Science.gov

Sample records for highly potent anti-inflammatory

  1. Discovery of a highly potent anti-inflammatory epoxyisoprostane-derived lactone.

    PubMed

    Egger, Julian; Bretscher, Peter; Freigang, Stefan; Kopf, Manfred; Carreira, Erick M

    2014-12-17

    Epoxyisoprostanes EI (1) and EC (2) are effective inhibitors of the secretion of proinflammatory cytokines IL-6 and IL-12. In detailed studies toward the investigation of the molecular mode of action of these structures, a highly potent lactone (3) derived from 1 was identified. The known isoprostanoids 1 and 2 are most likely precursors of 3, the product of facile intramolecular reaction between the epoxide with the carboxylic acid in 2. PMID:25474746

  2. HU-444, a Novel, Potent Anti-Inflammatory, Nonpsychotropic Cannabinoid.

    PubMed

    Haj, Christeene G; Sumariwalla, Percy F; Hanuš, Lumír; Kogan, Natalya M; Yektin, Zhana; Mechoulam, Raphael; Feldmann, Mark; Gallily, Ruth

    2015-10-01

    Cannabidiol (CBD) is a component of cannabis, which does not cause the typical marijuana-type effects, but has a high potential for use in several therapeutic areas. In contrast to Δ(9)-tetrahydrocannabinol (Δ(9)-THC), it binds very weakly to the CB1 and CB2 cannabinoid receptors. It has potent activity in both in vitro and in vivo anti-inflammatory assays. Thus, it lowers the formation of tumor necrosis factor (TNF)-α, a proinflammatory cytokine, and was found to be an oral antiarthritic therapeutic in murine collagen-induced arthritis in vivo. However, in acidic media, it can cyclize to the psychoactive Δ(9)-THC. We report the synthesis of a novel CBD derivative, HU-444, which cannot be converted by acid cyclization into a Δ(9)-THC-like compound. In vitro HU-444 had anti-inflammatory activity (decrease of reactive oxygen intermediates and inhibition of TNF-α production by macrophages); in vivo it led to suppression of production of TNF-α and amelioration of liver damage as well as lowering of mouse collagen-induced arthritis. HU-444 did not cause Δ(9)-THC-like effects in mice. We believe that HU-444 represents a potential novel drug for rheumatoid arthritis and other inflammatory diseases. PMID:26272937

  3. Tricyclic Compounds Containing Non-enolizable Cyano Enones. A Novel Class of Highly Potent Anti-inflammatory and Cytoprotective Agents=

    PubMed Central

    Honda, Tadashi; Yoshizawa, Hidenori; Sundararajan, Chitra; David, Emilie; Lajoie, Marc J.; Favaloro, Frank G.; Janosik, Tomasz; Su, Xiaobo; Honda, Yukiko; Roebuck, Bill D.; Gribble, Gordon W.

    2011-01-01

    Forty-four novel tricycles containing non-enolizable cyano enones (TCEs) were designed and synthesized on the basis of a semisynthetic pentacyclic triterpenoid, bardoxolone methyl, which is currently being developed in Phase II clinical trials for the treatment of severe chronic kidney disease in diabetic patients. Most of the TCEs having two different kinds of non-enolizable cyano enones in rings A and C are highly potent suppressors of induction of inducible nitric oxide synthase stimulated with interferon-?, and highly potent inducers of the cytoprotective enzymes heme oxygenase-1 and NAD(P)H:quinone oxidoreductase-1. Among these compounds, ()-(4bS,8aR,10aS)-10a-ethynyl-4b,8,8-trimethyl-3,7-dioxo-3,4b,7,8,8a,9,10,10a-octahydrophenanthrene-2,6-dicarbonitrile (()-31) is the most potent in these bioassays in our pool of drug candidates including semisynthetic triterpenoids and synthetic tricycles. These facts strongly suggest that an essential factor for potency is not a triterpenoid skeleton, but the cyano enone functionality. Notably, TCE 31 reduces hepatic tumorigenesis induced with aflatoxin in rats. Further preclinical studies and detailed mechanism studies on 31 are in progress. PMID:21361338

  4. Nanoliposomal Nitroglycerin Exerts Potent Anti-Inflammatory Effects

    NASA Astrophysics Data System (ADS)

    Ardekani, Soroush; Scott, Harry A.; Gupta, Sharad; Eum, Shane; Yang, Xiao; Brunelle, Alexander R.; Wilson, Sean M.; Mohideen, Umar; Ghosh, Kaustabh

    2015-11-01

    Nitroglycerin (NTG) markedly enhances nitric oxide (NO) bioavailability. However, its ability to mimic the anti-inflammatory properties of NO remains unknown. Here, we examined whether NTG can suppress endothelial cell (EC) activation during inflammation and developed NTG nanoformulation to simultaneously amplify its anti-inflammatory effects and ameliorate adverse effects associated with high-dose NTG administration. Our findings reveal that NTG significantly inhibits human U937 cell adhesion to NO-deficient human microvascular ECs in vitro through an increase in endothelial NO and decrease in endothelial ICAM-1 clustering, as determined by NO analyzer, microfluorimetry, and immunofluorescence staining. Nanoliposomal NTG (NTG-NL) was formulated by encapsulating NTG within unilamellar lipid vesicles (DPhPC, POPC, Cholesterol, DHPE-Texas Red at molar ratio of 6:2:2:0.2) that were ~155 nm in diameter and readily uptaken by ECs, as determined by dynamic light scattering and quantitative fluorescence microscopy, respectively. More importantly, NTG-NL produced a 70-fold increase in NTG therapeutic efficacy when compared with free NTG while preventing excessive mitochondrial superoxide production associated with high NTG doses. Thus, these findings, which are the first to reveal the superior therapeutic effects of an NTG nanoformulation, provide the rationale for their detailed investigation for potentially superior vascular normalization therapies.

  5. Nanoliposomal Nitroglycerin Exerts Potent Anti-Inflammatory Effects

    PubMed Central

    Ardekani, Soroush; Scott, Harry A.; Gupta, Sharad; Eum, Shane; Yang, Xiao; Brunelle, Alexander R.; Wilson, Sean M.; Mohideen, Umar; Ghosh, Kaustabh

    2015-01-01

    Nitroglycerin (NTG) markedly enhances nitric oxide (NO) bioavailability. However, its ability to mimic the anti-inflammatory properties of NO remains unknown. Here, we examined whether NTG can suppress endothelial cell (EC) activation during inflammation and developed NTG nanoformulation to simultaneously amplify its anti-inflammatory effects and ameliorate adverse effects associated with high-dose NTG administration. Our findings reveal that NTG significantly inhibits human U937 cell adhesion to NO-deficient human microvascular ECs in vitro through an increase in endothelial NO and decrease in endothelial ICAM-1 clustering, as determined by NO analyzer, microfluorimetry, and immunofluorescence staining. Nanoliposomal NTG (NTG-NL) was formulated by encapsulating NTG within unilamellar lipid vesicles (DPhPC, POPC, Cholesterol, DHPE-Texas Red at molar ratio of 6:2:2:0.2) that were ~155 nm in diameter and readily uptaken by ECs, as determined by dynamic light scattering and quantitative fluorescence microscopy, respectively. More importantly, NTG-NL produced a 70-fold increase in NTG therapeutic efficacy when compared with free NTG while preventing excessive mitochondrial superoxide production associated with high NTG doses. Thus, these findings, which are the first to reveal the superior therapeutic effects of an NTG nanoformulation, provide the rationale for their detailed investigation for potentially superior vascular normalization therapies. PMID:26584637

  6. Esters of some non-steroidal anti-inflammatory drugs with cinnamyl alcohol are potent lipoxygenase inhibitors with enhanced anti-inflammatory activity.

    PubMed

    Theodosis-Nobelos, Panagiotis; Kourti, Malamati; Tziona, Paraskevi; Kourounakis, Panos N; Rekka, Eleni A

    2015-11-15

    Novel esters of non steroidal anti-inflammatory drugs, ?-lipoic acid and indol-3-acetic acid with cinnamyl alcohol were synthesised by a straightforward method and at high yields (60-98%). They reduced acute inflammation more than the parent acids and are potent inhibitors of soybean lipoxygenase. Selected structures decreased plasma lipidemic indices in Triton-induced hyperlipidemia to rats. Therefore, the synthesised compounds may add to the current knowledge about agents acting against various inflammatory disorders. PMID:26494261

  7. Stereoselective synthesis of protectin D1: A potent anti-inflammatory and proresolving lipid mediator

    PubMed Central

    Aursnes, M.; Tungen, J. E.; Vik, A.; Dalli, J.; Hansen, T. V.

    2014-01-01

    A convergent stereoselective synthesis of the potent anti-inflammatory, proresolving and neuroprotective lipid mediator protectin D1 (2) has been achieved in 15% yield over eight steps. The key features were a stereocontrolled Evans-aldol reaction with Nagaos chiral auxiliary and a highly selective Lindlar reduction of internal alkyne 23, allowing the sensitive conjugated E,E,Z-triene to be introduced late in the preparation of 2. The UV and LC/MS-MS data of synthetic protectin D1 (2) matched those obtained from endogenously produced material PMID:24253202

  8. 6-Hydroxyflavone and Derivatives Exhibit Potent Anti-Inflammatory Activity among Mono-, Di- and Polyhydroxylated Flavones in Kidney Mesangial Cells

    PubMed Central

    Sidhu, Preetpal Singh; Desai, Umesh R.; Zhou, Qibing

    2015-01-01

    Inflammatory responses by kidney mesangial cells play a critical role in the glomerulonephritis. The anti-inflammatory potential of nineteen mono-, di- and polyhydroxylated flavones including fisetin, quercetin, morin, tricetin, gossypetin, apigenin and myricetin were investigated on rat mesangial cells with lipopolysaccharide (LPS) as the inflammatory stimuli. 6-Hydroxyflavone and 4′,6-dihydroxyflavone exhibited high activity with IC50 in the range of 2.0 μM, a much better inhibition potential in comparison to the well-studied polyhydroxylated flavones. Interestingly, the anti-inflammatory activity was not due to direct quenching of NO radicals. Investigation on derivatives with methylation, acetylation or sulfation of 6-hydroxyl group revealed that 6-methoxyflavone was the most potent with an IC50 of 192 nM. Mechanistic study indicated that the anti-inflammatory activity of 6-methoxyflavone arose via the inhibition of LPS-induced downstream inducible NO synthase in mesangial cells. The identification of 6-hydroxyflavone and 6-methoxyflavone with potent anti-inflammatory activity in kidney mesangial cells provides a new flavone scaffold and direction to develop naturally derived products for potential nephritis prevention and treatment. PMID:25790236

  9. The potent anti-inflammatory agent escin does not increase corticosterone secretion and immune cell apoptosis in mice.

    PubMed

    Zhang, Leiming; Wang, Hongsheng; Fan, Huaying; Wang, Tian; Jiang, Na; Yu, Pengfei; Fu, Fenghua

    2011-09-01

    Escin exerts potent glucocorticoid-like anti-inflammatory effects. The aim of this study was to investigate whether the anti-inflammatory effect of escin is through the up-regulation of glucocorticoids and if escin induces pathological changes in immune organs. Mice were administrated with escin intravenously for 7 days before observing the relevant parameters. The results showed that escin exhibits a potent anti-inflammatory effect, but does not increase corticosterone secretion in mice, and does not increase immune cell apoptosis in the spleen and thymus of mice. These findings suggest that the anti-inflammatory effect of escin is not dependent on the release of corticosterone. PMID:21596110

  10. CHF6001 I: a novel highly potent and selective phosphodiesterase 4 inhibitor with robust anti-inflammatory activity and suitable for topical pulmonary administration.

    PubMed

    Moretto, Nadia; Caruso, Paola; Bosco, Raffaella; Marchini, Gessica; Pastore, Fiorella; Armani, Elisabetta; Amari, Gabriele; Rizzi, Andrea; Ghidini, Eleonora; De Fanti, Renato; Capaldi, Carmelida; Carzaniga, Laura; Hirsch, Emilio; Buccellati, Carola; Sala, Angelo; Carnini, Chiara; Patacchini, Riccardo; Delcanale, Maurizio; Civelli, Maurizio; Villetti, Gino; Facchinetti, Fabrizio

    2015-03-01

    This study examined the pharmacologic characterization of CHF6001 [(S)-3,5-dichloro-4-(2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2-(3-(cyclopropylmethoxy)-4-(methylsulfonamido)benzoyloxy)ethyl)pyridine 1-oxide], a novel phosphodiesterase (PDE)4 inhibitor designed for treating pulmonary inflammatory diseases via inhaled administration. CHF6001 was 7- and 923-fold more potent than roflumilast and cilomilast, respectively, in inhibiting PDE4 enzymatic activity (IC50 = 0.026 0.006 nM). CHF6001 inhibited PDE4 isoforms A-D with equal potency, showed an elevated ratio of high-affinity rolipram binding site versus low-affinity rolipram binding site (i.e., >40) and displayed >20,000-fold selectivity versus PDE4 compared with a panel of PDEs. CHF6001 effectively inhibited (subnanomolar IC50 values) the release of tumor necrosis factor-? from human peripheral blood mononuclear cells, human acute monocytic leukemia cell line macrophages (THP-1), and rodent macrophages (RAW264.7 and NR8383). Moreover, CHF6001 potently inhibited the activation of oxidative burst in neutrophils and eosinophils, neutrophil chemotaxis, and the release of interferon-? from CD4(+) T cells. In all these functional assays, CHF6001 was more potent than previously described PDE4 inhibitors, including roflumilast, UK-500,001 [2-(3,4-difluorophenoxy)-5-fluoro-N-((1S,4S)-4-(2-hydroxy-5-methylbenzamido)cyclohexyl)nicotinamide], and cilomilast, and it was comparable to GSK256066 [6-((3-(dimethylcarbamoyl)phenyl)sulfonyl)-4-((3-methoxyphenyl)amino)-8-methylquinoline-3-carboxamide]. When administered intratracheally to rats as a micronized dry powder, CHF6001 inhibited liposaccharide-induced pulmonary neutrophilia (ED50 = 0.205 ?mol/kg) and leukocyte infiltration (ED50 = 0.188 ?mol/kg) with an efficacy comparable to a high dose of budesonide (1 ?mol/kg i.p.). In sum, CHF6001 has the potential to be an effective topical treatment of conditions associated with pulmonary inflammation, including asthma and chronic obstructive pulmonary disease. PMID:25576075

  11. Cu(II) complex of an estradiol derivative with potent anti-inflammatory properties.

    PubMed

    Spyriounis, D M; Rekka, E; Demopoulos, V J; Kourounakis, P N

    1991-09-01

    In the present study, the A-ring of estradiol was converted to an acetylsalicylic structure which was further complexed with Cu(II). The aim was to combine the anti-inflammatory properties of estrogens with those of Cu(II) complexes. Key intermediate of the synthesis was 2-formyl-estradiol (2) which was prepared in quantitative yield through reaction of the phenoxymagnesium bromide of estradiol with formaldehyde in the presence of HMPA. For a successful reaction, an excess of ethylmagnesium bromide was required, and the mechanism is discussed. The target complex 5 exhibited potent anti-inflammatory properties, comparable to those of indomethacin, in the carrageenan-induced rat paw edema. This biological activity was not due either to the steroidal ligand or to the complexed Cu(II) alone. PMID:1793357

  12. An efficient total synthesis of a potent anti-inflammatory agent, benzocamphorin F, and its anti-inflammatory activity.

    PubMed

    Liao, Yu-Ren; Kuo, Ping-Chung; Liang, Jun-Weil; Shen, Yuh-Chiang; Wu, Tian-Shung

    2012-01-01

    A naturally occurring enynyl-benzenoid, benzocamphorin F (1), from the edible fungus Taiwanofungus camphoratus (Antrodia camphorata) was characterized by comprehensive spectral analysis. It displays anti-inflammatory bioactivity and is valuable for further biological studies. The present study is the first total synthesis of benzocamphorin F and the developed strategy described is a more efficient procedure that allowe the large-scale production of benzocamphorin F for further research of the biological activity both in vitro and in vivo. PMID:22949872

  13. An Efficient Total Synthesis of a Potent Anti-Inflammatory Agent, Benzocamphorin F, and Its Anti-Inflammatory Activity

    PubMed Central

    Liao, Yu-Ren; Kuo, Ping-Chung; Liang, Jun-Weil; Shen, Yuh-Chiang; Wu, Tian-Shung

    2012-01-01

    A naturally occurring enynyl-benzenoid, benzocamphorin F (1), from the edible fungus Taiwanofungus camphoratus (Antrodia camphorata) was characterized by comprehensive spectral analysis. It displays anti-inflammatory bioactivity and is valuable for further biological studies. The present study is the first total synthesis of benzocamphorin F and the developed strategy described is a more efficient procedure that allowe the large-scale production of benzocamphorin F for further research of the biological activity both in vitro and in vivo. PMID:22949872

  14. Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs

    PubMed Central

    Boukhatem, Mohamed Nadjib; Ferhat, Mohamed Amine; Kameli, Abdelkrim; Saidi, Fairouz; Kebir, Hadjer Tchoketch

    2014-01-01

    Background Volatile oils obtained from lemon grass [Cymbopogon citratus (DC.) Stapf, Poaceae family] are used in traditional medicine as remedies for the treatment of various diseases. Aims In the present study, lemon grass essential oil (LGEO) was evaluated for its in vivo topical and oral anti-inflammatory effects, and for its in vitro antifungal activity using both liquid and vapor phases. Methods The chemical profile of LGEO as determined by gas chromatography–mass spectrometry analysis revealed two major components: geranial (42.2%), and neral (31.5%). The antifungal activity of LGEO was evaluated against several pathogenic yeasts and filamentous fungi using disc diffusion and vapor diffusion methods. Results LGEO exhibited promising antifungal effect against Candida albicans, C. tropicalis, and Aspergillus niger, with different inhibition zone diameters (IZDs) (35–90 mm). IZD increased with increasing oil volume. Significantly, higher anti-Candida activity was observed in the vapor phase. For the evaluation of the anti-inflammatory effect, LGEO (10 mg/kg, administered orally) significantly reduced carrageenan-induced paw edema with a similar effect to that observed for oral diclofenac (50 mg/kg), which was used as the positive control. Oral administration of LGEO showed dose-dependent anti-inflammatory activity. In addition, topical application of LGEO in vivo resulted in a potent anti-inflammatory effect, as demonstrated by using the mouse model of croton oil-induced ear edema. To our knowledge, this is the first such report to be published. The topical application of LGEO at doses of 5 and 10 µL/ear significantly reduced acute ear edema induced by croton oil in 62.5 and 75% of the mice, respectively. In addition, histological analysis clearly confirmed that LGEO inhibits the skin inflammatory response in animal models. Conclusion Results of the present study indicate that LGEO has a noteworthy potential for the development of drugs for the treatment of fungal infections and skin inflammation that should be explored in future studies. PMID:25242268

  15. Potent anti-inflammatory activity of betulinic acid treatment in a model of lethal endotoxemia.

    PubMed

    Costa, Jos Fernando Oliveira; Barbosa-Filho, Jos Maria; Maia, Gabriela Lemos de Azevedo; Guimares, Elisalva Teixeira; Meira, Cssio Santana; Ribeiro-dos-Santos, Ricardo; de Carvalho, Lain Carlos Pontes; Soares, Milena Botelho Pereira

    2014-12-01

    Betulinic acid (BA) is a lupane-type triterpene with a number of biological activities already reported. While potent anti-HIV and antitumoral activities were attributed to BA, it is considered to have a moderate anti-inflammatory activity. Here we evaluated the effects of BA in a mouse model of endotoxic shock. Endotoxemia was induced through intraperitoneally LPS administration, nitric oxide (NO) and cytokines were assessed by Griess method and ELISA, respectively. Treatment of BALB/c mice with BA at 67 mg/kg caused a 100% survival against a lethal dose of lipopolysaccharide (LPS). BA treatment caused a reduction in TNF-? production induced by LPS but did not alter IL-6 production. Moreover, BA treatment increased significantly the serum levels of IL-10 compared to vehicle-treated, LPS-challenged mice. To investigate the role of IL-10 in BA-induced protection, wild-type and IL-10(-/-) mice were studied. In contrast to the observations in IL-10(+/+) mice, BA did not protect IL-10(-/-) mice against a lethal LPS challenge. Addition of BA inhibited the production of pro-inflammatory mediators by macrophages stimulated with LPS, while promoting a significant increase in IL-10 production. BA-treated peritoneal exudate macrophages produced lower concentrations of TNF-? and NO and higher concentrations of IL-10 upon LPS stimulation. Similarly, macrophages obtained from BA-treated mice produced less pro-inflammatory mediators and increased IL-10 when compared to non-stimulated macrophages obtained from vehicle-treated mice. In conclusion, we have shown that BA has a potent anti-inflammatory activity in vivo, protecting mice against LPS by modulating TNF-? production by macrophages in vivo through a mechanism dependent on IL-10. PMID:25281393

  16. A Novel Anti-Inflammatory Effect for High Density Lipoprotein

    PubMed Central

    Cameron, Scott J.; Morrell, Craig N.; Bao, Clare; Swaim, AnneMarie F.; Rodriguez, Annabelle; Lowenstein, Charles J.

    2015-01-01

    High density lipoprotein has anti-inflammatory effects in addition to mediating reverse cholesterol transport. While many of the chronic anti-inflammatory effects of high density lipoprotein (HDL) are attributed to changes in cell adhesion molecules, little is known about acute signal transduction events elicited by HDL in endothelial cells. We now show that high density lipoprotein decreases endothelial cell exocytosis, the first step in leukocyte trafficking. ApoA-I, a major apolipoprotein of HDL, mediates inhibition of endothelial cell exocytosis by interacting with endothelial scavenger receptor-BI which triggers an intracellular protective signaling cascade involving protein kinase C (PKC). Other apolipoproteins within the HDL particle have only modest effects upon endothelial exocytosis. Using a human primary culture of endothelial cells and murine apo-AI knockout mice, we show that apo-AI prevents endothelial cell exocytosis which limits leukocyte recruitment. These data suggest that high density lipoprotein may inhibit diseases associated with vascular inflammation in part by blocking endothelial exocytosis. PMID:26680360

  17. Valproic acid: an anticonvulsant drug with potent antinociceptive and anti-inflammatory properties.

    PubMed

    Ximenes, José Christian Machado; de Oliveira Gonçalves, Danilo; Siqueira, Rafaelly Maria Pinheiro; Neves, Kelly Rose Tavares; Santos Cerqueira, Gilberto; Correia, Alyne Oliveira; Félix, Francisco Hélder Cavalcante; Leal, Luzia Kalyne Almeida Moreira; de Castro Brito, Gerly Anne; da Graça Naffah-Mazzacorati, Maria; Viana, Glauce Socorro de Barros

    2013-07-01

    Valproic acid (VA) is a major antiepileptic drug, used for several therapeutic indications. It has a wide activity spectrum, reflecting on mechanisms of action that are not fully understood. The objectives of this work were to study the effects of VA on acute models of nociception and inflammation in rodents. VA (0.5, 1, 10, 25, and 50 mg/kg, p.o.) effects were evaluated on the carrageenan-induced paw edema, carrageenan-induced peritonitis, and plantar tests in rats, as well as by the formalin test in mice. The HE staining and immunohistochemistry assay for TNF-α in carrageenan-induced edema, from paws of untreated and VA-treated rats, were also carried out. VA decreased paw edema after carrageenan, and maximum effects were seen with doses equal to or higher than 10 mg/kg. VA also preserved the tissue architecture as assessed by the HE staining. Immunohistochemical studies revealed that VA significantly reduced TNF-α immunostaining in carrageenan-inflamed rat paws. In addition, the anti-inflammatory action of VA was potentiated by pentoxifylline (a phosphodiesterase inhibitor, known to inhibit TNF-α production), but not by sodium butyrate or by suberoylanilide hydroxamic acid (SAHA), nonspecific and specific inhibitors, respectively, of histone deacetylase. However, the decrease in the number of positive TNF-α cells in the rat paw was drastically potentiated in the VA + SAHA associated group. VA also reduced leukocytes and myeloperoxidase (MPO) releases to the peritoneal exudate, in the carrageenan-induced peritonitis. Although in the formalin test, VA inhibited both phases, the inhibition was mainly on the second phase. Furthermore, VA significantly increased the reaction time to thermal stimuli, as assessed by the plantar test. VA is a multi-target drug, presenting potent antinociceptive and anti-inflammatory properties at a lower dose range. These effects are partly dependent upon its inhibitory action on TNF-α-related pathways. However, the participation of the HDAC inhibition with the VA anti-inflammatory action cannot be ruled out. Inflammatory processes are associated with free radical damage and oxidative stress, and their blockade by VA could also explain the present results. PMID:23584602

  18. Potent anti-inflammatory effects of systemically-administered curcumin modulates periodontal disease in vivo

    PubMed Central

    Guimarães, Morgana R.; Coimbra, Leila S.; de Aquino, Sabrina Garcia; Spolidorio, Luis C.; Kirkwood, Keith L.; Junior, Carlos Rossa

    2011-01-01

    Background Curcumin is a plant-derived dietary spice with various biological activities, including anti-tumoral and anti-inflammatory. Its therapeutic applications have been studied in a variety of conditions, including rheumatoid arthritis, colon cancer and depression; but no studies evaluated the effects of curcumin on periodontal disease in vivo. Methods Experimental periodontal disease was induced in rats by placing cotton ligatures around both lower first molars. Curcumin was given to the rats intragastrically daily in two doses (30 and 100 mg/Kg) during 15 days. Control animals received ligatures but only the corn oil vehicle by gavage and no treatment negative control animals were included. Bone resorption was assessed by microcomputer tomography and the inflammatory status was evaluated by stereometric analysis. RT-qPCR and ELISA were used to determine the expression of interleukin (IL)-6, tumor necrosis factor (TNF)-alpha and prostaglandin E2 (PGE2) synthase on the gingival tissues. Modulation of p38 mitogen-activated protein kinase (MAPK) and NK-kB activation was assessed by western blot. Results Bone resorption was effectively induced in the experimental period, but it was not affected by either dose of curcumin. Curcumin effectively inhibited cytokine gene expression at mRNA and protein levels and dose-dependently inhibited activation of NF-kB in the gingival tissues. p38 MAPK activation was not inhibited by curcumin. Curcumin-treated animals also presented a marked reduction on the inflammatory cell infiltrate and increased collagen content and fibroblastic cell numbers. Conclusions Curcumin did not prevent alveolar bone resorption, but its potent anti-inflammatory effect suggests it may have a therapeutic potential in periodontal diseases. PMID:21306385

  19. Design and synthesis of aloe-emodin derivatives as potent anti-tyrosinase, antibacterial and anti-inflammatory agents.

    PubMed

    Liu, Jinbing; Wu, Fengyan; Chen, Changhong

    2015-11-15

    Twenty aloe-emodin derivatives were designed, synthesized, and their biological activities were evaluated. Some compounds displayed potent tyrosinase inhibitory activities, especially, compounds with thiosemicarbazide moiety showed more potent inhibitory effects than the other compounds. The structure-activity relationships (SARs) were preliminarily discussed. The inhibition mechanism of selected compounds 1 and 13 were investigated. The results showed compound 1 was reversible inhibitor, however, compound 13 was irreversible. Kinetic analysis indicated that compound 1 was competitive tyrosinase inhibitor. Furthermore, the antibacterial activities and anti-inflammatory activities of some selected compounds were also screened. The results showed that compound 3 exhibited more potent antibacterial activity than the aloe-emodin, compounds 5 and 6 possessed more potent anti-inflammatory activities than the diacerein. PMID:26471089

  20. One-Step Synthesis of Chiral Oxindole-type Analogues with Potent Anti-inflammatory and Analgesic Activities

    PubMed Central

    Sun, Yulong; Liu, Jia; Jiang, Xianxing; Sun, Tao; Liu, Luping; Zhang, Xiaoyuan; Ding, Shaoli; Li, Jingyi; Zhuang, Yan; Wang, Yiqing; Wang, Rui

    2015-01-01

    Here we report a facile approach to synthesize highly optically active oxindole-type analogues with both high yield and enantioselectivity. This single-step synthesis strategy represents a substantial improvement upon existing methods that are often involved with multi-step routes and have suboptimal atomic economy. One such compound, namely Q4c, showed remarkable in vivo anti-inflammatory activity with efficiency approaching to that of a steroidal compound dexamethasone. Moreover, Q4c alleviated pain in mouse models with comparable activity to morphine. Further investigation suggested that nitric oxide signaling pathway is involved in the anti-inflammatory and analgesic activities of Q4c. Notably, this is the first time that chiral oxindole-type analogues have been identified to be both anti-inflammatory and analgesic, and our study also paved the way for future development of oxindoles as drug candidates in this field. PMID:26324065

  1. Synthesis of rhodamine-labelled dieckol: its unique intracellular localization and potent anti-inflammatory activity.

    PubMed

    Kwak, Jong Hwan; He, Yanxia; Yoon, Byungkwon; Koo, Seyoung; Yang, Zhigang; Kang, Eun Ju; Lee, Bong Ho; Han, Seung-Yun; Yoo, Yung Choon; Lee, Kyung Bok; Kim, Jong Seung

    2014-11-01

    Rhodamine-labelled dieckol (1) synthesized through a click reaction was found to be localized in the endoplasmic reticulum (ER) of RAW 264.7 cells. Anti-inflammatory activity of compound was considerably greater than that of dieckol itself. PMID:25034407

  2. A Short Peptide That Mimics the Binding Domain of TGF-?1 Presents Potent Anti-Inflammatory Activity

    PubMed Central

    Vaz, Emlia R.; Fujimura, Patrcia T.; Araujo, Galber R.; da Silva, Carlos A. T.; Silva, Rangel L.; Cunha, Thiago M.; Lopes-Ferreira, Mnica; Lima, Carla; Ferreira, Mrcio J.; Cunha-Junior, Jair P.; Taketomi, Ernesto A.; Goulart, Luiz R.; Ueira-Vieira, Carlos

    2015-01-01

    The transforming growth factor beta 1 (TGF-?1) is a pleiotropic cytokine with multiple roles in development, wound healing, and immune regulation. TGF-?1-mediated immune dysfunction may lead to pathological conditions, such as inflammation. Chronic inflammatory process is characterized by a continuous release of pro-inflammatory cytokines, and the inhibition or the blockage of these cytokines signaling pathways are considered a target treatment. In this context, despite the high numbers of TGF-?-targeted pathways, the inducible regulatory T cells (iTreg) to control inflammation seems to be a promising approach. Our aim was to develop novel peptides through phage display (PhD) technology that could mimic TGF-?1 function with higher potency. Specific mimetic peptides were obtained through a PhD subtraction strategy from whole cell binding using TGF-?1 recombinant as a competitor during elution step. We have selected a peptide that seems to play an important role on cellular differentiation and modulation of TNF-? and IL-10 cytokines. The synthetic pm26TGF-?1 peptide tested in PBMC significantly down-modulated TNF-? and up-regulated IL-10 responses, leading to regulatory T cells (Treg) phenotype differentiation. Furthermore, the synthetic peptide was able to decrease leukocytes rolling in BALB/C mice and neutrophils migration during inflammatory process in C57BL/6 mice. These data suggest that this peptide may be useful for the treatment of inflammatory diseases, especially because it displays potent anti-inflammatory properties and do not exhibit neutrophils chemoattraction. PMID:26312490

  3. Berteroin Present in Cruciferous Vegetables Exerts Potent Anti-Inflammatory Properties in Murine Macrophages and Mouse Skin

    PubMed Central

    Jung, Yoo Jin; Jung, Jae In; Cho, Han Jin; Choi, Myung-Sook; Sung, Mi-Kyung; Yu, Rina; Kang, Young-Hee; Park, Jung Han Yoon

    2014-01-01

    Berteroin (5-methylthiopentyl isothiocyanate) is a sulforaphane analog present in cruciferous vegetables, including Chinese cabbage, rucola salad leaves, and mustard oil. We examined whether berteroin exerts anti-inflammatory activities using lipopolysaccharide (LPS)-stimulated Raw 264.7 macrophages and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin inflammation models. Berteroin decreased LPS-induced release of inflammatory mediators and pro-inflammatory cytokines in Raw 264.7 macrophages. Berteroin inhibited LPS-induced degradation of inhibitor of ?B? (I?B?) and nuclear factor-?B p65 translocation to the nucleus and DNA binding activity. Furthermore, berteroin suppressed degradation of IL-1 receptor-associated kinase and phosphorylation of transforming growth factor ? activated kinase-1. Berteroin also inhibited LPS-induced phosphorylation of p38 MAPK, ERK1/2, and AKT. In the mouse ear, berteroin effectively suppressed TPA-induced edema formation and down-regulated iNOS and COX-2 expression as well as phosphorylation of AKT and ERK1/2. These results demonstrate that berteroin exhibits potent anti-inflammatory properties and suggest that berteroin can be developed as a skin anti-inflammatory agent. PMID:25393510

  4. Potent Anti-Inflammatory Activity of Carbohydrate Polymer with Oxide of Zinc

    PubMed Central

    Moreno-Eutimio, Mario Adan; Nieto-Velzquez, Nayeli Goreti; Espinosa-Monroy, Lorena; Torres-Ramos, Yessica; Montoya-Estrada, Araceli; Cueto, Jorge; Hicks, Juan Jose; Acosta-Altamirano, Gustavo

    2014-01-01

    Pebisut is a biological adhesive composed of naturally occurring carbohydrates combined with zinc oxide (ZnO) initially used as a coadjutant for healing of anastomoses. Likewise some works demonstrated that carbohydrate complexes exerts anti-inflammatory activity and it is widely known that ZnO modulate inflammation. However, the direct effects of Pebisut on isolated cells and acute inflammatory responses remained to be investigated. The present study evaluated anti-inflammatory effect of Pebisut using lipopolysaccharide (LPS) stimulated human mononuclear cells, chemotaxis, and cell infiltration in vivo in a murine model of peritonitis. Our data show that human cells treated with different dilutions of Pebisut release less IL-6, IL-1?, and IL-8 after LPS stimuli compared with the control treated cells. In addition, Pebisut lacked chemotactic activity in human mononuclear cells but was able to reduce chemotaxis towards CCL2, CCL5, and CXCL12 that are representative mononuclear cells chemoattractants. Finally, in a murine model of peritonitis, we found less number of macrophages (F4/80+) and T lymphocytes (CD3+) in peritoneal lavages from animals treated with Pebisut. Our results suggest that Pebisut has anti-inflammatory activity, which might have a beneficial effect during anastomoses healing or wounds associated with excessive inflammation. PMID:24757670

  5. Potent anti-inflammatory activity of pheophytin a derived from edible green alga, Enteromorpha prolifera (Sujiao-nori).

    PubMed

    Okai, Y; Higashi-Okai, K

    1997-06-01

    Recently, a chlorophyll-related compound, pheophytin a, has been identified from an edible green alga, Enteromorpha prolifera (Sujiao-nori in Japanese) as a potent suppressive substance against genotoxin-induced umu C gene expression in a tester bacteria (Okai and Higashi-Okai, 1997, J. Sci. Food Agricul. 71, 531-535). In the present study, anti-inflammatory effects of pheophytin a from Enteromorpha prolifera have been analyzed using in vitro and in vivo experiments. 1. Pheophytin a suppressed the production of superoxide anion (O2-) in mouse macrophages induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) using the cytochrome C reduction method. 2. Pheophytin a caused a suppressive effect against formyl-Met-Leu-Phe, (FMLP)-induced chemotaxis of human polymorphonuclear leukocytes (PMNs) in Boyden's chamber experiment. 3. Pheophytin a exhibited a significant suppression against TPA-induced inflammatory reaction such as edema formation in BALB/c mouse ear. These results suggest that pheophytin a from Enteromorpha prolifera has a potent anti-inflammatory activity. PMID:9467755

  6. New Coumarin Derivatives as Potent Selective COX-2 Inhibitors: Synthesis, Anti-Inflammatory, QSAR, and Molecular Modeling Studies.

    PubMed

    Dawood, Dina H; Batran, Rasha Z; Farghaly, Thoraya A; Khedr, Mohammed A; Abdulla, Mohamed M

    2015-12-01

    Two new series of coumarin derivatives incorporating thiazoline and thiazolidinone moieties were designed, synthesized, and investigated in vivo for their anti-inflammatory activities using the carrageenan-induced rat paw edema model and in vitro for their inhibitory activities against the human cyclooxygenase (COX)-1 and COX-2 isoforms. Most of the synthesized compounds demonstrated exceptionally high in vivo anti-inflammatory activity and displayed superior GI safety profiles (0-7% ulceration) as compared to indomethacin. All the bioactive compounds showed in vitro high affinity and selectivity toward the COX-2 isoenzyme, compared to the reference celecoxib with IC50 values ranging from 0.31 to 0.78??M. The ethyl thiosemicarbazone 2b, thiazoline derivatives 3a, 3b, 5b, 6a, and 7f, and the thiazolidinone compounds 8b and 9a showed the highest in vivo and in vitro anti-inflammatory activities with remarkable COX-2 selectivity. Quantitative structure-activity relationship study (QSAR) was done and resulted in a highly predictive power R(2) (0.908). A molecular docking study revealed a relationship between the docking affinity and the biological results. PMID:26462142

  7. Design, synthesis and biological evaluation of piperic acid triazolyl derivatives as potent anti-inflammatory agents.

    PubMed

    Ali, Yakub; Alam, Mohammad Sarwar; Hamid, Hinna; Husain, Asif; Bano, Sameena; Dhulap, Abhijeet; Kharbanda, Chetna; Nazreen, Syed; Haider, Saqlain

    2015-03-01

    Nineteen novel piperine based triazoles have been synthesized using click chemistry approach and were tested for invivo anti-inflammatory activity. The most active compounds were evaluated for invitro TNF-? expression. Compounds 3g and 3f were found to show significant invivo inhibition of inflammation, 80.40% and 76.71%, respectively after 5h in comparison to piperine (54.72%) and the standard drug indomethacin (77.02%) without causing any damage to the stomach. Compounds 3g and 3f suppressed TNF-? level by 73.73% and 70.64%, respectively and protein expression of COX-2, NF-?B and TNF-? more than indomethacin. Moreover, the compound 3g was found to show significant analgesic activity of 54.09% which was comparable with the indomethacin (57.43%). PMID:25596479

  8. Breast Cancer Stem Cell Potent Copper(II)-Non-Steroidal Anti-Inflammatory Drug Complexes.

    PubMed

    Boodram, Janine N; Mcgregor, Iain J; Bruno, Peter M; Cressey, Paul B; Hemann, Michael T; Suntharalingam, Kogularamanan

    2016-02-01

    The breast cancer stem cell (CSC) potency of a series of copper(II)-phenanthroline complexes containing the nonsteroidal anti-inflammatory drug (NSAID), indomethacin, is reported. The most effective copper(II) complex in this series, 4, selectivity kills breast CSC-enriched HMLER-shEcad cells over breast CSC-depleted HMLER cells. Furthermore, 4 reduces the formation, size, and viability of mammospheres, to a greater extent than salinomycin, a potassium ionophore known to selectively inhibit CSCs. Mechanistic studies revealed that the CSC-specificity observed for 4 arises from its ability to generate intracellular reactive oxygen species (ROS) and inhibit cyclooxygenase-2 (COX-2), an enzyme that is overexpressed in breast CSCs. The former induces DNA damage, activates JNK and p38 pathways, and leads to apoptosis. PMID:26806362

  9. Arzanol, a Potent mPGES-1 Inhibitor: Novel Anti-Inflammatory Agent

    PubMed Central

    Kothavade, Pankaj S.; Nagmoti, Dnyaneshwar M.; Bulani, Vipin D.; Juvekar, Archana R.

