Science.gov

Sample records for highly potent anti-inflammatory

  1. HU-444, a Novel, Potent Anti-Inflammatory, Nonpsychotropic Cannabinoid.

    PubMed

    Haj, Christeene G; Sumariwalla, Percy F; Hanuš, Lumír; Kogan, Natalya M; Yektin, Zhana; Mechoulam, Raphael; Feldmann, Mark; Gallily, Ruth

    2015-10-01

    Cannabidiol (CBD) is a component of cannabis, which does not cause the typical marijuana-type effects, but has a high potential for use in several therapeutic areas. In contrast to Δ(9)-tetrahydrocannabinol (Δ(9)-THC), it binds very weakly to the CB1 and CB2 cannabinoid receptors. It has potent activity in both in vitro and in vivo anti-inflammatory assays. Thus, it lowers the formation of tumor necrosis factor (TNF)-α, a proinflammatory cytokine, and was found to be an oral antiarthritic therapeutic in murine collagen-induced arthritis in vivo. However, in acidic media, it can cyclize to the psychoactive Δ(9)-THC. We report the synthesis of a novel CBD derivative, HU-444, which cannot be converted by acid cyclization into a Δ(9)-THC-like compound. In vitro HU-444 had anti-inflammatory activity (decrease of reactive oxygen intermediates and inhibition of TNF-α production by macrophages); in vivo it led to suppression of production of TNF-α and amelioration of liver damage as well as lowering of mouse collagen-induced arthritis. HU-444 did not cause Δ(9)-THC-like effects in mice. We believe that HU-444 represents a potential novel drug for rheumatoid arthritis and other inflammatory diseases. PMID:26272937

  2. Tricyclic Compounds Containing Non-enolizable Cyano Enones. A Novel Class of Highly Potent Anti-inflammatory and Cytoprotective Agents=

    PubMed Central

    Honda, Tadashi; Yoshizawa, Hidenori; Sundararajan, Chitra; David, Emilie; Lajoie, Marc J.; Favaloro, Frank G.; Janosik, Tomasz; Su, Xiaobo; Honda, Yukiko; Roebuck, Bill D.; Gribble, Gordon W.

    2011-01-01

    Forty-four novel tricycles containing non-enolizable cyano enones (TCEs) were designed and synthesized on the basis of a semisynthetic pentacyclic triterpenoid, bardoxolone methyl, which is currently being developed in Phase II clinical trials for the treatment of severe chronic kidney disease in diabetic patients. Most of the TCEs having two different kinds of non-enolizable cyano enones in rings A and C are highly potent suppressors of induction of inducible nitric oxide synthase stimulated with interferon-γ, and highly potent inducers of the cytoprotective enzymes heme oxygenase-1 and NAD(P)H:quinone oxidoreductase-1. Among these compounds, (±)-(4bS,8aR,10aS)-10a-ethynyl-4b,8,8-trimethyl-3,7-dioxo-3,4b,7,8,8a,9,10,10a-octahydrophenanthrene-2,6-dicarbonitrile ((±)-31) is the most potent in these bioassays in our pool of drug candidates including semisynthetic triterpenoids and synthetic tricycles. These facts strongly suggest that an essential factor for potency is not a triterpenoid skeleton, but the cyano enone functionality. Notably, TCE 31 reduces hepatic tumorigenesis induced with aflatoxin in rats. Further preclinical studies and detailed mechanism studies on 31 are in progress. PMID:21361338

  3. Nanoliposomal Nitroglycerin Exerts Potent Anti-Inflammatory Effects

    PubMed Central

    Ardekani, Soroush; Scott, Harry A.; Gupta, Sharad; Eum, Shane; Yang, Xiao; Brunelle, Alexander R.; Wilson, Sean M.; Mohideen, Umar; Ghosh, Kaustabh

    2015-01-01

    Nitroglycerin (NTG) markedly enhances nitric oxide (NO) bioavailability. However, its ability to mimic the anti-inflammatory properties of NO remains unknown. Here, we examined whether NTG can suppress endothelial cell (EC) activation during inflammation and developed NTG nanoformulation to simultaneously amplify its anti-inflammatory effects and ameliorate adverse effects associated with high-dose NTG administration. Our findings reveal that NTG significantly inhibits human U937 cell adhesion to NO-deficient human microvascular ECs in vitro through an increase in endothelial NO and decrease in endothelial ICAM-1 clustering, as determined by NO analyzer, microfluorimetry, and immunofluorescence staining. Nanoliposomal NTG (NTG-NL) was formulated by encapsulating NTG within unilamellar lipid vesicles (DPhPC, POPC, Cholesterol, DHPE-Texas Red at molar ratio of 6:2:2:0.2) that were ~155 nm in diameter and readily uptaken by ECs, as determined by dynamic light scattering and quantitative fluorescence microscopy, respectively. More importantly, NTG-NL produced a 70-fold increase in NTG therapeutic efficacy when compared with free NTG while preventing excessive mitochondrial superoxide production associated with high NTG doses. Thus, these findings, which are the first to reveal the superior therapeutic effects of an NTG nanoformulation, provide the rationale for their detailed investigation for potentially superior vascular normalization therapies. PMID:26584637

  4. Nanoliposomal Nitroglycerin Exerts Potent Anti-Inflammatory Effects

    NASA Astrophysics Data System (ADS)

    Ardekani, Soroush; Scott, Harry A.; Gupta, Sharad; Eum, Shane; Yang, Xiao; Brunelle, Alexander R.; Wilson, Sean M.; Mohideen, Umar; Ghosh, Kaustabh

    2015-11-01

    Nitroglycerin (NTG) markedly enhances nitric oxide (NO) bioavailability. However, its ability to mimic the anti-inflammatory properties of NO remains unknown. Here, we examined whether NTG can suppress endothelial cell (EC) activation during inflammation and developed NTG nanoformulation to simultaneously amplify its anti-inflammatory effects and ameliorate adverse effects associated with high-dose NTG administration. Our findings reveal that NTG significantly inhibits human U937 cell adhesion to NO-deficient human microvascular ECs in vitro through an increase in endothelial NO and decrease in endothelial ICAM-1 clustering, as determined by NO analyzer, microfluorimetry, and immunofluorescence staining. Nanoliposomal NTG (NTG-NL) was formulated by encapsulating NTG within unilamellar lipid vesicles (DPhPC, POPC, Cholesterol, DHPE-Texas Red at molar ratio of 6:2:2:0.2) that were ~155 nm in diameter and readily uptaken by ECs, as determined by dynamic light scattering and quantitative fluorescence microscopy, respectively. More importantly, NTG-NL produced a 70-fold increase in NTG therapeutic efficacy when compared with free NTG while preventing excessive mitochondrial superoxide production associated with high NTG doses. Thus, these findings, which are the first to reveal the superior therapeutic effects of an NTG nanoformulation, provide the rationale for their detailed investigation for potentially superior vascular normalization therapies.

  5. Esters of some non-steroidal anti-inflammatory drugs with cinnamyl alcohol are potent lipoxygenase inhibitors with enhanced anti-inflammatory activity.

    PubMed

    Theodosis-Nobelos, Panagiotis; Kourti, Malamati; Tziona, Paraskevi; Kourounakis, Panos N; Rekka, Eleni A

    2015-11-15

    Novel esters of non steroidal anti-inflammatory drugs, α-lipoic acid and indol-3-acetic acid with cinnamyl alcohol were synthesised by a straightforward method and at high yields (60-98%). They reduced acute inflammation more than the parent acids and are potent inhibitors of soybean lipoxygenase. Selected structures decreased plasma lipidemic indices in Triton-induced hyperlipidemia to rats. Therefore, the synthesised compounds may add to the current knowledge about agents acting against various inflammatory disorders. PMID:26494261

  6. 6-Hydroxyflavone and Derivatives Exhibit Potent Anti-Inflammatory Activity among Mono-, Di- and Polyhydroxylated Flavones in Kidney Mesangial Cells

    PubMed Central

    Sidhu, Preetpal Singh; Desai, Umesh R.; Zhou, Qibing

    2015-01-01

    Inflammatory responses by kidney mesangial cells play a critical role in the glomerulonephritis. The anti-inflammatory potential of nineteen mono-, di- and polyhydroxylated flavones including fisetin, quercetin, morin, tricetin, gossypetin, apigenin and myricetin were investigated on rat mesangial cells with lipopolysaccharide (LPS) as the inflammatory stimuli. 6-Hydroxyflavone and 4′,6-dihydroxyflavone exhibited high activity with IC50 in the range of 2.0 μM, a much better inhibition potential in comparison to the well-studied polyhydroxylated flavones. Interestingly, the anti-inflammatory activity was not due to direct quenching of NO radicals. Investigation on derivatives with methylation, acetylation or sulfation of 6-hydroxyl group revealed that 6-methoxyflavone was the most potent with an IC50 of 192 nM. Mechanistic study indicated that the anti-inflammatory activity of 6-methoxyflavone arose via the inhibition of LPS-induced downstream inducible NO synthase in mesangial cells. The identification of 6-hydroxyflavone and 6-methoxyflavone with potent anti-inflammatory activity in kidney mesangial cells provides a new flavone scaffold and direction to develop naturally derived products for potential nephritis prevention and treatment. PMID:25790236

  7. The potent anti-inflammatory agent escin does not increase corticosterone secretion and immune cell apoptosis in mice.

    PubMed

    Zhang, Leiming; Wang, Hongsheng; Fan, Huaying; Wang, Tian; Jiang, Na; Yu, Pengfei; Fu, Fenghua

    2011-09-01

    Escin exerts potent glucocorticoid-like anti-inflammatory effects. The aim of this study was to investigate whether the anti-inflammatory effect of escin is through the up-regulation of glucocorticoids and if escin induces pathological changes in immune organs. Mice were administrated with escin intravenously for 7 days before observing the relevant parameters. The results showed that escin exhibits a potent anti-inflammatory effect, but does not increase corticosterone secretion in mice, and does not increase immune cell apoptosis in the spleen and thymus of mice. These findings suggest that the anti-inflammatory effect of escin is not dependent on the release of corticosterone. PMID:21596110

  8. CHF6001 I: a novel highly potent and selective phosphodiesterase 4 inhibitor with robust anti-inflammatory activity and suitable for topical pulmonary administration.

    PubMed

    Moretto, Nadia; Caruso, Paola; Bosco, Raffaella; Marchini, Gessica; Pastore, Fiorella; Armani, Elisabetta; Amari, Gabriele; Rizzi, Andrea; Ghidini, Eleonora; De Fanti, Renato; Capaldi, Carmelida; Carzaniga, Laura; Hirsch, Emilio; Buccellati, Carola; Sala, Angelo; Carnini, Chiara; Patacchini, Riccardo; Delcanale, Maurizio; Civelli, Maurizio; Villetti, Gino; Facchinetti, Fabrizio

    2015-03-01

    This study examined the pharmacologic characterization of CHF6001 [(S)-3,5-dichloro-4-(2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2-(3-(cyclopropylmethoxy)-4-(methylsulfonamido)benzoyloxy)ethyl)pyridine 1-oxide], a novel phosphodiesterase (PDE)4 inhibitor designed for treating pulmonary inflammatory diseases via inhaled administration. CHF6001 was 7- and 923-fold more potent than roflumilast and cilomilast, respectively, in inhibiting PDE4 enzymatic activity (IC50 = 0.026 ± 0.006 nM). CHF6001 inhibited PDE4 isoforms A-D with equal potency, showed an elevated ratio of high-affinity rolipram binding site versus low-affinity rolipram binding site (i.e., >40) and displayed >20,000-fold selectivity versus PDE4 compared with a panel of PDEs. CHF6001 effectively inhibited (subnanomolar IC50 values) the release of tumor necrosis factor-α from human peripheral blood mononuclear cells, human acute monocytic leukemia cell line macrophages (THP-1), and rodent macrophages (RAW264.7 and NR8383). Moreover, CHF6001 potently inhibited the activation of oxidative burst in neutrophils and eosinophils, neutrophil chemotaxis, and the release of interferon-γ from CD4(+) T cells. In all these functional assays, CHF6001 was more potent than previously described PDE4 inhibitors, including roflumilast, UK-500,001 [2-(3,4-difluorophenoxy)-5-fluoro-N-((1S,4S)-4-(2-hydroxy-5-methylbenzamido)cyclohexyl)nicotinamide], and cilomilast, and it was comparable to GSK256066 [6-((3-(dimethylcarbamoyl)phenyl)sulfonyl)-4-((3-methoxyphenyl)amino)-8-methylquinoline-3-carboxamide]. When administered intratracheally to rats as a micronized dry powder, CHF6001 inhibited liposaccharide-induced pulmonary neutrophilia (ED50 = 0.205 μmol/kg) and leukocyte infiltration (ED50 = 0.188 μmol/kg) with an efficacy comparable to a high dose of budesonide (1 μmol/kg i.p.). In sum, CHF6001 has the potential to be an effective topical treatment of conditions associated with pulmonary inflammation, including

  9. Development and mechanism investigation of a new piperlongumine derivative as a potent anti-inflammatory agent.

    PubMed

    Sun, Lan-Di; Wang, Fu; Dai, Fang; Wang, Yi-Hua; Lin, Dong; Zhou, Bo

    2015-06-01

    Inflammation, especially chronic inflammation, is directly involvement in the pathogenesis of many diseases including cancer. An effective approach for managing inflammation is to employ chemicals to block activation of nuclear factor-κB (NF-κB), a key regulator for inflammatory processes. Piperlongumine (piplartine, PL), an electrophilic molecule isolated from Piper longum L., possesses excellent anti-cancer and anti-inflammatory properties. In this study, a new PL analogue (PL-0N) was designed by replacing nitrogen atom of lactam in PL with carbon atom to increase its electrophilicity and thus anti-inflammatory activity. It was found that PL-0N is more potent than the parent compound in suppressing lipopolysaccharide (LPS)-induced secretion of nitric oxide and prostaglandin E2 as well as expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW264.7 macrophages. Mechanistic investigation implies that PL-0N exerts anti-inflammatory activity through inhibition of LPS-induced NF-κB transduction pathway, down-regulation of LPS-induced MAPKs activation and impairment of proteasomal activity, but also enhancement of LPS-induced autophagy; the inhibition of NF-κB by PL-0N is achieved at various stages by: (i) preventing phosphorylation of IKKα/β, (ii) stabilizing the suppressor protein IκBα, (iii) interfering with the nuclear translocation of NF-κB, and (iv) inhibiting the DNA-binding of NF-κB. These data indicate that nitrogen-atom-lacking pattern is a successful strategy to improve anti-inflammatory property of PL, and that the novel molecule, PL-0N may be served as a promising lead for developing natural product-directed anti-inflammatory agents. PMID:25850000

  10. Synthesis and biological evaluation of piperlongumine derivatives as potent anti-inflammatory agents.

    PubMed

    Seo, Young Hwa; Kim, Jin-Kyung; Jun, Jong-Gab

    2014-12-15

    Piperlongumine (PL) and its derivatives were synthesized by the direct reaction between acid chloride of 3,4,5-trimethoxycinnamic acid and various amides/lactams. Later their anti-inflammatory effects were evaluated in lipopolysaccharide (LPS)-induced RAW-264.7 macrophages. Of the piperlogs prepared in this study, the maximum (91%) inhibitory activity was observed with PL (IC50=3 μM) but showed cytotoxicity whereas compound 3 (IC50=6 μM) which possess α,β-unsaturated γ-butyrolactam moiety offered good level (65%) of activity with no cytotoxicity. This study revealed that amide/lactam moiety connected to cinnamoyl group with minimum 3 carbon chain length and α,β-unsaturation is fruitful to show potent anti-inflammatory activity. PMID:25453809

  11. Newer substituted beta-aminonaphthalenes as potent anti-inflammatory agents.

    PubMed

    Bansal, E; Srivastava, V K; Kumar, A

    2000-11-01

    beta-[2-(3'-Chloro-2'-oxo-4'-substituted aryl-1'-azetidinyl)-thiazol-4- yl]aminonaphthalenes 13-17 and beta-[2-(1',3'-disubstitutedphenyl-formazan-4'-yl)-thiazol-4-yl] aminonaphthalenes 8-12 were synthesized from beta-(2-arylideneamino-thiazol-4-yl)aminonaphthalenes 3-7 by diazotisation and by cycloaddition with monochloroacetyl chloride, respectively, on the azomethine group of the compounds 3-7. The newly synthesized compounds showed potent anti-inflammatory and analgesic activities and were less ulcerogenic than phenylbutazone. PMID:11148856

  12. Stereocontrolled total synthesis of the potent anti-inflammatory and pro-resolving lipid mediator resolvin D3 and its aspirin-triggered 17R-epimer.

    PubMed

    Winkler, Jeremy W; Uddin, Jasim; Serhan, Charles N; Petasis, Nicos A

    2013-04-01

    The first total synthesis of stereochemically pure resolvin D3 and aspirin-triggered resolvin D3 is reported. These enzymatic metabolites of docosahexaenoic acid (DHA) have potent anti-inflammatory and pro-resolving actions. The convergent synthetic strategy is based on enantiomerically pure starting materials, and it is highly stereocontrolled. PMID:23510485

  13. Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs

    PubMed Central

    Boukhatem, Mohamed Nadjib; Ferhat, Mohamed Amine; Kameli, Abdelkrim; Saidi, Fairouz; Kebir, Hadjer Tchoketch

    2014-01-01

    Background Volatile oils obtained from lemon grass [Cymbopogon citratus (DC.) Stapf, Poaceae family] are used in traditional medicine as remedies for the treatment of various diseases. Aims In the present study, lemon grass essential oil (LGEO) was evaluated for its in vivo topical and oral anti-inflammatory effects, and for its in vitro antifungal activity using both liquid and vapor phases. Methods The chemical profile of LGEO as determined by gas chromatography–mass spectrometry analysis revealed two major components: geranial (42.2%), and neral (31.5%). The antifungal activity of LGEO was evaluated against several pathogenic yeasts and filamentous fungi using disc diffusion and vapor diffusion methods. Results LGEO exhibited promising antifungal effect against Candida albicans, C. tropicalis, and Aspergillus niger, with different inhibition zone diameters (IZDs) (35–90 mm). IZD increased with increasing oil volume. Significantly, higher anti-Candida activity was observed in the vapor phase. For the evaluation of the anti-inflammatory effect, LGEO (10 mg/kg, administered orally) significantly reduced carrageenan-induced paw edema with a similar effect to that observed for oral diclofenac (50 mg/kg), which was used as the positive control. Oral administration of LGEO showed dose-dependent anti-inflammatory activity. In addition, topical application of LGEO in vivo resulted in a potent anti-inflammatory effect, as demonstrated by using the mouse model of croton oil-induced ear edema. To our knowledge, this is the first such report to be published. The topical application of LGEO at doses of 5 and 10 µL/ear significantly reduced acute ear edema induced by croton oil in 62.5 and 75% of the mice, respectively. In addition, histological analysis clearly confirmed that LGEO inhibits the skin inflammatory response in animal models. Conclusion Results of the present study indicate that LGEO has a noteworthy potential for the development of drugs for the treatment of

  14. A Novel Anti-Inflammatory Effect for High Density Lipoprotein

    PubMed Central

    Cameron, Scott J.; Morrell, Craig N.; Bao, Clare; Swaim, AnneMarie F.; Rodriguez, Annabelle; Lowenstein, Charles J.

    2015-01-01

    High density lipoprotein has anti-inflammatory effects in addition to mediating reverse cholesterol transport. While many of the chronic anti-inflammatory effects of high density lipoprotein (HDL) are attributed to changes in cell adhesion molecules, little is known about acute signal transduction events elicited by HDL in endothelial cells. We now show that high density lipoprotein decreases endothelial cell exocytosis, the first step in leukocyte trafficking. ApoA-I, a major apolipoprotein of HDL, mediates inhibition of endothelial cell exocytosis by interacting with endothelial scavenger receptor-BI which triggers an intracellular protective signaling cascade involving protein kinase C (PKC). Other apolipoproteins within the HDL particle have only modest effects upon endothelial exocytosis. Using a human primary culture of endothelial cells and murine apo-AI knockout mice, we show that apo-AI prevents endothelial cell exocytosis which limits leukocyte recruitment. These data suggest that high density lipoprotein may inhibit diseases associated with vascular inflammation in part by blocking endothelial exocytosis. PMID:26680360

  15. A Novel Anti-Inflammatory Effect for High Density Lipoprotein.

    PubMed

    Cameron, Scott J; Morrell, Craig N; Bao, Clare; Swaim, AnneMarie F; Rodriguez, Annabelle; Lowenstein, Charles J

    2015-01-01

    High density lipoprotein has anti-inflammatory effects in addition to mediating reverse cholesterol transport. While many of the chronic anti-inflammatory effects of high density lipoprotein (HDL) are attributed to changes in cell adhesion molecules, little is known about acute signal transduction events elicited by HDL in endothelial cells. We now show that high density lipoprotein decreases endothelial cell exocytosis, the first step in leukocyte trafficking. ApoA-I, a major apolipoprotein of HDL, mediates inhibition of endothelial cell exocytosis by interacting with endothelial scavenger receptor-BI which triggers an intracellular protective signaling cascade involving protein kinase C (PKC). Other apolipoproteins within the HDL particle have only modest effects upon endothelial exocytosis. Using a human primary culture of endothelial cells and murine apo-AI knockout mice, we show that apo-AI prevents endothelial cell exocytosis which limits leukocyte recruitment. These data suggest that high density lipoprotein may inhibit diseases associated with vascular inflammation in part by blocking endothelial exocytosis. PMID:26680360

  16. Design and synthesis of aloe-emodin derivatives as potent anti-tyrosinase, antibacterial and anti-inflammatory agents.

    PubMed

    Liu, Jinbing; Wu, Fengyan; Chen, Changhong

    2015-11-15

    Twenty aloe-emodin derivatives were designed, synthesized, and their biological activities were evaluated. Some compounds displayed potent tyrosinase inhibitory activities, especially, compounds with thiosemicarbazide moiety showed more potent inhibitory effects than the other compounds. The structure-activity relationships (SARs) were preliminarily discussed. The inhibition mechanism of selected compounds 1 and 13 were investigated. The results showed compound 1 was reversible inhibitor, however, compound 13 was irreversible. Kinetic analysis indicated that compound 1 was competitive tyrosinase inhibitor. Furthermore, the antibacterial activities and anti-inflammatory activities of some selected compounds were also screened. The results showed that compound 3 exhibited more potent antibacterial activity than the aloe-emodin, compounds 5 and 6 possessed more potent anti-inflammatory activities than the diacerein. PMID:26471089

  17. Centrally Synthesized Estradiol Is a Potent Anti-Inflammatory in the Injured Zebra Finch Brain.

    PubMed

    Pedersen, Alyssa L; Nelson, Lars H; Saldanha, Colin J

    2016-05-01

    In homeotherms, injury to the brain, such as a penetrating wound, increases microglial cytokine expression and astroglial aromatase (estrogen synthase). In songbirds, injury-induced synthesis of estrogens is neuroprotective as aromatase inhibition and replacement with estradiol (E2) exacerbates and mitigates the extent of damage, respectively. The influence of induced aromatization on inflammation, however, remains unstudied. We hypothesized that injury-induced aromatization, via E2 synthesis, may affect neuroinflammation after a penetrating brain injury. Using adult zebra finches, we first documented an increase in the transcription of cytokines but not aromatase, 2 hours after the injury. Twenty-four hours after the injury, however, aromatase was dramatically elevated and cytokine expression had returned to baseline, suggesting that aromatization may be involved in the decrease of cytokines and neuroinflammation. In two subsequent experiments, we tested the influence of the inhibition of induced aromatization and aromatase inhibition with concomitant central E2 replacement on the transcription of the cytokines TNF-α, IL-1β, and IL-6, the enzyme cyclooxygenase-2 (cox-2), and its product prostaglandin E2 (PGE2). Administration of fadrozole, an aromatase inhibitor, caused a sustained elevation of IL-1β in females and TNF-α, cox-2, and PGE2 in both sexes. This prolonged neuroinflammation appears to be due to a failure to synthesize E2 locally because intracranial E2 replacement lowered IL-1β in females, TNF-α in males, and cox-2 and PGE2 in both sexes. IL-6 was not affected by injury, aromatase inhibition, or E2 replacement in either sex. These data suggest that E2 synthesis after a penetrating brain injury is a potent and inducible anti-inflammatory signal, with specific modulation of discrete cytokine signaling. PMID:26963472

  18. One-Step Synthesis of Chiral Oxindole-type Analogues with Potent Anti-inflammatory and Analgesic Activities

    PubMed Central

    Sun, Yulong; Liu, Jia; Jiang, Xianxing; Sun, Tao; Liu, Luping; Zhang, Xiaoyuan; Ding, Shaoli; Li, Jingyi; Zhuang, Yan; Wang, Yiqing; Wang, Rui

    2015-01-01

    Here we report a facile approach to synthesize highly optically active oxindole-type analogues with both high yield and enantioselectivity. This single-step synthesis strategy represents a substantial improvement upon existing methods that are often involved with multi-step routes and have suboptimal atomic economy. One such compound, namely Q4c, showed remarkable in vivo anti-inflammatory activity with efficiency approaching to that of a steroidal compound dexamethasone. Moreover, Q4c alleviated pain in mouse models with comparable activity to morphine. Further investigation suggested that nitric oxide signaling pathway is involved in the anti-inflammatory and analgesic activities of Q4c. Notably, this is the first time that chiral oxindole-type analogues have been identified to be both anti-inflammatory and analgesic, and our study also paved the way for future development of oxindoles as drug candidates in this field. PMID:26324065

  19. One-Step Synthesis of Chiral Oxindole-type Analogues with Potent Anti-inflammatory and Analgesic Activities.

    PubMed

    Sun, Yulong; Liu, Jia; Jiang, Xianxing; Sun, Tao; Liu, Luping; Zhang, Xiaoyuan; Ding, Shaoli; Li, Jingyi; Zhuang, Yan; Wang, Yiqing; Wang, Rui

    2015-01-01

    Here we report a facile approach to synthesize highly optically active oxindole-type analogues with both high yield and enantioselectivity. This single-step synthesis strategy represents a substantial improvement upon existing methods that are often involved with multi-step routes and have suboptimal atomic economy. One such compound, namely Q4c, showed remarkable in vivo anti-inflammatory activity with efficiency approaching to that of a steroidal compound dexamethasone. Moreover, Q4c alleviated pain in mouse models with comparable activity to morphine. Further investigation suggested that nitric oxide signaling pathway is involved in the anti-inflammatory and analgesic activities of Q4c. Notably, this is the first time that chiral oxindole-type analogues have been identified to be both anti-inflammatory and analgesic, and our study also paved the way for future development of oxindoles as drug candidates in this field. PMID:26324065

  20. Potent Anti-Inflammatory Activity of Tetramethylpyrazine Is Mediated through Suppression of NF-k

    PubMed Central

    Chen, Wei; Chen, Weixiong; Zhu, Jinshui; Chen, Niwei; Lu, Yunmin

    2016-01-01

    The purpose of the current study was to evaluate the anti-inflammatory activity of tetramethlpyrazine on oxazolone-induced colitis mice. Spleen mononuclear cells (SMC), lamina propria mononuclear cells (LPMC) and peripheral blood mononuclear cells (PBMC) were isolated from oxazolone-induced colitis and normal mice. The colitis cells treated by oxazolone were randomly divided into model, low dose, middle dose and high dose groups treated with 0, 0.5, 1.0 and 2.0 g/L tetramethlpyrazine, respectively. The apoptotic rate of SMC and LPMC in the oxazolone-induced group was lower than that in the normal group. Compared with model group, apoptotic rate of SMC was significantly increased in the high dose group, while the apoptotic rate of LPMC in the middle dose group was increased. Compared with SMC, LPMC and PBMC of normal group, the mRNA level of nuclear factor kappa B (NF-kB), transcription factor-activated protein-1 (AP-1) and nuclear factor of activated T cells (NF-AT) were higher in model group. Tetramethylpyrazine inhibited the increase of NF-kB, AP-1 and NF-AT mRNA induced by oxazolone. For SMC, LPMC and PBMC there was significant difference in the mRNA level of AP-1 among the three different doses of tetramethylpyrazine treated groups. However, no significant difference was observed in the mRNA levels of NF-AT and NF-κB between normal and middle groups. Tetramethylpyrazine promoted the apoptotic rate of SMC and LPMC in-vitro, and suppressed the expression of transcription factors in SMC, LPMC and PBMC isolated from oxazolone-induced colitis mice. The study provides a novel insight into the mechanism behind the effect of etramethylpyrazine on colitis. PMID:27610159

  1. Potent Anti-Inflammatory Activity of Tetramethylpyrazine Is Mediated through Suppression of NF-k.

    PubMed

    Chen, Wei; Chen, Weixiong; Zhu, Jinshui; Chen, Niwei; Lu, Yunmin

    2016-01-01

    The purpose of the current study was to evaluate the anti-inflammatory activity of tetramethlpyrazine on oxazolone-induced colitis mice. Spleen mononuclear cells (SMC), lamina propria mononuclear cells (LPMC) and peripheral blood mononuclear cells (PBMC) were isolated from oxazolone-induced colitis and normal mice. The colitis cells treated by oxazolone were randomly divided into model, low dose, middle dose and high dose groups treated with 0, 0.5, 1.0 and 2.0 g/L tetramethlpyrazine, respectively. The apoptotic rate of SMC and LPMC in the oxazolone-induced group was lower than that in the normal group. Compared with model group, apoptotic rate of SMC was significantly increased in the high dose group, while the apoptotic rate of LPMC in the middle dose group was increased. Compared with SMC, LPMC and PBMC of normal group, the mRNA level of nuclear factor kappa B (NF-kB), transcription factor-activated protein-1 (AP-1) and nuclear factor of activated T cells (NF-AT) were higher in model group. Tetramethylpyrazine inhibited the increase of NF-kB, AP-1 and NF-AT mRNA induced by oxazolone. For SMC, LPMC and PBMC there was significant difference in the mRNA level of AP-1 among the three different doses of tetramethylpyrazine treated groups. However, no significant difference was observed in the mRNA levels of NF-AT and NF-κB between normal and middle groups. Tetramethylpyrazine promoted the apoptotic rate of SMC and LPMC in-vitro, and suppressed the expression of transcription factors in SMC, LPMC and PBMC isolated from oxazolone-induced colitis mice. The study provides a novel insight into the mechanism behind the effect of etramethylpyrazine on colitis. PMID:27610159

  2. Berteroin Present in Cruciferous Vegetables Exerts Potent Anti-Inflammatory Properties in Murine Macrophages and Mouse Skin

    PubMed Central

    Jung, Yoo Jin; Jung, Jae In; Cho, Han Jin; Choi, Myung-Sook; Sung, Mi-Kyung; Yu, Rina; Kang, Young-Hee; Park, Jung Han Yoon

    2014-01-01

    Berteroin (5-methylthiopentyl isothiocyanate) is a sulforaphane analog present in cruciferous vegetables, including Chinese cabbage, rucola salad leaves, and mustard oil. We examined whether berteroin exerts anti-inflammatory activities using lipopolysaccharide (LPS)-stimulated Raw 264.7 macrophages and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin inflammation models. Berteroin decreased LPS-induced release of inflammatory mediators and pro-inflammatory cytokines in Raw 264.7 macrophages. Berteroin inhibited LPS-induced degradation of inhibitor of κBα (IκBα) and nuclear factor-κB p65 translocation to the nucleus and DNA binding activity. Furthermore, berteroin suppressed degradation of IL-1 receptor-associated kinase and phosphorylation of transforming growth factor β activated kinase-1. Berteroin also inhibited LPS-induced phosphorylation of p38 MAPK, ERK1/2, and AKT. In the mouse ear, berteroin effectively suppressed TPA-induced edema formation and down-regulated iNOS and COX-2 expression as well as phosphorylation of AKT and ERK1/2. These results demonstrate that berteroin exhibits potent anti-inflammatory properties and suggest that berteroin can be developed as a skin anti-inflammatory agent. PMID:25393510

  3. A Short Peptide That Mimics the Binding Domain of TGF-β1 Presents Potent Anti-Inflammatory Activity

    PubMed Central

    Vaz, Emília R.; Fujimura, Patrícia T.; Araujo, Galber R.; da Silva, Carlos A. T.; Silva, Rangel L.; Cunha, Thiago M.; Lopes-Ferreira, Mônica; Lima, Carla; Ferreira, Márcio J.; Cunha-Junior, Jair P.; Taketomi, Ernesto A.; Goulart, Luiz R.; Ueira-Vieira, Carlos

    2015-01-01

    The transforming growth factor beta 1 (TGF-β1) is a pleiotropic cytokine with multiple roles in development, wound healing, and immune regulation. TGF-β1-mediated immune dysfunction may lead to pathological conditions, such as inflammation. Chronic inflammatory process is characterized by a continuous release of pro-inflammatory cytokines, and the inhibition or the blockage of these cytokines signaling pathways are considered a target treatment. In this context, despite the high numbers of TGF-β-targeted pathways, the inducible regulatory T cells (iTreg) to control inflammation seems to be a promising approach. Our aim was to develop novel peptides through phage display (PhD) technology that could mimic TGF-β1 function with higher potency. Specific mimetic peptides were obtained through a PhD subtraction strategy from whole cell binding using TGF-β1 recombinant as a competitor during elution step. We have selected a peptide that seems to play an important role on cellular differentiation and modulation of TNF-α and IL-10 cytokines. The synthetic pm26TGF-β1 peptide tested in PBMC significantly down-modulated TNF-α and up-regulated IL-10 responses, leading to regulatory T cells (Treg) phenotype differentiation. Furthermore, the synthetic peptide was able to decrease leukocytes rolling in BALB/C mice and neutrophils migration during inflammatory process in C57BL/6 mice. These data suggest that this peptide may be useful for the treatment of inflammatory diseases, especially because it displays potent anti-inflammatory properties and do not exhibit neutrophils’ chemoattraction. PMID:26312490

  4. Design, synthesis and biological evaluation of piperic acid triazolyl derivatives as potent anti-inflammatory agents.

    PubMed

    Ali, Yakub; Alam, Mohammad Sarwar; Hamid, Hinna; Husain, Asif; Bano, Sameena; Dhulap, Abhijeet; Kharbanda, Chetna; Nazreen, Syed; Haider, Saqlain

    2015-03-01

    Nineteen novel piperine based triazoles have been synthesized using click chemistry approach and were tested for in vivo anti-inflammatory activity. The most active compounds were evaluated for in vitro TNF-α expression. Compounds 3g and 3f were found to show significant in vivo inhibition of inflammation, 80.40% and 76.71%, respectively after 5 h in comparison to piperine (54.72%) and the standard drug indomethacin (77.02%) without causing any damage to the stomach. Compounds 3g and 3f suppressed TNF-α level by 73.73% and 70.64%, respectively and protein expression of COX-2, NF-κB and TNF-α more than indomethacin. Moreover, the compound 3g was found to show significant analgesic activity of 54.09% which was comparable with the indomethacin (57.43%). PMID:25596479

  5. Arzanol, a Potent mPGES-1 Inhibitor: Novel Anti-Inflammatory Agent

    PubMed Central

    Kothavade, Pankaj S.; Nagmoti, Dnyaneshwar M.; Bulani, Vipin D.; Juvekar, Archana R.

    2013-01-01

    Arzanol is a novel phloroglucinol α-pyrone, isolated from a Mediterranean plant Helichrysum italicum (Roth) Don ssp. microphyllum which belongs to the family Asteraceae. Arzanol has been reported to possess a variety of pharmacological activities. However, anti-inflammatory, anti-HIV, and antioxidant activities have been studied in some detail. Arzanol has been reported to inhibit inflammatory transcription factor NFκB activation, HIV replication in T cells, releases of IL-1β, IL-6, IL-8, and TNF-α, and biosynthesis of PGE2 by potentially inhibiting mPGES-1 enzyme. Diversity of mechanisms of actions of arzanol may be useful in treatment of disease involving these inflammatory mediators such as autoimmune diseases and cancer. This review presents comprehensive information on the chemistry, structure-activity relationship, and pharmacological activities of arzanol. In addition this review discusses recent developments and the scope for future research in these aspects. PMID:24198734

  6. Some new 2,3,6-trisubstituted quinazolinones as potent anti-inflammatory, analgesic and COX-II inhibitors.

    PubMed

    Kumar, Ashok; Sharma, Shalabh; Archana; Bajaj, Kiran; Sharma, Shipra; Panwar, Hemant; Singh, Tripti; Srivastava, V K

    2003-11-17

    Various 2-(substitutedphenylmethyleneimino)aminoacetylmethylene-3-(2'-substitutedindol-3'-yl)-halosubstituted-4(3H)quinazolinones (5a-5i) and 2-(substituted phenylaminomethyleneacetyl-4'-oxo-1'-thiazolidinyl-3-(2"-substitutedindol-3"-yl) 4(3H)-quinazolinones (6a-6i) have been synthesized in the present studies. The structure of these compounds have been elucidated by elemental (C, H, N) and spectral (IR, 1H NMR and mass) analysis. Furthermore, above said compounds were evaluated for their anti-inflammatory, analgesic, ulcerogenic activities and acute toxicity study. Compound 6d was found to be most potent. Compound exihibiting less ulcerogenic liability and ALD(50) >2000mg/kg po. PMID:14604693

  7. Pitavastatin is a potent anti-inflammatory agent in the rat paw model of acute inflammation.

    PubMed

    Qadir, Farida; Alam, Syed Mahboob; Siddiqi, Abeer Qamar; Kamran, Afshan

    2014-11-01

    Statins are used extensively as anti-hyperlipidemic agents. In addition to curtailing cholesterol synthesis they have been found to have multiple actions unrelated to cholesterol lowering "the pleiotropic effects," which includes inhibition of inflammation. We aimed at investigating the effect of pitavastatin a 3rd generation statin, in suppressing acute inflammation in rat paw edema model. Male Sprague-Dawley rats were randomly assigned to one of five groups (n=8): Control, indomethacin and pitavastatin (0.2mg/kg, 0.4mg/kg, 0.8mg/kg) treated. 1hour following treatment, inflammation was induced by sub-planter injection of egg albumin into the hind paw. Anti-inflammatory effect was evaluated by measurement of edema formation every half hour for three hours, assessment of polymorphonuclear leukocyte (PMNL) infiltration and measurement of tissue damage in skin biopsies. Ascending doses of pitavastatin were found to attenuate these parameters. The lowest dose of pitavastatin (0.2mg/kg) was found to significantly reduce edema volume, PMNL infiltration and tissue damage. The efficacy of the smallest dose was found comparable to indomethacin. PMID:26045381

  8. Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders

    PubMed Central

    Johnson, Tyler A.; Sohn, Johann; Inman, Wayne D.; Bjeldanes, Leonard F.; Rayburn, Keith

    2012-01-01

    Extracts of four plant portions (roots, stems, leaves and flowers) of Urtica dioica, (the stinging nettle) were prepared using accelerated solvent extraction (ASE) involving water, hexanes, methanol and dichloromethane. The extracts were evaluated for their anti-inflammatory and cytotoxic activity in an NF-κB luciferase and MTT assay using macrophage immune (RAW264.7) cells. A standardized commercial ethanol extract of nettle leaves were also evaluated. The methanolic extract of the flowering portions displayed significant anti-inflammatory activity on par with the standard anti-inflammatory agent celastrol (1) but was moderately cytotoxic. Alternatively, the polar extracts (water, methanol, ethanol) of the roots, stems and leaves plant portions displayed moderate to weak anti-inflammatory activity, while the methanol and especially the water soluble extracts exhibited noticeable cytotoxicity. In contrast, the lipophilic dichloromethane extracts of the roots, stems and leaves exhibited potent anti-inflammatory effects ≥ 1 with minimal cytotoxicity to RAW264.7 cells. Collectively these results suggest that using lipophilic extracts of the roots, stems or leaves of stinging nettle may be more effective then traditional tinctures (water, methanol, ethanol) to undergo clinical evaluations for the treatment of inflammatory disorders including arthritis. A chemical investigation into the lipophillic extracts of stinging nettle to identify the bioactive compound(s) responsible for their observed anti-inflammatory activity is further warranted. PMID:23092723

  9. TOPICAL ANTIHISTAMINES DISPLAY POTENT ANTI-INFLAMMATORY ACTIVITY LINKED IN PART TO ENHANCED PERMEABILITY BARRIER FUNCTION

    PubMed Central

    Lin, Tzu-Kai; Man, Mao-Qiang; Santiago, Juan-Luis; Park, Kyungho; Roelandt, Truus; Oda, Yuko; Hupe, Melanie; Crumrine, Debra; Lee, Hae-Jin; Gschwandtner, Maria; Thyssen, Jacob P.; Trullas, Carles; Tschachler, Erwin; Feingold, Kenneth R.; Elias, Peter M.

    2012-01-01

    Systemic antagonists of the histamine type 1 and 2 receptors (H1/2r) are widely used as anti-pruritics and central sedatives, but demonstrate only modest anti-inflammatory activity. Because many inflammatory dermatoses result from defects in cutaneous barrier function, and because keratinocytes express both Hr1 and Hr2, we hypothesized that H1/2r antagonists might be more effective, if they were used topically to treat inflammatory dermatoses. Topical H1/2r antagonists additively enhanced permeability barrier homeostasis in normal mouse skin by: i) stimulation of epidermal differentiation, leading to thickened cornified envelopes; and ii) enhanced epidermal lipid synthesis and secretion. Since barrier homeostasis was enhanced to a comparable extent in mast cell-deficient mice, with no further improvement following application of topical H1/2r antagonists, H1/2r antagonists likely oppose mast cell-derived histamine. In four immunologically-diverse, murine disease models, characterized by either inflammation alone (acute irritant contact dermatitis, acute allergic contact dermatitis), or by prominent barrier abnormalities (subacute allergic contact dermatitis, atopic dermatitis), topical H1/2r agonists aggravated, while H1/2r antagonists improved inflammation and/or barrier function. The apparent ability of topical H1r/2r antagonists to target epidermal H1/2r could translate into increased efficacy in the treatment of inflammatory dermatoses, likely due to decreased inflammation and enhanced barrier function. These results could shift current paradigms of antihistamine utilization from a predominantly-systemic to a topical approach. PMID:23014339

  10. Anti-allergic and anti-inflammatory properties of a potent histamine H1 receptor antagonist, desloratadine citrate disodium injection, and its anti-inflammatory mechanism on EA.hy926 endothelial cells.

    PubMed

    Jie, Qiong; Kodithuwakku, Nandani Darshika; Yuan, Xin; He, Guangwei; Chen, Meiling; Xu, Shuhong; Wu, Yulin

    2015-05-01

    The present study, demonstrates that, desloratadine citrate disodium injection (DLC) possesses antihistaminic, anti-allergic and anti-inflammatory properties and elucidates its molecular mechanisms of anti-inflammatory properties. In vitro antihistamine activity of DLC was determined in guinea pig isolated tissues. In vivo antihistamine effects were evaluated after following intravenous administration of DLC in mice with histamine- induced paw edema and in rats with increased capillary permeability. Anti-allergic effects were assessed through passive cutaneous anaphylactic (PCA) reactions in sensitized rodents and ovalbumin-induced allergic rhinitis in rats. Anti-inflammatory properties and molecular mechanisms of DLC were determined on histamine- and lipopolysaccharide (LPS)-induced EA.hy926 endothelial cells. DLC exhibited significant and reversible inhibition of histamine-induced contractions of isolated guinea pig ileum with pA2 value of 8.88. Histamine-induced paw edema and increased capillary permeability were notably inhibited by DLC intravenous administration. In the model of PCA reactions, DLC showed significant activity in a dose-dependent nd potently inhibited both the early-phase and late-phase allergic reaction of ovalbumin-induced allergic rhinitis in rats. DLC alleviated the rhinitis symptoms and inhibited inflammatory cell infiltration, IL-4 and protein leakage in nasal lavage fluid (NLF). In EA.hy926 cells, DLC significantly inhibited the histamine- and LPS- induced IL-6 and IL-8 production and P-selectin and intercellular cell adhesion molecule-1 (ICAM-1) expression. Moreover, DLC reduced translocation of nuclear factor-kappaB (NF-κB) to the nucleus in activated EA.hy926 cells. These results provide evidence that DLC possesses potent antihistaminic, anti-allergic and, anti-inflammatory properties via suppressing IL-6, IL-8, P-selectin and ICAM-1 expression. PMID:25704613

  11. Identification and Characterization of the First Cathelicidin from Sea Snakes with Potent Antimicrobial and Anti-inflammatory Activity and Special Mechanism.

