1 galaxies, consistent with previous studies of intermediate redshift quasars. If we assume a blue bump model, most sources in our sample have derived temperatures between T(sub BB) = 10(exp 5.18) K to 10(exp 5.7) K, suggesting that the peak of this component spans a large range of energies extending from approx. (Lambda)600 A to > (Lambda)1900 A. In this case, the best fitting peak energy that matches the mid-infrared line ratios of Seyfert 1 galaxies occurs between approx. (Lambda)700-(Lambda)1000 A. Despite the fact that our results do not rule out the presence of an EUV bump, we conclude that our power-law model produces enough photons with energies > 4 Ry to generate the observed amount of mid-infrared emission in our sample of BAT AGN.

  8. Comparison of Gas Chromatography-Mass Spectrometry and Gas Chromatography-Tandem Mass Spectrometry with Electron Ionization and Negative-Ion Chemical Ionization for Analyses of Pesticides at Trace Levels in Atmospheric Samples

    PubMed Central

    Raina, Renata; Hall, Patricia

    2008-01-01

    A comparison of detection limits of gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) with gas chromatography-tandem mass spectrometry (GC-MS/MS) in selected reaction monitoring (SRM) mode with both electron ionization (EI) and negative-ion chemical ionization (NCI) are presented for over 50 pesticides ranging from organochlorines (OCs), organophosphorus pesticides (OPs) and pre-emergent herbicides used in the Canadian prairies (triallate, trifluralin, ethalfluralin). The developed GC-EI/SIM, GC-NCI/SIM, and GC-NCI/SRM are suitable for the determination of pesticides in air sample extracts at concentrations <100 pg μL−1 (<100 pg m−3 in air). No one method could be used to analyze the range of pre-emergent herbicides, OPs, and OCs investigated. In general GC-NCI/SIM provided the lowest method detection limits (MDLs commonly 2.5–10 pg μL−1) along with best confirmation (<25% RSD of ion ratio), while GC-NCI/SRM is recommended for use where added selectivity or confirmation is required (such as parathion-ethyl, tokuthion, carbofenothion). GC-EI/SRM at concentration <100 pg μL−1 was not suitable for most pesticides. GC-EI/SIM was more prone to interference issues than NCI methods, but gave good sensitivity (MDLs 1–10 pg μL−1) for pesticides with poor NCI response (OPs: sulfotep, phorate, aspon, ethion, and OCs: alachlor, aldrin, perthane, and DDE, DDD, DDT). PMID:19609395

  9. Effect of Electrospray Ionization Source Conditions on the Tautomer Distribution of Deprotonated p-Hydroxybenzoic Acid in the Gas Phase.

    PubMed

    Xia, Hanxue; Attygalle, Athula B

    2016-06-01

    The deprotonation site of p-hydroxybenzoic acid upon electrospray ionization has been a subject of fervent debate in several articles in the Journal of the American Chemical Society and elsewhere. General consensus is that electrospray ionization mass spectrometry (ESI-MS) experimental results reflect the situation in solution to a considerable extent. Our research, using ion-mobility mass spectrometry, challenges the notion that ESI-MS results directly reflect solution-phase structures and demonstrates that the relative populations of the thermodynamically less favored gaseous carboxylate tautomer or the thermodynamically more favored gaseous phenoxide tautomer, generated from the same aqueous solution of p-hydroxybenzoic acid by ESI, can be varied back and forth by changing the probe position, capillary voltage, desolvation-gas temperature, sample infusion flow rate, and cone voltage. In other words, solvent effects are not the primary criteria that determine the relative population distributions of tautomeric carboxylate (C(-)) and phenoxide (P(-)) ions (m/z 137) generated by electrospray ionization of p-hydroxybenzoic acid. In addition, we propose that the observed ratio of the P(-) and C(-) forms indirectly reflects the relative contribution of the charge-residue or ion-evaporation process that occurs during the electrospray ion generation process. PMID:27164186

  10. Wavelengths and lifetimes of transitions in highly-ionized krypton

    SciTech Connect

    Barry, H.G.; Dunford, R.W.; Gemmel, D.S.

    1995-08-01

    We began a program to test relativistic Hartree-Fock calculations in 3-, 4-, and 5- electron systems by making precision wavelength and lifetime measurements. This is an extension of previous work at ATLAS in which we obtained precision lifetime and wavelength measurements in one- and two-electron systems. We are starting by making accurate wavelength and lifetime measurements of the spectra of multielectron krypton in the far ultraviolet region, at wavelengths of 50 to 400 {Angstrom}. Although there was considerable theoretical progress in this area recently, little accurate data exists for ions above Z=18, except for the wavelengths of the lithium-like transitions. Our spectra are taken using a beam-foil chamber coupled to a 2.2-m McPherson grazing incidence monochromator. This system was upgraded recently to provide efficient light collection and to take advantage of the time structure of ATLAS. The exit slits of the monochromator were replaced by a position-sensitive channel plate with high spatial and time resolution. The channel plate is mounted on a movable chariot on the Rowland circle of the monochromator. The chariot can be translated along the circle, and it can be rotated about a tangent point of the circle. This latter movement allows us to optimize resolution and efficiency depending on the needs of the experiment. Backgrounds due to electrons, neutrons, gamma rays, and dark count from the detector are greatly reduced using a time window (1-2 ns) triggered from the ATLAS beam pulse structure (82 ns pulse separation).

  11. Gas phase studies on terpenes by ion mobility spectrometry using different atmospheric pressure chemical ionization techniques

    NASA Astrophysics Data System (ADS)

    Borsdorf, H.; Stone, J. A.; Eiceman, G. A.

    2005-11-01

    The ionization pathways and drift behavior were determined for sets of constitutional isomeric and stereoisomeric non-polar hydrocarbons (unsaturated monocyclic terpenes, unsaturated and saturated bicyclic terpenes) using ion mobility spectrometry (IMS) with different techniques of atmospheric pressure chemical ionization (APCI) to assess how structural and stereochemical differences influence ion formation. Depending on the structural features, different ions were observed for constitutional isomers using ion mobility spectrometry with photoionization (PI) and corona discharge (CD) ionization. Photoionization provides ion mobility spectra containing one major peak for saturated compounds while at two peaks were observed for unsaturated compounds, which can be assigned to product ions related to monomer and dimer ions. However, differences in relative abundance of product ions were found depending on the position of the double bond. Although IMS using corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra are complex and differ from those obtained using photoionization. Additional cluster ions and fragment ions were detected. Only small differences in ion mobility spectra were observed for the diastereomers while the enantiomers provide identical spectra. The structure of the product ions formed was checked by investigations using the coupling of ion mobility spectrometry with mass spectrometry (IMS-MS).

  12. Possible standoff detection of ionizing radiation using high-power THz electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Nusinovich, Gregory S.; Sprangle, Phillip; Romero-Talamas, Carlos A.; Rodgers, John; Pu, Ruifeng; Kashyn, Dmytro G.; Antonsen, Thomas M., Jr.; Granatstein, Victor L.

    2012-06-01

    Recently, a new method of remote detection of concealed radioactive materials was proposed. This method is based on focusing high-power short wavelength electromagnetic radiation in a small volume where the wave electric field exceeds the breakdown threshold. In the presence of free electrons caused by ionizing radiation, in this volume an avalanche discharge can then be initiated. When the wavelength is short enough, the probability of having even one free electron in this small volume in the absence of additional sources of ionization is low. Hence, a high breakdown rate will indicate that in the vicinity of this volume there are some materials causing ionization of air. To prove this concept a 0.67 THz gyrotron delivering 200-300 kW power in 10 microsecond pulses is under development. This method of standoff detection of concealed sources of ionizing radiation requires a wide range of studies, viz., evaluation of possible range, THz power and pulse duration, production of free electrons in air by gamma rays penetrating through container walls, statistical delay time in initiation of the breakdown in the case of low electron density, temporal evolution of plasma structure in the breakdown and scattering of THz radiation from small plasma objects. Most of these issues are discussed in the paper.