    2013-01-01

    Arzanol is a novel phloroglucinol ?-pyrone, isolated from a Mediterranean plant Helichrysum italicum (Roth) Don ssp. microphyllum which belongs to the family Asteraceae. Arzanol has been reported to possess a variety of pharmacological activities. However, anti-inflammatory, anti-HIV, and antioxidant activities have been studied in some detail. Arzanol has been reported to inhibit inflammatory transcription factor NF?B activation, HIV replication in T cells, releases of IL-1?, IL-6, IL-8, and TNF-?, and biosynthesis of PGE2 by potentially inhibiting mPGES-1 enzyme. Diversity of mechanisms of actions of arzanol may be useful in treatment of disease involving these inflammatory mediators such as autoimmune diseases and cancer. This review presents comprehensive information on the chemistry, structure-activity relationship, and pharmacological activities of arzanol. In addition this review discusses recent developments and the scope for future research in these aspects. PMID:24198734

  10. Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders

    PubMed Central

    Johnson, Tyler A.; Sohn, Johann; Inman, Wayne D.; Bjeldanes, Leonard F.; Rayburn, Keith

    2012-01-01

    Extracts of four plant portions (roots, stems, leaves and flowers) of Urtica dioica, (the stinging nettle) were prepared using accelerated solvent extraction (ASE) involving water, hexanes, methanol and dichloromethane. The extracts were evaluated for their anti-inflammatory and cytotoxic activity in an NF-?B luciferase and MTT assay using macrophage immune (RAW264.7) cells. A standardized commercial ethanol extract of nettle leaves were also evaluated. The methanolic extract of the flowering portions displayed significant anti-inflammatory activity on par with the standard anti-inflammatory agent celastrol (1) but was moderately cytotoxic. Alternatively, the polar extracts (water, methanol, ethanol) of the roots, stems and leaves plant portions displayed moderate to weak anti-inflammatory activity, while the methanol and especially the water soluble extracts exhibited noticeable cytotoxicity. In contrast, the lipophilic dichloromethane extracts of the roots, stems and leaves exhibited potent anti-inflammatory effects ? 1 with minimal cytotoxicity to RAW264.7 cells. Collectively these results suggest that using lipophilic extracts of the roots, stems or leaves of stinging nettle may be more effective then traditional tinctures (water, methanol, ethanol) to undergo clinical evaluations for the treatment of inflammatory disorders including arthritis. A chemical investigation into the lipophillic extracts of stinging nettle to identify the bioactive compound(s) responsible for their observed anti-inflammatory activity is further warranted. PMID:23092723

  11. Anti-allergic and anti-inflammatory properties of a potent histamine H1 receptor antagonist, desloratadine citrate disodium injection, and its anti-inflammatory mechanism on EA.hy926 endothelial cells.

    PubMed

    Jie, Qiong; Kodithuwakku, Nandani Darshika; Yuan, Xin; He, Guangwei; Chen, Meiling; Xu, Shuhong; Wu, Yulin

    2015-05-01

    The present study, demonstrates that, desloratadine citrate disodium injection (DLC) possesses antihistaminic, anti-allergic and anti-inflammatory properties and elucidates its molecular mechanisms of anti-inflammatory properties. In vitro antihistamine activity of DLC was determined in guinea pig isolated tissues. In vivo antihistamine effects were evaluated after following intravenous administration of DLC in mice with histamine- induced paw edema and in rats with increased capillary permeability. Anti-allergic effects were assessed through passive cutaneous anaphylactic (PCA) reactions in sensitized rodents and ovalbumin-induced allergic rhinitis in rats. Anti-inflammatory properties and molecular mechanisms of DLC were determined on histamine- and lipopolysaccharide (LPS)-induced EA.hy926 endothelial cells. DLC exhibited significant and reversible inhibition of histamine-induced contractions of isolated guinea pig ileum with pA2 value of 8.88. Histamine-induced paw edema and increased capillary permeability were notably inhibited by DLC intravenous administration. In the model of PCA reactions, DLC showed significant activity in a dose-dependent nd potently inhibited both the early-phase and late-phase allergic reaction of ovalbumin-induced allergic rhinitis in rats. DLC alleviated the rhinitis symptoms and inhibited inflammatory cell infiltration, IL-4 and protein leakage in nasal lavage fluid (NLF). In EA.hy926 cells, DLC significantly inhibited the histamine- and LPS- induced IL-6 and IL-8 production and P-selectin and intercellular cell adhesion molecule-1 (ICAM-1) expression. Moreover, DLC reduced translocation of nuclear factor-kappaB (NF-?B) to the nucleus in activated EA.hy926 cells. These results provide evidence that DLC possesses potent antihistaminic, anti-allergic and, anti-inflammatory properties via suppressing IL-6, IL-8, P-selectin and ICAM-1 expression. PMID:25704613

  12. Identification and Characterization of the First Cathelicidin from Sea Snakes with Potent Antimicrobial and Anti-inflammatory Activity and Special Mechanism.

    PubMed

    Wei, Lin; Gao, Jiuxiang; Zhang, Shumin; Wu, Sijin; Xie, Zeping; Ling, Guiying; Kuang, Yi-Qun; Yang, Yongliang; Yu, Haining; Wang, Yipeng

    2015-07-01

    Cathelicidins are a family of gene-encoded peptide effectors of innate immunity found exclusively in vertebrates. They play pivotal roles in host immune defense against microbial invasions. Dozens of cathelicidins have been identified from several vertebrate species. However, no cathelicidin from marine reptiles has been characterized previously. Here we report the identification and characterization of a novel cathelicidin (Hc-CATH) from the sea snake Hydrophis cyanocinctus. Hc-CATH is composed of 30 amino acids, and the sequence is KFFKRLLKSVRRAVKKFRKKPRLIGLSTLL. Circular dichroism spectroscopy and structure modeling analysis indicated that Hc-CATH mainly assumes an amphipathic α-helical conformation in bacterial membrane-mimetic solutions. It possesses potent broad-spectrum and rapid antimicrobial activity. Meanwhile, it is highly stable and shows low cytotoxicity toward mammalian cells. The microbial killing activity of Hc-CATH is executed through the disruption of cell membrane and lysis of bacterial cells. In addition, Hc-CATH exhibited potent anti-inflammatory activity by inhibiting the LPS-induced production of nitric oxide (NO) and pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. Hc-CATH directly binds with LPS to neutralize its toxicity, and it also binds to Toll-like receptor 4 (TLR4/MD2 complex), which therefore inhibits the binding of LPS to TLR4/MD2 complex and the subsequent activation of LPS-induced inflammatory response pathways. Taken together, our study demonstrates that Hc-CATH, the first cathelicidin from sea snake discovered to have both antimicrobial and anti-inflammatory activity, is a potent candidate for the development of peptide antibiotics. PMID:26013823

  13. Synthesis and pharmacological evaluation of novel limonin derivatives as anti-inflammatory and analgesic agents with high water solubility.

    PubMed

    Yang, Yun; Wang, Xinhui; Zhu, Qihua; Gong, Guoqing; Luo, Danmeng; Jiang, Aidou; Yang, Liyan; Xu, Yungen

    2014-04-01

    A novel series of water-soluble derivatives of limonin were synthesized by introducing various tertiary amines onto the C (7)-position of limonin. Ten target compounds were characterized and screened for their anti-inflammatory and analgesic activity in vivo. Compound 3c exhibited the strongest analgesic and anti-inflammatory activity among the limonin and its derivatives tested; its analgesic activity is more potent than that of aspirin and its anti-inflammatory activity is stronger than that of naproxen. PMID:24569111

  14. Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders.

    PubMed

    Johnson, Tyler A; Sohn, Johann; Inman, Wayne D; Bjeldanes, Leonard F; Rayburn, Keith

    2013-01-15

    Extracts of four plant portions (roots, stems, leaves and flowers) of Urtica dioica (the stinging nettle) were prepared using accelerated solvent extraction (ASE) involving water, hexanes, methanol and dichloromethane. The extracts were evaluated for their anti-inflammatory and cytotoxic activities in an NF-?B luciferase and MTT assay using macrophage immune (RAW264.7) cells. A standardized commercial ethanol extract of nettle leaves was also evaluated. The methanolic extract of the flowering portions displayed significant anti-inflammatory activity on par with a standard compound celastrol (1) but were moderately cytotoxic. Alternatively, the polar extracts (water, methanol, ethanol) of the roots, stems and leaves displayed moderate to weak anti-inflammatory activity, while the methanol and especially the water soluble extracts exhibited noticeable cytotoxicity. In contrast, the lipophilic dichloromethane extracts of the roots, stems and leaves exhibited potent anti-inflammatory effects greater than or equal to 1 with minimal cytotoxicity to RAW264.7 cells. Collectively these results suggest that using lipophilic extracts of stinging nettle may be more effective than traditional tinctures (water, methanol, ethanol) in clinical evaluations for the treatment of inflammatory disorders especially arthritis. A chemical investigation into the lipophilic extracts of stinging nettle to identify the bioactive compound(s) responsible for their observed anti-inflammatory activity is further warranted. PMID:23092723

  15. Highly oxygenated triterpenoids from the roots of Schisandra chinensis and their anti-inflammatory activities.

    PubMed

    Song, Qiu-Yan; Gao, Kun; Nan, Zhi-Biao

    2016-02-01

    A new highly oxygenated triterpenoid, schinchinenlactone D (1), and three known compounds (2-4) were isolated from the roots of Schisandra chinensis. Their structures were determined by combining the spectroscopic analysis with the theoretical computations. The anti-inflammatory activities of compounds 1-4 were evaluated, and compound 3 exhibits the most significant activity in the inhibition of NO production with an IC50 value of 10.6?M. PMID:26313467

  16. Potent anti-inflammatory effects of the narrow spectrum kinase inhibitor RV1088 on rheumatoid arthritis synovial membrane cells

    PubMed Central

    To, Wing S; Aungier, Susan R; Cartwright, Alison J; Ito, Kazuhiro; Midwood, Kim S

    2015-01-01

    Background and Purpose To investigate whether a narrow spectrum kinase inhibitor RV1088, which simultaneously targets specific MAPKs, Src and spleen tyrosine kinase (Syk), is more effective at inhibiting inflammatory signalling in rheumatoid arthritis (RA) than single kinase inhibitors (SKIs). Experimental Approach elisas were used to determine the efficacy of RV1088, clinically relevant SKIs and the pharmaceutical Humira on pro-inflammatory cytokine production by activated RA synovial fibroblasts, primary human monocytes and macrophages, as well as spontaneous cytokine synthesis by synovial membrane cells from RA patients. In human macrophages, RNAi knockdown of individual kinases was used to reveal the effect of inhibition of kinase expression on cytokine synthesis. Key Results RV1088 reduced TNF-?, IL-6 and IL-8 production in all individual activated cell types with low, nM, IC50s. SKIs, and combinations of SKIs, were significantly less effective than RV1088. RNAi of specific kinases in macrophages also caused only modest inhibition of pro-inflammatory cytokine production. RV1088 was also significantly more effective at inhibiting IL-6 and IL-8 production by monocytes and RA synovial fibroblasts compared with Humira. Finally, RV1088 was the only inhibitor that was effective in reducing TNF-?, IL-6 and IL-8 synthesis in RA synovial membrane cells with low nM IC50s. Conclusions and Implications This study demonstrates potent anti-inflammatory effect of RV1088, highlighting that distinct signalling pathways drive TNF-?, IL-6 and IL-8 production in the different cell types found in RA joints. As such, targeting numerous signalling pathways simultaneously using RV1088 could offer a more powerful method of reducing inflammation in RA than targeting individual kinases. PMID:25891413

  17. Potent Anti-Inflammatory Activity of Ursolic Acid, a Triterpenoid Antioxidant, Is Mediated through Suppression of NF-κB, AP-1 and NF-AT

    PubMed Central

    Checker, Rahul; Sandur, Santosh K.; Sharma, Deepak; Patwardhan, Raghavendra S.; Jayakumar, S.; Kohli, Vineet; Sethi, Gautam; Aggarwal, Bharat B.; Sainis, Krishna B.

    2012-01-01

    Background Ursolic acid (UA), a pentacyclic triterpenoid carboxylic acid, is the major component of many plants including apples, basil, cranberries, peppermint, rosemary, oregano and prunes and has been reported to possess antioxidant and anti-tumor properties. These properties of UA have been attributed to its ability to suppress NF-κB (nuclear factor kappa B) activation. Since NF-κB, in co-ordination with NF-AT (nuclear factor of activated T cells) and AP-1(activator protein-1), is known to regulate inflammatory genes, we hypothesized that UA might exhibit potent anti-inflammatory effects. Methodology/Principal Findings The anti-inflammatory effects of UA were assessed in activated T cells, B cells and macrophages. Effects of UA on ERK, JNK, NF-κB, AP-1 and NF-AT were studied to elucidate its mechanism of action. In vivo efficacy of UA was studied using mouse model of graft-versus-host disease. UA inhibited activation, proliferation and cytokine secretion in T cells, B cells and macrophages. UA inhibited mitogen-induced up-regulation of activation markers and co-stimulatory molecules in T and B cells. It inhibited mitogen-induced phosphorylation of ERK and JNK and suppressed the activation of immunoregulatory transcription factors NF-κB, NF-AT and AP-1 in lymphocytes. Treatment of cells with UA prior to allogenic transplantation significantly delayed induction of acute graft-versus-host disease in mice and also significantly reduced the serum levels of pro-inflammatory cytokines IL-6 and IFN-γ. UA treatment inhibited T cell activation even when added post-mitogenic stimulation demonstrating its therapeutic utility as an anti-inflammatory agent. Conclusions/Significance The present study describes the detailed mechanism of anti-inflammatory activity of UA. Further, UA may find application in the treatment of inflammatory disorders. PMID:22363615

  18. Identification of Magnolia officinalis L. bark extract as the most potent anti-inflammatory of four plant extracts.

    PubMed

    Walker, Joel M; Maitra, Amarnath; Walker, Jessica; Ehrnhoefer-Ressler, Miriam M; Inui, Taichi; Somoza, Veronika

    2013-01-01

    This study was designed to compare the anti-inflammatory potential of a Magnolia officinalis L. bark extract solely or in combination with extracts prepared from either Polygonum aviculare L., Sambucus nigra L., or Isodon japonicus L. in bacterial lipopolysaccharide (LPS) stimulated human gingival fibroblasts (HGF-1) and human U-937 monocytes, as cell models of periodontal disease. HGF-1 and U-937 cells were incubated with LPS from either Porphyromonas gingivalis or Escherichia coli together with the four plant extracts alone or in combination. Secretion of anti-inflammatory cytokines from HGF-1 and U-937 cells was measured by means of a multiplexed bead assay system. Magnolia officinalis L. bark extract, at concentrations of 1 ?g/mL and 10 ?g/mL, reduced interleukin 6 (IL-6) and interleukin-8 (IL-8) secretion from HGF-1 cells to 72.5 28.6% and reduced matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) secretion from U-937 cells to 8.87 7.97% compared to LPS-treated cells (100%). The other three extracts also reduced secretion of these inflammatory markers but were not as effective. Combination of 9 ?g/mL Magnolia officinalis L. extract with 1 ?g/mL of each of the other extracts maintained the anti-inflammatory effect of Magnolia officinalis L. extract. Combination of 5 ?g/mL Magnolia officinalis L. extract with 5 ?g/mL Isodon japonicus L. extract also maintained the anti-inflammatory potential of the Magnolia officinalis L. extract, whereas increasing concentrations of any of the other plant extracts in the combination experiments reduced the Magnolia officinalis L. extract efficacy in U-937 cells. PMID:23711140

  19. Identification of plumericin as a potent new inhibitor of the NF-?B pathway with anti-inflammatory activity in vitro and in vivo

    PubMed Central

    Fakhrudin, N; Waltenberger, B; Cabaravdic, M; Atanasov, A G; Malainer, C; Schachner, D; Heiss, E H; Liu, R; Noha, S M; Grzywacz, A M; Mihaly-Bison, J; Awad, E M; Schuster, D; Breuss, J M; Rollinger, J M; Bochkov, V; Stuppner, H; Dirsch, V M

    2014-01-01

    BACKGROUND AND PURPOSE The transcription factor NF-?B orchestrates many pro-inflammatory signals and its inhibition is considered a promising strategy to combat inflammation. Here we report the characterization of the natural product plumericin as a highly potent inhibitor of the NF-?B pathway with a novel chemical scaffold, which was isolated via a bioactivity-guided approach, from extracts of Himatanthus sucuuba, an Amazonian plant traditionally used to treat inflammation-related disorders. EXPERIMENTAL APPROACH A NF-?B luciferase reporter gene assay was used to identify NF-?B pathway inhibitors from H.?sucuuba extracts. Monitoring of TNF-?-induced expression of the adhesion molecules VCAM-1, ICAM-1 and E-selectin by flow cytometry was used to confirm NF-?B inhibition in endothelial cells, and thioglycollate-induced peritonitis in mice to confirm effects in vivo. Western blotting and transfection experiments were used to investigate the mechanism of action of plumericin. KEY RESULTS Plumericin inhibited NF-?B-mediated transactivation of a luciferase reporter gene (IC50 1??M), abolished TNF-?-induced expression of the adhesion molecules VCAM-1, ICAM-1 and E-selectin in endothelial cells and suppressed thioglycollate-induced peritonitis in mice. Plumericin exerted its NF-?B pathway inhibitory effect by blocking I?B phosphorylation and degradation. Plumericin also inhibited NF-?B activation induced by transfection with the constitutively active catalytic subunit of the I?B kinase (IKK-?), suggesting IKK involvement in the inhibitory action of this natural product. CONCLUSION AND IMPLICATIONS Plumericin is a potent inhibitor of NF-?B pathways with a new chemical scaffold. It could be further explored as a novel anti-inflammatory lead compound. PMID:24329519

  20. Synthesis and biological evaluation of 2-aroylbenzofurans, rugchalcones A, B and their derivatives as potent anti-inflammatory agents.

    PubMed

    Seo, Young Hwa; Damodar, Kongara; Kim, Jin-Kyung; Jun, Jong-Gab

    2016-03-15

    An efficient synthesis of 2-aroylbenzofurans, rugchalcones A, B and their derivatives was accomplished in excellent yields by the Rap-Stoermer reaction between substituted salicylaldehydes and phenacyl bromides. Later their anti-inflammatory effects were evaluated in lipopolysaccharide (LPS)-induced RAW-264.7 macrophages. The compounds were exhibited exceptional potency against inflammatory mediated NO production with no cytotoxicity at 10?M concentration and IC50 values are found in the range from 0.75 to 13.27?M. Among the 2-aroylbenzofurans prepared in this study, compounds 4 (99.6%; IC50=0.57), rugchalcone B (2) (99.3%; IC50=4.13), 7 (96.8%; IC50=1.90) and 8 (74.3%; IC50=0.99) were showed the maximum inhibitory activity. This study suggests that compounds 2, 4, 7 and 8 which are having 4-hydroxyphenyl group and/or hydroxy (-OH) group at 5- and/or 6-position of benzofuran motif could be considered as a promising scaffolds for the further development of iNOS inhibitors for potential anti-inflammatory applications. PMID:26898337

  1. Antioxidant and anti-inflammatory effects of Marrubium alysson extracts in high cholesterol-fed rabbits

    PubMed Central

    Essawy, Soha S.; Abo-elmatty, Dina M.; Ghazy, Nabila M.; Badr, Jihan M.; Sterner, Olov

    2013-01-01

    The antioxidant and anti-inflammatory effects of hexane (HEXA), chloroform (CHLORO), ethyl acetate (EA) and total alcoholic (T. ALCOH) extracts of Marrubium alysson in hypercholesterolemic-fed rabbits were evaluated. Hypercholesterolemia was induced in male rabbits by high cholesterol diet (HCD) (350mg/kg) for 8weeks. Hypercholesterolemic rabbits were allocated into groups, treated with simvastatin (SIM 5mg/kg), different extracts of M. alysson at two doses of 250, 500mg/kg. A normal control group and an HCD control one were used for comparison. Lipid profile, as well as oxidized low density lipoprotein-cholesterol (ox-LDL-C), myeloperoxidase activity (MPO) and superoxide anion production (O2?), C-reactive protein (CRP) and monocyte chemoattractant protein-1 (MCP-1) were also evaluated. In addition, histological examination of ascending aorta was performed. We found dyslipidemia associated with significant increases in ox-LDL-C 123.59.8nmol MDA/mg non-HDL, MPO activity 0.080.05U/100mg tissue and O2? production 3.50.3nmol cytochrome C reduced/min/g tissueנ10?4 in hypercholerterolemic rabbits. In addition, there was a significant increase in CRP 6.60.49?mol/L and MCP-1 190.96.4pg/ml and its mRNA expression in HCD. Intima appeared thick with thick plaques surrounding the intima and luminal narrowing. SIM, EA and HEXA extracts of M. alysson had lipid lowering effect, decrease in ox-LDL-C, MPO, O2?, CRP and MCP-1 mRNA expression with improvement of the pathological picture. M. alysson enhanced the stability of plaque, had lipid lowering, anti-inflammatory and antioxidant activities. PMID:25473336

  2. Ethanol Extract of Peanut Sprout Exhibits a Potent Anti-Inflammatory Activity in Both an Oxazolone-Induced Contact Dermatitis Mouse Model and Compound 48/80-Treated HaCaT Cells

    PubMed Central

    Choi, Da-In; Choi, Jee-Young; Kim, Young Jee; Lee, Jee-Bum; Kim, Sun-Ouck; Shin, Hyong-Taek

    2015-01-01

    Background We developed an ethanol extract of peanut sprouts (EPS), a peanut sprout-derived natural product, which contains a high level of trans-resveratrol (176.75 µg/ml) and was shown to have potent antioxidant activity. Objective We evaluated the potential anti-inflammatory activity of EPS by measuring its antioxidant potential in skin. Methods The anti-inflammatory activity of EPS was tested using two models of skin inflammation: oxazolone (OX)-induced contact dermatitis in mice and compound 48/80-treated HaCaT cells. As biomarkers of skin inflammation, cyclooxygenase-2 (COX-2) and nerve growth factor (NGF) levels were measured. Results OX-induced contact dermatitis was suppressed markedly in mice that were treated with an ointment containing 5% EPS as evidenced by a decrease in the extent of scaling and thickening (p<0.05) and supported by a histological study. COX-2 (messenger RNA [mRNA] and protein) and NGF (mRNA) levels, which were upregulated in the skin of OX-treated mice, were suppressed markedly in the skin of OX+EPS-treated mice. Consistent with this, compound 48/80-induced expression of COX-2 (mRNA and protein) and NGF (mRNA) in HaCaT cells were suppressed by EPS treatment in a dose-dependent manner. As an inhibitor of NF-κB, IκB protein levels were dose-dependently upregulated by EPS. Fluorescence-activated cell sorting (FACS) analysis revealed that EPS scavenged compound 48/80-induced reactive oxygen species (ROS) in HaCaT cells. Conclusion EPS exerts a potent anti-inflammatory activity via its anti-oxidant activity in both mouse skin and compound 48/80-treated HaCaT cells in vitro. Compound 48/80-treated HaCaT cells are a useful new in vitro model of skin inflammation. PMID:25834352

  3. Synthesis, molecular properties, toxicity and biological evaluation of some new substituted imidazolidine derivatives in search of potent anti-inflammatory agents.

    PubMed

    Husain, Asif; Ahmad, Aftab; Khan, Shah Alam; Asif, Mohd; Bhutani, Rubina; Al-Abbasi, Fahad A

    2016-01-01

    The aim of this study was to design and synthesize pharmaceutical agents containing imidazolidine heterocyclic ring in the hope of developing potent, safe and orally active anti-inflammatory agents. A number of substituted-imidazolidine derivatives (3a-k) were synthesized starting from ethylene diamine and aromatic aldehydes. The imidazolidine derivatives (3a-k) were investigated for their anticipated anti-inflammatory, and analgesic activity in Wistar albino rats and Swiss albino mice, respectively. Bioactivity score, molecular and pharmacokinetic properties of the imidazolidine derivatives were calculated by online computer software programs viz. Molinspiration and Osiris property explorer. The results of biological testing indicated that among the synthesized compounds only three imidazolidine derivatives namely 4-[1,3-Bis(2,6-dichlorobenzyl)-2-imidazolidinyl]phenyl-diethylamine (3g), 4-[1,3-Bis(3-hydroxy-4-methoxybenzyl)-2-imidazolidinyl]phenyl-diethylamine (3i) and 4-(1,3-Bis(4-methoxybenzyl)-4-methylimidazolidin-2-yl)-phenyl-diethylamine (3j) possess promising anti-inflammatory and analgesic actions. Additionally these derivatives displayed superior GI safety profile (low severity index) with respect to the positive control, Indomethacin. All synthesized compounds showed promising bioactivity score for drug targets by Molinspiration software. Almost all the compounds were predicted to have very low toxicity risk by Osiris online software. Compound number (3i) emerged as a potential candidate for further research as it obeyed Lipinski's rule of five for drug likeness, exhibited promising biological activity in-vivo and showed no risk of toxicity in computer aided screening. PMID:26903774

  4. Synthesis, molecular properties, toxicity and biological evaluation of some new substituted imidazolidine derivatives in search of potent anti-inflammatory agents

    PubMed Central

    Husain, Asif; Ahmad, Aftab; Khan, Shah Alam; Asif, Mohd; Bhutani, Rubina; Al-Abbasi, Fahad A.

    2015-01-01

    The aim of this study was to design and synthesize pharmaceutical agents containing imidazolidine heterocyclic ring in the hope of developing potent, safe and orally active anti-inflammatory agents. A number of substituted-imidazolidine derivatives (3a–k) were synthesized starting from ethylene diamine and aromatic aldehydes. The imidazolidine derivatives (3a–k) were investigated for their anticipated anti-inflammatory, and analgesic activity in Wistar albino rats and Swiss albino mice, respectively. Bioactivity score, molecular and pharmacokinetic properties of the imidazolidine derivatives were calculated by online computer software programs viz. Molinspiration and Osiris property explorer. The results of biological testing indicated that among the synthesized compounds only three imidazolidine derivatives namely 4-[1,3-Bis(2,6-dichlorobenzyl)-2-imidazolidinyl]phenyl-diethylamine (3g), 4-[1,3-Bis(3-hydroxy-4-methoxybenzyl)-2-imidazolidinyl]phenyl-diethylamine (3i) and 4-(1,3-Bis(4-methoxybenzyl)-4-methylimidazolidin-2-yl)-phenyl-diethylamine (3j) possess promising anti-inflammatory and analgesic actions. Additionally these derivatives displayed superior GI safety profile (low severity index) with respect to the positive control, Indomethacin. All synthesized compounds showed promising bioactivity score for drug targets by Molinspiration software. Almost all the compounds were predicted to have very low toxicity risk by Osiris online software. Compound number (3i) emerged as a potential candidate for further research as it obeyed Lipinski’s rule of five for drug likeness, exhibited promising biological activity in-vivo and showed no risk of toxicity in computer aided screening. PMID:26903774

  5. Pseudoephedrine/ephedrine shows potent anti-inflammatory activity against TNF-?-mediated acute liver failure induced by lipopolysaccharide/D-galactosamine.

    PubMed

    Wu, Zhongping; Kong, Xiangliang; Zhang, Tong; Ye, Jin; Fang, Zhaoqin; Yang, Xuejun

    2014-02-01

    The anti-inflammatory effects of pseudoephedrine/ephedrine were investigated using the experimental model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (D-GalN)-sensitised male rats in order to elucidate effects other than sympathomimetic effects. Rats were intraperitoneally injected with D-GalN (400 mg/kg) and LPS (40 ?g/kg) to induce acute liver failure. The treatment groups were then intraperitoneally administered pseudoephedrine/ephedrine at 0 h and 4 h after induction and the activation induced by treatment with pseudoephedrine and/or LPS on the primary Kupffer cells (KCs) was monitored. Compared with controls induced by GalN/LPS alone, pseudoephedrine dramatically reduced the infiltration of inflammatory cells and bile ductular hyperplasia and hepatic necrosis observed in liver sections. It inhibited both hepatocellular apoptosis and the expression of monocyte chemotactic protein-1. It lowered the production of tumour necrosis factor-? (TNF-?) in the beginning of acute liver failure induced by D-GalN/LPS. Correspondingly, levels of alanine aminotransferase (ALT), total bilirubin (TBIL) and malondialdehyde were attenuated. Ephedrine demonstrated all these identical protective effects as well. In addition, pseudoephedrine significantly suppressed the production of p-I?B-?, reducing the degradation of sequestered nuclear factor kappa B (NF-?B) in the cytoplasm, and inhibited the translocation of NF-?B/p65 to the nucleus, the transcription of TNF-? mRNA and the production of TNF-? in primary KCs. These results suggest that pseudoephedrine and ephedrine have a potent anti-inflammatory activity against D-GalN/LPS-induced acute liver failure in rats, and this comprehensive anti-inflammatory effect may result from the inhibition of TNF-? production. PMID:24365491

  6. Crystal Structures of mPGES-1 Inhibitor Complexes Form a Basis for the Rational Design of Potent Analgesic and Anti-Inflammatory Therapeutics.

    PubMed

    Luz, John Gately; Antonysamy, Stephen; Kuklish, Steven L; Condon, Bradley; Lee, Matthew R; Allison, Dagart; Yu, Xiao-Peng; Chandrasekhar, Srinivasan; Backer, Ryan; Zhang, Aiping; Russell, Marijane; Chang, Shawn S; Harvey, Anita; Sloan, Ashley V; Fisher, Matthew J

    2015-06-11

    Microsomal prostaglandin E synthase 1 (mPGES-1) is an ?-helical homotrimeric integral membrane inducible enzyme that catalyzes the formation of prostaglandin E2 (PGE2) from prostaglandin H2 (PGH2). Inhibition of mPGES-1 has been proposed as a therapeutic strategy for the treatment of pain, inflammation, and some cancers. Interest in mPGES-1 inhibition can, in part, be attributed to the potential circumvention of cardiovascular risks associated with anti-inflammatory cyclooxygenase 2 inhibitors (coxibs) by targeting the prostaglandin pathway downstream of PGH2 synthesis and avoiding suppression of antithrombotic prostacyclin production. We determined the crystal structure of mPGES-1 bound to four potent inhibitors in order to understand their structure-activity relationships and provide a framework for the rational design of improved molecules. In addition, we developed a light-scattering-based thermal stability assay to identify molecules for crystallographic studies. PMID:25961169

  7. Investigation on Toxicity and Teratogenicity in Rats of a Retinoid-Polyamine Conjugate with Potent Anti-Inflammatory Properties.

    PubMed

    Petridis, Theodoros; Giannakopoulou, Dimitra; Stamatopoulou, Vassiliki; Grafanaki, Katerina; Kostopoulos, Christos G; Papadaki, Helen; Malavaki, Christina J; Karamanos, Nikos K; Douroumi, Stathianna; Papachristou, Dionysios; Magoulas, George E; Papaioannou, Dionissios; Drainas, Denis

    2016-02-01

    Previous studies have shown that N(1) ,N(12) -bis(all-trans-retinoyl)spermine (RASP), a retinoid analog, inhibits RNase P activity and angiogenesis in the chicken embryo chorioallantoic membrane, demonstrates anti-tumor activity on prostate cancer cells, and acts as anti-inflammatory agent, being more effective and less toxic than all-trans retinoic acid. In an attempt to further characterize the biological profile of RASP, we tested its effects on organ toxicity and teratogenicity by daily oral gavage of RASP at a level of 50 mg/Kg of body weight in two generations of rats. We found that this compound does not induce changes to the body growth, the appearance of physical features, and the animal's reflexes. Additionally, no substantial histopathological lesions were found in brain, heart, lung, thymus, liver, thyroid gland, adrenal gland, pituitary gland, kidneys, spleen, skin, femora, prostate, testis, epididymis, vagina, uterus, and ovaries of RASP-treated animals. These results suggest RASP, as a promising lead compound for the treatment of several dermatological disorders and certain cancer types, has apparently minimal toxic side-effects as revealed in this two-generation reproduction study in rats. PMID:26762583

  8. Anti-Inflammatory Properties of Low and High Doxycycline Doses: An In Vitro Study

    PubMed Central

    Di Caprio, Roberta; Di Costanzo, Luisa; Monfrecola, Giuseppe

    2015-01-01

    Doxycycline is used to treat infective diseases because of its broadspectrum efficacy. High dose administration (100 or 200 mg/day) is often responsible for development of bacterial resistances and endogenous flora alterations, whereas low doses (20–40 mg/day) do not alter bacteria susceptibility to antibiotics and exert anti-inflammatory activities. In this study, we wanted to assess the efficacy of both low and high doxycycline doses in modulating IL-8, TNF-α, and IL-6 gene expression in HaCaT cells stimulated with LPS. Three experimental settings were used, differing in the timing of doxycycline treatment in respect to the insult induced by LPS: pretreatment, concomitant, and posttreatment. Low doses were more effective than high doses in modulating gene expression of LPS-induced proinflammatory cytokines (IL-8, TNF-α, and IL-6), when added before (pretreatment) or after (posttreatment) LPS stimulation. This effect was not appreciated when LPS and doxycycline were simultaneously added to cell cultures: in this case high doses were more effective. In conclusion, our in vitro study suggests that low doxycycline doses could be safely used in chronic or acute skin diseases in which the inflammatory process, either constantly in progress or periodically recurring, has to be prevented or controlled. PMID:25977597

  9. Polysaccharide Constituents of Three Types of Sea Urchin Shells and Their Anti-Inflammatory Activities.

    PubMed

    Jiao, Heng; Shang, Xiaohui; Dong, Qi; Wang, Shuang; Liu, Xiaoyu; Zheng, Heng; Lu, Xiaoling

    2015-09-01

    As a source of potent anti-inflammatory traditional medicines, the quantitative chromatographic fingerprints of sea urchin shell polysaccharides were well established via pre-column derivatization high performance liquid chromatography (HPLC) analysis. Based on the quantitative results, the content of fucose and glucose could be used as preliminary distinguishing indicators among three sea urchin shell species. Besides, the anti-inflammatory activities of the polysaccharides from sea urchin shells and their gonads were also determined. The gonad polysaccharide of Anthocidaris crassispina showed the most potent anti-inflammatory activity among all samples tested. PMID:26389925

  10. Polysaccharide Constituents of Three Types of Sea Urchin Shells and Their Anti-Inflammatory Activities

    PubMed Central

    Jiao, Heng; Shang, Xiaohui; Dong, Qi; Wang, Shuang; Liu, Xiaoyu; Zheng, Heng; Lu, Xiaoling

    2015-01-01

    As a source of potent anti-inflammatory traditional medicines, the quantitative chromatographic fingerprints of sea urchin shell polysaccharides were well established via pre-column derivatization high performance liquid chromatography (HPLC) analysis. Based on the quantitative results, the content of fucose and glucose could be used as preliminary distinguishing indicators among three sea urchin shell species. Besides, the anti-inflammatory activities of the polysaccharides from sea urchin shells and their gonads were also determined. The gonad polysaccharide of Anthocidaris crassispina showed the most potent anti-inflammatory activity among all samples tested. PMID:26389925

  11. Anti-inflammatory effects of low-intensity extremely high-frequency electromagnetic radiation: frequency and power dependence.

    PubMed

    Gapeyev, A B; Mikhailik, E N; Chemeris, N K

    2008-04-01

    Using a model of acute zymosan-induced footpad edema in NMRI mice, the frequency and power dependence of anti-inflammatory effect of low-intensity extremely high-frequency electromagnetic radiation (EHF EMR) was found. Single whole-body exposure of animals to EHF EMR at the intensity of 0.1 mW/cm(2) for 20 min at 1 h after zymosan injection reduced both the footpad edema and local hyperthermia on average by 20% at the frequencies of 42.2, 51.8, and 65 GHz. Some other frequencies from the frequency range of 37.5-70 GHz were less effective or not effective at all. At fixed frequency of 42.2 GHz and intensity of 0.1 mW/cm(2), the effect had bell-shaped dependence on exposure duration with a maximum at 20-40 min. Reduction of intensity to 0.01 mW/cm(2) resulted in a change of the effect dependence on exposure duration to a linear one. Combined action of cyclooxygenase inhibitor sodium diclofenac and EHF EMR exposure caused a partial additive effect of decrease in footpad edema. Combined action of antihistamine clemastine and EHF EMR exposure caused a dose-dependent abolishment of the anti-inflammatory effect of EHF EMR. The results obtained suggest that arachidonic acid metabolites and histamine are involved in realization of anti-inflammatory effects of low-intensity EHF EMR. PMID:18044738

  12. In vitro anti-inflammatory and antioxidant activities and protein quality of high hydrostatic pressure treated squids (Todarodes pacificus).