    PubMed

    Wei, Lin; Gao, Jiuxiang; Zhang, Shumin; Wu, Sijin; Xie, Zeping; Ling, Guiying; Kuang, Yi-Qun; Yang, Yongliang; Yu, Haining; Wang, Yipeng

    2015-07-01

    Cathelicidins are a family of gene-encoded peptide effectors of innate immunity found exclusively in vertebrates. They play pivotal roles in host immune defense against microbial invasions. Dozens of cathelicidins have been identified from several vertebrate species. However, no cathelicidin from marine reptiles has been characterized previously. Here we report the identification and characterization of a novel cathelicidin (Hc-CATH) from the sea snake Hydrophis cyanocinctus. Hc-CATH is composed of 30 amino acids, and the sequence is KFFKRLLKSVRRAVKKFRKKPRLIGLSTLL. Circular dichroism spectroscopy and structure modeling analysis indicated that Hc-CATH mainly assumes an amphipathic α-helical conformation in bacterial membrane-mimetic solutions. It possesses potent broad-spectrum and rapid antimicrobial activity. Meanwhile, it is highly stable and shows low cytotoxicity toward mammalian cells. The microbial killing activity of Hc-CATH is executed through the disruption of cell membrane and lysis of bacterial cells. In addition, Hc-CATH exhibited potent anti-inflammatory activity by inhibiting the LPS-induced production of nitric oxide (NO) and pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. Hc-CATH directly binds with LPS to neutralize its toxicity, and it also binds to Toll-like receptor 4 (TLR4/MD2 complex), which therefore inhibits the binding of LPS to TLR4/MD2 complex and the subsequent activation of LPS-induced inflammatory response pathways. Taken together, our study demonstrates that Hc-CATH, the first cathelicidin from sea snake discovered to have both antimicrobial and anti-inflammatory activity, is a potent candidate for the development of peptide antibiotics. PMID:26013823

  12. Identification and Characterization of the First Cathelicidin from Sea Snakes with Potent Antimicrobial and Anti-inflammatory Activity and Special Mechanism*

    PubMed Central

    Wei, Lin; Gao, Jiuxiang; Zhang, Shumin; Wu, Sijin; Xie, Zeping; Ling, Guiying; Kuang, Yi-Qun; Yang, Yongliang; Yu, Haining; Wang, Yipeng

    2015-01-01

    Cathelicidins are a family of gene-encoded peptide effectors of innate immunity found exclusively in vertebrates. They play pivotal roles in host immune defense against microbial invasions. Dozens of cathelicidins have been identified from several vertebrate species. However, no cathelicidin from marine reptiles has been characterized previously. Here we report the identification and characterization of a novel cathelicidin (Hc-CATH) from the sea snake Hydrophis cyanocinctus. Hc-CATH is composed of 30 amino acids, and the sequence is KFFKRLLKSVRRAVKKFRKKPRLIGLSTLL. Circular dichroism spectroscopy and structure modeling analysis indicated that Hc-CATH mainly assumes an amphipathic α-helical conformation in bacterial membrane-mimetic solutions. It possesses potent broad-spectrum and rapid antimicrobial activity. Meanwhile, it is highly stable and shows low cytotoxicity toward mammalian cells. The microbial killing activity of Hc-CATH is executed through the disruption of cell membrane and lysis of bacterial cells. In addition, Hc-CATH exhibited potent anti-inflammatory activity by inhibiting the LPS-induced production of nitric oxide (NO) and pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. Hc-CATH directly binds with LPS to neutralize its toxicity, and it also binds to Toll-like receptor 4 (TLR4/MD2 complex), which therefore inhibits the binding of LPS to TLR4/MD2 complex and the subsequent activation of LPS-induced inflammatory response pathways. Taken together, our study demonstrates that Hc-CATH, the first cathelicidin from sea snake discovered to have both antimicrobial and anti-inflammatory activity, is a potent candidate for the development of peptide antibiotics. PMID:26013823

  13. Rational development of a potent 15-lipoxygenase-1 inhibitor with in vitro and ex vivo anti-inflammatory properties

    PubMed Central

    Eleftheriadis, Nikolaos; Neochoritis, Constantinos G.; Leus, Niek G.J.; van der Wouden, Petra E.; Dömling, Alexander; Dekker, Frank J.

    2016-01-01

    Human 15-lipoxygenase-1 (h-15-LOX-1) is an important mammalian lipoxygenase and plays an important role in several inflammatory lung diseases such as asthma, COPD and chronic bronchitis. Novel potent inhibitors of h-15-LOX-1 are required to explore the role of this enzyme further and to enable drug discovery efforts. In this study, we applied an approach in which we screened a fragment collection that is focused on a diverse substitution pattern of nitrogen containing heterocycles such as indoles, quinolones, pyrazoles etc. We denoted this approach Substitution Oriented fragment Screening (SOS), because it is focuses on identification of novel substitution patterns rather than on novel scaffolds. This approach enabled the identification of hits with good potency and clear structure activity relationships (SAR) for h-1-5-LOX-1 inhibition. A molecular modeling enabled the rationalization of the observed SAR and supported structure-based design for further optimization to obtain inhibitor 14d that binds with a Ki of 36 nM to the enzyme. In vitro and ex vivo biological evaluations of our best inhibitor demonstrate significant increase of interleukin-10 (IL-10) gene expression, which indicates anti-inflammatory properties. PMID:26331552

  14. Rational Development of a Potent 15-Lipoxygenase-1 Inhibitor with in Vitro and ex Vivo Anti-inflammatory Properties.

    PubMed

    Eleftheriadis, Nikolaos; Neochoritis, Constantinos G; Leus, Niek G J; van der Wouden, Petra E; Dömling, Alexander; Dekker, Frank J

    2015-10-01

    Human 15-lipoxygenase-1 (h-15-LOX-1) is a mammalian lipoxygenase and plays an important role in several inflammatory lung diseases such as asthma, COPD, and chronic bronchitis. Novel potent inhibitors of h-15-LOX-1 are required to explore the role of this enzyme further and to enable drug discovery efforts. In this study, we applied an approach in which we screened a fragment collection that is focused on a diverse substitution pattern of nitrogen-containing heterocycles such as indoles, quinolones, pyrazoles, and others. We denoted this approach substitution-oriented fragment screening (SOS) because it focuses on the identification of novel substitution patterns rather than on novel scaffolds. This approach enabled the identification of hits with good potency and clear structure-activity relationships (SAR) for h-1-5-LOX-1 inhibition. Molecular modeling enabled the rationalization of the observed SAR and supported structure-based design for further optimization to obtain inhibitor 14 d that binds with a Ki of 36 nM to the enzyme. In vitro and ex vivo biological evaluations of our best inhibitor demonstrate a significant increase of interleukin-10 (IL-10) gene expression, which indicates its anti-inflammatory properties. PMID:26331552

  15. Highly oxygenated triterpenoids from the roots of Schisandra chinensis and their anti-inflammatory activities.

    PubMed

    Song, Qiu-Yan; Gao, Kun; Nan, Zhi-Biao

    2016-01-01

    A new highly oxygenated triterpenoid, schinchinenlactone D (1), and three known compounds (2-4) were isolated from the roots of Schisandra chinensis. Their structures were determined by combining the spectroscopic analysis with the theoretical computations. The anti-inflammatory activities of compounds 1-4 were evaluated, and compound 3 exhibits the most significant activity in the inhibition of NO production with an IC50 value of 10.6 μM. PMID:26313467

  16. High-Throughput Yeast-Based Reporter Assay to Identify Compounds with Anti-inflammatory Potential.

    PubMed

    Garcia, G; Santos, C Nunes do; Menezes, R

    2016-01-01

    The association between altered proteostasis and inflammatory responses has been increasingly recognized, therefore the identification and characterization of novel compounds with anti-inflammatory potential will certainly have a great impact in the therapeutics of protein-misfolding diseases such as degenerative disorders. Although cell-based screens are powerful approaches to identify potential therapeutic compounds, establishing robust inflammation models amenable to high-throughput screening remains a challenge. To bridge this gap, we have exploited the use of yeasts as a platform to identify lead compounds with anti-inflammatory properties. The yeast cell model described here relies on the high-degree homology between mammalian and yeast Ca(2+)/calcineurin pathways converging into the activation of NFAT and Crz1 orthologous proteins, respectively. It consists of a recombinant yeast strain encoding the lacZ gene under the control of Crz1-recongition elements to facilitate the identification of compounds interfering with Crz1 activation through the easy monitoring of β-galactosidase activity. Here, we describe in detail a protocol optimized for high-throughput screening of compounds with potential anti-inflammatory activity as well as a protocol to validate the positive hits using an alternative β-galactosidase substrate. PMID:27613055

  17. The anti-inflammatory compound BAY 11-7082 is a potent inhibitor of Protein Tyrosine Phosphatases

    PubMed Central

    Krishnan, Navasona; Bencze, Gyula; Cohen, Philip; Tonks, Nicholas K.

    2013-01-01

    Summary The families of protein tyrosine phosphatases (PTPs) and protein tyrosine kinases (PTKs) function in a coordinated manner to regulate signal transduction events that are critical for cellular homeostasis. Aberrant tyrosine phosphorylation, resulting from disruption of either PTP or PTK function, has been shown to be the cause of major human diseases, including cancer and diabetes. Consequently, the characterization of small molecule inhibitors of these kinases and phosphatases may not only provide molecular probes with which to define the significance of particular signalling events, but also may have therapeutic implications. BAY 11-7082 is an anti-inflammatory compound that has been reported to inhibit IκB kinase activity. The compound has an α,β-unsaturated electrophilic center, which confers the property of being a Michael acceptor; this suggests that it may react with nucleophilic cysteine-containing proteins, such as PTPs. In this study, we demonstrated that BAY 11-7082 was a potent, irreversible inhibitor of PTPs. Using mass spectrometry, we have shown that BAY 11-7082 inactivated PTPs by forming a covalent adduct with the active site cysteine. Administration of the compound caused an increase in protein tyrosine phosphorylation in RAW 264 macrophages, similar to the effects of the generic PTP inhibitor sodium orthovanadate. These data illustrate that BAY 11-7082 is an effective pan-PTP inhibitor with cell permeability, revealing its potential as a new probe for chemical biology approaches to the study of PTP function. Furthermore, the data suggest that inhibition of PTP function may contribute to the many biological effects of BAY 11-7082 that have been reported to date. PMID:23578302

  18. The anti-inflammatory compound BAY-11-7082 is a potent inhibitor of protein tyrosine phosphatases.

    PubMed

    Krishnan, Navasona; Bencze, Gyula; Cohen, Philip; Tonks, Nicholas K

    2013-06-01

    The families of protein tyrosine phosphatases (PTPs) and protein tyrosine kinases (PTKs) function in a coordinated manner to regulate signal transduction events that are critical for cellular homeostasis. Aberrant tyrosine phosphorylation, resulting from disruption of either PTP or PTK function, has been shown to be the cause of major human diseases, including cancer and diabetes. Consequently, the characterization of small-molecule inhibitors of these kinases and phosphatases may not only provide molecular probes with which to define the significance of particular signaling events, but also may have therapeutic implications. BAY-11-7082 is an anti-inflammatory compound that has been reported to inhibit IκB kinase activity. The compound has an α,β-unsaturated electrophilic center, which confers the property of being a Michael acceptor; this suggests that it may react with nucleophilic cysteine-containing proteins, such as PTPs. In this study, we demonstrated that BAY-11-7082 was a potent, irreversible inhibitor of PTPs. Using mass spectrometry, we have shown that BAY-11-7082 inactivated PTPs by forming a covalent adduct with the active-site cysteine. Administration of the compound caused an increase in protein tyrosine phosphorylation in RAW 264 macrophages, similar to the effects of the generic PTP inhibitor sodium orthovanadate. These data illustrate that BAY-11-7082 is an effective pan-PTP inhibitor with cell permeability, revealing its potential as a new probe for chemical biology approaches to the study of PTP function. Furthermore, the data suggest that inhibition of PTP function may contribute to the many biological effects of BAY-11-7082 that have been reported to date. PMID:23578302

  19. Anti-inflammatory activity of cinnamon (C. zeylanicum and C. cassia) extracts - identification of E-cinnamaldehyde and o-methoxy cinnamaldehyde as the most potent bioactive compounds.

    PubMed

    Gunawardena, Dhanushka; Karunaweera, Niloo; Lee, Samiuela; van Der Kooy, Frank; Harman, David G; Raju, Ritesh; Bennett, Louise; Gyengesi, Erika; Sucher, Nikolaus J; Münch, Gerald

    2015-03-01

    Chronic inflammation is a contributing factor in many age-related diseases. In a previous study, we have shown that Sri Lankan cinnamon (C. zeylanicum) was one of the most potent anti-inflammatory foods out of 115 foods tested. However, knowledge about the exact nature of the anti-inflammatory compounds and their distribution in the two major cinnamon species used for human consumption is limited. The aim of this investigation was to determine the anti-inflammatory activity of C. zeylanicum and C. cassia and elucidate their main phytochemical compounds. When extracts were tested in LPS and IFN-γ activated RAW 264.7 macrophages, most of the anti-inflammatory activity, measured by down-regulation of nitric oxide and TNF-α production, was observed in the organic extracts. The most abundant compounds in these extracts were E-cinnamaldehyde and o-methoxycinnamaldehyde. The highest concentration of E-cinnamaldehyde was found in the DCM extract of C. zeylanicum or C. cassia (31 and 34 mg g(-1) of cinnamon, respectively). When these and other constituents were tested for their anti-inflammatory activity in RAW 264.7 and J774A.1 macrophages, the most potent compounds were E-cinnamaldehyde and o-methoxycinnamaldehyde, which exhibited IC₅₀ values for NO with RAW 264.7 cells of 55 ± 9 μM (7.3 ± 1.2 μg mL(-1)) and 35 ± 9 μM (5.7 ± 1.5 μg mL(-1)), respectively; and IC₅₀ values for TNF-α of 63 ± 9 μM (8.3 ± 1.2 μg mL(-1)) and 78 ± 16 μM (12.6 ± 2.6 μg mL(-1)), respectively. If therapeutic concentrations can be achieved in target tissues, cinnamon and its components may be useful in the treatment of age-related inflammatory conditions. PMID:25629927

  20. Identification of Magnolia officinalis L. bark extract as the most potent anti-inflammatory of four plant extracts.

    PubMed

    Walker, Joel M; Maitra, Amarnath; Walker, Jessica; Ehrnhoefer-Ressler, Miriam M; Inui, Taichi; Somoza, Veronika

    2013-01-01

    This study was designed to compare the anti-inflammatory potential of a Magnolia officinalis L. bark extract solely or in combination with extracts prepared from either Polygonum aviculare L., Sambucus nigra L., or Isodon japonicus L. in bacterial lipopolysaccharide (LPS) stimulated human gingival fibroblasts (HGF-1) and human U-937 monocytes, as cell models of periodontal disease. HGF-1 and U-937 cells were incubated with LPS from either Porphyromonas gingivalis or Escherichia coli together with the four plant extracts alone or in combination. Secretion of anti-inflammatory cytokines from HGF-1 and U-937 cells was measured by means of a multiplexed bead assay system. Magnolia officinalis L. bark extract, at concentrations of 1 μg/mL and 10 μg/mL, reduced interleukin 6 (IL-6) and interleukin-8 (IL-8) secretion from HGF-1 cells to 72.5 ± 28.6% and reduced matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) secretion from U-937 cells to 8.87 ± 7.97% compared to LPS-treated cells (100%). The other three extracts also reduced secretion of these inflammatory markers but were not as effective. Combination of 9 μg/mL Magnolia officinalis L. extract with 1 μg/mL of each of the other extracts maintained the anti-inflammatory effect of Magnolia officinalis L. extract. Combination of 5 μg/mL Magnolia officinalis L. extract with 5 μg/mL Isodon japonicus L. extract also maintained the anti-inflammatory potential of the Magnolia officinalis L. extract, whereas increasing concentrations of any of the other plant extracts in the combination experiments reduced the Magnolia officinalis L. extract efficacy in U-937 cells. PMID:23711140

  1. Identification of plumericin as a potent new inhibitor of the NF-κB pathway with anti-inflammatory activity in vitro and in vivo

    PubMed Central

    Fakhrudin, N; Waltenberger, B; Cabaravdic, M; Atanasov, A G; Malainer, C; Schachner, D; Heiss, E H; Liu, R; Noha, S M; Grzywacz, A M; Mihaly-Bison, J; Awad, E M; Schuster, D; Breuss, J M; Rollinger, J M; Bochkov, V; Stuppner, H; Dirsch, V M

    2014-01-01

    BACKGROUND AND PURPOSE The transcription factor NF-κB orchestrates many pro-inflammatory signals and its inhibition is considered a promising strategy to combat inflammation. Here we report the characterization of the natural product plumericin as a highly potent inhibitor of the NF-κB pathway with a novel chemical scaffold, which was isolated via a bioactivity-guided approach, from extracts of Himatanthus sucuuba, an Amazonian plant traditionally used to treat inflammation-related disorders. EXPERIMENTAL APPROACH A NF-κB luciferase reporter gene assay was used to identify NF-κB pathway inhibitors from H. sucuuba extracts. Monitoring of TNF-α-induced expression of the adhesion molecules VCAM-1, ICAM-1 and E-selectin by flow cytometry was used to confirm NF-κB inhibition in endothelial cells, and thioglycollate-induced peritonitis in mice to confirm effects in vivo. Western blotting and transfection experiments were used to investigate the mechanism of action of plumericin. KEY RESULTS Plumericin inhibited NF-κB-mediated transactivation of a luciferase reporter gene (IC50 1 μM), abolished TNF-α-induced expression of the adhesion molecules VCAM-1, ICAM-1 and E-selectin in endothelial cells and suppressed thioglycollate-induced peritonitis in mice. Plumericin exerted its NF-κB pathway inhibitory effect by blocking IκB phosphorylation and degradation. Plumericin also inhibited NF-κB activation induced by transfection with the constitutively active catalytic subunit of the IκB kinase (IKK-β), suggesting IKK involvement in the inhibitory action of this natural product. CONCLUSION AND IMPLICATIONS Plumericin is a potent inhibitor of NF-κB pathways with a new chemical scaffold. It could be further explored as a novel anti-inflammatory lead compound. PMID:24329519

  2. Synthesis and biological evaluation of 2-aroylbenzofurans, rugchalcones A, B and their derivatives as potent anti-inflammatory agents.

    PubMed

    Seo, Young Hwa; Damodar, Kongara; Kim, Jin-Kyung; Jun, Jong-Gab

    2016-03-15

    An efficient synthesis of 2-aroylbenzofurans, rugchalcones A, B and their derivatives was accomplished in excellent yields by the Rap-Stoermer reaction between substituted salicylaldehydes and phenacyl bromides. Later their anti-inflammatory effects were evaluated in lipopolysaccharide (LPS)-induced RAW-264.7 macrophages. The compounds were exhibited exceptional potency against inflammatory mediated NO production with no cytotoxicity at 10 μM concentration and IC50 values are found in the range from 0.75 to 13.27 μM. Among the 2-aroylbenzofurans prepared in this study, compounds 4 (99.6%; IC50=0.57), rugchalcone B (2) (99.3%; IC50=4.13), 7 (96.8%; IC50=1.90) and 8 (74.3%; IC50=0.99) were showed the maximum inhibitory activity. This study suggests that compounds 2, 4, 7 and 8 which are having 4-hydroxyphenyl group and/or hydroxy (-OH) group at 5- and/or 6-position of benzofuran motif could be considered as a promising scaffolds for the further development of iNOS inhibitors for potential anti-inflammatory applications. PMID:26898337

  3. Pseudoephedrine/ephedrine shows potent anti-inflammatory activity against TNF-α-mediated acute liver failure induced by lipopolysaccharide/D-galactosamine.

    PubMed

    Wu, Zhongping; Kong, Xiangliang; Zhang, Tong; Ye, Jin; Fang, Zhaoqin; Yang, Xuejun

    2014-02-01

    The anti-inflammatory effects of pseudoephedrine/ephedrine were investigated using the experimental model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (D-GalN)-sensitised male rats in order to elucidate effects other than sympathomimetic effects. Rats were intraperitoneally injected with D-GalN (400 mg/kg) and LPS (40 μg/kg) to induce acute liver failure. The treatment groups were then intraperitoneally administered pseudoephedrine/ephedrine at 0 h and 4 h after induction and the activation induced by treatment with pseudoephedrine and/or LPS on the primary Kupffer cells (KCs) was monitored. Compared with controls induced by GalN/LPS alone, pseudoephedrine dramatically reduced the infiltration of inflammatory cells and bile ductular hyperplasia and hepatic necrosis observed in liver sections. It inhibited both hepatocellular apoptosis and the expression of monocyte chemotactic protein-1. It lowered the production of tumour necrosis factor-α (TNF-α) in the beginning of acute liver failure induced by D-GalN/LPS. Correspondingly, levels of alanine aminotransferase (ALT), total bilirubin (TBIL) and malondialdehyde were attenuated. Ephedrine demonstrated all these identical protective effects as well. In addition, pseudoephedrine significantly suppressed the production of p-IκB-α, reducing the degradation of sequestered nuclear factor kappa B (NF-κB) in the cytoplasm, and inhibited the translocation of NF-κB/p65 to the nucleus, the transcription of TNF-α mRNA and the production of TNF-α in primary KCs. These results suggest that pseudoephedrine and ephedrine have a potent anti-inflammatory activity against D-GalN/LPS-induced acute liver failure in rats, and this comprehensive anti-inflammatory effect may result from the inhibition of TNF-α production. PMID:24365491

  4. Synthesis, molecular properties, toxicity and biological evaluation of some new substituted imidazolidine derivatives in search of potent anti-inflammatory agents.

    PubMed

    Husain, Asif; Ahmad, Aftab; Khan, Shah Alam; Asif, Mohd; Bhutani, Rubina; Al-Abbasi, Fahad A

    2016-01-01

    The aim of this study was to design and synthesize pharmaceutical agents containing imidazolidine heterocyclic ring in the hope of developing potent, safe and orally active anti-inflammatory agents. A number of substituted-imidazolidine derivatives (3a-k) were synthesized starting from ethylene diamine and aromatic aldehydes. The imidazolidine derivatives (3a-k) were investigated for their anticipated anti-inflammatory, and analgesic activity in Wistar albino rats and Swiss albino mice, respectively. Bioactivity score, molecular and pharmacokinetic properties of the imidazolidine derivatives were calculated by online computer software programs viz. Molinspiration and Osiris property explorer. The results of biological testing indicated that among the synthesized compounds only three imidazolidine derivatives namely 4-[1,3-Bis(2,6-dichlorobenzyl)-2-imidazolidinyl]phenyl-diethylamine (3g), 4-[1,3-Bis(3-hydroxy-4-methoxybenzyl)-2-imidazolidinyl]phenyl-diethylamine (3i) and 4-(1,3-Bis(4-methoxybenzyl)-4-methylimidazolidin-2-yl)-phenyl-diethylamine (3j) possess promising anti-inflammatory and analgesic actions. Additionally these derivatives displayed superior GI safety profile (low severity index) with respect to the positive control, Indomethacin. All synthesized compounds showed promising bioactivity score for drug targets by Molinspiration software. Almost all the compounds were predicted to have very low toxicity risk by Osiris online software. Compound number (3i) emerged as a potential candidate for further research as it obeyed Lipinski's rule of five for drug likeness, exhibited promising biological activity in-vivo and showed no risk of toxicity in computer aided screening. PMID:26903774

  5. Rational Design of Small Peptides for Optimal Inhibition of Cyclooxygenase-2: Development of a Highly Effective Anti-Inflammatory Agent.

    PubMed

    Singh, Palwinder; Kaur, Sukhmeet; Kaur, Jagroop; Singh, Gurjit; Bhatti, Rajbir

    2016-04-28

    Among the small peptides 2-31, (H)Gly-Gly-Phe-Leu(OMe) (30) reduced prostaglandin production of COX-2 with an IC50 of 60 nM relative to 6000 nM for COX-1. The 5 mg kg(-1) dose of compound 30 rescued albino mice by 80% from capsaicin-induced paw licking and recovered it by 60% from carrageenan-induced inflammation. The mode of action of compound 30 for targeting COX-2, iNOS, and VGSC was investigated by using substance P, l-arginine, and veratrine, respectively, as biomarkers. The interactions of 30 with COX-2 were supported by isothermal calorimetry experiments showing a Ka of 6.10 ± 1.10 × 10(4) M(-1) and ΔG of -100.3 kJ mol(-1) in comparison to a Ka 0.41 × 10(3) ± 0.09 M(-1) and ΔG of -19.2 ± 0.06 kJ mol(-1) for COX-1. Moreover, compound 30 did not show toxicity up to a 2000 mg kg(-1) dose. Hence, we suggest peptide 30 as a highly potent and promising candidate for further development into an anti-inflammatory drug. PMID:27019010

  6. Crystal Structures of mPGES-1 Inhibitor Complexes Form a Basis for the Rational Design of Potent Analgesic and Anti-Inflammatory Therapeutics.

    PubMed

    Luz, John Gately; Antonysamy, Stephen; Kuklish, Steven L; Condon, Bradley; Lee, Matthew R; Allison, Dagart; Yu, Xiao-Peng; Chandrasekhar, Srinivasan; Backer, Ryan; Zhang, Aiping; Russell, Marijane; Chang, Shawn S; Harvey, Anita; Sloan, Ashley V; Fisher, Matthew J

    2015-06-11

    Microsomal prostaglandin E synthase 1 (mPGES-1) is an α-helical homotrimeric integral membrane inducible enzyme that catalyzes the formation of prostaglandin E2 (PGE2) from prostaglandin H2 (PGH2). Inhibition of mPGES-1 has been proposed as a therapeutic strategy for the treatment of pain, inflammation, and some cancers. Interest in mPGES-1 inhibition can, in part, be attributed to the potential circumvention of cardiovascular risks associated with anti-inflammatory cyclooxygenase 2 inhibitors (coxibs) by targeting the prostaglandin pathway downstream of PGH2 synthesis and avoiding suppression of antithrombotic prostacyclin production. We determined the crystal structure of mPGES-1 bound to four potent inhibitors in order to understand their structure-activity relationships and provide a framework for the rational design of improved molecules. In addition, we developed a light-scattering-based thermal stability assay to identify molecules for crystallographic studies. PMID:25961169

  7. Investigation on Toxicity and Teratogenicity in Rats of a Retinoid-Polyamine Conjugate with Potent Anti-Inflammatory Properties.

    PubMed

    Petridis, Theodoros; Giannakopoulou, Dimitra; Stamatopoulou, Vassiliki; Grafanaki, Katerina; Kostopoulos, Christos G; Papadaki, Helen; Malavaki, Christina J; Karamanos, Nikos K; Douroumi, Stathianna; Papachristou, Dionysios; Magoulas, George E; Papaioannou, Dionissios; Drainas, Denis

    2016-02-01

    Previous studies have shown that N(1),N(12)-bis(all-trans-retinoyl)spermine (RASP), a retinoid analog, inhibits RNase P activity and angiogenesis in the chicken embryo chorioallantoic membrane, demonstrates anti-tumor activity on prostate cancer cells, and acts as anti-inflammatory agent, being more effective and less toxic than all-trans retinoic acid. In an attempt to further characterize the biological profile of RASP, we tested its effects on organ toxicity and teratogenicity by daily oral gavage of RASP at a level of 50 mg/Kg of body weight in two generations of rats. We found that this compound does not induce changes to the body growth, the appearance of physical features, and the animal's reflexes. Additionally, no substantial histopathological lesions were found in brain, heart, lung, thymus, liver, thyroid gland, adrenal gland, pituitary gland, kidneys, spleen, skin, femora, prostate, testis, epididymis, vagina, uterus, and ovaries of RASP-treated animals. These results suggest RASP, as a promising lead compound for the treatment of several dermatological disorders and certain cancer types, has apparently minimal toxic side-effects as revealed in this two-generation reproduction study in rats. PMID:26762583

  8. Anti-Inflammatory Properties of Low and High Doxycycline Doses: An In Vitro Study

    PubMed Central

    Di Caprio, Roberta; Di Costanzo, Luisa; Monfrecola, Giuseppe

    2015-01-01

    Doxycycline is used to treat infective diseases because of its broadspectrum efficacy. High dose administration (100 or 200 mg/day) is often responsible for development of bacterial resistances and endogenous flora alterations, whereas low doses (20–40 mg/day) do not alter bacteria susceptibility to antibiotics and exert anti-inflammatory activities. In this study, we wanted to assess the efficacy of both low and high doxycycline doses in modulating IL-8, TNF-α, and IL-6 gene expression in HaCaT cells stimulated with LPS. Three experimental settings were used, differing in the timing of doxycycline treatment in respect to the insult induced by LPS: pretreatment, concomitant, and posttreatment. Low doses were more effective than high doses in modulating gene expression of LPS-induced proinflammatory cytokines (IL-8, TNF-α, and IL-6), when added before (pretreatment) or after (posttreatment) LPS stimulation. This effect was not appreciated when LPS and doxycycline were simultaneously added to cell cultures: in this case high doses were more effective. In conclusion, our in vitro study suggests that low doxycycline doses could be safely used in chronic or acute skin diseases in which the inflammatory process, either constantly in progress or periodically recurring, has to be prevented or controlled. PMID:25977597

  9. Antioxidant and anti-inflammatory effects of Marrubium alysson extracts in high cholesterol-fed rabbits

    PubMed Central

    Essawy, Soha S.; Abo-elmatty, Dina M.; Ghazy, Nabila M.; Badr, Jihan M.; Sterner, Olov

    2013-01-01

    The antioxidant and anti-inflammatory effects of hexane (HEXA), chloroform (CHLORO), ethyl acetate (EA) and total alcoholic (T. ALCOH) extracts of Marrubium alysson in hypercholesterolemic-fed rabbits were evaluated. Hypercholesterolemia was induced in male rabbits by high cholesterol diet (HCD) (350 mg/kg) for 8 weeks. Hypercholesterolemic rabbits were allocated into groups, treated with simvastatin (SIM 5 mg/kg), different extracts of M. alysson at two doses of 250, 500 mg/kg. A normal control group and an HCD control one were used for comparison. Lipid profile, as well as oxidized low density lipoprotein-cholesterol (ox-LDL-C), myeloperoxidase activity (MPO) and superoxide anion production (O2•−), C-reactive protein (CRP) and monocyte chemoattractant protein-1 (MCP-1) were also evaluated. In addition, histological examination of ascending aorta was performed. We found dyslipidemia associated with significant increases in ox-LDL-C 123.5 ± 9.8 nmol MDA/mg non-HDL, MPO activity 0.08 ± 0.05 U/100 mg tissue and O2•− production 3.5 ± 0.3 nmol cytochrome C reduced/min/g tissue × 10−4 in hypercholerterolemic rabbits. In addition, there was a significant increase in CRP 6.6 ± 0.49 μmol/L and MCP-1 190.9 ± 6.4 pg/ml and its mRNA expression in HCD. Intima appeared thick with thick plaques surrounding the intima and luminal narrowing. SIM, EA and HEXA extracts of M. alysson had lipid lowering effect, decrease in ox-LDL-C, MPO, O2•−, CRP and MCP-1 mRNA expression with improvement of the pathological picture. M. alysson enhanced the stability of plaque, had lipid lowering, anti-inflammatory and antioxidant activities. PMID:25473336

  10. Polysaccharide Constituents of Three Types of Sea Urchin Shells and Their Anti-Inflammatory Activities

    PubMed Central

    Jiao, Heng; Shang, Xiaohui; Dong, Qi; Wang, Shuang; Liu, Xiaoyu; Zheng, Heng; Lu, Xiaoling

    2015-01-01

    As a source of potent anti-inflammatory traditional medicines, the quantitative chromatographic fingerprints of sea urchin shell polysaccharides were well established via pre-column derivatization high performance liquid chromatography (HPLC) analysis. Based on the quantitative results, the content of fucose and glucose could be used as preliminary distinguishing indicators among three sea urchin shell species. Besides, the anti-inflammatory activities of the polysaccharides from sea urchin shells and their gonads were also determined. The gonad polysaccharide of Anthocidaris crassispina showed the most potent anti-inflammatory activity among all samples tested. PMID:26389925

  11. In vitro and in vivo characterization of A-940894: a potent histamine H4 receptor antagonist with anti-inflammatory properties

    PubMed Central

    Strakhova, MI; Cuff, CA; Manelli, AM; Carr, TL; Witte, DG; Baranowski, JL; Vortherms, TA; Miller, TR; Rundell, L; McPherson, MJ; Adair, RM; Brito, AA; Bettencourt, BM; Yao, BB; Wetter, JM; Marsh, KC; Liu, H; Cowart, MD; Brioni, JD; Esbenshade, TA

    2009-01-01

    Background and purpose: The histamine H4 receptor is widely expressed in cells of immune origin and has been shown to play a role in a variety of inflammatory processes mediated by histamine. In this report, we describe the in vitro and in vivo anti-inflammatory properties of a potent histamine H4 receptor antagonist, A-940894 (4-piperazin-1-yl-6,7-dihydro-5H-benzo[6,7]cyclohepta[1,2-d]pyrimidin-2-ylamine). Experimental approach: We have analysed the pharmacological profile of A-940894 at mouse native, rat recombinant and human recombinant and native, histamine H4 receptors by radioligand binding, calcium mobilization, mast cell shape change, eosinophil chemotaxis assays and in the mouse model of zymosan-induced peritonitis. Key results: A-940894 potently binds to both human and rat histamine H4 receptors and exhibits considerably lower affinity for the human histamine H1, H2 or H3 receptors. It potently blocked histamine-evoked calcium mobilization in the fluorometric imaging plate reader assays and inhibited histamine-induced shape change of mouse bone marrow-derived mast cells and chemotaxis of human eosinophils in vitro. In a mouse mast cell-dependent model of zymosan-induced peritonitis, A-940894 significantly blocked neutrophil influx and reduced intraperitoneal prostaglandin D2 levels. Finally, A-940894 has good pharmacokinetic properties, including half-life and oral bioavailability in rats and mice. Conclusions and Implications: These data suggest that A-940894 is a potent and selective histamine H4 receptor antagonist with pharmacokinetic properties suitable for long-term in vivo testing and could serve as a useful tool for the further characterization of histamine H4 receptor pharmacology. PMID:19413570

  12. In vitro anti-inflammatory and antioxidant activities and protein quality of high hydrostatic pressure treated squids (Todarodes pacificus).

    PubMed

    Zhang, Yifeng; Dai, Bona; Deng, Yun; Zhao, Yanyun

    2016-07-15

    This study investigated the in vitro anti-inflammatory and antioxidant properties, protein quality, and other related characteristics obtained by the single-cycle and two-cycle high hydrostatic pressure (HHP at 200, 400 and 600 MPa) treatment of squids (Todarodes pacificus). The soluble protein nitrogen content and in vitro protein digestibility increased significantly (p<0.05) after all HHP treatments, and the two-cycle 600 MPa HHP treatments yielded the highest values, 7.59% and 84.42%, respectively. The estimated protein efficiency ratios, and antioxidant and anti-inflammatory properties of squids significantly increased by all HHP treatments. (1)H nuclear magnetic resonance (NMR) showed that the main spectral changes associated to the anti-inflammatory properties of proteins following HHP treatment were in the range of 3.00-3.19 and 3.60-3.79 ppm. This indicates that the HHP treatments modified the protein and functional properties of squids and gave the relevant chemical shifts in NMR signals, either migrated or disappeared. PMID:26948613

  13. PGH1, the precursor for the anti-inflammatory prostaglandins of the 1-series, is a potent activator of the pro-inflammatory receptor CRTH2/DP2.

    PubMed

    Schröder, Ralf; Xue, Luzheng; Konya, Viktoria; Martini, Lene; Kampitsch, Nora; Whistler, Jennifer L; Ulven, Trond; Heinemann, Akos; Pettipher, Roy; Kostenis, Evi

    2012-01-01

    Prostaglandin H(1) (PGH(1)) is the cyclo-oxygenase metabolite of dihomo-γ-linolenic acid (DGLA) and the precursor for the 1-series of prostaglandins which are often viewed as "anti-inflammatory". Herein we present evidence that PGH(1) is a potent activator of the pro-inflammatory PGD(2) receptor CRTH2, an attractive therapeutic target to treat allergic diseases such as asthma and atopic dermatitis. Non-invasive, real time dynamic mass redistribution analysis of living human CRTH2 transfectants and Ca(2+) flux studies reveal that PGH(1) activates CRTH2 as PGH(2), PGD(2) or PGD(1) do. The PGH(1) precursor DGLA and the other PGH(1) metabolites did not display such effect. PGH(1) specifically internalizes CRTH2 in stable CRTH2 transfectants as assessed by antibody feeding assays. Physiological relevance of CRTH2 ligation by PGH(1) is demonstrated in several primary human hematopoietic lineages, which endogenously express CRTH2: PGH(1) mediates migration of and Ca(2+) flux in Th2 lymphocytes, shape change of eosinophils, and their adhesion to human pulmonary microvascular endothelial cells under physiological flow conditions. All these effects are abrogated in the presence of the CRTH2 specific antagonist TM30089. Together, our results identify PGH(1) as an important lipid intermediate and novel CRTH2 agonist which may trigger CRTH2 activation in vivo in the absence of functional prostaglandin D synthase. PMID:22442685

  14. Potent anti-inflammatory agent escin does not affect the healing of tibia fracture and abdominal wound in an animal model.

    PubMed

    Zhang, Leiming; Wang, Hongsheng; Wang, Tian; Jiang, Na; Yu, Pengfei; Liu, Feiyan; Chong, Yating; Fu, Fenghua

    2012-04-01

    Escin, a potent anti-inflammatory and anti-edematous agent, has been widely used clinically in preventing inflammatory edema after trauma, such as fracture and surgery. The aim of this study was to investigate whether escin has an inhibitory effect on fracture healing, and whether escin has an inhibitory effect on wound healing after surgery. Male New Zealand white rabbits underwent tibial mid-diaphyseal osteotomy, and were administered escin once per day for 10 days. At weeks 2, 4 and 6, bone fracture healing and bone mineral density were measured. The histologic examination of callus, osteocalcin, alkaline phosphatase, calcium and phosphate in the serum were also assayed. In another experiment, the rats underwent midline laparotomy, and received escin once prior to or after the operation. Six days later, the abdominal incision wounds were excised for measuring hydroxyproline levels. The results showed that there were no significant differences in fracture healing between the model and rabbits administered escin, and escin did not affect the hydroxyproline levels in the abdominal incision wounds of the rats. These findings suggest that escin has no inhibitory effect on fracture and wound healing in animal models. PMID:22969961

  15. Potent anti-inflammatory agent escin does not affect the healing of tibia fracture and abdominal wound in an animal model

    PubMed Central

    ZHANG, LEIMING; WANG, HONGSHENG; WANG, TIAN; JIANG, NA; YU, PENGFEI; LIU, FEIYAN; CHONG, YATING; FU, FENGHUA

    2012-01-01

    Escin, a potent anti-inflammatory and anti-edematous agent, has been widely used clinically in preventing inflammatory edema after trauma, such as fracture and surgery. The aim of this study was to investigate whether escin has an inhibitory effect on fracture healing, and whether escin has an inhibitory effect on wound healing after surgery. Male New Zealand white rabbits underwent tibial mid-diaphyseal osteotomy, and were administered escin once per day for 10 days. At weeks 2, 4 and 6, bone fracture healing and bone mineral density were measured. The histologic examination of callus, osteocalcin, alkaline phosphatase, calcium and phosphate in the serum were also assayed. In another experiment, the rats underwent midline laparotomy, and received escin once prior to or after the operation. Six days later, the abdominal incision wounds were excised for measuring hydroxyproline levels. The results showed that there were no significant differences in fracture healing between the model and rabbits administered escin, and escin did not affect the hydroxyproline levels in the abdominal incision wounds of the rats. These findings suggest that escin has no inhibitory effect on fracture and wound healing in animal models. PMID:22969961

  16. A Herbal Composition of Scutellaria baicalensis and Eleutherococcus senticosus Shows Potent Anti-Inflammatory Effects in an Ex Vivo Human Mucosal Tissue Model

    PubMed Central

    Zhang, Nan; Van Crombruggen, Koen; Holtappels, Gabriele; Bachert, Claus

    2012-01-01

    Background. Patients seek an effective alternative to pharmacotherapy including herbal treatment options for allergic rhinitis and rhinosinusitis. Material and Methods. Nasal mucosal tissue was obtained from 12 patients, fragmented, preincubated with tissue culture medium, S. baicalensis and/or E. senticosus and/or vitamin C (each compound 0.2 μg/mL and 2 μg/mL) for 1 hour at 37°C/5% CO2, and stimulated with anti-IgE for 30 minutes and 6 hours to imitate the allergic early and late phases. Furthermore, Staphylococcus aureus superantigen B (SEB) stimulation for 6 hours was used to imitate T-cell activation. Results. The combination of S. baicalensis and E. senticosus had a more potent suppressive effect on the release of PGD2, histamine, and IL-5 than S. baicalensis alone. The combination also resulted in a significant inhibition of SEB-induced cytokines comparable or superior to an established topical corticosteroid, fluticasone propionate. Vitamin C increased ciliary beat frequency, but had no anti-inflammatory effects. Discussion. The combination of S. baicalensis and E. senticosus may be able to significantly block allergic early-and late-phase mediators and substantially suppress the release of proinflammatory, and Th1-, Th2-, and Th17—derived cytokines. PMID:22272213

  17. The JAK-3 inhibitor CP-690550 is a potent anti-inflammatory agent in a murine model of pulmonary eosinophilia.

    PubMed

    Kudlacz, Elizabeth; Conklyn, Maryrose; Andresen, Catharine; Whitney-Pickett, Carrie; Changelian, Paul

    2008-03-17

    Janus kinase 3 (JAK-3) is a tyrosine kinase that has been shown to participate in the signaling of several cytokines that are believed to play a role in allergic airway disease, e.g. IL-2, 4 and 9. The current study describes the immunosuppressive effects of CP-690550, a novel, small molecule inhibitor of JAK-3, in a murine model of allergic pulmonary inflammation. In vitro, CP-690550 potently inhibited IL-4 induced upregulation of CD23 (IC(50)=57 nM) and class II major histocompatibility complex (MHCII) expression (IC(50)=71 nM) on murine B cells. Repeat aerosol exposure to ovalbumin in wild-type mice sensitized to the antigen resulted in preferential recruitment of Th2-like cells (IL-4+ and IL-5+) into bronchoalveolar lavage fluid (BAL). The importance of IL-4 in the development of pulmonary eosinophilia was supported by a marked (90%) reduction in the influx of these cells in IL-4KO mice similarly sensitized and ovalbumin exposed. Animals dosed with CP-690550 (15 mg/kg/d) during the period of antigen sensitization and boost demonstrated marked reductions in BAL eosinophils and levels of IL-13 and eotaxin following ovalbumin aerosol exposure. The JAK-3 inhibitor (1.5-15 mg/kg/d) also effectively reduced the same parameters when administered during the period of antigen challenge. In contrast, the calcineurin inhibitor tacrolimus (10 mg/kg) was effective only when administered during the period of ovalbumin aerosol exposure. These data support the participation of JAK-3 in processes that contribute to pulmonary eosinophilia in the allergic mouse model. CP-690550 represents an intriguing novel therapy for treatment of allergic conditions associated with airway eosinophilia including asthma and rhinitis. PMID:18242596

  18. Correction: The anti-inflammatory effect of a glycosylation product derived from the high hydrostatic pressure enzymatic hydrolysate of a flatfish byproduct.

    PubMed

    Choe, In-Hu; Jeon, Hyeon Jin; Eom, Sung-Hwan; Han, Young-Ki; Kim, Yoon Sook; Lee, Sang-Hoon

    2016-08-10

    Correction for 'The anti-inflammatory effect of a glycosylation product derived from the high hydrostatic pressure enzymatic hydrolysate of a flatfish byproduct' by In-Hu Choe, et al., Food Funct., 2016, 7, 2557-2565. PMID:27396872

  19. A high performance liquid chromatography with ultraviolet method for Eschweilera nana leaves and their anti-inflammatory and antioxidant activities

    PubMed Central

    Outuki, Priscila M.; Lazzeri, Nides S.; de Francisco, Lizziane M. B.; Bersani-Amado, Ciomar A.; Ferreira, Izabel C. P.; Cardoso, Mara Lane C.

    2015-01-01

    Background: Eschweilera nana Miers is a tree widely distributed in Cerrado, Brazil. Objective: In this study, we aimed to describe its phytochemical properties and antioxidant and topical anti-inflammatory effects for the first time, as well validate an high performance liquid chromatography with ultraviolet/visible (HPLC-UV-Vis) method for the separation and quantification of the main components (hyperoside and rutin) in the hydroalcoholic extract of E. nana leaves. Materials and Methods: Structural identification of compounds in E. nana extract was performed by analysis of spectral data by 1H nuclear magnetic resonance, 13C nuclear magnetic resonance and/or ESI/EM. The HPLC-UV-Vis method was validated according International Conference on Harmonization (ICH) parameters. The 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) method were used for determination of in vitro antioxidant activities and the croton oil-induced inflammation for evaluation of in vivo anti-inflammatory effects. Results: Hyperoside, rutin, α-amirin, β-amirin, β-sitosterol, and stigmasterol were identified in the hydroalcoholic extract of E. nana leaves. HPLC-UV-Vis was validated according to ICH parameters. Furthermore, in vitro and in vivo assays demonstrated that the hydroalcoholic extract and methanol fraction showed significant antioxidant and topical anti-inflammatory effects, as they were able to reduce ear edema induced by croton-oil application. Conclusions: This research showed the first phytochemical study of E. nana extract and their biological activities may be associated with the presence of flavonoids in the extracts. PMID:26246741

  20. Potent Anti-Inflammatory Activity of Pyrenocine A Isolated from the Marine-Derived Fungus Penicillium paxilli Ma(G)K

    PubMed Central

    Toledo, Thaís Regina; Dejani, Naiara N.; Monnazzi, Luis Gustavo Silva; Kossuga, Miriam H.; Berlinck, Roberto G. S.; Sette, Lara D.; Medeiros, Alexandra I.