  13. Fuel cell with ionization membrane

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  14. Dissociative ionization at high laser intensities: importance of resonances and relaxation for fragmentation

    NASA Astrophysics Data System (ADS)

    Trushin, S. A.; Fuß, W.; Schmid, W. E.

    2004-10-01

    We investigated dissociative single and double ionization of the metal carbonyls Ni(CO)4, Fe(CO)5 and Cr(CO)6 in the gas phase by means of laser pulses of different durations (30-110 fs) and wavelengths (0.8 and 1.35 µm) at intensities of 2 × 1012-2 × 1014 W cm-2. The mass spectra show striking differences: for example, Fe(CO)5 strongly fragments at 0.8 µm but little at 1.35 µm, whereas for Ni(CO)4 fragmentation is higher at 1.35 µm than at 0.8 µm chromium carbonyl shows little fragmentation at both wavelengths. In other cases, fragmentation first decreases and then increases again with intensity. These and other phenomena, also published ones, can readily be understood from long-known principles, namely resonances in the parent ions, sometimes also in the neutral molecules, in particular if relaxations are also taken into account. We emphasize that fragmentation and ionization are two separate processes. We also point out that in the process of dissociative ionization in intense laser radiation, one should generally consider intermediate states, even if there is no one-photon resonance.

  15. First Spectroscopic Evidence for High Ionization State and Low Oxygen Abundance in Lyα Emitters

    NASA Astrophysics Data System (ADS)

    Nakajima, Kimihiko; Ouchi, Masami; Shimasaku, Kazuhiro; Hashimoto, Takuya; Ono, Yoshiaki; Lee, Janice C.

    2013-05-01

    We present results from Keck/NIRSPEC and Magellan/MMIRS follow-up spectroscopy of Lyα emitters (LAEs) at z = 2.2 identified in our Subaru narrowband survey. We successfully detect Hα emission from seven LAEs, and perform a detailed analysis of six LAEs free from active galactic nucleus activity, two out of which, CDFS-3865 and COSMOS-30679, have [O II] and [O III] line detections. They are the first [O II]-detected LAEs at high-z, and their [O III]/[O II] ratios and R23-indices provide the first simultaneous determinations of ionization parameter and oxygen abundance for LAEs. CDFS-3865 has a very high ionization parameter (q_{ion}=2.5^{+1.7}_{-0.8} \\times 10^8 cm s-1) and a low oxygen abundance (12+log (O/H)=7.84^{+0.24}_{-0.25}) in contrast with moderate values of other high-z galaxies such as Lyman break galaxies (LBGs). COSMOS-30679 also possesses a relatively high ionization parameter (q_{ion}=8^{+10}_{-4} \\times 10^7 cm s-1) and a low oxygen abundance (12+log (O/H)=8.18^{+0.28}_{-0.28}). Both LAEs appear to fall below the mass-metallicity relation of z ~ 2 LBGs. Similarly, a low metallicity of 12 + log (O/H) < 8.4 is independently indicated for typical LAEs from a composite spectrum and the [N II]/Hα index. Such high ionization parameters and low oxygen abundances can be found in local star-forming galaxies, but this extreme local population occupies only ~0.06% of the Sloan Digital Sky Survey spectroscopic galaxy sample with a number density ~100 times smaller than that of LAEs. With their high ionization parameters and low oxygen abundances, LAEs would represent an early stage of galaxy formation dominated by massive stars in compact star-forming regions. High-q ion galaxies like LAEs would produce ionizing photons efficiently with a high escape fraction achieved by density-bounded H II regions, which would significantly contribute to cosmic reionization at z > 6. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is

  16. FIRST SPECTROSCOPIC EVIDENCE FOR HIGH IONIZATION STATE AND LOW OXYGEN ABUNDANCE IN Ly{alpha} EMITTERS ,

    SciTech Connect

    Nakajima, Kimihiko; Shimasaku, Kazuhiro; Hashimoto, Takuya; Ono, Yoshiaki; Ouchi, Masami; Lee, Janice C.

    2013-05-20

    We present results from Keck/NIRSPEC and Magellan/MMIRS follow-up spectroscopy of Ly{alpha} emitters (LAEs) at z = 2.2 identified in our Subaru narrowband survey. We successfully detect H{alpha} emission from seven LAEs, and perform a detailed analysis of six LAEs free from active galactic nucleus activity, two out of which, CDFS-3865 and COSMOS-30679, have [O II] and [O III] line detections. They are the first [O II]-detected LAEs at high-z, and their [O III]/[O II] ratios and R23-indices provide the first simultaneous determinations of ionization parameter and oxygen abundance for LAEs. CDFS-3865 has a very high ionization parameter (q{sub ion}=2.5{sup +1.7}{sub -0.8} Multiplication-Sign 10{sup 8} cm s{sup -1}) and a low oxygen abundance (12+ log (O/H)=7.84{sup +0.24}{sub -0.25}) in contrast with moderate values of other high-z galaxies such as Lyman break galaxies (LBGs). COSMOS-30679 also possesses a relatively high ionization parameter (q{sub ion}=8{sup +10}{sub -4} Multiplication-Sign 10{sup 7} cm s{sup -1}) and a low oxygen abundance (12+ log (O/H)=8.18{sup +0.28}{sub -0.28}). Both LAEs appear to fall below the mass-metallicity relation of z {approx} 2 LBGs. Similarly, a low metallicity of 12 + log (O/H) < 8.4 is independently indicated for typical LAEs from a composite spectrum and the [N II]/H{alpha} index. Such high ionization parameters and low oxygen abundances can be found in local star-forming galaxies, but this extreme local population occupies only {approx}0.06% of the Sloan Digital Sky Survey spectroscopic galaxy sample with a number density {approx}100 times smaller than that of LAEs. With their high ionization parameters and low oxygen abundances, LAEs would represent an early stage of galaxy formation dominated by massive stars in compact star-forming regions. High-q{sub ion} galaxies like LAEs would produce ionizing photons efficiently with a high escape fraction achieved by density-bounded H II regions, which would significantly contribute to

  17. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry.

    PubMed

    Ellis, Wade C; Lewis, Charlotte R; Openshaw, Anna P; Farnsworth, Paul B

    2016-09-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration. Graphical Abstract ᅟ. PMID:27380389

  18. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ellis, Wade C.; Lewis, Charlotte R.; Openshaw, Anna P.; Farnsworth, Paul B.

    2016-09-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration.

  19. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ellis, Wade C.; Lewis, Charlotte R.; Openshaw, Anna P.; Farnsworth, Paul B.

    2016-07-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration.