    PubMed

    Zhang, Yifeng; Dai, Bona; Deng, Yun; Zhao, Yanyun

    2016-07-15

    This study investigated the in vitro anti-inflammatory and antioxidant properties, protein quality, and other related characteristics obtained by the single-cycle and two-cycle high hydrostatic pressure (HHP at 200, 400 and 600MPa) treatment of squids (Todarodes pacificus). The soluble protein nitrogen content and in vitro protein digestibility increased significantly (p<0.05) after all HHP treatments, and the two-cycle 600MPa HHP treatments yielded the highest values, 7.59% and 84.42%, respectively. The estimated protein efficiency ratios, and antioxidant and anti-inflammatory properties of squids significantly increased by all HHP treatments. (1)H nuclear magnetic resonance (NMR) showed that the main spectral changes associated to the anti-inflammatory properties of proteins following HHP treatment were in the range of 3.00-3.19 and 3.60-3.79ppm. This indicates that the HHP treatments modified the protein and functional properties of squids and gave the relevant chemical shifts in NMR signals, either migrated or disappeared. PMID:26948613

  13. Synthesis and biological activity of NOSH-naproxen (AVT-219) and NOSH-sulindac (AVT-18A) as potent anti-inflammatory agents with chemotherapeutic potential

    PubMed Central

    Kodela, Ravinder; Chattopadhyay, Mitali; Kashfi, Khosrow

    2013-01-01

    Nitric oxide- (NO) and hydrogen sulfide- (H2S) releasing naproxen (NOSH-naproxen) and NO and H2S-releasing sulindac (NOSH-sulindac) were synthesized and their cell growth inhibitory properties were evaluated in four different human cancer cell lines. These cell lines are of adenomatous (colon, pancreas), epithelial (breast), and lymphocytic (leukemia) origin. Using HT-29 human colon cancer cells, NOSH-naproxen and NOSH-sulindac increased apoptosis, and inhibited proliferation. NOSH-naproxen caused a G0/G1 whereas NOSH-sulindac caused a G2/M block in the cell cycle. Both compounds exhibited significant anti-inflammatory properties, using the carrageenan rat paw edema model. Reconstitution and structure-activity studies representing a fairly close approximation to the intact molecule showed that NOSH-naproxen was approximately 8000-fold more potent than the sum of its parts in inhibiting cell growth. Our data suggest that these compounds merit further investigation as potential anti-cancer agents. PMID:24273639

  14. A Herbal Composition of Scutellaria baicalensis and Eleutherococcus senticosus Shows Potent Anti-Inflammatory Effects in an Ex Vivo Human Mucosal Tissue Model

    PubMed Central

    Zhang, Nan; Van Crombruggen, Koen; Holtappels, Gabriele; Bachert, Claus

    2012-01-01

    Background. Patients seek an effective alternative to pharmacotherapy including herbal treatment options for allergic rhinitis and rhinosinusitis. Material and Methods. Nasal mucosal tissue was obtained from 12 patients, fragmented, preincubated with tissue culture medium, S. baicalensis and/or E. senticosus and/or vitamin C (each compound 0.2??g/mL and 2??g/mL) for 1 hour at 37C/5% CO2, and stimulated with anti-IgE for 30 minutes and 6 hours to imitate the allergic early and late phases. Furthermore, Staphylococcus aureus superantigen B (SEB) stimulation for 6 hours was used to imitate T-cell activation. Results. The combination of S. baicalensis and E. senticosus had a more potent suppressive effect on the release of PGD2, histamine, and IL-5 than S. baicalensis alone. The combination also resulted in a significant inhibition of SEB-induced cytokines comparable or superior to an established topical corticosteroid, fluticasone propionate. Vitamin C increased ciliary beat frequency, but had no anti-inflammatory effects. Discussion. The combination of S. baicalensis and E. senticosus may be able to significantly block allergic early-and late-phase mediators and substantially suppress the release of proinflammatory, and Th1-, Th2-, and Th17derived cytokines. PMID:22272213

  15. Potent anti-inflammatory agent escin does not affect the healing of tibia fracture and abdominal wound in an animal model.

    PubMed

    Zhang, Leiming; Wang, Hongsheng; Wang, Tian; Jiang, Na; Yu, Pengfei; Liu, Feiyan; Chong, Yating; Fu, Fenghua

    2012-04-01

    Escin, a potent anti-inflammatory and anti-edematous agent, has been widely used clinically in preventing inflammatory edema after trauma, such as fracture and surgery. The aim of this study was to investigate whether escin has an inhibitory effect on fracture healing, and whether escin has an inhibitory effect on wound healing after surgery. Male New Zealand white rabbits underwent tibial mid-diaphyseal osteotomy, and were administered escin once per day for 10 days. At weeks 2, 4 and 6, bone fracture healing and bone mineral density were measured. The histologic examination of callus, osteocalcin, alkaline phosphatase, calcium and phosphate in the serum were also assayed. In another experiment, the rats underwent midline laparotomy, and received escin once prior to or after the operation. Six days later, the abdominal incision wounds were excised for measuring hydroxyproline levels. The results showed that there were no significant differences in fracture healing between the model and rabbits administered escin, and escin did not affect the hydroxyproline levels in the abdominal incision wounds of the rats. These findings suggest that escin has no inhibitory effect on fracture and wound healing in animal models. PMID:22969961

  16. Mechanisms of LtxA (Leukotoxin), a Potent New Anti-Inflammatory Agent for the Treatment of Alopecia Areata.

    PubMed

    Kachlany, Scott C

    2015-11-01

    Alopecia areata is an autoimmune condition where activated, pro-inflammatory white blood cells (WBCs) attack the hair follicles, resulting in hair loss. Migration of these activated WBCs from the blood stream and into the follicle tissue requires interaction between the integrin, lymphocyte function-associated antigen-1 (LFA-1) on WBCs, and ICAM-1 on vascular endothelial cells. High levels of active LFA-1 are uniquely expressed on WBCs that are involved in autoimmune and inflammatory conditions. The natural biologic agent LtxA (Leukothera) preferentially targets and depletes disease activated and malignant WBCs by binding to active LFA-1. The experimental drug has demonstrated significant therapeutic efficacy against autoimmune/inflammatory conditions such as psoriasis and allergic asthma in mouse models for these diseases. In addition, when injected into rodents, rhesus macaques, and dogs, LtxA was demonstrated to be physiologically active, biologically specific, and extremely well-tolerated. LFA-1 is an attractive target for therapy because it is only normally present on WBCs and has been shown to be activated and overexpressed on WBCs that are responsible for autoimmune/inflammatory conditions. PMID:26551939

  17. Beta caryophyllene and caryophyllene oxide, isolated from Aegle marmelos, as the potent anti-inflammatory agents against lymphoma and neuroblastoma cells.

    PubMed

    Sain, Soumyadeep; Naoghare, Pravin K; Devi, S Saravana; Daiwile, Atul; Krishnamurthi, K; Arrigo, P; Chakrabarti, T

    2014-03-01

    Aegle marmelos (Indian Bael) is a tree which belongs to the family of Rutaceae. It holds a prominent position in both Indian medicine and Indian culture. We have screened various fractions of Aegle marmelos extracts for their anticancer properties using in vitro cell models. Gas chromatography-Mass spectrometry (GC-MS) was employed to analyze the biomolecules present in the Aegle marmelos extract. Jurkat and human neuroblastoma (IMR-32) cells were treated with different concentrations of the fractionated Aegle marmelos extracts. Flow cytometric analysis revealed that optimal concentration (50 µg/ml) of beta caryophyllene and caryophyllene oxide fractions of Aegle marmelos extract can induce apoptosis in Jurkat cell line. cDNA expression profiling of pro-apoptotic and anti-apoptotic genes was carried out using real time PCR (RT-PCR). Down-regulation of anti-apoptotic genes (bcl-2, mdm2, cox2 and cmyb) and up-regulation of pro-apoptotic genes (bax, bak1, caspase-8, caspase-9 and ATM) in Jurkat and IMR-32 cells treated with the beta caryophyllene and caryophyllene oxide fractions of Aegle marmelos extract revealed the insights of the downstream apoptotic mechanism. Furthermore, in-silico approach was employed to understand the upstream target involved in the induction of apoptosis by the beta caryophyllene and caryophyllene oxide fractions of Aegle marmelos extract. Herein, we report that beta caryophyllene and caryophyllene oxide isolated from Aegle marmelos can act as potent anti-inflammatory agents and modulators of a newly established therapeutic target, 15-lipoxygenase (15-LOX). Beta caryophyllene and caryophyllene oxide can induce apoptosis in lymphoma and neuroblastoma cells via modulation of 15-LOX (up-stream target) followed by the down-regulation of anti-apoptotic and up-regulation of pro-apoptotic genes. PMID:24484210

  18. A high performance liquid chromatography with ultraviolet method for Eschweilera nana leaves and their anti-inflammatory and antioxidant activities

    PubMed Central

    Outuki, Priscila M.; Lazzeri, Nides S.; de Francisco, Lizziane M. B.; Bersani-Amado, Ciomar A.; Ferreira, Izabel C. P.; Cardoso, Mara Lane C.

    2015-01-01

    Background: Eschweilera nana Miers is a tree widely distributed in Cerrado, Brazil. Objective: In this study, we aimed to describe its phytochemical properties and antioxidant and topical anti-inflammatory effects for the first time, as well validate an high performance liquid chromatography with ultraviolet/visible (HPLC-UV-Vis) method for the separation and quantification of the main components (hyperoside and rutin) in the hydroalcoholic extract of E. nana leaves. Materials and Methods: Structural identification of compounds in E. nana extract was performed by analysis of spectral data by 1H nuclear magnetic resonance, 13C nuclear magnetic resonance and/or ESI/EM. The HPLC-UV-Vis method was validated according International Conference on Harmonization (ICH) parameters. The 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) method were used for determination of in vitro antioxidant activities and the croton oil-induced inflammation for evaluation of in vivo anti-inflammatory effects. Results: Hyperoside, rutin, α-amirin, β-amirin, β-sitosterol, and stigmasterol were identified in the hydroalcoholic extract of E. nana leaves. HPLC-UV-Vis was validated according to ICH parameters. Furthermore, in vitro and in vivo assays demonstrated that the hydroalcoholic extract and methanol fraction showed significant antioxidant and topical anti-inflammatory effects, as they were able to reduce ear edema induced by croton-oil application. Conclusions: This research showed the first phytochemical study of E. nana extract and their biological activities may be associated with the presence of flavonoids in the extracts. PMID:26246741

  19. [Pharmacological analysis of anti-inflammatory effects of low-intensity extremely high-frequency electromagnetic radiation].

    PubMed

    Gapeev, A B; Lushnikov, K V; Shumilina, Iu V; Chemeris, N K

    2006-01-01

    The anti-inflammatory effect of low-intensity extremely high-frequency electromagnetic radiation (EHF EMR, 42.0 GHz, 0.1 mW/cm2) was compared with the action of the known anti-inflammatory drug sodium diclofenac and the antihistamine clemastine on acute inflammatory reaction in NMRI mice. The local inflammatory reaction was induced by intraplantar injection of zymosan into the left hind paw. Sodium diclofenac in doses of 2, 3, 5, 10, and 20 mg/kg or clemastine in doses of 0.02, 0.1, 0.2, 0.4, and 0.6 mg/kg were injected intraperitoneally 30 min after the initiation of inflammation. The animals were whole-body exposed to EHF EMR for 20 min at 1 h after the initiation of inflammation. The inflammatory reaction was assessed over 3 - 8 h after the initiation by measuring the footpad edema and hyperthermia of the inflamed paw. Sodium diclofenac in doses of 5 - 20 mg/kg reduced the exudative edema on the average by 26% as compared to the control. Hyperthermia of the inflamed paw decreased to 60% as the dose of was increased diclofenac up to 20 mg/kg. EHF EMR reduced both the footpad edema and hyperthermia by about 20%, which was comparable with the effect of a single therapeutic dose of diclofenac (3 - 5 mg/kg). The combined action of diclofenac and the exposure to the EHF EMR caused a partial additive effect. Clemastine in doses of 0.02-0.4 mg/kg it did not cause any significant effects on the exudative edema, but in a dose of 0.6 mg/kg it reduced edema by 14 - 22% by 5 - 8 h after zymosan injection. Clemastine caused a dose-dependent increase in hyperthermia of inflamed paw at doses of 0.02-0.2 mg/kg and did not affect the hyperthermia at doses of 0.4 and 0.6 mg/kg. The combined action of clemastine and EHF EMR exposure caused a dose-dependent abolishment of the anti-inflammatory effect of EHF EMR. The results obtained suggest that both arachidonic acid metabolites and histamine are involved in the realization of anti-inflammatory effects of low-intensity PMID:17175917

  20. Extraction Optimization for Obtaining Artemisia capillaris Extract with High Anti-Inflammatory Activity in RAW 264.7 Macrophage Cells

    PubMed Central

    Jang, Mi; Jeong, Seung-Weon; Kim, Bum-Keun; Kim, Jong-Chan

    2015-01-01

    Plant extracts have been used as herbal medicines to treat a wide variety of human diseases. We used response surface methodology (RSM) to optimize the Artemisia capillaris Thunb. extraction parameters (extraction temperature, extraction time, and ethanol concentration) for obtaining an extract with high anti-inflammatory activity at the cellular level. The optimum ranges for the extraction parameters were predicted by superimposing 4-dimensional response surface plots of the lipopolysaccharide- (LPS-) induced PGE2 and NO production and by cytotoxicity of A. capillaris Thunb. extracts. The ranges of extraction conditions used for determining the optimal conditions were extraction temperatures of 5765C, ethanol concentrations of 4557%, and extraction times of 5.56.8?h. On the basis of the results, a model with a central composite design was considered to be accurate and reliable for predicting the anti-inflammation activity of extracts at the cellular level. These approaches can provide a logical starting point for developing novel anti-inflammatory substances from natural products and will be helpful for the full utilization of A. capillaris Thunb. The crude extract obtained can be used in some A. capillaris Thunb.-related health care products. PMID:26075271

  1. Anti-inflammatory Diets.

    PubMed

    Sears, Barry

    2015-01-01

    Chronic disease is driven by inflammation. This article will provide an overview on how the balance of macronutrients and omega-6 and omega-3 fatty acids in the diet can alter the expression of inflammatory genes. In particular, how the balance of the protein to glycemic load of a meal can alter the generation of insulin and glucagon and the how the balance of omega-6 and omega-3 fatty acids can effect eicosanoid formation. Clinical results on the reduction of inflammation following anti-inflammatory diets are discussed as well as the molecular targets of anti-inflammatory nutrition. To overcome silent inflammation requires an anti-inflammatory diet (with omega-3s and polyphenols, in particular those of Maqui). The most important aspect of such an anti-inflammatory diet is the stabilization of insulin and reduced intake of omega-6 fatty acids. The ultimate treatment lies in reestablishing hormonal and genetic balance to generate satiety instead of constant hunger. Anti-inflammatory nutrition, balanced 40:30:30 with caloric restriction, should be considered as a form of gene silencing technology, in particular the silencing of the genes involved in the generation of silent inflammation. To this anti-inflammatory diet foundation supplemental omega-3 fatty acids at the level of 2-3g of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) per day should be added. Finally, a diet rich in colorful, nonstarchy vegetables would contribute adequate amounts of polyphenols to help not only to inhibit nuclear factor (NF)-?B (primary molecular target of inflammation) but also activate AMP kinase. Understanding the impact of an anti-inflammatory diet on silent inflammation can elevate the diet from simply a source of calories to being on the cutting edge of gene-silencing technology. PMID:26400429

  2. Potent anti-inflammatory effect of dioscin mediated by suppression ofTNF-?-induced VCAM-1, ICAM-1and EL expression via the NF-?B pathway.

    PubMed

    Wu, Shan; Xu, Hui; Peng, Jinyong; Wang, Changyuan; Jin, Yue; Liu, Kexin; Sun, Huijun; Qin, Jianhua

    2015-03-01

    The modulation of adhesion molecule expression and the reduction of aberrant leukocyte adhesion to the endothelium are attractive approaches for treating inflammation-related vascular complications, including atherosclerosis. Dioscin has a variety of biological activities including anti-inflammatory activity. However, the molecular mechanisms behind dioscin's anti-inflammatory effects are not fully understood. In this study, we investigated the molecular mechanism involved in the effects of dioscin on inflammatory mediators in tumor necrosis factor-? (TNF-?)-stimulated human umbilical vein endothelial cells (HUVECs). Invitro, dioscin decreased monocyte adhesion to TNF-?-treated HUVECs by reducing vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) expression and inhibiting endothelial lipase (EL) expression in TNF-?-treated HUVECs and macrophages by blocking the nuclear factor-?B (NF-?B) pathway. Thus, dioscin might inhibit inflammation by interrupting the NF-?B signaling pathway and could potentially contribute to treatments for inflammatory diseases and atherosclerosis. PMID:25577996

  3. Antihyperglycemic and Anti-Inflammatory Effects of Standardized Curcuma xanthorrhiza Roxb. Extract and Its Active Compound Xanthorrhizol in High-Fat Diet-Induced Obese Mice

    PubMed Central

    2014-01-01

    Xanthorrhizol, a natural compound isolated from Curcuma xanthorrhiza Roxb. (Java turmeric), has been reported to possess antioxidant and anticancer properties; however, its effects on metabolic disorders remain unknown. The aim of the present study was to evaluate the effects of xanthorrhizol (XAN) and C. xanthorrhiza extract (CXE) with standardized XAN on hyperglycemia and inflammatory markers in high-fat diet- (HFD-) induced obese mice. Treatment with XAN (10 or 25?mg/kg/day) or CXE (50 or 100?mg/kg/day) significantly decreased fasting and postprandial blood glucose levels in HFD-induced obese mice. XAN and CXE treatments also lowered insulin, glucose, free fatty acid (FFA), and triglyceride (TG) levels in serum. Epididymal fat pad and adipocyte size were decreased by high doses of XAN (26.6% and 20.1%) and CXE (25.8% and 22.5%), respectively. XAN and CXE treatment also suppressed the development of fatty liver by decreasing liver fat accumulation. Moreover, XAN and CXE significantly inhibited production of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-?), interleukin-6 (IL-6), interleukin-1? (IL-1?), and C-reactive protein (CRP) in adipose tissue (27.882.7%), liver (43.984.7%), and muscle (65.292.5%). Overall, these results suggest that XAN and CXE, with their antihyperglycemic and anti-inflammatory activities, might be used as potent antidiabetic agents for the treatment of type 2 diabetes. PMID:25053966

  4. Similar Anti-Inflammatory Acute Responses from Moderate-Intensity Continuous and High-Intensity Intermittent Exercise

    PubMed Central

    Cabral-Santos, Carolina; Gerosa-Neto, Jos; Inoue, Daniela Sayuri; Panissa, Valria Leme Gonalves; Gobbo, Lus Alberto; Zagatto, Alessandro Moura; Campos, Eduardo Zapaterra; Lira, Fbio Santos

    2015-01-01

    The purpose of this study was to compare the effect of high-intensity intermittent exercise (HIIE) versus volume matched steady state exercise (SSE) on inflammatory and metabolic responses. Eight physically active male subjects completed two experimental sessions, a 5-km run on a treadmill either continuously (70% vVO2max) or intermittently (1:1 min at vVO2max). Blood samples were collected at rest, immediately, 30 and 60 minutes after the exercise session. Blood was analyzed for glucose, non-ester fatty acid (NEFA), uric acid, lactate, cortisol, and cytokines (IL-6, IL-10 and TNF-?) levels. The lactate levels exhibited higher values immediately post-exercise than at rest (HIIE 1.34 0.24 to 7.11 2.85, and SSE 1.35 0.14 to 4.061.60 mmolL-1, p < 0.05), but HIIE promoted higher values than SSE (p < 0.05); the NEFA levels were higher immediately post-exercise than at rest only in the SSE condition (0.71 0.04 to 0.820.09 mEq/L, respectively, p < 0.05), yet, SSE promoted higher values than HIIE immediately after exercise (HIIE 0.720.03 vs SSE 0.820.09 mEqL-1, p < 0.05). Glucose and uric acid levels did not show changes under the different conditions (p > 0.05). Cortisol, IL-6, IL-10 and TNF-? levels showed time-dependent changes under the different conditions (p < 0.05), however, the area under the curve of TNF-? in the SSE were higher than HIIE (p < 0.05), and the area under the curve of IL-6 in the HIIE showed higher values than SSE (p < 0.05). In addition, both exercise conditions promote increased IL-10 levels and IL-10/TNF-? ratio (p < 0.05). In conclusion, our results demonstrated that both exercise protocols, when volume is matched, promote similar inflammatory responses, leading to an anti-inflammatory status; however, the metabolic responses are different. Key points Metabolic contribution of both exercise, HIIE and SSE, was different. Both protocols leading to an anti-inflammatory status. HIIE induce a higher energy expenditure take into account total session duration. PMID:26664283

  5. High Strength Multifunctional Multiwalled Hydrogel Tubes: Ion-Triggered Shape Memory, Antibacterial, and Anti-inflammatory Efficacies.

    PubMed

    Xu, Bing; Li, Yongmao; Gao, Fei; Zhai, Xinyun; Sun, Mengge; Lu, William; Cao, Zhiqiang; Liu, Wenguang

    2015-08-01

    In this study, ion-responsive hydrogen bonding strengthened hydrogels (termed as PVV) were synthesized by one-pot copolymerization of 2-vinyl-4,6-diamino-1,3,5-triazine (VDT), 1-vinylimidazole (VI), and polyethylene glycol diacrylate. The diaminotriazine-diaminotriazine (DAT-DAT) H-bonding interaction and copolymerization of VI contributed to a notable increase in comprehensive performances including tensile/compressive strength, elasticity, modulus, and fracture energy. In addition, introducing mM levels of zinc ions could further increase the mechanical properties of PVV hydrogels and fix a variety of temporary shapes due to the strong coordination of zinc with imidazole. The release of zinc ions from the hydrogel contributed to an antibacterial effect, without compromising the shape memory effect. Remarkably, a multiwalled hydrogel tube (MWHT) fixed with Zn(2+) demonstrated much higher flexural strengths and a more sustainable release of zinc ions than the solid hydrogel cylinder (SHC). A Zn(2+)-fixed MWHT was implanted subcutaneously in rats, and it was found that the Zn(2+)-fixed MWHT exhibited anti-inflammatory and wound healing efficacies. The reported high strength hydrogel with integrated functions holds potential as a tissue engineering scaffold. PMID:26177281

  6. A versatile high throughput screening system for the simultaneous identification of anti-inflammatory and neuroprotective compounds.

    PubMed

    Hansen, Elizabeth; Krautwald, Martina; Maczurek, Annette E; Stuchbury, Grant; Fromm, Phillip; Steele, Megan; Schulz, Oliver; Garcia, Obdulio Benavente; Castillo, Julian; Krner, Heinrich; Mnch, Gerald

    2010-01-01

    In many chronic neurodegenerative diseases including Frontotemporal Dementia and Alzheimer's disease (AD), microglial activation is suggested to be involved in pathogenesis or disease progression. Activated microglia secrete a variety of cytokines, including interleukin-1beta, interleukin-6, and tumor necrosis factor as well as reactive oxygen and nitrogen species (ROS/RNS). ROS and RNS contribute to alterations in neuronal glucose uptake, inhibition of mitochondrial enzymes, a decrease in mitochondrial membrane potential, impaired axonal transport, and synaptic signaling. In addition, ROS act as signaling molecules in pro-inflammatory redox-active signal transduction pathways. To establish a high throughput screening system for anti-inflammatory and neuroprotective compounds, we have constructed an "Enhanced Green Fluorescent protein" (EGFP) expressing neuronal cell line and set up a murine microglia/neuron co-culture system with these EGFP expressing neuronal cells. We show that microglia activation leads to neuronal cell death, which can be conveniently measured by loss of neuronal EGFP fluorescence. Moreover, we used this system to test selected polyphenolic compounds for their ability to downregulate inflammatory markers and to protect neurons against microglial insult. We suggest that this system might allow accelerated drug discovery for the treatment of inflammation-mediated neurodegenerative diseases. PMID:20110593

  7. Anti-steatotic and anti-inflammatory roles of syringic acid in high-fat diet-induced obese mice.

    PubMed

    Ham, Ju Ri; Lee, Hae-In; Choi, Ra-Yeong; Sim, Mi-Ok; Seo, Kwon-Il; Lee, Mi-Kyung

    2016-02-17

    This study examined the effects of syringic acid (SA) on obese diet-induced hepatic dysfunction. Mice were fed high-fat diet (HFD) with or without SA (0.05%, wt/wt) for 16 weeks. SA reduced the body weight, visceral fat mass, serum levels of leptin, TNFα, IFNγ, IL-6 and MCP-1, insulin resistance, hepatic lipid content, droplets and early fibrosis, whereas it elevated the circulation of adiponectin. SA down-regulated lipogenic genes (Cidea, Pparγ, Srebp-1c, Srebp-2, Hmgcr, Fasn) and inflammatory genes (Tlr4, Myd88, NF-κB, Tnfα, Il6), whereas it up-regulated fatty acid oxidation genes (Pparα, Acsl, Cpt1, Cpt2) in the liver. SA also decreased hepatic lipogenic enzyme activities and elevated fatty acid oxidation enzyme activities relative to the HFD group. These findings suggested that dietary SA possesses anti-obesity, anti-inflammatory and anti-steatotic effects via the regulation of lipid metabolic and inflammatory genes. SA is likely to be a new natural therapeutic agent for obesity or non-alcoholic liver disease. PMID:26838182

  8. Synthesis and Validation of a Hydroxypyrone-Based, Potent, and Specific Matrix Metalloproteinase-12 Inhibitor with Anti-Inflammatory Activity In Vitro and In Vivo

    PubMed Central

    Aerts, J.; Vandenbroucke, R. E.; Dera, R.; Balusu, S.; Van Wonterghem, E.; Moons, L.; Libert, C.; Dehaen, W.; Arckens, L.

    2015-01-01

    A hydroxypyrone-based matrix metalloproteinase (MMP) inhibitor was synthesized and assayed for its inhibitory capacity towards a panel of ten different MMPs. The compound exhibited selective inhibition towards MMP-12. The effects of inhibition of MMP-12 on endotoxemia and inflammation-induced blood-cerebrospinal fluid barrier (BCSFB) disruption were assessed both in vitro and in vivo. Similar to MMP-12 deficient mice, inhibitor-treated mice displayed significantly lower lipopolysaccharide- (LPS-) induced lethality compared to vehicle treated controls. Following LPS injection Mmp-12 mRNA expression was massively upregulated in choroid plexus tissue and a concomitant increase in BCSFB permeability was observed, which was restricted in inhibitor-treated mice. Moreover, an LPS-induced decrease in tight junction permeability of primary choroid plexus epithelial cells was attenuated by inhibitor application in vitro. Taken together, this hydroxypyrone-based inhibitor is selective towards MMP-12 and displays anti-inflammatory activity in vitro and in vivo. PMID:26351407

  9. Low volume-high intensity interval exercise elicits antioxidant and anti-inflammatory effects in humans.

    PubMed

    Wadley, Alex J; Chen, Yu-Wen; Lip, Gregory Y H; Fisher, James P; Aldred, Sarah

    2016-01-01

    The purpose of the present study was to compare acute changes in oxidative stress and inflammation in response to steady state and low volume, high intensity interval exercise (LV-HIIE). Untrained healthy males (n=10, means: age 223years; VO2MAX 42.75.0mlkg(-1)min(-1)) undertook three exercise bouts: a bout of LV-HIIE (10 1min 90% VO2MAX intervals) and two energy-matched steady-state cycling bouts at a moderate (60% VO2MAX; 27min, MOD) and high (80% VO2MAX; 20min, HIGH) intensity on separate days. Markers of oxidative stress, inflammation and physiological stress were assessed before, at the end of exercise and 30min post-exercise (post+30). At the end of all exercise bouts, significant changes in lipid hydroperoxides (LOOH) and protein carbonyls (PCs) (LOOH (nM): MOD +0.36; HIGH +3.09; LV-HIIE +5.51 and PC (nmolmg(-1) protein): MOD -0.24; HIGH -0.11; LV-HIIE -0.37) were observed. Total antioxidant capacity (TAC) increased post+30, relative to the end of all exercise bouts (TAC (M): MOD +189; HIGH +135; LV-HIIE +102). Interleukin (IL)-6 and IL-10 increased post+30 in HIGH and LV-HIIE only (P<0.05). HIGH caused the greatest lymphocytosis, adrenaline and cardiovascular response (P<0.05). At a reduced energy cost and physiological stress, LV-HIIE elicited similar cytokine and oxidative stress responses to HIGH. PMID:25915178

  10. High-performance thin layer chromatographic analysis of anti-inflammatory triterpenoids from Boswellia serrata Roxb.

    PubMed

    Krohn, K; Rao, M S; Raman, N V; Khalilullah, M

    2001-01-01

    A rapid and simple high-performance thin layer chromatographic (HPTLC) method was developed for the simultaneous quantitative estimation of the biologically active triterpenoids beta-boswellic acid, 3-O-acetyl-beta-boswellic acid, 11-keto-beta-boswellic acid and 3-O-acetyl-11-keto-beta-boswellic acid from the gum resin of Boswellia serrata. The assay combines the isolation and separation of boswellic acid derivatives on silica gel 60F254-HPTLC plates with spot visualisation and scanning at 250 nm. Methanol was found to be the most appropriate solvent for the exhaustive extraction of boswellic acid derivatives. PMID:11793815

  11. The anti-inflammatory effect of kaempferol on early atherosclerosis in high cholesterol fed rabbits

    PubMed Central

    2013-01-01

    Background Atherosclerosis has been widely accepted as an inflammatory disease of vascular, adhesion molecules play an important role in the early progression of it. The aim of the present study was to evaluate the effect of kaempferol on the inflammatory molecules such as E-selectin (E-sel), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesionmolecule-1 (VCAM-1) and monocyte chemotactic protein-1 (MCP-1) in high cholesterol induced atherosclerosis rabbit models. Methods Thirty male New Zealand white (NZW) rabbits were randomly divided into five groups, control group, model group, fenofibrate (12mg/kg) group and kaempferol groups (150 mg/kg and 30 mg/kg). The rabbits were fed with a normal diet or a high cholesterol diet for 10 weeks. Levels of blood lipids, serum tumour-necrosis factor-alpha (TNF-?) and serum interleukin-1beta (IL-1?) were detected at the end of the sixth and tenth week. Malonaldehyde (MDA) level and superoxide dismutase (SOD) activity in serum were also determined. Lesion areas of the aorta were measured with morphometry analysis after ten weeks. Gene expression of E-sel, ICAM-1, VCAM-1 and MCP-1 in aortas was determined by RT-PCR (reverse transcription-polymerase chain reaction). Immunohistochemical staining was employed to measure protein expression of E-sel, ICAM-1, VCAM-1 and MCP-1. Results Model rabbits fed with ten weeks of high-cholesterol diet developed significant progression of atherosclerosis. Compared with the control, levels of blood lipids, TNF-?, IL-1? and MDA increased markedly in serum of model rabbits, while SOD levels decreased. Gene and protein expressions of E-sel, ICAM-1, VCAM-1 and MCP-1 in atherosclerotic aortas increased remarkably in model group. However, comparing to the model rabbits, levels of TNF-?, IL-1? and MDA decreased significantly and serum SOD activity increased, gene and protein expressions of E-sel, ICAM-1, VCAM-1 and MCP-1 in aortas decreased significantly with the treatment of kaempferol. Conclusion Kaempferol shows anti-atherosclerotic effect by modulating the gene and protein expression of inflammatory molecules. PMID:23895132

  12. Antioxidant and anti-inflammatory effects of flavocoxid in high-cholesterol-fed rabbits.

    PubMed

    El-Sheakh, Ahmed R; Ghoneim, Hamdy A; Suddek, Ghada M; Ammar, El-Sayed M

    2015-12-01

    Flavocoxid is a mixed extract containing baicalin and catechin, and it acts as a dual balanced inhibitor of cyclooxygenase-1 (COX-1) and COX-2 peroxidase enzyme activities with a significant inhibition of 5-lipoxygenase (5-LOX) enzyme activity in vitro. Flavocoxid downregulates gene or protein expression of several inflammatory markers and exerts also strong antioxidant activity in several experimental models. Inflammation and oxidative stress contribute in the pathogenesis of atherosclerosis. In the present study, an experimental rabbit model of hypercholesterolemia was developed and the effects of flavocoxid were evaluated. Rabbits were divided into four groups-normal control, high-cholesterol-diet (HCD)-fed group, HCD plus flavocoxid (20mg/kg/day), or HCD plus atorvastatin (10mg/kg/day). Blood samples were collected at the end of the experiment for measuring serum total cholesterol (TC), triglycerides (TGs), high-density lipoprotein cholesterol (HDL-C), C-reactive protein (CRP), malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD). In addition, the aorta was removed for measurement of antioxidant status, vascular reactivity, and intima/media (I/M) ratio. Elevated levels of serum TC, TGs, LDL-C, and CRP were measured in HCD group. Moreover, HCD caused a significant increase in serum and aortic MDA concomitantly with a reduction in serum and aortic GSH and SOD. Immunohistochemical staining of aortic specimens from HCD-fed rabbits revealed high expression levels of both tumor necrosis factor-alpha (TNF-?) and nuclear factor (NF)-?B. Rabbits in flavocoxid group showed significantly lower levels of serum CRP, serum, and aortic MDA and higher levels of serum HDL-C, serum, and aortic GSH and SOD compared to HCD group. HCD-induced elevations in serum TC and LDL-C did not significantly affected by flavocoxid treatment. Additionally, flavocoxid significantly enhanced rabbit aortic endothelium-dependent relaxation to acetylcholine and decreased the elevated I/M ratio. This effect was confirmed by histopathological examination of the aorta. Moreover, flavocoxid effectively suppresses the release of inflammatory markers. In conclusion, these findings demonstrated that flavocoxid would be useful in preventing oxidative stress, inflammation, and vascular dysfunction induced by HCD. PMID:26341793

  13. Anti-inflammatory and anti-diabetic effects of brown seaweeds in high-fat diet-induced obese mice

    PubMed Central

    Oh, Ji-Hyun; Kim, Jaehoon

    2016-01-01

    BACKGROUND/OBJECTIVES Seaweeds have been reported to have various health beneficial effects. In this study, we investigated the potential anti-obesity and anti-inflammatory effects of four types of domestic brown seaweeds in a high-fat diet-induced obese mouse model and bone marrow-derived macrophages (BMDM). MATERIALS/METHODS Male C57BL/6N mice were fed low-fat diet (LFD), high-fat diet (HFD) or HFD containing Undaria Pinnatifida, HFD containing Laminaria Japonica (LJ), HFD containing Sargassum Fulvellum, or HFD containing Hizikia Fusiforme (HF) for 16 weeks. RESULTS Brown seaweed supplementation did not affect long-term HFD-associated changes in body weight or adiposity, although mice fed HFD + LJ or HFD + HF gained slightly less body weight compared with those fed HFD at the beginning of feeding. Despite being obese, mice fed HFD + LJ appeared to show improved insulin sensitivity compared to mice fed HFD. Consistently, we observed significantly reduced blood glucose concentrations in mice fed HFD + LJ compared with those of mice fed HFD. Although no significant differences in adipocyte size were detected among the HFD-fed groups, consumption of seaweeds decreased formation of HFD-induced crown-like structures in gonadal adipose tissue as well as plasma inflammatory cytokines. BMDM from mice fed HFDs with seaweeds showed differential regulation of pro-inflammatory cytokines such as IL-1β and IL-6 compared with BMDM from mice fed HFD by LPS stimulation. CONCLUSION Although seaweed consumption did not prevent long-term HFD-induced obesity in C57BL/6N mice, it reduced insulin resistance (IR) and circulation of pro-inflammatory cytokines. Therefore, seaweeds may ameliorate systemic inflammation and IR in obesity partially due to inhibition of inflammatory signaling in adipose tissue cells as well as bone marrow-derived immune cells. PMID:26865915

  14. Anti-inflammatory effect of water-soluble complex of 1'-acetoxychavicol acetate with highly branched ?-1,3-glucan on contact dermatitis.