    2014-01-01

    Very little is known about the immunomodulatory potential of secondary metabolites isolated from marine microorganisms. In the present study, we characterized pyrenocine A, which is produced by the marine-derived fungus Penicillium paxilli Ma(G)K and possesses anti-inflammatory activity. Pyrenocine A was able to suppress, both pretreatment and posttreatment, the LPS-induced activation of macrophages via the inhibition of nitrite production and the synthesis of inflammatory cytokines and PGE2. Pyrenocine A also exhibited anti-inflammatory effects on the expression of receptors directly related to cell migration (Mac-1) as well as costimulatory molecules involved in lymphocyte activation (B7.1). Nitrite production was inhibited by pyrenocine A in macrophages stimulated with CpG but not Poly I:C, suggesting that pyrenocine A acts through the MyD88-dependent intracellular signaling pathway. Moreover, pyrenocine A is also able to inhibit the expression of genes related to NFκB-mediated signal transduction on macrophages stimulated by LPS. Our results indicate that pyrenocine A has promissory anti-inflammatory properties and additional experiments are necessary to confirm this finding in vivo model. PMID:24574582

  1. Potent anti-inflammatory activity of sesquiterpene lactones from Neurolaena lobata (L.) R. Br. ex Cass., a Q'eqchi' Maya traditional medicine.

    PubMed

    Walshe-Roussel, Brendan; Choueiri, Christine; Saleem, Ammar; Asim, Muhammd; Caal, Federico; Cal, Victor; Rojas, Marco Otarola; Pesek, Todd; Durst, Tony; Arnason, John Thor

    2013-08-01

    The widespread use of Neurolaena lobata (L.) R. Br. ex Cass. by Q'eqchi' Maya and indigenous healers throughout the Caribbean for inflammatory conditions prompted the study of the anti-inflammatory activity of this traditional medicine. The objectives of this study were to conduct a detailed ethnobotanical investigation of the uses of N. lobata by the Q'eqchi' Maya of Belize for a variety of inflammatory symptoms and to evaluate the in vitro anti-inflammatory activity of leaf extract and isolated sesquiterpene lactones. The crude 80% EtOH extract of N. lobata leaves administered at 100 μg/mL reduced LPS-stimulated TNF-α production in THP-1 monocytes by 72% relative to the stimulated vehicle control. Isolated sesquiterpene lactones, neurolenins B, C+D, lobatin B and 9α-hydroxy-8β-isovalerianyloxy-calyculatolide were more active (IC50=0.17-2.32 μM) than the positive control parthenolide (IC50=4.79 μM). The results provide a pharmacological and phytochemical basis for the traditional use of this leaf for inflammatory conditions. PMID:23747054

  2. Similar Anti-Inflammatory Acute Responses from Moderate-Intensity Continuous and High-Intensity Intermittent Exercise

    PubMed Central

    Cabral-Santos, Carolina; Gerosa-Neto, José; Inoue, Daniela Sayuri; Panissa, Valéria Leme Gonçalves; Gobbo, Luís Alberto; Zagatto, Alessandro Moura; Campos, Eduardo Zapaterra; Lira, Fábio Santos

    2015-01-01

    The purpose of this study was to compare the effect of high-intensity intermittent exercise (HIIE) versus volume matched steady state exercise (SSE) on inflammatory and metabolic responses. Eight physically active male subjects completed two experimental sessions, a 5-km run on a treadmill either continuously (70% vVO2max) or intermittently (1:1 min at vVO2max). Blood samples were collected at rest, immediately, 30 and 60 minutes after the exercise session. Blood was analyzed for glucose, non-ester fatty acid (NEFA), uric acid, lactate, cortisol, and cytokines (IL-6, IL-10 and TNF-α) levels. The lactate levels exhibited higher values immediately post-exercise than at rest (HIIE 1.34 ± 0.24 to 7.11 ± 2.85, and SSE 1.35 ± 0.14 to 4.06±1.60 mmol·L-1, p < 0.05), but HIIE promoted higher values than SSE (p < 0.05); the NEFA levels were higher immediately post-exercise than at rest only in the SSE condition (0.71 ± 0.04 to 0.82±0.09 mEq/L, respectively, p < 0.05), yet, SSE promoted higher values than HIIE immediately after exercise (HIIE 0.72±0.03 vs SSE 0.82±0.09 mEq·L-1, p < 0.05). Glucose and uric acid levels did not show changes under the different conditions (p > 0.05). Cortisol, IL-6, IL-10 and TNF-α levels showed time-dependent changes under the different conditions (p < 0.05), however, the area under the curve of TNF-α in the SSE were higher than HIIE (p < 0.05), and the area under the curve of IL-6 in the HIIE showed higher values than SSE (p < 0.05). In addition, both exercise conditions promote increased IL-10 levels and IL-10/TNF-α ratio (p < 0.05). In conclusion, our results demonstrated that both exercise protocols, when volume is matched, promote similar inflammatory responses, leading to an anti-inflammatory status; however, the metabolic responses are different. Key points Metabolic contribution of both exercise, HIIE and SSE, was different. Both protocols leading to an anti-inflammatory status. HIIE induce a higher energy expenditure take

  3. Synthesis and Validation of a Hydroxypyrone-Based, Potent, and Specific Matrix Metalloproteinase-12 Inhibitor with Anti-Inflammatory Activity In Vitro and In Vivo

    PubMed Central

    Aerts, J.; Vandenbroucke, R. E.; Dera, R.; Balusu, S.; Van Wonterghem, E.; Moons, L.; Libert, C.; Dehaen, W.; Arckens, L.

    2015-01-01

    A hydroxypyrone-based matrix metalloproteinase (MMP) inhibitor was synthesized and assayed for its inhibitory capacity towards a panel of ten different MMPs. The compound exhibited selective inhibition towards MMP-12. The effects of inhibition of MMP-12 on endotoxemia and inflammation-induced blood-cerebrospinal fluid barrier (BCSFB) disruption were assessed both in vitro and in vivo. Similar to MMP-12 deficient mice, inhibitor-treated mice displayed significantly lower lipopolysaccharide- (LPS-) induced lethality compared to vehicle treated controls. Following LPS injection Mmp-12 mRNA expression was massively upregulated in choroid plexus tissue and a concomitant increase in BCSFB permeability was observed, which was restricted in inhibitor-treated mice. Moreover, an LPS-induced decrease in tight junction permeability of primary choroid plexus epithelial cells was attenuated by inhibitor application in vitro. Taken together, this hydroxypyrone-based inhibitor is selective towards MMP-12 and displays anti-inflammatory activity in vitro and in vivo. PMID:26351407

  4. Anti-inflammatory and antiobesity effects of mulberry leaf and fruit extract on high fat diet-induced obesity.

    PubMed

    Lim, Hyun Hwa; Lee, Sung Ok; Kim, Sun Yeou; Yang, Soo Jin; Lim, Yunsook

    2013-10-01

    The purpose of this study was to investigate the anti-inflammatory and antiobesity effect of combinational mulberry leaf extract (MLE) and mulberry fruit extract (MFE) in a high-fat (HF) diet-induced obese mice. Mice were fed a control diet or a HF diet for nine weeks. After obesity was induced, the mice were administered with single MLE at low dose (133 mg/kg/day, LMLE) and high dose (333 mg/kg/day, HMLE) or combinational MLE and MFE (MLFE) at low dose (133 mg MLE and 67 mg MFE/kg/day, LMLFE) and high dose (333 mg MLE and 167 mg MFE/kg/day, HMLFE) by stomach gavage for 12 weeks. The mulberry leaf and fruit extract treatment for 12 weeks did not show liver toxicity. The single MLE and combinational MLFE treatments significantly decreased plasma triglyceride, liver lipid peroxidation levels and adipocyte size and improved hepatic steatosis as compared with the HF group. The combinational MLFE treatment significantly decreased body weight gain, fasting plasma glucose and insulin, and homeostasis model assessment of insulin resistance. HMLFE treatment significantly improved glucose control during intraperitoneal glucose tolerance test compared with the HF group. Moreover, HMLFE treatment reduced protein levels of oxidative stress markers (manganese superoxide dismutase) and inflammatory markers (monocyte chemoattractant protein-1, inducible nitric oxide synthase, C-reactive protein, tumour necrosis factor-α and interleukin-1) in liver and adipose tissue. Taken together, combinational MLFE treatment has potential antiobesity and antidiabetic effects through modulation of obesity-induced inflammation and oxidative stress in HF diet-induced obesity. PMID:24000381

  5. Anti-inflammatory and anti-diabetic effects of brown seaweeds in high-fat diet-induced obese mice

    PubMed Central

    Oh, Ji-Hyun; Kim, Jaehoon

    2016-01-01

    BACKGROUND/OBJECTIVES Seaweeds have been reported to have various health beneficial effects. In this study, we investigated the potential anti-obesity and anti-inflammatory effects of four types of domestic brown seaweeds in a high-fat diet-induced obese mouse model and bone marrow-derived macrophages (BMDM). MATERIALS/METHODS Male C57BL/6N mice were fed low-fat diet (LFD), high-fat diet (HFD) or HFD containing Undaria Pinnatifida, HFD containing Laminaria Japonica (LJ), HFD containing Sargassum Fulvellum, or HFD containing Hizikia Fusiforme (HF) for 16 weeks. RESULTS Brown seaweed supplementation did not affect long-term HFD-associated changes in body weight or adiposity, although mice fed HFD + LJ or HFD + HF gained slightly less body weight compared with those fed HFD at the beginning of feeding. Despite being obese, mice fed HFD + LJ appeared to show improved insulin sensitivity compared to mice fed HFD. Consistently, we observed significantly reduced blood glucose concentrations in mice fed HFD + LJ compared with those of mice fed HFD. Although no significant differences in adipocyte size were detected among the HFD-fed groups, consumption of seaweeds decreased formation of HFD-induced crown-like structures in gonadal adipose tissue as well as plasma inflammatory cytokines. BMDM from mice fed HFDs with seaweeds showed differential regulation of pro-inflammatory cytokines such as IL-1β and IL-6 compared with BMDM from mice fed HFD by LPS stimulation. CONCLUSION Although seaweed consumption did not prevent long-term HFD-induced obesity in C57BL/6N mice, it reduced insulin resistance (IR) and circulation of pro-inflammatory cytokines. Therefore, seaweeds may ameliorate systemic inflammation and IR in obesity partially due to inhibition of inflammatory signaling in adipose tissue cells as well as bone marrow-derived immune cells. PMID:26865915

  6. Anti-inflammatory Activity.

    PubMed

    2016-01-01

    Inflammation is the body's first response to infection or injury and is critical for both innate and adaptive immunity. It can be considered as part of the complex biological response of vascular tissues to harmful stimuli such as pathogens, damaged cells, or irritants. The search for natural compounds and phytoconstituents that are able to interfere with these mechanisms by preventing a prolonged inflammation could be useful for human health. Here, the anti-inflammatory properties of plant-based drugs are put together with both in vitro and acute (carrageenan, egg albumin and croton oil) and chronic (cotton pellet) in vivo models. PMID:26939273

  7. Rosuvastatin Alters the Proteome of High Density Lipoproteins: Generation of alpha-1-antitrypsin Enriched Particles with Anti-inflammatory Properties.

    PubMed

    Gordon, Scott M; McKenzie, Benjamin; Kemeh, Georgina; Sampson, Maureen; Perl, Shira; Young, Neal S; Fessler, Michael B; Remaley, Alan T

    2015-12-01

    Statins lower plasma cholesterol by as much as 50%, thus reducing future cardiovascular events. However, the physiological effects of statins are diverse and not all are related to low density lipoprotein cholesterol (LDL-C) lowering. We performed a small clinical pilot study to assess the impact of statins on lipoprotein-associated proteins in healthy individuals (n = 10) with normal LDL-C (<130 mg/dL), who were treated with rosuvastatin (20 mg/day) for 28 days. Proteomic analysis of size-exclusion chromatography isolated LDL, large high density lipoprotein (HDL-L), and small HDL (HDL-S) fractions and spectral counting was used to compare relative protein detection before and after statin therapy. Significant protein changes were found in each lipoprotein pool and included both increases and decreases in several proteins involved in lipoprotein metabolism, complement regulation and acute phase response. The most dramatic effect of the rosuvastatin treatment was an increase in α-1-antirypsin (A1AT) spectral counts associated with HDL-L particles. Quantitative measurement by ELISA confirmed an average 5.7-fold increase in HDL-L associated A1AT. Molecular modeling predictions indicated that the hydrophobic reactive center loop of A1AT, the functional domain responsible for its protease inhibitor activity, is likely involved in lipid binding and association with HDL was found to protect A1AT against oxidative inactivation. Cell culture experiments, using J774 macrophages, demonstrated that the association of A1AT with HDL enhances its antiprotease activity, preventing elastase induced production of tumor necrosis factor α. In conclusion, we show that statins can significantly alter the protein composition of both LDL and HDL and our studies reveal a novel functional relationship between A1AT and HDL. The up-regulation of A1AT on HDL enhances its anti-inflammatory functionality, which may contribute to the non-lipid lowering beneficial effects of statins. PMID

  8. A new insight into viral proteins as Immunomodulatory therapeutic agents: KSHV vOX2 a homolog of human CD200 as a potent anti-inflammatory protein

    PubMed Central

    Mousavinezhad-Moghaddam, Maryam; Amin, Abbas Ali; Rafatpanah, Houshang; Rezaee, Seyed Abdol Rahim

    2016-01-01

    The physiologic function of the immune system is defense against infectious microbes and internal tumour cells, Therefore, need to have precise modulatory mechanisms to maintain the body homeostasis. The mammalian cellular CD200 (OX2)/CD200R interaction is one of such modulatory mechanisms in which myeloid and lymphoid cells are regulated. CD200 and CD200R molecules are membrane proteins that their immunomodulatory effects are able to suppress inflammatory responses, particularly in the privilege sites such as CNS and eyes. Kaposi’s sarcoma-associated herpesvirus (KSHV), encodes a wide variety of immunoregulatory proteins which play central roles in modulating inflammatory and anti-inflammatory responses in favour of virus dissemination. One such protein is a homologue of the, encoded by open reading frame (ORF) K14 and therefore called vOX2. Based on its gene expression profile during the KSHV life cycle, it is hypothesised that vOX2 modulates host inflammatory responses. Moreover, it seems that vOX2 involves in cell adhesion and modulates innate immunity and promotes Th2 immune responses. In this review the activities of mammalian CD200 and KSHV CD200 in cell adhesion and immune system modulation are reviewed in the context of potential therapeutic agents. PMID:27096058

  9. A new insight into viral proteins as Immunomodulatory therapeutic agents: KSHV vOX2 a homolog of human CD200 as a potent anti-inflammatory protein.

    PubMed

    Mousavinezhad-Moghaddam, Maryam; Amin, Abbas Ali; Rafatpanah, Houshang; Rezaee, Seyed Abdol Rahim

    2016-01-01

    The physiologic function of the immune system is defense against infectious microbes and internal tumour cells, Therefore, need to have precise modulatory mechanisms to maintain the body homeostasis. The mammalian cellular CD200 (OX2)/CD200R interaction is one of such modulatory mechanisms in which myeloid and lymphoid cells are regulated. CD200 and CD200R molecules are membrane proteins that their immunomodulatory effects are able to suppress inflammatory responses, particularly in the privilege sites such as CNS and eyes. Kaposi's sarcoma-associated herpesvirus (KSHV), encodes a wide variety of immunoregulatory proteins which play central roles in modulating inflammatory and anti-inflammatory responses in favour of virus dissemination. One such protein is a homologue of the, encoded by open reading frame (ORF) K14 and therefore called vOX2. Based on its gene expression profile during the KSHV life cycle, it is hypothesised that vOX2 modulates host inflammatory responses. Moreover, it seems that vOX2 involves in cell adhesion and modulates innate immunity and promotes Th2 immune responses. In this review the activities of mammalian CD200 and KSHV CD200 in cell adhesion and immune system modulation are reviewed in the context of potential therapeutic agents. PMID:27096058

  10. Rapid identification of anti-inflammatory compounds from Tongmai Yangxin Pills by liquid chromatography with high-resolution mass spectrometry and chemometric analysis.

    PubMed

    Tao, Shan; Huang, Yi; Chen, Zhui; Chen, Yaqi; Wang, Yi; Wang, Yi

    2015-06-01

    We present an integrated approach to rapidly identify anti-inflammatory compounds of TongmaiYangxin Pills (TMYXP), a botanical drug for the treatment of cardiovascular disease. Liquid chromatography coupled with high-resolution mass spectrometry was used to analyze the chemical composition of TMYXP. Eighty compounds of TMYXP including flavonoids, coumarins, iridoid glycosides, saponins, and lignans, were identified unambiguously or tentatively. After the rapid isolation and bioassay, 18 fractions of TMYXP were obtained and their anti-inflammatory activities were evaluated in lipopolysaccharide-stimulated RAW 264.7 macrophages. We performed chemometric analysis to reveal the correlation between the chemical and pharmacological information of the fractions to facilitate the identification of active compounds. To verify the reliability of the proposed method in discovering active components from a complex mixture, activities of seven compounds, which were positively or negatively related to bioactivity according to calculation, were validated in vitro. Results indicated that six active compounds with high R values exerted certain anti-inflammatory effects in a dose-dependent manner with IC50 values of 53.6-204.1 μM. Our findings suggest that the integrated use of identification based on high-resolution mass spectrometry and chemometric methods could rapidly identify active compounds from complex mixture of natural products. PMID:25943824

  11. Low-molecular-weight fucoidan and high-stability fucoxanthin from brown seaweed exert prebiotics and anti-inflammatory activities in Caco-2 cells

    PubMed Central

    Hwang, Pai-An; Phan, Nam Nhut; Lu, Wen-Jung; Ngoc Hieu, Bui Thi; Lin, Yen-Chang

    2016-01-01

    Background The aim of this study is to investigate the anti-inflammatory effects of low-molecular-weight fucoidan (LMF) and high-stability fucoxanthin (HS-Fucox) in a lipopolysaccharide-induced inflammatory Caco-2 cell line co-culture with B. lactis. Methods We used various methods such as transepithelial resistance (TER) assay, cytokine secretion assay, and tight junction protein mRNA expression assay to examine LMF and HS-Fucox anti-inflammatory properties. Results LMF and HS-Fucox activated probiotic growth and reduced the inflammation of the intestinal epithelial cells. Moreover, the combination of LMFHS-Fucox dramatically enhanced the intestinal epithelial barrier and immune function against the lipopolysaccharide effect by inhibiting IL-1β and TNF-α and promoting IL-10 and IFN-γ. Conclusion These findings suggested that LMF and HS-Fucox, alone or in combination, could be the potential natural compounds to enhance the immune system and have an anti-inflammatory effect on the intestinal cells. PMID:27487850

  12. Mushrooms: A Potential Natural Source of Anti-Inflammatory Compounds for Medical Applications

    PubMed Central

    Elsayed, Elsayed A.; El Enshasy, Hesham; Wadaan, Mohammad A. M.; Aziz, Ramlan

    2014-01-01

    For centuries, macrofungi have been used as food and medicine in different parts of the world. This is mainly attributed to their nutritional value as a potential source of carbohydrates, proteins, amino acids, and minerals. In addition, they also include many bioactive metabolites which make mushrooms and truffles common components in folk medicine, especially in Africa, the Middle East, China, and Japan. The reported medicinal effects of mushrooms include anti-inflammatory effects, with anti-inflammatory compounds of mushrooms comprising a highly diversified group in terms of their chemical structure. They include polysaccharides, terpenoids, phenolic compounds, and many other low molecular weight molecules. The aims of this review are to report the different types of bioactive metabolites and their relevant producers, as well as the different mechanisms of action of mushroom compounds as potent anti-inflammatory agents. PMID:25505823

  13. Anti-Inflammatory Iridoids of Botanical Origin

    PubMed Central

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer’s disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective anti-inflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo. PMID:22414102

  14. Natural products and anti-inflammatory activity.

    PubMed

    Yuan, Gaofeng; Wahlqvist, Mark L; He, Guoqing; Yang, Min; Li, Duo

    2006-01-01

    The aim of this review paper was to summarise some commonly available natural products and their anti-inflammatory activity. We have collected data from MEDLINE, Current Contents and scientific journals, which included 92 publications. There are numerous natural products detailed in this literature; however we have summarized a few of the most commonly available and potent ones. In this paper, the natural products with anti-inflammatory activity including curcumin, parthenolide, cucurbitacins, 1,8-cineole, pseudopterosins, lyprinol, bromelain, flavonoids, saponins, marine sponge natural products and Boswellia serrata gum resin were reviewed. Natural products play a significant role in human health in relation to the prevention and treatment of inflammatory conditions. Further studies are being conducted to investigate the mechanism of action, metabolism, safety and long term side effect of these natural products, as well as interactions between these natural products with food and drug components. PMID:16672197

  15. Evaluation of Caesalpinia bonducella flower extract for anti-inflammatory action in rats and its high performance thin layer chromatography chemical fingerprinting

    PubMed Central

    Arunadevi, Rathinam; Murugammal, Shanmugam; Kumar, Dinesh; Tandan, Surendra Kumar

    2015-01-01

    Objective: The study is aimed to evaluate anti-inflammatory activity of Caesalpinia bonducella Fleming (Caesalpiniaceae) flower extract (CBFE) and to study its effect on radiographic outcome in adjuvant induced arthritis and authentication by high performance thin layer chromatography (HPTLC) chemical fingerprinting. Materials and Methods: CBFE was administered orally (30, 100, and 300 mg/kg b.wt.) and tested for its anti-inflammatory activity in carrageenan-induced inflammation, cotton pellet induced chronic granulomatous inflammation and autacoids-induced inflammation. Effect on radiographic outcome was tested in adjuvant-induced arthritis. CBFE was HPTLC fingerprinted in suitable solvent system. Result: In carrageenan-induced inflammation, CBFE produced significant inhibition in edema volume at all the doses (30, 100 and 300 mg/kg b.wt.) and percentage of inhibition was 28.68, 31.00, and 22.48, respectively as compared to control at 5 h of its administration. In cotton pellet granuloma assay, CBFE significantly decreased the granuloma weight at 300 mg/kg dose level by 22.53%. CBFE (300 mg/kg) caused significant inhibition by 37.5, 44.44, and 35.29% edema volume, at ½, 1 and 3 h after 5-hydroxytryptamine injection, respectively. Radiographic score of animals treated with 300 mg/kg CBFE was significantly decreased when compared to arthritic control animals. Conclusion: The extract was found to possess significant anti-inflammatory activity. CBFE treatment improved the bony architecture in adjuvant-induced arthritis in rats. The developed HPTLC fingerprint would be helpful in the authentication of C. bonducella flower extract. PMID:26729956

  16. Anti-inflammatory iridoids of botanical origin.

    PubMed

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer's disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective antiinflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo. PMID:22414102

  17. Structural Insights into the Interaction Between a Potent Anti-Inflammatory Protein, Viral CC Chemokine Inhibitor (vCCI), and the Human CC Chemokine, Eotaxin-1

    SciTech Connect

    Kuo, Nai-Wei; Gao, Yong; Schill, Megan S.; Isern, Nancy G.; Dupureur, Cynthia M.; Liwang, Patricia J.

    2014-01-30

    Chemokines play important roles in the immune system, not only recruiting leukocytes to the site of infection and inflammation but also guiding cell homing and cell development. The soluble poxvirusencoded protein vCCI, a CC chemokine inhibitor, can bind to human CC chemokines tightly to impair the host immune defense. This protein has no known homologs in eukaryotes, and may represent a potent method to stop inflammation. Previously, our structure of the vCCI:MIP-1β complex indicated that vCCI uses negatively charged residues in β-sheet II to interact with positively charged residues in the MIP-1βN-terminus, 20’s region and 40’s loop. However, the interactions between vCCI and other CC chemokines have not yet been fully explored. Here, we used NMR and fluorescence anisotropy to study the interaction between vCCI and eotaxin-1 (CCL11), another CC chemokine that is an important factor in the asthma response. NMR results reveal that the binding pattern is very similar to the vCCI:MIP-1βcomplex, and suggest that electrostatic interactions provide a major contribution to binding. Fluorescence anisotropy results on variants of eotaxin-1 further confirm the critical roles of the charged residues in eotaxin. Compared to wild-type eotaxin, single, double, or triple mutations at these critical charged residues weaken the binding. One exception is the K47A mutation that exhibits increased affinity for vCCI, which can be explained structurally. In addition, the binding affinity between vCCI and other wild type CC chemokines, MCP-1, MIP-1β and RANTES, were determined as 1.09 nM, 1.16 nM, and 0.22 nM, respectively. To our knowledge, this is the first work quantitatively measuring the binding affinity between vCCI and different CC chemokines.

  18. The anti-inflammatory effect of a glycosylation product derived from the high hydrostatic pressure enzymatic hydrolysate of a flatfish byproduct.

    PubMed

    Choe, In-Hu; Jeon, Hyeon Jin; Eom, Sung-Hwan; Han, Young-Ki; Kim, Yoon Sook; Lee, Sang-Hoon

    2016-06-15

    In this study, flatfish byproducts were hydrolyzed by Protamex at high hydrostatic pressure and glycosylated with ribose to utilize the protein of flatfish byproducts as a nutraceutical. We investigated the anti-inflammatory effects of glycosylated fish byproduct protein hydrolysate (GFPH) and its anti-inflammatory mechanisms were elucidated in lipopolysaccharide (LPS)-stimulated RAW 264.7 mouse macrophage. The results showed that GFPH suppresses LPS-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) dose-dependently. The enzyme-linked immunosorbent assay (ELISA) kit clearly demonstrated that GFPH significantly reduced the production of pro-inflammatory cytokines such as, interleukin (IL)-6, interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein (MCP)-1. Moreover, GFPH reduced nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) activation. These results indicate that the inhibitory effects of GFPH on LPS-induced NO and PGE2 production might be due to the suppression of the NF-κB and MAPKs signaling pathways. Therefore, these results suggest that flatfish byproducts are latent bioactive resources and GFPH may have potential as a therapeutic agent in the treatment of various inflammatory diseases. PMID:27068102

  19. Amides of non-steroidal anti-inflammatory drugs with thiomorpholine can yield hypolipidemic agents with improved anti-inflammatory activity.

    PubMed

    Theodosis-Nobelos, Panagiotis; Kourti, Malamati; Gavalas, Antonios; Rekka, Eleni A

    2016-02-01

    Novel amides of non steroidal anti-inflammatory drugs (NSAIDs), α-lipoic acid and indole-3-acetic acid with thiomorpholine were synthesised by a simple method and at high yields (60-92%). All the NSAID derivatives highly decreased lipidemic indices in the plasma of Triton treated hyperlipidemic rats. The most potent compound was the indomethacin derivative, which decreased total cholesterol, triglycerides and LDL cholesterol by 73%, 80% and 83%, respectively. They reduced acute inflammation equally or more than most parent acids. Hence, it could be concluded that amides of common NSAIDs with thiomorpholine acquire considerable hypolipidemic potency, while they preserve or augment their anti-inflammatory activity, thus addressing significant risk factors for atherogenesis. PMID:26750253

  20. Pharmacological potential of Populus nigra extract as antioxidant, anti-inflammatory, cardiovascular and hepatoprotective agent

    PubMed Central

    Debbache-Benaida, Nadjet; Atmani-Kilani, Dina; Schini-Keirth, Valérie Barbara; Djebbli, Nouredine; Atmani, Djebbar

    2013-01-01

    Objective To evaluate antioxidant, anti-inflammatory, hepatoprotective and vasorelaxant activities of Populus nigra flower buds ethanolic extract. Methods Antioxidant and anti-inflammatory activities of the extract were assessed using respectively the ABTS test and the animal model of carrageenan-induced paw edema. Protection from hepatic toxicity caused by aluminum was examined by histopathologic analysis of liver sections. Vasorelaxant effect was estimated in endothelium-intact and -rubbed rings of porcine coronary arteries precontracted with high concentration of U46619. Results The results showed a moderate antioxidant activity (40%), but potent anti-inflammatory activity (49.9%) on carrageenan-induced mice paw edema, and also as revealed by histopathologic examination, complete protection against AlCl3-induced hepatic toxicity. Relaxant effects of the same extract on vascular preparation from porcine aorta precontracted with high concentration of U46619 were considerable at 10−1 g/L, and comparable (P>0.05) between endothelium-intact (67.74%, IC50=0.04 mg/mL) and -rubbed (72.72%, IC50=0.075 mg/mL) aortic rings. Conclusions The extract exerted significant anti-inflammatory, hepatoprotective and vasorelaxant activities, the latter being endothelium-independent believed to be mediated mainly by the ability of components present in the extract to exert antioxidant properties, probably related to an inhibition of Ca2+ influx. PMID:23998009

  1. Two new proanthocyanidin trimers isolated from Cistus incanus L. demonstrate potent anti-inflammatory activity and selectivity to cyclooxygenase isoenzymes inhibition.

    PubMed

    Mansoor, K A; Matalka, K Z; Qa'dan, F S; Awad, R; Schmidt, M

    2016-09-01

    Two new proanthocyanidin trimers have been isolated from Cistus incanus herb; gallocatechin-(4α→6)-gallocatechin-(4α→8)-gallocatechin (compound 1) and epigallocatechin-3-O-gallate-(4ß→8)-epigallocatechin-3-O-gallate-(4ß→8)-gallocatechin (compound 2). The structures were determined on the basis of 1D- and 2D-NMR (HSQC, HMBC) of their peracetylated derivatives, MALDI-TOF-MS and by acid-catalysed degradation with phloroglucinol. A more abundant proanthocyanidin oligomer was also isolated, purified and its chemical constitution studied by (13)C-NMR and phloroglucinol degradation. The mean molecular weight of the polymer was estimated to be about 7 to 8 flavan-3-ol-units with a ratio of procyanidin : prodelphinidin units at 1:5, some of which are derivatised by gallic acid. Water extract and higher oligomeric proanthocyanidin fractions of C. incanus significantly inhibited TPA-induced oedema when applied topically at doses of 0.5 and 1 mg/ear in mice. Furthermore, the extracts and the pure compounds inhibited COX-1 and COX-2 activities. In addition, compound 2 exhibited an IC50 of 4.5 μM against COX-2 indicating its high selectivity towards COX-2. PMID:26414773

  2. High Spinal Anesthesia Enhances Anti-Inflammatory Responses in Patients Undergoing Coronary Artery Bypass Graft Surgery and Aortic Valve Replacement: Randomized Pilot Study

    PubMed Central

    Lee, Trevor W. R.; Kowalski, Stephen; Falk, Kelsey; Maguire, Doug; Freed, Darren H.; HayGlass, Kent T.

    2016-01-01

    Background Cardiac surgery induces many physiologic changes including major inflammatory and sympathetic nervous system responses. Here, we conducted a single-centre pilot study to generate hypotheses on the potential immune impact of adding high spinal anaesthesia to general anaesthesia during cardiac surgery in adults. We hypothesized that this strategy, previously shown to blunt the sympathetic response and improve pain management, could reduce the undesirable systemic inflammatory responses caused by cardiac surgery. Methods This prospective randomized unblinded pilot study was conducted on 14 patients undergoing cardiac surgery for coronary artery bypass grafting and/or aortic valve replacement secondary to severe aortic stenosis. The primary outcome measures examined longitudinally were serum pro-inflammatory (IL-6, IL-1b, CCL2), anti-inflammatory (IL-10, TNF-RII, IL-1Ra), acute phase protein (CRP, PTX3) and cardiovascular risk (sST2) biomarkers. Results The kinetics of pro- and anti-inflammatory biomarker was determined following surgery. All pro-inflammatory and acute phase reactant biomarker responses induced by surgical stress were indistinguishable in intensity and duration between control groups and those who also received high spinal anaesthesia. Conversely, IL-10 levels were markedly elevated in both intensity and duration in the group receiving high spinal anesthesia (p = 0.005). Conclusions This hypothesis generating pilot study suggests that high spinal anesthesia can alter the net inflammatory response that results from cardiac surgery. In appropriately selected populations, this may add incremental benefit by dampening the net systemic inflammatory response during the week following surgery. Larger population studies, powered to assess immune, physiologic and clinical outcomes in both acute and longer term settings, will be required to better assess potential benefits of incorporating high spinal anesthesia. Trial Registration Clinical

  3. Anti-inflammatory treatment.

    PubMed

    Fistarol, Susanna K; Itin, Peter H

    2011-01-01

    Inflammatory mucosal disorders are treated conventionally with potent or superpotent topical corticosteroids. For more than 20 years, topical cyclosporine has been used in the management of oral mucous membrane affections. Recently other topically applied calcineurin inhibitors, namely tacrolimus and pimecrolimus, expanded the armamentarium for the treatment of inflammatory mucosal diseases. This chapter places its main emphasis on the efficacy and safety of topical calcineurin inhibitors in the management of different oral and genital conditions, including anogenital lichen sclerosus (LS), oral and genital lichen planus, plasma cell balanitis and vulvitis, mucous membrane pemphigoid and pemphigus vulgaris, all conditions having usually a protracted course, requiring long-lasting treatment. There is current evidence for the effectiveness of both pimecrolimus and tacrolimus in the topical treatment of inflammatory oral mucosal diseases and genital dermatoses, especially oral lichen planus and genital LS. PMID:21325840

  4. Synthesis and anti-inflammatory activity of aromatic glucosinolates.

    PubMed

    Vo, Quan V; Trenerry, Craige; Rochfort, Simone; Wadeson, Jenny; Leyton, Carolina; Hughes, Andrew B

    2013-10-01

    Aromatic GLs are important members of the glucosinolate family of compounds because of their potential biological activity and medicinal properties. This study has shown success in the high yielding synthesis of some important aromatic GLs as well as the results of testing for anti-inflammatory properties of the synthetic GLs. 3,4-Dimethoxyphenylglucosinolate was found to be the most active anti-inflammatory of the seven glucosinolates assayed. PMID:23978357

  5. Rapid Anti-Inflammatory Effects of Gonadotropin-Releasing Hormone Antagonism in Rheumatoid Arthritis Patients with High Gonadotropin Levels in the AGRA Trial

    PubMed Central

    Kåss, Anita; Hollan, Ivana; Fagerland, Morten Wang; Gulseth, Hans Christian; Torjesen, Peter Abusdal; Førre, Øystein Torleiv

    2015-01-01

    Objectives Gonadotropin-releasing hormone (GnRH) and pituitary gonadotropins, which appear to be proinflammatory, undergo profound secretory changes during events associated with rheumatoid arthritis (RA) onset, flares, or improvement e.g. menopausal transition, postpartum, or pregnancy. Potential anti-inflammatory effects of GnRH-antagonists may be most pronounced in patients with high GnRH and gonadotropin levels. Therefore, we investigated the efficacy and safety of a GnRH-antagonist, cetrorelix, in RA patients with high gonadotropin levels. Methods We report intention-to-treat post hoc analyses among patients with high gonadotropin levels (N = 53), i.e. gonadotropin levels>median, from our proof-of-concept, double-blind AGRA-study (N = 99). Patients with active longstanding RA, randomized to subcutaneous cetrorelix (5mg days1–2; 3mg days 3–5) or placebo, were followed through day 15. Only predefined primary and secondary endpoints were analyzed. Results The primary endpoint, Disease Activity Score of 28-joint counts with C-reactive protein (DAS28-CRP), improved with cetrorelix compared with placebo by day 5 (-1.0 vs. -0.4, P = 0∙010). By day 5, more patients on cetrorelix achieved at least a 20% improvement in the American College of Rheumatology scale (44% vs. 19%, P = 0.049), DAS28-CRP≤3.2 (24% vs. 0%, P = 0.012), and European League against Rheumatism ‘Good-responses’ (19% vs. 0%, P = 0.026). Tumor necrosis factor-α, interleukin-1β, interleukin-10, and CRP decreased with cetrorelix (P = 0.045, P = 0.034, P = 0.020 and P = 0.042 respectively) compared with placebo by day 15. Adverse event rates were similar between groups. Conclusions GnRH-antagonism produced rapid anti-inflammatory effects in RA patients with high gonadotropin levels. GnRH should be investigated further in RA. Trial Registration ClinicalTrials.gov NCT00667758 PMID:26460564

  6. Simultaneous analysis of several non-steroidal anti-inflammatory drugs in human urine by high-performance liquid chromatography with normal solid-phase extraction.

    PubMed

    Hirai, T; Matsumoto, S; Kishi, I

    1997-05-01

    A practical and reproducible high-performance liquid chromatographic method using normal solid-phase extraction has been developed for the simultaneous analysis of twelve non-steroidal anti-inflammatory drugs (NSAIDs) in human urine. A urine specimen mixed with acetate buffer pH 5.0 was purified by solid-phase extraction on a Sep-Pak Silica cartridge. The analyte was chromatographed by a reversed-phase Inertsil ODS-2 column using a phosphate buffer-acetonitrile at pH 5.0 as the mobile phase, and the effluent from the column was monitored at 230 or 320 nm. Absolute recoveries were greater than 73% for all of the twelve NSAIDs. The present method enabled simple manipulation and isocratic HPLC with UV analysis as well as high sensitivity of 0.005 microg/ml for naproxen, and 0.05 microg/ml for sulindac, piroxicam, loxoprofen, ketoprofen, felbinac, fenbufen, flurbiprofen, diclofenac, ibuprofen and mefenamic acid as the quantitation limit in human urine using indomethacin as an internal standard. PMID:9188827

  7. Development of high-throughput multi-residue method for non-steroidal anti-inflammatory drugs monitoring in swine muscle by LC-MS/MS.

    PubMed

    Castilhos, Tamara S; Barreto, Fabiano; Meneghini, Leonardo; Bergold, Ana Maria

    2016-07-01

    A reliable and simple method for the detection and quantification of residues of 14 non-steroidal anti-inflammatory drugs and a metamizole metabolite in swine muscle was developed using liquid chromatography-electrospray ionisation-tandem mass spectrometry (LC-ESI-MS/MS). The samples were extracted with acetonitrile (ACN) in solid-liquid extraction followed by a low-temperature partitioning (LLE-LTP) process at -20 ± 2°C. After evaporation to dryness, the residue was reconstituted with hexane and a mixture of water:acetonitrile (1:1). LC separation was achieved on a reversed-phase (RP18) column with gradient elution using water (phase A) and ACN (phase B) both containing 1 mmol l(-)(1) ammonium acetate (NH4COO) with 0.025% acetic acid. Analysis was carried out on a triple-quadrupole tandem mass spectrometer (LC-MS/MS) in multiple reaction monitoring mode using an electrospray interface in negative and positive mode in a single run. Method validation was performed according to the criteria of Commission Decision No. 2002/657/EC. The matrix effect and linearity were evaluated. Decision limit (CCα), detection capability (CCβ), accuracy and repeatability of the method are also reported. The proposed method proved to be simple, easy and adequate for high-throughput analysis and was applied to routine analysis by the Brazilian Ministry of Agriculture, Livestock and Food Supply. PMID:27268755

  8. Optimisation by response surface methodology of microextraction by packed sorbent of non steroidal anti-inflammatory drugs and ultra-high performance liquid chromatography analysis of dialyzed samples.

    PubMed

    D'Archivio, Angelo Antonio; Maggi, Maria Anna; Ruggieri, Fabrizio; Carlucci, Maura; Ferrone, Vincenzo; Carlucci, Giuseppe

    2016-06-01

    A procedure based on microextraction by packed sorbent (MEPS) followed by ultra-high performance liquid chromatography (UHPLC) with photodiode array (PDA) detection has been developed for the analysis of seven selected non steroidal anti-inflammatory drugs (NSAIDs) in human dialysates. The influence on MEPS efficiency of pH of the sample, pH of the washing solvent and methanol content in the hydro-alcoholic elution mixture has been investigated by response surface methodology based on a Box-Behnken design of experiments. Among the above factors, pH of sample is the variable that mostly influences MEPS recovery. UHPLC separation of the NSAIDs was completed within less than 4min under isocratic elution conditions on a Fortis SpeedCore C18 column (150×4.6mm I.D., 2.6μm) using acetonitrile-phosphate buffer as the mobile phase. Calibration curves of the NSAIDs were linear over the concentration range 0.025-15μg/mL, with correlation coefficients≥0.998. Intra- and inter-assay relative standard deviations were <8% and recovery values ranged from 94% to 100% for the quality control samples. The results reveal that the developed MEPS/PDA-UHPLC method exhibits a good accuracy and precision and is well suited for the rapid analysis of human dialysate from patients treated with the selected NSAIDs. PMID:27017570

  9. The anti-inflammatory action of fermented soybean products in kidney of high-fat-fed rats.

    PubMed

    Choi, Jehun; Kwon, Sun-Hwa; Park, Kun-Young; Yu, Byung Pal; Kim, Nam Deuk; Jung, Jee H; Chung, Hae Young

    2011-03-01

    Soybean has many compounds with a variety of biological properties that potentially benefit human health; among them, isoflavones have inhibitory effects on lipid oxidation in adipose tissue. In this study, we examined two Korean traditional fermented soybean products--doenjang (DNJ) and cheonggukjang (CGJ)--for their ability to suppress redox-sensitive nuclear factor κB (NF-κB) activation in the kidney of rats fed a high-fat diet. Sprague-Dawley rats, 4 weeks old, were fed soybean, DNJ, or CGJ (1 g/kg/day) with a 20% fat diet for 6 weeks. Body weight and food intake were carefully monitored. NF-κB-related activities of genes for inflammatory proteins, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and vascular cell adhesion molecule-1 (VCAM-1), were determined. The soybean products exhibited antioxidative action by maintaining redox regulation, suppressing NF-κB activation, and modulating the expression of genes for NF-κB-induced inflammatory proteins such as COX-2, iNOS, and VCAM-1. Based on these results, we conclude that Korean traditional soybean fermented products, especially CGJ, suppress the generation of reactive species, NF-κB activity, and NF-κB-related inflammatory genes. PMID:21332402

  10. NOSH-sulindac (AVT-18A) is a novel nitric oxide- and hydrogen sulfide-releasing hybrid that is gastrointestinal safe and has potent anti-inflammatory, analgesic, antipyretic, anti-platelet, and anti-cancer properties

    PubMed Central

    Kashfi, Khosrow; Chattopadhyay, Mitali; Kodela, Ravinder

    2015-01-01

    Sulindac is chemopreventive and has utility in patients with familial adenomatous polyposis; however, side effects preclude its long-term use. NOSH-sulindac (AVT-18A) releases nitric oxide and hydrogen sulfide, was designed to be a safer alternative. Here we compare the gastrointestinal safety, anti-inflammatory, analgesic, anti-pyretic, anti-platelet, and anti-cancer properties of sulindac and NOSH-sulindac administered orally to rats at equimolar doses. Gastrointestinal safety: 6 h post-administration, number/size of hemorrhagic lesions in stomachs were counted. Tissue samples were frozen for PGE2, SOD, and MDA determination. Anti-inflammatory: 1 h after drug administration, the volume of carrageenan-induced rat paw edemas was measured for 5 h. Anti-pyretic: fever was induced by LPS (ip) an hour before administration of the test drugs, core body temperature was measured hourly for 5 h. Analgesic: time-dependent analgesic effects were evaluated by carrageenan-induced hyperalgesia. Antiplatelet: anti-aggregatory effects were studied on collagen-induced platelet aggregation of human platelet-rich plasma. Anti-cancer: We examined the effects of NOSH-sulindac on the growth properties of 12 human cancer cell lines of six different tissue origins. Both agents reduced PGE2 levels in stomach tissue; however, NOSH-sulindac did not cause any stomach ulcers, whereas sulindac caused significant bleeding. Lipid peroxidation induced by sulindac was higher than that from NOSH-sulindac. SOD activity was significantly lowered by sulindac but increased by NOSH-sulindac. Both agents showed similar anti-inflammatory, analgesic, anti-pyretic, and anti-platelet activities. Sulindac increased plasma TNFα whereas this rise was lower in the NOSH-sulindac-treated animals. NOSH-sulindac inhibited the growth of all cancer cell lines studied, with potencies of 1000- to 9000-fold greater than that of sulindac. NOSH-sulindac inhibited cell proliferation, induced apoptosis, and caused G2/M

  11. In vivo photoprotective and anti-inflammatory effect of hyperforin is associated with high antioxidant activity in vitro and ex vivo.