  20. High gas pressure effects on yeast.

    PubMed

    Espinasse, V; Perrier-Cornet, J-M; Marecat, A; Gervais, P

    2008-11-01

    Dried microorganisms are particularly resistant to high hydrostatic pressure effects. However, exposure to high pressures of nitrogen proved to be effective in inactivating dried yeasts. In this study, we tried to elucidate this mechanism on Saccharomyces cerevisiae. High-pressure treatments were performed using different inert gases at 150 MPa and 25 degrees C with holding time values up to 12 months. The influence of cell hydration was also investigated. For fully hydrated cells, pressurized gases had little specific effect: cell inactivation was mainly due to compression effects. However, dried cells were sensitive to high pressure of gases. In this latter case, two inactivation kinetics were observed. For holding time up to 1 h, the inactivation rate increased to 4 log and was linked to a loss of membrane integrity and the presence of damage on the cell wall. In such case cell inactivation would be due to gas sorption and desorption phenomena which would rupture dried cells during a fast pressure release. Gas sorption would occur in cell lipid phases. For longer holding times, the inactivation rate increased more slightly due to compression effects and/or to a slower gas sorption. Water therefore played a key role in cell sensitivity to fast gas pressure release. Two hypotheses were proposed to explain this phenomenon: the rigidity of vitrified dried cells and the presence of glassy solid phases which would favor intracellular gas expansion. Our results showed that dried microorganisms can be ruptured and inactivated by a fast pressure release with gases. PMID:18814287

  1. Metal-ligand redox reactions in gas-phase quaternary peptide-metal complexes by electrospray ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Vaisar, T.; Gatlin, C. L.; Turecek, F.

    1997-03-01

    The dipeptides Phe-Leu, Leu-Phe, Leu-Ala, and Ala-Leu form quaternary complexes of the type [Cu(II)(peptide - 2H+M)bpy]+ in the gas phase when electrosprayed in the presence of Cu(II) salts, 2.2'-bipyridyl (bpy), and an alkali hydroxide (MOH). The gas-phase complexes decarboxylate on collisional activation at low ion kinetic energies. The resulting ions undergo unusual eliminations of neutral Na, K, and Rb, which depend on the peptide structure. The ionization energy of the decarboxylated Phe-Leu-Cu-bpy complex was bracketed at 4.2 eV. Other collision-induced dissociations also depend on the alkali metal ion and the peptide structure. Ab initio calculations on a model system are reported and used to discuss the electronic properties of the peptide complexes.

  2. Potential of gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry for screening and quantification of hexabromocyclododecane.

    PubMed

    Sales, Carlos; Portolés, Tania; Sancho, Juan Vicente; Abad, Esteban; Ábalos, Manuela; Sauló, Jordi; Fiedler, Heidelore; Gómara, Belén; Beltrán, Joaquim

    2016-01-01

    A fast method for the screening and quantification of hexabromocyclododecane (sum of all isomers) by gas chromatography using a triple quadrupole mass spectrometer with atmospheric pressure chemical ionization (GC-APCI-QqQ) is proposed. This novel procedure makes use of the soft atmospheric pressure chemical ionization source, which results in less fragmentation of the analyte than by conventional electron impact (EI) and chemical ionization (CI) sources, favoring the formation of the [M - Br](+) ion and, thus, enhancing sensitivity and selectivity. Detection was based on the consecutive loses of HBr from the [M - Br](+) ion to form the specific [M - H5Br6](+) and [M - H4Br5](+) ions, which were selected as quantitation (Q) and qualification (q) transitions, respectively. Parameters affecting ionization and MS/MS detection were studied. Method performance was also evaluated; calibration curves were found linear from 1 pg/μL to 100 pg/μL for the total HBCD concentration; instrumental detection limit was estimated to be 0.10 pg/μL; repeatability and reproducibility, expressed as relative standard deviation, were better than 7% in both cases. The application to different real samples [polyurethane foam disks (PUFs), food, and marine samples] pointed out a rapid way to identify and allow quantification of this compound together with a number of polybrominated diphenyl ethers (BDE congeners 28, 47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two other novel brominated flame retardants [i.e., decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE)] because of their presence in the same fraction when performing the usual sample treatment. PMID:26554601

  3. H II Region G46.5-0.2: The Interplay between Ionizing Radiation, Molecular Gas, and Star Formation

    NASA Astrophysics Data System (ADS)

    Paron, S.; Ortega, M. E.; Dubner, G.; Yuan, Jing-Hua; Petriella, A.; Giacani, E.; Li, Jin Zeng; Wu, Yuefang; Liu, Hongli; Huang, Ya Fang; Zhang, Si-Ju

    2015-06-01

    H ii regions are particularly interesting because they can generate dense layers of gas and dust, elongated columns or pillars of gas pointing toward the ionizing sources, and cometary globules of dense gas where triggered star formation can occur. Understanding the interplay between the ionizing radiation and the dense surrounding gas is very important to explain the origin of these peculiar structures, and hence to characterize triggered star formation. G46.5-0.2 (G46), a poorly studied galactic H ii region located at about 4 kpc, is an excellent target for performing this kind of study. Using public molecular data extracted from the Galactic Ring Survey (13CO J = 1-0) and from the James Clerk Maxwell Telescope data archive (12CO, 13CO, C18O J = 3-2, HCO+, and HCN J = 4-3), and infrared data from the GLIMPSE and MIPSGAL surveys, we perform a complete study of G46, its molecular environment, and the young stellar objects (YSOs) placed around it. We found that G46, probably excited by an O7V star, is located close to the edge of the GRSMC G046.34-00.21 molecular cloud. It presents a horse-shoe morphology opening in the direction of the cloud. We observed a filamentary structure in the molecular gas likely related to G46 and not considerable molecular emission toward its open border. We found that about 10‧ to the southwest of G46 there are some pillar-like features, shining at 8 μm and pointing toward the H ii region open border. We propose that the pillar-like features were carved and sculpted by the ionizing flux from G46. We found several YSOs likely embedded in the molecular cloud grouped in two main concentrations: one, closer to the G46 open border consisting of Class II type sources, and another mostly composed of Class I type YSOs located just ahead of the pillar-like features, strongly suggesting an age gradient in the YSO distribution.

  4. Gas chromatographic-mass spectrometric analysis of the tripeptide glutathione in the electron-capture negative-ion chemical ionization mode.

    PubMed

    Tsikas, Dimitrios; Hanff, Erik; Kayacelebi, Arslan Arinc; Böhmer, Anke

    2016-02-01

    The dicarboxylic tripeptide glutathione (GSH) is the most abundant intracellular thiol. GSH analysis by liquid chromatography is routine. Yet, GSH analysis by gas chromatography is challenged due to thermal instability and lacking volatility. We report a high-yield laboratory method for the preparation of (2)H-labeled GSH dimethyl ester ((d3Me)2-GSH) for use as internal standard (IS) which was characterized by LC-MS/MS. For GC-MS analysis, the dimethyl esters of GSH and the IS were derivatized with pentafluoropropionic (PFP) anhydride. Electron-capture negative-ion chemical ionization of the (Me)2-(PFP)3-GSH provided high sensitivity. We encourage increasing use of GC-MS in the analysis of amino acids as their Me-PFP derivatives in the ECNICI mode. PMID:26602568

  5. HST FOS spectroscopy of M87: Evidence for a disk of ionized gas around a massive black hole

    NASA Technical Reports Server (NTRS)

    Harms, Richard J.; Ford, Holland C.; Tsvetanov, Zlatan I.; Hartig, George F.; Dressel, Linda L.; Kriss, Gerard A.; Bohlin, Ralph; Davidsen, Arthur F.; Margon, Bruce; Kochhar, Ajay K.

    1994-01-01

    Using the Faint Object Spectrograph (FOS) on the Hubble Space Telescope (HST) to observe the central region of M87, we have obtained spectra covering approximately 4600-6800 A at a spectral dispersion approximately 4.4 A per resolution element through the .26 sec diameter entrance aperture. One spectrum was obtained centered on the nucleus of M87 and two centered 0.25 sec off the nucleus at position angles of 21 deg and 201 deg, thus sampling the anticipated major axis of the disklike structure (described in a companion Letter) expected to lie approximately perpendicular to the axis of the M87 jet. Pointing errors for these observations are estimated to be less than 0.02 sec. Radial velocities of the ionized gas in the two positions 0.25 sec on either side of the nucleus are measured to be approx. equals +/- 500 km/s relative to the M87 systemic velocity. These observations plus emission-line spectra obtained at two additional locations near the nucleus show the ionized gas to be in Keplerian rotation about a mass M = (2.4 +/- 0.7) x 10(exp 9) solar mass within the inner 0.25 sec of M87. Our results provide strong evidence for the presence of a supermassive nuclear black hole in M87.