    PubMed

    Li, Jiawei; Aizawa, Yui; Hiramoto, Keiichi; Kasahara, Emiko; Tsuruta, Daisuke; Suzuki, Toshio; Ikeda, Atsushi; Azuma, Hideki; Nagasaki, Takeshi

    2015-02-01

    The anti-inflammatory effect on contact dermatitis of the water solubilized 1'-Acetoxychavicol Acetate (ACA) by complexation with ?-1,3-glucan isolated form Aureobasidium pullulans black yeast is reported. It is well-known that ACA possesses a function to inhibit the activation of NF-?B by which genes encoding proinflammatory cytokines, chemokines, and growth factors are regulated. However, because ACA is quite insoluble in water, its usefulness has been extremely limited. On the other hand, a triple-helical polysaccharide ?-1,3-glucan can include hydrophobic compounds into intrastrand hydrophobic cavity and solubilize poorly water-soluble compounds. In this study, solubilization of ACA by complexation with highly branched ?-1,3-glucan was achieved. The effect of anti-inflammatory response of water-soluble ACA complex with ?-1,3-glucan was confirmed in vitro and in vivo. PMID:25661358

  15. Anti-inflammatory sesquiterpene pyridine alkaloids from Tripterygium wilfordii.

    PubMed

    Gao, Chang; Huang, Xiao-Xiao; Bai, Ming; Wu, Jie; Li, Jian-You; Liu, Qing-Bo; Li, Ling-Zhi; Song, Shao-Jiang

    2015-09-01

    During a screening procedure involving higher plants to find novel candidates for use as anti-inflammatory agents, Tripterygium wilfordii Hook. f. was shown to exhibit considerable inhibitory activity. Five new sesquiterpene pyridine alkaloids, tripterygiumines S-W (1-4,15), along with 14 known dihydroagarofuran derivatives, were isolated from the roots of the T. wilfordii Hook. f. Their structures were established by extensive use of spectroscopic techniques, including 1D and 2D NMR spectroscopy and high-resolution mass spectrometry. All compounds were evaluated for their anti-inflammatory activity by measuring the nitric oxide production by the LPS-induced murine macrophage cell line RAW264.7. It was found that 1, 5, and 19 possessed potent nitric oxide inhibitory activity with IC50 values ranging from 2.99 to 28.80 ?M, without any effect on the cell viability of RAW264.7 cells. Accordingly, compounds 1, 5, and 19, especially 5, were identified as promising candidates for further scientific investigation of their potential use as anti-inflammatory agents. PMID:26071072

  16. Mushrooms: A Potential Natural Source of Anti-Inflammatory Compounds for Medical Applications

    PubMed Central

    Elsayed, Elsayed A.; El Enshasy, Hesham; Wadaan, Mohammad A. M.; Aziz, Ramlan

    2014-01-01

    For centuries, macrofungi have been used as food and medicine in different parts of the world. This is mainly attributed to their nutritional value as a potential source of carbohydrates, proteins, amino acids, and minerals. In addition, they also include many bioactive metabolites which make mushrooms and truffles common components in folk medicine, especially in Africa, the Middle East, China, and Japan. The reported medicinal effects of mushrooms include anti-inflammatory effects, with anti-inflammatory compounds of mushrooms comprising a highly diversified group in terms of their chemical structure. They include polysaccharides, terpenoids, phenolic compounds, and many other low molecular weight molecules. The aims of this review are to report the different types of bioactive metabolites and their relevant producers, as well as the different mechanisms of action of mushroom compounds as potent anti-inflammatory agents. PMID:25505823

  17. Gastroprotective Agent Underuse in High-Risk Older Daily Non-Steroidal Anti-Inflammatory Drug Users Over Time

    PubMed Central

    Marcum, Zachary A.; Hanlon, Joseph T.; Strotmeyer, Elsa S.; Newman, Anne B.; Shorr, Ronald I.; Simonsick, Eleanor M.; Bauer, Douglas C.; Boudreau, Robert; Donohue, Julie M.; Perera, Subashan

    2014-01-01

    Background/ Objectives Non-steroidal anti-inflammatory drug (NSAID) use is a major risk factor for peptic ulcer disease (PUD) in older adults; thus, a gastroprotective agent is recommended in high-risk patients. This study of older daily NSAID users examined whether gastroprotective agent underuse decreased over time. Design Before-after study. Setting Health, Aging and Body Composition study. Participants Daily users of an NSAID (prescription and over-the-counter [OTC]) at the 2002–03 (pre-period; n=404) and 2006–07 (post-period; n=172) visits. The sample had a mean (standard deviation [±SD]) age of 78.2 [±2.7] years and 81.9 [±2.7] years at the visits, respectively. The majority were white, women and with ≥12 years of education. Measurements Underusers were defined as: (1) persons taking non-selective NSAIDs at risk of PUD (due to current warfarin or glucocorticoid use, or history of PUD) and not using a proton pump inhibitor, or (2) COX-2 selective NSAID users taking aspirin at risk of PUD (i.e., having at least one risk factor) and not using a proton pump inhibitor. Results Daily NSAID use decreased from 17.6% to 11.3% (p<0.001), and gastroprotective agent underuse decreased from 23.5% and 15.1% (p=0.008) over time. Controlling for important covariates, having prescription insurance was somewhat protective from underuse in the pre-period (adjusted odds ratio [AOR] 0.78, 95% confidence interval [CI] 0.46–1.34; p=0.37), but more so and significantly in the post-period (AOR 0.41, 95% CI 0.18–0.93; p=0.03). Over time, having prescription insurance was more protective in the post versus pre-period (i.e., less gastroprotective agent underuse; adjusted ratio of OR 0.53, 95% CI 0.22–1.29; p=0.16), but this increased protection was not statistically significant. Conclusion Among high-risk older daily NSAID users, having prescription insurance and adequate gastroprotective use was more common in the post than in the pre-period. PMID:25284702

  18. Anti-Inflammatory Iridoids of Botanical Origin

    PubMed Central

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer’s disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective anti-inflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo. PMID:22414102

  19. PXS-4681A, a potent and selective mechanism-based inhibitor of SSAO/VAP-1 with anti-inflammatory effects in vivo.

    PubMed

    Foot, Jonathan S; Yow, Tin T; Schilter, Heidi; Buson, Alberto; Deodhar, Mandar; Findlay, Alison D; Guo, Lily; McDonald, Ian A; Turner, Craig I; Zhou, Wenbin; Jarolimek, Wolfgang

    2013-11-01

    Semicarbazide-sensitive amine oxidase (SSAO), also known as vascular adhesion protein-1 (VAP-1), is a member of the copper-dependent amine oxidase family that is associated with various forms of inflammation and fibrosis. To investigate the therapeutic potential of SSAO/VAP-1 inhibition, potent and selective inhibitors with drug-like properties are required. PXS-4681A [(Z)-4-(2-(aminomethyl)-3-fluoroallyloxy)benzenesulfonamide hydrochloride] is a mechanism-based inhibitor of enzyme function with a pharmacokinetic and pharmacodynamic profile that ensures complete, long-lasting inhibition of the enzyme after a single low dose in vivo. PXS-4681A irreversibly inhibits the enzyme with an apparent Ki of 37 nM and a kinact of 0.26 min(-1) with no observed turnover in vitro. It is highly selective for SSAO/VAP-1 when profiled against related amine oxidases, ion channels, and seven-transmembrane domain receptors, and is superior to previously reported inhibitors. In mouse models of lung inflammation and localized inflammation, dosing of this molecule at 2 mg/kg attenuates neutrophil migration, tumor necrosis factor-?, and interleukin-6 levels. These results demonstrate the drug-like properties of PXS-4681A and its potential use in the treatment of inflammation. PMID:23943052

  20. Evaluation of Caesalpinia bonducella flower extract for anti-inflammatory action in rats and its high performance thin layer chromatography chemical fingerprinting

    PubMed Central

    Arunadevi, Rathinam; Murugammal, Shanmugam; Kumar, Dinesh; Tandan, Surendra Kumar

    2015-01-01

    Objective: The study is aimed to evaluate anti-inflammatory activity of Caesalpinia bonducella Fleming (Caesalpiniaceae) flower extract (CBFE) and to study its effect on radiographic outcome in adjuvant induced arthritis and authentication by high performance thin layer chromatography (HPTLC) chemical fingerprinting. Materials and Methods: CBFE was administered orally (30, 100, and 300 mg/kg b.wt.) and tested for its anti-inflammatory activity in carrageenan-induced inflammation, cotton pellet induced chronic granulomatous inflammation and autacoids-induced inflammation. Effect on radiographic outcome was tested in adjuvant-induced arthritis. CBFE was HPTLC fingerprinted in suitable solvent system. Result: In carrageenan-induced inflammation, CBFE produced significant inhibition in edema volume at all the doses (30, 100 and 300 mg/kg b.wt.) and percentage of inhibition was 28.68, 31.00, and 22.48, respectively as compared to control at 5 h of its administration. In cotton pellet granuloma assay, CBFE significantly decreased the granuloma weight at 300 mg/kg dose level by 22.53%. CBFE (300 mg/kg) caused significant inhibition by 37.5, 44.44, and 35.29% edema volume, at ½, 1 and 3 h after 5-hydroxytryptamine injection, respectively. Radiographic score of animals treated with 300 mg/kg CBFE was significantly decreased when compared to arthritic control animals. Conclusion: The extract was found to possess significant anti-inflammatory activity. CBFE treatment improved the bony architecture in adjuvant-induced arthritis in rats. The developed HPTLC fingerprint would be helpful in the authentication of C. bonducella flower extract. PMID:26729956

  1. Anti-inflammatory activity and qualitative analysis of different extracts of Maytenus obscura (A. Rich.) Cuf. by high performance thin layer chromatography method

    PubMed Central

    Alajmi, Mohamed F.; Alam, Perwez

    2014-01-01

    Objective To perform aqueous ethanol soluble fraction (AESF) and dichloromethane extract of aerial parts of Maytenus obscura (A. Rich.) Cuf. using high performance thin layer chromatography (HPTLC) and to test anti-inflammatory activity of these extracts. Methods HPTLC studies were carried out using CAMAG HPTLC system equipped with Linomat IV applicator, TLC scanner 3, Reprostar 3, CAMAG ADC 2 and WIN CATS-4 software were used. The anti-inflammatory activity was tested by injecting different groups of rats (6 each) with formalin in hind paw and measuring the edema volume before and 1 h later formalin injection. Control group received saline i.p. The extracts treatment was injected i.p. in doses of 100 and 200 mg/kg 1 h before formalin administration. Indomethacin (30 mg/kg) was used as standard. Results The results of preliminary phytochemical studies confirmed the presence of protein, lipid, carbohydrate, phenol, flavonoid, saponin, triterpenoid, alkaloid and anthraquinone in both extracts. Chromatography was performed on glass-backed silica gel 60 F254 HPTLC plates with the green solvents toluene: ethyacetate: glacial acetic acid (5:3:0.2, v/v/v) as mobile phase. HPTLC finger printing of AESF revealed major eight peaks with Rf values in the range of 0.28 to 0.80 and the dichloromethane revealed major 11 peaks with Rf values in the range of 0.12 to 0.76. The purity of sample was confirmed by comparing the absorption spectra at start, middle and end position of the band. Treatment of rats (i.p.) with AESF and dichloromethane in doses of 100 and 200 mg/kg inhibited singnificantly (P<0.05, n=6) formalin-induced inflammation by 50%, 55.9%, 45.5%, and 51.4%, respectively. Conclusions HPTLC finger printing of AESF and dichloromethane of Maytenus obscura revealed eight major spots for alcoholic extracts and nine major spots for dichloromethane extracts. These HPTLC profiles may be of great usefulness in the quality control of herbal products containing these extracts. The anti-inflammatory activity of both extracts also revealed the medicinal importance of these extracts. The plant can be further explored for the isolation of phytoconstituents having anti-inflammatory activity. PMID:25182287

  2. Total synthesis and pharmacological characterization of solomonsterol A, a potent marine pregnane-X-receptor agonist endowed with anti-inflammatory activity.

    PubMed

    Sepe, Valentina; Ummarino, Raffaella; D'Auria, Maria Valeria; Mencarelli, Andrea; D'Amore, Claudio; Renga, Barbara; Zampella, Angela; Fiorucci, Stefano

    2011-07-14

    Recently, we reported the identification of a novel class of pregnane-X-receptor (PXR) agonists, solomonsterols A and B, isolated from the marine sponge Theonella swinhoei. Preliminary pharmacological studies demonstrated that these natural compounds are potential leads for the treatment of human disorders characterized by dysregulation of innate immunity. In this article, we describe the first total synthesis of solomonsterol A and its in vivo characterization in animal models of colitis. Using transgenic mice expressing the human PXR, we found that administration of synthetic solomonsterol A effectively protects against development of clinical signs and symptoms of colitis and reduced the generation of TNF?, a signature cytokine for this disorder. In addition, we have provided the first evidence that solomonsterol A might act by triggering the expression of TGF? and IL-10, potent counter-regulatory cytokines in inflammatory bowel diseases (IBD). Finally, we have shown that solomonsterol A inhibits NF-?B activation by a PXR dependent mechanism. In summary, solomonsterol A is a marine PXR agonist that holds promise in the treatment of inflammation-driven immune dysfunction in clinical settings. PMID:21599020

  3. Structural Insights into the Interaction Between a Potent Anti-Inflammatory Protein, Viral CC Chemokine Inhibitor (vCCI), and the Human CC Chemokine, Eotaxin-1

    SciTech Connect

    Kuo, Nai-Wei; Gao, Yong; Schill, Megan S.; Isern, Nancy G.; Dupureur, Cynthia M.; Liwang, Patricia J.

    2014-01-30

    Chemokines play important roles in the immune system, not only recruiting leukocytes to the site of infection and inflammation but also guiding cell homing and cell development. The soluble poxvirusencoded protein vCCI, a CC chemokine inhibitor, can bind to human CC chemokines tightly to impair the host immune defense. This protein has no known homologs in eukaryotes, and may represent a potent method to stop inflammation. Previously, our structure of the vCCI:MIP-1β complex indicated that vCCI uses negatively charged residues in β-sheet II to interact with positively charged residues in the MIP-1βN-terminus, 20’s region and 40’s loop. However, the interactions between vCCI and other CC chemokines have not yet been fully explored. Here, we used NMR and fluorescence anisotropy to study the interaction between vCCI and eotaxin-1 (CCL11), another CC chemokine that is an important factor in the asthma response. NMR results reveal that the binding pattern is very similar to the vCCI:MIP-1βcomplex, and suggest that electrostatic interactions provide a major contribution to binding. Fluorescence anisotropy results on variants of eotaxin-1 further confirm the critical roles of the charged residues in eotaxin. Compared to wild-type eotaxin, single, double, or triple mutations at these critical charged residues weaken the binding. One exception is the K47A mutation that exhibits increased affinity for vCCI, which can be explained structurally. In addition, the binding affinity between vCCI and other wild type CC chemokines, MCP-1, MIP-1β and RANTES, were determined as 1.09 nM, 1.16 nM, and 0.22 nM, respectively. To our knowledge, this is the first work quantitatively measuring the binding affinity between vCCI and different CC chemokines.

  4. Structural Insights into the Interaction between a Potent Anti-inflammatory Protein, Viral CC Chemokine Inhibitor (vCCI), and the Human CC Chemokine, Eotaxin-1*

    PubMed Central

    Kuo, Nai-Wei; Gao, Yong-Guang; Schill, Megan S.; Isern, Nancy; Dupureur, Cynthia M.; LiWang, Patricia J.

    2014-01-01

    Chemokines play important roles in the immune system, not only recruiting leukocytes to the site of infection and inflammation but also guiding cell homing and cell development. The soluble poxvirus-encoded protein viral CC chemokine inhibitor (vCCI), a CC chemokine inhibitor, can bind to human CC chemokines tightly to impair the host immune defense. This protein has no known homologs in eukaryotes and may represent a potent method to stop inflammation. Previously, our structure of the vCCIMIP-1? (macrophage inflammatory protein-1?) complex indicated that vCCI uses negatively charged residues in ?-sheet II to interact with positively charged residues in the MIP-1? N terminus, 20s region and 40s loop. However, the interactions between vCCI and other CC chemokines have not yet been fully explored. Here, we used NMR and fluorescence anisotropy to study the interaction between vCCI and eotaxin-1 (CCL11), a CC chemokine that is an important factor in the asthma response. NMR results reveal that the binding pattern is very similar to the vCCIMIP-1? complex and suggest that electrostatic interactions provide a major contribution to binding. Fluorescence anisotropy results on variants of eotaxin-1 further confirm the critical roles of the charged residues in eotaxin-1. In addition, the binding affinity between vCCI and other wild type CC chemokines, MCP-1 (monocyte chemoattractant protein-1), MIP-1?, and RANTES (regulated on activation normal T cell expressed and secreted), were determined as 1.1, 1.2, and 0.22 nm, respectively. To our knowledge, this is the first work quantitatively measuring the binding affinity between vCCI and multiple CC chemokines. PMID:24482230

  5. First evidence for the anti-inflammatory activity of fucoxanthin in high-fat-diet-induced obesity in mice and the antioxidant functions in PC12 cells.

    PubMed

    Tan, Cong-ping; Hou, Yun-hua

    2014-04-01

    Obesity, characterized as a state of low-level inflammation, is a powerful determinant influencing the development of insulin resistance and progression to type 2 diabetes. The purpose of the present study was to investigate the anti-inflammatory activity of fucoxanthin in experimental high-fat-diet-induced obesity in mice and antioxidant activity in PC12 cells under oxidative stress situation. The anti-inflammatory potential of fucoxanthin in the regulation of maleic dialdehyde (MDA), polymorphonuclear cells (PMNs), interleukin-1? (IL-1?), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-?), and cyclooxygenase-2 (COX-2) was determined by ELISA. Fucoxanthin significantly inhibited obesity-induced upregulation of the production of IL-1?, TNF-?, iNOS, and COX-2. Moreover, fucoxanthin suppressed MDA and infiltration of PMNs. The protective effects were associated with lack of hypertrophy and crown-like structures in mammary gland. At the same time, fucoxanthin showed an advantage of antioxidant activity in PC12 cells under oxidative stress situation. These results suggest that supplementation of fucoxanthin is a promising strategy for blocking macrophage-mediated inflammation and inflammation-induced obesity and its associated complications. PMID:24146106

  6. Amides of non-steroidal anti-inflammatory drugs with thiomorpholine can yield hypolipidemic agents with improved anti-inflammatory activity.

    PubMed

    Theodosis-Nobelos, Panagiotis; Kourti, Malamati; Gavalas, Antonios; Rekka, Eleni A

    2016-02-01

    Novel amides of non steroidal anti-inflammatory drugs (NSAIDs), ?-lipoic acid and indole-3-acetic acid with thiomorpholine were synthesised by a simple method and at high yields (60-92%). All the NSAID derivatives highly decreased lipidemic indices in the plasma of Triton treated hyperlipidemic rats. The most potent compound was the indomethacin derivative, which decreased total cholesterol, triglycerides and LDL cholesterol by 73%, 80% and 83%, respectively. They reduced acute inflammation equally or more than most parent acids. Hence, it could be concluded that amides of common NSAIDs with thiomorpholine acquire considerable hypolipidemic potency, while they preserve or augment their anti-inflammatory activity, thus addressing significant risk factors for atherogenesis. PMID:26750253

  7. Pharmacological potential of Populus nigra extract as antioxidant, anti-inflammatory, cardiovascular and hepatoprotective agent

    PubMed Central

    Debbache-Benaida, Nadjet; Atmani-Kilani, Dina; Schini-Keirth, Valrie Barbara; Djebbli, Nouredine; Atmani, Djebbar

    2013-01-01

    Objective To evaluate antioxidant, anti-inflammatory, hepatoprotective and vasorelaxant activities of Populus nigra flower buds ethanolic extract. Methods Antioxidant and anti-inflammatory activities of the extract were assessed using respectively the ABTS test and the animal model of carrageenan-induced paw edema. Protection from hepatic toxicity caused by aluminum was examined by histopathologic analysis of liver sections. Vasorelaxant effect was estimated in endothelium-intact and -rubbed rings of porcine coronary arteries precontracted with high concentration of U46619. Results The results showed a moderate antioxidant activity (40%), but potent anti-inflammatory activity (49.9%) on carrageenan-induced mice paw edema, and also as revealed by histopathologic examination, complete protection against AlCl3-induced hepatic toxicity. Relaxant effects of the same extract on vascular preparation from porcine aorta precontracted with high concentration of U46619 were considerable at 10?1 g/L, and comparable (P>0.05) between endothelium-intact (67.74%, IC50=0.04 mg/mL) and -rubbed (72.72%, IC50=0.075 mg/mL) aortic rings. Conclusions The extract exerted significant anti-inflammatory, hepatoprotective and vasorelaxant activities, the latter being endothelium-independent believed to be mediated mainly by the ability of components present in the extract to exert antioxidant properties, probably related to an inhibition of Ca2+ influx. PMID:23998009

  8. High-throughput determination of nonsteroidal anti-inflammatory drugs in human plasma by HILIC-MS/MS.

    PubMed

    Nemoto, Tetsuya; Lee, Xiao-Pen; Kumazawa, Takeshi; Hasegawa, Chika; Fujishiro, Masaya; Marumo, Akemi; Shouji, Yukiko; Inagaki, Katsunori; Sato, Keizo

    2014-01-01

    A simple and sensitive method was developed and validated here for the analysis of thirteen nonsteroidal anti-inflammatory drugs (NSAIDs) in human plasma samples by hydrophilic interaction liquid chromatography (HILIC)-tandem mass spectrometry (MS/MS). A small volume of plasma (20?L) spiked with compounds was diluted with 80?L of 10-mM ammonium acetate followed by a simple protein precipitation with 400?L of acetonitrile. After centrifugation, the clear supernatant extract was directly injected into the HILIC-MS/MS, without any solvent evaporation and reconstitution steps. The chromatographic separation of the NSAIDs was achieved on a Unison UK-Amino HILIC column (50mm3mm i.d., particle size 3?m) with a linear gradient elution system composed of 10mM ammonium acetate (pH 6.8) and acetonitrile at a flow rate of 0.4mL/min. The mass spectra obtained by HILIC-MS showed base peak ions due to [M+H](+) for indomethacin, oxaprozin, ketoprofen, alminoprofen, zaltoprofen, tiaprofenic acid, pranoprofen, and ketoprofen-d3 and due to [M-H](-) for etodolac, ibuprofen, diclofenac, fenoprofen, loxoprofen, naproxen, and ibuprofen-d3. Recoveries of these thirteen NSAIDs in plasma were 34.8-113% and the lower limits of quantitation were 0.125-1.25?g/mL. The intra- and interday coefficient of variations for all drugs in plasma were less than 14.6%. The data obtained from actual plasma determinations of zaltoprofen, ibuprofen, and diclofenac are also presented. PMID:24036363

  9. High Spinal Anesthesia Enhances Anti-Inflammatory Responses in Patients Undergoing Coronary Artery Bypass Graft Surgery and Aortic Valve Replacement: Randomized Pilot Study

    PubMed Central

    Lee, Trevor W. R.; Kowalski, Stephen; Falk, Kelsey; Maguire, Doug; Freed, Darren H.; HayGlass, Kent T.

    2016-01-01

    Background Cardiac surgery induces many physiologic changes including major inflammatory and sympathetic nervous system responses. Here, we conducted a single-centre pilot study to generate hypotheses on the potential immune impact of adding high spinal anaesthesia to general anaesthesia during cardiac surgery in adults. We hypothesized that this strategy, previously shown to blunt the sympathetic response and improve pain management, could reduce the undesirable systemic inflammatory responses caused by cardiac surgery. Methods This prospective randomized unblinded pilot study was conducted on 14 patients undergoing cardiac surgery for coronary artery bypass grafting and/or aortic valve replacement secondary to severe aortic stenosis. The primary outcome measures examined longitudinally were serum pro-inflammatory (IL-6, IL-1b, CCL2), anti-inflammatory (IL-10, TNF-RII, IL-1Ra), acute phase protein (CRP, PTX3) and cardiovascular risk (sST2) biomarkers. Results The kinetics of pro- and anti-inflammatory biomarker was determined following surgery. All pro-inflammatory and acute phase reactant biomarker responses induced by surgical stress were indistinguishable in intensity and duration between control groups and those who also received high spinal anaesthesia. Conversely, IL-10 levels were markedly elevated in both intensity and duration in the group receiving high spinal anesthesia (p = 0.005). Conclusions This hypothesis generating pilot study suggests that high spinal anesthesia can alter the net inflammatory response that results from cardiac surgery. In appropriately selected populations, this may add incremental benefit by dampening the net systemic inflammatory response during the week following surgery. Larger population studies, powered to assess immune, physiologic and clinical outcomes in both acute and longer term settings, will be required to better assess potential benefits of incorporating high spinal anesthesia. Trial Registration ClinicalTrials.gov NCT00348920 PMID:26930568

  10. Enhanced Anti-inflammatory Effects of γ-irradiated Pig Placenta Extracts

    PubMed Central

    Kim, Youn Kyu; Kim, Chang-Kyu; Oh, Yu-Kyung

    2015-01-01

    Porcine placenta extract (PPE) is known to possess anti-inflammatory properties owing to its high concentration of bioactive substances. However, the need to eliminate blood-borne infectious agents while maintaining biological efficacy raises concerns about the optimal method for sterilizing PPE. Therefore, the objective of this study was to compare the effects of the standard pressurized heat (autoclaving) method of sterilization with γ-irradiation on the anti-inflammatory effects of PPE. The anti-inflammatory actions of these two preparations of PPE were evaluated by measuring their inhibitory effects on the production of NO, the expression of iNOS protein, and the expression of iNOS, COX2, TNF-α, IL-1β, and IL-6 mRNA in lipopolysaccharide-stimulated RAW 264.7 cells. Compared with autoclaved PPE, γ-irradiated PPE showed significantly greater inhibition of NO production and iNOS protein expression, and produced a greater reduction in the expression of iNOS, COX2, TNF-α, IL-1β, and IL-6 mRNA. These results provide evidence that the sterilization process is crucial in determining the biological activity of PPE, especially its anti-inflammatory activity. Collectively, our data suggest that γ-irradiated PPE acts at the transcriptional level to effectively and potently suppresses the production of NO and the expression of pro-inflammatory cytokines. PMID:26761842

  11. Anti-inflammatory and immune-regulatory mechanisms prevent contact hypersensitivity to Arnica montana L.

    PubMed

    Lass, Christian; Vocanson, Marc; Wagner, Steffen; Schempp, Christoph M; Nicolas, Jean-Francois; Merfort, Irmgard; Martin, Stefan F

    2008-10-01

    Sesquiterpene lactones (SL), secondary plant metabolites from flowerheads of Arnica, exert anti-inflammatory effects mainly by preventing nuclear factor (NF)-kappaB activation because of alkylation of the p65 subunit. Despite its known immunosuppressive action, Arnica has been classified as a plant with strong potency to induce allergic contact dermatitis. Here we examined the dual role of SL as anti-inflammatory compounds and contact allergens in vitro and in vivo. We tested the anti-inflammatory and allergenic potential of SL in the mouse contact hypersensitivity model. We also used dendritic cells to study the activation of NF-kappaB and the secretion of interleukin (IL)-12 in the presence of different doses of SL in vitro. Arnica tinctures and SL potently suppressed NF-kappaB activation and IL-12 production in dendritic cells at high concentrations, but had immunostimulatory effects at low concentrations. Contact hypersensitivity could not be induced in the mouse model, even when Arnica tinctures or SL were applied undiluted to inflamed skin. In contrast, Arnica tinctures suppressed contact hypersensitivity to the strong contact sensitizer trinitrochlorobenzene and activation of dendritic cells. However, contact hypersensitivity to Arnica tincture could be induced in acutely CD4-depleted MHC II knockout mice. These results suggest that induction of contact hypersensitivity by Arnica is prevented by its anti-inflammatory effect and immunosuppression as a result of immune regulation in immunocompetent mice. PMID:18341569

  12. Rapid Anti-Inflammatory Effects of Gonadotropin-Releasing Hormone Antagonism in Rheumatoid Arthritis Patients with High Gonadotropin Levels in the AGRA Trial

    PubMed Central

    Kss, Anita; Hollan, Ivana; Fagerland, Morten Wang; Gulseth, Hans Christian; Torjesen, Peter Abusdal; Frre, ystein Torleiv

    2015-01-01

    Objectives Gonadotropin-releasing hormone (GnRH) and pituitary gonadotropins, which appear to be proinflammatory, undergo profound secretory changes during events associated with rheumatoid arthritis (RA) onset, flares, or improvement e.g. menopausal transition, postpartum, or pregnancy. Potential anti-inflammatory effects of GnRH-antagonists may be most pronounced in patients with high GnRH and gonadotropin levels. Therefore, we investigated the efficacy and safety of a GnRH-antagonist, cetrorelix, in RA patients with high gonadotropin levels. Methods We report intention-to-treat post hoc analyses among patients with high gonadotropin levels (N = 53), i.e. gonadotropin levels>median, from our proof-of-concept, double-blind AGRA-study (N = 99). Patients with active longstanding RA, randomized to subcutaneous cetrorelix (5mg days12; 3mg days 35) or placebo, were followed through day 15. Only predefined primary and secondary endpoints were analyzed. Results The primary endpoint, Disease Activity Score of 28-joint counts with C-reactive protein (DAS28-CRP), improved with cetrorelix compared with placebo by day 5 (-1.0 vs. -0.4, P = 0?010). By day 5, more patients on cetrorelix achieved at least a 20% improvement in the American College of Rheumatology scale (44% vs. 19%, P = 0.049), DAS28-CRP?3.2 (24% vs. 0%, P = 0.012), and European League against Rheumatism Good-responses (19% vs. 0%, P = 0.026). Tumor necrosis factor-?, interleukin-1?, interleukin-10, and CRP decreased with cetrorelix (P = 0.045, P = 0.034, P = 0.020 and P = 0.042 respectively) compared with placebo by day 15. Adverse event rates were similar between groups. Conclusions GnRH-antagonism produced rapid anti-inflammatory effects in RA patients with high gonadotropin levels. GnRH should be investigated further in RA. Trial Registration ClinicalTrials.gov NCT00667758 PMID:26460564

  13. Anti-inflammatory Flavonoids Isolated from Passiflora foetida.

    PubMed

    Nguyen, Thi Yen; To, Dao Cuong; Tran, Manh Hung; Lee, Joo Sang; Lee, Jeong Hyung; Kim, Jeong Ah; Woo, Mi Hee; Min, Byung Sun

    2015-06-01

    In this study, we evaluated the anti-inflammatory activity of the soluble ethyl acetate fraction and chemical components of the stem bark of Passiflora foetida (Passifloraceae). Ten flavonoids (1-10) were isolated by various chromatographic techniques, and their structures were determined based on spectroscopic analyses by using nuclear magnetic resonance (NMR). Luteolin (2) and chrysoeriol (3) showed the most potent inhibition of nitric oxide (NO) production in macrophage cell line, RAW264.7, with half maximal inhibitor concentration (IC50) values of 1.2 and 3.1 ?M, respectively. These compounds suppressed lipopolysaccharide (LPS)-induced inducible NO synthase (iNOS) expression at the transcription level. Our research indicates that the stem bark of P. foetida has significant anti-inflammatory properties, suggesting that its flavonoids may have anti-inflammatory benefits. PMID:26197519

  14. Antioxidant properties of proanthocyanidins of Uncaria tomentosa bark decoction: a mechanism for anti-inflammatory activity.

    PubMed

    Gonalves, Cristina; Dinis, Teresa; Batista, Maria Teresa

    2005-01-01

    Decoctions prepared from the bark of Uncaria tomentosa (cat's claw) are widely used in the traditional Peruvian medicine for the treatment of several diseases, in particular as a potent anti-inflammatory agent. Therefore, the main purpose of this study was to determine if the well-known anti-inflammatory activity of cat's claw decoction was related with its reactivity with the oxidant species generated in the inflammatory process and to establish a relationship between such antioxidant ability and its phenolic composition. We observed that the decoction prepared according to the traditional Peruvian medicine presented a potent radical scavenger activity, as suggested by its high capacity to reduce the free radical diphenylpicrylhydrazyl, and by its reaction with superoxide anion, peroxyl and hydroxyl radicals as well as with the oxidant species, hydrogen peroxide and hypochlorous acid. It also protected membrane lipids against peroxidation induced by the iron/ascorbate system, as evaluated by the formation of thiobarbituric acid-reactive substances (TBARs). The decoction phenolic profile was established by chromatographic analysis (HPLC/DAD and TLC) revealing essentially the presence of proanthocyanidins (oligomeric procyanidins) and phenolic acids, mainly caffeic acid. Thus, our results provide evidence for an antioxidant mechanism underlying the anti-inflammatory activity of cat's claw and support some of the biological effects of proanthocyanidins, more exactly its antioxidant and radical scavenging activities. PMID:15649515

  15. Simultaneous analysis of several non-steroidal anti-inflammatory drugs in human urine by high-performance liquid chromatography with normal solid-phase extraction.

    PubMed

    Hirai, T; Matsumoto, S; Kishi, I

    1997-05-01

    A practical and reproducible high-performance liquid chromatographic method using normal solid-phase extraction has been developed for the simultaneous analysis of twelve non-steroidal anti-inflammatory drugs (NSAIDs) in human urine. A urine specimen mixed with acetate buffer pH 5.0 was purified by solid-phase extraction on a Sep-Pak Silica cartridge. The analyte was chromatographed by a reversed-phase Inertsil ODS-2 column using a phosphate buffer-acetonitrile at pH 5.0 as the mobile phase, and the effluent from the column was monitored at 230 or 320 nm. Absolute recoveries were greater than 73% for all of the twelve NSAIDs. The present method enabled simple manipulation and isocratic HPLC with UV analysis as well as high sensitivity of 0.005 microg/ml for naproxen, and 0.05 microg/ml for sulindac, piroxicam, loxoprofen, ketoprofen, felbinac, fenbufen, flurbiprofen, diclofenac, ibuprofen and mefenamic acid as the quantitation limit in human urine using indomethacin as an internal standard. PMID:9188827

  16. Synthesis of novel 1,2-benzothiazine 1,1-dioxide-3-ethanone oxime N-aryl acetamide ether derivatives as potent anti-inflammatory agents and inhibitors of monocyte-to-macrophage transformation.

    PubMed

    Gannarapu, Malla Reddy; Vasamsetti, Sathish Babu; Punna, Nagender; Royya, Naresh Kumar; Pamulaparthy, Shanthan Rao; Nanubolu, Jagadeesh Babu; Kotamraju, Srigiridhar; Banda, Narsaiah

    2014-03-21

    A series of novel 1,2-benzothiazine 1,1-dioxide-3-ethanone oxime N-aryl acetamide ether derivatives 7a-h and 9a-h were synthesized starting from sodium salt of saccharin 1 in series of steps. Final compounds 7a-h and 9a-h were evaluated for the anti-inflammatory activity and their ability to inhibit monocyte-to-macrophage transformation. Compounds 7e, 9b, 9e and 9h showed impressive anti-inflammatory activities (TNF-?, IL-8 and MCP-1) at micro molar concentration which was found to be better than positive control i.e., piroxicam. Compound 9e marginally and compound 9h significantly inhibited PMA-induced MMP-9 gelatinase activity. Also compounds 9e and 9h greatly inhibited the PMA-induced monocyte-to-macrophage transformation, a pre-requisite step in the formation of atheroma. PMID:24531227

  17. High-fat diet during pregnancy and lactation impairs the cholinergic anti-inflammatory pathway in the liver and white adipose tissue of mouse offspring.

    PubMed

    Payolla, Tanyara Baliani; Lemes, Simone Ferreira; de Fante, Thaís; Reginato, Andressa; Mendes da Silva, Cristiano; de Oliveira Micheletti, Thayana; Rodrigues, Hosana Gomes; Torsoni, Adriana Souza; Milanski, Marciane; Torsoni, Marcio Alberto

    2016-02-15

    Cholinergic anti-inflammatory pathway (CAP) prevents inflammatory cytokines production. The main was to evaluate the effect of maternal obesity on cholinergic pathway in the offspring. Female mice were subjected to either standard chow (SC) or high-fat diet (HFD) during pregnancy and the lactation period. After weaning, only male offspring from HFD dams (HFD-O) and from SC dams (SC-O) were fed the SC diet. Key proteins of the CAP were downregulated and serum TNF-α was elevated in the HFD-O mice. STAT3 and NF-κB activation in HFD-O mice ICV injected with nicotine (agonist) were lower than SC-O mice. Basal cholinesterase activity was upregulated in HFD-O mice in both investigated tissues. Lipopolysaccharide increased TNF-α and IL-1β expression in the liver and WAT of SC-O mice, but this effect was greater in HFD-O mice. In conclusion these changes exacerbated cytokine production in response to LPS and contributed to the reduced sensitivity of the CAP. PMID:26687064

  18. Nonsteroidal anti-inflammatory drugs.

    PubMed

    Dugowson, Carin E; Gnanashanmugam, Priya

    2006-05-01

    Nonsteroidal anti-inflammatory drugs, including COX-2 selective drugs, are often used for acute and chronic musculoskeletal pain,including osteoarthritis, trauma, overuse syndromes, and compression fractures. Although these medications are often well tolerated in the young and otherwise healthy patient, the chronic use of these medications can lead to multiple medical problems, most commonly related to the gastrointestinal tract. Recently, concerns about cardiovascular adverse effects have been raised, particularly in the COX-2 drugs. Dosing and duration of therapy should be adjusted for comorbidities. CBC and renal and hepatic function should be checked at intervals of 3 to 6 months, depending on the patient. PMID:16616271

  19. Nephrotoxicity of nonsteroidal anti-inflammatory drugs.

    PubMed

    Baisac, J; Henrich, W L

    1994-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are important therapeutic agents in the management of rheumatologic disorders and other pain syndromes. Over the counter availability of the drugs has expanded the usage of the drugs. This article reviews the nephrotoxicity of these drugs, with some emphasis on NSAID-related proteinuria. Although reversibility of renal involvement upon drug discontinuance is the rule, progression to end-stage renal disease has occurred. A proposed guideline for monitoring renal impairment in low- and high-risk patients is also presented. PMID:7845321

  20. Anti-inflammatory Agents: Present and Future

    PubMed Central

    Dinarello, Charles A.