    PubMed

    Meinke, Martina C; Schanzer, Sabine; Haag, Stefan F; Casetti, Federica; Müller, Marcel L; Wölfle, Ute; Kleemann, Anke; Lademann, Juergen; Schempp, Christoph M

    2012-06-01

    Hyperforin, a major constituent of St. John's Wort (Hypericum perforatum, HP), provides anti-inflammatory, anti-tumor, and anti-bacterial properties. Previous studies have shown anti-oxidative properties of St. John's Wort extracts; however, its free radical scavenging activity in skin cells or skin has not been assessed in detail so far. Therefore, the free radical scavenging activity of hyperforin was tested in the H(2)DCFDA-assay in vitro in HaCaT keratinocytes irradiated with solar simulated radiation. Hyperforin (EC(50) 0.7 μM corresponding to 0.42 μg/ml) was much more effective compared to Trolox (EC(50) 12 μg/ml) and N-acetylcysteine (EC(50) 847 μg/ml) without showing phototoxicity. The radical protection factor of a cream containing 1.5%w/w of a hyperforin-rich HP extract was determined to be 200 × 10(14) radicals/mg, indicating a high radical scavenging activity. The cream was further applied ex vivo on porcine ear skin and significantly reduced radical formation after infrared irradiation. Finally, the UV-protective effect of the HP cream was tested on 20 volunteers in a randomized, double-blind, vehicle-controlled study. HP cream significantly reduced UVB-induced erythema as opposed to the vehicle. Occlusive application of HP cream on non-irradiated test sites did not cause any skin irritation. Taken together, these results demonstrate that hyperforin is a powerful free radical scavenger. PMID:22430217

  12. Anti-inflammatory effect of thalidomide dithiocarbamate and dithioate analogs.

    PubMed

    Talaat, Roba; El-Sayed, Waheba; Agwa, Hussein S; Gamal-Eldeen, Amira M; Moawia, Shaden; Zahran, Magdy A H

    2015-08-01

    Thalidomide has anti-inflammatory, immunomodulatory, and anti-angiogenic properties. It has been used to treat a variety of cancers and autoimmune diseases. This study aimed to characterize anti-inflammatory activities of novel thalidomide analogs by exploring their effects on splenocytes proliferation and macrophage functions and their antioxidant activity. MTT assay was used to assess the cytotoxic effect of thalidomide analogs against splenocytes. Tumor necrosis factor (TNF-α) and nuclear factor kappa B (NF-κB-P65) were determined by enzyme-linked immunosorbent assay (ELISA). Nitric oxide (NO) was estimated by colorimetric assay. Antioxidant activity was examined by ORAC assay. Our results demonstrated that thalidomide dithioate analog 2 and thalidomide dithiocarbamate analog 4 produced a slight increase in splenocyte proliferation compared with thalidomide. Thalidomide dithiocarbamate analog 1 is a potent inhibitor of TNF-α production, whereas thalidomide dithiocarbamate analog 5 is a potent inhibitor of both TNF-α and NO. Analog 2 has a pronounced inhibitory effect on NF-κB-P65 production level. All thalidomide analogs showed prooxidant activity against hydroxyl (OH) radical. Analog 1 and thalidomide dithioate analog 3 have prooxidant activity against peroxyl (ROO) radical in relation to thalidomide. On the other hand, analog 4 has a potent scavenging capacity against peroxyl (ROO) radical compared with thalidomide. Taken together, the results of this study suggest that thalidomide analogs might have valuable anti-inflammatory activities with more pronounced effect than thalidomide itself. PMID:26051520

  13. Bioactive Compounds, Antioxidant, Xanthine Oxidase Inhibitory, Tyrosinase Inhibitory and Anti-Inflammatory Activities of Selected Agro-Industrial By-products

    PubMed Central

    Oskoueian, Ehsan; Abdullah, Norhani; Hendra, Rudi; Karimi, Ehsan

    2011-01-01

    Evaluation of abundantly available agro-industrial by-products for their bioactive compounds and biological activities is beneficial in particular for the food and pharmaceutical industries. In this study, rapeseed meal, cottonseed meal and soybean meal were investigated for the presence of bioactive compounds and antioxidant, anti-inflammatory, xanthine oxidase and tyrosinase inhibitory activities. Methanolic extracts of rapeseed meal showed significantly (P < 0.01) higher phenolics and flavonoids contents; and significantly (P < 0.01) higher DPPH and nitric oxide free radical scavenging activities when compared to that of cottonseed meal and soybean meal extracts. Ferric thiocyanate and thiobarbituric acid tests results showed rapeseed meal with the highest antioxidant activity (P < 0.01) followed by BHT, cotton seed meal and soybean meal. Rapeseed meal extract in xanthine oxidase and tyrosinase inhibitory assays showed the lowest IC50 values followed by cottonseed and soybean meals. Anti-inflammatory assay using IFN-γ/LPS stimulated RAW 264.7 cells indicated rapeseed meal is a potent source of anti-inflammatory agent. Correlation analysis showed that phenolics and flavonoids were highly correlated to both antioxidant and anti-inflammatory activities. Rapeseed meal was found to be promising as a natural source of bioactive compounds with high antioxidant, anti-inflammatory, xanthine oxidase and tyrosinase inhibitory activities in contrast to cotton and soybean meals. PMID:22272095

  14. Potent anti-inflammatory effect of dioscin mediated by suppression of TNF-α-induced VCAM-1, ICAM-1and EL expression via the NF-κB pathway.

    PubMed

    Wu, Shan; Xu, Hui; Peng, Jinyong; Wang, Changyuan; Jin, Yue; Liu, Kexin; Sun, Huijun; Qin, Jianhua

    2015-03-01

    The modulation of adhesion molecule expression and the reduction of aberrant leukocyte adhesion to the endothelium are attractive approaches for treating inflammation-related vascular complications, including atherosclerosis. Dioscin has a variety of biological activities including anti-inflammatory activity. However, the molecular mechanisms behind dioscin's anti-inflammatory effects are not fully understood. In this study, we investigated the molecular mechanism involved in the effects of dioscin on inflammatory mediators in tumor necrosis factor-α (TNF-α)-stimulated human umbilical vein endothelial cells (HUVECs). In vitro, dioscin decreased monocyte adhesion to TNF-α-treated HUVECs by reducing vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) expression and inhibiting endothelial lipase (EL) expression in TNF-α-treated HUVECs and macrophages by blocking the nuclear factor-κB (NF-κB) pathway. Thus, dioscin might inhibit inflammation by interrupting the NF-κB signaling pathway and could potentially contribute to treatments for inflammatory diseases and atherosclerosis. PMID:25577996

  15. Systematic Analysis of Absorbed Anti-Inflammatory Constituents and Metabolites of Sarcandra glabra in Rat Plasma Using Ultra-High-Pressure Liquid Chromatography Coupled with Linear Trap Quadrupole Orbitrap Mass Spectrometry.

    PubMed

    Li, Xiong; Zhao, Jin; Liu, Jianxing; Li, Geng; Zhao, Ya; Zeng, Xing

    2016-01-01

    Ultra-high-pressure liquid chromatography (UHPLC) was coupled with linear ion trap quadrupole Orbitrap mass spectrometry (LTQ-Orbitrap) and was used for the first time to systematically analyze the absorbed components and metabolites in rat plasma after oral administration of the water extract of Sarcandra glabra. This extract is a well-known Chinese herbal medicine for the treatment of inflammation and immunity related diseases. The anti-inflammatory activities of the absorbed components were evaluated by measuring nitric oxide (NO) production and proinflammatory genes expression in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages. As a result, 54 components in Sarcandra glabra were detected in dosed rat plasma, and 36 of them were positively identified. Moreover, 23 metabolites were characterized and their originations were traced. Furthermore, 20 of the 24 studied components showed anti-inflammatory activities. These results provide evidence that this method efficiency detected constituents in plasma based on the anti-inflammatory mechanism of multiple components and would be a useful technique for screening multiple targets for natural medicine research. PMID:26974321

  16. Systematic Analysis of Absorbed Anti-Inflammatory Constituents and Metabolites of Sarcandra glabra in Rat Plasma Using Ultra-High-Pressure Liquid Chromatography Coupled with Linear Trap Quadrupole Orbitrap Mass Spectrometry

    PubMed Central

    Li, Xiong; Zhao, Jin; Liu, Jianxing; Li, Geng; Zhao, Ya; Zeng, Xing

    2016-01-01

    Ultra-high-pressure liquid chromatography (UHPLC) was coupled with linear ion trap quadrupole Orbitrap mass spectrometry (LTQ-Orbitrap) and was used for the first time to systematically analyze the absorbed components and metabolites in rat plasma after oral administration of the water extract of Sarcandra glabra. This extract is a well-known Chinese herbal medicine for the treatment of inflammation and immunity related diseases. The anti-inflammatory activities of the absorbed components were evaluated by measuring nitric oxide (NO) production and proinflammatory genes expression in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages. As a result, 54 components in Sarcandra glabra were detected in dosed rat plasma, and 36 of them were positively identified. Moreover, 23 metabolites were characterized and their originations were traced. Furthermore, 20 of the 24 studied components showed anti-inflammatory activities. These results provide evidence that this method efficiency detected constituents in plasma based on the anti-inflammatory mechanism of multiple components and would be a useful technique for screening multiple targets for natural medicine research. PMID:26974321

  17. Boswellia carterii liquisolid systems with promoted anti-inflammatory activity.

    PubMed

    Mostafa, Dina Mahmoud; Ammar, Nagwa Mohammed; Abd El-Alim, Sameh Hosam; Kassem, Ahmed Alaa; Hussein, Rehab Ali; Awad, Gamal; El-Awdan, Sally Abdul-Wanees

    2015-01-01

    Boswellia carterii (BC) Birdwood oleogum resin is an ancient remedy of inflammation processes known since Ancient Egyptian time. Of boswellic acids, 3-acetyl-11-keto-β-boswellic acid (AKBA) is the most potent anti-inflammatory active principle. Liquisolid systems of the biologically active fraction of BC oleogum resin were prepared for improving dissolution properties using low dose oral delivery to achieve enhanced anti-inflammatory activity, in comparison with the standard oral anti-inflammatory; Indomethacin. AKBA was assayed, employing an accurate and sensitive HPLC method. Detection was carried out at 210 nm using UV/Vis detector. A solubility study for the bioactive fraction was conducted. Microcrystalline cellulose and Aeroperl®300 Pharma were used as carrier and coating materials. Angle of slide, liquid load factor and Carr's flow index were estimated. Six systems were prepared using polyethylene glycol 400, solvent and two drug loading concentrations; 20 and 40 %. For each concentration, three carrier: coat ratios were dispensed; 20:1, 10:1, and 5:1. Dissolution study was performed and two systems were selected for characterization and in vivo evaluation by investigating upper GIT ulcerogenic effect and anti-inflammatory efficacy in rats. Results indicate absence of ulcers and significantly higher and prolonged anti-inflammatory efficacy for formulations F1 and F2, with carrier: coat ratio, 5:1 and drug loads of 20 and 40 %, respectively, compared with standard oral indomethacin. We conclude higher efficacy of BC bioactive fraction liquisolids compared with Indomethacin with greater safety on GIT, longer duration of action and hence better patient compliance. PMID:25895614

  18. Potent anti-inflammatory effect of a novel furan-2,5-dione derivative, BPD, mediated by dual suppression of COX-2 activity and LPS-induced inflammatory gene expression via NF-κB inactivation

    PubMed Central

    Shin, Ji-Sun; Park, Seung-Jae; Ryu, Suran; Kang, Han Byul; Kim, Tae Woo; Choi, Jung-Hye; Lee, Jae-Yeol; Cho, Young-Wuk; Lee, Kyung-Tae

    2012-01-01

    BACKGROUND AND PURPOSE We previously reported that 3-(benzo[d]-1,3-dioxol-5-yl)-4-phenylfuran-2,5-dione (BPD) showed strong inhibitory effects on PGE2 production. However, the exact mechanism for the anti-inflammatory effect of BPD is not completely understood. In this study, we investigated the molecular mechanism involved in the effects of BPD on inflammatory mediators in LPS-stimulated macrophages and animal models of inflammation. EXPERIMENTAL APPROACH The expressions of COX-2, inducible NOS (iNOS), TNF-α, IL-6 and IL-1β, in LPS-stimulated RAW 264.7 cells and murine peritoneal macrophages, were determined by Western blot and/or qRT-PCR, respectively. NF-κB activation was investigated by EMSA, reporter gene assay and Western blotting. Anti-inflammatory effects of BPD were evaluated in vivo in carrageenan-induced paw oedema in rats and LPS-induced septic shock in mice. KEY RESULTS BPD not only inhibited COX-2 activity but also reduced the expression of COX-2. In addition, BPD inhibited the expression of iNOS, TNF-α, IL-6 and IL-1β at the transcriptional level. BPD attenuated LPS-induced DNA-binding activity and the transcription activity of NF-κB; this was associated with a decrease in the phosphorylation level of inhibitory κB-α (IκB-α) and reduced nuclear translocation of NF-κB. Furthermore, BPD suppressed the formation of TGF-β-activated kinase-1 (TAK1)/TAK-binding protein1 (TAB1), which was accompanied by a parallel reduction of phosphorylation of TAK1 and IκB kinase (IKK). Pretreatment with BPD inhibited carrageenan-induced paw oedema and LPS-induced septic death. CONCLUSION AND IMPLICATIONS Taken together, our data indicate that BPD is involved in the dual inhibition of COX-2 activity and TAK1-NF-κB pathway, providing a molecular basis for the anti-inflammatory properties of BPD. PMID:21913901

  19. Synthesis and optimization of novel allylated mono-carbonyl analogs of curcumin (MACs) act as potent anti-inflammatory agents against LPS-induced acute lung injury (ALI) in rats.

    PubMed

    Zhu, Heping; Xu, Tingting; Qiu, Chenyu; Wu, Beibei; Zhang, Yali; Chen, Lingfeng; Xia, Qinqin; Li, Chenglong; Zhou, Bin; Liu, Zhiguo; Liang, Guang

    2016-10-01

    A series of novel symmetric and asymmetric allylated mono-carbonyl analogs of curcumin (MACs) were synthesized using an appropriate synthetic route and evaluated experimentally thru the LPS-induced expression of TNF-α and IL-6. Most of the obtained compounds exhibited improved water solubility as a hydrochloride salt compared to lead molecule 8f. The most active compound 7a was effective in reducing the Wet/Dry ratio in the lungs and protein concentration in bronchoalveolar lavage fluid. Meanwhile, 7a also inhibited mRNA expression of several inflammatory cytokines, including TNF-α, IL-6, IL-1β, and VCAM-1, in Beas-2B cells after Lipopolysaccharide (LPS) challenge. These results suggest that 7a could be therapeutically beneficial for use as an anti-inflammatory agent in the clinical treatment of acute lung injury (ALI). PMID:27240273

  20. Gastrointestinal and Cardiovascular Risk of Nonsteroidal Anti-inflammatory Drugs

    PubMed Central

    Al-Saeed, Abdulwahed

    2011-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) confer a gastrointestinal (GI) side effect profile and concerns regarding adverse cardiovascular effects have emerged associated with considerable morbidity and mortality. NSAIDs are highly effective in treating pain and inflammation, but it is well recognized that these agents are associated with substantial gastrointestinal toxicity. Cyclo-oxygenase-2 inhibitors may also reduce the risk for gastrointestinal events, although they may increase cardiovascular adverse events. The selection of an appropriate analgesic or anti-inflammatory agent with or without gastroprotective therapy should be individualized. PMID:22253945

  1. Role of effective composition on antioxidant, anti-inflammatory, sedative-hypnotic capacities of 6 common edible Lilium varieties.

    PubMed

    Wang, Tingting; Huang, Hanhan; Zhang, Yao; Li, Xia; Li, Hongfa; Jiang, Qianqian; Gao, Wenyuan

    2015-04-01

    Nine Lilium samples (belong to 6 different cultivars with different maturity stage) were qualitatively and quantitatively analyzed of total phenolics (TP), total flavonoids (TF), total saponins (TS), total carbohydrates (TC, polysaccharides), and soluble proteins contents (SP), and the monomeric components were quantified utilizing high-performance liquid chromatography with photodiode array detector (HPLC-PAD) associated with liquid chromatography-mass spectrometry (HPLC-MS). Antioxidant activity (reducing power and DPPH radical scavenging activity), anti-inflammatory (xylene-induced mouse ear edema detumescent assay and carrageenan-induced mouse paw edema detumescent assay), and sedative-hypnotic capacities (sodium pentobarbital-induced sleep assay) were comparatively evaluated in mouse model. Additionally, correlation analysis and principal component analysis were carried out to detect clustering and elucidate relationships between components' concentrations and bioactivities to clarify the role of effective composition. Lilium bulbs in later maturity stage preliminary evidenced higher saponins content, and lower phenolic acids and flavonoids content. The result demonstrated that Lilium bulbs generally had distinct antioxidant, anti-inflammatory, and sedative-hypnotic capacities. Varieties statistically differed (P < 0.05) in chemical composition and bioactivities. Lilium varieties of Dongbei and Lanzhou presented potent sedative-hypnotic effect and anti-inflammatory activity. The antioxidant capacity was related to the phenolic acids and flavonoids contents, the anti-inflammatory and sedative-hypnotic capacities were related to the saponins content. This is first study presenting comprehensive description of common edible Lilium bulbs' chemical compositions, sedative-hypnotic, and anti-inflammatory capacities grown in China. It would informatively benefit the genetic selection and cultivated optimization of Lilium varieties to improve nutritional quality, and

  2. Anti-inflammatory properties of α- and γ-tocopherol

    PubMed Central

    Reiter, Elke; Jiang, Qing; Christen, Stephan

    2007-01-01

    Natural vitamin E consists of four different tocopherol and four different tocotrienol homologues (α, β, γ, δ) that all have antioxidant activity. However, recent data indicate that the different vitamin E homologues also have biological activity unrelated to their antioxidant activity. In this review, we discuss the anti-inflammatory properties of the two major forms of vitamin E, α-tocopherol (αT) and γ-tocopherol (γT), and discuss the potential molecular mechanisms involved in these effects. While both tocopherols exhibit anti-inflammatory activity in vitro and in vivo, supplementation with mixed (γT-enriched) tocopherols seems to be more potent than supplementation with αT alone. This may explain the mostly negative outcomes of the recent large-scale interventional chronic disease prevention trials with αT and thus warrants further investigation. PMID:17316780

  3. Therapeutic Potential of Hydrazones as Anti-Inflammatory Agents

    PubMed Central

    Bala, Suman; Sharma, Neha; Saini, Vipin

    2014-01-01

    Hydrazones are a special class of organic compounds in the Schiff base family. Hydrazones constitute a versatile compound of organic class having basic structure (R1R2C=NNR3R4). The active centers of hydrazone, that is, carbon and nitrogen, are mainly responsible for the physical and chemical properties of the hydrazones and, due to the reactivity toward electrophiles and nucleophiles, hydrazones are used for the synthesis of organic compound such as heterocyclic compounds with a variety of biological activities. Hydrazones and their derivatives are known to exhibit a wide range of interesting biological activities like antioxidant, anti-inflammatory, anticonvulsant, analgesic, antimicrobial, anticancer, antiprotozoal, antioxidant, antiparasitic, antiplatelet, cardioprotective, anthelmintic, antidiabetic, antitubercular, trypanocidal, anti-HIV, and so forth. The present review summarizes the efficiency of hydrazones as potent anti-inflammatory agents. PMID:25383223

  4. Inhibition of soluble epoxide hydrolase contributes to the anti-inflammatory effect of antimicrobial triclocarban in a murine model

    PubMed Central

    Liu, Jun-Yan; Qiu, Hong; Morisseau, Christophe; Hwang, Sung Hee; Tsai, Hsing-Ju; Ulu, Arzu; Chiamvimonvat, Nipavan; Hammock, Bruce D

    2011-01-01

    The increasing use of the anti-microbial triclocarban (TCC) in personal care products (PCPs) has resulted in concern regarding environmental pollution. TCC is a potent inhibitor of soluble epoxide hydrolase (sEH). Inhibitors of sEH (sEHIs) are anti-inflammatory, anti-hypertensive and cardio-protective in multiple animal models. However, the in vivo effects anticipated from a sEHI have not been reported for TCC. Here we demonstrated the anti-inflammatory effects in vivo of TCC in a murine model. TCC was employed in a lipopolysaccharide (LPS)-challenged murine model. Systolic blood pressure, plasma levels of several inflammatory cytokines and chemokine, and metabolomic profile of plasma oxylipins were determined. TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. TCC significantly repressed the increased release of inflammatory cytokines and chemokine caused by LPS. Furthermore, TCC significantly shifted the oxylipin profile in vivo in a time-dependent manner towards resolution of inflammation as expected from a sEHI. These results demonstrated that at the doses used TCC is anti-inflammatory in the murine model. This study suggests that TCC may provide some benefits in humans in addition to its antimicrobial activities due to its potent inhibition of sEH. It may be a promising starting point for developing new low volume high value applications of TCC. However these biological effects also caution against the general over use of TCC in PCPs. PMID:21741984

  5. Fructose 1,6-bisphosphate, a high-energy intermediate of glycolysis, attenuates experimental arthritis by activating anti-inflammatory adenosinergic pathway

    PubMed Central

    Veras, Flávio P.; Peres, Raphael S.; Saraiva, André L. L.; Pinto, Larissa G.; Louzada-Junior, Paulo; Cunha, Thiago M.; Paschoal, Jonas A. R.; Cunha, Fernando Q.; Alves-Filho, José C.

    2015-01-01

    Fructose 1,6-bisphosphate (FBP) is an endogenous intermediate of the glycolytic pathway. Exogenous administration of FBP has been shown to exert protective effects in a variety of ischemic injury models, which are attributed to its ability to sustain glycolysis and increase ATP production. Here, we demonstrated that a single treatment with FBP markedly attenuated arthritis, assessed by reduction of articular hyperalgesia, joint swelling, neutrophil infiltration and production of inflammatory cytokines, TNF and IL-6, while enhancing IL-10 production in two mouse models of arthritis. Our mechanistic studies showed that FBP reduces joint inflammation through the systemic generation of extracellular adenosine and subsequent activation of adenosine receptor A2a (A2aR). Moreover, we showed that FBP-induced adenosine generation requires hydrolysis of extracellular ATP through the activity of the ectonucleosides triphosphate diphosphohydrolase-1 (ENTPD1, also known as CD39) and ecto-5′-nucleotidase (E5NT, also known as CD73). In accordance, inhibition of CD39 and CD73 abolished anti-arthritic effects of FBP. Taken together, our findings provide a new insight into the molecular mechanism underlying the anti-inflammatory effect of FBP, showing that it effectively attenuates experimental arthritis by activating the anti-inflammatory adenosinergic pathway. Therefore, FBP may represent a new therapeutic strategy for treatment of rheumatoid arthritis (RA). PMID:26478088

  6. Inhibition of soluble epoxide hydrolase contributes to the anti-inflammatory effect of antimicrobial triclocarban in a murine model

    SciTech Connect

    Liu Junyan; Qiu Hong; Morisseau, Christophe; Hwang, Sung Hee; Tsai, Hsing-Ju; Ulu, Arzu; Chiamvimonvat, Nipavan; Hammock, Bruce D.

    2011-09-01

    The increasing use of the antimicrobial triclocarban (TCC) in personal care products (PCPs) has resulted in concern regarding environmental pollution. TCC is a potent inhibitor of soluble epoxide hydrolase (sEH). Inhibitors of sEH (sEHIs) are anti-inflammatory, anti-hypertensive and cardio-protective in multiple animal models. However, the in vivo effects anticipated from a sEHI have not been reported for TCC. Here we demonstrated the anti-inflammatory effects in vivo of TCC in a murine model. TCC was employed in a lipopolysaccharide (LPS)-challenged murine model. Systolic blood pressure, plasma levels of several inflammatory cytokines and chemokine, and metabolomic profile of plasma oxylipins were determined. TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. TCC significantly repressed the increased release of inflammatory cytokines and chemokine caused by LPS. Furthermore, TCC significantly shifted the oxylipin profile in vivo in a time-dependent manner towards resolution of inflammation as expected from a sEHI. These results demonstrated that at the doses used TCC is anti-inflammatory in the murine model. This study suggests that TCC may provide some benefits in humans in addition to its antimicrobial activities due to its potent inhibition of sEH. It may be a promising starting point for developing new low volume high value applications of TCC. However these biological effects also caution against the general over use of TCC in PCPs. - Graphical abstract: Display Omitted Research Highlights: > Anti-microbial triclocarban (TCC) is anti-inflammatory in a murine model. > TCC significantly shifted the oxylipin profile in vivo as expected from a sEHI. > TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. > TCC significantly repressed LPS-induced increased release of inflammatory cytokines.

  7. Marine Diterpenoids as Potential Anti-Inflammatory Agents.

    PubMed

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E; Fernandez, Patricia L

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules. PMID:26538822

  8. Marine Diterpenoids as Potential Anti-Inflammatory Agents

    PubMed Central

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E.; Fernandez, Patricia L.

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules. PMID:26538822

  9. Anti-inflammatory activity of (polyphenolic)-sulfonates and their sodium salts in rodents.

    PubMed

    Hall, I H; Murphy, M E; Elkins, A L

    1998-01-01

    A series of polyphenolic-sulfonated compounds were observed to have potent anti-inflammatory activity and were protective against induced endotoxic shock in mice at 8 and 16 mg/kg, I.P. These agents proved to be potent elastase inhibitors in human leukocytes and J774-AI and IC-21 mouse macrophages as well as prostaglandin cyclo-oxygenase inhibitors in J774-AI macrophages. The compounds from 5 to 50 muM inhibited TNFalpha release from IC-21 macrophages and IL-1 release from mouse P388(D1) macrophages induced by LPS. The binding of these cytokines to high affinity receptors on target cells, e.g. L929 fibroblasts and IL-2 in HuT78 T lymphoma cells, were also suppressed by the agents. These compounds blocked the adhesion of leukocytes and macrophages to the plasma membranes of L929 fibroblasts. PMID:18475825

  10. Anti-Inflammatory Activity of (Polyphenolic)-Sulfonates and Their Sodium Salts in Rodents

    PubMed Central

    Murphy, Margaret E.; Elkins, Amy L.

    1998-01-01

    A series of polyphenolic-sulfonated compounds were observed to have potent anti-inflammatory activity and were protective against induced endotoxic shock in mice at 8 and 16 mg/kg, I.P. These agents proved to be potent elastase inhibitors in human leukocytes and J774-AI and IC-21 mouse macrophages as well as prostaglandin cyclo-oxygenase inhibitors in J774-AI macrophages. The compounds from 5 to 50 μM inhibited TNFα release from IC-21 macrophages and IL-1 release from mouse P388D1 macrophages induced by LPS. The binding of these cytokines to high affinity receptors on target cells, e.g. L929 fibroblasts and IL-2 in HuT78 T lymphoma cells, were also suppressed by the agents. These compounds blocked the adhesion of leukocytes and macrophages to the plasma membranes of L929 fibroblasts. PMID:18475825

  11. In vitro analysis of the cytotoxic and anti-inflammatory effects of antioxidant compounds used as additives in ultra high-molecular weight polyethylene in total joint replacement components

    PubMed Central

    Bladen, C L; Tzu-Yin, L; Fisher, J; Tipper, J L

    2013-01-01

    Ultra high-molecular weight polyethylene (UHMWPE) remains the most commonly used material in modern joint replacement prostheses. However, UHMWPE wear particles, formed as the bearing articulates, are one of the main factors leading to joint replacement failure via the induction of osteolysis and subsequent aseptic loosening. Previous studies have shown that the addition of antioxidants such as vitamin E to UHMWPE can improve wear resistance of the polymer and reduce oxidative fatigue. However, little is known regarding the biological consequences of such antioxidant chemicals. This study investigated the cytotoxic and anti-inflammatory effects of a variety of antioxidant compounds currently being tested experimentally for use in hip and knee prostheses, including nitroxides, hindered phenols, and lanthanides on U937 human histocyte cells and human peripheral blood mononuclear cells (PBMNCs) in vitro. After addition of the compounds, cell viability was determined by dose response cytotoxicity studies. Anti-inflammatory effects were determined by quantitation of TNF-α release in lipopolysaccharide (LPS)-stimulated cells. This study has shown that many of these compounds were cytotoxic to U937 cells and PBMNCs, at relatively low concentrations (micromolar), specifically the hindered phenol 3,5-di-tert-butyl-4-hydroxyhydrocinnamate (HPAO1), and the nitroxide 2,2,6,6-Tetramethylpiperidine 1-oxyl (TEMPO). Lanthanides were only cytotoxic at very high concentrations and were well tolerated by the cells at lower concentrations. Cytotoxic compounds also showed reduced anti-inflammatory effects, particularly in PBMNCs. Careful consideration should therefore be given to the use of any of these compounds as potential additives to UHMWPE. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 101B: 407–413, 2013. PMID:22915524

  12. Terpenoids with anti-inflammatory activity from Abies chensiensis.

    PubMed

    Zhao, Qian-Qian; Wang, Shu-Fang; Li, Ya; Song, Qiu-Yan; Gao, Kun

    2016-06-01

    The phytochemical investigation of Abies chensiensis led to the isolation and identification of nine new compounds including eight triterpenoids (1-8) and a new abietane-type diterpene (9), along with three known compounds (10-12). The absolute configuration of 9 was assigned by X-ray diffraction analysis. Compounds 1-11 were evaluated for the anti-inflammatory activity. Among the tested compounds, 1, 2, 5 and 6 exhibited potent inhibitory activity with IC50 values of 15.97, 18.73, 20.18 and 10.97μM, respectively. PMID:27080759

  13. Bioengineered Colorectal Cancer Drugs: Orally Delivered Anti-Inflammatory Agents.

    PubMed

    Urbanska, Aleksandra Malgorzata; Zhang, Xiaoying; Prakash, Satya

    2015-07-01

    Intestinal inflammation is one of the major factors that increase colorectal cancer (CRC) incidence worldwide. Inflammation in the gastrointestinal tract is directly linked to tumor development at the early stages of the disease, thus a key issue toward the prevention and the treatment of colonic neoplasia. Thus, the use of anti-inflammatory drugs has emerged first as a strategy to reduce chronic inflammation in case of many inflammatory bowel diseases (IBD), but it has proven its efficacy by reducing the risk of colonic neoplasia. This comprehensive review highlights the role of chronic inflammation, mainly in IBD, in the development of CRC including molecular and immune mechanisms that have tumorigenic effects. Multiple lines of evidence indicate that several bioactive and phytochemical compounds used as anti-inflammatory drugs have also antitumoral attributes. The uses of orally delivered cytokines and small molecules, as well as key dietary supplementation as anti-inflammatory therapeutics are discussed. In addition, comprehensive knowledge about CRC and intestinal inflammation, and the importance of the intestinal mucosal wall as a mucosal immunological barrier that comes into play during interactions with gut microbiota (pathogens and commensal), luminal secretions (bile acids, and bacterial and epithelial metabolites), and ingested chemicals (food components, high fat content, heterocyclic amines, and low intake of dietary fiber) are underscored. The multifunctionality of several anti-inflammatory drugs opens a line for their application in the treatment and prevention not only in IBD but also in CRC. Current bioengineering approaches for oral delivery of anti-inflammatory agents including cytokines, genetically modified bacteria, or small molecule inhibitors of inflammation directly contribute to the early management of CRC. Limitations of the current therapeutics, which stem from the lack of complete understanding of the complex molecular interactions

  14. The promotion of functional urinary bladder regeneration using anti-inflammatory nanofibers

    PubMed Central

    Bury, Matthew I.; Fuller, Natalie J.; Meisner, Jay W.; Hofer, Matthias D.; Webber, Matthew J.; Chow, Lesley W.; Prasad, Sheba; Thaker, Hatim; Yue, Xuan; Menon, Vani S.; Diaz, Edward C.; Stupp, Samuel I.; Cheng, Earl Y.; Sharma, Arun K.

    2014-01-01

    Current attempts at tissue regeneration utilizing synthetic and decellularized biologic-based materials have typically been met in part by innate immune responses in the form of a robust inflammatory reaction at the site of implantation or grafting. This can ultimately lead to tissue fibrosis with direct negative impact on tissue growth, development, and function. In order to temper the innate inflammatory response, anti-inflammatory signals were incorporated through display on self-assembling peptide nanofibers to promote tissue healing and subsequent graft compliance throughout the regenerative process. Utilizing an established urinary bladder augmentation model, the highly pro-inflammatory biologic scaffold (decellularized small intestinal submucosa) was treated with anti-inflammatory peptide amphiphiles (AIF-PAs) or control peptide amphiphiles and used for augmentation. Significant regenerative advantages of the AIF-PAs were observed including potent angiogenic responses, limited tissue collagen accumulation, and the modulation of macrophage and neutrophil responses in regenerated bladder tissue. Upon further characterization, a reduction in the levels of M2 macrophages was observed, but not in M1 macrophages in control groups, while treatment groups exhibited decreased levels of M1 macrophages and stabilized levels of M2 macrophages. Pro-inflammatory cytokine production was decreased while anti-inflammatory cytokines were up-regulated in treatment groups. This resulted in far fewer incidences of tissue granuloma and bladder stone formation. Finally, functional urinary bladder testing revealed greater bladder compliance and similar capacities in groups treated with AIF-PAs. Data demonstrate that AIF-PAs can alleviate galvanic innate immune responses and provide a highly conducive regenerative milieu that may be applicable in a variety of clinical settings. PMID:25145852

  15. The promotion of functional urinary bladder regeneration using anti-inflammatory nanofibers.

    PubMed

    Bury, Matthew I; Fuller, Natalie J; Meisner, Jay W; Hofer, Matthias D; Webber, Matthew J; Chow, Lesley W; Prasad, Sheba; Thaker, Hatim; Yue, Xuan; Menon, Vani S; Diaz, Edward C; Stupp, Samuel I; Cheng, Earl Y; Sharma, Arun K

    2014-11-01

    Current attempts at tissue regeneration utilizing synthetic and decellularized biologic-based materials have typically been met in part by innate immune responses in the form of a robust inflammatory reaction at the site of implantation or grafting. This can ultimately lead to tissue fibrosis with direct negative impact on tissue growth, development, and function. In order to temper the innate inflammatory response, anti-inflammatory signals were incorporated through display on self-assembling peptide nanofibers to promote tissue healing and subsequent graft compliance throughout the regenerative process. Utilizing an established urinary bladder augmentation model, the highly pro-inflammatory biologic scaffold (decellularized small intestinal submucosa) was treated with anti-inflammatory peptide amphiphiles (AIF-PAs) or control peptide amphiphiles and used for augmentation. Significant regenerative advantages of the AIF-PAs were observed including potent angiogenic responses, limited tissue collagen accumulation, and the modulation of macrophage and neutrophil responses in regenerated bladder tissue. Upon further characterization, a reduction in the levels of M2 macrophages was observed, but not in M1 macrophages in control groups, while treatment groups exhibited decreased levels of M1 macrophages and stabilized levels of M2 macrophages. Pro-inflammatory cytokine production was decreased while anti-inflammatory cytokines were up-regulated in treatment groups. This resulted in far fewer incidences of tissue granuloma and bladder stone formation. Finally, functional urinary bladder testing revealed greater bladder compliance and similar capacities in groups treated with AIF-PAs. Data demonstrate that AIF-PAs can alleviate galvanic innate immune responses and provide a highly conducive regenerative milieu that may be applicable in a variety of clinical settings. PMID:25145852

  16. Studies on tracheorelaxant and anti-inflammatory activities of rhizomes of Polygonatum verticillatum

    PubMed Central

    2013-01-01

    Background The present study describes the tracheorelaxant and anti-inflammatory effects of Polygonatum verticillatum which may support its medicinal use in hyperactive airway complaints and inflammatory disorders. Methods The tracheorelaxant activity of crude extract of the rhizomes of P. verticillatum (PR) was assessed in isolated guinea-pig tracheal tissues immersed in tissue organ bath filled with Tyrode’s solution and a continuous supply of carbogen gas (95% O2 and 5% CO2). The contractile and relaxant responses of the tissue were measured using isometric transducers coupled with Power-Lab data acquisition system. The anti-inflammatory effect was evaluated in carrageenan-induced rat paw edema model, while the lipoxygenase inhibitory activity was performed in the in-vitro assay. Various chromatographic and spectroscopic techniques were used for the isolation and characterization of pure molecules. Results In isolated guinea-pig tracheal preparations, PR caused complete inhibition of the high K+ (80 mM) and carbachol-induced contractions however, it was more potent against K+ than CCh, similar to verapamil. Pretreatment of the tissue with PR, displaced the Ca2+ concentration-response curves to the right, similar to that induced by verapamil, indicating the presence of Ca2+ channel blocking like activity. When tested on carrageenan-induced rat paw edema, PR demonstrated a marked reduction in edema with 65.22% protection at 200 mg/kg, similar to aspirin. In the in-vitro assay, PR showed lipoxygenase inhibitory activity (IC50: 102 ± 0.19 μg/mL), similar to baicalein. Bioactivity-guided fractionation led to the isolation of 2-hydroxybenzoic acid and β-sitosterol. Conclusions These results indicate that the plant possesses tracheorelaxant, mediated possibly through a Ca2+ channel blockade mechanism, and anti-inflammatory activities, which may explain the medicinal use of this plant in airway disorders and inflammation. PMID:23895558

  17. [In vitro anti-inflammatory and free radical scavenging activities of flavans from Ilex centrochinensis].

    PubMed

    Li, Lu-jun; Yu, Li-juan; Li, Yan-ci; Liu, Meng-yuan; Wu, Zheng-zhi

    2015-04-01

    This study was carried out to evaluate the anti-inflammatory and free radical scavenging activities of flavans from flex centrochinensis S. Y. Hu in vitro and their structure-activity relationship. LPS-stimulated RAW 264.7 macrophage was used as inflammatory model. MTT assay for cell availability, Griess reaction for nitric oxide (NO) production, the content of TNF-alpha, IL-1beta, IL-6 and PGE, were detected with ELISA kits; DPPH, superoxide anion and hydroxyl free radicals scavenging activities were also investigated. According to the result, all flavans tested exhibited anti-inflammatory effect in different levels. Among them, compounds 1, 3, 4 and 6 showed potent anti-inflammatory effect through the inhibition of NO, TNF-alpha, IL-lp and IL-6, of which 1 was the most effective inhibitor, however, 2 and 5 were relatively weak or inactive. The order of free radical scavenging activities was similar to that of anti-inflammatory activities. Therefore, these results suggest that 3, 4 and 6, especially of 1, were,in part responsible for the anti-inflammatory and free radical scavenging activity of Ilex centrochinensis. Hydroxyl group at 4'-position of B-ring plays an important role in the anti-inflammatory and free radical scavenging capacities. PMID:26281592

  18. Rose geranium essential oil as a source of new and safe anti-inflammatory drugs

    PubMed Central

    Boukhatem, Mohamed Nadjib; Kameli, Abdelkrim; Ferhat, Mohamed Amine; Saidi, Fairouz; Mekarnia, Maamar

    2013-01-01

    Background Since the available anti-inflammatory drugs exert an extensive variety of side effects, the search for new anti-inflammatory agents has been a priority of pharmaceutical industries. Aims The aim of the present study was to assess the anti-inflammatory activities of the essential oil of rose geranium (RGEO). Methods The chemical composition of the RGEO was investigated by gas chromatography. The major components were citronellol (29.13%), geraniol (12.62%), and citronellyl formate (8.06%). In the carrageenan-induced paw edema, five different groups were established and RGEO was administered orally in three different doses. Results RGEO (100 mg/kg) was able to significantly reduce the paw edema with a comparable effect to that observed with diclofenac, the positive control. In addition, RGEO showed a potent anti-inflammatory activity by topical treatment in the method of croton oil-induced ear edema. When the dose was 5 or 10 µl of RGEO per ear, the inflammation was reduced by 73 and 88%, respectively. This is the first report to demonstrate a significant anti-inflammatory activity of Algerian RGEO. In addition, histological analysis confirmed that RGEO inhibited the inflammatory responses in the skin. Conclusion Our results indicate that RGEO may have significant potential for the development of novel anti-inflammatory drugs with improved safety profile. PMID:24103319

  19. Analgesic and anti-inflammatory properties of the leaf extracts of Anacardium occidentalis in the laboratory rodents.

    PubMed

    Onasanwo, S A; Fabiyi, T D; Oluwole, F S; Olaleye, S B

    2012-06-01

    Anacardium occidentalis (family: Anacardiaceae) is a plant of the tropical climate widely used by folklore to treat pain and inflammation. This study was conducted to evaluate the analgesic and anti-inflammatory effects of the leaf extracts in rat and mice using different models in other to confirm folkloric claims. The aqueous, hexane, dichloromethane and methanol extracts (AEAO, HEAO, DEAO and MEAO respectively) were investigated for analgesic effects in acetic acid induced pain in mice. They significantly reduced the number of writhing (p<0.001) and the highest analgesic effect was seen in DEAO extract. DEAO was further studied on various analgesic and anti-inflammatory models in graded doses. The extract significantly reduced writhing induced by acetic acid and the number and time of paw licking induced by formalin in a dose related manner. It inhibited the neurogenic and inflammatory phases of formalin. Analgesia was shown in the inhibition of nociception induced by tail immersion in 55oC hot water. The extract prolonged the latencies of tail withdrawal to a similar degree as pentazocine. The extract caused significant inhibition of carrageenan induced paw oedema in rats in a dose dependent manner. These findings suggest that the leaf extracts of Anacardium occidentalis are highly potent analgesic and anti-inflammatory agents. Phytochemical analysis showed that the leaf extracts contain alkaloids, tannins, saponins and cardenolides. PMID:23235310

  20. Anti-inflammatory and vascularprotective properties of 8-prenylapigenin.

    PubMed

    Paoletti, Tiziana; Fallarini, Silvia; Gugliesi, Francesca; Minassi, Alberto; Appendino, Giovanni; Lombardi, Grazia

    2009-10-12

    Flavonoids display several biological activities, but exhibit poor oral absorption and rapid metabolism. To improve their pharmacological profile four C8-prenyl flavonoids, structurally related to the anti-inflammatory lead apigenin, were synthesized, and the two least cytotoxic (IC(50)>30 microM) compounds [8-prenylnaringenin (8-PN) and 8-prenylapigenin (8-PA)] in RAW 264.7 murine macrophages were assayed against a panel of biological targets. The anti-inflammatory properties of these compounds were evaluated in an in vitro model of inflammation [cells exposed to 0.1 microg/ml lipopolysaccharide (LPS) for 24h]. Both 8-PN and 8-PA were equally effective and potent in inhibiting the LPS-induced gene expression [tumor necrosis factor (TNF)-alpha, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2] (RT-PCR) and release (ELISA) of pro-inflammatory mediators [TNF-alpha, NO, prostaglandin (PG)E(2)], through mechanisms involving the inhibition of nuclear factor-kappaB (NF-kappaB) activation (EMSA) and reactive oxygen species accumulation [2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) determination]. One-digit nM concentrations of 8-PN or 8-PA induced a significant increase in the basal production of the atheroprotective prostacyclin (PGI(2)) by human umbilical vein endothelial cells (HUVEC), with maximal effects at 10 nM. Both NS-398, a specific COX-2 inhibitor, and ICI 182 780, a non-selective estrogen receptor antagonist, abolished the activity of these compounds, suggesting a COX- and estrogen receptor-dependent mechanism of activity. 8-PA, a weaker estrogenic compound than 8-PN, resulted only 2-fold less potent than 8-PN in potentiating PGI(2) production by HUVEC, qualifying this C8-prenyl flavonoid as a lead for the rational design of new anti-inflammatory and vascularprotective compounds. PMID:19686724

  1. Identification of 14,20-dihydroxy-docosahexaenoic acid as a novel anti-inflammatory metabolite.

    PubMed

    Yokokura, Yoshiyuki; Isobe, Yosuke; Matsueda, Shinnosuke; Iwamoto, Ryo; Goto, Tomomi; Yoshioka, Takeshi; Urabe, Daisuke; Inoue, Masayuki; Arai, Hiroyuki; Arita, Makoto

    2014-12-01

    Docosahexaenoic acid (DHA) exhibits anti-inflammatory activity related to some of its oxygenated metabolites, such as D-series resolvins, protectin and maresin. Here, we analysed the lipids in inflammatory exudates using liquid chromatography-tandem mass spectrometry and identified a novel DHA metabolite, 14,20-dihydroxy-DHA (14,20-diHDHA) and showed that it is biosynthesized by eosinophils through the 12/15-lipoxygenase pathway. The chemical structure of the dominant 14,20-diHDHA isomer, which is endogenously biosynthesized by eosinophils, was identified as 14S,20R-diHDHA using chemically synthesized stereoisomers. Nanogram doses of 14,20-diHDHA displayed a potent anti-inflammatory action by limiting neutrophil infiltration in zymosan-induced peritonitis. The in vivo formation and potent anti-inflammatory action of 14,20-diHDHA may contribute to the protective effects of DHA. PMID:25012818

  2. Oxpholipin 11D: An Anti-Inflammatory Peptide That Binds Cholesterol and Oxidized Phospholipids

    PubMed Central

    Ruchala, Piotr; Navab, Mohamad; Jung, Chun-Ling; Hama-Levy, Susan; Micewicz, Ewa D.; Luong, Hai; Reyles, Jonathan E.; Sharma, Shantanu; Waring, Alan J.; Fogelman, Alan M.; Lehrer, Robert I.