  6. Narrowband HST images of M87: Evidence for a disk of ionized gas around a massive black hole

    NASA Technical Reports Server (NTRS)

    Ford, Holland C.; Harms, Richard J.; Tsvetanov, Zlatan I.; Hartig, George F.; Dressel, Linda L.; Kriss, Gerard A.; Bohlin, Ralph C.; Davidsen, Arthur F.; Margon, Bruce; Kochhar, Ajay K.

    1994-01-01

    We present Hubble Space Telescope Wide Field/Planetary Camera-2 (HST WFPC2) narrowband H-alpha + (N II) images of M87 which show a small disk of ionized gas with apparent spiral structure surrounding the nucleus of M87. The jet projects approximately 19.5 deg from the minor axis of the disk, which suggests that the jet is approximately normal to the disk. In a companion Letter, Harms et al. measure the radial velocities at r = +/- 0.25 sec along a line perpendicular to the jet, showing that one side of the disk is approaching at 500 +/- 50 km/s and the other side of the disk is receding at 500 +/- 50 km/s. Absorption associated with the disk and the sense of rotation imply that the apparent spiral arms trail the rotation. The observed radial velocites corrected for a 42 deg inclination of the disk imply rotation at +/- 750 km/s. Analysis of velocity measurements at four positions near the nucleus gives a total mass of approximately 2.4 +/- 0.7 x 10(exp 9) solar mass within 18 pc of the nucleus, and a mass-to-light ratio (M/L)(sub I) = 170. We conclude that there is a disk of ionized gas feeding a massive black hole in the center of M87.

  7. Gas Chromatography Coupled to Atmospheric Pressure Chemical Ionization FT-ICR Mass Spectrometry for Improvement of Data Reliability.

    PubMed

    Schwemer, Theo; Rüger, Christopher P; Sklorz, Martin; Zimmermann, Ralf

    2015-12-15

    Atmospheric pressure chemical ionization (APCI) offers the advantage of molecular ion information with low fragmentation. Hyphenating APCI to gas chromatography (GC) and ultrahigh resolution mass spectrometry (FT-ICR MS) enables an improved characterization of complex mixtures. Data amounts acquired by this system are very huge, and existing peak picking algorithms are usually extremely time-consuming, if both gas chromatographic and ultrahigh resolution mass spectrometric data are concerned. Therefore, automatic routines are developed that are capable of handling these data sets and further allow the identification and removal of known ionization artifacts (e.g., water- and oxygen-adducts, demethylation, dehydrogenation, and decarboxylation). Furthermore, the data quality is enhanced by the prediction of an estimated retention index, which is calculated simply from exact mass data combined with a double bond equivalent correction. This retention index is used to identify mismatched elemental compositions. The approach was successfully tested for analysis of semivolatile components in heavy fuel oil and diesel fuel as well as primary combustion particles emitted by a ship diesel research engine. As a result, 10-28% of the detected compounds, mainly low abundant species, classically assigned by using only the mass spectrometric information, were identified as not valid and removed. Although GC separation is limited by the slow acquisition rate of the FT-ICR MS (<1 Hz), a database driven retention time comparison, as commonly used for low resolution GC/MS, can be applied for revealing isomeric information. PMID:26560682

  8. The KMOS AGN Survey at High redshift (KASHz): the prevalence and drivers of ionized outflows in the host galaxies of X-ray AGN

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Stott, J. P.; Swinbank, A. M.; Arumugam, V.; Bauer, F. E.; Bower, R. G.; Bunker, A. J.; Sharples, R. M.

    2016-02-01

    We present the first results from the KMOS (K-band Multi-Object Spectrograph) AGN (active galactic nuclei) Survey at High redshift (KASHz), a VLT/KMOS integral-field spectroscopic (IFS) survey of z ≳ 0.6 AGN. We present galaxy-integrated spectra of 89 X-ray AGN (L2-10 keV = 1042-1045 erg s-1), for which we observed [O III] (z ≈ 1.1-1.7) or Hα emission (z ≈ 0.6-1.1). The targets have X-ray luminosities representative of the parent AGN population and we explore the emission-line luminosities as a function of X-ray luminosity. For the [O III] targets, ≈50 per cent have ionized gas velocities indicative of gas that is dominated by outflows and/or highly turbulent material (i.e. overall line widths ≳600 km s-1). The most luminous half (i.e. LX > 6 × 1043 erg s-1) have a ≳2 times higher incidence of such velocities. On the basis of our results, we find no evidence that X-ray obscured AGN are more likely to host extreme kinematics than unobscured AGN. Our KASHz sample has a distribution of gas velocities that is consistent with a luminosity-matched sample of z < 0.4 AGN. This implies little evolution in the prevalence of ionized outflows, for a fixed AGN luminosity, despite an order-of-magnitude decrease in average star formation rates over this redshift range. Furthermore, we compare our Hα targets to a redshift-matched sample of star-forming galaxies and despite a similar distribution of Hα luminosities and likely star formation rates, we find extreme ionized gas velocities are up to ≈10 times more prevalent in the AGN-host galaxies. Our results reveal a high prevalence of extreme ionized gas velocities in high-luminosity X-ray AGN and imply that the most powerful ionized outflows in high-redshift galaxies are driven by AGN activity.

  9. Measure Guideline. High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  10. Measure Guideline: High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  11. Electron Acceleration and Ionization Production in High-Power Heating Experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Mishin, E. V.; Pedersen, T.

    2012-12-01

    Recent ionospheric modification experiments with the 3.6 MW transmitter at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska led to discovery of artificial ionization descending from the nominal interaction altitude in the background F-region ionosphere by ~60-80 km. Artificial ionization production is indicated by significant 427.8 nm emissions from the 1st negative band of N2+ and the appearance of transmitter-induced bottomside traces in ionosonde data during the periods of most intense optical emissions. However, the exact mechanisms producing the artificial plasmas remain to be determined. Yet the only existing theoretical models explain the development of artificial plasma as an ionizing wavefront moving downward due to ionization by electrons accelerated by HF-excited strong Langmuir turbulence (SLT) generated near the plasma resonance, where the pump frequency matches the plasma frequency. However, the observations suggest also the significance of interactions with upper hybrid and electron Bernstein waves near multiples of the electron gyrofrequency. We describe recent observations and discuss suitable acceleration mechanisms.

  12. High Sensitivity Combined with Extended Structural Coverage of Labile Compounds via Nanoelectrospray Ionization at Subambient Pressures

    SciTech Connect

    Cox, Jonathan T.; Kronewitter, Scott R.; Shukla, Anil K.; Moore, Ronald J.; Smith, Richard D.; Tang, Keqi

    2014-10-07

    Subambient pressure ionization with nanoelectrospray (SPIN) has proven to be effective in producing ions with high efficiency and transmitting them to low pressures for high sensitivity mass spectrometry (MS) analysis. Here we present evidence that not only does the SPIN source improve MS sensitivity but also allows for gentler ionization conditions. The gentleness of a conventional heated capillary electrospray ionization (ESI) source and the SPIN source was compared by the liquid chromatography mass spectrometry (LC-MS) analysis of colominic acid. Colominic acid is a mixture of sialic acid polymers of different lengths containing labile glycosidic linkages between monomer units necessitating a gentle ion source. By coupling the SPIN source with high resolution mass spectrometry and using advanced data processing tools, we demonstrate much extended coverage of sialic acid polymer chains as compared to using the conventional ESI source. Additionally we show that SPIN-LC-MS is effective in elucidating polymer features with high efficiency and high sensitivity previously unattainable by the conventional ESI-LC-MS methods.