    2012-01-01

    Inflammation involving the innate and adaptive immune systems is a normal response to infection. However, when allowed to continue unchecked, inflammation may result in autoimmune or autoinflammatory disorders, neurodegenerative disease, or cancer. A variety of safe and effective anti-inflammatory agents are available, including aspirin and other nonsteroidal anti-inflammatories, with many more drugs under development. In particular, the new era of anti-inflammatory agents includes biologicals such as anticytokine therapies and small molecules that block the activity of kinases. Other anti-inflammatories currently in use or under development include statins, histone deacetylase inhibitors, PPAR agonists, and small RNAs. This Review discusses the current status of anti-inflammatory drug research and the development of new anti-inflammatory therapeutics. PMID:20303881

  1. Endoscopic and histopathological evaluation of acute gastric injury in high-dose acetaminophen and nonsteroidal anti-inflammatory drug ingestion with suicidal intent

    PubMed Central

    Soylu, Aliye; Dolapcioglu, Can; Dolay, Kemal; Ciltas, Aydin; Yasar, Nurgul; Kalayci, Mustafa; Alis, Halil; Sever, Nurten

    2008-01-01

    AIM: To evaluate endoscopic and histopathologic aspects of acute gastric injury due to ingestion of high-dose acetaminophen and nonsteroidal anti-inflammatory drugs (NSAIDs) with respect to some risk factors and patient characteristics. METHODS: The study group consists of 50 patients admitted to emergency department with high dose analgesic ingestion (group?I) with suicidal intent. Thirty patients with or without mild complaints of dyspepsia (group II) were selected as the control group. The study group was stratified according to the use of type and number of analgesics. Endoscopic findings were evaluated according to the Lanza score (LS), expressing the severity of the gastroduodenal damage and biopsies according to a scoring system based on histopathologic findings of acute erosive gastritis. RESULTS: Gastroduodenal damage was signifi-cantly more severe in group?I?compared to group II (P < 0.01). The LS was similar in both groups?Ia and Ib. However LS was significantly higher in patients who had ingested multiple NSAIDs (group?Ic) compared to other patients (P < 0.01). The LS was correlated to age (P < 0.01) and total amount of drug ingested (P < 0.05) in group?I; but it was not correlated with Helicobacter pylori (H pylori) infection or duration of exposure (P > 0.05). The biopsy score (BS) was higher in group?I?than group II (P < 0.01), and higher in group?Ib than group?Ia (P < 0.05). CONCLUSION: The histopathologic damage was more severe among NSAID ingesting patients compared to those ingesting only acetaminophen and there is no significant difference in the endoscopic findings between the groups. There is no significant difference in the LS between the groups. This lack of significance is remarkable in terms of the gastric effects of high-dose acetaminophen. PMID:19034975

  2. NOSH-sulindac (AVT-18A) is a novel nitric oxide- and hydrogen sulfide-releasing hybrid that is gastrointestinal safe and has potent anti-inflammatory, analgesic, antipyretic, anti-platelet, and anti-cancer properties.

    PubMed

    Kashfi, Khosrow; Chattopadhyay, Mitali; Kodela, Ravinder

    2015-12-01

    Sulindac is chemopreventive and has utility in patients with familial adenomatous polyposis; however, side effects preclude its long-term use. NOSH-sulindac (AVT-18A) releases nitric oxide and hydrogen sulfide, was designed to be a safer alternative. Here we compare the gastrointestinal safety, anti-inflammatory, analgesic, anti-pyretic, anti-platelet, and anti-cancer properties of sulindac and NOSH-sulindac administered orally to rats at equimolar doses. Gastrointestinal safety: 6h post-administration, number/size of hemorrhagic lesions in stomachs were counted. Tissue samples were frozen for PGE2, SOD, and MDA determination. Anti-inflammatory: 1h after drug administration, the volume of carrageenan-induced rat paw edemas was measured for 5h. Anti-pyretic: fever was induced by LPS (ip) an hour before administration of the test drugs, core body temperature was measured hourly for 5h. Analgesic: time-dependent analgesic effects were evaluated by carrageenan-induced hyperalgesia. Antiplatelet: anti-aggregatory effects were studied on collagen-induced platelet aggregation of human platelet-rich plasma. Anti-cancer: We examined the effects of NOSH-sulindac on the growth properties of 12 human cancer cell lines of six different tissue origins. Both agents reduced PGE2 levels in stomach tissue; however, NOSH-sulindac did not cause any stomach ulcers, whereas sulindac caused significant bleeding. Lipid peroxidation induced by sulindac was higher than that from NOSH-sulindac. SOD activity was significantly lowered by sulindac but increased by NOSH-sulindac. Both agents showed similar anti-inflammatory, analgesic, anti-pyretic, and anti-platelet activities. Sulindac increased plasma TNFα whereas this rise was lower in the NOSH-sulindac-treated animals. NOSH-sulindac inhibited the growth of all cancer cell lines studied, with potencies of 1000- to 9000-fold greater than that of sulindac. NOSH-sulindac inhibited cell proliferation, induced apoptosis, and caused G2/M cell cycle block. These results demonstrate that NOSH-sulindac is gastrointestinal safe, and maintains the anti-inflammatory, analgesic, antipyretic, and antiplatelet properties of its parent compound sulinsac, with anti-growth activity against a wide variety of human cancer cells. PMID:26298203

  3. NOSH-sulindac (AVT-18A) is a novel nitric oxide- and hydrogen sulfide-releasing hybrid that is gastrointestinal safe and has potent anti-inflammatory, analgesic, antipyretic, anti-platelet, and anti-cancer properties

    PubMed Central

    Kashfi, Khosrow; Chattopadhyay, Mitali; Kodela, Ravinder

    2015-01-01

    Sulindac is chemopreventive and has utility in patients with familial adenomatous polyposis; however, side effects preclude its long-term use. NOSH-sulindac (AVT-18A) releases nitric oxide and hydrogen sulfide, was designed to be a safer alternative. Here we compare the gastrointestinal safety, anti-inflammatory, analgesic, anti-pyretic, anti-platelet, and anti-cancer properties of sulindac and NOSH-sulindac administered orally to rats at equimolar doses. Gastrointestinal safety: 6 h post-administration, number/size of hemorrhagic lesions in stomachs were counted. Tissue samples were frozen for PGE2, SOD, and MDA determination. Anti-inflammatory: 1 h after drug administration, the volume of carrageenan-induced rat paw edemas was measured for 5 h. Anti-pyretic: fever was induced by LPS (ip) an hour before administration of the test drugs, core body temperature was measured hourly for 5 h. Analgesic: time-dependent analgesic effects were evaluated by carrageenan-induced hyperalgesia. Antiplatelet: anti-aggregatory effects were studied on collagen-induced platelet aggregation of human platelet-rich plasma. Anti-cancer: We examined the effects of NOSH-sulindac on the growth properties of 12 human cancer cell lines of six different tissue origins. Both agents reduced PGE2 levels in stomach tissue; however, NOSH-sulindac did not cause any stomach ulcers, whereas sulindac caused significant bleeding. Lipid peroxidation induced by sulindac was higher than that from NOSH-sulindac. SOD activity was significantly lowered by sulindac but increased by NOSH-sulindac. Both agents showed similar anti-inflammatory, analgesic, anti-pyretic, and anti-platelet activities. Sulindac increased plasma TNFα whereas this rise was lower in the NOSH-sulindac-treated animals. NOSH-sulindac inhibited the growth of all cancer cell lines studied, with potencies of 1000- to 9000-fold greater than that of sulindac. NOSH-sulindac inhibited cell proliferation, induced apoptosis, and caused G2/M cell cycle block. These results demonstrate that NOSH-sulindac is gastrointestinal safe, and maintains the anti-inflammatory, analgesic, antipyretic, and antiplatelet properties of its parent compound sulinsac, with anti-growth activity against a wide variety of human cancer cells. PMID:26298203

  4. In vivo photoprotective and anti-inflammatory effect of hyperforin is associated with high antioxidant activity in vitro and ex vivo.

    PubMed

    Meinke, Martina C; Schanzer, Sabine; Haag, Stefan F; Casetti, Federica; Müller, Marcel L; Wölfle, Ute; Kleemann, Anke; Lademann, Juergen; Schempp, Christoph M

    2012-06-01

    Hyperforin, a major constituent of St. John's Wort (Hypericum perforatum, HP), provides anti-inflammatory, anti-tumor, and anti-bacterial properties. Previous studies have shown anti-oxidative properties of St. John's Wort extracts; however, its free radical scavenging activity in skin cells or skin has not been assessed in detail so far. Therefore, the free radical scavenging activity of hyperforin was tested in the H(2)DCFDA-assay in vitro in HaCaT keratinocytes irradiated with solar simulated radiation. Hyperforin (EC(50) 0.7 μM corresponding to 0.42 μg/ml) was much more effective compared to Trolox (EC(50) 12 μg/ml) and N-acetylcysteine (EC(50) 847 μg/ml) without showing phototoxicity. The radical protection factor of a cream containing 1.5%w/w of a hyperforin-rich HP extract was determined to be 200 × 10(14) radicals/mg, indicating a high radical scavenging activity. The cream was further applied ex vivo on porcine ear skin and significantly reduced radical formation after infrared irradiation. Finally, the UV-protective effect of the HP cream was tested on 20 volunteers in a randomized, double-blind, vehicle-controlled study. HP cream significantly reduced UVB-induced erythema as opposed to the vehicle. Occlusive application of HP cream on non-irradiated test sites did not cause any skin irritation. Taken together, these results demonstrate that hyperforin is a powerful free radical scavenger. PMID:22430217

  5. Gut health immunomodulatory and anti-inflammatory functions of gut enzyme digested high protein micro-nutrient dietary supplement-Enprocal

    PubMed Central

    Kanwar, Jagat R; Kanwar, Rupinder K

    2009-01-01

    Background Enprocal is a high-protein micro-nutrient rich formulated supplementary food designed to meet the nutritional needs of the frail elderly and be delivered to them in every day foods. We studied the potential of Enprocal to improve gut and immune health using simple and robust bioassays for gut cell proliferation, intestinal integrity/permeability, immunomodulatory, anti-inflammatory and anti-oxidative activities. Effects of Enprocal were compared with whey protein concentrate 80 (WPC), heat treated skim milk powder, and other commercially available milk derived products. Results Enprocal (undigested) and digested (Enprocal D) selectively enhanced cell proliferation in normal human intestinal epithelial cells (FHs74-Int) and showed no cytotoxicity. In a dose dependent manner Enprocal induced cell death in Caco-2 cells (human colon adencarcinoma epithelial cells). Digested Enprocal (Enprocal D: gut enzyme cocktail treated) maintained the intestinal integrity in transepithelial resistance (TEER) assay, increased the permeability of horseradish peroxidase (HRP) and did not induce oxidative stress to the gut epithelial cells. Enprocal D upregulated the surface expression of co-stimulatory (CD40, CD86, CD80), MHC I and MHC II molecules on PMA differentiated THP-1 macrophages in coculture transwell model, and inhibited the monocyte/lymphocyte (THP-1/Jurkat E6-1 cells)-epithelial cell adhesion. In cytokine secretion analyses, Enprocal D down-regulated the secretion of proinflammatory cytokines (IL-1β and TNF-α) and up-regulated IFN-γ, IL-2 and IL-10. Conclusion Our results indicate that Enprocal creates neither oxidative injury nor cytotoxicity, stimulates normal gut cell proliferation, up regulates immune cell activation markers and may aid in the production of antibodies. Furthermore, through downregulation of proinflammatory cytokines, Enprocal appears to be beneficial in reducing the effects of chronic gut inflammatory diseases such as inflammatory bowel disease (IBD). Stimulation of normal human fetal intestinal cell proliferation without cell cytotoxicity indicates it may also be given as infant food particularly for premature babies. PMID:19183498

  6. Anti-inflammatory effect of thalidomide dithiocarbamate and dithioate analogs.

    PubMed

    Talaat, Roba; El-Sayed, Waheba; Agwa, Hussein S; Gamal-Eldeen, Amira M; Moawia, Shaden; Zahran, Magdy A H

    2015-08-01

    Thalidomide has anti-inflammatory, immunomodulatory, and anti-angiogenic properties. It has been used to treat a variety of cancers and autoimmune diseases. This study aimed to characterize anti-inflammatory activities of novel thalidomide analogs by exploring their effects on splenocytes proliferation and macrophage functions and their antioxidant activity. MTT assay was used to assess the cytotoxic effect of thalidomide analogs against splenocytes. Tumor necrosis factor (TNF-?) and nuclear factor kappa B (NF-?B-P65) were determined by enzyme-linked immunosorbent assay (ELISA). Nitric oxide (NO) was estimated by colorimetric assay. Antioxidant activity was examined by ORAC assay. Our results demonstrated that thalidomide dithioate analog 2 and thalidomide dithiocarbamate analog 4 produced a slight increase in splenocyte proliferation compared with thalidomide. Thalidomide dithiocarbamate analog 1 is a potent inhibitor of TNF-? production, whereas thalidomide dithiocarbamate analog 5 is a potent inhibitor of both TNF-? and NO. Analog 2 has a pronounced inhibitory effect on NF-?B-P65 production level. All thalidomide analogs showed prooxidant activity against hydroxyl (OH) radical. Analog 1 and thalidomide dithioate analog 3 have prooxidant activity against peroxyl (ROO) radical in relation to thalidomide. On the other hand, analog 4 has a potent scavenging capacity against peroxyl (ROO) radical compared with thalidomide. Taken together, the results of this study suggest that thalidomide analogs might have valuable anti-inflammatory activities with more pronounced effect than thalidomide itself. PMID:26051520

  7. Bioactive Compounds, Antioxidant, Xanthine Oxidase Inhibitory, Tyrosinase Inhibitory and Anti-Inflammatory Activities of Selected Agro-Industrial By-products

    PubMed Central

    Oskoueian, Ehsan; Abdullah, Norhani; Hendra, Rudi; Karimi, Ehsan

    2011-01-01

    Evaluation of abundantly available agro-industrial by-products for their bioactive compounds and biological activities is beneficial in particular for the food and pharmaceutical industries. In this study, rapeseed meal, cottonseed meal and soybean meal were investigated for the presence of bioactive compounds and antioxidant, anti-inflammatory, xanthine oxidase and tyrosinase inhibitory activities. Methanolic extracts of rapeseed meal showed significantly (P < 0.01) higher phenolics and flavonoids contents; and significantly (P < 0.01) higher DPPH and nitric oxide free radical scavenging activities when compared to that of cottonseed meal and soybean meal extracts. Ferric thiocyanate and thiobarbituric acid tests results showed rapeseed meal with the highest antioxidant activity (P < 0.01) followed by BHT, cotton seed meal and soybean meal. Rapeseed meal extract in xanthine oxidase and tyrosinase inhibitory assays showed the lowest IC50 values followed by cottonseed and soybean meals. Anti-inflammatory assay using IFN-?/LPS stimulated RAW 264.7 cells indicated rapeseed meal is a potent source of anti-inflammatory agent. Correlation analysis showed that phenolics and flavonoids were highly correlated to both antioxidant and anti-inflammatory activities. Rapeseed meal was found to be promising as a natural source of bioactive compounds with high antioxidant, anti-inflammatory, xanthine oxidase and tyrosinase inhibitory activities in contrast to cotton and soybean meals. PMID:22272095

  8. De Novo Design and Synthesis of Ultra-Short Peptidomimetic Antibiotics Having Dual Antimicrobial and Anti-Inflammatory Activities

    PubMed Central

    Ahn, Mija; Hwang, Eunha; Sohn, Hoik; Park, Hyo-Nam; Lee, Eunjung; Seo, Ji-Hyung; Cheong, Chaejoon; Nam, Ky-Youb; Hyun, Jae-Kyung; Jeong, Ki-Woong; Kim, Yangmee; Shin, Song Yub; Bang, Jeong Kyu

    2013-01-01

    Background Much attention has been focused on the design and synthesis of potent, cationic antimicrobial peptides (AMPs) that possess both antimicrobial and anti-inflammatory activities. However, their development into therapeutic agents has been limited mainly due to their large size (12 to 50 residues in length) and poor protease stability. Methodology/Principal Findings In an attempt to overcome the issues described above, a set of ultra-short, His-derived antimicrobial peptides (HDAMPs) has been developed for the first time. Through systematic tuning of pendant hydrophobic alkyl tails at the N(?)- and N(?)-positions on His, and the positive charge of Arg, much higher prokaryotic selectivity was achieved, compared to human AMP LL-37. Additionally, the most potent HDAMPs showed promising dual antimicrobial and anti-inflammatory activities, as well as antimethicillin-resistant Staphylococcus aureus (MRSA) activity and proteolytic resistance. Our results from transmission electron microscopy, membrane depolarization, confocal laser-scanning microscopy, and calcein-dye leakage experiments propose that HDAMP-1 kills microbial cells via dissipation of the membrane potential by forming pore/ion channels on bacterial cell membranes. Conclusion/Significance The combination of the ultra-short size, high-prokaryotic selectivity, potent anti-MRSA activity, anti-inflammatory activity, and proteolytic resistance of the designed HDAMP-1, -3, -5, and -6 makes these molecules promising candidates for future antimicrobial therapeutics. PMID:24302996

  9. Boswellia carterii liquisolid systems with promoted anti-inflammatory activity.

    PubMed

    Mostafa, Dina Mahmoud; Ammar, Nagwa Mohammed; Abd El-Alim, Sameh Hosam; Kassem, Ahmed Alaa; Hussein, Rehab Ali; Awad, Gamal; El-Awdan, Sally Abdul-Wanees

    2015-01-01

    Boswellia carterii (BC) Birdwood oleogum resin is an ancient remedy of inflammation processes known since Ancient Egyptian time. Of boswellic acids, 3-acetyl-11-keto-β-boswellic acid (AKBA) is the most potent anti-inflammatory active principle. Liquisolid systems of the biologically active fraction of BC oleogum resin were prepared for improving dissolution properties using low dose oral delivery to achieve enhanced anti-inflammatory activity, in comparison with the standard oral anti-inflammatory; Indomethacin. AKBA was assayed, employing an accurate and sensitive HPLC method. Detection was carried out at 210 nm using UV/Vis detector. A solubility study for the bioactive fraction was conducted. Microcrystalline cellulose and Aeroperl®300 Pharma were used as carrier and coating materials. Angle of slide, liquid load factor and Carr's flow index were estimated. Six systems were prepared using polyethylene glycol 400, solvent and two drug loading concentrations; 20 and 40 %. For each concentration, three carrier: coat ratios were dispensed; 20:1, 10:1, and 5:1. Dissolution study was performed and two systems were selected for characterization and in vivo evaluation by investigating upper GIT ulcerogenic effect and anti-inflammatory efficacy in rats. Results indicate absence of ulcers and significantly higher and prolonged anti-inflammatory efficacy for formulations F1 and F2, with carrier: coat ratio, 5:1 and drug loads of 20 and 40 %, respectively, compared with standard oral indomethacin. We conclude higher efficacy of BC bioactive fraction liquisolids compared with Indomethacin with greater safety on GIT, longer duration of action and hence better patient compliance. PMID:25895614

  10. Systematic Analysis of Absorbed Anti-Inflammatory Constituents and Metabolites of Sarcandra glabra in Rat Plasma Using Ultra-High-Pressure Liquid Chromatography Coupled with Linear Trap Quadrupole Orbitrap Mass Spectrometry

    PubMed Central

    Li, Xiong; Zhao, Jin; Liu, Jianxing; Li, Geng; Zhao, Ya; Zeng, Xing

    2016-01-01

    Ultra-high-pressure liquid chromatography (UHPLC) was coupled with linear ion trap quadrupole Orbitrap mass spectrometry (LTQ-Orbitrap) and was used for the first time to systematically analyze the absorbed components and metabolites in rat plasma after oral administration of the water extract of Sarcandra glabra. This extract is a well-known Chinese herbal medicine for the treatment of inflammation and immunity related diseases. The anti-inflammatory activities of the absorbed components were evaluated by measuring nitric oxide (NO) production and proinflammatory genes expression in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages. As a result, 54 components in Sarcandra glabra were detected in dosed rat plasma, and 36 of them were positively identified. Moreover, 23 metabolites were characterized and their originations were traced. Furthermore, 20 of the 24 studied components showed anti-inflammatory activities. These results provide evidence that this method efficiency detected constituents in plasma based on the anti-inflammatory mechanism of multiple components and would be a useful technique for screening multiple targets for natural medicine research. PMID:26974321

  11. Therapeutic Potential of Hydrazones as Anti-Inflammatory Agents

    PubMed Central

    Bala, Suman; Sharma, Neha; Saini, Vipin

    2014-01-01

    Hydrazones are a special class of organic compounds in the Schiff base family. Hydrazones constitute a versatile compound of organic class having basic structure (R1R2C=NNR3R4). The active centers of hydrazone, that is, carbon and nitrogen, are mainly responsible for the physical and chemical properties of the hydrazones and, due to the reactivity toward electrophiles and nucleophiles, hydrazones are used for the synthesis of organic compound such as heterocyclic compounds with a variety of biological activities. Hydrazones and their derivatives are known to exhibit a wide range of interesting biological activities like antioxidant, anti-inflammatory, anticonvulsant, analgesic, antimicrobial, anticancer, antiprotozoal, antioxidant, antiparasitic, antiplatelet, cardioprotective, anthelmintic, antidiabetic, antitubercular, trypanocidal, anti-HIV, and so forth. The present review summarizes the efficiency of hydrazones as potent anti-inflammatory agents. PMID:25383223

  12. The anti-inflammatory effects of levocetirizine--are they clinically relevant or just an interesting additional effect?

    PubMed

    Walsh, Garry M

    2009-12-01

    Levocetirizine, the R-enantiomer of cetirizine dihydrochloride has pharmacodynamically and pharmacokinetically favourable characteristics, including rapid onset of action, high bioavailability, high affinity for and occupancy of the H1-receptor, limited distribution, minimal hepatic metabolism together with minimal untoward effects. Several well conducted randomised clinical trials have demonstrated the effectiveness of levocetirizine for the treatment of allergic rhinitis and chronic idiopathic urticaria in adults and children. In addition to the treatment for the immediate short-term manifestations of allergic disease, there appears to be a growing trend for the use of levocetirizine as long-term therapy. In addition to its being a potent antihistamine, levocetirizine has several documented anti-inflammatory effects that are observed at clinically relevant concentrations that may enhance its therapeutic benefit. This review will consider the potential or otherwise of the reported anti-inflammatory effects of levocetirizine to enhance its effectiveness in the treatment of allergic disease. PMID:20066054

  13. Inhibition of soluble epoxide hydrolase contributes to the anti-inflammatory effect of antimicrobial triclocarban in a murine model

    PubMed Central

    Liu, Jun-Yan; Qiu, Hong; Morisseau, Christophe; Hwang, Sung Hee; Tsai, Hsing-Ju; Ulu, Arzu; Chiamvimonvat, Nipavan; Hammock, Bruce D

    2011-01-01

    The increasing use of the anti-microbial triclocarban (TCC) in personal care products (PCPs) has resulted in concern regarding environmental pollution. TCC is a potent inhibitor of soluble epoxide hydrolase (sEH). Inhibitors of sEH (sEHIs) are anti-inflammatory, anti-hypertensive and cardio-protective in multiple animal models. However, the in vivo effects anticipated from a sEHI have not been reported for TCC. Here we demonstrated the anti-inflammatory effects in vivo of TCC in a murine model. TCC was employed in a lipopolysaccharide (LPS)-challenged murine model. Systolic blood pressure, plasma levels of several inflammatory cytokines and chemokine, and metabolomic profile of plasma oxylipins were determined. TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. TCC significantly repressed the increased release of inflammatory cytokines and chemokine caused by LPS. Furthermore, TCC significantly shifted the oxylipin profile in vivo in a time-dependent manner towards resolution of inflammation as expected from a sEHI. These results demonstrated that at the doses used TCC is anti-inflammatory in the murine model. This study suggests that TCC may provide some benefits in humans in addition to its antimicrobial activities due to its potent inhibition of sEH. It may be a promising starting point for developing new low volume high value applications of TCC. However these biological effects also caution against the general over use of TCC in PCPs. PMID:21741984

  14. Structures and mechanism for the design of highly potent glucocorticoids

    PubMed Central

    He, Yuanzheng; Yi, Wei; Suino-Powell, Kelly; Zhou, X Edward; Tolbert, W David; Tang, Xiaobo; Yang, Jing; Yang, Huaiyu; Shi, Jingjing; Hou, Li; Jiang, Hualiang; Melcher, Karsten; Xu, H Eric

    2014-01-01

    The evolution of glucocorticoid drugs was driven by the demand of lowering the unwanted side effects, while keeping the beneficial anti-inflammatory effects. Potency is an important aspect of this evolution as many undesirable side effects are associated with use of high-dose glucocorticoids. The side effects can be minimized by highly potent glucocorticoids that achieve the same treatment effects at lower doses. This demand propelled the continuous development of synthetic glucocorticoids with increased potencies, but the structural basis of their potencies is poorly understood. To determine the mechanisms underlying potency, we solved the X-ray structures of the glucocorticoid receptor (GR) ligand-binding domain (LBD) bound to its endogenous ligand, cortisol, which has relatively low potency, and a highly potent synthetic glucocorticoid, mometasone furoate (MF). The cortisol-bound GR LBD revealed that the flexibility of the C1-C2 single bond in the steroid A ring is primarily responsible for the low affinity of cortisol to GR. In contrast, we demonstrate that the very high potency of MF is achieved by its C-17α furoate group completely filling the ligand-binding pocket, thus providing additional anchor contacts for high-affinity binding. A single amino acid in the ligand-binding pocket, Q642, plays a discriminating role in ligand potency between MF and cortisol. Structure-based design led to synthesis of several novel glucocorticoids with much improved potency and efficacy. Together, these results reveal key structural mechanisms of glucocorticoid potency and provide a rational basis for developing novel highly potent glucocorticoids. PMID:24763108

  15. Analgesic, Anti-inflammatory and neuropharmacological effects of Atropa belladonna.

    PubMed

    Owais, Farah; Anwar, Sohail; Saeed, Farah; Muhammad, Shafi; Ishtiaque, Saiqa; Mohiuddin, Omair

    2014-11-01

    The present study was carried out to investigate, in vivo, analgesic, anti-inflammatory and neuro-pharmacological activities of the methanolic extract of Atropa belladonna. The analgesic activity was measured by acetic acid induced writhing inhibition test. The neuro-pharmacological activities were evaluated by open field, rearing test, cage cross, swim test, head dip and traction tests. The anti-inflammatory activity was assessed by formalin induce inflammation on hind paw. The extract showed highly significant (p<0.001) analgesic activity with % inhibitions of writhing response at doses 100 and 300mg/kg body weight were 28.5% and 57.1%, respectively. The extract at both doses showed significant (p<0.05) sedative effect in-cage cross test and highly significance value (p<0.001) in high dose. In-open field test, the extract showed significant (P<0.05) anxiolytic activity at higher dose whereas in rearing test activity shows significant p-value at both doses. The extract also showed significant value for anti-inflammatory activity. The findings of the study clearly indicated the presence of significant analgesic, neuro-pharmacological and anti-inflammatory properties of the plant, which demands further investigation including, compounds isolation. PMID:26045383

  16. Fructose 1,6-bisphosphate, a high-energy intermediate of glycolysis, attenuates experimental arthritis by activating anti-inflammatory adenosinergic pathway

    PubMed Central

    Veras, Flvio P.; Peres, Raphael S.; Saraiva, Andr L. L.; Pinto, Larissa G.; Louzada-Junior, Paulo; Cunha, Thiago M.; Paschoal, Jonas A. R.; Cunha, Fernando Q.; Alves-Filho, Jos C.

    2015-01-01

    Fructose 1,6-bisphosphate (FBP) is an endogenous intermediate of the glycolytic pathway. Exogenous administration of FBP has been shown to exert protective effects in a variety of ischemic injury models, which are attributed to its ability to sustain glycolysis and increase ATP production. Here, we demonstrated that a single treatment with FBP markedly attenuated arthritis, assessed by reduction of articular hyperalgesia, joint swelling, neutrophil infiltration and production of inflammatory cytokines, TNF and IL-6, while enhancing IL-10 production in two mouse models of arthritis. Our mechanistic studies showed that FBP reduces joint inflammation through the systemic generation of extracellular adenosine and subsequent activation of adenosine receptor A2a (A2aR). Moreover, we showed that FBP-induced adenosine generation requires hydrolysis of extracellular ATP through the activity of the ectonucleosides triphosphate diphosphohydrolase-1 (ENTPD1, also known as CD39) and ecto-5?-nucleotidase (E5NT, also known as CD73). In accordance, inhibition of CD39 and CD73 abolished anti-arthritic effects of FBP. Taken together, our findings provide a new insight into the molecular mechanism underlying the anti-inflammatory effect of FBP, showing that it effectively attenuates experimental arthritis by activating the anti-inflammatory adenosinergic pathway. Therefore, FBP may represent a new therapeutic strategy for treatment of rheumatoid arthritis (RA). PMID:26478088

  17. Differentiating oxicam nonsteroidal anti-inflammatory drugs in phosphoglyceride monolayers.

    PubMed

    Czapla, Katarzyna; Korchowiec, Beata; Rogalska, Ewa

    2010-03-01

    Meloxicam, piroxicam, and tenoxicam belong to a highly potent oxicam group of nonsteroidal anti-inflammatory drugs. Whereas the structurally similar oxicams have different pharmacokinetics, treatment efficiency, and adverse effects, their common mechanism of action is the inhibition of a membrane enzyme, cyclooxygenase. Because the prerequisite for accessing the cyclooxygenase by the drugs is interaction with the membrane, the focus of the current study was a comparison of how meloxicam, piroxicam, and tenoxicam interact with lipid monolayers used as models of biological membranes. The monolayers were formed with 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol), 1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, 1,2-myristoyl-sn-glycero-3-phosphoethanolamine, and 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine. These systems were examined via surface pressure and surface electrical potential measurements, polarization modulation infrared reflection adsorption spectra, and Brewster angle microscopy. The three oxicams are differentiated in the monolayers; meloxicam shows the highest ability to modify membrane fluidity and surface potential, followed by piroxicam and tenoxicam. The dissimilarity of the biological activity of the oxicams may be linked to different interaction with the membrane, as revealed by the present study. PMID:20030324

  18. Bioactive peptide from Pyropia yezoensis and its anti-inflammatory activities.

    PubMed

    Lee, Hyun-Ah; Kim, In-Hye; Nam, Taek-Jeong

    2015-12-01

    Pyropia yezoensis (P. yezoensis) is an important marine algae. Its high protein content serves as a good source of biologically active peptides. Potent inhibitory effects on the production of inflammatory mediators were observed in a bioactive peptide derived from P. yezoensis (peptide from P. yezoensis; PPY1), as demonstrated in lipopolysaccharide (LPS)-stimulated macrophages. The present study showed that peptide concentrations ranging from 250 to 1,000 ng/ml had no significant cytotoxicity in the cell viability assay when applied to the RAW 264.7 cells for 24 h. PPY1 completely inhibited LPS?stimulated nitric oxide (NO) release in a dose-dependent manner. Fluorescence intensity, corresponding to intracellular reactive oxygen species (ROS) produced by 10 ng/ml LPS-stimulated cells, significantly shifted, indicating that the peptide reduced the level of ROS. Furthermore, PPY1 exerted potent inhibitory activity to reduce the release of pro-inflammatory cytokines (inducible NO synthase, cyclooxygenase-2, interleukin-1? and tumor necrosis factor-?) in LPS-stimulated macrophages in a dose-dependent manner. These results also showed that the anti-inflammatory activity of PPY1 was associated with downregulation of extracellular signal-regulated kinase, protein 38, and c-jun NH2-terminal kinase phosphorylation in the mitogen-activated protein kinase pathways. In conclusion, PPY1 can have a significant role as an anti-inflammatory agent, with a potential for use in marine products. PMID:26497591

  19. The aa flavonoid velutin is a potent anti-inflammatory agent: blockade of LPS-mediated TNF-? and IL-6 production through inhibiting NF-?B activation and MAPK pathway.

    PubMed

    Xie, Chenghui; Kang, Jie; Li, Zhimin; Schauss, Alexander G; Badger, Thomas M; Nagarajan, Shanmugam; Wu, Tong; Wu, Xianli

    2012-09-01

    Recent studies have shown that some flavonoids are modulators of proinflammatory cytokine production. In this study, velutin, a unique flavone isolated from the pulp of aa fruit (Euterpe oleracea Mart.), was examined for its effects in reducing lipopolysaccharide-induced proinflammatory cytokine tumor necrosis factor (TNF)-? and interleukin (IL)-6 production in RAW 264.7 peripheral macrophages and mice peritoneal macrophages. Three other structurally similar and well-studied flavones, luteolin, apigenin and chrysoeriol, were included as controls and for comparative purposes. Velutin exhibited the greatest potency among all flavones in reducing TNF-? and IL-6 production. Velutin also showed the strongest inhibitory effect in nuclear factor (NF)-?B activation (as assessed by secreted alkaline phosphatase reporter assay) and exhibited the greatest effects in blocking the degradation of inhibitor of NF-?B as well as in inhibiting mitogen-activated protein kinase p38 and JNK phosphorylation; all of these are important signaling pathways involved in production of TNF-? and IL-6. The present study led to the discovery of a strong anti-inflammatory flavone, velutin. This compound effectively inhibited the expression of proinflammatory cytokines TNF-? and IL-6 in low micromole levels by inhibiting NF-?B activation and p38 and JNK phosphorylation. PMID:22137267

  20. Anti-inflammatory and pro-resolving properties of benzo-lipoxin A4 analogs

    PubMed Central

    Sun, Yee-Ping; Tjonahen, Eric; Keledjian, Raquel; Zhu, Min; Yang, Rong; Recchiuti, Antonio; Pillai, Padmini S; Petasis, Nicos A.; Serhan, Charles N.

    2009-01-01

    SUMMARY Lipoxins (LXs) are potent endogenous counter-regulatory lipid mediators that dampen acute inflammation and promote its resolution. Here, we present our investigation of a new class of thermally and metabolically stable benzo-LXA4 analogs that are potently anti-inflammatory and easier to synthesize. Replacement of the tetraene unit of native LXA4 with a benzo-fused ring system not only increases the thermal stability but also enables highly convergent and efficient syntheses of these analogs. In addition, they resist rapid catalysis and inactivation by eicosanoid oxidoreductase. Like native LXs, o-[9, 12]-benzo-?6-epi-LXA4, o-[9, 12]-benzo-deoxy-LXA4, m-[9, 12]-benzo-?6-epi-LXA4 and [9, 14]-benzo-?6-(R/S)-LXA4 demonstrated potent time-dependent reduction, at nanogram dosages, of PMN infiltration and pro-inflammatory cytokine generation in vivo in murine peritonitis and were organ protective in hind limb ischemia-reperfusion injury of the lung. The o-[9, 12]-benzo-?6-epi-LXA4 and m-[9, 12]-benzo-?6-epi-LXA4 were most potent in nanogram doses; both decreased PMN infiltration by ~32%, while o-[9, 12]-benzo-deoxy-LXA4 and [9, 15]-?6-(R/S)-LXA4 were less potent. The [9,12]- benzo-?6-epi-LXA4 also activated a lipoxin A4 GPCR and increased macrophage phagocytic activity. Taken together, these findings demonstrate a new generation of LXA4 stable analogs that are easy to synthesize and anti-inflammatory. These benzo-LXA4 analogs are promising tools for new therapeutic approaches as well as assessing endogenous mechanisms in anti-inflammation and resolution. PMID:19853429

  1. Marine Diterpenoids as Potential Anti-Inflammatory Agents

    PubMed Central

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E.; Fernandez, Patricia L.

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules. PMID:26538822

  2. Anti-inflammatory potential of allyl-isothiocyanate role of Nrf2, NF-?B and microRNA-155

    PubMed Central

    Wagner, Anika Eva; Boesch-Saadatmandi, Christine; Dose, Janina; Schultheiss, Gerhard; Rimbach, Gerald

    2012-01-01

    Abstract In this study, the underlying mechanisms of the potential anti-inflammatory properties of allyl-isothiocyanate (AITC) were analysed in vitro and in vivo. Murine RAW264.7 macrophages stimulated with lipopolysaccharide (LPS) were supplemented with increasing concentrations of AITC. In addition, C57BL/6 mice (n= 10 per group) were fed a pro-inflammatory high-fat diet and AITC was administered orally via gavage for 7 days. Biomarkers of inflammation were determined both in cultured cells and in mice. AITC significantly decreased tumour necrosis factor ? mRNA levels and its secretion in LPS stimulated RAW264.7 macrophages. Furthermore, gene expression of other pro-inflammatory markers including interleukin-1? and inducible nitric oxide synthase were down-regulated following AITC treatment. AITC decreased nuclear p65 protein levels, a subunit of the transcription factor NF-?B. Importantly, our data indicate that AITC significantly attenuated microRNA-155 levels in LPS-stimulated RAW264.7 macrophages in a dose-dependent manner. The anti-inflammatory effects of AITC were accompanied by an increase in Nrf2 nuclear translocation and consequently by an increase of mRNA and protein levels of the Nrf2 target gene heme-oxygenase 1. AITC was slightly less potent than sulforaphane (used as a positive control) in down-regulating inflammation in LPS-stimulated macrophages. A significant increase in nuclear Nrf2 and heme-oxygenase 1 gene expression and only a moderate down-regulation of interleukin-1? and microRNA-155 levels due to AITC was found in mouse liver. Present data suggest that AITC exhibits potent anti-inflammatory activity in cultured macrophages in vitro but has only little anti-inflammatory activity in mice in vivo. PMID:21692985

  3. Inhibition of soluble epoxide hydrolase contributes to the anti-inflammatory effect of antimicrobial triclocarban in a murine model

    SciTech Connect

    Liu Junyan; Qiu Hong; Morisseau, Christophe; Hwang, Sung Hee; Tsai, Hsing-Ju; Ulu, Arzu; Chiamvimonvat, Nipavan; Hammock, Bruce D.

    2011-09-01

    The increasing use of the antimicrobial triclocarban (TCC) in personal care products (PCPs) has resulted in concern regarding environmental pollution. TCC is a potent inhibitor of soluble epoxide hydrolase (sEH). Inhibitors of sEH (sEHIs) are anti-inflammatory, anti-hypertensive and cardio-protective in multiple animal models. However, the in vivo effects anticipated from a sEHI have not been reported for TCC. Here we demonstrated the anti-inflammatory effects in vivo of TCC in a murine model. TCC was employed in a lipopolysaccharide (LPS)-challenged murine model. Systolic blood pressure, plasma levels of several inflammatory cytokines and chemokine, and metabolomic profile of plasma oxylipins were determined. TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. TCC significantly repressed the increased release of inflammatory cytokines and chemokine caused by LPS. Furthermore, TCC significantly shifted the oxylipin profile in vivo in a time-dependent manner towards resolution of inflammation as expected from a sEHI. These results demonstrated that at the doses used TCC is anti-inflammatory in the murine model. This study suggests that TCC may provide some benefits in humans in addition to its antimicrobial activities due to its potent inhibition of sEH. It may be a promising starting point for developing new low volume high value applications of TCC. However these biological effects also caution against the general over use of TCC in PCPs. - Graphical abstract: Display Omitted Research Highlights: > Anti-microbial triclocarban (TCC) is anti-inflammatory in a murine model. > TCC significantly shifted the oxylipin profile in vivo as expected from a sEHI. > TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. > TCC significantly repressed LPS-induced increased release of inflammatory cytokines.