    2010-01-01

    Background Many Gram-positive bacteria produce pore-forming exotoxins that contain a highly conserved, 12-residue domain (ECTGLAWEWWRT) that binds cholesterol. This domain is usually flanked N-terminally by arginine and C-terminally by valine. We used this 14-residue sequence as a template to create a small library of peptides that bind cholesterol and other lipids. Methodology/Results Several of these peptides manifested anti-inflammatory properties in a predictive in vitro monocyte chemotactic assay, and some also diminished the pro-inflammatory effects of low-density lipoprotein in apoE-deficient mice. The most potent analog, Oxpholipin-11D (OxP-11D), contained D-amino acids exclusively and was identical to the 14-residue design template except that diphenylalanine replaced cysteine-3. In surface plasmon resonance binding studies, OxP-11D bound oxidized (phospho)lipids and sterols in much the same manner as D-4F, a widely studied cardioprotective apoA-I-mimetic peptide with anti-inflammatory properties. In contrast to D-4F, which adopts a stable α-helical structure in solution, the OxP-11D structure was flexible and contained multiple turn-like features. Conclusion Given the substantial evidence that oxidized phospholipids are pro-inflammatory in vivo, OxP-11D and other Oxpholipins may have therapeutic potential. PMID:20418958

  3. Identification and evaluation of anti-inflammatory compounds from Kaempferia parviflora.

    PubMed

    Horigome, Satoru; Yoshida, Izumi; Tsuda, Aiko; Harada, Teppei; Yamaguchi, Akihiro; Yamazaki, Kumiko; Inohana, Shuichi; Isagawa, Satoshi; Kibune, Nobuyuki; Satoyama, Toshiya; Katsuda, Shin-ichi; Suzuki, Shinobu; Watai, Masatoshi; Hirose, Naoto; Mitsue, Takahiro; Shirakawa, Hitoshi; Komai, Michio

    2014-01-01

    The rhizome of Kaempferia parviflora has been used in traditional Thai medicine. In this study, we identified and compared specific compounds from the hexane extract of K. parviflora with those from other Zingiberaceous plants by using gas chromatography-mass spectrometry. We identified 5,7-dimethoxyflavone (DMF), 5-hydroxy-3,7,3',4'-tetramethoxyflavone (TMF), estimated 3,5,7-trimethoxyflavone, 5-hydroxy-7,4'-dimethoxyflavone, 3,5,7,4'-tetramethoxyflavone, and investigated their anti-inflammatory effects in rat basophilic leukemia (RBL-2H3) cells stimulated with an IgE antigen or a calcium ionophore. We found that DMF and TMF more potently inhibited antigen-induced degranulation than did nobiletin, a well-known anti-inflammatory agent. In addition, compared to RBL-2H3 cells stimulated with a calcium ionophore, those treated with DMF and TMF showed more marked inhibition of the degranulation and the production and mRNA expression of inflammatory mediators. These results suggest that DMF and TMF inhibit an early step in the high-affinity IgE receptor signaling cascade rather than intracellular calcium release and protein kinase C activation. PMID:25035989

  4. Anti-inflammatory effects of five commercially available mushroom species determined in lipopolysaccharide and interferon-γ activated murine macrophages.

    PubMed

    Gunawardena, Dhanushka; Bennett, Louise; Shanmugam, Kirubakaran; King, Kerryn; Williams, Roderick; Zabaras, Dimitrios; Head, Richard; Ooi, Lezanne; Gyengesi, Erika; Münch, Gerald

    2014-04-01

    Inflammation is a well-known contributing factor to many age-related chronic diseases. One of the possible strategies to suppress inflammation is the employment of functional foods with anti-inflammatory properties. Edible mushrooms are attracting more and more attention as functional foods since they are rich in bioactive compounds, but their anti-inflammatory properties and the effect of food processing steps on this activity has not been systematically investigated. In the present study, White Button and Honey Brown (both Agaricus bisporus), Shiitake (Lentinus edodes), Enoki (Flammulina velutipes) and Oyster mushroom (Pleurotus ostreatus) preparations were tested for their anti-inflammatory activity in lipopolysaccharide (LPS) and interferon-γ (IFN-γ) activated murine RAW 264.7 macrophages. Potent anti-inflammatory activity (IC₅₀<0.1 mg/ml), measured as inhibition of NO production, could be detected in all raw mushroom preparations, but only raw Oyster (IC₅₀=0.035 mg/ml), Shiitake (IC₅₀=0.047 mg/ml) and Enoki mushrooms (IC₅₀=0.099 mg/ml) showed also potent inhibition of TNF-α production. When the anti-inflammatory activity was followed through two food-processing steps, which involved ultrasonication and heating, a significant portion of the anti-inflammatory activity was lost suggesting that the anti-inflammatory compounds might be susceptible to heating or prone to evaporation. PMID:24262531

  5. Antioxidant, Anti-inflammatory and Cytotoxicity of Phaleria macrocarpa (Boerl.) Scheff Fruit

    PubMed Central

    2011-01-01

    Background Phaleria macrocarpa (Scheff.) Boerl (Thymelaceae) originates from Papua Island, Indonesia and grows in tropical areas. The different parts of the fruit of P. macrocarpa were evaluated for antioxidant, anti-inflammatory, and cytotoxic activities. Methods Phaleria macrocarpa fruit were divided into pericarp, mesocarp and seed. All parts of the fruit were reflux extracted with methanol. The antioxidant activity of the extracts were characterized in various in vitro model systems such as FTC, TBA, DPPH radical, reducing power and NO radical. Anti-inflammatory assays were done by using NO production by macrophage RAW 264.7 cell lines induced by LPS/IFN-γ and cytotoxic activities were determined by using several cancer cell lines and one normal cell line Results The results showed that different parts (pericarp, mesocarp, and seed) of Phaleria macrocarpa fruit contain various amount of total phenolic (59.2 ± 0.04, 60.5 ± 0.17, 47.7 ± 1.04 mg gallic acid equivalent/g DW) and flavonoid compounds (161.3 ± 1.58, 131.7 ± 1.66, 35.9 ± 2.47 mg rutin equivalent/g DW). Pericarp and mesocarp showed high antioxidant activities by using DPPH (71.97%, 62.41%), ferric reducing antioxidant power (92.35%, 78.78%) and NO scavenging activity (65.68%, 53.45%). Ferric thiocyanate and thiobarbituric acid tests showed appreciable antioxidant activity in the percentage hydroperoxides inhibitory activity from pericarp and mesocarp in the last day of the assay. Similarly, the pericarp and mesocarp inhibited inducible nitric oxide synthesis with values of 63.4 ± 1.4% and 69.5 ± 1.4% in macrophage RAW 264.7 cell lines induced by LPS/IFN-γ indicating their notable anti-inflammatory potential. Cytotoxic activities against HT-29, MCF-7, HeLa and Chang cell lines were observed in all parts. Conclusions These results indicated the possible application of P. macrocarpa fruit as a source of bioactive compounds, potent as an antioxidant, anti inflammatory and cytotoxic agents. PMID

  6. Photoelectron spectroscopy of non-steroidal anti-inflammatory drugs

    NASA Astrophysics Data System (ADS)

    Novak, Igor; Klasinc, Leo; Chong, Delano P.; McGlynn, Sean P.

    2013-08-01

    The electronic structures of eight non-steroidal anti-inflammatory drugs (NSAIDs) had been studied by UV photoelectron spectroscopy (UPS) and high-level Green's function (GF) calculations. Our UPS data show that the electronic structure influences the measured biological activity of NSAID, but that it is not the dominating factor. The role of electronic structure needs to be considered in conjunction with other factors like steric properties of the COX active site and orientation of relevant residues in the same site.

  7. Anti-inflammatory activity of cationic lipids.

    PubMed

    Filion, M C; Phillips, N C

    1997-10-01

    1. The effect of liposome phospholipid composition has been assumed to be relatively unimportant because of the presumed inert nature of phospholipids. 2. We have previously shown that cationic liposome formulations used for gene therapy inhibit, through their cationic component, the synthesis by activated macrophages of the pro-inflammatory mediators nitric oxide (NO) and tumour necrosis factor-alpha (TNF-alpha). 3. In this study, we have evaluated the ability of different cationic lipids to reduce footpad inflammation induced by carrageenan and by sheep red blood cell challenge. 4. Parenteral (i.p. or s.c) or local injection of the positively charged lipids dimethyldioctadecylammomium bromide (DDAB), dioleyoltrimethylammonium propane (DOTAP), dimyristoyltrimethylammonium propane (DMTAP) or dimethylaminoethanecarbamoyl cholesterol (DC-Chol) significantly reduced the inflammation observed in both models in a dose-dependent manner (maximum inhibition: 70-95%). 5. Cationic lipids associated with dioleyol- or dipalmitoyl-phosphatidylethanolamine retained their anti-inflammatory activity while cationic lipids associated with dipalmitoylphosphatidylcholine (DPPC) or dimyristoylphosphatidylglycerol (DMPG) showed no anti-inflammatory activity, indicating that the release of cationic lipids into the macrophage cytoplasm is a necessary step for anti-inflammatory activity. The anti-inflammatory activity of cationic lipids was abrogated by the addition of dipalmitoylphosphatidylethanolamine-poly(ethylene)glycol-2000 (DPPE-PEG2000) which blocks the interaction of cationic lipids with macrophages. 6. Because of the significant role of protein kinase C (PKC) in the inflammatory process we have determined whether the cationic lipids used in this study inhibit PKC activity. The cationic lipids significantly inhibited the activity of PKC but not the activity of a non-related protein kinase, PKA. The synthesis of interleukin-6 (IL-6), which is not dependent on PKC activity for its

  8. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues.

    PubMed

    Surendra Kumar, R; Arif, Ibrahim A; Ahamed, Anis; Idhayadhulla, Akbar

    2016-09-01

    A new sequence of pyrazole derivatives (1-6) was synthesized from condensation technique under utilizing ultrasound irradiation. Synthesized compounds were characterized from IR, (1)H NMR, (13)C NMR, Mass and elemental analysis. Synthesized compounds (1-6) were screened for antimicrobial activity. Among the compounds 3 (MIC: 0.25 μg/mL) was exceedingly antibacterially active against gram negative bacteria of Escherichia coli and compound 4 (MIC: 0.25 μg/mL) was highly active against gram positive bacteria of Streptococcus epidermidis compared with standard Ciprofloxacin. Compound 2 (MIC: 1 μg/mL) was highly antifungal active against Aspergillus niger proportionate to Clotrimazole. Synthesized compounds (1-6) were screened for anti-inflammatory activity and the compound 2-((5-hydroxy-3-methyl-1H-pyrazol-4-yl)(4-nitrophenyl)methyl)hydrazinecarboxamide (4) was better activity against anti-inflammatory when compared with standard drugs (Diclofenac sodium). Compounds (2, 3 and 4) are the most important molecules and hence the need to develop new drugs of antibacterial, antifungal and anti-inflammatory agents. PMID:27579011

  9. Anti-Inflammatory and Antinociceptive Activities of Bufalin in Rodents

    PubMed Central

    Huang, Yang; Yin, Junqiang; Lin, Wenqian

    2014-01-01

    The aims of this study were to evaluate the anti-inflammatory and analgesic effects of bufalin, a major component of “Chan-su.” We used a carrageenan-induced paw edema model to assess the anti-inflammatory activity of this compound, and Western blot analysis detected NF-κB signaling during this effect. The antinociceptive activities were evaluated by acetic acid-induced writhing, formalin, and hot-plate tests; open-field test investigated effects on the central nervous system. Our data showed that bufalin (0.3 and 0.6 mg/kg, i.p.) potently decreased carrageenan-induced paw edema. Bufalin down regulated the expression levels of nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) during these treatments. Further studies demonstrated that bufalin significantly inhibited the activation of NF-κB signaling. Bufalin also reduced acetic acid-induced writhing and the licking time in the formalin test and increased hot-plate reaction latencies. Naloxone pretreatment (2 mg/kg, i.p.) in the early phases of the formalin test and hot-plate test significantly attenuated the bufalin-induced antinociception effects, which suggests the involvement of the opioid system. A reduction in locomotion was not observed in the open-field test after bufalin administration. Taken together, bufalin treatment resulted in in vivo anti-inflammatory and analgesic effects, and bufalin may be a novel, potential drug for the treatment of inflammatory diseases. PMID:24719521

  10. Anti-Inflammatory Activities of Natural Products Isolated from Soft Corals of Taiwan between 2008 and 2012

    PubMed Central

    Wei, Wen-Chi; Sung, Ping-Jyun; Duh, Chang-Yih; Chen, Bo-Wei; Sheu, Jyh-Horng; Yang, Ning-Sun

    2013-01-01

    This review reports details on the natural products isolated from Taiwan soft corals during the period 2008–2012 focusing on their in vitro and/or in vivo anti-inflammatory activities. Chemical structures, names, and literature references are also reported. This review provides useful and specific information on potent anti-inflammatory marine metabolites for future development of immune-modulatory therapeutics. PMID:24152566

  11. Anti-inflammatory activities of selected synthetic homoisoflavanones.

    PubMed

    Shaikh, Mahidansha M; Kruger, Hendrik G; Bodenstein, Johannes; Smith, Peter; du Toit, Karen

    2012-01-01

    Four homoisoflavanones of the 3-benzylidene-4-chromanone type, some of which were previously isolated from Caesalpinia pulcherrima, were synthesised to determine their anti-inflammatory activity and cytotoxicity. A range of four different homoisoflavanones (compounds 4a-4d) were synthesised from the corresponding substituted phenols. ¹H- and ¹³C-NMR data together with high-resolution mass spectroscopy data were employed to elucidate the structures. Anti-inflammatory activity was determined in mice with acute croton oil-induced auricular dermatitis. In vitro cytotoxicity was tested against a Chinese hamster ovarian cell line using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay. Compound 4a exhibited a tendency to inhibit oedema in a dose-dependent manner after 3 and 6 h of treatment. Compounds 4b-4d also inhibited oedema, although a clear dose-response relationship was not observed. Compounds 4a-4c were found to be less cytotoxic than compound 4d. Compound 4b was the least cytotoxic. Compounds 4a-4d exhibited anti-inflammatory activity and varying levels of cytotoxicity. PMID:21950651

  12. Structural characterization of anti-inflammatory Immunoglobulin G Fc proteins

    PubMed Central

    Ahmed, Alysia A.; Giddens, John; Pincetic, Andrew; Lomino, Joseph V.; Ravetch, Jeffrey V.; Wang, Lai-Xi; Bjorkman, Pamela J.

    2014-01-01

    Immunoglobulin G (IgG) is a central mediator of host defense due to its ability to recognize and eliminate pathogens. The recognition and effector responses are encoded on distinct regions of IgGs. The diversity of the antigen recognition Fab domains accounts for IgG's ability to bind with high specificity to essentially any antigen. Recent studies have indicated that the Fc effector domain also displays considerable heterogeneity, accounting for its complex effector functions of inflammation, modulation and immune suppression. Therapeutic anti-tumor antibodies, for example, require the pro-inflammatory properties of the IgG Fc to eliminate tumor cells, while the anti-inflammatory activity of Intravenous Immunoglobulin G (IVIG) requires specific Fc glycans for activity. In particular, the anti-inflammatory activity of IVIG is ascribed to a small population of IgGs in which the Asn297-linked complex N-glycans attached to each Fc CH2 domain include terminal α2,6-linked sialic acids. We used chemoenzymatic glycoengineering to prepare fully di-sialylated IgG Fc and solved its crystal structure. Comparison of the structures of asialylated Fc, sialylated Fc, and F241A Fc, a mutant that displays increased glycan sialylation, suggests that increased conformational flexibility of the CH2 domain is associated with the switch from pro- to anti-inflammatory activity of the Fc. PMID:25036289

  13. Molecular Targets of Dietary Polyphenols with Anti-inflammatory Properties

    PubMed Central

    Yoon, Joo-Heon

    2005-01-01

    There is persuasive epidemiological and experimental evidence that dietary polyphenols have anti-inflammatory activity. Aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) have long been used to combat inflammation. Recently, cyclooxygenase (COX) inhibitors have been developed and recommended for treatment of rheumatoid arthritis (RA) and osteoarthritis (OA). However, two COX inhibitors have been withdrawn from the market due to unexpected side effects. Because conventional therapeutic and surgical approaches have not been able to fully control the incidence and outcome of many inflammatory diseases, there is an urgent need to find safer compounds and to develop mechanism-based approaches for the management of these diseases. Polyphenols are found in many dietary plant products, including fruits, vegetables, beverages, herbs, and spices. Several of these compounds have been found to inhibit the inflammation process as well as tumorigenesis in experimental animals; they can also exhibit potent biological properties. In addition, epidemiological studies have indicated that populations who consume foods rich in specific polyphenols have lower incidences of inflammatory disease. This paper provides an overview of the research approaches that can be used to unravel the biology and health effects of polyphenols. Polyphenols have diverse biological effects, however, this review will focus on some of the pivotal molecular targets that directly affect the inflammation process. PMID:16259055

  14. Anti-inflammatory properties of new bioisosteres of indomethacin synthesized from safrole which are sulindac analogues.

    PubMed

    Pereira, E F; Pereira, N A; Lima, M E; Coelho, F A; Barreiro, E J

    1989-01-01

    The anti-inflammatory activities of new compounds (I, II, III and IV) synthesized in 30% overall yield from the abundant natural product safrole, the principal chemical constituent of the oil of sassafras (Ocotea pretiosa, Lauraceae), were determined in mice. The synthesis of these new indenyl-acetic acids (I and II) and indenyl-propionic acids (III and IV) was based on the minimal structural features of non-steroid anti-inflammatory agents of the aryl- or heteroarylcarboxylic acid group. The compounds exhibited potencies 4- to 10-fold less than that of indomethacin in inhibiting carrageenan-induced hindpaw edema. In contrast, like sulindac, all the new compounds were more potent than indomethacin in antagonizing writhing pain and increased vascular permeability caused by acetic acid. The results confirm the anticipated bioisosteric relationship between these synthetic derivatives, designed as sulindac analogues, and the classical non-steroidal anti-inflammatory agent, indomethacin. PMID:2638933

  15. Synthesis and anti-inflammatory activity of some potential cyclic phenothiazines.

    PubMed

    Kumar, A; Ram, T; Tyagi, R; Goel, B; Bansal, E; Srivastava, V K

    1998-05-01

    Some new schiff's bases (IVa-IVe), thiazolidinones (Va-Ve), delta 2-triazolines (VIa-VIe) and formazans (VIIa-VIIe) of 2-chlorophenothiazine have been synthesized and screened against Carrageenin induced oedema in albino rats. Some compounds of the series have shown promising activity. The most active compound is 2-chloro-10[5-(2-fluorophenyl-2-oxo-4 thiazolidin-1-yl)-amino acetyl] phenothiazine was found to be most potent. This compound (Vb) was further evaluated in detail and compared with phenylbutazone for its relative anti inflammatory potency (ED50), ulcerogenic liabilities (UD50) and acute toxicity (ALD50). It was found to be almost comparable to phenylbutazone as regards anti-inflammatory activity was concerned but and minimum ulcerogenic liability and cardiovascular effects. Hence, it seems promising as an anti-inflammatory agent in our preliminary studies. PMID:9689901

  16. Intravital Microscopic Methods to Evaluate Anti-inflammatory Effects and Signaling Mechanisms Evoked by Hydrogen Sulfide

    PubMed Central

    Zuidema, Mozow Y.; Korthuis, Ronald J.

    2016-01-01

    Hydrogen sulfide (H2S) is an endogenous gaseous signaling molecule with potent anti-inflammatory properties. Exogenous application of H2S donors, administered either acutely during an inflammatory response or as an antecedent preconditioning intervention that invokes the activation of anti-inflammatory cell survival programs, effectively limits leukocyte rolling, adhesion and emigration, generation of reactive oxygen species, chemokine and cell adhesion molecule expression, endothelial barrier disruption,capillary perfusion deficits, and parenchymal cell dysfunction and injury. This chapter focuses on intravital microscopic methods that can be used to assess the anti-inflammatory effects exerted by H2S, as well as to explore the cellular signaling mechanisms by which this gaseous molecule limits the aforementioned inflammatory responses. Recent advances include use of intravital multiphoton microscopy and optical biosensor technology to explore signaling mechanisms in vivo. PMID:25747477

  17. Synthesis and Biological Evaluation of Novel Resveratrol-NSAID Derivatives as Anti-inflammatory Agents.

    PubMed

    Peng, Wei; Ma, Yan-Yan; Zhang, Kun; Zhou, Ai-Yu; Zhang, Yu; Wang, Huaqian; Du, Zhiyun; Zhao, Deng-Gao

    2016-06-01

    Long-term use of nonsteroidal antiinflammatory drugs (NSAIDs) may cause serious side effects such as gastric mucosal damage. Resveratrol, a naturally dietary polyphenol, exhibited anti-inflammatory activity and a protective effect against gastric mucosa damage induced by NSAIDs. In this regard, we synthesized a series of resveratrol-based NSAIDs derivatives and evaluated their anti-inflammatory activity against nitric oxide (NO) overproduction in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. We identified mono-substituted resveratrol-ibuprofen combination 21 as the most potent anti-inflammatory agent, which is more active than a physical mixture of ibuprofen and resveratrol, individual ibuprofen, or individual resveratrol. In addition, compound 21 exerted potent inhibitory effects on the LPS-induced expression of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Furthermore, compound 21 significantly increased the survival rate in an LPS-induced acute inflammatory model and produced markedly less gastric damage than ibuprofen. It was found that compound 21 may be a potent anti-inflammatory agent for the treatment of inflammation-related diseases. PMID:27009373

  18. QSAR and Docking Studies on Capsazepine Derivatives for Immunomodulatory and Anti-Inflammatory Activity

    PubMed Central

    Shukla, Aparna; Sharma, Pooja; Prakash, Om; Singh, Monika; Kalani, Komal; Khan, Feroz; Bawankule, Dnyaneshwar Umrao; Luqman, Suaib; Srivastava, Santosh Kumar

    2014-01-01

    Capsazepine, an antagonist of capsaicin, is discovered by the structure and activity relationship. In previous studies it has been found that capsazepine has potency for immunomodulation and anti-inflammatory activity and emerging as a favourable target in quest for efficacious and safe anti-inflammatory drug. Thus, a 2D quantitative structural activity relationship (QSAR) model against target tumor necrosis factor-α (TNF-α) was developed using multiple linear regression method (MLR) with good internal prediction (r2 = 0.8779) and external prediction (r2pred = 0.5865) using Discovery Studio v3.5 (Accelrys, USA). The predicted activity was further validated by in vitro experiment. Capsazepine was tested in lipopolysaccharide (LPS) induced inflammation in peritoneal mouse macrophages. Anti-inflammatory profile of capsazepine was assessed by its potency to inhibit the production of inflammatory mediator TNF-α. The in vitro experiment indicated that capsazepine is an efficient anti-inflammatory agent. Since, the developed QSAR model showed significant correlations between chemical structure and anti-inflammatory activity, it was successfully applied in the screening of forty-four virtual derivatives of capsazepine, which finally afforded six potent derivatives, CPZ-29, CPZ-30, CPZ-33, CPZ-34, CPZ-35 and CPZ-36. To gain more insights into the molecular mechanism of action of capsazepine and its derivatives, molecular docking and in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) studies were performed. The results of QSAR, molecular docking, in silico ADMET screening and in vitro experimental studies provide guideline and mechanistic scope for the identification of more potent anti-inflammatory & immunomodulatory drug. PMID:25003344

  19. Medicinal plants with anti-inflammatory activities.

    PubMed

    Maione, Francesco; Russo, Rosa; Khan, Haroon; Mascolo, Nicola

    2016-06-01

    Medicinal plants have been the main remedy to treat various ailments for a long time and nowadays, many drugs have been developed from traditional medicine. This paper reviews some medicinal plants and their main constituents which possess anti-inflammatory activities useful for curing joint inflammation, inflammatory skin disorders, cardiovascular inflammation and other inflammatory diseases. Here, we provide a brief overview of quick and easy reading on the role of medicinal plants and their main constituents in these inflammatory diseases. We hope that this overview will shed some light on the function of these natural anti-inflammatory compounds and attract the interest of investigators aiming at the design of novel therapeutic approaches for the treatment of various inflammatory conditions. PMID:26221780

  20. Ethanesulfohydroxamic acid ester prodrugs of nonsteroidal anti-inflammatory drugs (NSAIDs): synthesis, nitric oxide and nitroxyl release, cyclooxygenase inhibition, anti-inflammatory, and ulcerogenicity index studies.

    PubMed

    Huang, Zhangjian; Velázquez, Carlos A; Abdellatif, Khaled R A; Chowdhury, Morshed A; Reisz, Julie A; DuMond, Jenna F; King, S Bruce; Knaus, Edward E

    2011-03-10

    The carboxylic acid group of the anti-inflammatory (AI) drugs indo-methacin, (S)-naproxen and ibuprofen was covalently linked via a two-carbon ethyl spacer to a sulfohydroxamic acid moiety (CH(2)CH(2)SO(2)NHOH) to furnish a group of hybrid ester prodrugs that release nitric oxide (NO) and nitroxyl (HNO). Biological data acquired for this hitherto unknown class of ethanesulfohydroxamic acid ester prodrugs showed (i) all compounds exhibited superior NO, but similar HNO, release properties relative to arylsulfohydroxamic acids, (ii) the (S)-naproxen and ibuprofen prodrug esters are more potent AI agents than their parent NSAID, (iii) the indomethacin prodrug ester, in contrast to indomethacin which is highly ulcerogenic, showed no visible stomach lesions [ulcer index (UI) = 0 for a 80 μmol/kg oral dose] while retaining potent AI activity, and iv) that the indomethacin prodrug ester, unlike indomethacin which is an ulcerogenic selective COX-1 inhibitor, is a selective COX-2 inhibitor (COX-2 selectivity index = 184) devoid of ulcerogenicity that is attributed to its high COX-2 SI and/or ability to release cytoprotective NO. PMID:21280601

  1. The new nonsteroidal anti-inflammatory drugs.

    PubMed

    Scherbel, A L; Wilke, W S

    1981-10-01

    Most physicians regard to newer short-acting anti-inflammatory drugs as a substitute for aspirin because they are less toxic. Although these drugs cannot induce remissions of rheumatoid arthritis, they do afford symptomatic relief and exert both a moderate algesic and anti-inflammatory effect in conditions like osteoarthritis, gout, pseudogout, and a variety of musculoskeletal syndromes. The many adverse reactions and toxic effects associated with these drugs are probably related to the inhibition of prostaglandin synthetase, which in turn reduces the biosynthesis of prostaglandins in widespread areas of the body. Thus limited in number, these compounds cannot play an effective role in the body's defense mechanisms. Researchers postulate that this failure accounts for the gastrointestinal and renal lesions--as well as other, as yet unexplained toxic manifestations--noted in patients taking these drugs. For safety's sake, the newer anti-inflammatory drugs should be used with large doses of aspirin, other agents that inhibit prostaglandin synthetase, or drugs that are potentially nephro-toxic. PMID:6974117

  2. Anti-inflammatory properties of cryptolepine.

    PubMed

    Olajide, Olumayokun A; Ajayi, Abayomi M; Wright, Colin W

    2009-10-01

    Cryptolepine is the major alkaloid of the West African shrub, Cryptolepis sanguinolenta. Cryptolepine has been shown to inhibit nitric oxide production, and DNA binding of Nuclear Factor-kappa B following inflammatory stimuli in vitro. In order to validate the anti-inflammatory property of this compound in vivo, we investigated its effects on a number of animal models of inflammation. Cryptolepine (10-40 mg/kg i.p.) produced significant dose-dependent inhibition of the carrageenan-induced rat paw oedema, and carrageenan-induced pleurisy in rats. These effects were compared with those of the non-steroidal anti-inflammatory drug indomethacin (10 mg/kg). At doses of 10-40 mg/kg i.p., cryptolepine inhibited lipopolysaccharide (LPS)-induced microvascular permeability in mice in a dose-related fashion. Oral administration of up to 40 mg/kg of the compound for four consecutive days did not induce gastric lesion formation in rats. Analgesic activity was also exhibited by cryptolepine through a dose-related (10-40 mg/kg i.p.) inhibition of writhing induced by i.p. administration of acetic acid in mice. The results of this study reveal that cryptolepine possesses in vivo anti-inflammatory activity. PMID:19288476

  3. Synthesis and Anti-Inflammatory Activity of New Alkyl-Substituted Phthalimide 1H-1,2,3-Triazole Derivatives

    PubMed Central

    Assis, Shalom Pôrto de Oliveira; da Silva, Moara Targino; de Oliveira, Ronaldo Nascimento; Lima, Vera Lúcia de Menezes

    2012-01-01

    Four new 1,2,3-triazole phthalimide derivatives with a potent anti-inflammatory activity have been synthesized in the good yields by the 1,3-dipolar cycloaddition reaction from N-(azido-alkyl)phthalimides and terminal alkynes. The anti-inflammatory activity was determined by injecting carrageenan through the plantar tissue of the right hind paw of Swiss white mice to produce inflammation. All the compounds 3a–c and 5a–c exhibited an important anti-inflammatory activity; the best activity was found for the compounds 3b and 5c, which showed to be able to decrease by 69% and 56.2% carrageenan-induced edema in mice. These compounds may also offer a future promise as a new anti-inflammatory agent. PMID:23304092

  4. Anti-inflammatory potential of allyl-isothiocyanate--role of Nrf2, NF-(κ) B and microRNA-155.

    PubMed

    Wagner, Anika Eva; Boesch-Saadatmandi, Christine; Dose, Janina; Schultheiss, Gerhard; Rimbach, Gerald

    2012-04-01

    In this study, the underlying mechanisms of the potential anti-inflammatory properties of allyl-isothiocyanate (AITC) were analysed in vitro and in vivo. Murine RAW264.7 macrophages stimulated with lipopolysaccharide (LPS) were supplemented with increasing concentrations of AITC. In addition, C57BL/6 mice (n= 10 per group) were fed a pro-inflammatory high-fat diet and AITC was administered orally via gavage for 7 days. Biomarkers of inflammation were determined both in cultured cells and in mice. AITC significantly decreased tumour necrosis factor α mRNA levels and its secretion in LPS stimulated RAW264.7 macrophages. Furthermore, gene expression of other pro-inflammatory markers including interleukin-1β and inducible nitric oxide synthase were down-regulated following AITC treatment. AITC decreased nuclear p65 protein levels, a subunit of the transcription factor NF-κB. Importantly, our data indicate that AITC significantly attenuated microRNA-155 levels in LPS-stimulated RAW264.7 macrophages in a dose-dependent manner. The anti-inflammatory effects of AITC were accompanied by an increase in Nrf2 nuclear translocation and consequently by an increase of mRNA and protein levels of the Nrf2 target gene heme-oxygenase 1. AITC was slightly less potent than sulforaphane (used as a positive control) in down-regulating inflammation in LPS-stimulated macrophages. A significant increase in nuclear Nrf2 and heme-oxygenase 1 gene expression and only a moderate down-regulation of interleukin-1β and microRNA-155 levels due to AITC was found in mouse liver. Present data suggest that AITC exhibits potent anti-inflammatory activity in cultured macrophages in vitro but has only little anti-inflammatory activity in mice in vivo. PMID:21692985

  5. Quantitative Analysis and In vitro Anti-inflammatory Effects of Gallic Acid, Ellagic Acid, and Quercetin from Radix Sanguisorbae

    PubMed Central

    Seo, Chang-Seob; Jeong, Soo-Jin; Yoo, Sae-Rom; Lee, Na-Ri; Shin, Hyeun-Kyoo

    2016-01-01

    Background: Radix Sanguisorbae has long been used to treat diarrhea, enteritis, duodenal ulcers, and internal hemorrhage. Objective: We investigated the in vitro anti-inflammatory effects of Radix Sanguisorbae and performed quantitative analyses of three marker components, namely gallic acid, ellagic acid, and quercetin, using high-performance liquid chromatography coupled with a photodiode array detector. Materials and Methods: The three marker components were separated using a reversed-phase Gemini C18 analytical column maintained at 40°C by the gradient elution with two solvent systems. We examined the biological effects of the three marker compounds, gallic acid, ellagic acid, and quercetin, by determining their anti-inflammatory activities in the murine macrophage cell line RAW 264.7. Results: All of the marker compounds exhibited inhibitory effects on prostaglandin E2 production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, with no cytotoxicity. Particularly, ellagic acid significantly inhibited production of the proinflammatory cytokines tumor necrosis factor alpha and interleukin-6 in LPS-treated RAW 264.7 cells. Conclusion: Our results suggest that ellagic acid is the most potent bioactive phytochemical component of radix Sanguisorbae in the treatment of inflammatory diseases. SUMMARY Established high-performance liquid chromatography method was applied in the quantitative analysis of gallic acid, ellagic acid, and quercetin present in an extract from radix SanguisorbaeAmong the three compounds, the ellagic acid.(7.65.mg/g) is main component in radix SanguisorbaeEllagic acid significantly inhibited production of the proinflammatory cytokines tumor necrosis factor alpha and interleukin-6 in lipopolysaccharide-treated RAW 264.7 cells. Abbreviations used: HPLC: High-performance liquid chromatography, PDA: Photodiode array, TNF-α: Tumor necrosis factor alpha, IL: Interleukin, LPS: Lipopolysaccharide, PGE2: Prostaglandin E2, NSAIDs

  6. Erdosteine: antitussive and anti-inflammatory effects.

    PubMed

    Dal Negro, Roberto W

    2008-01-01

    Erdosteine is a multifactorial drug currently used in COPD for its rheologic activity on bronchial secretions and its positive effects on bacterial adhesiveness. Erdosteine produces an active metabolite (Met 1) which was shown to produce antioxidant effects during the respiratory burst of human PMNs, due to the presence of an SH group. The substantial antitussive effects of erdosteine were first documented in clinical trials even though mucolytic agents are regarded as not consistently effective in ameliorating cough in patients with bronchitis, although they may be of benefit to this population in other ways. Actually, a mucolytic drug could exert antitussive effects if it also affects mucus consistency and enhances ciliary function. In the last decade, data from several studies on animal models pointed to the possible antitussive and anti-inflammatory properties of erdosteine and an indirect anti-inflammatory mechanism of action was suggested. Recently, data from some controlled versus placebo studies documented the antioxidant properties of erdosteine in humans and in current smokers with COPD. The mechanism of action was described as related to erdosteine's ability to inhibit some inflammatory mediators and some pro-inflammatory cytokines that are specifically involved in oxidative stress. As oxidative stress is also presumed to impair beta-adrenoceptor function and contribute to airway obstruction, specific controlled studies recently investigated the effect of antioxidant intervention on short-term airway response to salbutamol in nonreversible COPD, according to a double-blind design versus placebo and NAC. Only erdosteine consistently restored a significant short-term reversibility in COPD subjects, previously unresponsive to beta(2) adrenergics. This peculiar activity of erdosteine (to our knowledge never previously assessed) proved related to the ROS scavenging activity (which actually proved equal to that of N), and its significant inhibiting effect on

  7. New Anti-Inflammatory Metabolites by Microbial Transformation of Medrysone

    PubMed Central

    Bano, Saira; Wahab, Atia-tul-; Yousuf, Sammer; Jabeen, Almas; Mesaik, Mohammad Ahmed; Rahman, Atta-ur-; Choudhary, M. Iqbal

    2016-01-01

    Microbial transformation of the anti-inflammatory steroid medrysone (1) was carried out for the first time with the filamentous fungi Cunninghamella blakesleeana (ATCC 8688a), Neurospora crassa (ATCC 18419), and Rhizopus stolonifer (TSY 0471). The objective was to evaluate the anti-inflammatory potential of the substrate (1) and its metabolites. This yielded seven new metabolites, 14α-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (2), 6β-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (3), 15β-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (4), 6β,17α-dihydroxy-6α-methylpregn-4-ene-3,11,20-trione (5), 6β,20S-dihydroxy-6α-methylpregn-4-ene-3,11-dione (6), 11β,16β-dihydroxy-6α-methylpregn-4-ene-3,11-dione (7), and 15β,20R-dihydroxy-6α-methylpregn-4-ene-3,11-dione (8). Single-crystal X-ray diffraction technique unambiguously established the structures of the metabolites 2, 4, 6, and 8. Fungal transformation of 1 yielded oxidation at the C-6β, -11β, -14α, -15β, -16β positions. Various cellular anti-inflammatory assays, including inhibition of phagocyte oxidative burst, T-cell proliferation, and cytokine were performed. Among all the tested compounds, metabolite 6 (IC50 = 30.3 μg/mL) moderately inhibited the reactive oxygen species (ROS) produced from zymosan-induced human whole blood cells. Compounds 1, 4, 5, 7, and 8 strongly inhibited the proliferation of T-cells with IC50 values between <0.2–10.4 μg/mL. Compound 7 was found to be the most potent inhibitor (IC50 < 0.2 μg/mL), whereas compounds 2, 3, and 6 showed moderate levels of inhibition (IC50 = 14.6–20.0 μg/mL). Compounds 1, and 7 also inhibited the production of pro-inflammatory cytokine TNF-α. All these compounds were found to be non-toxic to 3T3 cells (mouse fibroblast), and also showed no activity when tested against HeLa (human epithelial carcinoma), or against PC3 (prostate cancer) cancer cell lines. PMID:27104348

  8. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats

    SciTech Connect

    Ahad, Amjid; Ganai, Ajaz Ahmad; Mujeeb, Mohd; Siddiqui, Waseem Ahmad

    2014-08-15

    Diabetic nepropathy (DN) is considered as the leading cause of end-stage renal disease (ESRD) worldwide, but the current available treatments are limited. Recent experimental evidences support the role of chronic microinflammation in the development of DN. Therefore, the tumor necrosis factor-alpha (TNF-α) pathway has emerged as a new therapeutic target for the treatment of DN. We investigated the nephroprotective effects of chrysin (5, 7-dihydroxyflavone) in a high fat diet/streptozotocin (HFD/STZ)-induced type 2 diabetic Wistar albino rat model. Chrysin is a potent anti-inflammatory compound that is abundantly found in plant extracts, honey and bee propolis. The treatment with chrysin for 16 weeks post induction of diabetes significantly abrogated renal dysfunction and oxidative stress. Chrysin treatment considerably reduced renal TNF-α expression and inhibited the nuclear transcription factor-kappa B (NF-kB) activation. Furthermore, chrysin treatment improved renal pathology and suppressed transforming growth factor-beta (TGF-β), fibronectin and collagen-IV protein expressions in renal tissues. Chrysin also significantly reduced the serum levels of pro-inflammatory cytokines, interleukin-1beta (IL-1β) and IL-6. Moreover, there were no appreciable differences in fasting blood glucose and serum insulin levels between the chrysin treated groups compared to the HFD/STZ-treated group. Hence, our results suggest that chrysin prevents the development of DN in HFD/STZ-induced type 2 diabetic rats through anti-inflammatory effects in the kidney by specifically targeting the TNF-α pathway. - Highlights: • Chrysin reduced renal oxidative stress and inflammation in diabetic rats. • Chrysin reduced serum levels of pro-inflammatory in diabetic rats. • Chrysin exhibited renal protective effect by suppressing the TNF-α pathway.

  9. Anti-Inflammatory Effects of Agrimoniin-Enriched Fractions of Potentilla erecta.

    PubMed

    Hoffmann, Julia; Casetti, Federica; Bullerkotte, Ute; Haarhaus, Birgit; Vagedes, Jan; Schempp, Christoph M; Wölfle, Ute

    2016-01-01

    Potentilla erecta (PE) is a small herbaceous plant with four yellow petals belonging to the Rosaceae family. The rhizome of PE has traditionally been used as an antidiarrheal, hemostatic and antihemorrhoidal remedy. PE contains up to 20% tannins and 5% ellagitannins, mainly agrimoniin. Agrimoniin is a hydrolyzable tannin that is a potent radical scavenger. In this study we tested the anti-inflammatory effect of four PE fractions with increasing amounts of agrimoniin obtained by Sephadex column separation. First, we analyzed in HaCaT keratinocytes the expression of cyclooxygenase-2 (COX-2) induced by ultraviolet-B (UVB) irradiation. As COX-2 catalyzes the metabolism of arachidonic acid to prostanoids such as PGE₂, we also measured the PGE₂ concentration in cell culture supernatants. PE inhibited UVB-induced COX-2 expression in HaCaT cells and dose-dependently reduced PGE₂. The PE fraction with the highest agrimoniin amount (PE4) was the most effective in this experiment, whereas fraction PE1 containing mainly sugars had no effect. PE4 also dose dependently inhibited the phosphorylation of the epidermal growth factor receptor (EGFR) which plays a crucial role in UVB-mediated COX-2 upregulation. A placebo-controlled UV-erythema study with increasing concentrations of PE4 demonstrated a dose dependent inhibition of UVB-induced inflammation in vivo. Similarly, PE4 significantly reduced UVB-induced PGE₂ production in suction blister fluid in vivo. In summary, PE fractions with a high agrimoniin content display anti-inflammatory effects in vitro and in vivo in models of UVB-induced inflammation. PMID:27322232

  10. Activity of antimicrobial peptide mimetics in the oral cavity: II. Activity against periopathogenic biofilms and anti-inflammatory activity.

    PubMed

    Hua, J; Scott, R W; Diamond, G

    2010-12-01

    Whereas periodontal disease is ultimately of bacterial etiology, from multispecies biofilms of gram-negative anaerobic microorganisms, much of the deleterious effects are caused by the resultant epithelial inflammatory response. Hence, development of a treatment that combines anti-biofilm antibiotic activity with anti-inflammatory activity would be of great utility. Antimicrobial peptides (AMPs) such as defensins are naturally occurring peptides that exhibit broad-spectrum activity as well as a variety of immunomodulatory activities. Furthermore, bacteria do not readily develop resistance to these agents. However, clinical studies have suggested that they do not represent optimal candidates for exogenous therapeutic agents. Small-molecule mimetics of these AMPs exhibit similar activities to the parent peptides, in addition to having low toxicity, high stability and low cost. To determine whether AMP mimetics have the potential for treatment of periodontal disease, we examined the activity of one mimetic, mPE, against biofilm cultures of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. Metabolic assays as well as culture and biomass measurement assays demonstrated that mPE exhibits potent activity against biofilm cultures of both species. Furthermore, as little as 2 μg ml(-1) mPE was sufficient to inhibit interleukin-1β-induced secretion of interleukin-8 in both gingival epithelial cells and THP-1 cells. This anti-inflammatory activity is associated with a reduction in activation of nuclear factor-κB, suggesting that mPE can act both as an anti-biofilm agent in an anaerobic environment and as an anti-inflammatory agent in infected tissues. PMID:21040516

  11. Sucrose esters from Physalis peruviana calyces with anti-inflammatory activity.

    PubMed

    Franco, Luis A; Ocampo, Yanet C; Gómez, Harold A; De la Puerta, Rocío; Espartero, José L; Ospina, Luis F

    2014-11-01

    Physalis peruviana is a native plant from the South American Andes and is widely used in traditional Colombian medicine of as an anti-inflammatory medicinal plant, specifically the leaves, calyces, and small stems in poultice form. Previous studies performed by our group on P. peruviana calyces showed potent anti-inflammatory activity in an enriched fraction obtained from an ether total extract. The objective of the present study was to obtain and elucidate the active compounds from this fraction and evaluate their anti-inflammatory activity in vivo and in vitro. The enriched fraction of P. peruviana was purified by several chromatographic methods to obtain an inseparable mixture of two new sucrose esters named peruviose A (1) and peruviose B (2). Structures of the new compounds were elucidated using spectroscopic methods and chemical transformations. The anti-inflammatory activity of the peruvioses mixture was evaluated using λ-carrageenan-induced paw edema in rats and lipopolysaccharide-activated peritoneal macrophages. Results showed that the peruvioses did not produce side effects on the liver and kidneys and significantly attenuated the inflammation induced by λ-carrageenan in a dosage-dependent manner, probably due to an inhibition of nitric oxide and prostaglandin E2, which was demonstrated in vitro. To our knowledge, this is the first report of the presence of sucrose esters in P. peruviana that showed a potent anti-inflammatory effect. These results suggest the potential of sucrose esters from the Physalis genus as a novel natural alternative to treat inflammatory diseases. PMID:25338213

  12. Anti-inflammatory effects of isoketocharbroic acid from brown alga, Sargassum micracanthum.

    PubMed

    Ham, Young Min; Yoon, Weon-Jong; Lee, Wook Jae; Kim, Sang-Cheol; Baik, Jong Seok; Kim, Jin Hwa; Lee, Geun Soo; Lee, Nam Ho; Hyun, Chang-Gu

    2015-01-01

    During our on-going screening program designed to isolate natural compounds from marine environments, we isolated isoketochabrolic acid (IKCA) from Sargassum micracanthum, an important brown algae distributed in Jeju Island, Korea. Furthermore, we evaluated the inhibitory effects of IKCA on nitric oxide (NO) production in lipopolysaccharide (LPS)-triggered macrophages. IKCA strongly inhibited NO production, with an IC50 value of 58.31 μM. Subsequent studies demonstrated that IKCA potently and concentration-dependently reduced prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6 cytokine production. In conclusion, to the best of our knowledge, this is the first study to show that IKCA isolated from S. micracanthum has a potent anti-inflammatory activity. Therefore, IKCA might be useful as an anti-inflammatory health supplement or functional cosmetics. PMID:26600756

  13. Anti-inflammatory effects of isoketocharbroic acid from brown alga, Sargassum micracanthum

    PubMed Central

    Ham, Young Min; Yoon, Weon-Jong; Lee, Wook Jae; Kim, Sang-Cheol; Baik, Jong Seok; Kim, Jin Hwa; Lee, Geun Soo; Lee, Nam Ho; Hyun, Chang-Gu

    2015-01-01

    During our on-going screening program designed to isolate natural compounds from marine environments, we isolated isoketochabrolic acid (IKCA) from Sargassum micracanthum, an important brown algae distributed in Jeju Island, Korea. Furthermore, we evaluated the inhibitory effects of IKCA on nitric oxide (NO) production in lipopolysaccharide (LPS)-triggered macrophages. IKCA strongly inhibited NO production, with an IC50 value of 58.31 μM. Subsequent studies demonstrated that IKCA potently and concentration-dependently reduced prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6 cytokine production. In conclusion, to the best of our knowledge, this is the first study to show that IKCA isolated from S. micracanthum has a potent anti-inflammatory activity. Therefore, IKCA might be useful as an anti-inflammatory health supplement or functional cosmetics. PMID:26600756

  14. A COMPARATIVE EVALUATION OF ANTI-INFLAMMATORY ACTIVITY OF THE BARK OF FICUS BENGALENSIS IN PLANTS OF DIFFERENT AGE

    PubMed Central

    Patil, Vikas V.; Patil, Vijay R.