  13. RUNAWAY STARS AND THE ESCAPE OF IONIZING RADIATION FROM HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Conroy, Charlie; Kratter, Kaitlin M.

    2012-08-20

    Approximately 30% of all massive stars in the Galaxy are runaways with velocities exceeding 30 km s{sup -1}. Their high speeds allow them to travel {approx}0.1-1 kpc away from their birthplace before they explode at the end of their several Myr lifetimes. At high redshift, when galaxies were much smaller than in the local universe, runaways could venture far from the dense inner regions of their host galaxies. From these large radii, and therefore low column densities, much of their ionizing radiation is able to escape into the intergalactic medium. Runaways may therefore significantly enhance the overall escape fraction of ionizing radiation, f{sub esc}, from small galaxies at high redshift. We present simple models of the high-redshift runaway population and its impact on f{sub esc} as a function of halo mass, size, and redshift. We find that the inclusion of runaways enhances f{sub esc} by factors of Almost-Equal-To 1.1-8, depending on halo mass, galaxy geometry, and the mechanism of runaway production, implying that runaways may contribute 50%-90% of the total ionizing radiation escaping from high-redshift galaxies. Runaways may therefore play an important role in reionizing the universe.

  14. Application of pyrolysis-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry with electron-ionization or resonance-enhanced-multi-photon ionization for characterization of crude oils.

    PubMed

    Otto, Stefan; Streibel, Thorsten; Erdmann, Sabrina; Sklorz, Martin; Schulz-Bull, Detlef; Zimmermann, Ralf

    2015-01-15

    A novel analytical system for gas-chromatographic investigation of complex samples has been developed, that combines the advantages of several analytical principles to enhance the analytical information. Decomposition of high molecular weight structures is achieved by pyrolysis and a high separation capacity due to the chromatographic step provides both an universal as well as a selective and sensitive substance detection. The latter is achieved by simultaneously applying electron ionization quadrupole mass spectrometry (EI-QMS) for structural elucidation and [1+1]-resonance-enhanced-multi-photon ionization (REMPI) combined with time-of-flight mass spectrometry (ToFMS). The system has been evaluated and tested with polycyclic aromatic hydrocarbon (PAH) standards. It was applied to crude oil samples for the first time. In such highly complex samples several thousands of compounds are present and the identification especially of low concentrated chemical species such as PAH or their polycyclic aromatic sulfur containing heterocyclic (PASH) derivatives is often difficult. Detection of unalkylated and alkylated PAH together with PASH is considerably enhanced by REMPI-ToFMS, at times revealing aromatic structures which are not observable by EI-QMS due to their low abundance. On the other hand, the databased structure proposals of the EI-QMS analysis are needed to confirm structural information and isomers distinction. The technique allows a complex structure analysis as well as selective assessment of aromatic substances in one measurement. Information about the content of sulfur containing compounds plays a significant role for the increase of efficiency in the processing of petroleum. PMID:25542090

  15. Nature of the ionizing source of the nuclear gas in NGC 1052

    SciTech Connect

    Keel, W.C.; Miller, J.S.

    1983-03-15

    We examine the ionization and physical state of the emission-line region in the nucleus of elliptical galaxy NGC 1052. The (O III) lambda4363/lambda5007 ratio, frequently used as a diagnostic for ionization mechanisms, is very poorly determined because of difficulties in matching the underlying stellar continuum spectrum, which is unusual in having very strong lines for the galaxy luminosity. Within these limitations, we find the (O III) temperature to be only marginally compatible with shock models, and the overall emission spectrum to be better fitted by photoionization models with a very dilute flat-spectrum central source. In any event, the case for NGC 1052 as a shock-heated nucleus is not strong.

  16. Spatially resolved study of the physical properties of the ionized gas in NGC 595

    NASA Astrophysics Data System (ADS)

    Relaño, M.; Monreal-Ibero, A.; Vílchez, J. M.; Kennicutt, R. C.

    2010-03-01

    We present Integral Field Spectroscopy (IFS) of NGC 595, one of the most luminous HII regions in M33. This type of observations allows us to study the variation of the principal emission-line ratios across the surface of the nebula. At each position of the field of view, we fit the main emission-line features of the spectrum within the spectral range of 3650-6990Å and create maps of the principal emission-line ratios for the total surface of the region. The extinction map derived from the Balmer decrement and the absorbed Hα luminosity show good spatial correlation with the 24μm emission from Spitzer. We also show here the capability of the IFS to study the existence of Wolf-Rayet (WR) stars, identifying the previously catalogued WR stars and detecting a new candidate towards the north of the region. The ionization structure of the region nicely follows the Hα shell morphology and is clearly related to the location of the central ionizing stars. The electron density distribution does not show strong variations within the HII region nor any trend with the Hα emission distribution. We study the behaviour within the HII region of several classical emission-line ratios proposed as metallicity calibrators: while [NII]/Hα and [NII]/[OIII] show important variations, the R23 index is substantially constant across the surface of the nebula, despite the strong variation of the ionization parameter as a function of the radial distance from the ionizing stars. These results show the reliability in using the R23 index to characterize the metallicity of HII regions even when only a fraction of the total area is covered by the observations.

  17. Analysis of tert-butyldimethylsilyl derivatives in heavy gas oil from Brazilian naphthenic acids by gas chromatography coupled to mass spectrometry with electron impact ionization.

    PubMed

    Vaz de Campos, Maria Cecília; Oliveira, Eniz Conceição; Filho, Pedro José Sanches; Piatnicki, Clarisse Maria Sartori; Caramão, Elina Bastos

    2006-02-10

    Naphthenic acids, C(n)H(2n+Z)O(2), are a complex mixture of alkyl-substituted acyclic and cycle-aliphatic carboxylic acids. The content of naphthenic acids and their derivatives in crude oils is very small, which hinders their extraction from matrixes of wide and varied composition. In this work, liquid-liquid extraction, followed by solid phase extraction with an ion exchange resin (Amberlyst A-27) and ultrasound desorption were used to isolate the acid fraction from heavy gas oil of Marlim petroleum (Campos, Rio de Janeiro, Brazil). The analysis was accomplished through gas chromatography coupled to mass spectrometry with electron impact ionization, after derivatization with N-methyl-N-(tert-butyldimethylsilyl)trifluoracetamide (MTBDMSTFA). The results indicate the presence of carboxylic acids belonging to families of alicyclic and naphthenic compounds which contain up to four rings in the molecule. PMID:16439253

  18. Simultaneous analysis of ten phytohormones in Sargassum horneri by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry.