  4. The detection and characterization of analgesics and anti-inflammatory drugs on high performance thin-layer chromatography plates using tandem mass spectrometry: application to drugs and metabolites in urine.

    PubMed

    Morden, W; Wilson, I D

    1996-01-01

    The application of tandem mass spectrometry to the analysis and identification of analgesics and non-steroidal anti-inflammatory drugs such as paracetamol, ibuprofen and indomethacin following thin-layer chromatography (TLC) is described. TLC was combined successfully with mass spectrometry and with tandem mass spectrometry using silica gel and diol-bonded silica gel high performance TLC plates. The diol-bonded phase was found to be superior for use with biological samples and enabled the identification of paracetamol, ibuprofen and salicylhippuric acid (the major metabolite of acetylsalicylic acid) in human urine extracts following normal therapeutic doses. PMID:9004530

  5. Cannabinoids as novel anti-inflammatory drugs

    PubMed Central

    Nagarkatti, Prakash; Pandey, Rupal; Rieder, Sadiye Amcaoglu; Hegde, Venkatesh L; Nagarkatti, Mitzi

    2009-01-01

    Cannabinoids are a group of compounds that mediate their effects through cannabinoid receptors. The discovery of Δ9-tetrahydrocannabinol (THC) as the major psychoactive principle in marijuana, as well as the identification of cannabinoid receptors and their endogenous ligands, has led to a significant growth in research aimed at understanding the physiological functions of cannabinoids. Cannabinoid receptors include CB1, which is predominantly expressed in the brain, and CB2, which is primarily found on the cells of the immune system. The fact that both CB1 and CB2 receptors have been found on immune cells suggests that cannabinoids play an important role in the regulation of the immune system. Recent studies demonstrated that administration of THC into mice triggered marked apoptosis in T cells and dendritic cells, resulting in immunosuppression. In addition, several studies showed that cannabinoids downregulate cytokine and chemokine production and, in some models, upregulate T-regulatory cells (Tregs) as a mechanism to suppress inflammatory responses. The endocannabinoid system is also involved in immunoregulation. For example, administration of endocannabinoids or use of inhibitors of enzymes that break down the endocannabinoids, led to immunosuppression and recovery from immune-mediated injury to organs such as the liver. Manipulation of endocannabinoids and/or use of exogenous cannabinoids in vivo can constitute a potent treatment modality against inflammatory disorders. This review will focus on the potential use of cannabinoids as a new class of anti-inflammatory agents against a number of inflammatory and autoimmune diseases that are primarily triggered by activated T cells or other cellular immune components. PMID:20191092

  6. Small molecules with anti-inflammatory properties in clinical development.

    PubMed

    Hanke, Thomas; Merk, Daniel; Steinhilber, Dieter; Geisslinger, Gerd; Schubert-Zsilavecz, Manfred

    2016-01-01

    Inflammation is a crucial physiological response of our body to any kind of noxa be it an infection or tissue injury. However, this physiological process can be detrimental if dysregulated, and when the acute inflammatory response fails to resolve the cause of inflammation, there can be a switch to chronification. According to ICD 10 (WHO) over 3.000 diseases exist with the suffix "-itis" which terms an inflammatory disease. For the treatment of inflammation, non-steroidal anti-inflammatory drugs (NSAIDs) are the most widespread drugs while glucocorticoids are among our strongest weapons against inflammation, making them emergency treatments for acute episodes of chronic inflammation. For the treatment of many inflammatory disorders, both are not satisfying. Consequently, industrial and academic research on anti-inflammatory drugs is very intensive. In this review, we evaluate current treatments and unmet needs of chronic inflammatory diseases with high prevalence (rheumatoid arthritis, multiple sclerosis, chronic obstructive pulmonary disease, inflammatory bowel disease, and psoriasis), and systematically review small molecules with anti-inflammatory properties presently in clinical trials for the aforementioned diseases. As the pathophysiological knowledge of diseases increased over the last decades, a more specific intervention of inflammatory pathways becomes possible. After one hundred years of NSAIDs and over fifty years of glucocorticoids, more specific drugs for anti-inflammatory therapy such as roflumilast or fingolimod are rising. The aim of this article is to critically review the literature on small anti-inflammatory molecules in clinical trials to generate an idea of what we can expect in the future. PMID:26627986

  7. The promotion of functional urinary bladder regeneration using anti-inflammatory nanofibers

    PubMed Central

    Bury, Matthew I.; Fuller, Natalie J.; Meisner, Jay W.; Hofer, Matthias D.; Webber, Matthew J.; Chow, Lesley W.; Prasad, Sheba; Thaker, Hatim; Yue, Xuan; Menon, Vani S.; Diaz, Edward C.; Stupp, Samuel I.; Cheng, Earl Y.; Sharma, Arun K.

    2014-01-01

    Current attempts at tissue regeneration utilizing synthetic and decellularized biologic-based materials have typically been met in part by innate immune responses in the form of a robust inflammatory reaction at the site of implantation or grafting. This can ultimately lead to tissue fibrosis with direct negative impact on tissue growth, development, and function. In order to temper the innate inflammatory response, anti-inflammatory signals were incorporated through display on self-assembling peptide nanofibers to promote tissue healing and subsequent graft compliance throughout the regenerative process. Utilizing an established urinary bladder augmentation model, the highly pro-inflammatory biologic scaffold (decellularized small intestinal submucosa) was treated with anti-inflammatory peptide amphiphiles (AIF-PAs) or control peptide amphiphiles and used for augmentation. Significant regenerative advantages of the AIF-PAs were observed including potent angiogenic responses, limited tissue collagen accumulation, and the modulation of macrophage and neutrophil responses in regenerated bladder tissue. Upon further characterization, a reduction in the levels of M2 macrophages was observed, but not in M1 macrophages in control groups, while treatment groups exhibited decreased levels of M1 macrophages and stabilized levels of M2 macrophages. Pro-inflammatory cytokine production was decreased while anti-inflammatory cytokines were up-regulated in treatment groups. This resulted in far fewer incidences of tissue granuloma and bladder stone formation. Finally, functional urinary bladder testing revealed greater bladder compliance and similar capacities in groups treated with AIF-PAs. Data demonstrate that AIF-PAs can alleviate galvanic innate immune responses and provide a highly conducive regenerative milieu that may be applicable in a variety of clinical settings. PMID:25145852

  8. The promotion of functional urinary bladder regeneration using anti-inflammatory nanofibers.

    PubMed

    Bury, Matthew I; Fuller, Natalie J; Meisner, Jay W; Hofer, Matthias D; Webber, Matthew J; Chow, Lesley W; Prasad, Sheba; Thaker, Hatim; Yue, Xuan; Menon, Vani S; Diaz, Edward C; Stupp, Samuel I; Cheng, Earl Y; Sharma, Arun K

    2014-11-01

    Current attempts at tissue regeneration utilizing synthetic and decellularized biologic-based materials have typically been met in part by innate immune responses in the form of a robust inflammatory reaction at the site of implantation or grafting. This can ultimately lead to tissue fibrosis with direct negative impact on tissue growth, development, and function. In order to temper the innate inflammatory response, anti-inflammatory signals were incorporated through display on self-assembling peptide nanofibers to promote tissue healing and subsequent graft compliance throughout the regenerative process. Utilizing an established urinary bladder augmentation model, the highly pro-inflammatory biologic scaffold (decellularized small intestinal submucosa) was treated with anti-inflammatory peptide amphiphiles (AIF-PAs) or control peptide amphiphiles and used for augmentation. Significant regenerative advantages of the AIF-PAs were observed including potent angiogenic responses, limited tissue collagen accumulation, and the modulation of macrophage and neutrophil responses in regenerated bladder tissue. Upon further characterization, a reduction in the levels of M2 macrophages was observed, but not in M1 macrophages in control groups, while treatment groups exhibited decreased levels of M1 macrophages and stabilized levels of M2 macrophages. Pro-inflammatory cytokine production was decreased while anti-inflammatory cytokines were up-regulated in treatment groups. This resulted in far fewer incidences of tissue granuloma and bladder stone formation. Finally, functional urinary bladder testing revealed greater bladder compliance and similar capacities in groups treated with AIF-PAs. Data demonstrate that AIF-PAs can alleviate galvanic innate immune responses and provide a highly conducive regenerative milieu that may be applicable in a variety of clinical settings. PMID:25145852

  9. High levels of anti-inflammatory and pro-resolving lipid mediators lipoxins and resolvins and declining docosahexaenoic acid levels in human milk during the first month of lactation

    PubMed Central

    2013-01-01

    Background The fatty acid mixture of human milk is ideal for the newborn but little is known about its composition in the first few weeks of lactation. Of special interest are the levels of long-chain PUFAs (LCPUFAs), since these are essential for the newborn’s development. Additionally, the LCPUFAs arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are precursors for lipid mediators which regulate inflammation. Methods We determined the composition of 94 human milk samples from 30 mothers over the first month of lactation for fatty acids using GC-MS and quantified lipid mediators using HPLC-MS/MS. Results Over the four weeks period, DHA levels decreased, while levels of γC18:3 and αC18:3 steadily increased. Intriguingly, we found high concentrations of lipid mediators and their hydroxy fatty acid precursors in human milk, including pro-inflammatory leukotriene B4 (LTB4) and anti-inflammatory and pro-resolving lipoxin A4 (LXA4), resolvin D1 (RvD1) and resolvin E1 (RvE1). Lipid mediator levels were stable with the exception of two direct precursors. Conclusions Elevated levels of DHA right after birth might represent higher requirements of the newborn and the high content of anti-inflammatory and pro-resolving lipid mediators and their precursors may indicate their role in neonatal immunity and may be one of the reasons for the advantage of human milk over infant formula. PMID:23767972

  10. CHF6001 II: a novel phosphodiesterase 4 inhibitor, suitable for topical pulmonary administration--in vivo preclinical pharmacology profile defines a potent anti-inflammatory compound with a wide therapeutic window.

    PubMed

    Villetti, Gino; Carnini, Chiara; Battipaglia, Loredana; Preynat, Laurent; Bolzoni, Pier Tonino; Bassani, Franco; Caruso, Paola; Bergamaschi, Marco; Pisano, Anna Rita; Puviani, Veronica; Stellari, Fabio Franco; Cenacchi, Valentina; Volta, Roberta; Bertacche, Vittorio; Mileo, Valentina; Bagnacani, Valentina; Moretti, Elisa; Puccini, Paola; Catinella, Silvia; Facchinetti, Fabrizio; Sala, Angelo; Civelli, Maurizio

    2015-03-01

    CHF6001 [(S)-3,5-dichloro-4-(2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2-(3-(cyclopropylmethoxy)-4-(methylsulfonamido)benzoyloxy)ethyl)pyridine 1-oxide] is a novel phosphodiesterase 4 (PDE4) inhibitor designed for use in pulmonary diseases by inhaled administration. Intratracheal administration of CHF6001 to ovalbumin-sensitized Brown-Norway rats suppressed the antigen-induced decline of lung functions (ED50 = 0.1 mol/kg) and antigen-induced eosinophilia (ED50 = 0.03 mol/kg) when administered (0.09 ?mol/kg) up to 24 hours before antigen challenge, in agreement with CHF6001-sustained lung concentrations up to 72 hours after intratracheal treatment (mean residence time 26 hours). Intranasal, once daily administration of CHF6001 inhibited neutrophil infiltration observed after 11 days of tobacco smoke exposure in mice, both upon prophylactic (0.15-0.45 mol/kg per day) or interventional (0.045-0.45 mol/kg per day) treatment. CHF6001 was ineffective in reversing ketamine/xylazine-induced anesthesia (a surrogate of emesis in rat) up to 5 mol/kg administered intratracheally, a dose 50- to 150-fold higher than anti-inflammatory ED50 observed in rats. When given topically to ferrets, no emesis and nausea were evident up to 10 to 20 mol/kg, respectively, whereas the PDE4 inhibitor GSK-256066 (6-[3-(dimethylcarbamoyl)phenyl]sulfonyl-4-(3-methoxyanilino)-8-methylquinoline-3-carboxamide) induced nausea at 1 mol/kg intratracheally. A 14-day inhalation toxicology study in rats showed a no-observed-adverse-effect level dose of 4.4 mol/kg per day for CHF6001, lower than the 0.015 ?mol/kg per day for GSK-256066. CHF6001 was found effective and extremely well tolerated upon topical administration in relevant animal models, and may represent a step forward in PDE4 inhibition for the treatment of asthma and chronic obstructive respiratory disease. PMID:25576073

  11. Studies on tracheorelaxant and anti-inflammatory activities of rhizomes of Polygonatum verticillatum

    PubMed Central

    2013-01-01

    Background The present study describes the tracheorelaxant and anti-inflammatory effects of Polygonatum verticillatum which may support its medicinal use in hyperactive airway complaints and inflammatory disorders. Methods The tracheorelaxant activity of crude extract of the rhizomes of P. verticillatum (PR) was assessed in isolated guinea-pig tracheal tissues immersed in tissue organ bath filled with Tyrodes solution and a continuous supply of carbogen gas (95% O2 and 5% CO2). The contractile and relaxant responses of the tissue were measured using isometric transducers coupled with Power-Lab data acquisition system. The anti-inflammatory effect was evaluated in carrageenan-induced rat paw edema model, while the lipoxygenase inhibitory activity was performed in the in-vitro assay. Various chromatographic and spectroscopic techniques were used for the isolation and characterization of pure molecules. Results In isolated guinea-pig tracheal preparations, PR caused complete inhibition of the high K+ (80mM) and carbachol-induced contractions however, it was more potent against K+ than CCh, similar to verapamil. Pretreatment of the tissue with PR, displaced the Ca2+ concentration-response curves to the right, similar to that induced by verapamil, indicating the presence of Ca2+ channel blocking like activity. When tested on carrageenan-induced rat paw edema, PR demonstrated a marked reduction in edema with 65.22% protection at 200mg/kg, similar to aspirin. In the in-vitro assay, PR showed lipoxygenase inhibitory activity (IC50: 102??0.19?g/mL), similar to baicalein. Bioactivity-guided fractionation led to the isolation of 2-hydroxybenzoic acid and ?-sitosterol. Conclusions These results indicate that the plant possesses tracheorelaxant, mediated possibly through a Ca2+ channel blockade mechanism, and anti-inflammatory activities, which may explain the medicinal use of this plant in airway disorders and inflammation. PMID:23895558

  12. Synthesis, analgesic, anti-inflammatory and anti-ulcerogenic activities of certain novel Schiff's bases as fenamate isosteres.

    PubMed

    Alafeefy, Ahmed M; Bakht, Mohammed A; Ganaie, Majid A; Ansarie, Mohd N; El-Sayed, Nahed N; Awaad, Amani S

    2015-01-15

    A series of certain novel Schiff bases as fenamate isosteres (VI:a-k) were synthesized to locate analgesic, anti-inflammatory agent with minimal ulcerogenic potential. The structures of the newly synthesized compounds were elucidated on the basis of their elemental analysis as well as IR, and NMR and mass spectroscopic data. All the compounds were evaluated for their anti-inflammatory activity by carrageenan induced paw oedema method. The compounds possessing good anti-inflammatory activity were further tested for analgesic, ulcerogenic, lipid peroxidation potentials and liver toxicity. Compounds (VI-c), (VI-f), (VI-h) and (VI-i) showed the best anti-inflammatory and significant analgesic activities at doses comparable to that of the standard drug Indomethacin. However, compounds (VI-c) and (VI-f) could be considered the most potent anti-inflammatory and analgesic molecules with maximum reduction in gastro-intestinal ulceration with no hepatocyte necrosis or liver degeneration. PMID:25522819

  13. Rose geranium essential oil as a source of new and safe anti-inflammatory drugs

    PubMed Central

    Boukhatem, Mohamed Nadjib; Kameli, Abdelkrim; Ferhat, Mohamed Amine; Saidi, Fairouz; Mekarnia, Maamar

    2013-01-01

    Background Since the available anti-inflammatory drugs exert an extensive variety of side effects, the search for new anti-inflammatory agents has been a priority of pharmaceutical industries. Aims The aim of the present study was to assess the anti-inflammatory activities of the essential oil of rose geranium (RGEO). Methods The chemical composition of the RGEO was investigated by gas chromatography. The major components were citronellol (29.13%), geraniol (12.62%), and citronellyl formate (8.06%). In the carrageenan-induced paw edema, five different groups were established and RGEO was administered orally in three different doses. Results RGEO (100 mg/kg) was able to significantly reduce the paw edema with a comparable effect to that observed with diclofenac, the positive control. In addition, RGEO showed a potent anti-inflammatory activity by topical treatment in the method of croton oil-induced ear edema. When the dose was 5 or 10 l of RGEO per ear, the inflammation was reduced by 73 and 88%, respectively. This is the first report to demonstrate a significant anti-inflammatory activity of Algerian RGEO. In addition, histological analysis confirmed that RGEO inhibited the inflammatory responses in the skin. Conclusion Our results indicate that RGEO may have significant potential for the development of novel anti-inflammatory drugs with improved safety profile. PMID:24103319

  14. The anti-inflammatory effect of opioids.

    PubMed

    Gavalas, A; Victoratos, P; Yiangou, M; Hadjipetrou-Kourounakis, L; Rekka, E; Kourounakis, P

    1994-01-01

    The anti-inflammatory activity of two novel opioids PM and PO as well as of pethidine was studied. The mouse paw edema, induced by various phlogistic agents, was significantly inhibited after the administration of opioids, fact that was independent of their antioxidant properties. The anti-inflammatory action of the above opioids was not reversed by naloxone. These results suggest that a variety of complex regulatory activities may be performed by opioid agonists via naloxone-sensitive or naloxone insensitive receptors on inflammatory cells, directly or indirectly by the inhibition of cytokines and mediators involved in inflammation. PMID:7928110

  15. The anti-inflammatory effects of venlafaxine in the rat model of carrageenan-induced paw edema

    PubMed Central

    Hajhashemi, Valiollah; Minaiyan, Mohsen; Banafshe, Hamid Reza; Mesdaghinia, Azam; Abed, Alireza

    2015-01-01

    Objective(s): Recently anti-inflammatory effects of antidepressants have been demonstrated. Venlafaxine belongs to newer antidepressants with serotonin norepinephrine reuptake inhibition property. The pain alleviating properties of venlafaxine in different pain models such as neurogenic pain, diabetic neuropathy, and fibromyalgia have been demonstrated. Anti-inflammatory effects of venlafaxine and also its underlying mechanisms remain unclear. The present study was designed to evaluate the anti-inflammatory effects of venlafaxine and determine possible underlying mechanisms. Materials and Methods: We examined the anti-inflammatory effects of intraperitoneal (IP) and intracerebroventricular (ICV) administration of venlafaxine in the rat model of carrageenan-induced paw edema. Results: Our results showed that both IP (50 and 100 mg/kg) and ICV (50 and 100 ?g/rat) injection of venlafaxine inhibited carrageenan-induced paw edema. Also IP and ICV administration of venlafaxine significantly decreased myeloperoxidase (MPO) activity and interleukin (IL)-1? and tumor necrosis factor (TNF)-? production. Finally, we tried to reverse the anti-inflammatory effect of venlafaxine by yohimbine (5 mg/kg, IP), an alpha2-adrenergic antagonist. Our results showed that applied antagonist failed to change the anti-inflammatory effect of venlafaxine. Conclusion: These results demonstrated that venlafaxine has potent anti-inflammatory effect which is related to the peripheral and central effects of this drug. Also we have shown that anti-inflammatory effect of venlafaxine is mediated mostly through the inhibition of IL-1? and TNF-? production and decreases MPO activity in the site of inflammation. PMID:26351555

  16. Determination of Residual Nonsteroidal Anti-Inflammatory Drugs in Aqueous Sample Using Magnetic Nanoparticles Modified with Cetyltrimethylammonium Bromide by High Performance Liquid Chromatography

    PubMed Central

    Khoeini Sharifabadi, Malihe; Saber-Tehrani, Mohammad; Waqif Husain, Syed; Mehdinia, Ali; Aberoomand-Azar, Parviz

    2014-01-01

    A simple and sensitive solid-phase extraction method for separation and preconcentration of trace amount of four nonsteroidal anti-inflammatory drugs (naproxen, indomethacin, diclofenac, and ibuprofen) using Fe3O4 magnetic nanoparticles modified with cetyltrimethylammonium bromide has been developed. For this purpose, the surface of MNPs was modified with cetyltrimethylammonium bromide (CTAB) as a cationic surfactant. Effects of different parameters influencing the extraction efficiency of drugs including the pH, amount of salt, shaking time, eluent type, the volume of solvent, amount of adsorbent, sample volume, and the time of desorption were investigated and optimized. Methanol has been used as desorption solvent and the extracts were analysed on a reversed-phase octadecyl silica column using 0.02 M phosphate-buffer (pH = 6.02) acetonitrile (65?:?35?v/v) as the mobile phase and the effluents were measured at 202?nm with ultraviolet detector. The relative standard deviation (RSD%) of the method was investigated at three concentrations (25, 50, and 200?ng/mL) and was in the range of 3.989.83% (n = 6) for 50?ng/mL. The calibration curves obtained for studied drugs show reasonable linearity (R2 > 0.99) and the limit of detection (LODs) ranged between 2 and 7?ng/mL. Finally, the proposed method has been effectively employed in extraction and determination of the drugs in biological and environmental samples. PMID:24982923

  17. [Effects of an additional nonsteroidal anti-inflammatory therapy with carprofen (Rimadyl Rind) in cases of severe mastitis of high yielding cows].

    PubMed

    Krömker, Volker; Paduch, Jan-Hendrik; Abograra, Ismail; Zinke, Claudia; Friedrich, Julia

    2011-01-01

    This field study focuses on the possible effects of a combination of nonsteroidal anti-inflammatory treatment (carprofen) and a local and parenteral antibiotic on cure rates, survival rate and return to milk production of severe clinical mastitis cases. 69 cows in 3 herds (blocked by parity) with severe clinical mastitis during the first 120 d of lactation (median = 28 d) were treated with antibiotics and one-half of these cows were treated with 1.4 mg/kg bodyweight carprofen (Rimadyl Rind, Pfizer GmbH Tiergesundheit, Germany). Double milk samples for bacteriology were collected from clinically affected udder quarters before treatment and at 14 (+/- 3) and 21 (+/- 3) days after commencement of treatment for cytomicro-temperature, clinical, bacteriological, cytobacteriological cure rate and in the number of cows that were defined as treatment failures (i.e., died, re-treated, relapse). Six (22.2%) vs. seven (19.4%) cows in the carprofen and control groups failed, respectively. The milk yield was significantly higher in the carprofen-treated group compared with the control group after treatment. The present work gives first indications that treatment of cows with severe clinical mastitis with a combination of carprofen and antibiotics could result in a faster return to milk production compared to treatment with antibiotics alone. If this effect can be affiliated to the administration of carprofen alone has to be examined in further studies. PMID:21465772

  18. Sucrose esters from Physalis peruviana calyces with anti-inflammatory activity.

    PubMed

    Franco, Luis A; Ocampo, Yanet C; Gmez, Harold A; De la Puerta, Roco; Espartero, Jos L; Ospina, Luis F

    2014-11-01

    Physalis peruviana is a native plant from the South American Andes and is widely used in traditional Colombian medicine of as an anti-inflammatory medicinal plant, specifically the leaves, calyces, and small stems in poultice form. Previous studies performed by our group on P. peruviana calyces showed potent anti-inflammatory activity in an enriched fraction obtained from an ether total extract. The objective of the present study was to obtain and elucidate the active compounds from this fraction and evaluate their anti-inflammatory activity in vivo and in vitro. The enriched fraction of P. peruviana was purified by several chromatographic methods to obtain an inseparable mixture of two new sucrose esters named peruviose A (1) and peruviose B (2). Structures of the new compounds were elucidated using spectroscopic methods and chemical transformations. The anti-inflammatory activity of the peruvioses mixture was evaluated using ?-carrageenan-induced paw edema in rats and lipopolysaccharide-activated peritoneal macrophages. Results showed that the peruvioses did not produce side effects on the liver and kidneys and significantly attenuated the inflammation induced by ?-carrageenan in a dosage-dependent manner, probably due to an inhibition of nitric oxide and prostaglandin E2, which was demonstrated in vitro. To our knowledge, this is the first report of the presence of sucrose esters in P. peruviana that showed a potent anti-inflammatory effect. These results suggest the potential of sucrose esters from the Physalis genus as a novel natural alternative to treat inflammatory diseases. PMID:25338213

  19. An anti-inflammatory and immunomodulatory polysaccharide from Orbignya phalerata.

    PubMed

    da Silva, B P; Parente, J P

    2001-12-01

    A polysaccharide, a glucan with mean M(r) of 1.0 x 10(6) (MP1), was isolated from the mesocarp of fruits of Orbignya phalerata. Chemical and spectroscopic studies indicated that MP1 has a highly branched glucan type structure composed of alpha-(1-->4) linked D-glucopyranose residues with (3-->4), (4-->6), and with (3-->6) branching points. MP1 enhanced phagocytosis in vivo and exhibited anti-inflammatory activity. PMID:11731113

  20. Photoelectron spectroscopy of non-steroidal anti-inflammatory drugs

    NASA Astrophysics Data System (ADS)

    Novak, Igor; Klasinc, Leo; Chong, Delano P.; McGlynn, Sean P.

    2013-08-01

    The electronic structures of eight non-steroidal anti-inflammatory drugs (NSAIDs) had been studied by UV photoelectron spectroscopy (UPS) and high-level Green's function (GF) calculations. Our UPS data show that the electronic structure influences the measured biological activity of NSAID, but that it is not the dominating factor. The role of electronic structure needs to be considered in conjunction with other factors like steric properties of the COX active site and orientation of relevant residues in the same site.

  1. Anti-inflammatory effects of five commercially available mushroom species determined in lipopolysaccharide and interferon-? activated murine macrophages.

    PubMed

    Gunawardena, Dhanushka; Bennett, Louise; Shanmugam, Kirubakaran; King, Kerryn; Williams, Roderick; Zabaras, Dimitrios; Head, Richard; Ooi, Lezanne; Gyengesi, Erika; Mnch, Gerald

    2014-04-01

    Inflammation is a well-known contributing factor to many age-related chronic diseases. One of the possible strategies to suppress inflammation is the employment of functional foods with anti-inflammatory properties. Edible mushrooms are attracting more and more attention as functional foods since they are rich in bioactive compounds, but their anti-inflammatory properties and the effect of food processing steps on this activity has not been systematically investigated. In the present study, White Button and Honey Brown (both Agaricus bisporus), Shiitake (Lentinus edodes), Enoki (Flammulina velutipes) and Oyster mushroom (Pleurotus ostreatus) preparations were tested for their anti-inflammatory activity in lipopolysaccharide (LPS) and interferon-? (IFN-?) activated murine RAW 264.7 macrophages. Potent anti-inflammatory activity (IC??<0.1 mg/ml), measured as inhibition of NO production, could be detected in all raw mushroom preparations, but only raw Oyster (IC??=0.035 mg/ml), Shiitake (IC??=0.047 mg/ml) and Enoki mushrooms (IC??=0.099 mg/ml) showed also potent inhibition of TNF-? production. When the anti-inflammatory activity was followed through two food-processing steps, which involved ultrasonication and heating, a significant portion of the anti-inflammatory activity was lost suggesting that the anti-inflammatory compounds might be susceptible to heating or prone to evaporation. PMID:24262531

  2. Antioxidant, Anti-inflammatory and Cytotoxicity of Phaleria macrocarpa (Boerl.) Scheff Fruit

    PubMed Central

    2011-01-01

    Background Phaleria macrocarpa (Scheff.) Boerl (Thymelaceae) originates from Papua Island, Indonesia and grows in tropical areas. The different parts of the fruit of P. macrocarpa were evaluated for antioxidant, anti-inflammatory, and cytotoxic activities. Methods Phaleria macrocarpa fruit were divided into pericarp, mesocarp and seed. All parts of the fruit were reflux extracted with methanol. The antioxidant activity of the extracts were characterized in various in vitro model systems such as FTC, TBA, DPPH radical, reducing power and NO radical. Anti-inflammatory assays were done by using NO production by macrophage RAW 264.7 cell lines induced by LPS/IFN-? and cytotoxic activities were determined by using several cancer cell lines and one normal cell line Results The results showed that different parts (pericarp, mesocarp, and seed) of Phaleria macrocarpa fruit contain various amount of total phenolic (59.2 0.04, 60.5 0.17, 47.7 1.04 mg gallic acid equivalent/g DW) and flavonoid compounds (161.3 1.58, 131.7 1.66, 35.9 2.47 mg rutin equivalent/g DW). Pericarp and mesocarp showed high antioxidant activities by using DPPH (71.97%, 62.41%), ferric reducing antioxidant power (92.35%, 78.78%) and NO scavenging activity (65.68%, 53.45%). Ferric thiocyanate and thiobarbituric acid tests showed appreciable antioxidant activity in the percentage hydroperoxides inhibitory activity from pericarp and mesocarp in the last day of the assay. Similarly, the pericarp and mesocarp inhibited inducible nitric oxide synthesis with values of 63.4 1.4% and 69.5 1.4% in macrophage RAW 264.7 cell lines induced by LPS/IFN-? indicating their notable anti-inflammatory potential. Cytotoxic activities against HT-29, MCF-7, HeLa and Chang cell lines were observed in all parts. Conclusions These results indicated the possible application of P. macrocarpa fruit as a source of bioactive compounds, potent as an antioxidant, anti inflammatory and cytotoxic agents. PMID:22070850

  3. Relatively high levels of serum adiponectin in obese women, a potential indicator of anti-inflammatory dysfunction: Relation to sex hormone-binding globulin

    PubMed Central

    Onat, Altan; Hergen, Glay; Dursuno?lu, Dursun; Kkdurmaz, Zekeriya; Bulur, Serkan; Can, Gnay

    2008-01-01

    It is unclear whether serum adiponectin concentrations diminish linearly with increasing adiposity and, if not, which factors codetermine this association. These issues were investigated cross-sectionally in 1188 men and women, representative of middle-aged and elderly Turkish adults. Serum total adiponectin was assayed by ELISA. Serum adiponectin values in men, though declining significantly in transition from the bottom to the mid tertile of body mass index (BMI) and waist circumference (WC), were similar in the two respective upper tertiles. In women, serum adiponectin concentrations were not significantly different in any tertile of these indices, were significantly correlated with BMI or WC within the low tertiles and not within the two higher tertiles. In a linear regression analysis for WC (or BMI) in a subset of the sample in which serum sex hormone-binding globulin (SHBG) was available and which additionally comprised adiponectin, fasting insulin and other confounders, only insulin and, in women SHBG, were significantly associated, but not adiponectin. In linear regression analyses for covariates of adiponectin in two models comprising 12 variables, insulin and SHBG concentrations were significantly associated in both genders though not BMI. Whereas in men HDL-cholesterol and CRP were covariates of adiponectin (both p<0.01), SHBG and apolipoprotein B positively associated in women (p<0.001), independent of BMI and fasting insulin levels. Conclusions: Relationship between excess adiposity and adiponectin levels is inconsistent in Turkish adults. Independently from obesity and hyperinsulinemia, serum adiponectin discloses significant relationship with inflammatory markers and HDL only in men, not in women in whom it is influenced by SHBG, with consequent attenuation of its anti-inflammatory activities. PMID:18695734

  4. Anti-Inflammatory and Antinociceptive Activities of Bufalin in Rodents

    PubMed Central

    Huang, Yang; Yin, Junqiang; Lin, Wenqian

    2014-01-01

    The aims of this study were to evaluate the anti-inflammatory and analgesic effects of bufalin, a major component of “Chan-su.” We used a carrageenan-induced paw edema model to assess the anti-inflammatory activity of this compound, and Western blot analysis detected NF-κB signaling during this effect. The antinociceptive activities were evaluated by acetic acid-induced writhing, formalin, and hot-plate tests; open-field test investigated effects on the central nervous system. Our data showed that bufalin (0.3 and 0.6 mg/kg, i.p.) potently decreased carrageenan-induced paw edema. Bufalin down regulated the expression levels of nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) during these treatments. Further studies demonstrated that bufalin significantly inhibited the activation of NF-κB signaling. Bufalin also reduced acetic acid-induced writhing and the licking time in the formalin test and increased hot-plate reaction latencies. Naloxone pretreatment (2 mg/kg, i.p.) in the early phases of the formalin test and hot-plate test significantly attenuated the bufalin-induced antinociception effects, which suggests the involvement of the opioid system. A reduction in locomotion was not observed in the open-field test after bufalin administration. Taken together, bufalin treatment resulted in in vivo anti-inflammatory and analgesic effects, and bufalin may be a novel, potential drug for the treatment of inflammatory diseases. PMID:24719521

  5. Molecular Targets of Dietary Polyphenols with Anti-inflammatory Properties

    PubMed Central

    Yoon, Joo-Heon

    2005-01-01

    There is persuasive epidemiological and experimental evidence that dietary polyphenols have anti-inflammatory activity. Aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) have long been used to combat inflammation. Recently, cyclooxygenase (COX) inhibitors have been developed and recommended for treatment of rheumatoid arthritis (RA) and osteoarthritis (OA). However, two COX inhibitors have been withdrawn from the market due to unexpected side effects. Because conventional therapeutic and surgical approaches have not been able to fully control the incidence and outcome of many inflammatory diseases, there is an urgent need to find safer compounds and to develop mechanism-based approaches for the management of these diseases. Polyphenols are found in many dietary plant products, including fruits, vegetables, beverages, herbs, and spices. Several of these compounds have been found to inhibit the inflammation process as well as tumorigenesis in experimental animals; they can also exhibit potent biological properties. In addition, epidemiological studies have indicated that populations who consume foods rich in specific polyphenols have lower incidences of inflammatory disease. This paper provides an overview of the research approaches that can be used to unravel the biology and health effects of polyphenols. Polyphenols have diverse biological effects, however, this review will focus on some of the pivotal molecular targets that directly affect the inflammation process. PMID:16259055

  6. Molecular targets of dietary polyphenols with anti-inflammatory properties.

    PubMed

    Yoon, Joo-Heon; Baek, Seung Joon

    2005-10-31

    There is persuasive epidemiological and experimental evidence that dietary polyphenols have anti-inflammatory activity. Aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) have long been used to combat inflammation. Recently, cyclooxygenase (COX) inhibitors have been developed and recommended for treatment of rheumatoid arthritis (RA) and osteoarthritis (OA). However, two COX inhibitors have been withdrawn from the market due to unexpected side effects. Because conventional therapeutic and surgical approaches have not been able to fully control the incidence and outcome of many inflammatory diseases, there is an urgent need to find safer compounds and to develop mechanism-based approaches for the management of these diseases. Polyphenols are found in many dietary plant products, including fruits, vegetables, beverages, herbs, and spices. Several of these compounds have been found to inhibit the inflammation process as well as tumorigenesis in experimental animals; they can also exhibit potent biological properties. In addition, epidemiological studies have indicated that populations who consume foods rich in specific polyphenols have lower incidences of inflammatory disease. This paper provides an overview of the research approaches that can be used to unravel the biology and health effects of polyphenols. Polyphenols have diverse biological effects, however, this review will focus on some of the pivotal molecular targets that directly affect the inflammation process. PMID:16259055

  7. Intravital Microscopic Methods to Evaluate Anti-inflammatory Effects and Signaling Mechanisms Evoked by Hydrogen Sulfide

    PubMed Central

    Zuidema, Mozow Y.; Korthuis, Ronald J.

    2016-01-01

    Hydrogen sulfide (H2S) is an endogenous gaseous signaling molecule with potent anti-inflammatory properties. Exogenous application of H2S donors, administered either acutely during an inflammatory response or as an antecedent preconditioning intervention that invokes the activation of anti-inflammatory cell survival programs, effectively limits leukocyte rolling, adhesion and emigration, generation of reactive oxygen species, chemokine and cell adhesion molecule expression, endothelial barrier disruption,capillary perfusion deficits, and parenchymal cell dysfunction and injury. This chapter focuses on intravital microscopic methods that can be used to assess the anti-inflammatory effects exerted by H2S, as well as to explore the cellular signaling mechanisms by which this gaseous molecule limits the aforementioned inflammatory responses. Recent advances include use of intravital multiphoton microscopy and optical biosensor technology to explore signaling mechanisms in vivo. PMID:25747477

  8. Anti-inflammatory properties of new bioisosteres of indomethacin synthesized from safrole which are sulindac analogues.