    2010-01-01

    The medicinal plants have been selected for thorough studies from indigenous folk medicines, Ayurvedic, Unani and Siddha systems of medicines. The aim of this study deals with the comparative evaluation of anti-inflammatory activity of the bark of Ficus bengalensis in plants of different age. The anti-inflammatory activity was evaluated by rat paw edema model induced by carrageenan for acute inflammation and cotton pellet granuloma model for chronic inflammation. Indomethacin was used as a standard drug. The various extracts were studied for their anti-inflammatory activity in carrageenan-induced hind paw edema in rats and the paw volume was measured plethysmometrically from 0 to 3h after injection. We have determined the anti-inflammatory activity of various extracts of the bark of Ficus bengalensis with oral administration doses of 300 and 600 mg/kg/day of body weight to healthy animals. Positive results for flavonoids, sterols, and triterpene, tannins and saponins compounds were investigated by phytochemical analysis. The ethanolic extract of younger plant showed a greater anti-inflammatory effect compared with the standard drug indomethacin. Present studies besides confirming anti-inflammatory activity of the ethanolic extract of younger more potent than mature plant help to identify from the comparative study of the bark of Ficus bengalensis. PMID:24825975

  15. Investigation of Pharmacological Activity of Caralluma penicillata: Anti-Inflammatory Properties and Gastritis Protection against Indomethacin in Adult Guinea Pigs

    PubMed Central

    Albaser, Nabil; Ghanem, Najeeb; Shehab, Mohanad; Al-Adhal, Adnan

    2014-01-01

    Caralluma is a plant that possessing a great therapeutic potential in folk medicine in Yemen, namely, Caralluma penicillata (C. penicillata) as antiulcer. The study aims to evaluate the anti-inflammatory properties and gastritis protection activity of C. penicillata against indomethacin in adult guinea pigs. The study was divided into four parts: firstly, the optimum dose of extract as anti-inflammatory effect was determined. Secondly, the acute anti-inflammatory effect of extract were estimated. Thirdly, the repeated doses of extract against chronic inflammation was estimated. The anti-inflammatory activity of extract was compared with indomethacin as a prototype of drug against inflammation. Fourthly, the gastritis protection properties of extract with/without indomethacin were performed. The results showed that a 400 mg/kg of 10% ethanol extract produced the maximum of anti-inflammatory effect. Also, the single dose of extract was equipotent for indomethacin (10 mg/kg), but shorter in duration with regard to acute anti-inflammatory effect. In addition, the repeated doses of extract against chronic inflammation were less potent than indomethacin with regard to ulcerogenic effect. On the other hand, extract-indomethacin combination reduced the gastritis effect of indomethacin based on ulcer index and histological study.

  16. Characterization of the anti-inflammatory activity and reduced potential for dermal atrophy of (11 beta, 16 beta)-9-fluoro-1',2',3', 4'-tetrahydro-11,21-dihydroxypregna-1,4-dieno[16,17-b]naph thalene-3, 20-dione hydrate (1 : 1) (SQ 26,490), a topically active corticoid.

    PubMed

    Wojnar, R J; Alpaugh, W C; Dzelzkalns, E

    1985-01-01

    SQ 26,490, (11 beta, 16 beta)-9-fluoro-1',2',3',4'-tetrahydro-11, 21-dihydroxypregna-1,4-dieno[16,17-b]naphthalene 3,20-dione hydrate (1 : 1), was a moderately potent inhibitor of edema formation in the rat. After extended topical application, SQ 26,490 totally inhibited edema formation without appreciable production of skin atrophy, measured under identical conditions. This atrophy was maintained at a low plateau level of 15-20% at doses beyond those necessary to achieve optimal anti-inflammatory activity. In contrast, the potent corticoids, fluocinolone acetonide and halcinonide, and the moderately potent corticoid, clobetasone butyrate, produced inhibition of edema with a concomitant dose-related atrophy. Hydrocortisone, a weakly potent corticoid, totally inhibited edema and produced at high doses a low atrophy. SQ 26,490 possesses the property for a greater separation of anti-inflammatory and atrophogenic activities than comparative corticoids. PMID:4074443

  17. Mangiferin suppressed advanced glycation end products (AGEs) through NF-κB deactivation and displayed anti-inflammatory effects in streptozotocin and high fat diet-diabetic cardiomyopathy rats.

    PubMed

    Hou, Jun; Zheng, Dezhi; Fung, Gabriel; Deng, Haoyu; Chen, Lin; Liang, Jiali; Jiang, Yan; Hu, Yonghe

    2016-03-01

    Given the importance of the aggregation of advanced glycation end products (AGEs) and cardiac inflammation in the onset and progression of diabetic cardiomyopathy (DCM), our objective in this study was to demonstrate the cardioprotective effect of mangiferin, an antidiabetic and anti-inflammatory agent, on diabetic rat model. The DCM model was established by a high-fat diet and a low dose of streptozotocin. DCM rats were treated orally with mangiferin (20 mg/kg) for 16 weeks. Serum and left ventricular myocardium were collected for determination of inflammatory cytokines. AGEs mRNA and protein expression of nuclear factor kappa B (NF-κB) and receptor for AGEs (RAGE) in myocardium were assayed by real-time PCR and Western blot. ROS levels were measured by dihydroethidium fluorescence staining. NF-κB binding activity was assayed by TransAM NF-κB p65 ELISA kit. Chronic treatment with mangiferin decreased the levels of myocardial enzymes (CK-MB, LDH) and inflammatory mediators (TNF-α, IL-1β). Meanwhile, NF-κB is inhibited by the reduction of nuclear translocation of p65 subunit, and mangiferin reduced AGE production and decreased the mRNA and protein expression of RAGE in DCM rats. Our data indicated that mangiferin could significantly ameliorate DCM by preventing the release of inflammatory cytokines, and inhibiting ROS accumulation, AGE/RAGE production, and NF-κB nuclear translocation, suggesting that mangiferin treatment might be beneficial in DCM. PMID:26751764

  18. Simultaneous quantification of an anti-inflammatory compound (DuP 697) and a potential metabolite (X6882) in human plasma and urine by high-performance liquid chromatography.

    PubMed

    Joshi, A S; Raghavan, N; Williams, R M; Takahashi, K; Shingu, H; King, S Y

    1994-10-01

    A high-performance liquid chromatographic (HPLC) method using fluorescence detection has been developed for the simultaneous analysis of low nanogram concentrations of an anti-inflammatory drug, 5-Bromo-2-(4-fluorophenyl)-3-[4-(methylsulfonyl)phenyl]thiophene (DuP 697), and a potential metabolite (X6882) in human plasma and of DuP 697 in human urine. This assay method used an EM Separations Lichrospher C18 endcapped column. The mobile phase was acetonitrile-water (75:25, v/v). The detection of DuP 697 and X6882 was by fluorescence at excitation and emission wavelengths of 256 and 419 nm, respectively. The chromatographic system could separate DuP 697 from X6882, the external standard (anthracene), and other endogenous substances present in human plasma. In human plasma the limits of quantification for DuP 697 and X6882 were 3 and 20 ng/ml, respectively; the limit of quantification for DuP 697 in human urine was 5 ng/ml. These compounds were shown to be stable in frozen (-20 degrees C) human plasma and urine for at least 9 weeks. The assay described has been used to characterize DuP 697 pharmacokinetics after oral administration in humans. PMID:7858707

  19. Anti-inflammatory activity of extracts from Conyza canadensis.

    PubMed

    Lenfeld, J; Motl, O; Trka, A

    1986-04-01

    The petroleum ether and ethanolic extract from the epigean part of Conyza canadensis exhibits a significant anti-inflammatory effect on rats with a carrageenin and formalin oedema. Eight sesquiterpenic hydrocarbons with the highest anti-inflammatory activity were found in the petroleum ether fraction (beta-santalene, beta-himachalene, cuparene, alpha-curcumene, gamma-cadinene and three other unidentified hydrocarbons). Of these substances, beta-himachalene was further studied and its anti-inflammatory activity was demonstrated. PMID:3725873

  20. Sesquiterpenes from Essential Oils and Anti-Inflammatory Activity.

    PubMed

    da Silveira e Sá, Rita de Cássia; Andrade, Luciana Nalone; de Sousa, Damião Pergentino

    2015-10-01

    This review is aimed at presenting relevant information on the therapeutic potential of essential oil sesquiterpenes with anti-inflammatory activity. The data reviewed provide a basis for seeking new anti-inflammatory drugs from natural products that do not exhibit the undesirable side effects often displayed by anti-inflammatory drugs. In this review the experimental models, possible mechanisms of action, and chemical structures of 12 sesquiterpenes are presented. PMID:26669122

  1. The anti-inflammatory effects of venlafaxine in the rat model of carrageenan-induced paw edema

    PubMed Central

    Hajhashemi, Valiollah; Minaiyan, Mohsen; Banafshe, Hamid Reza; Mesdaghinia, Azam; Abed, Alireza

    2015-01-01

    Objective(s): Recently anti-inflammatory effects of antidepressants have been demonstrated. Venlafaxine belongs to newer antidepressants with serotonin norepinephrine reuptake inhibition property. The pain alleviating properties of venlafaxine in different pain models such as neurogenic pain, diabetic neuropathy, and fibromyalgia have been demonstrated. Anti-inflammatory effects of venlafaxine and also its underlying mechanisms remain unclear. The present study was designed to evaluate the anti-inflammatory effects of venlafaxine and determine possible underlying mechanisms. Materials and Methods: We examined the anti-inflammatory effects of intraperitoneal (IP) and intracerebroventricular (ICV) administration of venlafaxine in the rat model of carrageenan-induced paw edema. Results: Our results showed that both IP (50 and 100 mg/kg) and ICV (50 and 100 μg/rat) injection of venlafaxine inhibited carrageenan-induced paw edema. Also IP and ICV administration of venlafaxine significantly decreased myeloperoxidase (MPO) activity and interleukin (IL)-1β and tumor necrosis factor (TNF)-α production. Finally, we tried to reverse the anti-inflammatory effect of venlafaxine by yohimbine (5 mg/kg, IP), an alpha2-adrenergic antagonist. Our results showed that applied antagonist failed to change the anti-inflammatory effect of venlafaxine. Conclusion: These results demonstrated that venlafaxine has potent anti-inflammatory effect which is related to the peripheral and central effects of this drug. Also we have shown that anti-inflammatory effect of venlafaxine is mediated mostly through the inhibition of IL-1β and TNF-α production and decreases MPO activity in the site of inflammation. PMID:26351555

  2. Synthesis and QSAR study of novel anti-inflammatory active mesalazine-metronidazole conjugates.

    PubMed

    Naumov, Roman N; Panda, Siva S; Girgis, Adel S; George, Riham F; Farhat, Michel; Katritzky, Alan R

    2015-06-01

    Novel, mesalazine, metronidazole conjugates 6a-e with amino acid linkers were synthesized utilizing benzotriazole chemistry. Biological data acquired for all the novel bis-conjugates showed (a) some bis-conjugates exhibit comparable anti-inflammatory activity with parent drugs and (b) the potent bis-conjugates show no visible stomach lesions. 3D-pharmacophore and 2D-QSAR modeling support the observed bio-properties. PMID:25937011

  3. Develop Anti-Inflammatory Nanotherapies to Treat Cardiovascular Disease

    NASA Astrophysics Data System (ADS)

    Tang, Jun

    Cardiovascular disease (CVD) is the leading cause of disease-related death in the world, accounting for 30 % global mortality. The majority of CVD is caused by atherosclerosis, a chronic inflammatory disease of major arteries featured by the deposition of lipids and cholesterol. Inflammation of atherosclerosis is mainly promoted by the pathological macrophages and monocytes, and modulating their functions has been proposed as a promising therapeutic target. This dissertation first presents the development of a novel simvastatin-loaded high-density lipoprotein (HDL) based nanoparticle ([S]-rHDL), which was able to deliver anti-inflammatory simvastatin preferentially to inflammatory monocytes in the blood and to macrophages in advanced atherosclerotic plaques, leading to the reduced inflammation in the tissue. Second, extensive in vivo characterization of [S]-rHDL in a mouse atherosclerosis model revealed that the anti-inflammatory capability of [S]-rHDL derived from its effects on blood monocytes, endothelial layer, monocyte recruitment, and plaque macrophage function. Third, a translational study that integrated the use of [S]-rHDL into oral statin treatment demonstrated a great potential for this nanomedicine as an attractive addition to the current high-dose oral statin standard-of-care for acute coronary syndrome. Finally, preliminary results suggested potential applications of the rHDL platform to other macrophage-implicated diseases.

  4. Synthesis and pharmacological evaluation of pyrazolopyrimidopyrimidine derivatives: anti-inflammatory agents with gastroprotective effect in rats.

    PubMed

    Karoui, Amine; Allouche, Fatma; Deghrigue, Monia; Agrebi, Asma; Bouraoui, Abderrahman; Chabchoub, Fakher

    2014-01-01

    We report the synthesis of new anti-inflammatory 1,7-dihydropyrazolo[3',4':4,5]pyrimido[1,6-a]pyrimidine 5 from aminocyanopyrazole. All compounds were characterized by physical, chemical and spectral studies. Preliminary pharmacological evaluation of the resulting products showed that compounds 5a, b, f (50-100 mg/kg, i.p) are active anti-inflammatory agents in carrageenan-induced rat paw oedema assay, and their effects are comparable to that of acetylsalicylic-lysine (300 mg/kg, i.p.), used as a reference drug. The nature of substituent (Y, R3) had a pronounced effect on the anti-inflammatory activity. Studies of structure-activity relationships have led to selection of compound ethyl-3,5-dimethyl-7-imino-N (1)-phenyl-1,7-dihydropyrazolo[3',4':4,5]pyrimido[1,6-a]pyrimidine-6-carboxylate, 5f which exhibited the most potent anti-inflammatory activity. In addition, the compounds 5a, b, f showed a significant gastroprotective effect against HCl/EtOH-induced gastric ulcer. PMID:24489456

  5. Antimicrobial and anti-inflammatory activities of leaf extract of Valeriana wallichii DC.

    PubMed

    Khuda, Fazli; Iqbal, Zafar; Zakiullah; Khan, Ayub; Nasir, Fazli

    2012-10-01

    Valeriana wallichii DC (Valerianaceae) is one of the most widely used traditional remedies for various complications associated with nervous system and digestion. No antimicrobial and anti-inflammatory studies have so far been carried out on the aerial parts of the plant. The present work was focused to evaluate the antimicrobial (antifungal and antibacterial) and anti-inflammatory properties of V. wallichii using reported methods. Chloroform fraction (VW-2) and hexane fraction (VW-3) exhibited significant activity against S. aureus and B. subtilus, respectively. The chloroform fraction (VW-2) showed significant activity against S. aureus with 0.27 mg/ml MIC, where 0.31 mg/ml MIC was deduced for VW-3 fraction against B. subtilus. VW-3 fraction was also found to be the most potent inhibitor of M. canis, showing 70% inhibition with an MIC value of 0.19 mg/ml. Considerable inhibitory activity was also observed for VW-2 and water fraction (VW-6) against M. canis and A. flavus. A remarkable anti-inflammatory like activity was observed for the crude extract at a dose of 200 mg/kg at all observed durations. Other doses of the sample also showed excellent activity. Looking to these results it may be concluded that V. wallichii may be a potential source for activity guided isolation of natural products with antimicrobial and anti-inflammatory-like properties. PMID:23009985

  6. Anti-inflammatory effects of the novel inhaled phosphodiesterase type 4 inhibitor CHF6001 on virus-inducible cytokines.

    PubMed

    Edwards, Michael R; Facchinetti, Fabrizio; Civelli, Maurizio; Villetti, Gino; Johnston, Sebastian L

    2016-02-01

    Respiratory virus infections precipitate asthma and chronic obstructive pulmonary disease (COPD) exacerbations, with most exacerbations due to rhinovirus infection. Both asthma and COPD exacerbations are not well controlled by steroid therapies, and there is a much research interest in finding improved therapies or combinations of therapies for controlling exacerbations. CHF6001 is a new, inhaled highly potent and selective phosphodiesterase type 4 (PDE4) inhibitor. Using in vitro human bronchial epithelial cells (BEAS-2B), we investigated the potential anti-inflammatory effects of CHF6001 on rhinovirus (RV1B)-induced cytokines. Cytokine mRNA was measured by real-time PCR, while protein release was measured by ELISA. CHF6001 was used in a 7-point dose-response curve (1000-0.001 nmol/L) as a 1.5-h pretreatment prior to infection in comparison with roflumilast. Both roflumilast and CHF6001 reduced RV1B-induced IL-8, IL-29, IP-10, and RANTES mRNA and protein in a concentration-dependent manner. Generally, CHF6001 was 13- to 16-fold more potent (subnanomolar EC 50 values) than roflumilast at reducing IL-8, IL-29, IP-10, and RANTES mRNA and protein release, but had similar efficacies. In combination with the steroid fluticasone propionate (1 nmol/L), CHF6001 had additive effects, significantly reducing RV-induced cytokines when compared with steroid or CHF6001 alone. Combined low-dose steroid and low-dose CHF6001 had a similar efficacy as high-dose steroid or CHF6001 alone, indicating the combination had steroid and PDE4 inhibitor sparing effects. Overall results indicate that PDE4 inhibitors have anti-inflammatory activity against virus-induced inflammatory mediators and that CHF6001 is more potent than roflumilast. PMID:26977295

  7. Anti-Inflammatory and Antinociceptive Activities of Untreated, Germinated, and Fermented Mung Bean Aqueous Extract

    PubMed Central

    Ali, Norlaily Mohd; Mohd Yusof, Hamidah; Yeap, Swee-Keong; Ho, Wan-Yong; Beh, Boon-Kee; Koh, Soo-Peng; Abdullah, Mohd Puad; Alitheen, Noorjahan Banu

    2014-01-01

    Evaluation of anti-inflammatory and antinociceptive activities of untreated mung bean (MB), germinated mung bean (GMB), and fermented mung bean (FMB) was performed on both in vitro (inhibition of inflammatory mediator, nitric oxide(NO)) and in vivo (inhibition of ear oedema and reduction of response to pain stimulus) studies. Results showed that both GMB and FMB aqueous extract exhibited potent anti-inflammatory and antinociceptive activities in a dose-dependent manner. In vitro results showed that GMB and FMB were potent inflammatory mediator (NO) inhibitors at both 2.5 and 5 mg/mL. Further in vivo studies showed that GMB and FMB aqueous extract at 1000 mg/kg can significantly reduce ear oedema in mice caused by arachidonic acid. Besides, both 200 mg/kg and 1000 mg/kg concentrations of GMB and FMB were found to exhibit potent antinociceptive effects towards hotplate induced pain. With these, it can be concluded that GMB and FMB aqueous extract exhibited potential anti-inflammatory and antinociceptive effects. PMID:25045389

  8. Topical anti-inflammatory activity of Solanum corymbiflorum leaves.

    PubMed

    Piana, Mariana; Camponogara, Camila; Boligon, Aline Augusti; Machado, Michel Mansur; de Brum, Thiele Faccim; Oliveira, Sara Marchesan; de Freitas Bauermann, Liliane

    2016-02-17

    Solanum corymbiflorum is popularly known as "baga-de-veado" and its leaves are applied on inflamed legs, scabies, tick bite, boils, mastitis, low back pain and otitis. The aim of this study was evaluate anti-inflammatory in vivo activity and relate this activity with antioxidant compounds present in the extract of S. corymbiflorum leaves. The extract from S. corymbiflorum leaves topically applied was able to reduce the croton oil-induced ear edema and myeloperoxidase (MPO) activity with maximum inhibition of 87±3% and 45±7%, rescpectively in the dose of 1mg/ear. Similar results were found for positive control dexamethasone, which presented inhibitions of ear edema and MPO activity of 89±3% and 50±3%, respectively in a dose of 0.1mg/ear. These findings are due, at least in part, the presence of polyphenols (195.28mg GAE/g) and flavonoids, as chlorogenic acid (59.27mg/g), rutin (12.72mg/g), rosmarinic acid, caffeic acid and gallic acid found by high performance liquid chromatography (HPLC) analysis. This species showed potencial antioxidant by 1,1-diphenyl-2-picrylhydrazyl (DPPH), and carbonyl groups in proteins methods which may be related with the presence of this compounds. This species possess anti-inflammatory activity confirming their popular use for the local treatment of skin inflammatory disorders. PMID:26721215

  9. A novel anti-inflammatory peptide from human lipocortin 5.

    PubMed Central

    Perretti, M.; Becherucci, C.; Mugridge, K. G.; Solito, E.; Silvestri, S.; Parente, L.

    1991-01-01

    1. A novel anti-inflammatory peptide (residues 204-212) of human recombinant lipocortin 5 (hrLC5) found on the high similarity region with uteroglobin is described. 2. Peptide 204-212 dose-dependently inhibited the contractions of rat isolated stomach strips elicited by porcine pancreatic phospholipase A2 (PLA2). Contractions caused by arachidonic acid (AA), prostaglandin E2 (PGE2) and 5-hydroxytryptamine were not affected. No direct enzyme inhibition was observed in a radiochemical assay. 3. PGE2 release by both human fibroblasts and rat macrophages was reduced by peptide 204-212 in a dose-dependent manner. 4. The development of carrageenin-induced oedema in rats was significantly inhibited by the local administration of peptide 204-212. 5. The pattern and potency of the biological effects of peptide 204-212 are similar to those of antiflammin 2, a lipocortin 1-derived peptide. 6. It is suggested that peptide 204-212 may represent the active site responsible for the anti-inflammatory properties of lipocortin 5. PMID:1832064

  10. Brucella CβG induces a dual pro- and anti-inflammatory response leading to a transient neutrophil recruitment

    PubMed Central

    Degos, Clara; Gagnaire, Aurélie; Banchereau, Romain; Moriyón, Ignacio; Gorvel, Jean-Pierre

    2015-01-01

    Brucella is the causing agent of a chronic zoonosis called brucellosis. The Brucella β-1,2 cyclic glucan (CβG) is a virulence factor, which has been described as a potent immune stimulator, albeit with no toxicity for cells and animals. We first used a genome-wide approach to characterize human myeloid dendritic cell (mDC) responses to CβG. Transcripts related to inflammation (IL-6, IL2RA, PTGS2), chemokine (CXCR7, CXCL2) and anti-inflammatory pathways (TNFAIP6, SOCS3) were highly expressed in CβG-treated mDC. In mouse GMCSF-derived DC, CβG triggered the expression of both activation (CXCL2, KC) and inhibition (SOCS3 and TNFAIP6) molecules. We then characterized the inflammatory infiltrates at the level of mouse ear when injected with CβG or LPS. CβG yielded a lower and transient recruitment of neutrophils compared to LPS. The consequence of these dual pro- and anti-inflammatory signals triggered by CβG corresponds to the induction of a controlled local inflammation. PMID:25654761

  11. Antibacterial, anti-inflammatory and probiotic potential of Enterococcus hirae isolated from the rumen of Bos primigenius.

    PubMed

    Arokiyaraj, Selvaraj; Hairul Islam, Villianur Ibrahim; Bharanidharan, R; Raveendar, Sebastian; Lee, Jinwook; Kim, Do Hyung; Oh, Young Kyoon; Kim, Eun-Kyung; Kim, Kyoung Hoon

    2014-07-01

    In the present study bacterial strains were isolated from the rumen fluids of Bos primigenius and investigated their in vitro probiotic properties with potent antibacterial activity and anti-inflammatory effects. 9 g positive bacterial isolates were obtained and three isolates could able to tolerate gastric conditions, high bile salt concentrations and exhibited significant bactericidal effect against the enteric pathogens Vibrio cholera, Enterococcus faecalis, Enterobacter aerogens, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi. Moreover it showed above 70% cell surface hydrophobicity, significant low-invasion ability and potential adherence capacity in Caco-2 cells when compared with the control. The proinflammatory cytokines (TNF-α) was greatly reduced in rumen bacteria treatment and ARBS-1 modulate the immune response by activating the IL-4 secretion in parallel to TNF-α suppression. The 16s rRNA gene sequence of the active isolates were identified as Enterococcus hirae (ARBS-1), Pediococcus acidilactici (ARBS-4) and Bacillus licheniformis (ARBS-7). This study revealed the probiotic bactericidal properties of E. hirae obtained from the rumen of B. primigenius with potential antibacterial and anti-inflammatory effects. Future studies with the strains may yield some novel probiotic product for livestock's. PMID:24609495

  12. Review of Anti-Inflammatory Herbal Medicines.

    PubMed

    Ghasemian, Mona; Owlia, Sina; Owlia, Mohammad Bagher

    2016-01-01

    Medicinal plants and their secondary metabolites are progressively used in the treatment of diseases as a complementary medicine. Inflammation is a pathologic condition that includes a wide range of diseases such as rheumatic and immune-mediated conditions, diabetes, cardiovascular accident, and etcetera. We introduce some herbs which their anti-inflammatory effects have been evaluated in clinical and experimental studies. Curcuma longa, Zingiber officinale, Rosmarinus officinalis, Borago officinalis, evening primrose, and Devil's claw are some of the introduced medicinal herbs in this review. Since the treatment of inflammation is not a one-dimensional remedy, this review tries to reach a multidimensional therapeutic approach to inflammation with the help of herbal medicine and modification in lifestyle. PMID:27247570

  13. Review of Anti-Inflammatory Herbal Medicines

    PubMed Central

    Ghasemian, Mona; Owlia, Sina; Owlia, Mohammad Bagher

    2016-01-01

    Medicinal plants and their secondary metabolites are progressively used in the treatment of diseases as a complementary medicine. Inflammation is a pathologic condition that includes a wide range of diseases such as rheumatic and immune-mediated conditions, diabetes, cardiovascular accident, and etcetera. We introduce some herbs which their anti-inflammatory effects have been evaluated in clinical and experimental studies. Curcuma longa, Zingiber officinale, Rosmarinus officinalis, Borago officinalis, evening primrose, and Devil's claw are some of the introduced medicinal herbs in this review. Since the treatment of inflammation is not a one-dimensional remedy, this review tries to reach a multidimensional therapeutic approach to inflammation with the help of herbal medicine and modification in lifestyle. PMID:27247570

  14. Corneal reepithelialization and anti-inflammatory agents.

    PubMed Central

    Srinivasan, B D

    1982-01-01

    These studies have demonstrated that nonsteroidal anti-inflammatory agents (cyclooxygenase and lipoxygenase inhibitors) can inhibit PMN arrival in the tear fluid following corneal injury but do not inhibit the reepithelialization either by corneal epithelial cells or by conjunctival epithelial cells. Therefore, they can be used safely in ocular inflammatory conditions even when corneal epithelial defects are present. Corticosteroids, on the other hand, inhibit reepithelialization by conjunctival epithelial cells and not by corneal epithelial cells in the doses tested. This inhibition does not occur with pretreatment prior to injury, suggesting that corticosteroids can be used clinically in conditions that have intact corneal epithelium without fear of slowing down wound healing should epithelial defects occur when not on steroid therapy. Furthermore, the steroid inhibition is temporary since there is a breakthrough in steroid inhibition with time, and occurs only if the steroids have been used shortly after deepithelialization. The steroid inhibition can be reversed by specific steroid antagonist, indicating that the steroid effect is mediated through specific receptors. An exciting and new hypothesis proposes that corticosteroids induce the formation of an inhibitory protein that inhibits the phospholipase enzyme to cause a block in arachidonic acid release from cell membranes. This mechanism of action may also be prevalent in the steroid effect on corneal reepithelialization, and experiments are under way to isolate this inhibitory protein from steroid-treated conjunctival epithelium. This isolation and pharmacologic characterization of this inhibitory protein is of obvious advantage to the field of ophthalmic therapeutics since this protein may have the anti-inflammatory potential of the steroids without their steroid sideeffects. Images FIGURE 3 a FIGURE 3 b PMID:6763806

  15. Anti-Inflammatory Properties and Chemical Characterization of the Essential Oils of Four Citrus Species.

    PubMed

    Amorim, Jorge Luis; Simas, Daniel Luiz Reis; Pinheiro, Mariana Martins Gomes; Moreno, Daniela Sales Alviano; Alviano, Celuta Sales; da Silva, Antonio Jorge Ribeiro; Fernandes, Patricia Dias

    2016-01-01

    Citrus fruits have potential health-promoting properties and their essential oils have long been used in several applications. Due to biological effects described to some citrus species in this study our objectives were to analyze and compare the phytochemical composition and evaluate the anti-inflammatory effect of essential oils (EO) obtained from four different Citrus species. Mice were treated with EO obtained from C. limon, C. latifolia, C. aurantifolia or C. limonia (10 to 100 mg/kg, p.o.) and their anti-inflammatory effects were evaluated in chemical induced inflammation (formalin-induced licking response) and carrageenan-induced inflammation in the subcutaneous air pouch model. A possible antinociceptive effect was evaluated in the hot plate model. Phytochemical analyses indicated the presence of geranial, limonene, γ-terpinene and others. EOs from C. limon, C. aurantifolia and C. limonia exhibited anti-inflammatory effects by reducing cell migration, cytokine production and protein extravasation induced by carrageenan. These effects were also obtained with similar amounts of pure limonene. It was also observed that C. aurantifolia induced myelotoxicity in mice. Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral. Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia. PMID:27088973

  16. Anti-Inflammatory Properties and Chemical Characterization of the Essential Oils of Four Citrus Species

    PubMed Central

    Amorim, Jorge Luis; Simas, Daniel Luiz Reis; Pinheiro, Mariana Martins Gomes; Moreno, Daniela Sales Alviano; Alviano, Celuta Sales; da Silva, Antonio Jorge Ribeiro

    2016-01-01

    Citrus fruits have potential health-promoting properties and their essential oils have long been used in several applications. Due to biological effects described to some citrus species in this study our objectives were to analyze and compare the phytochemical composition and evaluate the anti-inflammatory effect of essential oils (EO) obtained from four different Citrus species. Mice were treated with EO obtained from C. limon, C. latifolia, C. aurantifolia or C. limonia (10 to 100 mg/kg, p.o.) and their anti-inflammatory effects were evaluated in chemical induced inflammation (formalin-induced licking response) and carrageenan-induced inflammation in the subcutaneous air pouch model. A possible antinociceptive effect was evaluated in the hot plate model. Phytochemical analyses indicated the presence of geranial, limonene, γ-terpinene and others. EOs from C. limon, C. aurantifolia and C. limonia exhibited anti-inflammatory effects by reducing cell migration, cytokine production and protein extravasation induced by carrageenan. These effects were also obtained with similar amounts of pure limonene. It was also observed that C. aurantifolia induced myelotoxicity in mice. Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral. Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia. PMID:27088973

  17. Anti-Inflammatory and Antioxidant Activities of Salvia fruticosa: An HPLC Determination of Phenolic Contents

    PubMed Central

    Boukhary, Rima; Ghoneim, Asser I.; Aboul-Ela, Maha; El-Lakany, Abdalla

    2016-01-01

    Objectives. Salvia fruticosa Mill. (S. fruticosa) is widely used in folk medicine. Accordingly, the present study was designed to evaluate the antioxidant and anti-inflammatory activities of S. fruticosa, and to determine the phenolic constituents of its extracts. Methods. The antioxidant activity was determined using 2,2-diphenylpicrylhydrazyl assay. Total phenolic contents were estimated using Folin-Ciocalteu reagent, and high-performance liquid chromatography was performed to identify phenolic constituents. To evaluate the anti-inflammatory activity, carrageenan-induced mouse paw edema was determined plethysmographically. Key Findings. Different plant extracts demonstrated strong radical scavenging activity, where the ethyl acetate extract had the highest value in the roots and the lowest in the aerial parts. This antioxidant activity was correlated to the total phenolic content of different extracts, where rutin and luteolin were the most abundant constituents. Interestingly, both the roots and aerial parts revealed a significant anti-inflammatory activity comparable to diclofenac. Conclusions. This study is the first to demonstrate pharmacologic evidence of the potential anti-inflammatory activity of S. fruticosa. This activity may partly be due to the radical scavenging effects of its polyphenolic contents. These findings warrant the popular use of the East Mediterranean sage and highlight the potential of its active constituents in the development of new anti-inflammatory drugs. PMID:26881007

  18. Anti-Inflammatory and Antioxidant Activities of Salvia fruticosa: An HPLC Determination of Phenolic Contents.

    PubMed

    Boukhary, Rima; Raafat, Karim; Ghoneim, Asser I; Aboul-Ela, Maha; El-Lakany, Abdalla

    2016-01-01

    Objectives. Salvia fruticosa Mill. (S. fruticosa) is widely used in folk medicine. Accordingly, the present study was designed to evaluate the antioxidant and anti-inflammatory activities of S. fruticosa, and to determine the phenolic constituents of its extracts. Methods. The antioxidant activity was determined using 2,2-diphenylpicrylhydrazyl assay. Total phenolic contents were estimated using Folin-Ciocalteu reagent, and high-performance liquid chromatography was performed to identify phenolic constituents. To evaluate the anti-inflammatory activity, carrageenan-induced mouse paw edema was determined plethysmographically. Key Findings. Different plant extracts demonstrated strong radical scavenging activity, where the ethyl acetate extract had the highest value in the roots and the lowest in the aerial parts. This antioxidant activity was correlated to the total phenolic content of different extracts, where rutin and luteolin were the most abundant constituents. Interestingly, both the roots and aerial parts revealed a significant anti-inflammatory activity comparable to diclofenac. Conclusions. This study is the first to demonstrate pharmacologic evidence of the potential anti-inflammatory activity of S. fruticosa. This activity may partly be due to the radical scavenging effects of its polyphenolic contents. These findings warrant the popular use of the East Mediterranean sage and highlight the potential of its active constituents in the development of new anti-inflammatory drugs. PMID:26881007

  19. Anti-inflammatory activity of D-002: an active product isolated from beeswax.

    PubMed

    Carbajal, D; Molina, V; Valdés, S; Arruzazabala, M L; Más, R; Magraner, J

    1998-10-01

    D-002 is a natural mixture of high molecular weight alcohols isolated and purified from beeswax, which contains triacontanol among its main components. This study was undertaken to investigate the anti-inflammatory effects of D-002 administered by the oral route in two animal models commonly used in the pharmacological screening of anti-inflammatory drugs. D-002 administered orally to rats (100 and 200 mg/kg) produced a mild but significant reduction of exudate volume in carrageenan-induced pleuritic inflammation that was accompanied by a marked and significant decrease of leukotriene B4 (LTB4) levels in the exudate. D-002 (25, 50 and 200 mg/kg) also significantly diminished the granuloma weight in the cotton pellet granuloma in rats. In both cases, D-002 was less effective than indomethacin, which was used as an established anti-inflammatory reference drug. On the other hand, D-002 administered from 25-1000 mg/kg did not induce erosions or gastromucosal lesions in rats, which differs from results usually obtained with non steroidal anti-inflammatory drugs. These results indicate that D-002 is a mild anti-inflammatory agent without any ulcerogenic effect associated. The results suggest that these effects are probably not mediated through an inhibition of cyclooxygenase, but a reduction in LTB4 levels induced by D-002 could explain these results. PMID:9849648

  20. Sol-gel-derived magnetic SiO2/TiO2 nanocomposite reinforced hollow fiber-solid phase microextraction for enrichment of non-steroidal anti-inflammatory drugs from human hair prior to high performance liquid chromatography.

    PubMed

    Es'haghi, Zarrin; Esmaeili-Shahri, Effat

    2014-10-01

    Hollow fiber-solid phase micro-extraction (HF-SPME) technique containing sol-gel-derived Fe3O4/SiO2/TiO2 core-double shell nanocomposite as a novel high efficiency sorbent, coupled with high performance liquid chromatography was used to extraction and determination of six non-steroidal anti-inflammatory drugs; acetylsalicylic acid, naproxen, piroxicam, diclofenac, indomethacin and mefenamic acid, in hair samples. First, magnetite nanoparticles (Fe3O4-NPs) were synthesized by chemical co-precipitation of Fe(II) and Fe(III) ions (where the ratio of Fe(II) to Fe(III) is 1:2 and a non-oxidizing environment), in alkaline medium to produce magnetite particles. Subsequently, surface of Fe3O4-NPs was modified with SiO2 and TiO2 using layer-by-layer chemical technique. A core-shell structure of Fe3O4/SiO2/TiO2 composite was prepared by coating magnetite core particles with silica and titania layers. In the proposed method, NSAIDs were extracted by the synthesized nanocomposite and analyzed by HPLC. The parameters affecting the efficiency of magnetic nanoparticle (MNPs) assisted HF-SPME were investigated and optimized. The method validation was included and satisfying results with high pre-concentration factors (405 up to 2450) were obtained. It owes large surface area and porosity of the nano-adsorbent. Under the optimal conditions, the method detection limits (S/N=3) were in the range of 0.01-0.10μgml(-1) and the limits of quantification (S/N=10) between 0.04 and 0.30μgml(-1). Relative standard deviations were 3.09-6.61%. Eventually, the method was successfully applied to human hair after administration of NSAIDs. PMID:25464107

  1. A novel anti-inflammatory mechanism of high density lipoprotein through up-regulating annexin A1 in vascular endothelial cells.

    PubMed

    Pan, Bing; Kong, Jinge; Jin, Jingru; Kong, Jian; He, Yubin; Dong, Shuying; Ji, Liang; Liu, Donghui; He, Dan; Kong, Liming; Jin, David K; Willard, Belinda; Pennathur, Subramaniam; Zheng, Lemin

    2016-06-01

    High density lipoprotein (HDL) as well as annexin A1 have been reported to be associated with cardiovascular protection. However, the correlation between HDL and annexin A1 was still unknown. In this study, HDL increased endothelial annexin A1 and prevented the decrease of annexin A1 in TNF-α-activated endothelial cells in vitro and in vivo, and above effects were attenuated after knockdown of annexin A1. Annexin A1 modulation affected HDL-mediated inhibition of monocyte adhesion to TNF-α-activated endothelium (45.2±13.7% decrease for annexin A1 RNA interference; 78.7±16.3% decrease for anti-Annexin A1 antibody blocking; 11.2±6.9% increase for Ad-ANXA1 transfection). Additionally, HDL up-regulated annexin A1 through scavenger receptor class B type I, involving ERK, p38MAPK, Akt and PKC signaling pathways, and respective inhibitors of these pathways attenuated HDL-induced annexin A1 expression as well as impaired HDL-mediated inhibition of monocyte-endothelial cell adhesion. Apolipoprotein AI also increased annexin A1 and activated similar signaling pathways. Endothelial annexin A1 from apolipoprotein AI knockout mice was decreased in comparison to that from wild type mice. Finally, HDL-induced annexin A1 inhibited cell surface VCAM-1, ICAM-1 and E-selectin, and secretion of MCP-1, IL-8, VCAM-1 and E-selectin, thereby inhibiting monocyte adhesion. PMID:27012521

  2. [Anti-inflammatory effects of prednisolone 17-valerate 21-acetate, a new topical corticosteroid (author's transl)].

    PubMed

    Wada, Y; Etoh, Y; Ohira, A; Ikuta, J; Kato, Y; Sano, N

    1980-09-01

    Anti-inflammatory activities of prednisolone 17-valerate 21-acetate(PVA) were studied in rats and guinea pigs and results compared with data on topical steroids, such as betamethasone 17-valerate(BV) and hydrocortisone 17-butyrate(HB). PVA given subcutaneously inhibited dose-dependently carrageenin- and kaolin-induced edema. These anti-inflammatory activities of PVA were the weakest among the steroids tested. A local administration of PVA into the site of inflammation, however, had the same or more potent activities than BV and HB in carrageenin-induced edema and paper disk granuloma. Topical application of PVA ointment in carrageenin-induced edema exhibited an inhibitory effect which was dependent on the concentrations (0.1-1.0%). The anti-inflammatory activity of 0.3% PVA ointment was equivalent to that of 0.12% BV ointment. For the other experimental models, i.e. exuberant granulation, croton oil-induced ear edema, passive cutaneous anaphylaxis and tuberculin-induced delayed type hypersensitivity, the activity of 0.3% PVA ointment was the same or somewhat more potent than 0.12% BV and 0.1% HB ointments. The thymolytic activity of PVA ointment in the exuberant granulation model was similar to the activity seen with HB ointment and weaker than of BV ointment. Thus, the anti-inflammatory activities of PVA were equivalent to or more potent than those of BV and HB, and with topical application, the systemic effect of PVA was weaker than the other steroids examined. PMID:7203275

  3. Repositioning drugs for inflammatory disease – fishing for new anti-inflammatory agents

    PubMed Central

    Hall, Christopher J.; Wicker, Sophie M.; Chien, An-Tzu; Tromp, Alisha; Lawrence, Lisa M.; Sun, Xueying; Krissansen, Geoffrey W.; Crosier, Kathryn E.; Crosier, Philip S.

    2014-01-01

    Inflammation is an important and appropriate host response to infection or injury. However, dysregulation of this response, with resulting persistent or inappropriate inflammation, underlies a broad range of pathological processes, from inflammatory dermatoses to type 2 diabetes and cancer. As such, identifying new drugs to suppress inflammation is an area of intense interest. Despite notable successes, there still exists an unmet need for new effective therapeutic approaches to treat inflammation. Traditional drug discovery, including structure-based drug design, have largely fallen short of satisfying this unmet need. With faster development times and reduced safety and pharmacokinetic uncertainty, drug repositioning – the process of finding new uses for existing drugs – is emerging as an alternative strategy to traditional drug design that promises an improved risk-reward trade-off. Using a zebrafish in vivo neutrophil migration assay, we undertook a drug repositioning screen to identify unknown anti-inflammatory activities for known drugs. By interrogating a library of 1280 approved drugs for their ability to suppress the recruitment of neutrophils to tail fin injury, we identified a number of drugs with significant anti-inflammatory activity that have not previously been characterized as general anti-inflammatories. Importantly, we reveal that the ten most potent repositioned drugs from our zebrafish screen displayed conserved anti-inflammatory activity in a mouse model of skin inflammation (atopic dermatitis). This study provides compelling evidence that exploiting the zebrafish as an in vivo drug repositioning platform holds promise as a strategy to reveal new anti-inflammatory activities for existing drugs. PMID:25038060

  4. Anti-inflammatory effects of methoxyphenolic compounds on human airway cells

    PubMed Central

    2012-01-01

    Background The respiratory epithelium plays a central role in the inflammatory response in asthma and other diseases. Methoxyphenolic compounds are purported to be effective anti-inflammatory agents, but their effects on the airway epithelium have not been well characterized. Methods Human airway cells were stimulated with TNF-α in the presence or absence of 4-substituted methoxyphenols and resveratrol. The expression of various cytokines was measured by qPCR, ELISAs, and protein arrays. Reactive oxygen species (ROS) production was measured with a reactive fluorescent probe (3',6'-diacetate-2',7'-dichlorofluorescein). Activation of NF-κB was measured by nuclear translocation and phosphorylation. Ribonuclear protein association with mRNA was assessed with a biotin-RNA affinity isolation assay. Results Multiple inflammatory mediators were inhibited by methoxyphenols, including: CCL2, CCL5, IL-6, IL-8, ICAM-1, MIF, CXCL1, CXCL10, and Serpin E1. IC50 values were obtained for each compound that showed significant anti-inflammatory activity: diapocynin (20.3 μM), resveratrol (42.7 μM), 2-methoxyhydroquinone (64.3 μM), apocynin (146.6 μM), and 4-amino-2-methoxyphenol (410 μM). The anti-inflammatory activity did not correlate with inhibition of reactive oxygen species production or NF-κB activation. However, methoxyphenols inhibited binding of the RNA-binding protein HuR to mRNA, indicating that they may act post-transcriptionally. Conclusions Methoxyphenols demonstrate anti-inflammatory activity in human airway cells. More potent compounds that act via similar mechanisms may have therapeutic potential as novel anti-inflammatory agents. PMID:22414048

  5. A RECOMBINANT IgG Fc THAT RECAPITULATES THE ANTI-INFLAMMATORY ACTIVITY OF IVIG

    PubMed Central

    Anthony, Robert M.; Nimmerjahn, Falk; Ashline, David J.; Reinhold, Vernon N.; Paulson, James C.; Ravetch, Jeffrey V.