    PubMed

    Li, Yan; Zhou, Chengxu; Yan, Xiaojun; Zhang, Jinrong; Xu, Jilin

    2016-05-01

    Phytohormones have attracted wide attention due to their important biological functions. However, their detection is still a challenge because of their complex composition, low abundance and diverse sources. In this study, a novel method of high-performance liquid chromatography with electrospray ionization tandem mass spectrometry was developed and validated for the simultaneous determination of ten phytohormones including indole-3-acetic acid, isopentenyladenine, isopentenyl adenosine, trans-zeatin riboside, zeatin, strigolactones, abscisic acid, salicylic acid, gibberellin A3, and jasmonic acid in Sargassum horneri (S. horneri). The phytohormones were extracted from freeze-dried S. horneri with methanol/water/methanoic acid (15:4:1, v/v/v) analyzed on a Hypersil Gold C18 column and detected by electrospray ionization tandem triple quadrupole mass spectrometry in the multiple reaction monitoring mode. The experimental conditions for the extraction and analysis of phytohormones were optimized and validated in terms of reproducibility, linearity, sensitivity, recovery, accuracy, and stability. Distributions of the phytohormones in the stems, blades, and gas bladder of the S. horneri in drift, fixed, and semi-fixed growing states were investigated for the first time. The observed contents of the phytohormones in S. horneri range from not detected to 5066.67 ng/g (fresh weight). Most phytohormones are distributed mainly in the stems of S. horneri in drift and semi-fixed states. PMID:26990813

  19. EXTREMELY BROAD RADIO RECOMBINATION MASER LINES TOWARD THE HIGH-VELOCITY IONIZED JET IN CEPHEUS A HW2

    SciTech Connect

    Jimenez-Serra, I.; Patel, N.; Martin-Pintado, J.; Baez-Rubio, A.; Thum, C. E-mail: npatel@cfa.harvard.edu E-mail: baezra@cab.inta-csic.es

    2011-05-10

    We present the first detection of the H40{alpha}, H34{alpha}, and H31{alpha} radio recombination lines (RRLs) at millimeter wavelengths toward the high-velocity ionized jet in the Cepheus A HW2 star-forming region. From our single-dish and interferometric observations, we find that the measured RRLs show extremely broad asymmetric line profiles with zero-intensity line widths of {approx}1100 km s{sup -1}. From the line widths, we estimate a terminal velocity for the ionized gas in the jet of {>=}500 km s{sup -1}, consistent with that obtained from the proper motions of the HW2 radio jet. The total integrated line-to-continuum flux ratios of the H40{alpha}, H34{alpha}, and H31{alpha} lines are 43, 229, and 280 km s{sup -1}, clearly deviating from LTE predictions. These ratios are very similar to those observed for the RRL masers toward MWC349A, suggesting that the intensities of the RRLs toward HW2 are affected by maser emission. Our radiative transfer modeling of the RRLs shows that their asymmetric profiles could be explained by maser emission arising from a bi-conical radio jet with a semi-opening angle of 18 deg., electron density distribution varying as r {sup -2.11}, and turbulent and expanding wind velocities of 60 and 500 km s{sup -1}.

  20. High-resolution pulsed-field ionization photoelectron spectroscopy using multi-bunch synchrotron radiation

    SciTech Connect

    Hsu, C.W.; Evans, M.; Ng, C.Y.; Heimann, P.

    1997-04-01

    BL9.0.2.2 is the newly constructed experimental End Station 2 at the Chemical Dynamics Beamline 9.0.2 of the Advanced Light Source (ALS). It is dedicated to the high resolution photoionization study of molecules of interest to atmospheric and combustion chemistry. This End Station is equipped with a high resolution scanning monochromator, which has been demonstrated to have a world record resolution of E/{delta}E=70,000. Taking the advantage of the high resolution ALS light, the authors have improved the energy resolution in threshold photoelectron spectroscopy (TPES) to 0.8 meV. The TPES is a popular technique for photoionization experiments at all synchrotron radiation facilities due to its high energy resolution as compared to that of traditional photoelectron spectroscopy (PES). TPES achieves higher energy resolution by preferentially detecting near zero kinetic energy photoelectrons resulting from threshold photoionization. However, the spectra obtained from the TPES technique generally are complicated by the simultaneous detection of electrons with nonzero kinetic energy, which are not fully discriminated against. On the other hand, the spectra obtained from pulsed field ionization photoelectron spectroscopy (PFI-PES) are completely free of the contamination from kinetic electrons. The PFI-PE technique basically involves the detection of the photoelectrons from field ionization of the very high-n Rydberg states, a few cm{sup {minus}1} below the ionization energy (IE), by applying a delayed pulsed electric field. Within a delay of a few microseconds, all the prompt electrons formed from direct ionization will escape from the photoionization region and will not be collected. The authors have recently overcome problems with energy resolution of an electron time-of-flight technique, and incorporated the PFI-PE technique with multi-bunch VUV synchrotron radiation.

  1. Improved sensitivity by use of gas chromatography-positive chemical ionization triple quadrupole mass spectrometry for the analysis of drug related substances.

    PubMed

    Van Gansbeke, Wim; Polet, Michael; Hooghe, Fiona; Devos, Christophe; Van Eenoo, Peter

    2015-09-15

    In 2013, the World Anti-Doping Agency (WADA) drastically lowered the minimum required performance levels (MRPLs) of most doping substances, demanding a substantial increase in sensitivity of the existing methods. For a number of compounds, conventional electron impact ionization gas chromatography tandem mass spectrometry (GC-EI-MS/MS) is often no longer sufficient to reach these MRPLs and new strategies are required. In this study, the capabilities of positive ion chemical ionization (PICI) GC-MS/MS are investigated for a wide range of drug related compounds of various classes by injection of silylated reference standards. Ammonia as PICI reagent gas had superior characteristics for GC-MS/MS purposes than methane. Compared to GC-EI-MS/MS, PICI (with ammonia as reagent gas) provided more selective ion transitions and consequently, increased sensitivity by an average factor of 50. The maximum increase (by factor of 500-1000) was observed in the analysis of stimulants, namely chlorprenaline, furfenorex and phentermine. In total, improved sensitivity was obtained for 113 out of 120 compounds. A new GC-PICI-MS/MS method has been developed and evaluated for the detection of a wide variety of exogenous doping substances and the quantification of endogenous steroids in urine in compliance with the required MRPLs established by WADA in 2013. The method consists of a hydrolysis and extraction step, followed by derivatization and subsequent 1μL pulsed splitless injection on GC-PICI-MS/MS (16min run). The increased sensitivity allows the set up of a balanced screening method that meets the requirements for both quantitative and qualitative compounds: sufficient capacity and resolution in combination with high sensitivity and short analysis time. This resulted in calibration curves with a wide linear range (e.g., 48-9600ng/mL for androsterone and etiochanolone; all r(2)>0.99) without compromising the requirements for the qualitative compounds. PMID:26296082

  2. Ultraviolet and optical spectra of high-ionization Seyfert galaxies with narrow lines

    NASA Technical Reports Server (NTRS)

    Crenshaw, D. Michael; Peterson, Bradley M.; Korista, Kirk T.; Wagner, R. Mark; Aufdenberg, Jason P.

    1991-01-01

    Ultraviolet and optical spectra are presented for three unusual Seyfert galaxies (Mrk 1239, Mrk 42, and Mrk 493) that resemble Seyfert 1 galaxies in that they have strong high-ionization lines and strong nonstellar continua, but resemble Seyfert 2 galaxies in that the widths of their permitted lines are as narrow as the widths of their forbidden lines. The He II lambda 1640 and He II lambda 4686 lines are used to determine an upper limit to the reddening experienced by the emission lines. Published optical data show that these particular high-ionization narrow-line (HINL) Seyferts have low lambda 5007 H beta ratios and strong Fe II emission, which suggest the presence of high-density regions. The low Lalpha/H-beta ratios in these objects indicate that high-density clouds are indeed present, and, like the broad-line region clouds in Seyfert 1 galaxies, these clouds have large optical depths with partially ionized zones. Overall, the line ratios and continuum fluxes of these particular HINL Seyferts are indistinguishable from those of broad-lined Seyfert 1 galaxies.