    PubMed

    Pereira, E F; Pereira, N A; Lima, M E; Coelho, F A; Barreiro, E J

    1989-01-01

    The anti-inflammatory activities of new compounds (I, II, III and IV) synthesized in 30% overall yield from the abundant natural product safrole, the principal chemical constituent of the oil of sassafras (Ocotea pretiosa, Lauraceae), were determined in mice. The synthesis of these new indenyl-acetic acids (I and II) and indenyl-propionic acids (III and IV) was based on the minimal structural features of non-steroid anti-inflammatory agents of the aryl- or heteroarylcarboxylic acid group. The compounds exhibited potencies 4- to 10-fold less than that of indomethacin in inhibiting carrageenan-induced hindpaw edema. In contrast, like sulindac, all the new compounds were more potent than indomethacin in antagonizing writhing pain and increased vascular permeability caused by acetic acid. The results confirm the anticipated bioisosteric relationship between these synthetic derivatives, designed as sulindac analogues, and the classical non-steroidal anti-inflammatory agent, indomethacin. PMID:2638933

  9. Anti-inflammatory and pharmacokinetics evaluation of PEGylated ibuprofen tablet formulation.

    PubMed

    Mumuni, Momoh A; Kenechukwu, Franklin Chimaobi; Chime, Salome Amarachi; Ogbonna, John Dike; Mora, A T

    2014-06-01

    To develop a novel PEGylated ibuprofen tablet formulations and evaluate its anti-inflammatory activity and pharmacokinetics profile in an animal model. Six batches of PEGylated ibuprofen tablets were prepared by direct compression using Avicel and lactose as the binder diluents. In vivo anti-inflammatory activity of the tablets was carried out as well as the pharmacokinetics profiles. The PEGylated ibuprofen tablet reduced carrageenan-induced inflammation in experimental animals and sustained its anti-inflammatory action for over 10 h. The pharmacokinetics profile of the optimized formulations were greater than that of the marketed sample and the pure drug sample. In conclusion, PEGylation of ibuprofen conferred a high level of anti-inflammatory activity and slowed plasma clearance level, indicating sustained release. Thus, further exploration of this novel formulation to be used as an alternative carrier for this drug is required. PMID:24191762

  10. Ketogenic diet exhibits anti-inflammatory properties.

    PubMed

    Dupuis, Nina; Curatolo, Niccolo; Benoist, Jean-Franois; Auvin, Stphane

    2015-07-01

    The ketogenic diet (KD) is an established treatment for refractory epilepsy, including some inflammation-induced epileptic encephalopathies. In a lipopolysaccharide (LPS)-induced fever model in rats, we found that animals given the KD for 14 days showed less fever and lower proinflammatory cytokine levels than control animals. However, KD rats exhibited a decrease in circulating levels of arachidonic acid and long-chain n-3 polyunsaturated fatty acids (PUFAs), suggesting that the anti-inflammatory effect of KD was probably not due to an increase in anti-inflammatory n-3 PUFA derivatives. These properties might be of interest in some conditions such as fever-induced refractory epileptic encephalopathy in school-aged children. PMID:26011473

  11. Anti-inflammatory actions of acupuncture.

    PubMed Central

    Zijlstra, Freek J; van den Berg-de Lange, Ineke; Huygen, Frank J P M; Klein, Jan

    2003-01-01

    Acupuncture has a beneficial effect when treating many diseases and painful conditions, and therefore is thought to be useful as a complementary therapy or to replace generally accepted pharmacological intervention. The attributive effect of acupuncture has been investigated in inflammatory diseases, including asthma, rhinitis, inflammatory bowel disease, rheumatoid arthritis, epicondylitis, complex regional pain syndrome type 1 and vasculitis. Large randomised trials demonstrating the immediate and sustained effect of acupuncture are missing. Mechanisms underlying the ascribed immunosuppressive actions of acupuncture are reviewed in this communication. The acupuncture-controlled release of neuropeptides from nerve endings and subsequent vasodilative and anti-inflammatory effects through calcitonine gene-related peptide is hypothesised. The complex interactions with substance P, the analgesic contribution of beta-endorphin and the balance between cell-specific pro-inflammatory and anti-inflammatory cytokines tumour necrosis factor-alpha and interleukin-10 are discussed. PMID:12775355

  12. QSAR and Docking Studies on Capsazepine Derivatives for Immunomodulatory and Anti-Inflammatory Activity

    PubMed Central

    Shukla, Aparna; Sharma, Pooja; Prakash, Om; Singh, Monika; Kalani, Komal; Khan, Feroz; Bawankule, Dnyaneshwar Umrao; Luqman, Suaib; Srivastava, Santosh Kumar

    2014-01-01

    Capsazepine, an antagonist of capsaicin, is discovered by the structure and activity relationship. In previous studies it has been found that capsazepine has potency for immunomodulation and anti-inflammatory activity and emerging as a favourable target in quest for efficacious and safe anti-inflammatory drug. Thus, a 2D quantitative structural activity relationship (QSAR) model against target tumor necrosis factor-? (TNF-?) was developed using multiple linear regression method (MLR) with good internal prediction (r2?=?0.8779) and external prediction (r2pred?=?0.5865) using Discovery Studio v3.5 (Accelrys, USA). The predicted activity was further validated by in vitro experiment. Capsazepine was tested in lipopolysaccharide (LPS) induced inflammation in peritoneal mouse macrophages. Anti-inflammatory profile of capsazepine was assessed by its potency to inhibit the production of inflammatory mediator TNF-?. The in vitro experiment indicated that capsazepine is an efficient anti-inflammatory agent. Since, the developed QSAR model showed significant correlations between chemical structure and anti-inflammatory activity, it was successfully applied in the screening of forty-four virtual derivatives of capsazepine, which finally afforded six potent derivatives, CPZ-29, CPZ-30, CPZ-33, CPZ-34, CPZ-35 and CPZ-36. To gain more insights into the molecular mechanism of action of capsazepine and its derivatives, molecular docking and in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) studies were performed. The results of QSAR, molecular docking, in silico ADMET screening and in vitro experimental studies provide guideline and mechanistic scope for the identification of more potent anti-inflammatory & immunomodulatory drug. PMID:25003344

  13. Anti-inflammatory effects of insulin.

    TOXLINE Toxicology Bibliographic Information

    Dandona P; Chaudhuri A; Mohanty P; Ghanim H

    2007-07-01

    PURPOSE OF REVIEW: This review deals with the recent observations on the pro-inflammatory effects of glucose and the anti-inflammatory actions of insulin. Apart from being novel, they are central to our understanding of why hyperglycemia is a prognosticator of bad clinical outcomes including patients with acute coronary syndromes, stroke and in patients in the intensive care unit.RECENT FINDINGS: The pro-inflammatory effect of glucose as well as that of other macronutrients including fast food meals provides the basis of chronic oxidative stress and inflammation in the obese and their propensity to atherosclerotic disease. The anti-inflammatory action of insulin provides a neutralizing effect to balance macronutrient induced inflammation on the one hand and the possibility of using insulin as an anti-inflammatory drug on the other.SUMMARY: The actions of macronutrients and insulin described above explain why insulin resistant states like obesity and type 2 diabetes are associated with oxidative stress, inflammation and atherosclerosis. They also suggest that insulin may be antiatherogenic.

  14. Anti-Inflammatory Effect of Selected Dihydroxyflavones

    PubMed Central

    Sangeetha, K.S.Sridevi

    2015-01-01

    Background The mechanism of inflammation is attributed, to release of reactive oxygen species from activated neutrophils and macrophages. Over production of reactive oxygen species may result in tissue injury by damaging macromolecules. Flavones are the polyphenolic compounds with antioxidant property. This antioxidant property of flavones may have beneficial effect against inflammation. Aim To study the anti-inflammatory effect of selected dihydroxyflavones (DHF) in albino rats. The prime objective of the present study is to identify safe and effective agents to treat inflammation from among the selected DHF group of compounds. Materials and Methods The present study was designed to investigate the anti-inflammatory action of four selected dihydroxyflavone derivatives; 2’,3’- dihydroxyflavone and 2’, 4’ -dihydroxyflavones, 5, 3’- dihydroxyflavone and 7, 3’ dihydroxyflavone. The anti-inflammatory activity of selected DHF was studied in rats by carrageenan induced hind paw oedema method. Results All the selected dihydroxyflavone derivatives showed dose and time dependent inhibition of carrageenan induced paw oedema. PMID:26155493

  15. Passively Administered Pooled Human Immunoglobulins Exert IL-10 Dependent Anti-Inflammatory Effects that Protect against Fatal HSV Encephalitis

    PubMed Central

    Ramakrishna, Chandran; Newo, Alain N. S.; Shen, Yueh-Wei; Cantin, Edouard

    2011-01-01

    HSV-1 is the leading cause of sporadic encephalitis in humans. HSV infection of susceptible 129S6 mice results in fatal encephalitis (HSE) caused by massive inflammatory brainstem lesions comprising monocytes and neutrophils. During infection with pathogenic microorganisms or autoimmune disease, IgGs induce proinflammatory responses and recruit innate effector cells. In contrast, high dose intravenous immunoglobulins (IVIG) are an effective treatment for various autoimmune and inflammatory diseases because of potent anti-inflammatory effects stemming in part from sialylated IgGs (sIgG) present at 13% in IVIG. We investigated the ability of IVIG to prevent fatal HSE when given 24 h post infection. We discovered a novel anti-inflammatory pathway mediated by low-dose IVIG that protected 129S6 mice from fatal HSE by modulating CNS inflammation independently of HSV specific antibodies or sIgG. IVIG suppressed CNS infiltration by pathogenic CD11b+ Ly6Chigh monocytes and inhibited their spontaneous degranulation in vitro. Fc?RIIb expression was required for IVIG mediated suppression of CNS infiltration by CD45+ Ly6Clow monocytes but not for inhibiting development of Ly6Chigh monocytes. IVIG increased accumulation of T cells in the CNS, and the non-sIgG fraction induced a dramatic expansion of FoxP3+ CD4+ T regulatory cells (Tregs) and FoxP3? ICOS+ CD4+ T cells in peripheral lymphoid organs. Tregs purified from HSV infected IVIG treated, but not control, mice protected adoptively transferred mice from fatal HSE. IL-10, produced by the ICOS+ CD4+ T cells that accumulated in the CNS of IVIG treated, but not control mice, was essential for induction of protective anti-inflammatory responses. Our results significantly enhance understanding of IVIG's anti-inflammatory and immunomodulatory capabilities by revealing a novel sIgG independent anti-inflammatory pathway responsible for induction of regulatory T cells that secrete the immunosuppressive cytokine IL-10 and further reveal the therapeutic potential of IVIG for treating viral induced inflammatory diseases. PMID:21655109

  16. Identification and Structure Determination of Novel Anti-inflammatory Mediator Resolvin E3, 17,18-Dihydroxyeicosapentaenoic Acid*

    PubMed Central

    Isobe, Yosuke; Arita, Makoto; Matsueda, Shinnosuke; Iwamoto, Ryo; Fujihara, Takuji; Nakanishi, Hiroki; Taguchi, Ryo; Masuda, Koji; Sasaki, Kenji; Urabe, Daisuke; Inoue, Masayuki; Arai, Hiroyuki

    2012-01-01

    Bioactive mediators derived from omega-3 eicosapentaenoic acid (EPA) elicit potent anti-inflammatory actions. Here, we identified novel EPA metabolites, including 8,18-dihydroxyeicosapentaenoic acid (8,18-diHEPE), 11,18-diHEPE, 12,18-diHEPE, and 17,18-diHEPE from 18-HEPE. Unlike resolvins E1 and E2, both of which are biosynthesized by neutrophils via the 5-lipoxygenase pathway, these metabolites are biosynthesized by eosinophils via the 12/15-lipoxygenase pathway. Among them, two stereoisomers of 17,18-diHEPE, collectively termed resolvin E3 (RvE3), displayed a potent anti-inflammatory action by limiting neutrophil infiltration in zymosan-induced peritonitis. The planar structure of RvE3 was unambiguously determined to be 17,18-dihydroxy-5Z,8Z,11Z,13E,15E-EPE by high resolution NMR, and the two stereoisomers were assigned to have 17,18R- and 17,18S-dihydroxy groups, respectively, using chemically synthesized 18R- and 18S-HEPE as precursors. Both 18R- and 18S-RvE3 inhibited neutrophil chemotaxis in vitro at low nanomolar concentrations. These findings suggest that RvE3 contributes to the beneficial actions of EPA in controlling inflammation and related diseases. PMID:22275352

  17. Antihypertensive and anti-inflammatory actions of combined azilsartan and chlorthalidone in Dahl salt-sensitive rats on a high-fat, high-salt diet.

    PubMed

    Jin, Chunhua; O'Boyle, Sean; Kleven, Daniel T; Pollock, Jennifer S; Pollock, David M; White, John J

    2014-08-01

    Metabolic syndrome (MetS) and chronic kidney disease are global health issues. Metabolic syndrome induces hypertension and commonly results in renal damage. The optimal therapy for hypertension in MetS is unknown. Thiazide diuretics are first-line therapy; however, these drugs may have untoward effects. In the present study we investigated the effects of azilsartan (AZL), chlorthalidone (CLTD) and their combination on blood pressure and renal injury in a rodent model with features of MetS. Dahl salt-sensitive rats were fed high-fat (36% fat), high-salt (4% NaCl) diet. Groups were then treated with vehicle, AZL (3mg/kg per day), CLTD (5mg/kg per day) or AZL+CLTD. Mean arterial pressure was recorded continuously by telemetry. After 26 days, rats were killed humanely and their kidneys were harvested for histology. Both AZL and CLTD attenuated the rise in blood pressure compared with vehicle and the combination further reduced blood pressure compared with CLTD alone. All treatments reduced proteinuria and albuminuria. Nephrinuria was prevented only in groups treated with AZL. Nephrinuria was 57% lower and proteinuria was 47% lower with combination therapy compared with AZL alone. All treatments reduced the number of inflammatory cells in the kidney. In conclusion, in our model, AZL and CLTD lower blood pressure and exhibit renal protective effects. Treatment with AZL offers additional protection, as evidenced by lower nephrinuria and plasma monocyte chemoattractant protein-1 levels. Combination therapy afforded the greatest protective effects and may be the best choice for hypertensive therapy in MetS. PMID:24798707

  18. Synthesis and Anti-Inflammatory Activity of New Alkyl-Substituted Phthalimide 1H-1,2,3-Triazole Derivatives

    PubMed Central

    Assis, Shalom Prto de Oliveira; da Silva, Moara Targino; de Oliveira, Ronaldo Nascimento; Lima, Vera Lcia de Menezes

    2012-01-01

    Four new 1,2,3-triazole phthalimide derivatives with a potent anti-inflammatory activity have been synthesized in the good yields by the 1,3-dipolar cycloaddition reaction from N-(azido-alkyl)phthalimides and terminal alkynes. The anti-inflammatory activity was determined by injecting carrageenan through the plantar tissue of the right hind paw of Swiss white mice to produce inflammation. All the compounds 3ac and 5ac exhibited an important anti-inflammatory activity; the best activity was found for the compounds 3b and 5c, which showed to be able to decrease by 69% and 56.2% carrageenan-induced edema in mice. These compounds may also offer a future promise as a new anti-inflammatory agent. PMID:23304092

  19. Oxazolidinone: search for highly potent antibacterial.

    PubMed

    Lohray, Braj Bhushan; Lohray, Vidya Bhushan; Srivastava, Brijesh Kumar; Gupta, Sunil; Solanki, Manish; Kapadnis, Prashant; Takale, Vijay; Pandya, Purvi

    2004-06-21

    A number of substituted piperazinyl oxazolidinone derivatives have been synthesized and their antibacterial activities were evaluated by MIC determination. A systematic SAR was carried out to get highly potent oxazolidinone derivatives. PMID:15149661

  20. Erdosteine: antitussive and anti-inflammatory effects.

    PubMed

    Dal Negro, Roberto W

    2008-01-01

    Erdosteine is a multifactorial drug currently used in COPD for its rheologic activity on bronchial secretions and its positive effects on bacterial adhesiveness. Erdosteine produces an active metabolite (Met 1) which was shown to produce antioxidant effects during the respiratory burst of human PMNs, due to the presence of an SH group. The substantial antitussive effects of erdosteine were first documented in clinical trials even though mucolytic agents are regarded as not consistently effective in ameliorating cough in patients with bronchitis, although they may be of benefit to this population in other ways. Actually, a mucolytic drug could exert antitussive effects if it also affects mucus consistency and enhances ciliary function. In the last decade, data from several studies on animal models pointed to the possible antitussive and anti-inflammatory properties of erdosteine and an indirect anti-inflammatory mechanism of action was suggested. Recently, data from some controlled versus placebo studies documented the antioxidant properties of erdosteine in humans and in current smokers with COPD. The mechanism of action was described as related to erdosteine's ability to inhibit some inflammatory mediators and some pro-inflammatory cytokines that are specifically involved in oxidative stress. As oxidative stress is also presumed to impair beta-adrenoceptor function and contribute to airway obstruction, specific controlled studies recently investigated the effect of antioxidant intervention on short-term airway response to salbutamol in nonreversible COPD, according to a double-blind design versus placebo and NAC. Only erdosteine consistently restored a significant short-term reversibility in COPD subjects, previously unresponsive to beta(2) adrenergics. This peculiar activity of erdosteine (to our knowledge never previously assessed) proved related to the ROS scavenging activity (which actually proved equal to that of N), and its significant inhibiting effect on lipoperoxidation (8-isoprostane) proved discriminant between treatments, with antioxidant and anti-inflammatory effects the main determinants of the erdosteine multifactorial properties. In addition, antitussive effects may be regarded as related to its anti-inflammatory properties via the improvement of mucociliary clearance and the reduction of chemokines from epithelial cells. Finally, a sort of "sensitization" of 2-adrenoceptors can also be speculated due to the same mechanisms of action; if confirmed by further controlled studies, this particular property would suggest a novel therapeutic role of erdosteine in COPD. PMID:18185958

  1. Anti-Inflammatory Effect of Aprotinin: A Meta-Analysis

    PubMed Central

    Brown, Jeremiah R.; Toler, Andrew W.J.; Kramer, Robert S.; Landis, R. Clive

    2009-01-01

    Abstract: It is important to define the extent, and any limitations, of potential anti-inflammatory regimens used in cardiac surgery to guide the rational combination of drugs to suppress the systemic inflammatory response. Aprotinin (Trasylol) is an anti-fibrinolytic agent with reported anti-inflammatory properties. In this study, we investigated the published data on aprotinins effect on acute phase protein and cytokine levels in cardiac surgery patients. Randomized placebo-controlled trials of aprotinin published between 1985 and 2007, in adult cardiac surgery using cardiopulmonary bypass, reporting tumor necrosis factor-? (TNF-?), interleukin-6 (IL-6), IL-8, and IL-10 levels were included for review. Two independent reviewers graded each paper and collected information on inflammatory markers. RevMan 4.3 statistical software was used to calculate and plot the weighted mean difference between placebo and aprotinin groups. Thirteen studies met the review criteria. None of the inflammatory markers were reduced by high-dose aprotinin treatment. Low-dose aprotinin significantly reduced IL-10 levels after protamine administration (?41.3 pg/mL; 95% CI: ?59.5, ?23.1), but this result was gone by the first post-operative day. These meta-analyses showed no significant effect of aprotinin on acute phase proteins or systemic cytokine markers of inflammation during clinical adult cardiac surgery using cardiopulmonary bypass. While recognizing that other host defense systems, such as coagulation and complement, contribute to the overall systemic inflammatory response, the evidence presented here does not support the clinical use of aprotinin as an anti-inflammatory agent on its own. PMID:19681304

  2. Anti-inflammatory therapies for atherosclerosis.

    PubMed

    Bck, Magnus; Hansson, Gran K

    2015-04-01

    The view of atherosclerosis as an inflammatory disease has emerged from observations of immune activation and inflammatory signalling in human atherosclerotic lesions, from the definition of inflammatory biomarkers as independent risk factors for cardiovascular events, and from evidence of low-density lipoprotein-induced immune activation. Studies in animal models of hyperlipidaemia have also supported the beneficial effects of countering inflammation to delay atherosclerosis progression. Specific inflammatory pathways with relevance to human diseases have been identified, and inhibitors of these pathways are either already in use for the treatment of other diseases, or are under development and evaluation. These include 'classic' drugs (such as allopurinol, colchicine, and methotrexate), biologic therapies (for example tumour necrosis factor inhibitors and IL-1 neutralization), as well as targeting of lipid mediators (such as phospholipase inhibitors and antileukotrienes) or intracellular pathways (inhibition of NADPH oxidase, p38 mitogen-activated protein kinase, or phosphodiesterase). The evidence supporting the use of anti-inflammatory therapies for atherosclerosis is mainly based on either observational or small interventional studies evaluating surrogate markers of disease activity. Nevertheless, these data are crucial to understand the role of inflammation in atherosclerosis, and to design randomized controlled studies to evaluate the effect of specific anti-inflammatory strategies on cardiovascular outcomes. PMID:25666404

  3. Compounds from Caesalpinia sappan with anti-inflammatory properties in macrophages and chondrocytes.

    PubMed

    Mueller, Monika; Weinmann, Daniela; Toegel, Stefan; Holzer, Wolfgang; Unger, Frank M; Viernstein, Helmut

    2016-03-16

    The heartwood of Caesalpinia sappan is a traditional ingredient of food and beverages in South East Asia and has been used in traditional medicine as an analgesic and anti-inflammatory drug or to promote blood circulation. Scientific studies have confirmed different bioactivities associated with its use. Here, five fractions were isolated from the ethanolic extract of C. sappan heartwood, including episappanol (1), protosappanin C (2), brazilin (3), (iso-)protosappanin B (4) and sappanol (5) using high-performance liquid chromatography (HPLC). All compounds were tested for their anti-inflammatory effects in two different cell lines. Cytokine concentrations in the cell supernatant were determined using enzyme-linked immunosorbent assay (ELISA), and mRNA levels were measured using reverse-transcription quantitative polymerase chain reaction (RT-qPCR). In lipopolysaccharide-stimulated macrophages, all compounds significantly inhibited the secretion of the pro-inflammatory cytokines interleukin (IL-6) and tumor necrosis factor-alpha (TNF-α). Sappanol (5) increased the secretion of the anti-inflammatory IL-10. In IL-1β-stimulated chondrocytes, all fractions reduced the mRNA expression and the secretion of the pro-inflammatory cytokines IL-6 and TNF-α. The highest anti-inflammatory effect was found for brazilin (3) in both cell lines. Of note, this is the first study which shows the anti-inflammatory effect of sappanol and episappanol. This study provides evidence for the efficacy of the traditional use of C. sappan as an anti-inflammatory remedy. Given the high prevalence of inflammation-related pathologies including arthritis, and the urgent need to clinically intervene with these diseases, the anti-inflammatory activity of diverse compounds from C. sappan may be of interest for the development of complementary and alternative treatment strategies. PMID:26951869

  4. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats.

    PubMed

    Ahad, Amjid; Ganai, Ajaz Ahmad; Mujeeb, Mohd; Siddiqui, Waseem Ahmad

    2014-08-15

    Diabetic nepropathy (DN) is considered as the leading cause of end-stage renal disease (ESRD) worldwide, but the current available treatments are limited. Recent experimental evidences support the role of chronic microinflammation in the development of DN. Therefore, the tumor necrosis factor-alpha (TNF-α) pathway has emerged as a new therapeutic target for the treatment of DN. We investigated the nephroprotective effects of chrysin (5, 7-dihydroxyflavone) in a high fat diet/streptozotocin (HFD/STZ)-induced type 2 diabetic Wistar albino rat model. Chrysin is a potent anti-inflammatory compound that is abundantly found in plant extracts, honey and bee propolis. The treatment with chrysin for 16weeks post induction of diabetes significantly abrogated renal dysfunction and oxidative stress. Chrysin treatment considerably reduced renal TNF-α expression and inhibited the nuclear transcription factor-kappa B (NF-кB) activation. Furthermore, chrysin treatment improved renal pathology and suppressed transforming growth factor-beta (TGF-β), fibronectin and collagen-IV protein expressions in renal tissues. Chrysin also significantly reduced the serum levels of pro-inflammatory cytokines, interleukin-1beta (IL-1β) and IL-6. Moreover, there were no appreciable differences in fasting blood glucose and serum insulin levels between the chrysin treated groups compared to the HFD/STZ-treated group. Hence, our results suggest that chrysin prevents the development of DN in HFD/STZ-induced type 2 diabetic rats through anti-inflammatory effects in the kidney by specifically targeting the TNF-α pathway. PMID:24848621

  5. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats

    SciTech Connect

    Ahad, Amjid; Ganai, Ajaz Ahmad; Mujeeb, Mohd; Siddiqui, Waseem Ahmad

    2014-08-15

    Diabetic nepropathy (DN) is considered as the leading cause of end-stage renal disease (ESRD) worldwide, but the current available treatments are limited. Recent experimental evidences support the role of chronic microinflammation in the development of DN. Therefore, the tumor necrosis factor-alpha (TNF-α) pathway has emerged as a new therapeutic target for the treatment of DN. We investigated the nephroprotective effects of chrysin (5, 7-dihydroxyflavone) in a high fat diet/streptozotocin (HFD/STZ)-induced type 2 diabetic Wistar albino rat model. Chrysin is a potent anti-inflammatory compound that is abundantly found in plant extracts, honey and bee propolis. The treatment with chrysin for 16 weeks post induction of diabetes significantly abrogated renal dysfunction and oxidative stress. Chrysin treatment considerably reduced renal TNF-α expression and inhibited the nuclear transcription factor-kappa B (NF-kB) activation. Furthermore, chrysin treatment improved renal pathology and suppressed transforming growth factor-beta (TGF-β), fibronectin and collagen-IV protein expressions in renal tissues. Chrysin also significantly reduced the serum levels of pro-inflammatory cytokines, interleukin-1beta (IL-1β) and IL-6. Moreover, there were no appreciable differences in fasting blood glucose and serum insulin levels between the chrysin treated groups compared to the HFD/STZ-treated group. Hence, our results suggest that chrysin prevents the development of DN in HFD/STZ-induced type 2 diabetic rats through anti-inflammatory effects in the kidney by specifically targeting the TNF-α pathway. - Highlights: • Chrysin reduced renal oxidative stress and inflammation in diabetic rats. • Chrysin reduced serum levels of pro-inflammatory in diabetic rats. • Chrysin exhibited renal protective effect by suppressing the TNF-α pathway.

  6. Activity of antimicrobial peptide mimetics in the oral cavity: II. Activity against periopathogenic biofilms and anti-inflammatory activity

    PubMed Central

    Hua, J; Scott, R.W.; Diamond, G

    2011-01-01

    Whereas periodontal disease is ultimately of bacterial etiology, from multispecies biofilms of gram-negative anaerobic microorganisms, much of the deleterious effects are caused by the resultant epithelial inflammatory response. Hence, development of a treatment that combines anti-biofilm antibiotic activity with anti-inflammatory activity would be of great utility. Antimicrobial peptides (AMPs) such as defensins are naturally occurring peptides that exhibit broad-spectrum activity as well as a variety of immunomodulatory activities. Furthermore, bacteria do not readily develop resistance to these agents. However, clinical studies have suggested that they do not represent optimal candidates for exogenous therapeutic agents. Small-molecule mimetics of these AMPs exhibit similar activities to the parent peptides, in addition to having low toxicity, high stability and low cost. To determine whether AMP mimetics have the potential for treatment of periodontal disease, we examined the activity of one mimetic, mPE, against biofilm cultures of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. Metabolic assays as well as culture and biomass measurement assays demonstrated that mPE exhibits potent activity against biofilm cultures of both species. Furthermore, as little as 2 g ml?1 mPE was sufficient to inhibit interleukin-1?-induced secretion of interleukin-8 in both gingival epithelial cells and THP-1 cells. This anti-inflammatory activity is associated with a reduction in activation of nuclear factor-?B, suggesting that mPE can act both as an anti-biofilm agent in an anaerobic environment and as an anti-inflammatory agent in infected tissues. PMID:21040516

  7. Mangiferin suppressed advanced glycation end products (AGEs) through NF-κB deactivation and displayed anti-inflammatory effects in streptozotocin and high fat diet-diabetic cardiomyopathy rats.

    PubMed

    Hou, Jun; Zheng, Dezhi; Fung, Gabriel; Deng, Haoyu; Chen, Lin; Liang, Jiali; Jiang, Yan; Hu, Yonghe

    2016-03-01

    Given the importance of the aggregation of advanced glycation end products (AGEs) and cardiac inflammation in the onset and progression of diabetic cardiomyopathy (DCM), our objective in this study was to demonstrate the cardioprotective effect of mangiferin, an antidiabetic and anti-inflammatory agent, on diabetic rat model. The DCM model was established by a high-fat diet and a low dose of streptozotocin. DCM rats were treated orally with mangiferin (20 mg/kg) for 16 weeks. Serum and left ventricular myocardium were collected for determination of inflammatory cytokines. AGEs mRNA and protein expression of nuclear factor kappa B (NF-κB) and receptor for AGEs (RAGE) in myocardium were assayed by real-time PCR and Western blot. ROS levels were measured by dihydroethidium fluorescence staining. NF-κB binding activity was assayed by TransAM NF-κB p65 ELISA kit. Chronic treatment with mangiferin decreased the levels of myocardial enzymes (CK-MB, LDH) and inflammatory mediators (TNF-α, IL-1β). Meanwhile, NF-κB is inhibited by the reduction of nuclear translocation of p65 subunit, and mangiferin reduced AGE production and decreased the mRNA and protein expression of RAGE in DCM rats. Our data indicated that mangiferin could significantly ameliorate DCM by preventing the release of inflammatory cytokines, and inhibiting ROS accumulation, AGE/RAGE production, and NF-κB nuclear translocation, suggesting that mangiferin treatment might be beneficial in DCM. PMID:26751764

  8. Anti-inflammatory property of 401 (MCD-peptide), a peptide from the venom of the bee Apis mellifera (L.)

    PubMed Central

    Hanson, Jennifer M.; Morley, J.; Soria-Herrera, C.

    1974-01-01

    1 Peptide 401, a potent mast cell degranulating factor from bee venom, substantially inhibited the oedema provoked by subplantar injection of carrageenin or intra-articular injection of turpentine in the rat. The ED50 of 401 was c. 0.1 mg/kg. The anti-inflammatory effect was assessed by measurement of the increased 125I-albumin content of an injected site in comparison with an uninjected contralateral site. 2 Peptide 401 also suppressed the increased vascular permeability due to intradermal injection of various smooth muscle spasmogens (histamine, bradykinin, 5-hydroxytryptamine (5-HT), and prostaglandins). 3 Other comparable mast cell degranulating agents (48/80 and melittin) showed little evidence of anti-inflammatory activity when tested at comparable dosage on turpentine arthritis and carrageenin oedema. 4 The anti-inflammatory effects were not abolished by pretreatment with mepyramine and methysergide, which abolished the increased vascular permeability produced by local injection of 401. 5 The anti-inflammatory action of 401 was not affected by regional denervation or pretreatment with phenoxybenzamine, and was reduced but not abolished by adrenalectomy. 6 Measurement of skin temperature, fractional extraction of 86Rb and blood flow in perfused mesentery gave no evidence that the anti-inflammatory action of 401 was due to reduced tissue perfusion. 7 It is concluded that 401 may exert its anti-inflammatory action directly by making the vascular endothelium anergic to phlogistic stimuli. PMID:4152780

  9. Anti-inflammatory effects of isoketocharbroic acid from brown alga, Sargassum micracanthum

    PubMed Central

    Ham, Young Min; Yoon, Weon-Jong; Lee, Wook Jae; Kim, Sang-Cheol; Baik, Jong Seok; Kim, Jin Hwa; Lee, Geun Soo; Lee, Nam Ho; Hyun, Chang-Gu

    2015-01-01

    During our on-going screening program designed to isolate natural compounds from marine environments, we isolated isoketochabrolic acid (IKCA) from Sargassum micracanthum, an important brown algae distributed in Jeju Island, Korea. Furthermore, we evaluated the inhibitory effects of IKCA on nitric oxide (NO) production in lipopolysaccharide (LPS)-triggered macrophages. IKCA strongly inhibited NO production, with an IC50 value of 58.31 μM. Subsequent studies demonstrated that IKCA potently and concentration-dependently reduced prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6 cytokine production. In conclusion, to the best of our knowledge, this is the first study to show that IKCA isolated from S. micracanthum has a potent anti-inflammatory activity. Therefore, IKCA might be useful as an anti-inflammatory health supplement or functional cosmetics. PMID:26600756

  10. Sesquiterpenes from Essential Oils and Anti-Inflammatory Activity.

    PubMed

    da Silveira e Sá, Rita de Cássia; Andrade, Luciana Nalone; de Sousa, Damião Pergentino

    2015-10-01

    This review is aimed at presenting relevant information on the therapeutic potential of essential oil sesquiterpenes with anti-inflammatory activity. The data reviewed provide a basis for seeking new anti-inflammatory drugs from natural products that do not exhibit the undesirable side effects often displayed by anti-inflammatory drugs. In this review the experimental models, possible mechanisms of action, and chemical structures of 12 sesquiterpenes are presented. PMID:26669122

  11. Develop Anti-Inflammatory Nanotherapies to Treat Cardiovascular Disease

    NASA Astrophysics Data System (ADS)

    Tang, Jun

    Cardiovascular disease (CVD) is the leading cause of disease-related death in the world, accounting for 30 % global mortality. The majority of CVD is caused by atherosclerosis, a chronic inflammatory disease of major arteries featured by the deposition of lipids and cholesterol. Inflammation of atherosclerosis is mainly promoted by the pathological macrophages and monocytes, and modulating their functions has been proposed as a promising therapeutic target. This dissertation first presents the development of a novel simvastatin-loaded high-density lipoprotein (HDL) based nanoparticle ([S]-rHDL), which was able to deliver anti-inflammatory simvastatin preferentially to inflammatory monocytes in the blood and to macrophages in advanced atherosclerotic plaques, leading to the reduced inflammation in the tissue. Second, extensive in vivo characterization of [S]-rHDL in a mouse atherosclerosis model revealed that the anti-inflammatory capability of [S]-rHDL derived from its effects on blood monocytes, endothelial layer, monocyte recruitment, and plaque macrophage function. Third, a translational study that integrated the use of [S]-rHDL into oral statin treatment demonstrated a great potential for this nanomedicine as an attractive addition to the current high-dose oral statin standard-of-care for acute coronary syndrome. Finally, preliminary results suggested potential applications of the rHDL platform to other macrophage-implicated diseases.

  12. Anti-Inflammatory and Immunoregulatory Functions of Artemisinin and Its Derivatives

    PubMed Central

    Shi, Chenchen; Yang, Yifu

    2015-01-01

    Artemisinin and its derivatives are widely used in the world as the first-line antimalarial drug. Recently, growing evidences reveal that artemisinin and its derivatives also possess potent anti-inflammatory and immunoregulatory properties. Meanwhile, researchers around the world are still exploring the unknown bioactivities of artemisinin derivatives. In this review, we provide a comprehensive discussion on recent advances of artemisinin derivatives affecting inflammation and autoimmunity, the underlying molecular mechanisms, and also drug development of artemisinins beyond antimalarial functions. PMID:25960615

  13. Synthesis and evaluation of pyrazolines bearing benzothiazole as anti-inflammatory agents.

    PubMed

    Kharbanda, Chetna; Alam, Mohammad Sarwar; Hamid, Hinna; Javed, Kalim; Bano, Sameena; Dhulap, Abhijeet; Ali, Yakub; Nazreen, Syed; Haider, Saqlain

    2014-11-01

    The present study aims at the synthesis of pyrazolines bearing benzothiazole and their evaluation as anti-inflammatory agents. The synthesized compounds were evaluated for their anti-inflammatory potential using carrageenan induced paw edema model. Two compounds 5a and 5d alleviated inflammation more than the standard drug celecoxib. Eight compounds 5 b, 5 c, 5 e, 5 g, 5 h, 6 b, 6 e and 6 f showed anti-inflammatory activity comparable to celecoxib. To understand the mode of action, COX-2 enzyme assay and TNF-? assay were carried out. All the active compounds were assessed for their cytotoxicity. The ulcerogenic risk evaluation was performed on the active compounds that were not found to be cytotoxic. Out of ten active compounds, two compounds (5 d and 6 f) were finally found to be the most potent anti-inflammatory agents attributing to the suppression of the COX-2 enzyme activity and TNF-? production without being either cytotoxic or ulcerogenic. PMID:25311566

  14. Synthesis and pharmacological evaluation of pyrazolopyrimidopyrimidine derivatives: anti-inflammatory agents with gastroprotective effect in rats.

    PubMed

    Karoui, Amine; Allouche, Fatma; Deghrigue, Monia; Agrebi, Asma; Bouraoui, Abderrahman; Chabchoub, Fakher

    2014-01-01

    We report the synthesis of new anti-inflammatory 1,7-dihydropyrazolo[3',4':4,5]pyrimido[1,6-a]pyrimidine 5 from aminocyanopyrazole. All compounds were characterized by physical, chemical and spectral studies. Preliminary pharmacological evaluation of the resulting products showed that compounds 5a, b, f (50-100mg/kg, i.p) are active anti-inflammatory agents in carrageenan-induced rat paw oedema assay, and their effects are comparable to that of acetylsalicylic-lysine (300mg/kg, i.p.), used as a reference drug. The nature of substituent (Y, R3) had a pronounced effect on the anti-inflammatory activity. Studies of structure-activity relationships have led to selection of compound ethyl-3,5-dimethyl-7-imino-N (1)-phenyl-1,7-dihydropyrazolo[3',4':4,5]pyrimido[1,6-a]pyrimidine-6-carboxylate, 5f which exhibited the most potent anti-inflammatory activity. In addition, the compounds 5a, b, f showed a significant gastroprotective effect against HCl/EtOH-induced gastric ulcer. PMID:24489456

  15. Immuno-modulation and anti-inflammatory benefits of antibiotics: The example of tilmicosin

    PubMed Central

    Buret, Andr G.