    2008-01-01

    High doses of monomeric IgG purified from pooled human plasma confer anti-inflammatory activity for a wide variety of autoimmune diseases. The heterogeneity of IVIG, derived from its Fab specificity, IgG subclass distribution and variable glycosylation have confounded efforts to develop a recombinant substitute for this blood-derived product. Recent studies have demonstrated that this paradoxical anti-inflammatory activity of IgG is completely dependent on sialylation of the N-linked glycan of the IgG Fc fragment. Determining the precise glycan requirements for this anti-inflammatory activity allowed appropriate glycan engineering of an IgG1 Fc fragment, leading to the generation of a fully recombinant, sialylated IgG1 Fc with greatly enhanced potency. PMID:18420934

  6. Evaluation of antinociceptive and anti-inflammatory activity of hydromethanol extract of Cocos nucifera L.

    PubMed

    Naskar, Sagar; Mazumder, U K; Pramanik, G; Saha, P; Haldar, P K; Gupta, M

    2013-02-01

    Cocos nucifera L. (family: arecaceae) is generally straight unbranched plant, traditionally cultivated for its fruit (coconut) in home gardens. In the present study, anti-inflammatory and antinociceptive (analgesic) activity of hydromethanol extract of Cocos nucifera L. (HECN) was evaluated in animal models. HECN showed significant (p < 0.05) and dosedependent anti-inflammatory activity in carrageenan induced paw oedema models of inflammation and the result was comparable with the standard drug diclofenac. In addition, the extract also showed highly significant (p < 0.01) antinociceptive activity. HECN treated group showed increase in the reaction time in hot plate method and decrease the writhing induced by acetic acid in mice when compared with control group animal. The anti-inflammatory and antinociceptive activity observed in the present study could be attributed largely to the presence of its antioxidant phytoconstituents such as flavonoid, saponin and polyphenols. PMID:22527352

  7. Anti-inflammatory and immunomodulatory properties of Carica papaya.

    PubMed

    Pandey, Saurabh; Cabot, Peter J; Shaw, P Nicholas; Hewavitharana, Amitha K

    2016-07-01

    Chronic inflammation is linked with the generation and progression of various diseases such as cancer, diabetes and atherosclerosis, and anti-inflammatory drugs therefore have the potential to assist in the treatment of these conditions. Carica papaya is a tropical plant that is traditionally used in the treatment of various ailments including inflammatory conditions. A literature search was conducted by using the keywords "papaya", "anti-inflammatory and inflammation" and "immunomodulation and immune" along with cross-referencing. Both in vitro and in vivo investigation studies were included. This is a review of all studies published since 2000 on the anti-inflammatory activity of papaya extracts and their effects on various immune-inflammatory mediators. Studies on the anti-inflammatory activities of recognized phytochemicals present in papaya are also included. Although in vitro and in vivo studies have shown that papaya extracts and papaya-associated phytochemicals possess anti-inflammatory and immunomodulatory properties, clinical studies are lacking. PMID:27416522

  8. Luteolin exhibits anti-inflammatory effects by blocking the activity of heat shock protein 90 in macrophages.

    PubMed

    Chen, Dan; Bi, Aijing; Dong, Xiaoliang; Jiang, Yi; Rui, Bing; Liu, Jinjiao; Yin, Zhimin; Luo, Lan

    2014-01-01

    Septic diseases represent the prevalent complications in intensive care units. Luteolin, a plant flavonoid, has potent anti-inflammatory properties; however, the molecular mechanism beneath luteolin mediated immune modulation remains unclear. Here in vitro investigations showed that luteolin dose-dependently inhibited LPS-triggered secretion and relocation of high mobility group B-1 (HMGB1) and LPS-induced production of tumor necrosis factor alpha (TNF-α) and nitric oxide (NO) in macrophages. The mechanism analysis demonstrated that luteolin reduced the release of HMGB1 through destabilizing c-Jun and suppressed HMGB1-induced aggravation of inflammatory cascade through reducing Akt protein level. As an inhibitor of Hsp90, luteolin destabilized Hsp90 client protein c-Jun and Akt. In vivo investigations showed that luteolin effectively protected mice from lipopolysaccharide (LPS)-induced lethality. In conclusion, the present study suggested that luteolin may act as a potential therapeutic reagent for treating septic diseases. PMID:24321097

  9. Anti-inflammatory effects of escin are correlated with the glucocorticoid receptor/NF-κB signaling pathway, but not the COX/PGF2α signaling pathway.

    PubMed

    Wang, Hongsheng; Zhang, Leiming; Jiang, Na; Wang, Zhenhua; Chong, Yating; Fu, Fenghua

    2013-08-01

    In China, escin has been widely used in the clinic as a potent anti-inflammatory drug. Previous studies have indicated that escin exerts its anti-inflammatory effect by enhancing the release of glucocorticoids (GCs) and prostaglandin-F2α (PGF2α), and this has been documented in the drug description. However, our previous studies demonstrated that escin did not increase the secretion of GCs, but instead elevated the protein expression of the GC receptor (GR), which may have repressed nuclear factor (NF)-κB-mediated gene expression. The aim of this study was to determine the functions of NF-κB and PGF2α with regard to the anti-inflammatory effect of escin. We investigated the anti-inflammatory effects of dexamethasone, diclofenac and escin against carrageenan-induced paw edema in rats, and observed that escin exerted a GC-like anti-inflammatory effect. In addition, we studied the role of PGF2α in the anti-inflammatory effect exerted by escin in an acetic acid-induced capillary permeability model in mice. The results revealed that the coadministration of escin and diclofenac, a potent prostaglandin-synthesis inhibitor, did not affect the anti-inflammatory effect of escin. Furthermore, we investigated the function of NF-κB with regard to the anti-inflammatory effect exerted by escin in lipopolysaccharide (LPS)-treated mice, and demonstrated that escin significantly inhibited the expression of NF-κB. These results suggest that escin has a GC-like anti-inflammatory effect, and that its mechanisms may be correlated with the GC receptor/NF-κB signaling pathway, but not the COX/PGF2α signaling pathway. PMID:24137201

  10. Anti-inflammatory effects of escin are correlated with the glucocorticoid receptor/NF-κB signaling pathway, but not the COX/PGF2α signaling pathway

    PubMed Central

    WANG, HONGSHENG; ZHANG, LEIMING; JIANG, NA; WANG, ZHENHUA; CHONG, YATING; FU, FENGHUA

    2013-01-01

    In China, escin has been widely used in the clinic as a potent anti-inflammatory drug. Previous studies have indicated that escin exerts its anti-inflammatory effect by enhancing the release of glucocorticoids (GCs) and prostaglandin-F2α (PGF2α), and this has been documented in the drug description. However, our previous studies demonstrated that escin did not increase the secretion of GCs, but instead elevated the protein expression of the GC receptor (GR), which may have repressed nuclear factor (NF)-κB-mediated gene expression. The aim of this study was to determine the functions of NF-κB and PGF2α with regard to the anti-inflammatory effect of escin. We investigated the anti-inflammatory effects of dexamethasone, diclofenac and escin against carrageenan-induced paw edema in rats, and observed that escin exerted a GC-like anti-inflammatory effect. In addition, we studied the role of PGF2α in the anti-inflammatory effect exerted by escin in an acetic acid-induced capillary permeability model in mice. The results revealed that the coadministration of escin and diclofenac, a potent prostaglandin-synthesis inhibitor, did not affect the anti-inflammatory effect of escin. Furthermore, we investigated the function of NF-κB with regard to the anti-inflammatory effect exerted by escin in lipopolysaccharide (LPS)-treated mice, and demonstrated that escin significantly inhibited the expression of NF-κB. These results suggest that escin has a GC-like anti-inflammatory effect, and that its mechanisms may be correlated with the GC receptor/NF-κB signaling pathway, but not the COX/PGF2α signaling pathway. PMID:24137201

  11. Anti-inflammatory and cytotoxic neoflavonoids and benzofurans from Pterocarpus santalinus.

    PubMed

    Wu, Shou-Fang; Chang, Fang-Rong; Wang, Sheng-Yang; Hwang, Tsong-Long; Lee, Chia-Lin; Chen, Shu-Li; Wu, Chin-Chung; Wu, Yang-Chang

    2011-05-27

    Five new benzofurans, pterolinuses A-E (1-5), six new neoflavonoids, pterolinuses F-J (8-13), and five known compounds (6, 7, 14-16) were isolated from an extract of Pterocarpus santalinus heartwood. All new structures were elucidated by spectroscopic methods, and configurations were confirmed by CD spectral data and optical rotation values. The isolates were evaluated for anti-inflammatory and cytotoxic activities. Six compounds (1, 2, 4, 6, 7, and 15) showed significant inhibition in at least one anti-inflammatory assay. Compound 2 showed the best selective effect against superoxide anion generation in human neutrophils with, an IC50 value of 0.19 μg/mL, and was 6.2-fold more potent than the positive control LY294002. Compound 14 showed the highest cytotoxicity against Ca9-22 cancer cells, with an IC50 value of 0.46 μg/mL. PMID:21488654

  12. Antioxidant, anti-inflammatory and anti-hyperglycaemic activities of heterocyclic homoprostanoid derivatives.

    PubMed

    Manohara Reddy, S A; Mudgal, Jayesh; Bansal, Punit; Vasanthraju, S G; Srinivasan, K K; Rao, C Mallikarjuna; Gopalan Kutty, N

    2011-01-01

    A series of 19 heterocyclic homoprostanoids were synthesized from easily available oleic and ricinoleic acids and evaluated for their possible antioxidant, anti-inflammatory and anti-hyperlipidaemic activities. Compounds with thioxo- and oxoimidazole ring (1) and (2) have shown potent antioxidant activity with IC(50) values 0.23±0.09 and 0.41±0.01mM comparable with standard ascorbic acid. Compound (3) with a quinoxaline ring showed maximum inhibition of BSA denaturation at 1mM concentration and comparable with standard diclofenac. Incorporation of electron withdrawing substitutions like chloro- and nitro-groups in the quinoxaline ring has resulted in an increase anti-inflammatory activity. Test compounds (3), (3a) and (3c) showed modest inhibition of DPP-IV in vitro. However, the unsubstituted quinoxaline (3) and substituted quinoxalines (3b and 3c) reduced plasma glucose levels indicating the presence of hypoglycemic activity. PMID:21146413

  13. Anti-leishmanial, anti-inflammatory and antimicrobial activities of phenolic derivatives from Tibouchina paratropica.

    PubMed

    Tracanna, María I; Fortuna, Antonio M; Cárdenas, Angel V Contreras; Marr, Alexandra K; McMaster, W Robert; Gómez-Velasco, Anaximandro; Sánchez-Arreola, Eugenio; Hernández, Luis Ricardo; Bach, Horacio

    2015-03-01

    A new phenolic derivative, 2,8-dihydroxy-7H-furo[2,3-f]chromen-7-one (1), together with isoquercitrin (2), was isolated from the aerial parts of Tibouchina paratropica. Compound structures were elucidated by spectroscopic methods. Both compounds show antimicrobial activity towards a panel of bacterial and fungal pathogens, and compound 1 displayed potent anti-parasitic activity against Leishmania donovani (IC50  = 0.809 µg/mL). In addition, an 85% reduction in the secretion of the pro-inflammatory cytokine IL-6 was recorded when macrophages challenged with lipopolysaccharide were exposed to compound 1, but no effect on the anti-inflammatory IL-10 was observed. Compound 2 showed neither anti-parasitic nor anti-inflammatory properties. In addition, no cytotoxic activities were observed against the human-derived macrophage THP-1 cells. PMID:25417600

  14. Anti-Inflammatory Constituents from Bidens frondosa.

    PubMed

    Le, Jiamei; Lu, Wenquan; Xiong, Xiaojuan; Wu, Zhijun; Chen, Wansheng

    2015-01-01

    A new polyacetylene glucoside (3E,5E,11E)-tridecatriene-7,9-diyne-1,2,13-triol-2-O-β-D-glucopyranoside (1), a new phenylpropanoid glucoside 2'-butoxyethylconiferin (2), and a new flavonoid glycoside 8,3',4'-trihydroxyflavone-7-O-(6''-O-p-coumaroyl)-β-D-glucopyranoside (3), have been isolated from Bidens frondosa together with fifty-three known compounds 4-56. The structures of these compounds were established by spectroscopic methods. mainly ESIMS, 1D- and 2D-NMR spectroscopic data. and comparison with literature data. Compounds 1-34, 36, 39, 43, 47, 51, and 52 were tested for inhibition of nuclear factor kappa B (NF-κB) in 293-NF-κB-luciferase report cell line induced by lipopolysaccharide (LPS), and compounds 1, 2, 3, 9, 15, 21, 24 and 51 were tested for the production of TNF-α, IL-1β, IL-6, IL-10 in RAW 264.7 macrophages induced by LPS. In conclusion, the isolated compounds 1, 2, 3, 9, 15, 21, 24 and 51 exhibited significant activity in anti-inflammatory activity assays. PMID:26473814

  15. Sterols and triterpenoids as potential anti-inflammatories: Molecular docking studies for binding to some enzymes involved in inflammatory pathways.

    PubMed

    Loza-Mejía, Marco A; Salazar, Juan Rodrigo

    2015-11-01

    Triterpenes and sterols are good candidates for the development of anti-inflammatory drugs and use in chemoprevention or chemotherapy of cancer via the interaction with therapeutic targets related to inflammation, such as COX-1 and -2; LOX-5; MPO, PLA2 and i-NOS. In this study, we use molecular docking to evaluate the potential binding of a database of selected sterol and triterpenoid compounds with several skeletons against enzymes related to inflammation to propose structural requirements beneficial for anti-inflammatory activity that can be used for the design of more potent and selective anti-inflammatory and antitumor drugs. Our results suggest that the substitution pattern is important and that there is an important relationship between the class of sterol or triterpenoid skeleton and enzyme binding. PMID:26342572

  16. Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity

    PubMed Central

    Washburn, Nathaniel; Schwab, Inessa; Ortiz, Daniel; Bhatnagar, Naveen; Lansing, Jonathan C.; Medeiros, Amy; Tyler, Steven; Mekala, Divya; Cochran, Edward; Sarvaiya, Hetal; Garofalo, Kevin; Meccariello, Robin; Meador, James W.; Rutitzky, Laura; Schultes, Birgit C.; Ling, Leona; Avery, William; Nimmerjahn, Falk; Manning, Anthony M.; Kaundinya, Ganesh V.; Bosques, Carlos J.

    2015-01-01

    Despite the beneficial therapeutic effects of intravenous immunoglobulin (IVIg) in inflammatory diseases, consistent therapeutic efficacy and potency remain major limitations for patients and physicians using IVIg. These limitations have stimulated a desire to generate therapeutic alternatives that could leverage the broad mechanisms of action of IVIg while improving therapeutic consistency and potency. The identification of the important anti-inflammatory role of fragment crystallizable domain (Fc) sialylation has presented an opportunity to develop more potent Ig therapies. However, translating this concept to potent anti-inflammatory therapeutics has been hampered by the difficulty of generating suitable sialylated products for clinical use. Therefore, we set out to develop the first, to our knowledge, robust and scalable process for generating a well-qualified sialylated IVIg drug candidate with maximum Fc sialylation devoid of unwanted alterations to the IVIg mixture. Here, we describe a controlled enzymatic, scalable process to produce a tetra-Fc–sialylated (s4-IVIg) IVIg drug candidate and its qualification across a wide panel of analytic assays, including physicochemical, pharmacokinetic, biodistribution, and in vivo animal models of inflammation. Our in vivo characterization of this drug candidate revealed consistent, enhanced anti-inflammatory activity up to 10-fold higher than IVIg across different animal models. To our knowledge, this candidate represents the first s4-IVIg suitable for clinical use; it is also a valuable therapeutic alternative with more consistent and potent anti-inflammatory activity. PMID:25733881

  17. Anti-inflammatory effects of the hydroxycarboxylic acid receptor 2.

    PubMed

    Graff, Emily C; Fang, Han; Wanders, Desiree; Judd, Robert L

    2016-02-01

    The hydroxycarboxylic acid receptors (HCA1-3) are a family of G-protein-coupled receptors that are critical for sensing endogenous intermediates of metabolism. All three receptors are predominantly expressed on adipocytes and mediate anti-lipolytic effects. In addition to adipocytes, HCA2 is highly expressed on immune cells, including macrophages, monocytes, neutrophils and dermal dendritic cells, among other cell types. The endogenous ligand for HCA2 is beta-hydroxybutyrate (β-OHB), a ketone body produced by the liver through β-oxidation when an individual is in a negative energy balance. Recent studies demonstrate that HCA2 mediates profound anti-inflammatory effects in a variety of tissues, indicating that HCA2 may be an important therapeutic target for treating inflammatory disease processes. This review summarizes the roles of HCA2 on inflammation in a number of tissues and clinical states. PMID:26773933

  18. Black Cumin (Nigella sativa) and Its Active Constituent, Thymoquinone: An Overview on the Analgesic and Anti-inflammatory Effects.

    PubMed

    Amin, Bahareh; Hosseinzadeh, Hossein

    2016-01-01

    For many centuries, seeds of Nigella sativa (black cumin), a dicotyledon of the Ranunculaceae family, have been used as a seasoning spice and food additive in the Middle East and Mediterranean areas. Traditionally, the plant is used for asthma, hypertension, diabetes, inflammation, cough, bronchitis, headache, eczema, fever, dizziness, and gastrointestinal disturbances. The literature regarding the biological activities of seeds of this plant is extensive, citing bronchodilative, anti-inflammatory, antinociceptive, antibacterial, hypotensive, hypolipidemic, cytotoxic, antidiabetic, and hepatoprotective effects. The active ingredients of N. sativa are mainly concentrated in the fixed or essential oil of seeds, which are responsible for most health benefits. This review will provide all updated reported activities of this plant with an emphasis on the antinociceptive and anti-inflammatory effects. Results of various studies have demonstrated that the oil, extracts, and their active ingredients, in particular, thymoquinone, possess antinociceptive and anti-inflammatory effects, supporting the common folk perception of N. Sativa as a potent analgesic and anti-inflammatory agent. Many protective properties are attributed to reproducible radical scavenging activity as well as an interaction with numerous molecular targets involved in inflammation, including proinflammatory enzymes and cytokines. However, there is a need for further investigations to find out the precise mechanisms responsible for the antinociceptive and anti-inflammatory effects of this plant and its active constituents. PMID:26366755

  19. Estimation of total phenolic content, in-vitro antioxidant and anti-inflammatory activity of flowers of Moringa oleifera

    PubMed Central

    Alhakmani, Fatma; Kumar, Sokindra; Khan, Shah Alam

    2013-01-01

    Objective To evaluate and compare the antioxidant potential and anti-inflammatory activity of ethanolic extract of flowers of Moringa oleifera (M. oleifera) grown in Oman. Methods Flowers of M. oleifera were collected in the month of December 2012 and identified by a botanist. Alcoholic extract of the dry pulverized flowers of M. oleifera were obtained by cold maceration method. The ethanolic flower extract was subjected to preliminary phytochemical screening as the reported methods. Folin-Ciocalteu reagent was used to estimate total phenolic content. DPPH was used to determine in-vitro antioxidant activity and anti-inflammatory activity of flowers was investigated by protein denaturation method. Results Phytochemical analysis of extract showed presence of major classes of phytochemicals such as tannins, alkaloids, flavonoids, cardiac glycosides etc. M. oleifera flowers were found to contain 19.31 mg/g of gallic acid equivalent of total phenolics in dry extract but exhibited moderate antioxidant activity. The anti-inflammatory activity of plant extract was significant and comparable with the standard drug diclofenac sodium. Conclusions The results of our study suggest that flowers of M. oleifera possess potent anti-inflammatory activity and are also a good source of natural antioxidants. Further study is needed to identify the chemical compounds responsible for their anti-inflammatory activity. PMID:23905019

  20. Anti-inflammatory activity of intravenous immunoglobulins protects against West Nile virus encephalitis

    PubMed Central

    Srivastava, Ruchi; Ramakrishna, Chandran

    2015-01-01

    West Nile virus (WNV), an important global human pathogen, targets neurons to cause lethal encephalitis, primarily in elderly and immunocompromised patients. Currently, there are no approved therapeutic agents or vaccines to treat WNV encephalitis. Recent studies have suggested that inflammation is a major contributor to WNV encephalitis morbidity. In this study we evaluated the use of IVIG (intravenous immunoglobulins – a clinical product comprising pooled human IgG) as an anti-inflammatory treatment in a model of lethal WNV infection. We report here that IVIG and pooled human WNV convalescent sera (WNV-IVIG) inhibited development of lethal WNV encephalitis by suppressing central nervous system (CNS) infiltration by CD45high leukocytes. Pathogenic Ly6Chigh CD11b+ monocytes were the major infiltrating subset in the CNS of infected control mice, whereas IVIG profoundly reduced infiltration of these pathogenic Ly6Chigh monocytes into the CNS of infected mice. Interestingly, WNV-IVIG was more efficacious than IVIG in controlling CNS inflammation when mice were challenged with a high-dose inoculum (105 versus 104 p.f.u.) of WNV. Importantly, adsorption of WNV E-glycoprotein neutralizing antibodies did not abrogate IVIG protection, consistent with virus neutralization not being essential for IVIG protection. These findings confirmed the potent immunomodulatory activity of generic IVIG, and emphasized its potential as an effective immunotherapeutic drug for encephalitis and other virus induced inflammatory diseases. PMID:25667322

  1. Anti-inflammatory properties of quebecol and its derivatives.

    PubMed

    Cardinal, Sébastien; Azelmat, Jabrane; Grenier, Daniel; Voyer, Normand

    2016-01-15

    Herein we report our results on the anti-inflammatory activity of quebecol, a polyphenolic compound discovered in maple syrup. Bioassays demonstrated that quebecol has an anti-inflammatory effect on LPS-induced NF-κB activation and inhibits the secretion of two pro-inflammatory cytokines, IL-6 and TNF-α. We also prepared and tested precursors of quebecol and its derivatives corresponding to its substructures of interest, with the aim to study the structure-activity relationships. Comparing the results obtained for all tested compounds allowed the identification of the main moiety responsible for the anti-inflammatory activity of quebecol. PMID:26691759

  2. Acai juice attenuates atherosclerosis in apoe deficient mice through antioxidant and anti-inflammatory activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective - Acai fruit pulp has received much attention because of its high antioxidant capacity and potential anti-inflammatory effects. In this study, athero-protective effects of açaí juice were investigated in apolipoprotein E deficient (apoE -/-) mice. Methods and Results - ApoE-/- mice were f...

  3. Phosphorylation site analysis of the anti-inflammatory and mRNA-destabilizing protein tristetraprolin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tristetraprolin (TTP/TIS11/ZFP36) is a member of the CCCH zinc finger proteins, and is an anti-inflammatory protein. Mice deficient in TTP develop a profound inflammatory syndrome with erosive arthritis, autoimmunity, and myeloid hyperplasia. TTP binds to AU-rich elements with high affinity for UUAU...

  4. Anti-inflammatory effects of chronic aspirin on brain arachidonic acid metabolites.

    PubMed

    Basselin, Mireille; Ramadan, Epolia; Chen, Mei; Rapoport, Stanley I

    2011-01-01

    Pro-inflammatory and anti-inflammatory mediators derived from arachidonic acid (AA) modulate peripheral inflammation and its resolution. Aspirin (ASA) is a unique non-steroidal anti-inflammatory drug, which switches AA metabolism from prostaglandin E₂ (PGE₂) and thromboxane B₂ (TXB₂) to lipoxin A₄ (LXA₄) and 15-epi-LXA₄. However, it is unknown whether chronic therapeutic doses of ASA are anti-inflammatory in the brain. We hypothesized that ASA would dampen increases in brain concentrations of AA metabolites in a rat model of neuroinflammation, produced by a 6-day intracerebroventricular infusion of bacterial lipopolysaccharide (LPS). In rats infused with LPS (0.5 ng/h) and given ASA-free water to drink, concentrations in high-energy microwaved brain of PGE₂, TXB₂ and leukotriene B₄ (LTB₄) were elevated. In rats infused with artificial cerebrospinal fluid, 6 weeks of treatment with a low (10 mg/kg/day) or high (100 mg/kg/day) ASA dose in drinking water decreased brain PGE₂, but increased LTB₄, LXA₄ and 15-epi-LXA₄ concentrations. Both doses attenuated the LPS effects on PGE₂, and TXB₂. The increments in LXA₄ and 15-epi-LXA₄ caused by high-dose ASA were significantly greater in LPS-infused rats. The ability of ASA to increase anti-inflammatory LXA₄ and 15-epi-LXA₄ and reduce pro-inflammatory PGE₂ and TXB₂ suggests considering aspirin further for treating clinical neuroinflammation. PMID:20981485

  5. Novel chimeric peptide with enhanced cell specificity and anti-inflammatory activity.

    PubMed

    Kim, Young-Min; Kim, Nam-Hong; Lee, Jong-Wan; Jang, Jin-Sun; Park, Yung-Hoon; Park, Seong-Cheol; Jang, Mi-Kyeong

    2015-07-31

    An antimicrobial peptide (AMP), Hn-Mc, was designed by combining the N-terminus of HPA3NT3 and the C-terminus of melittin. This chimeric AMP exhibited potent antibacterial activity with low minimal inhibitory concentrations (MICs), ranging from 1 to 2 μM against four drug-susceptible bacteria and ten drug-resistant bacteria. Moreover, the hemolysis and cytotoxicity was reduced significantly compared to those of the parent peptides, highlighting its high cell selectivity. The morphological changes in the giant unilamellar vesicles and bacterial cell surfaces caused by the Hn-Mc peptide suggested that it killed the microbial cells by damaging the membrane envelope. An in vivo study also demonstrated the antibacterial activity of the Hn-Mc peptide in a mouse model infected with drug-resistant bacteria. In addition, the chimeric peptide inhibited the expression of lipopolysaccharide (LPS)-induced cytokines in RAW 264.7 cells by preventing the interaction between LPS and Toll-like receptors. These results suggest that this chimeric peptide is an antimicrobial and anti-inflammatory candidate as a pharmaceutic agent. PMID:26028561

  6. Synthesis, anti-inflammatory, analgesic and COX-1/2 inhibition activities of anilides based on 5,5-diphenylimidazolidine-2,4-dione scaffold: Molecular docking studies.

    PubMed

    Abdel-Aziz, Alaa A-M; El-Azab, Adel S; Abou-Zeid, Laila A; ElTahir, Kamal Eldin H; Abdel-Aziz, Naglaa I; Ayyad, Rezk R; Al-Obaid, Abdulrahman M

    2016-06-10

    The design, synthesis and pharmacological activities of a group of 5,5-diphenylimidazolidine-2,4-dione bearing anilide, phenacyl and benzylidene fragments 2-27 were reported. The prepared 5,5-diphenylimidazolidine-2,4-dione derivatives were evaluated in vivo for anti-inflammatory, analgesic activities and in vitro for COX-1/2 inhibition assay. Among the tested compounds, derivatives 5, 9, 10, 13, and 14 showed significant and potent anti-inflammatory and analgesic activities almost equivalent to reference drug celecoxib. In COX-1/2 inhibition assay, compounds 5, 9, 10 and 14 showed high COX-2 inhibitory activity (IC50 = 0.70 μM, 0.44 μM, 0.61 μM and 0.41 μM; respectively) and selectivity index (SI) range of 142-243 comparable to celecoxib [COX-2 (SI) > 333]. These potent COX-2 inhibitors 9, 10, 13, and 14 were docked into the active site pocket of COX-2 to explore the binding mode and possible interactions of these ligands. PMID:26999325

  7. Suppression of MAPKs/NF-κB Activation Induces Intestinal Anti-Inflammatory Action of Ginsenoside Rf in HT-29 and RAW264.7 Cells.

    PubMed

    Ahn, Sungeun; Siddiqi, Muhammad Hanif; Aceituno, Veronica Castro; Simu, Shakina Yesmin; Yang, Deok Chun

    2016-07-01

    This study investigated the intestinal anti-inflammatory action of ginsenoside Rf in inflammatory bowel disease (IBD). IBD is a chronic inflammatory disease that affects the intestinal tract. It is associated with elevated levels of various inflammatory mediators, including interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), nitric oxide (NO), and reactive oxygen species (ROS). Ginsenosides, the main active constituents of ginseng, have been reported to exert potent therapeutic effects against diverse diseases. However, ginsenoside Rf treatment for inflammation has not yet been examined. In this study, we evaluated the inhibitory effect of ginsenoside Rf on the inflammatory mediators downstream of p38/NF-kB activation on TNF-α-stimulated intestinal epithelial cells (HT-29) and mouse macrophage cells (RAW264.7). Our results showed that ginsenoside Rf significantly reduced the production of IL-1β, IL-6, TNF-α, NO, and ROS, which are most highly activated in IBD. In addition, ginsenoside Rf significantly suppressed TNF-α/LPS-induced NF-κB transcriptional activity. These results suggest that ginsenoside Rf contains a compound that has potent intestinal anti-inflammatory effects that could be used to treat diseases such as IBD. PMID:27224660

  8. Anti-Inflammatory Activity of Delonix regia (Boj. Ex. Hook)

    PubMed Central

    Shewale, Vaishali D.; Deshmukh, Tushar A.; Patil, Liladhar S.; Patil, Vijay R.

    2012-01-01

    The present work was to evaluate the anti-inflammatory activity of Delonix regia leaves (Family: Caesalpiniaceae). The powder of Delonix regia leaves was subjected to extraction with ethanol in soxhlet extractor. The ethanol extract after preliminary phytochemical investigation showed the presence of sterols, triterpenoids, phenolic compounds and flavonoids. The anti-inflammatory activity was studied using carrageenan-induced rat paw edema and cotton pellet granuloma at a three different doses (100, 200, and 400 mg/kg b.w. p.o.) of ethanol extract. The ethanol extract of Delonix regia leaves was exhibited significant anti-inflammatory activity at the dose of 400 mg/kg in both models when compared with control group. Indomethacin (10 mg/kg b.w. p.o) was also shown significant anti-inflammatory activity in both models. PMID:22110490

  9. Anti-Inflammatory Activity of Chitooligosaccharides in Vivo

    PubMed Central

    Fernandes, João C.; Spindola, Humberto; de Sousa, Vanessa; Santos-Silva, Alice; Pintado, Manuela E.; Malcata, Francisco Xavier; Carvalho, João E.

    2010-01-01

    All the reports to date on the anti-inflammatory activity of chitooligosaccharides (COS) are mostly based on in vitro methods. In this work, the anti-inflammatory activity of two COS mixtures is characterized in vivo (using balb/c mice), following the carrageenan-induced paw edema method. This is a widely accepted animal model of acute inflammation to evaluate the anti-inflammatory effect of drugs. Our data suggest that COS possess anti-inflammatory activity, which is dependent on dose and, at higher doses, also on the molecular weight. A single dose of 500 mg/kg b.w. weight may be suitable to treat acute inflammation cases; however, further studies are needed to ascertain the effect upon longer inflammation periods as well as studies upon the bioavailability of these compounds. PMID:20631868

  10. Study of anti-inflammatory activities of α-D-glucosylated eugenol.

    PubMed

    Zhang, Peng; Zhang, Erli; Xiao, Min; Chen, Chang; Xu, Weijian

    2013-01-01

    Inflammation is an immune response against a variety of noxious stimuli, such as infection, chemicals, and physical injury. Eugenol, a natural phenolic extract, has drawn much attention for its various desirable pharmacological functions and is, therefore, broadly used in our daily life and medical practice. However, further usage of eugenol is greatly limited due to its unwanted properties, such as physicochemical instability, poor solubility, and high-dose cytotoxicity. In hopes of extending its applicability through glycosylation, we previously reported a novel, efficient, and high throughput way to biosynthesize α-D-glucosylated eugenol (α-EG). In this study, we further explored the potential superior properties of α-EG to its parent eugenol in terms of anti-inflammatory activities. We demonstrated that α-EG was an effective anti-inflammatory mediator in both non-cellular and cellular environments. In addition, the non-cellular inhibitory effect of α-EG could be amplified by α-glucosidase, which ubiquitously exists in cytoplasm. Furthermore, α-EG exhibited a superior anti-inflammatory effect to its parent eugenol in a cellular environment. In words, our findings collectively suggest that α-EG is a stronger anti-inflammatory mediator and may thereby serve as a desirable substitute for eugenol and a potential therapeutic prodrug in treating inflammatory diseases in the future. PMID:23325490

  11. Anti-inflammatory activity of polysaccharide from Schizophyllum commune as affected by ultrasonication.

    PubMed

    Du, Bin; Zeng, Huansong; Yang, Yuedong; Bian, Zhaoxiang; Xu, Baojun

    2016-10-01

    Ultrasound treatment was applied to modify the physicochemical properties of an exopolysaccharide from mycelial culture of Schizophyllum commune. Molecular weight (MW) degradation, viscosity and anti-inflammatory property of ultrasonic treated polysaccharide were optimized with response surface methodology. The best ultrasonic parameters were obtained with a three-variable-three-level Box-Behnken design. The optimized conditions for efficient anti-inflammatory activity are initial concentration at 0.4%, ultrasonic power at 600W, and duration of ultrasonic irradiation for 9min. Under these conditions, the nitric oxide inhibition rate was 95±0.03% which agreed closely with the predicted value (96%). Average MW of polysaccharide decreased after ultrasonic treatments. The viscosity of degraded polysaccharide dropped compared with native polysaccharide. The anti-inflammatory activity was improved by ultrasound treatment. The results suggested that ultrasound treatment is an effective approach to decrease the MW of polysaccharide with high anti-inflammatory activity. Ultrasonic treatment is a viable modification technology for high MW polymer materials. PMID:27189700

  12. Novel nonsteroidal anti-inflammatory drugs.

    PubMed

    Boutsen, Y; Esselinckx, W

    1999-01-01

    The authors first briefly review how the concept of COX-2 selectivity was brought to light, then tested against the known gastrotoxicity ranking of currently used NSAIDs, from the old classics to the most recent. One truly selective COX-2 agent--celecoxib--is now being marketed in an ever increasing number of countries. So far it seems to keep its main promises, i.e. high--albeit not total--safety regarding gastrointestinal adverse effects, and undisturbed platelet function. Association with warfarin drugs seems to raise no problems, but one should still be wary of possible renal side-effects. Efficacy, at least as assessed in osteoarthritis and rheumatoid patients, appears satisfactory. However, treatment of intense inflammatory crises, such as gout or ankylosing spondylitis, has not been assessed, as yet. Another COX-2 agent--rofecoxib--is on the brink of being released. Its even more potent COX-2 selectivity raises new issues. What about some COX-1 activity that several authors detected in rheumatic synovitis? On the other hand, in particular circumstances, organs such as the stomach, the kidney and small blood vessels, seem to have their homeostasis partly controlled by COX-2 mechanisms also. These questions should be answered soon, whilst clinical experience with the COX-2 agent builds up. PMID:10692773

  13. Highly potent fibrinolytic serine protease from Streptomyces.

    PubMed

    Uesugi, Yoshiko; Usuki, Hirokazu; Iwabuchi, Masaki; Hatanaka, Tadashi

    2011-01-01

    We introduce a highly potent fibrinolytic serine protease from Streptomyces omiyaensis (SOT), which belongs to the trypsin family. The fibrinolytic activity of SOT was examined using in vitro assays and was compared with those of known fibrinolytic enzymes such as plasmin, tissue-type plasminogen activator (t-PA), urokinase, and nattokinase. Compared to other enzymes, SOT showed remarkably higher hydrolytic activity toward mimic peptides of fibrin and plasminogen. The fibrinolytic activity of SOT is about 18-fold higher than that of plasmin, and is comparable to that of t-PA by fibrin plate assays. Furthermore, SOT had some plasminogen activator-like activity. Results show that SOT and nattokinase have very different fibrinolytic and fibrinogenolytic modes, engendering significant synergetic effects of SOT and nattokinase on fibrinolysis. These results suggest that SOT presents important possibilities for application in the therapy of thrombosis. PMID:22112764

  14. Comparative topical anti-inflammatory activity of cannabinoids and cannabivarins.

    PubMed

    Tubaro, Aurelia; Giangaspero, Anna; Sosa, Silvio; Negri, Roberto; Grassi, Gianpaolo; Casano, Salvatore; Della Loggia, Roberto; Appendino, Giovanni

    2010-10-01

    A selection of seven phytocannabinoids representative of the major structural types of classic cannabinoids and their corresponding cannabivarins was investigated for in vivo topical anti-inflammatory activity in the Croton oil mouse ear dermatitis assay. Differences in the terpenoid moiety were far more important for anti-inflammatory activity than those at the C-3 alkyl residue, suggesting the involvement not only of cannabinoid receptors, but also of other inflammatory end-points targeted by phytocannabinoids. PMID:20450962

  15. Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiling; Nong, Jia; Zhong, Yinghui

    2015-08-01

    Objective. Infection, inflammation, and neuronal loss are common issues that seriously affect the functionality and longevity of chronically implanted neural prostheses. Minocycline hydrochloride (MH) is a broad-spectrum antibiotic and effective anti-inflammatory drug that also exhibits potent neuroprotective activities. In this study, we investigated the development of biocompatible thin film coatings capable of sustained release of MH for improving the long term performance of implanted neural electrodes. Approach. We developed a novel magnesium binding-mediated drug delivery mechanism for controlled and sustained release of MH from an ultrathin hydrophilic layer-by-layer (LbL) coating and characterized the parameters that control MH loading and release. The anti-biofilm, anti-inflammatory and neuroprotective potencies of the LbL coating and released MH were also examined. Main results. Sustained release of physiologically relevant amount of MH for 46 days was achieved from the Mg2+-based LbL coating at a thickness of 1.25 μm. In addition, MH release from the LbL coating is pH-sensitive. The coating and released MH demonstrated strong anti-biofilm, anti-inflammatory, and neuroprotective potencies. Significance. This study reports, for the first time, the development of a bioactive coating that can target infection, inflammation, and neuroprotection simultaneously, which may facilitate the translation of neural interfaces to clinical applications.

  16. Anti-inflammatory Activity of Constituents Isolated from Aerial Part of Angelica acutiloba Kitagawa.

    PubMed

    Uto, Takuhiro; Tung, Nguyen Huu; Taniyama, Risa; Miyanowaki, Tosihide; Morinaga, Osamu; Shoyama, Yukihiro

    2015-12-01

    Recently, the resources of medicinal plants have been exhausting. The root of Angelica acutiloba is one of the most important ingredients in Japanese Kampo medicine for the treatment of gynecological diseases. In our search for alternative medicinal plant resources of the root of A. acutiloba, we found that its aerial part has the anti-inflammatory potency as well as the root. Phytochemical investigation of the aerial part resulted in the isolation of four compounds including a new dimeric phthalide, namely tokiaerialide (2), along with Z-ligustilide (1), falcarindiol (3), and bergaptol (4). Next, we investigated the in vitro anti-inflammatory activity of 1-4 in lipopolysaccharide-stimulated RAW264 macrophages. Among the isolated compounds, 1 exhibited the most potent inhibition against lipopolysaccharide-induced production of prostaglandin E2 , nitric oxide, and pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor-α). Compounds 3 and 4 also inhibited all inflammatory mediators, but their inhibitory abilities were weaker than those of 1. Furthermore, 1, 3, and 4 strongly also induced heme oxygenase-1. These results suggest that 1, 3, and 4 potentially exert anti-inflammatory activity, and the aerial part of A. acutiloba may be considered to be a useful medicinal resource for inflammatory diseases. PMID:26463105

  17. Avicenna's Canon of Medicine: a review of analgesics and anti-inflammatory substances

    PubMed Central

    Mahdizadeh, Shahla; Khaleghi Ghadiri, Maryam; Gorji, Ali

    2015-01-01

    Naturally occurring substances mentioned in medieval medical literatures currently have, and will continue to have, a crucial place in drug discovery. Avicenna was a Persian physician who is known as the most influential medical writers in the Middle ages. Avicenna`s Canon of Medicine, the most famous books in the history of medicine, presents a clear and organized summary of all the medical knowledge of the time, including a long list of drugs. Several hundred substances and receipts from different sources are mentioned for treatment of different illnesses in this book. The aim of the present study was to provide a descriptive review of all anti-inflammatory and analgesic drugs presented in this comprehensive encyclopedia of medicine. Data for this review were provided by searches of different sections of this book. Long lists of anti-inflammatory and analgesic substances used in the treatment of various diseases are provided. The efficacy of some of these drugs, such as opium, willow oil, curcuma, and garlic, was investigated by modern medicine; pointed to their potent anti-inflammatory and analgesic properties. This review will help further research into the clinical benefits of new drugs for treatment of inflammatory diseases and pain. PMID:26101752

  18. Hemeoxygenase 1 partly mediates the anti-inflammatory effect of dieckol in lipopolysaccharide stimulated murine macrophages.