  3. Native electrospray ionization and electron-capture dissociation for comparison of protein structure in solution and the gas phase

    PubMed Central

    Zhang, Hao; Cui, Weidong

    2013-01-01

    The importance of protein and protein-complex structure motivates improvements in speed and sensitivity of structure determination in the gas phase and comparison with that in solution or solid state. An opportunity for the gas phase measurement is mass spectrometry (MS) combined with native electrospray ionization (ESI), which delivers large proteins and protein complexes in their near-native states to the gas phase. In this communication, we describe the combination of native ESI, electron-capture dissociation (ECD), and top-down MS for exploring the structures of ubiquitin and cytochrome c in the gas phase and their relation to those in the solid-state and solution. We probe structure by comparing the protein's flexible regions, as predicted by the B-factor in X-ray crystallography, with the ECD fragments. The underlying hypothesis is that maintenance of structure gives fragments that can be predicted from B-factors. This strategy may be applicable in general when X-ray structures are available and extendable to the study of intrinsically disordered proteins. PMID:24363606

  4. High temperature gas-cooled reactor: gas turbine application study

    SciTech Connect

    Not Available

    1980-12-01

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project.

  5. Photon-electron-ion momentum transfer in high intensityIR laser pulse ionization

    NASA Astrophysics Data System (ADS)

    Bandrauk, Andre D.; Chelkowski, Szczefan; Corkum, Paul

    2016-05-01

    Photon momentum sharing between electrons and parent ions in high intensityIR multiphoton ionization requires going beyond the traditional perturbative dipole approximation. Using numerical solutions of the 2-D TDSE(Time dependent Schroedinger equation) for one electron atom models, we show that the radiation pressure on photoelectrons is sensitive to the ionization mechanism, either direct or by recollision. A complex electron-ion response is obtained due to the interplay between the Lorentz force and Coulomb attraction of the ion.The influence of the photon momentum sharing is shown to be discernible in IR high intensity atomic and/or molecular holographic patterns thus suggesting a new research subject in IR strong field physics.

  6. High-frequency electromagnetic surface waves in a semi-bounded weakly ionized plasma

    SciTech Connect

    Moaied, M.; Tyshetskiy, Yu.; Vladimirov, S. V.

    2013-02-15

    High-frequency electromagnetic surface waves (SWs) in a weakly ionized plasma half-space with Maxwellian electrons are studied taking into account elastic electron-neutral collisions. The SWs spectrum and damping rate are obtained numerically for a wide range of wavelengths, and the asymptotes of damping rate are analytically calculated in some limits. It is shown that the high-frequency SWs become strongly damped at wavelengths {lambda}<{lambda}{sub Min}, where {lambda}{sub Min} significantly depends on plasma parameters (e.g., electron temperature and electron and neutral atom density). The relative importance of collisional and Cherenkov (collisionless) damping of SWs is investigated and is graphically shown for a range of plasma parameters and SW wavelengths. The behavior of weakly ionized plasma with respect to the SW propagation has been recovered for the collisional parameter {eta}.

  7. Radiation sterilization of medical devices. Effects of ionizing radiation on ultra-high molecular-weight polyethylene

    NASA Astrophysics Data System (ADS)

    Buchalla, R.; Schüttler, C.; Bögl, K. W.

    1995-02-01

    Sterilization by ionizing radiation has become, next to ethylene oxide treament, the most important "cold" sterilization process for medical devices made from plastics. The effects of ionizing radiation on the most important polymer for medical devices, ultra-high molecular-weight polyethylene, are briefly described in this review.

  8. Permeability enhancement using high energy gas fracturing

    SciTech Connect

    Chu, T.Y.; Cuderman, J.F.; Jung, J.; Jacobson, R.D.

    1986-01-01

    This paper reports the results of a preliminary study of using High Energy Gas Fracturing (HEGF) techniques for geothermal well stimulation. Experiments conducted in the G-tunnel complex at the Nevada Test Site (NTS) showed that multiple fractures could be created in water-filled boreholes using HEGF. Therefore, the method is potentially useful for geothermal well stimulation. 4 refs., 11 figs.

  9. Warp of the ionized gas layer in the outer Galaxy, traced by Recombination Line Observations in both the First and Fourth Quadrants

    NASA Astrophysics Data System (ADS)

    Azcarate, I. N.; Cersosimo, J. C.

    2000-05-01

    Results of H166α recombination line observations from the Outer Galaxy in both the Northern and Southern Galactic Plane, are reported. The Southern observations were made with the 30m antenna of the Instituto Argentino de Radioastronomia in Villa Elisa, Buenos Aires, Argentina and the Northern ones ( more sensitive, high quality observations, performed with an "state of the art" receiver) with the 43m antenna of the National Radio Astronomy Observatory, in Green Bank, West Virginia, USA. From the two sets of observations, we obtain evidence of the warp of the low density ionized gas layer, traced by the H166α emission in the outer MIlky Way, towards positive galactic latitudes in the Northern and towards negative latitudes in the Southern Galaxy. The warp of this tracer qualitatively agrees with that of the HI.

  10. Rapid analysis of ethanol and water in commercial products using ionic liquid capillary gas chromatography with thermal conductivity detection and/or barrier discharge ionization detection.

    PubMed

    Weatherly, Choyce A; Woods, Ross M; Armstrong, Daniel W

    2014-02-26

    Analysis of ethanol and water in consumer products is important in a variety of processes and often is mandated by regulating agencies. A method for the simultaneous quantitation of ethanol and water that is simple, accurate, precise, rapid, and cost-effective is demonstrated. This approach requires no internal standard for the quantitation of both ethanol and water at any/all levels in commercial products. Ionic liquid based gas chromatography (GC) capillary columns are used to obtain a fast analysis with high selectivity and resolution of water and ethanol. Typical run times are just over 3 min. Examination of the response range of water and ethanol with GC, thermal conductivity detection (TCD), and barrier ionization detection (BID) is performed. Quantitation of both ethanol and water in consumer products is accomplished with both TCD and BID GC detectors using a nonlinear calibration. Validation of method accuracy is accomplished by using standard reference materials. PMID:24527961

  11. SEARCH FOR IONIZED JETS TOWARD HIGH-MASS YOUNG STELLAR OBJECTS

    SciTech Connect

    Guzman, Andres E.; Garay, Guido; Brooks, Kate J.; Voronkov, Maxim A.

    2012-07-01

    We are carrying out multi-frequency radio continuum observations, using the Australia Telescope Compact Array, to systematically search for collimated ionized jets toward high-mass young stellar objects (HMYSOs). Here we report observations at 1.4, 2.4, 4.8, and 8.6 GHz, made with angular resolutions of about 7'', 4'', 2'', and 1'', respectively, toward six objects of a sample of 33 southern HMYSOs thought to be in very early stages of evolution. The objects in the sample were selected from radio and infrared catalogs by having positive radio spectral indices and being luminous (L{sub bol} > 2 Multiplication-Sign 10{sup 4} L{sub Sun }), but underluminous in radio emission compared with that expected from its bolometric luminosity. This criterion makes the radio sources good candidates for being ionized jets. As part of this systematic search, two ionized jets have been discovered: one previously published and the other reported here. The rest of the observed candidates correspond to three hypercompact H II regions and two ultracompact H II regions. The two jets discovered are associated with two of the most luminous (7 Multiplication-Sign 10{sup 4} and 1.0 Multiplication-Sign 10{sup 5} L{sub Sun }) HMYSOs known to harbor this type of object, showing that the phenomena of collimated ionized winds appear in the formation process of stars at least up to masses of {approx}20 M{sub Sun} and provide strong evidence for a disk-mediated accretion scenario for the formation of high-mass stars. From the incidence of jets in our sample, we estimate that the jet phase in high-mass protostars lasts for {approx}4 Multiplication-Sign 10{sup 4} yr.

  12. Ionization energy shift of characteristic K x-ray lines from high-Z materials for plasma diagnostics

    SciTech Connect

    Słabkowska, K.; Szymańska, E.; Polasik, M.; Pereira, N. R.; Rzadkiewicz, J.; Seely, J. F.; Weber, B. V.; Schumer, J. W.