    PubMed

    Yayeh, Taddesse; Im, Eun Ju; Kwon, Tae-Hyung; Roh, Seong-Soo; Kim, Suk; Kim, Ji Hye; Hong, Seung-Bok; Cho, Jae Youl; Park, Nyun-Ho; Rhee, Man Hee

    2014-09-01

    Eisenia bicyclis is edible brown algae recognized as a rich source of bioactive derivatives mainly phlorotannins reported for their anti-oxidant properties. Of all phlorotannins identified so far, dieckol has shown the most potent effect in anti-inflammatory, radical scavenging and neuroprotective functions. However, whether dieckol up-regulates hemeoxygenase 1 (HO-1) and this mediates its anti-inflammatory effect in murine macrophages remains poorly understood. Dieckol (12.5-50 μM) inhibited nitric oxide production and attenuated inducible nitric oxide synthase, phospho (p)-PI-3K, p-Akt, p-IKK-α/β, p-IκB-α and nuclear p-NF-κBp65 protein expressions, and NF-κB transcriptional activity in LPS (0.1 μg/ml) stimulated murine macrophages. On the other hand, dieckol up-regulated HO-1 which partly mediated its anti-inflammatory effect in murine macrophages. Thus, dieckol appeared to be a potential therapeutic agent against inflammation through HO-1 up-regulation. PMID:24953853

  19. Glucocorticoids: mechanisms of action and anti-inflammatory potential in asthma.

    PubMed Central

    van der Velden, V H

    1998-01-01

    GLUCOCORTICOIDS are potent inhibitors of inflammatory processes and are widely used in the treatment of asthma. The anti-inflammatory effects are mediated either by direct binding of the glucocorticoid/glucocorticoid receptor complex to glucocorticoid responsive elements in the promoter region of genes, or by an interaction of this complex with other transcription factors, in particular activating protein-1 or nuclear factor-kappaB. Glucocorticoids inhibit many inflammation-associated molecules such as cytokines, chemokines, arachidonic acid metabolites, and adhesion molecules. In contrast, anti-inflammatory mediators often are up-regulated by glucocorticoids. In vivo studies have shown that treatment of asthmatic patients with inhaled glucocorticoids inhibits the bronchial inflammation and simultaneously improves their lung function. In this review, our current knowledge of the mechanism of action of glucocorticoids and their anti-inflammatory potential in asthma is described. Since bronchial epithelial cells may be important targets for glucocorticoid therapy in asthma, the effects of glucocorticoids on epithelial expressed inflammatory genes will be emphasized. PMID:9792333

  20. Anti-inflammatory and analgesic effects of ketoprofen in palm oil esters nanoemulsion.

    PubMed

    Sakeena, M H F; Yam, M F; Elrashid, S M; Munavvar, A S; Azmin, M N

    2010-01-01

    Ketoprofen is a potent non-steroidal anti-inflammatory drug has been used in the treatment of various kinds of pains, inflammation and arthritis. However, oral administration of ketoprofen produces serious gastrointestinal adverse effects. One of the promising methods to overcome these adverse effects is to administer the drug through the skin. The aim of the present work is to evaluate the anti-inflammatory and analgesic effects from topically applied ketoprofen entrapped palm oil esters (POEs) based nanoemulsion and to compare with market ketoprofen product, Fastum(®) gel. The novelty of this study is, use of POEs for the oil phase of nanoemulsion. The anti-inflammatory and analgesic studies were performed on rats by carrageenan-induced rat hind paw edema test and carrageenan-induced hyperalgesia pain threshold test to compare the ketoprofen entrapped POEs based nanoemulsion formulation and market formulation. Results indicated that there are no significant different between ketoprofen entrapped POEs nanoemulsion and market formulation in carrageenan-induced rat hind paw edema study and carrageenan-induced hyperalgesia pain threshold study. However, it shows a significant different between POEs nanoemulsion formulation and control group in these studies at p<0.05. From these results it was concluded that the developed nanoemulsion have great potential for topical application of ketoprofen. PMID:21099145

  1. Screening of Ficus religiosa leaves fractions for analgesic and anti-inflammatory activities

    PubMed Central

    Gulecha, Vishal; Sivakumar, T; Upaganlawar, Aman; Mahajan, Manoj; Upasani, Chandrashekhar

    2011-01-01

    Objective: To evaluate the different fractions of dried leaves of Ficus religiosa Linn for analgesic and anti-inflammatory activity using different models of pain and inflammation Materials and Methods: The analgesic activity of F. religiosa carried out using acetic acid-induced writhing in mice and tail flick test in rats. The anti-inflammatory activity was evaluated using carrageenan-induced rat paw edema and cotton pellet-granuloma formation in rats. Five different fractions (FRI, FRII, FRIII, FRIV and FRV) of F. religiosa at the dose level of 20 and 40 mg/kg, p.o were tested. Results: The fraction FRI (40 mg/kg, p.o.) and FRIII (40 mg/kg, p.o) were found to be more effective (P<0.01) in preventing carrageenan induced rat paw edema, cotton pellet granuloma formation, and acetic acid induced writhing compared to the other fractions. FRI (20 mg/kg, p.o.) and FRIII (20 mg/kg, p.o.) were also found to be more effective in increasing latency period in tail flick method. Conclusion: Out of five different fractions of F. religiosa leaves tested, FRI and FRIII possess potent analgesic and anti-inflammatory activities against different models of inflammation and pain. PMID:22144770

  2. Avicenna's Canon of Medicine: a review of analgesics and anti-inflammatory substances.

    PubMed

    Mahdizadeh, Shahla; Khaleghi Ghadiri, Maryam; Gorji, Ali

    2015-01-01

    Naturally occurring substances mentioned in medieval medical literatures currently have, and will continue to have, a crucial place in drug discovery. Avicenna was a Persian physician who is known as the most influential medical writers in the Middle ages. Avicenna`s Canon of Medicine, the most famous books in the history of medicine, presents a clear and organized summary of all the medical knowledge of the time, including a long list of drugs. Several hundred substances and receipts from different sources are mentioned for treatment of different illnesses in this book. The aim of the present study was to provide a descriptive review of all anti-inflammatory and analgesic drugs presented in this comprehensive encyclopedia of medicine. Data for this review were provided by searches of different sections of this book. Long lists of anti-inflammatory and analgesic substances used in the treatment of various diseases are provided. The efficacy of some of these drugs, such as opium, willow oil, curcuma, and garlic, was investigated by modern medicine; pointed to their potent anti-inflammatory and analgesic properties. This review will help further research into the clinical benefits of new drugs for treatment of inflammatory diseases and pain. PMID:26101752

  3. Anti-inflammatory activity of the leaf extacts of Gendarussa vulgaris Nees

    PubMed Central

    Saleem, TK Mohamed; Azeem, AK; Dilip, C; Sankar, C; Prasanth, NV; Duraisami, R

    2011-01-01

    Objective To evaluate the anti-inflammatory property of the leaf exacts of Gendarussa vulgaris (G. vulgaris) Nees. Methods G. vulgaris Nees of the family Apocynaceae is a medium sized tree grown in semishade or no shade and is common in the Ernad and Nilambur taluks of Kerala.Various parts of this plant have been used in the treatment of ulcers, sores, inflammation, dyspepsia, healing of wounds, etc. The present study aimed at the evaluation of anti-inflammatory property of the aqueous and alcoholic extracts of the leaves by both in vitro and in vivo methods. In vitro method was estimated by human red blood cell membrane stabilisation (HRBC) method and in vivo method was estimated on the carrageenan induced paw oedima. Results Both the methods showed significant anti-inflammatory property of the different extracts tested. Conclusions The alcoholic extract at a concentration of 300 mg/mL showed potent activity on comparing with the standard drug diclofenac sodium. PMID:23569746

  4. [Anti-inflammatory effects of methylprednisolone aceponate in animals].

    PubMed

    Ikoma, Y; Yamashita, M; Kamitani, K; Nakagawa, H

    1991-11-01

    In the case of dermal application of the drugs to croton oil-induced ear edema in rats and picryl chloride-induced delayed type hypersensitivity in mice, the anti-inflammatory effect of methylprednisolone aceponate (MPA) was slightly weaker than those of clobetasol 17-propionate and diflucortolone 21-valerate, but stronger than those of hydrocortisone 17-butyrate and hydrocortisone 17-butyrate 21-propionate. Betamethasone 17-valerate applied dermally was less and more effective than MPA to ear edema in rats and delayed type hypersensitivity in mice, respectively. The anti-inflammatory effect of MPA was weaker in subcutaneous administration than in topical application to the two inflammatory models. It was suggested that MPA has strong anti-inflammatory effects and weak systemic effects by topical application. Methylprednisolone 17-propionate (MP-17P) and methylprednisolone (MP), unesterified in only the C-21 position and in both the C-17 and 21 positions of MPA, respectively, showed weaker anti-inflammatory activities than MPA by topical application to croton oil-induced ear edema. The ratio of the anti-inflammatory effects by topical application to subcutaneous administration of MPA was higher than those of MP-17P and MP. The excellent characteristics of MPA as a dermal anti-inflammatory drug are suggested to be derived from di-esterification of MP, which has a weak activity intrinsically. PMID:1813371

  5. Hypoglycemic agents and potential anti-inflammatory activity

    PubMed Central

    Kothari, Vishal; Galdo, John A; Mathews, Suresh T

    2016-01-01

    Current literature shows an association of diabetes and secondary complications with chronic inflammation. Evidence of these immunological changes include altered levels of cytokines and chemokines, changes in the numbers and activation states of various leukocyte populations, apoptosis, and fibrosis during diabetes. Therefore, treatment of diabetes and its complications may include pharmacological strategies to reduce inflammation. Apart from anti-inflammatory drugs, various hypoglycemic agents have also been found to reduce inflammation that could contribute to improved outcomes. Extensive studies have been carried out with thiazolidinediones (peroxisome proliferator-activated receptor-γ agonist), dipeptidyl peptidase-4 inhibitors, and metformin (AMP-activated protein kinase activator) with each of these classes of compounds showing moderate-to-strong anti-inflammatory action. Sulfonylureas and alpha glucosidase inhibitors appeared to exert modest effects, while the injectable agents, insulin and glucagon-like peptide-1 receptor agonists, may improve secondary complications due to their anti-inflammatory potential. Currently, there is a lack of clinical data on anti-inflammatory effects of sodium–glucose cotransporter type 2 inhibitors. Nevertheless, for all these glucose-lowering agents, it is essential to distinguish between anti-inflammatory effects resulting from better glucose control and effects related to intrinsic anti-inflammatory actions of the pharmacological class of compounds. PMID:27114714

  6. Drug Targets for Cardiovascular-Safe Anti-Inflammatory: In Silico Rational Drug Studies

    PubMed Central

    Shahbazi, Sajad; Sahrawat, Tammanna R.; Ray, Monalisa; Dash, Swagatika; Kar, Dattatreya; Singh, Shikha

    2016-01-01

    Cyclooxygenase-2 (COX-2) plays an important role in memory consolidation and synaptic activity, the most fundamental functions of the brain. It converts arachidonic acid to prostaglandin endoperoxide H2. In contrast, if over-expressed, it causes inflammation in response to cytokine, pro-inflammatory molecule, and growth factor. Anti-inflammatory agents, by allosteric or competitive inhibition of COX-2, alleviate the symptoms of inflammation. Coxib family drugs, particularly celecoxib, are the most famous anti-inflammatory agents available in the market showing significant inhibitory effect on COX-2 activity. Due to high cardiovascular risk of this drug group, recent researches are focused on the investigation of new safer drugs for anti-inflammatory diseases. Natural compounds, particularly, phytochemicals are found to be good candidates for drug designing and discovery. In the present study, we performed in silico studies to quantitatively scrutinize the molecular interaction of curcumin and its structural analogs with COX-2, COX-1, FXa and integrin αIIbβIII to investigate their therapeutic potential as a cardiovascular-safe anti-inflammatory medicine (CVSAIM). The results of both ADMET and docking study indicated that out of all the 39 compounds studied, caffeic acid had remarkable interaction with proteins involved in inflammatory response. It was also found to inhibit the proteins that are involved in thrombosis, thereby, having the potential to be developed as therapeutic agent. PMID:27258084

  7. Feijoa sellowiana Berg fruit juice: anti-inflammatory effect and activity on superoxide anion generation.

    PubMed

    Monforte, Maria T; Fimiani, Vincenzo; Lanuzza, Francesco; Naccari, Clara; Restuccia, Salvatore; Galati, Enza M

    2014-04-01

    Feijoa sellowiana Berg var. coolidge fruit juice was studied in vivo for the anti-inflammatory activity by carrageenin-induced paw edema test and in vitro for the effects on superoxide anion release from neutrophils in human whole blood. The fruit juice was analyzed by the high-performance liquid chromatography method, and quercetin, ellagic acid, catechin, rutin, eriodictyol, gallic acid, pyrocatechol, syringic acid, and eriocitrin were identified. The results showed a significant anti-inflammatory activity of F. sellowiana fruit juice, sustained also by an effective antioxidant activity observed in preliminary studies on 1,1-diphenyl-2-picrylhydrazyl (DPPH) test. In particular, the anti-inflammatory activity edema inhibition is significant since the first hour (44.11%) and persists until the fifth hour (44.12%) of the treatment. The effect on superoxide anion release was studied in human whole blood, in the presence of activators affecting neutrophils by different mechanisms. The juice showed an inhibiting response on neutrophils basal activity in all experimental conditions. In stimulated neutrophils, the higher inhibition of superoxide anion generation was observed at concentration of 10(-4) and 10(-2) mg/mL in whole blood stimulate with phorbol-myristate-13-acetate (PMA; 20% and 40%) and with N-formyl-methionyl-leucyl-phenylalanine (FMLP; 15% and 48%). The significant reduction of edema and the inhibition of O2(-) production, occurring mainly through interaction with protein-kinase C pathway, confirm the anti-inflammatory effect of F. sellowiana fruit juice. PMID:24433073

  8. Drug Targets for Cardiovascular-Safe Anti-Inflammatory: In Silico Rational Drug Studies.

    PubMed

    Shahbazi, Sajad; Sahrawat, Tammanna R; Ray, Monalisa; Dash, Swagatika; Kar, Dattatreya; Singh, Shikha

    2016-01-01

    Cyclooxygenase-2 (COX-2) plays an important role in memory consolidation and synaptic activity, the most fundamental functions of the brain. It converts arachidonic acid to prostaglandin endoperoxide H2. In contrast, if over-expressed, it causes inflammation in response to cytokine, pro-inflammatory molecule, and growth factor. Anti-inflammatory agents, by allosteric or competitive inhibition of COX-2, alleviate the symptoms of inflammation. Coxib family drugs, particularly celecoxib, are the most famous anti-inflammatory agents available in the market showing significant inhibitory effect on COX-2 activity. Due to high cardiovascular risk of this drug group, recent researches are focused on the investigation of new safer drugs for anti-inflammatory diseases. Natural compounds, particularly, phytochemicals are found to be good candidates for drug designing and discovery. In the present study, we performed in silico studies to quantitatively scrutinize the molecular interaction of curcumin and its structural analogs with COX-2, COX-1, FXa and integrin αIIbβIII to investigate their therapeutic potential as a cardiovascular-safe anti-inflammatory medicine (CVSAIM). The results of both ADMET and docking study indicated that out of all the 39 compounds studied, caffeic acid had remarkable interaction with proteins involved in inflammatory response. It was also found to inhibit the proteins that are involved in thrombosis, thereby, having the potential to be developed as therapeutic agent. PMID:27258084

  9. Synthesis and biological evaluation studies of novel quinazolinone derivatives as antibacterial and anti-inflammatory agents

    PubMed Central

    F. Zayed, Mohamed; H. Hassan, Memy

    2013-01-01

    Some novel 6,8-diiodo-2-methyl-3-substituted-quinazolin-4(3H)-ones bearing sulfonamide derivatives (4–11) were synthesized in good yields and evaluated for their possible antibacterial, anti-inflammatory activities and acute toxicity. The structures of the synthesized compounds were confirmed on the basis of their spectral data and elemental analysis. Their antibacterial activities were evaluated by the agar well diffusion method while their anti-inflammatory activities were evaluated by the carrageenan-induced hind paw edema test. All the tested compounds showed considerable antibacterial activities and high to moderate anti-inflammatory activities that last for 12 h compared to ibuprofen. All the tested compounds showed no toxic symptoms or mortality rates 24 h post-administration at tested anti-inflammatory doses. In addition, LD50 for all tested compounds was higher than that for ibuprofen implying their good safety margin. The obtained results showed that the most active compounds could be useful as a template for future design, modification and investigation to produce more active analogs. PMID:24648828

  10. Nonsteroidal Anti-inflammatory-Organometallic Anticancer Compounds.

    PubMed

    Păunescu, Emilia; McArthur, Sarah; Soudani, Mylène; Scopelliti, Rosario; Dyson, Paul J

    2016-02-15

    Compounds that combine metal-based drugs with covalently linked targeted organic agents have been shown, in some instances, to exhibit superior anticancer properties compared to the individual counterparts. Within this framework, we prepared a series of organometallic ruthenium(II)- and osmium(II)-p-cymene complexes modified with the nonsteroidal anti-inflammatory drugs (NSAIDs) indomethacin and diclofenac. The NSAIDs are attached to the organometallic moieties via monodentate (pyridine/phosphine) or bidentate (bipyridine) ligands, affording piano-stool Ru(II) and Os(II) arene complexes of general formula [M(η(6)-p-cymene)Cl2(N)], where N is a pyridine-based ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate}, [M(η(6)-p-cymene)Cl2(P)], where P is a phosphine ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate, and [M(η(6)-p-cymene)Cl(N,N')][Cl], where N,N' is a bipyridine-based ligand, (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate), (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(2-((2,6-dichlorophenyl)amino)phenyl)acetate), (bis(2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate), or (bis(2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate). The antiproliferative properties of the complexes were assessed in human ovarian cancer cells (A2780 and A2780cisR, the latter being resistant to cisplatin) and nontumorigenic human embryonic kidney (HEK-293) cells. Some of the complexes are considerably more cytotoxic than the original drugs and also display significant cancer cell selectivity. PMID:26824462

  11. Anti-inflammatory and immunomodulatory properties of 2-amino-3H-phenoxazin-3-one.

    PubMed

    Kohno, Keizo; Miyake, Masaki; Sano, Osamu; Tanaka-Kataoka, Mari; Yamamoto, Shigeto; Koya-Miyata, Satomi; Arai, Norie; Fujii, Mitsukiyo; Watanabe, Hikaru; Ushio, Shimpei; Iwaki, Kanso; Fukuda, Shigeharu

    2008-10-01

    Accumulating evidence suggests that nitric oxide (NO) and prostaglandin E(2) (PGE(2)) are involved in the pathogenesis of various chronic inflammatory diseases and cancer. During the course of a screening program to identify natural anti-inflammatory substances, we isolated the compound 2-amino-3H-phenoxazin-3-one (APO) from an extract of the edible brown mushroom Agaricus bisporus IMBACH. APO inhibited NO production by mouse peritoneal macrophages in response to the pro-inflammatory stimuli lipopolysaccharide (LPS) and interferon (IFN)-gamma (LPS/IFN-gamma) at low concentrations (IC(50)=1.5 microM) through reduced inducible NO synthase protein expression. PGE(2) production by LPS/IFN-gamma-stimulated macrophages was inhibited by APO at much lower concentrations (IC(50)=0.27 microM) than those required for the inhibition of NO production. Mechanistic analysis showed that APO inhibited both cyclooxygenase (COX)-1 and COX-2 enzyme activities with almost equal selectivity. Secretion of NO and the pro-inflammatory cytokine IL-6 by IFN-gamma-activated RAW264.7 cells, a murine macrophage-like cell line, was also dose-dependently reduced by APO. Furthermore, APO increased the secretion of the anti-inflammatory cytokine IL-4 by antigen-stimulated T cells and promoted the polarization of CD4(+) Th cells toward the anti-inflammatory Th2 phenotype at equimolar concentrations that inhibited NO production. Our results suggested that APO induced polarization toward the Th2 subset, at least in part through the down-regulation of IL-12 production. Thus, APO appears to have potent anti-inflammatory and immunoregulatory properties that may provide a promising therapeutic strategy for the treatment of T cell-mediated inflammatory autoimmune diseases as well as for bacteria-induced chronic-inflammatory diseases. PMID:18827359

  12. Anti-Inflammatory Effects of 4-Methylcyclopentadecanone on Edema Models in Mice

    PubMed Central

    Ma, Yukui; Li, Yue; Li, Xiufeng; Wu, Yingliang

    2013-01-01

    The present study evaluated the anti-inflammatory effects of 4-methylcyclopentadecanone (4-MCPC) on edema models in mice and aimed to determine the safety of 4-MCPC after acute exposure. The acute toxicity of 4-MCPC was evaluated by oral administration to rats of single doses of 0, 5, 50, 500 and 5000 mg/kg. Toxic symptoms were observed for 14 days. The anti-inflammatory activity was evaluated in xylene-induced mouse ear edema and carrageenan-induced mouse paw edema. The animals were treated with 4-MCPC once every day for seven consecutive days. Edema index, % inhibition, IL-1β, TNF-α, PGE2 and MPO levels in paws were detected after the treatment with xylene or carrageenan. Our results indicated that the LD50 value of 4-MCPC in rats is greater than 5000 mg/kg. The ED50 of 4-MCPC in xylene-induced mouse ear edema model was 7.5 mg/kg. 4-MCPC (8 or 16 mg/kg) remarkably inhibited carrageenan-induced mouse paw edema. Further study revealed that 4-MCPC treatment also decreased IL-1β, TNF-α, PGE2 and MPO levels in mice paws. Intragastric administration of 4-MCPC exhibited more significant anti-inflammatory activity than muscone at a dose of 16 mg/kg. Taken together, our results suggest that 4-MCPC has potent anti-inflammatory activity and the mechanisms might be related to the decreases of the levels of IL-1β, TNF-α, PGE2 and MPO in inflamed paws. PMID:24351869

  13. Topical anti-inflammatory activity of Eupatilin, a lipophilic flavonoid from mountain wormwood ( Artemisia umbelliformis Lam.).

    PubMed

    Giangaspero, Anna; Ponti, Cristina; Pollastro, Federica; Del Favero, Giorgia; Della Loggia, Roberto; Tubaro, Aurelia; Appendino, Giovanni; Sosa, Silvio

    2009-09-01

    Eupatilin (5,7-dihydroxy-3',4',6-trimethoxyflavone) is the major lipophilic flavonoid from Artemisia umbelliformis Lam. and Artemisia genipi Weber, two mountain wormwoods used for the production of the celebrated alpine liqueur genepy. The topical anti-inflammatory activity of eupatilin was investigated using the inhibition of the Croton-oil-induced dermatitis in the mouse ear as the end point. The oedematous response and the leukocyte infiltration were evaluated up to 48 h after the induction of phlogosis, comparing eupatilin with hydrocortisone and indomethacin as representatives of steroid and non-steroid anti-inflammatory drugs, respectively. At maximum development, eupatilin significantly reduced edema in a dose-dependent manner (ID(50) = 0.28 micromol/cm(2)), showing an anti-inflammatory potency comparable to that of indomethacin (ID(50) = 0.26 micromol/cm(2)) and only 1 order of magnitude lower than that of hydrocortisone (ID(50) = 0.03 micromol/cm(2)). Within 48 h, eupatilin (0.30 micromol/cm(2)) caused a global inhibition of the oedematous response (42%) higher than that of an equimolar dose of indomethacin (18%) and fully comparable to that of 0.03 micromol/cm(2) of hydrocortisone (55%). Moreover, the effect of eupatilin on the granulocytes infiltrate (32% inhibition) was similar to that of indomethacin (35% inhibition) and comparable to that of hydrocortisone (42% reduction), as confirmed by histological analysis. When our results are taken together, they show that eupatilin is endowed with potent in vivo topical anti-inflammatory activity, qualitatively similar to that of hydrocortisone and intermediate in terms of potency between those of steroid and non-steroid drugs. PMID:19663482

  14. Local anti-inflammatory activity and systemic side effects of NM-135, a new prodrug glucocorticoid, in an experimental inflammatory rat model.

    PubMed

    Ishii, T; Kibushi, N; Nakajima, T; Kakuta, T; Tanaka, N; Sato, C; Sugai, K; Kijima-Suda, I; Kai, H; Miyata, T

    1998-12-01

    The local anti-inflammatory activity and systemic side effects of NM-135 (6alpha,9-difluoro-11beta-hydroxy-16alpha-methyl-21[[2 ,3,4,6-tetrakis-O-(4-methylbenzoyl)-beta-D-glucopyranosyl]oxy]-pregna-1, 4-diene-3,20-dione) in croton oil-induced granuloma pouches and ear edema in rats were studied. The local anti-inflammatory activity of NM-135 was stronger than that of betamethasone 17-valerate (BV). As to systemic side effects, BV and diflucortolon valerate (DFV) caused thymolysis at the doses required for the anti-inflammatory activity. In contrast, no clear systemic side effect was observed in rats administered NM-135 at the dose producing the anti-inflammatory activity. These results suggest that NM-135 is a drug exhibiting a high degree of dissociation between the local anti-inflammatory activity and systemic side effects. PMID:9920209

  15. Anti-inflammatory effects of novel barbituric acid derivatives in T lymphocytes.

    PubMed

    Xu, Chenjia; Wyman, Arlene R; Alaamery, Manal A; Argueta, Shannon A; Ivey, F Douglas; Meyers, John A; Lerner, Adam; Burdo, Tricia H; Connolly, Timothy; Hoffman, Charles S; Chiles, Thomas C

    2016-09-01

    We have used a high throughput small molecule screen, using a fission yeast-based assay, to identify novel phosphodiesterase 7 (PDE7) inhibitors. One of the most effective hit compounds was BC12, a barbituric acid-based molecule that exhibits unusually potent immunosuppressive and immunomodulatory actions on T lymphocyte function, including inhibition of T cell proliferation and IL-2 cytokine production. BC12 treatment confers a >95% inhibition of IL-2 secretion in phytohaemagglutinin (PHA) plus phorbol-12-myristate-13-acetate (PMA) stimulated Jurkat T cells. The effect of BC12 on IL-2 secretion is not due to decreased cell viability; rather, BC12 blocks up-regulation of IL-2 transcription in activated T cells. BC12 also inhibits IL-2 secretion in human peripheral T lymphocytes stimulated in response to CD3/CD28 co-ligation or the combination of PMA and ionomycin, as well as the proliferation of primary murine T cells stimulated with PMA and ionomycin. A BC12 analog that lacks PDE7 inhibitory activity (BC12-4) displays similar biological activity, suggesting that BC12 does not act via PDE7 inhibition. To investigate the mechanism of inhibition of IL-2 production by BC12, we performed microarray analyses using unstimulated and stimulated Jurkat T cells in the presence or absence of BC12 or BC12-4. Our studies show these compounds affect the transcriptional response to stimulation and act via one or more shared targets to produce both anti-inflammatory and pro-stress effects. These results demonstrate potent immunomodulatory activity for BC12 and BC12-4 in T lymphocytes and suggest a potential clinical use as an immunotherapeutic to treat T lymphocyte-mediated diseases. PMID:27302770

  16. Identification of anti-inflammatory constituents in Hypericum perforatum and Hypericum gentianoides extracts using RAW 264.7 mouse macrophages

    PubMed Central

    Huang, Nan; Rizshsky, Ludmila; Hauck, Cathy; Nikolau, Basil J.; Murphy, Patricia A.; Birt, Diane F.

    2011-01-01

    Hypericum perforatum (St. John’s wort) is an herb widely used as supplement for mild to moderate depression. Our prior studies revealed synergistic anti-inflammatory activity associated with 4 bioactive compounds in a fraction of H. perforatum ethanol extract. Whether these 4 compounds also contributed to the ethanol extract activity was addressed in the research reported here. Despite the popularity of H. perforatum, other Hypericum species with different phytochemical profiles could have their anti-inflammatory potentials attributed to these or other compounds. In the current study, ethanol extracts of different Hypericum species were compared for their inhibitory effect on LPS-induced prostaglandin E2 (PGE2) and nitric oxide (NO) production in RAW 264.7 mouse macrophages. Among these extracts, those made from H. perforatum and H. gentianoides demonstrated stronger overall efficacy. LC-MS analysis indicated the 4 compounds in H. perforatum extract and pseudohypericin in all active fractions. The 4 compounds accounted for a significant part of the extract’s inhibitory activity on PGE2, NO, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in RAW 264.7 as well as peritoneal macrophages. Pseudohypericin was the most important contributor of the anti-inflammatory potential among the 4 compounds. The lipophilic fractions of H. gentianoides extract, which did not contain the previously identified active constituents, decreased PGE2 and NO potently. These fractions were rich in acylphloroglucinols, including uliginosin A that accounted for a proportion of the anti-inflammatory activity observed with the active fractions. Overall, the current study revealed a different group of major anti-inflammatory constituents in H. gentianoides, while showing that a previously identified 4 compounds combination was important for H. perforatum’s anti-inflammatory potential. PMID:21855951

  17. The Anti-inflammatory Effects of Water Extract from Cordyceps militaris in Murine Macrophage.

    PubMed

    Jo, Wol Soon; Choi, Yoo Jin; Kim, Hyoun Ji; Lee, Jae Yun; Nam, Byung Hyouk; Lee, Jae Dong; Lee, Sang Wha; Seo, Su Yeong; Jeong, Min Ho

    2010-03-01

    The aim of this study was to determine the in vitro anti-inflammatory effect of hot water extract from Cordyceps militaris fruiting bodies (CMWE) on lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release in RAW 264.7 cells. The treatment of macrophages with various concentrations of hot CMWE significantly reduced LPS-induced production as well as NO, TNF-α and IL-6 secretion in a concentration-dependent manner. These results suggest that CMWE have potent inhibitory effects on the production of these inflammatory mediators. PMID:23956624

  18. The Anti-inflammatory Effects of Water Extract from Cordyceps militaris in Murine Macrophage

    PubMed Central

    Jo, Wol Soon; Choi, Yoo Jin; Kim, Hyoun Ji; Lee, Jae Yun; Nam, Byung Hyouk; Lee, Jae Dong; Lee, Sang Wha; Seo, Su Yeong

    2010-01-01

    The aim of this study was to determine the in vitro anti-inflammatory effect of hot water extract from Cordyceps militaris fruiting bodies (CMWE) on lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release in RAW 264.7 cells. The treatment of macrophages with various concentrations of hot CMWE significantly reduced LPS-induced production as well as NO, TNF-α and IL-6 secretion in a concentration-dependent manner. These results suggest that CMWE have potent inhibitory effects on the production of these inflammatory mediators. PMID:23956624

  19. Anti-inflammatory effects of Scoparia dulcis L. and betulinic acid.

    PubMed

    Tsai, Jen-Chieh; Peng, Wen-Huang; Chiu, Tai-Hui; Lai, Shang-Chih; Lee, Chao-Ying

    2011-01-01

    The aims of this study intended to investigate the anti-inflammatory activity of the 70% ethanol extract from Scoparia dulcis (SDE) and betulinic acid on λ-carrageenan-induced paw edema in mice. The anti-inflammatory mechanism of SDE and betulinic acid was examined by detecting the levels of cyclooxygenase-2 (COX-2), nitric oxide (NO), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β) and malondialdehyde (MDA) in the edema paw tissue and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRd) in the liver. The betulinic acid content in SDE was detected by high performance liquid chromatography (HPLC). In the anti-inflammatory model, the results showed that SDE (0.5 and 1.0 g/kg) and betulinic acid (20 and 40 mg/kg) reduced the paw edema at 3, 4 and 5 h after λ-carrageenan administration. Moreover, SDE and betulinic acid affected the levels of COX-2, NO, TNF-α and IL1-β in the λ-carrageenan-induced edema paws. The activities of SOD, GPx and GRd in the liver tissue were increased and the MDA levels in the edema paws were decreased. It is suggested that SDE and betulinic acid possessed anti-inflammatory activities and the anti-inflammatory mechanisms appear to be related to the reduction of the levels of COX-2, NO, TNF-α and IL1-β in inflamed tissues, as well as the inhibition of MDA level via increasing the activities of SOD, GPx and GRd. The analytical result showed that the content of betulinic acid in SDE was 6.25 mg/g extract. PMID:21905284

  20. Toxicological Evaluation of Emblica officinalis Fruit Extract and its Anti-inflammatory and Free Radical Scavenging Properties

    PubMed Central

    Middha, Sushil Kumar; Goyal, Arvind Kumar; Lokesh, Prakash; Yardi, Varsha; Mojamdar, Lavanya; Keni, Deepthi Sudhir; Babu, Dinesh; Usha, Talambedu

    2015-01-01

    officinalis fruit (MEO) has potent antioxidant activity as assessed by DPPH, ABTS and LPO assaysMEO has potent anti-inflammatory activity in carrageenan induced paw edema modelThe phenolic compounds of MEO might be a potential herbal drug for amelioration of acute inflammation. Abbreviations used: ROS, reactive oxygen species; RNS, reactive nitrogen species, LPO, lipid peroxidation, NO, nitric oxide, IL, interleukin; TNF α tumor necrosis factor alpha; NSAIDs, nonsteroidal anti inflammatory drugs; AA, ascorbic acid; MEO, methanolic extract of Emblica officinalis fruit; ABTS+; 2,2’ azino bis 3 ethylbenzthiazoline 6 sulphonic acid; DPPH, 1,1 diphenyl 2 picrylhydrazyl; HPLC, high performance liquid chromatography; MDA, malondialdehyde; DMSO, dimethyl sulphoxide; ELISA, enzyme linked immunosorbent assay. PMID:26929577

  1. Physicochemical characteristics and anti-inflammatory activities of antrodan, a novel glycoprotein isolated from Antrodia cinnamomea mycelia.

    PubMed

    Chiu, Chun-Hung; Peng, Chiung-Chi; Ker, Yaw-Bee; Chen, Chin-Chu; Lee, Arwen; Chang, Wan-Lin; Chyau, Charng-Cherng; Peng, Robert Y

    2013-01-01

    Antrodia cinnamomea (AC) is a unique fungus found inhabiting the rotten wood of Cinnamomum kanehirai. A submerged liquid culture of AC has been developed and its bioproducts have been used to meet the market demand for natural fruiting bodies. AC exhibits anti-inflammatory, antitumor, antioxidant, and immunomodulatory effects. Previously, we isolated polysaccharide AC-2 from AC mycelia by means of alkali extraction with subsequent acid precipitation and found it had a pronounced anti-inflammatory effect. In this study, a novel polysaccharide named "antrodan" was obtained by further purification of AC-2 using Sepharose CL-6B column chromatography. Antrodan exhibited a molecular weight of 442 kD and contained a particularly high content of uronic acid (152.6±0.8 mg/g). The protein content was 71.0%, apparently, higher than the carbohydrate content (14.1%), and thus antrodan was characterized as a glycoprotein. Its total glucan content was 15.65%, in which β-glucan (14.20%) was prominently higher than α-glucan (1.45%). Its FTIR confirmed the presence of β-linkages between sugars, and intramolecular amide bonds between sugars and amino acids. Its 1H-NMR spectrum showed that antrodan was a complex union of α- and β-glucans, which had (1→4)-linked α-Glcp and (1→3)-linked β-Glcp linkages to the carbohydrate chains via asparagine linked to protein site. Biologically, antrodan was confirmed to be totally non-detrimental to RAW 264.7 cell line even at dose as high as 400 μg/mL. It showed potent suppressing effect on the lipopolysaccharide-induced inflammatory responses in RAW 264.7 cell line. Moreover, antrodan significantly reduced the nitrogen oxide production at doses as low as 18.75 μg/mL. PMID:24451244

  2. Evaluation of Anticancer, Antioxidant, and Possible Anti-inflammatory Properties of Selected Medicinal Plants Used in Indian Traditional Medication

    PubMed Central

    Shaikh, Rafik; Pund, Mahesh; Dawane, Ashwini; Iliyas, Sayyed

    2014-01-01

    The present study was carried out to evaluate the anticancer, antioxidant, and possible anti-inflammatory properties of diverse medicinal plants frequently used in Indian traditional medication. The selected botanicals such as Soymida fembrifuga (Roxb.) A. Juss. (Miliaceae), Tinospora cordifolia (Willd.) Miers. (Menispermaceae), Lavandula bipinnata (L.) O. Ktze. (Lamiaceae), and Helicteres isora L. (Sterculiaceae) extracted in different solvents were evaluated for their in vitro anticancer and antioxidant activities. The results obtained indicate that H. isora has potent cytotoxic activity toward the selected cancer cells such as HeLa-B75 (34.21 ± 0.24%), HL-60 (30.25 ± 1.36%), HEP-3B (25.36 ± 1.78%), and PN-15 (29.21 ± 0.52%). Interestingly, the selected botanicals selectively inhibited cyclooxygenase-2 (COX-2) more than (COX-1), which are the key enzymes implicated in inflammation. COX-2 inhibition was observed to be in the range of 19.66-49.52% as compared to COX-1 inhibition (3.93-19.61%). The results of the antioxidant study revealed that the selected plants were found to be effective 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl (OH), and superoxide radical (SOR) scavenging agents. High-performance thin layer chromatography (HPTLC) fingerprint of flavonoids was used as a measure of quality control of the selected plant samples. The results of the present findings strengthen the potential of the selected plants as a resource for the discovery of novel anticancer, anti-inflammatory, and antioxidant agents. PMID:25379467

  3. Evaluation of Anticancer, Antioxidant, and Possible Anti-inflammatory Properties of Selected Medicinal Plants Used in Indian Traditional Medication.

    PubMed

    Shaikh, Rafik; Pund, Mahesh; Dawane, Ashwini; Iliyas, Sayyed

    2014-10-01

    The present study was carried out to evaluate the anticancer, antioxidant, and possible anti-inflammatory properties of diverse medicinal plants frequently used in Indian traditional medication. The selected botanicals such as Soymida fembrifuga (Roxb.) A. Juss. (Miliaceae), Tinospora cordifolia (Willd.) Miers. (Menispermaceae), Lavandula bipinnata (L.) O. Ktze. (Lamiaceae), and Helicteres isora L. (Sterculiaceae) extracted in different solvents were evaluated for their in vitro anticancer and antioxidant activities. The results obtained indicate that H. isora has potent cytotoxic activity toward the selected cancer cells such as HeLa-B75 (34.21 ± 0.24%), HL-60 (30.25 ± 1.36%), HEP-3B (25.36 ± 1.78%), and PN-15 (29.21 ± 0.52%). Interestingly, the selected botanicals selectively inhibited cyclooxygenase-2 (COX-2) more than (COX-1), which are the key enzymes implicated in inflammation. COX-2 inhibition was observed to be in the range of 19.66-49.52% as compared to COX-1 inhibition (3.93-19.61%). The results of the antioxidant study revealed that the selected plants were found to be effective 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl (OH), and superoxide radical (SOR) scavenging agents. High-performance thin layer chromatography (HPTLC) fingerprint of flavonoids was used as a measure of quality control of the selected plant samples. The results of the present findings strengthen the potential of the selected plants as a resource for the discovery of novel anticancer, anti-inflammatory, and antioxidant agents. PMID:25379467

  4. Evaluation of anti-inflammatory, analgesic, and antipyretic activities of the ethanol extract from Murdannia loriformis (Hassk.) Rolla Rao et Kammathy

    PubMed Central

    Kunnaja, Phraepakaporn; Wongpalee, Somsakul Pop; Panthong, Ampai

    2014-01-01

    Introduction: Murdannia loriformis (hassk) Rolla Roa et Kammathy, family Commelinaceae, is used by Chinese practitioners as a remedy for cancer in an early stage, and also for treating other diseases including colds, throat infections, pneumonia, diabetes mellitus, flu and inflammation. Although anticancer as well as other pharmacological effects of M. loriformis have been reported, its anti-inflammatory and other activities related to inflammation are still limited. Methods: The anti-inflammatory activity was evaluated using carrageenan- and arachidonic acid-induced paw edema in rats, and cotton pellet-induced granuloma formation in rats. The analgesic and antipyretic activities were determined by formalin test in mice and yeast-induced hyperthermia in rats, respectively. Results: The ethanol extract of the aerial part of M. loriformis exhibited anti-inflammatory activity on the rat paw edema induced by carrageenan and arachidonic acid. It also showed an inhibitory effect on the granuloma and the transudative formation of the rat implanted with cotton pellets as well as lowered the elevated serum alkaline phosphatase activity to normal level. It exerted potent analgesic effect on both the early and late phase of formalin test as well as the antipyretic effect on yeast-induced hyperthermic rats. The oral single high dose of the extract of 5,000 mg/Kg did not produce death or any abnormalities or changes of the internal organs of rats during 14 days of the observed period. Conclusion: The results obtained from this study support the use of the plant in traditional medicine for inflammatory ailments. PMID:25671174

  5. Analgesic and Anti-Inflammatory Activity of Pinus roxburghii Sarg.

    PubMed Central

    Kaushik, Dhirender; Kumar, Ajay; Kaushik, Pawan; Rana, A. C.

    2012-01-01

    The Chir Pine, Pinus roxburghii, named after William Roxburgh, is a pine native to the Himalaya. Pinus roxburghii Sarg. (Pinaceae) is traditionally used for several medicinal purposes in India. As the oil of the plant is extensively used in number of herbal preparation for curing inflammatory disorders, the present study was undertaken to assess analgesic and anti-inflammatory activities of its bark extract. Dried and crushed leaves of Pinus roxburghii Sarg. were defatted with petroleum ether and then extracted with alcohol. The alcoholic extract at the doses of 100 mg/kg, 300 mg/kg, and 500 mg/kg body weight was subjected to evaluation of analgesic and anti-inflammatory activities in experimental animal models. Analgesic activity was evaluated by acetic acid-induced writhing and tail immersion tests in Swiss albino mice; acute and chronic anti-inflammatory activity was evaluated by carrageenan-induced paw oedema and cotton pellet granuloma in Wistar albino rats. Diclofenac sodium and indomethacin were employed as reference drugs for analgesic and anti-inflammatory studies, respectively. In the present study, the alcoholic bark extract of Pinus roxburghii Sarg. demonstrated significant analgesic and anti-inflammatory activities in the tested models. PMID:22761611

  6. Modeling Natural Anti-Inflammatory Compounds by Molecular Topology

    PubMed Central

    Galvez-Llompart, María; Zanni, Riccardo; García-Domenech, Ramón

    2011-01-01

    One of the main pharmacological problems today in the treatment of chronic inflammation diseases consists of the fact that anti-inflammatory drugs usually exhibit side effects. The natural products offer a great hope in the identification of bioactive lead compounds and their development into drugs for treating inflammatory diseases. Computer-aided drug design has proved to be a very useful tool for discovering new drugs and, specifically, Molecular Topology has become a good technique for such a goal. A topological-mathematical model, obtained by linear discriminant analysis, has been developed for the search of new anti-inflammatory natural compounds. An external validation obtained with the remaining compounds (those not used in building up the model), has been carried out. Finally, a virtual screening on natural products was performed and 74 compounds showed actual anti-inflammatory activity. From them, 54 had been previously described as anti-inflammatory in the literature. This can be seen as a plus in the model validation and as a reinforcement of the role of Molecular Topology as an efficient tool for the discovery of new anti-inflammatory natural compounds. PMID:22272145

  7. Anti-inflammatory and analgesic effects of Daphne retusa Hemsl.

    PubMed

    Hu, Xiaojia; Jin, Huizi; Xu, Wenzheng; Zhang, Wei; Liu, Xiaohua; Yan, Shikai; Chen, Ming; Li, Jianqiang; Zhang, Wei-dong

    2008-10-30

    Daphne retusa Hemsl. belongs to the genus Daphne, a member of Thymelaeaceae family. The barks and stems of Daphne retusa are used as a folkloric medicine 'Zhu Shi Ma' in Western China because of its effects of detumescence and acesodyne. In this paper, we investigate the anti-inflammatory and analgesic effects of the 75% ethanol extract of the stems and barks of Daphne retusa and different fractions partitioned with petroleum ether, methylene chloride, ethyl acetate and n-butanol, respectively. The anti-inflammatory effects were evaluated using xylene-induced ear oedema in mice and carrageenan-induced paw oedema in rats, while the acetic acid-induced writhing test and hot-plate test as models for evaluating the centrally and peripherally analgesic activity. The results showed the plant has significant anti-inflammatory and analgesic effects (P<0.05-0.01). Meanwhile, the result of the acute toxicity test at which the MTD was above 5g/kg indicates that the plant extract is relatively safe in, and/or non-toxic to, mice. The findings of these experimental animal studies indicate that the Daphne retusa ethanol extract possesses anti-inflammatory and analgesic properties, and thus provide pharmacological support to folkloric, ethnomedical uses of 'Zhu shima' in the treatment and/of management of anti-inflammatory and painful conditions in China. PMID:18692124

  8. Synthesis, anti-inflammatory, analgesic, 5-lipoxygenase (5-LOX) inhibition activities, and molecular docking study of 7-substituted coumarin derivatives.

    PubMed

    Srivastava, Pavan; Vyas, Vivek K; Variya, Bhavesh; Patel, Palak; Qureshi, Gulamnizami; Ghate, Manjunath

    2016-08-01

    In the present study, 7-subsituted coumarin derivatives were synthesized using various aromatic and heterocyclic amines, and evaluated in vivo for anti-inflammatory and analgesic activity, and for ulcerogenic risk. The most active compounds were evaluated in vitro for 5-lipoxygenase (5-LOX) inhibition. Docking study was performed to predict the binding affinity, and orientation at the active site of the enzyme. In vivo anti-inflammatory and analgesic activity, and in vitro 5-LOX enzyme inhibition study revealed that compound 33 and 35 are the most potent compounds in all the screening methods. In vitro kinetic study of 35 showed mixed or non-competitive type of inhibition with 5-LOX enzyme. Presence of OCH3 group in 35 and Cl in 33 at C6-position of benzothiazole ring were found very important substitutions for potent activity. PMID:27376460

  9. The Hypolipidemic and Anti-Inflammatory Activity of Boronated Aromatic Amino Acids in CF1 Male Mice

    PubMed Central

    Miller, Merrill C.; Sood, A.; Spielvogel, Bernard F.

    1999-01-01

    The boronated aromatic amino acids were shown to be potent hypolipidemic agents in mice lowering both serum cholesterol and triglycerides after 16 days. Selective compounds were as effective as the clinical standards. Furthermore, the compounds were effective anti-inflammatory agents reducing local and central pain as well as suppressing LPS induced endotoxic shock in mice. These agents inhibited lysosomal and proteolytic enzymes of the liver and macrophages as a part of their mechanism of action. PMID:18475910

  10. Hesperetin derivatives: Synthesis and anti-inflammatory activity.

    PubMed

    Wang, Qian-Qian; Shi, Jing-Bo; Chen, Chen; Huang, Cheng; Tang, Wen-Jian; Li, Jun

    2016-03-01

    Sixteen novel hesperetin derivatives containing Mannich base moiety were designed and synthesized and their anti-inflammatory activities were evaluated by inhibiting tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in mouse RAW264.7 macrophages. Compounds 3a-3k showed better hydrophilic, while compounds 3l-3p with aromatic groups was hydrophobic. The anti-inflammatory activity of title compounds was correlated with logP values, among them, compounds 3c, 3e and 3i with minus logP values exhibited best anti-inflammatory activity through decreasing both IL-6 and TNF-α. Furthermore, the expression of LPS-induced notch1 and inos was reduced by compounds 3c, 3e, and 3i, and compound 3e attenuated LPS-induced inos protein levels in a dose-dependent manner. PMID:26848111