    2014-03-15

    The energy of the characteristic x-rays emitted by high atomic number atoms in a plasma that contains energetic electrons depends on the atom's ionization. For tungsten, the ionization energy shift of the L-lines has recently been used to diagnose the plasma's ionization; the change in energy of a K-line has been measured for iridium and observed for ytterbium. Here, we present detailed computations of the ionization energy shift to K-lines of these and an additional element, dysprosium; for these atoms, some K-lines nearly coincide in energy with K-edges of slightly lower Z atoms so that a change in transmission behind a K-edge filter betrays a change in energy. The ionization energy shift of such high-energy K-lines may enable a unique diagnostic when the plasma is inside an otherwise opaque enclosure such as hohlraums used on the National Ignition Facility.

  13. Acceleration of electrons generated during ionization of a gas by a nearly flat profile laser pulse

    SciTech Connect

    Singh, Kunwar Pal

    2009-09-15

    A scheme of acceleration of electrons generated during ionization of krypton by nearly flat radial and nearly flat temporal laser pulse profiles has been suggested. The energy spectrum of the electrons suggests that energy of the electrons is higher for a nearly flat temporal profile than that for a nearly flat radial profile. The suppression of scattering of the electrons is better for a nearly flat radial profile than that for a nearly flat temporal profile. The energy of the electrons increases, scattering decreases, and beam quality improves with an increase in flatness of radial and temporal profiles.

  14. Broad spectrum drug screening using electron-ionization gas chromatography-mass spectrometry (EI-GCMS).

    PubMed

    Stone, Judy

    2010-01-01

    A liquid-liquid extraction (LLE) of drugs and internal standard (promazine) is performed by mixing urine at basic pH with 1-chlorobutane. There are no hydrolysis or derivatization steps. After centrifugation the organic (upper) layer is transferred to another tube and evaporated. The dried extract is reconstituted with ethyl acetate and 1 microL is injected onto the GCMS. Drugs are volatilized in the GC inlet and separated on a capillary column. In the EI source drugs become positively charged and fragment. Mass analysis of ionized fragments occurs with a single quadrupole. The resulting full scan mass spectra are automatically searched against three libraries. PMID:20077071

  15. Dependence of the High Latitude Middle Atmosphere Ionization on Structures in Interplanetary Space

    NASA Technical Reports Server (NTRS)

    Bremer, J.; Lauter, E. A.

    1984-01-01

    The precipitation of high energetic electrons during and after strong geomagnetic storms into heights below 100 km in middle and subauroral latitudes is markedly modulated by the structure of the interplanetary magnetic field (IMF). Under relative quiet conditions the D-region ionization caused by high energetic particle precipitation (energies greater than 20 to 50 keV) depends on changes of the interplanetary magnetic field and also on the velocity of the solar wind. To test this assumption, the influence of the IMF-sector boundary crossings on ionospheric absorption data of high and middle latitudes by the superposed-epoch method was investigated.

  16. Observation of increased space-charge limited thermionic electron emission current by neutral gas ionization in a weakly-ionized deuterium plasma

    SciTech Connect

    Hollmann, E. M.; Yu, J. H.; Doerner, R. P.; Nishijima, D.; Seraydarian, R. P.

    2015-09-14

    The thermionic electron emission current emitted from a laser-produced hot spot on a tungsten target in weakly-ionized deuterium plasma is measured. It is found to be one to two orders of magnitude larger than expected for bipolar space charge limited thermionic emission current assuming an unperturbed background plasma. This difference is attributed to the plasma being modified by ionization of background neutrals by the emitted electrons. This result indicates that the allowable level of emitted thermionic electron current can be significantly enhanced in weakly-ionized plasmas due to the presence of large neutral densities.

  17. High-resolution ion pulse ionization chamber with air filling for the 222Rn decays detection

    NASA Astrophysics Data System (ADS)

    Gavrilyuk, Yu. M.; Gangapshev, A. M.; Gezhaev, A. M.; Etezov, R. A.; Kazalov, V. V.; Kuzminov, V. V.; Panasenko, S. I.; Ratkevich, S. S.; Tekueva, D. A.; Yakimenko, S. P.

    2015-11-01

    The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. The chamber is intended to register α-particles from the 222Rn and its daughter's decays in the filled air sample. The detector is less sensitive to electromagnetic pick-ups and mechanical noises. The digital pulse processing method is proposed to improve the energy resolution of the ion pulse ionization chamber. An energy resolution of 1.6% has been achieved for the 5.49 MeV α-line. The dependence of the energy resolution on high voltage and working media pressure has been investigated and the results are presented.

  18. Charge-distribution effect of imaging molecular structure by high-order above-threshold ionization

    SciTech Connect

    Wang Bingbing; Fu Panming; Guo Yingchun; Zhang Bin; Zhao Zengxiu; Yan Zongchao

    2010-10-15

    Using a triatomic molecular model, we show that the interference pattern in the high-order above-threshold ionization (HATI) spectrum depends dramatically on the charge distribution of the molecular ion. Therefore the charge distribution can be considered a crucial factor for imaging a molecular geometric structure. Based on this study, a general destructive interference formula for each above-threshold ionization channel is obtained for a polyatomic molecule concerning the positions and charge values of each nuclei. Comparisons are made for the HATI spectra of CO{sub 2}, O{sub 2}, NO{sub 2}, and N{sub 2}. These results may shed light on imaging complex molecular structure by the HATI spectrum.

  19. Detection of a second high-velocity component in the highly ionized wind from PG 1211+143

    NASA Astrophysics Data System (ADS)

    Pounds, Ken; Lobban, Andrew; Reeves, James; Vaughan, Simon

    2016-04-01

    An extended XMM-Newton observation of the luminous narrow line Seyfert galaxy PG1211+143 in 2014 has revealed a more complex highly ionized, high-velocity outflow. The detection of previously unresolved spectral structure in Fe K absorption finds a second outflow velocity component of the highly ionized wind, with an outflow velocity of v ˜ 0.066 ± 0.003c, in addition to a still higher velocity outflow of v ˜ 0.129 ± 0.002c consistent with that first seen in 2001. We note that chaotic accretion, consisting of many prograde and retrograde events, offers an intriguing explanation of the dual velocity wind. In that context the persisting outflow velocities could relate to physically distinct orientations of the inner accretion flow, with prograde accretion yielding a higher launch velocity than retrograde accretion in a ratio close to that observed.

  20. A VUV photoionization measurement and ab-initio calculation of the ionization energy of gas phase SiO2

    SciTech Connect

    Kostko, Oleg; Ahmed, Musahid; Metz, Ricardo B.

    2008-12-05

    In this work we report on the detection and vacuum-ultraviolet (VUV) photoionization of gas phase SiO2 generated in situ via laser ablation of silicon in a CO2 molecular beam. The resulting species are investigated by single photon ionization with tunable VUV synchrotron radiation and mass analyzed using reflectron mass spectrometry. Photoionization efficiency (PIE) curves are recorded for SiO and SiO2 and ionization energy estimates are revealed from such measurements. A state-to-state ionizationenergy of 12.60 (+-0.05) eV is recorded by fitting two prominent peaks in the PIE curve for the following process: 1SUM O-Si-O --> 2PRODg [O-Si-O]+. Electronic structure calculations aid in the interpretation of the photoionization process and allow for identification of the symmetric stretch of 2PRODg [O-Si-O]+ which is observed in the PIE spectrum to be 0.11 eV (890 cm-1) above the ground state of the cation and agrees with the 892 cm-1 symmetric stretch frequency calculated at the CCSD(T)/aug-cc-pVTZ level.