    2010-01-01

    Exagerated immune responses, such as those implicated in severe inflammatory reactions, are costly to the metabolism. Inflammation and pro-inflammatory mediators negatively affect production in the food animal industry by reducing growth, feed intake, reproduction, milk production, and metabolic health. An ever-increasing number of findings have established that antibiotics, macrolides in particular, may generate anti-inflammatory effects, including the modulation of pro-inflammatory cytokines and the alteration of neutrophil function. The effects are time- and dose-dependent, and the mechanisms responsible for these phenomena remain incompletely understood. Recent studies, mostly using the veterinary macrolide tilmicosin, may have shed new light on the mode of action of some macrolides and their anti-inflammatory properties. Indeed, research findings demonstrate that this compound, amongst others, induces neutrophil apoptosis, which in turn provides anti-inflammatory benefits. Studies using tilmicosin model systems in vitro and in vivo demonstrate that this antibiotic has potent immunomodulatory effects that may explain why at least parts of its clinical benefits are independent of anti-microbial effects. More research is needed, using this antibiotic and others that may have similar properties, to clarify the biological mechanisms responsible for antibiotic-induced neutrophil apoptosis, and how this, in turn, may provide enhanced clinical benefits. Such studies may help establish a rational basis for the development of novel, efficacious, anti-microbial compounds that generate anti-inflammatory properties in addition to their antibacterial effects. PMID:20357951

  16. Heme oxygenase-1 and anti-inflammatory M2 macrophages.

    PubMed

    Naito, Yuji; Takagi, Tomohisa; Higashimura, Yasuki

    2014-12-15

    Heme oxygenase-1 (HO-1) catalyzes the first and rate-limiting enzymatic step of heme degradation and produces carbon monoxide, free iron, and biliverdin. HO-1, a stress-inducible protein, is induced by various oxidative and inflammatory signals. Consequently, HO-1 expression has been regarded as an adaptive cellular response against inflammatory response and oxidative injury. Although several transcriptional factors and signaling cascades are involved in HO-1 regulation, the two main pathways of Nrf2/Bach1 system and IL-10/HO-1 axis exist in monocyte/macrophage. Macrophages are broadly divisible into two groups: pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages. More recently, several novel macrophage subsets have been identified including Mhem, Mox, and M4 macrophages. Of these, M2 macrophages, Mhem, and Mox are HO-1 highly expressing macrophages. HO-1 has been recognized as having major immunomodulatory and anti-inflammatory properties, which have been demonstrated in HO-1 deficient mice and human cases of genetic HO-1 deficiency. However, the mechanism underlying the immunomodulatory actions of HO-1 remains poorly defined. This review specifically addresses macrophage polarization. The present current evidence indicates that HO-1 induction mediated by multiple pathways can drive the phenotypic shift to M2 macrophages and suggests that HO-1 induction in macrophages is a potential therapeutic approach to immunomodulation in widely diverse human diseases. PMID:25241054

  17. A novel anti-inflammatory peptide from human lipocortin 5.

    PubMed Central

    Perretti, M.; Becherucci, C.; Mugridge, K. G.; Solito, E.; Silvestri, S.; Parente, L.

    1991-01-01

    1. A novel anti-inflammatory peptide (residues 204-212) of human recombinant lipocortin 5 (hrLC5) found on the high similarity region with uteroglobin is described. 2. Peptide 204-212 dose-dependently inhibited the contractions of rat isolated stomach strips elicited by porcine pancreatic phospholipase A2 (PLA2). Contractions caused by arachidonic acid (AA), prostaglandin E2 (PGE2) and 5-hydroxytryptamine were not affected. No direct enzyme inhibition was observed in a radiochemical assay. 3. PGE2 release by both human fibroblasts and rat macrophages was reduced by peptide 204-212 in a dose-dependent manner. 4. The development of carrageenin-induced oedema in rats was significantly inhibited by the local administration of peptide 204-212. 5. The pattern and potency of the biological effects of peptide 204-212 are similar to those of antiflammin 2, a lipocortin 1-derived peptide. 6. It is suggested that peptide 204-212 may represent the active site responsible for the anti-inflammatory properties of lipocortin 5. PMID:1832064

  18. Topical anti-inflammatory activity of Solanum corymbiflorum leaves.

    PubMed

    Piana, Mariana; Camponogara, Camila; Boligon, Aline Augusti; Machado, Michel Mansur; de Brum, Thiele Faccim; Oliveira, Sara Marchesan; de Freitas Bauermann, Liliane

    2016-02-17

    Solanum corymbiflorum is popularly known as "baga-de-veado" and its leaves are applied on inflamed legs, scabies, tick bite, boils, mastitis, low back pain and otitis. The aim of this study was evaluate anti-inflammatory in vivo activity and relate this activity with antioxidant compounds present in the extract of S. corymbiflorum leaves. The extract from S. corymbiflorum leaves topically applied was able to reduce the croton oil-induced ear edema and myeloperoxidase (MPO) activity with maximum inhibition of 87±3% and 45±7%, rescpectively in the dose of 1mg/ear. Similar results were found for positive control dexamethasone, which presented inhibitions of ear edema and MPO activity of 89±3% and 50±3%, respectively in a dose of 0.1mg/ear. These findings are due, at least in part, the presence of polyphenols (195.28mg GAE/g) and flavonoids, as chlorogenic acid (59.27mg/g), rutin (12.72mg/g), rosmarinic acid, caffeic acid and gallic acid found by high performance liquid chromatography (HPLC) analysis. This species showed potencial antioxidant by 1,1-diphenyl-2-picrylhydrazyl (DPPH), and carbonyl groups in proteins methods which may be related with the presence of this compounds. This species possess anti-inflammatory activity confirming their popular use for the local treatment of skin inflammatory disorders. PMID:26721215

  19. Vitamin D receptor agonists' anti-inflammatory properties.

    PubMed

    Vojinovic, Jelena

    2014-05-01

    One century after its discovery, vitamin D has been shown to be, in fact, a pleiotropic steroid hormone, which, besides regulation of calcium homeostasis and bone turnover, has antiproliferative, prodifferentiation, antibacterial, immunomodulatory, and anti-inflammatory properties in various cells and tissues. D hormone (1?,25(OH)2 D), regulated in an endocrine, autocrine, and paracrine manner, must be bound to the specific nuclear vitamin D receptor (VDR) to exert epigenetic and genetic effects, acting as a connection between extracellular stimuli and genomic responses of the cells. Since only high doses of hormone, provoking hypercalcemia, can achieve immunomodulatory effects, more than 3000 VDR agonists have been synthesized. Numerous experimental trials have been performed in animal models, evidencing the preventive and therapeutic potential of VDR agonists for chronic inflammatory diseases and cancer. Considering the selective anti-inflammatory effects of VDR agonists compared to glucocorticoids, sparing microbicidal functions, the fear of hypercalcemia as their only frequent side effect becomes a questionable reason for the lack of clinical studies. PMID:24754474

  20. Anti-inflammatory therapy for diabetic retinopathy

    PubMed Central

    Zhang, Wenbo; Liu, Hua; Rojas, Modesto; Caldwell, Robert W.; Caldwell, Ruth B.

    2013-01-01

    Diabetic retinopathy (DR) is one of the most common complications of diabetes. This devastating disease is a leading cause of blindness in people of working age in industrialized countries and affects the daily lives of millions of people. Despite tight glycemic control, blood pressure control, and lipid-lowering therapy, the number of DR patients keeps growing and therapeutic approaches are limited. Moreover, there are significant limitations and side-effects for the current therapies. Thus, there is a great need for development of new strategies for prevention and treatment of DR. Studies have shown that DR has prominent features of chronic, subclinical inflammation. This review will focus on the role of inflammation in DR and summarize the progress of studies of anti-inflammatory strategies for DR. PMID:21554091

  1. Corneal reepithelialization and anti-inflammatory agents.

    PubMed Central

    Srinivasan, B D

    1982-01-01

    These studies have demonstrated that nonsteroidal anti-inflammatory agents (cyclooxygenase and lipoxygenase inhibitors) can inhibit PMN arrival in the tear fluid following corneal injury but do not inhibit the reepithelialization either by corneal epithelial cells or by conjunctival epithelial cells. Therefore, they can be used safely in ocular inflammatory conditions even when corneal epithelial defects are present. Corticosteroids, on the other hand, inhibit reepithelialization by conjunctival epithelial cells and not by corneal epithelial cells in the doses tested. This inhibition does not occur with pretreatment prior to injury, suggesting that corticosteroids can be used clinically in conditions that have intact corneal epithelium without fear of slowing down wound healing should epithelial defects occur when not on steroid therapy. Furthermore, the steroid inhibition is temporary since there is a breakthrough in steroid inhibition with time, and occurs only if the steroids have been used shortly after deepithelialization. The steroid inhibition can be reversed by specific steroid antagonist, indicating that the steroid effect is mediated through specific receptors. An exciting and new hypothesis proposes that corticosteroids induce the formation of an inhibitory protein that inhibits the phospholipase enzyme to cause a block in arachidonic acid release from cell membranes. This mechanism of action may also be prevalent in the steroid effect on corneal reepithelialization, and experiments are under way to isolate this inhibitory protein from steroid-treated conjunctival epithelium. This isolation and pharmacologic characterization of this inhibitory protein is of obvious advantage to the field of ophthalmic therapeutics since this protein may have the anti-inflammatory potential of the steroids without their steroid sideeffects. Images FIGURE 3 a FIGURE 3 b PMID:6763806

  2. High-performance liquid chromatography systems for the analysis of analgesic and non-steroidal anti-inflammatory drugs in forensic toxicology.

    PubMed

    Stevens, H M; Gill, R

    1986-11-26

    High-performance liquid chromatography retention data are presented for over 40 analgesic drugs on an ODS-silica packing material to assist in the identification of these compounds. Three isocratic eluents prepared from isopropanol, formic acid and an aqueous phosphate buffer have been used. One eluent has been used for the analysis of paracetamol in whole blood. PMID:3805219

  3. Anti-Inflammatory and Antioxidant Activities of Salvia fruticosa: An HPLC Determination of Phenolic Contents

    PubMed Central

    Boukhary, Rima; Ghoneim, Asser I.; Aboul-Ela, Maha; El-Lakany, Abdalla

    2016-01-01

    Objectives. Salvia fruticosa Mill. (S. fruticosa) is widely used in folk medicine. Accordingly, the present study was designed to evaluate the antioxidant and anti-inflammatory activities of S. fruticosa, and to determine the phenolic constituents of its extracts. Methods. The antioxidant activity was determined using 2,2-diphenylpicrylhydrazyl assay. Total phenolic contents were estimated using Folin-Ciocalteu reagent, and high-performance liquid chromatography was performed to identify phenolic constituents. To evaluate the anti-inflammatory activity, carrageenan-induced mouse paw edema was determined plethysmographically. Key Findings. Different plant extracts demonstrated strong radical scavenging activity, where the ethyl acetate extract had the highest value in the roots and the lowest in the aerial parts. This antioxidant activity was correlated to the total phenolic content of different extracts, where rutin and luteolin were the most abundant constituents. Interestingly, both the roots and aerial parts revealed a significant anti-inflammatory activity comparable to diclofenac. Conclusions. This study is the first to demonstrate pharmacologic evidence of the potential anti-inflammatory activity of S. fruticosa. This activity may partly be due to the radical scavenging effects of its polyphenolic contents. These findings warrant the popular use of the East Mediterranean sage and highlight the potential of its active constituents in the development of new anti-inflammatory drugs. PMID:26881007

  4. Anti-Inflammatory and Antioxidant Activities of Salvia fruticosa: An HPLC Determination of Phenolic Contents.

    PubMed

    Boukhary, Rima; Raafat, Karim; Ghoneim, Asser I; Aboul-Ela, Maha; El-Lakany, Abdalla

    2016-01-01

    Objectives. Salvia fruticosa Mill. (S. fruticosa) is widely used in folk medicine. Accordingly, the present study was designed to evaluate the antioxidant and anti-inflammatory activities of S. fruticosa, and to determine the phenolic constituents of its extracts. Methods. The antioxidant activity was determined using 2,2-diphenylpicrylhydrazyl assay. Total phenolic contents were estimated using Folin-Ciocalteu reagent, and high-performance liquid chromatography was performed to identify phenolic constituents. To evaluate the anti-inflammatory activity, carrageenan-induced mouse paw edema was determined plethysmographically. Key Findings. Different plant extracts demonstrated strong radical scavenging activity, where the ethyl acetate extract had the highest value in the roots and the lowest in the aerial parts. This antioxidant activity was correlated to the total phenolic content of different extracts, where rutin and luteolin were the most abundant constituents. Interestingly, both the roots and aerial parts revealed a significant anti-inflammatory activity comparable to diclofenac. Conclusions. This study is the first to demonstrate pharmacologic evidence of the potential anti-inflammatory activity of S. fruticosa. This activity may partly be due to the radical scavenging effects of its polyphenolic contents. These findings warrant the popular use of the East Mediterranean sage and highlight the potential of its active constituents in the development of new anti-inflammatory drugs. PMID:26881007

  5. Toxicity of non-steroidal anti-inflammatory drugs: a review of melatonin and diclofenac sodium association.

    PubMed

    Aygn, D; Kaplan, S; Odaci, E; Onger, M E; Altunkaynak, M E

    2012-04-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used for the purpose of anti-inflammation, antipyretic, and analgesia. For this aim, they are used for the alleviation of pain, fever, and inflammation associated with rheumatoid arthritis, sports injuries, and temporary pain. However, treatment with NSAIDs may be accompanied by adverse effects such as gastrointestinal damage and platelet dysfunction. As with the other NSAIDs, diclofenac sodium (sodium-(o-((2,6-dichlorophenyl)-amino)-phenyl)-acetate) (DS), an NSAID, has potent anti-inflammatory, analgesic, and antipyretic effects. However, treatment with DS may cause some adverse cerebral and cerebellar effects such as convulsions, disorientation, hallucination, and loss of consciousness. Melatonin (MLT) is a free-radical scavenger and possesses antioxidant properties. It has been reported to easily cross the blood-brain barrier, and is found in high concentrations in the brain after exogenous administration. It is also a neuroprotector in a wide range of conditions affecting the central nervous system CNS due to its free-radical scavenging activities and lipophilic-hydrophilic properties. Neuroprotective actions of MLT have been discovered in both in vitro and in vivo, and are a powerful scavenger of oxygen and nitrogen free radicals. Thus, MLT can protect the cell membrane, organelles, and core against free-radical damage. Therefore, it has been postulated that exogenous MLT acts as a neuroprotector contrary to DS neurotoxicity. In this review, we aimed to discuss the possible neuroprotective effects of MLT on DS toxicity. PMID:22374720

  6. Structure-based design of phthalimide derivatives as potential cyclooxygenase-2 (COX-2) inhibitors: anti-inflammatory and analgesic activities.

    PubMed

    Alanazi, Amer M; El-Azab, Adel S; Al-Suwaidan, Ibrahim A; ElTahir, Kamal Eldin H; Asiri, Yousif A; Abdel-Aziz, Naglaa I; Abdel-Aziz, Alaa A-M

    2015-03-01

    A group of 30 cyclic imides (1-10a-c) was designed for evaluation as a selective COX-2 inhibitor and investigated invivo for anti-inflammatory and analgesic activities. Compounds 6a, 6b, 7a and 7b exhibit optimal COX-2 inhibitory potency (IC50=0.18, 0.24, 0.28 and 0.36?M; respectively) and selectivity index (SI) range of 363-668. Invitro COX-1/COX-2 inhibition structure-activity studies identified compound 6a as a highly potent (IC50=0.18?M), and an extremely selective [COX-2 (SI)=668] comparable to celecoxib [COX-2 (SI)>384], COX-2 inhibitor that showed superior anti-inflammatory activity (ED50=54.0mg/kg) relative to diclofenac (ED50=114mg/kg).Molecular Docking study of the synthesized compound 6a into the active site of COX-2 revealed a similar binding mode to SC-558, a selective COX-2 inhibitor. Docking study showed that the methoxy moeities of 6a inserted deep inside the 2-pocket of the COX-2 active site, where the O-atoms of such groups underwent an H-bonding interaction with His(90) (3.02?), Arg(513) (1.94, 2.83?), and Gln(192) (3.25?). PMID:25549551

  7. Brucella C?G induces a dual pro- and anti-inflammatory response leading to a transient neutrophil recruitment.

    PubMed

    Degos, Clara; Gagnaire, Aurlie; Banchereau, Romain; Moriyn, Ignacio; Gorvel, Jean-Pierre

    2015-01-01

    Brucella is the causing agent of a chronic zoonosis called brucellosis. The Brucella ?-1,2 cyclic glucan (C?G) is a virulence factor, which has been described as a potent immune stimulator, albeit with no toxicity for cells and animals. We first used a genome-wide approach to characterize human myeloid dendritic cell (mDC) responses to C?G. Transcripts related to inflammation (IL-6, IL2RA, PTGS2), chemokine (CXCR7, CXCL2) and anti-inflammatory pathways (TNFAIP6, SOCS3) were highly expressed in C?G-treated mDC. In mouse GMCSF-derived DC, C?G triggered the expression of both activation (CXCL2, KC) and inhibition (SOCS3 and TNFAIP6) molecules. We then characterized the inflammatory infiltrates at the level of mouse ear when injected with C?G or LPS. C?G yielded a lower and transient recruitment of neutrophils compared to LPS. The consequence of these dual pro- and anti-inflammatory signals triggered by C?G corresponds to the induction of a controlled local inflammation. PMID:25654761

  8. Evaluation of Anticancer, Antioxidant, and Possible Anti-inflammatory Properties of Selected Medicinal Plants Used in Indian Traditional Medication

    PubMed Central

    Shaikh, Rafik; Pund, Mahesh; Dawane, Ashwini; Iliyas, Sayyed

    2014-01-01

    The present study was carried out to evaluate the anticancer, antioxidant, and possible anti-inflammatory properties of diverse medicinal plants frequently used in Indian traditional medication. The selected botanicals such as Soymida fembrifuga (Roxb.) A. Juss. (Miliaceae), Tinospora cordifolia (Willd.) Miers. (Menispermaceae), Lavandula bipinnata (L.) O. Ktze. (Lamiaceae), and Helicteres isora L. (Sterculiaceae) extracted in different solvents were evaluated for their in vitro anticancer and antioxidant activities. The results obtained indicate that H. isora has potent cytotoxic activity toward the selected cancer cells such as HeLa-B75 (34.21 0.24%), HL-60 (30.25 1.36%), HEP-3B (25.36 1.78%), and PN-15 (29.21 0.52%). Interestingly, the selected botanicals selectively inhibited cyclooxygenase-2 (COX-2) more than (COX-1), which are the key enzymes implicated in inflammation. COX-2 inhibition was observed to be in the range of 19.66-49.52% as compared to COX-1 inhibition (3.93-19.61%). The results of the antioxidant study revealed that the selected plants were found to be effective 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl (OH), and superoxide radical (SOR) scavenging agents. High-performance thin layer chromatography (HPTLC) fingerprint of flavonoids was used as a measure of quality control of the selected plant samples. The results of the present findings strengthen the potential of the selected plants as a resource for the discovery of novel anticancer, anti-inflammatory, and antioxidant agents. PMID:25379467

  9. Evaluation of Anticancer, Antioxidant, and Possible Anti-inflammatory Properties of Selected Medicinal Plants Used in Indian Traditional Medication.

    PubMed

    Shaikh, Rafik; Pund, Mahesh; Dawane, Ashwini; Iliyas, Sayyed

    2014-10-01

    The present study was carried out to evaluate the anticancer, antioxidant, and possible anti-inflammatory properties of diverse medicinal plants frequently used in Indian traditional medication. The selected botanicals such as Soymida fembrifuga (Roxb.) A. Juss. (Miliaceae), Tinospora cordifolia (Willd.) Miers. (Menispermaceae), Lavandula bipinnata (L.) O. Ktze. (Lamiaceae), and Helicteres isora L. (Sterculiaceae) extracted in different solvents were evaluated for their in vitro anticancer and antioxidant activities. The results obtained indicate that H. isora has potent cytotoxic activity toward the selected cancer cells such as HeLa-B75 (34.21 0.24%), HL-60 (30.25 1.36%), HEP-3B (25.36 1.78%), and PN-15 (29.21 0.52%). Interestingly, the selected botanicals selectively inhibited cyclooxygenase-2 (COX-2) more than (COX-1), which are the key enzymes implicated in inflammation. COX-2 inhibition was observed to be in the range of 19.66-49.52% as compared to COX-1 inhibition (3.93-19.61%). The results of the antioxidant study revealed that the selected plants were found to be effective 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl (OH), and superoxide radical (SOR) scavenging agents. High-performance thin layer chromatography (HPTLC) fingerprint of flavonoids was used as a measure of quality control of the selected plant samples. The results of the present findings strengthen the potential of the selected plants as a resource for the discovery of novel anticancer, anti-inflammatory, and antioxidant agents. PMID:25379467

  10. Use of Non-Steroidal Anti-Inflammatory Drugs That Elevate Cardiovascular Risk: An Examination of Sales and Essential Medicines Lists in Low-, Middle-, and High-Income Countries

    PubMed Central

    McGettigan, Patricia; Henry, David

    2013-01-01

    Background Certain non-steroidal anti-inflammatory drugs (NSAIDs) (e.g., rofecoxib [Vioxx]) increase the risk of heart attack and stroke and should be avoided in patients at high risk of cardiovascular events. Rates of cardiovascular disease are high and rising in many low- and middle-income countries. We studied the extent to which evidence on cardiovascular risk with NSAIDs has translated into guidance and sales in 15 countries. Methods and Findings Data on the relative risk (RR) of cardiovascular events with individual NSAIDs were derived from meta-analyses of randomised trials and controlled observational studies. Listing of individual NSAIDs on Essential Medicines Lists (EMLs) was obtained from the World Health Organization. NSAID sales or prescription data for 15 low-, middle-, and high-income countries were obtained from Intercontinental Medical Statistics Health (IMS Health) or national prescription pricing audit (in the case of England and Canada). Three drugs (rofecoxib, diclofenac, etoricoxib) ranked consistently highest in terms of cardiovascular risk compared with nonuse. Naproxen was associated with a low risk. Diclofenac was listed on 74 national EMLs, naproxen on just 27. Rofecoxib use was not documented in any country. Diclofenac and etoricoxib accounted for one-third of total NSAID usage across the 15 countries (median 33.2%, range 14.758.7%). This proportion did not vary between low- and high-income countries. Diclofenac was by far the most commonly used NSAID, with a market share close to that of the next three most popular drugs combined. Naproxen had an average market share of less than 10%. Conclusions Listing of NSAIDs on national EMLs should take account of cardiovascular risk, with preference given to low risk drugs. Diclofenac has a risk very similar to rofecoxib, which was withdrawn from worldwide markets owing to cardiovascular toxicity. Diclofenac should be removed from EMLs. Please see later in the article for the Editors' Summary PMID:23424288

  11. Anti-inflammatory activity of glycogen extracted from Perna canaliculus (NZ green-lipped mussel).

    PubMed

    Miller, T E; Dodd, J; Ormrod, D J; Geddes, R

    1993-01-01

    Previous laboratory based investigations of a commercially prepared freeze-dried extract of the NZ green-lipped mussel (Perna canaliculus) showed that the material had the capacity to inhibit experimentally induced inflammation. The activity was thought to reside within an aqueous fraction containing high molecular weight material, possibly a polysaccharide. In the present study, a polysaccharide (glycogen) has been extracted from Perna canaliculus and its anti-inflammatory activity examined in an attempt to characterise further the high molecular weight components of this mollusc. Glycogen extracts administered i.v. demonstrated a dose-dependent anti-inflammatory effect in rats with carrageenin-induced footpad oedema. Mobilisation of neutrophils to the site of an inflammatory stimulus was also significantly reduced. This activity was lost if the glycogen extract was treated with KOH or proteinase K, suggesting that the anti-inflammatory properties resided within a protein moiety associated with the glycogen. PMID:8317309

  12. Sol-gel-derived magnetic SiO2/TiO2 nanocomposite reinforced hollow fiber-solid phase microextraction for enrichment of non-steroidal anti-inflammatory drugs from human hair prior to high performance liquid chromatography.

    PubMed

    Es'haghi, Zarrin; Esmaeili-Shahri, Effat

    2014-10-01

    Hollow fiber-solid phase micro-extraction (HF-SPME) technique containing sol-gel-derived Fe3O4/SiO2/TiO2 core-double shell nanocomposite as a novel high efficiency sorbent, coupled with high performance liquid chromatography was used to extraction and determination of six non-steroidal anti-inflammatory drugs; acetylsalicylic acid, naproxen, piroxicam, diclofenac, indomethacin and mefenamic acid, in hair samples. First, magnetite nanoparticles (Fe3O4-NPs) were synthesized by chemical co-precipitation of Fe(II) and Fe(III) ions (where the ratio of Fe(II) to Fe(III) is 1:2 and a non-oxidizing environment), in alkaline medium to produce magnetite particles. Subsequently, surface of Fe3O4-NPs was modified with SiO2 and TiO2 using layer-by-layer chemical technique. A core-shell structure of Fe3O4/SiO2/TiO2 composite was prepared by coating magnetite core particles with silica and titania layers. In the proposed method, NSAIDs were extracted by the synthesized nanocomposite and analyzed by HPLC. The parameters affecting the efficiency of magnetic nanoparticle (MNPs) assisted HF-SPME were investigated and optimized. The method validation was included and satisfying results with high pre-concentration factors (405 up to 2450) were obtained. It owes large surface area and porosity of the nano-adsorbent. Under the optimal conditions, the method detection limits (S/N=3) were in the range of 0.01-0.10?gml(-1) and the limits of quantification (S/N=10) between 0.04 and 0.30?gml(-1). Relative standard deviations were 3.09-6.61%. Eventually, the method was successfully applied to human hair after administration of NSAIDs. PMID:25464107

  13. Repositioning drugs for inflammatory disease – fishing for new anti-inflammatory agents

    PubMed Central

    Hall, Christopher J.; Wicker, Sophie M.; Chien, An-Tzu; Tromp, Alisha; Lawrence, Lisa M.; Sun, Xueying; Krissansen, Geoffrey W.; Crosier, Kathryn E.; Crosier, Philip S.

    2014-01-01

    Inflammation is an important and appropriate host response to infection or injury. However, dysregulation of this response, with resulting persistent or inappropriate inflammation, underlies a broad range of pathological processes, from inflammatory dermatoses to type 2 diabetes and cancer. As such, identifying new drugs to suppress inflammation is an area of intense interest. Despite notable successes, there still exists an unmet need for new effective therapeutic approaches to treat inflammation. Traditional drug discovery, including structure-based drug design, have largely fallen short of satisfying this unmet need. With faster development times and reduced safety and pharmacokinetic uncertainty, drug repositioning – the process of finding new uses for existing drugs – is emerging as an alternative strategy to traditional drug design that promises an improved risk-reward trade-off. Using a zebrafish in vivo neutrophil migration assay, we undertook a drug repositioning screen to identify unknown anti-inflammatory activities for known drugs. By interrogating a library of 1280 approved drugs for their ability to suppress the recruitment of neutrophils to tail fin injury, we identified a number of drugs with significant anti-inflammatory activity that have not previously been characterized as general anti-inflammatories. Importantly, we reveal that the ten most potent repositioned drugs from our zebrafish screen displayed conserved anti-inflammatory activity in a mouse model of skin inflammation (atopic dermatitis). This study provides compelling evidence that exploiting the zebrafish as an in vivo drug repositioning platform holds promise as a strategy to reveal new anti-inflammatory activities for existing drugs. PMID:25038060

  14. Repositioning drugs for inflammatory disease - fishing for new anti-inflammatory agents.

    PubMed

    Hall, Christopher J; Wicker, Sophie M; Chien, An-Tzu; Tromp, Alisha; Lawrence, Lisa M; Sun, Xueying; Krissansen, Geoffrey W; Crosier, Kathryn E; Crosier, Philip S

    2014-09-01

    Inflammation is an important and appropriate host response to infection or injury. However, dysregulation of this response, with resulting persistent or inappropriate inflammation, underlies a broad range of pathological processes, from inflammatory dermatoses to type 2 diabetes and cancer. As such, identifying new drugs to suppress inflammation is an area of intense interest. Despite notable successes, there still exists an unmet need for new effective therapeutic approaches to treat inflammation. Traditional drug discovery, including structure-based drug design, have largely fallen short of satisfying this unmet need. With faster development times and reduced safety and pharmacokinetic uncertainty, drug repositioning - the process of finding new uses for existing drugs - is emerging as an alternative strategy to traditional drug design that promises an improved risk-reward trade-off. Using a zebrafish in vivo neutrophil migration assay, we undertook a drug repositioning screen to identify unknown anti-inflammatory activities for known drugs. By interrogating a library of 1280 approved drugs for their ability to suppress the recruitment of neutrophils to tail fin injury, we identified a number of drugs with significant anti-inflammatory activity that have not previously been characterized as general anti-inflammatories. Importantly, we reveal that the ten most potent repositioned drugs from our zebrafish screen displayed conserved anti-inflammatory activity in a mouse model of skin inflammation (atopic dermatitis). This study provides compelling evidence that exploiting the zebrafish as an in vivo drug repositioning platform holds promise as a strategy to reveal new anti-inflammatory activities for existing drugs. PMID:25038060

  15. Anti-inflammatory, analgesic, and antipyretic activities of virgin coconut oil.

    PubMed

    Intahphuak, S; Khonsung, P; Panthong, A

    2010-02-01

    This study investigated some pharmacological properties of virgin coconut oil (VCO), the natural pure oil from coconut [Cocos nucifera Linn (Palmae)] milk, which was prepared without using chemical or high-heat treatment. The anti-inflammatory, analgesic, and antipyretic effects of VCO were assessed. In acute inflammatory models, VCO showed moderate anti-inflammatory effects on ethyl phenylpropiolate-induced ear edema in rats, and carrageenin- and arachidonic acid-induced paw edema. VCO exhibited an inhibitory effect on chronic inflammation by reducing the transudative weight, granuloma formation, and serum alkaline phosphatase activity. VCO also showed a moderate analgesic effect on the acetic acid-induced writhing response as well as an antipyretic effect in yeast-induced hyperthermia. The results obtained suggest anti-inflammatory, analgesic, and antipyretic properties of VCO. PMID:20645831

  16. Pathogen- and Host-Directed Anti-Inflammatory Activities of Macrolide Antibiotics

    PubMed Central

    Steel, Helen C.; Theron, Annette J.; Cockeran, Riana; Anderson, Ronald; Feldman, Charles

    2012-01-01

    Macrolide antibiotics possess several, beneficial, secondary properties which complement their primary antimicrobial activity. In addition to high levels of tissue penetration, which may counteract seemingly macrolide-resistant bacterial pathogens, these agents also possess anti-inflammatory properties, unrelated to their primary antimicrobial activity. Macrolides target cells of both the innate and adaptive immune systems, as well as structural cells, and are beneficial in controlling harmful inflammatory responses during acute and chronic bacterial infection. These secondary anti-inflammatory activities of macrolides appear to be particularly effective in attenuating neutrophil-mediated inflammation. This, in turn, may contribute to the usefulness of these agents in the treatment of acute and chronic inflammatory disorders of both microbial and nonmicrobial origin, predominantly of the airways. This paper is focused on the various mechanisms of macrolide-mediated anti-inflammatory activity which target both microbial pathogens and the cells of the innate and adaptive immune systems, with emphasis on their clinical relevance. PMID:22778497

  17. Anti-inflammatory action of ?-irradiated genistein in murine peritoneal macrophage

    NASA Astrophysics Data System (ADS)

    Sung, Nak-Yun; Byun, Eui-Baek; Song, Du-Sup; Jin, Yeung-Bae; Park, Jae-Nam; Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Park, Sang-Hyun; Lee, Ju-Woon; Kim, Jae-Hun

    2014-12-01

    This present study was to examine the cytotoxicity and anti-inflammatory activity of gamma (?)-irradiated genistein in murine peritoneal macrophage. Inflammation to macrophage was induced by adding the lipopolysaccharide (LPS). ?-Irradiated genistein significantly decreased the cytotoxicity to murine peritoneal macrophage in dose ranges from 5 to 10 ?M than that of non-irradiated genistein. Anti-inflammatory activity within the doses less than 2 ?M showed that ?-irradiated genistein treatment remarkably reduced the lipopolysaccharide-induced inflammation by decreasing the nitric oxide (NO) and cytokines (TNF-?, IL-6) production. In a structural analysis through the high pressure liquid chromatography (HPLC), ?-irradiated genistein showed a new peak production distinguished from main peak of genistein (non-irradiated). Therefore, increase of anti-inflammatory activity may closely mediate with structural changes induced by ? irradiation exposure. Based on the above result, ?-irradiation could be an effective tool for reduction of toxicity and increase of physiological activity of biomolecules.

  18. Evaluation of Phytochemical Screening and Anti Inflammatory Activity of Leaves and Stem of Mikania scandens (L.) Wild

    PubMed Central

    Banerjee, S; Chanda, A; Adhikari, A; Das, AK; Biswas, S

    2014-01-01

    Background: The greatest disadvantage in the presently available potent synthetic anti-inflammatory drugs lies in their toxicity and reappearance of symptoms after discontinuation. Hence, people are returning to the natural products with the hope of safety and security. Several species of Mikania have been reported to have anti-inflammatory properties. Aim: The present study aims to assess the anti-inflammatory activity of the ethanolic extract of the leaves and stem of Mikania scandens in vivo and in vitro. Materials and Methods: The in vitro bioassay consisted of assaying the effect of the extracts against denaturation of protein (egg albumin) and measuring the absorbance. In vivo anti-inflammatory activity was checked by measuring the percentage inhibition of carrageenan-induced rat paw edema after oral administration of the extracts to male Wistar rats. Results: The plant extracts revealed the presence of tannins, alkaloids, steroids and flavonoids in both the leaf and stem extracts. The in vitro study of leaf extracts of M. scandens demonstrated that at 16000 μg/ml concentration a better anti-inflammatory activity was exhibited which is more than the stem extracts. Similarly in the in vivo study, carrageenan induced inflammation was significantly antagonized by M. scandens leaf extract, with inhibition of 50% at 1000 mg/kg. Conclusion: The ethanolic extract of both leaf and stem of M. scandens showed potent anti-inflammatory activity. In comparison the leaf extract found to be more potent in both the conditions in vivo and in vitro, comparing with the standard drug diclofenac sodium and traditional control rumalaya perhaps due to the presence of phytochemicals like alkaloids and flavonoids in the plant. PMID:25221699

  19. Anti-inflammatory effects of escin are correlated with the glucocorticoid receptor/NF-?B signaling pathway, but not the COX/PGF2? signaling pathway.

    PubMed

    Wang, Hongsheng; Zhang, Leiming; Jiang, Na; Wang, Zhenhua; Chong, Yating; Fu, Fenghua

    2013-08-01

    In China, escin has been widely used in the clinic as a potent anti-inflammatory drug. Previous studies have indicated that escin exerts its anti-inflammatory effect by enhancing the release of glucocorticoids (GCs) and prostaglandin-F2? (PGF2?), and this has been documented in the drug description. However, our previous studies demonstrated that escin did not increase the secretion of GCs, but instead elevated the protein expression of the GC receptor (GR), which may have repressed nuclear factor (NF)-?B-mediated gene expression. The aim of this study was to determine the functions of NF-?B and PGF2? with regard to the anti-inflammatory effect of escin. We investigated the anti-inflammatory effects of dexamethasone, diclofenac and escin against carrageenan-induced paw edema in rats, and observed that escin exerted a GC-like anti-inflammatory effect. In addition, we studied the role of PGF2? in the anti-inflammatory effect exerted by escin in an acetic acid-induced capillary permeability model in mice. The results revealed that the coadministration of escin and diclofenac, a potent prostaglandin-synthesis inhibitor, did not affect the anti-inflammatory effect of escin. Furthermore, we investigated the function of NF-?B with regard to the anti-inflammatory effect exerted by escin in lipopolysaccharide (LPS)-treated mice, and demonstrated that escin significantly inhibited the expression of NF-?B. These results suggest that escin has a GC-like anti-inflammatory effect, and that its mechanisms may be correlated with the GC receptor/NF-?B signaling pathway, but not the COX/PGF2? signaling pathway. PMID:24137201

  20. Anti-inflammatory effects of escin are correlated with the glucocorticoid receptor/NF-?B signaling pathway, but not the COX/PGF2? signaling pathway

    PubMed Central

    WANG, HONGSHENG; ZHANG, LEIMING; JIANG, NA; WANG, ZHENHUA; CHONG, YATING; FU, FENGHUA

    2013-01-01

    In China, escin has been widely used in the clinic as a potent anti-inflammatory drug. Previous studies have indicated that escin exerts its anti-inflammatory effect by enhancing the release of glucocorticoids (GCs) and prostaglandin-F2? (PGF2?), and this has been documented in the drug description. However, our previous studies demonstrated that escin did not increase the secretion of GCs, but instead elevated the protein expression of the GC receptor (GR), which may have repressed nuclear factor (NF)-?B-mediated gene expression. The aim of this study was to determine the functions of NF-?B and PGF2? with regard to the anti-inflammatory effect of escin. We investigated the anti-inflammatory effects of dexamethasone, diclofenac and escin against carrageenan-induced paw edema in rats, and observed that escin exerted a GC-like anti-inflammatory effect. In addition, we studied the role of PGF2? in the anti-inflammatory effect exerted by escin in an acetic acid-induced capillary permeability model in mice. The results revealed that the coadministration of escin and diclofenac, a potent prostaglandin-synthesis inhibitor, did not affect the anti-inflammatory effect of escin. Furthermore, we investigated the function of NF-?B with regard to the anti-inflammatory effect exerted by escin in lipopolysaccharide (LPS)-treated mice, and demonstrated that escin significantly inhibited the expression of NF-?B. These results suggest that escin has a GC-like anti-inflammatory effect, and that its mechanisms may be correlated with the GC receptor/NF-?B signaling pathway, but not the COX/PGF2? signaling pathway. PMID:24137201

  1. Anti-Inflammatory Constituents from Bidens frondosa.

    PubMed

    Le, Jiamei; Lu, Wenquan; Xiong, Xiaojuan; Wu, Zhijun; Chen, Wansheng

    2015-01-01

    A new polyacetylene glucoside (3E,5E,11E)-tridecatriene-7,9-diyne-1,2,13-triol-2-O-?-D-glucopyranoside (1), a new phenylpropanoid glucoside 2'-butoxyethylconiferin (2), and a new flavonoid glycoside 8,3',4'-trihydroxyflavone-7-O-(6''-O-p-coumaroyl)-?-D-glucopyranoside (3), have been isolated from Bidens frondosa together with fifty-three known compounds 4-56. The structures of these compounds were established by spectroscopic methods. mainly ESIMS, 1D- and 2D-NMR spectroscopic data. and comparison with literature data. Compounds 1-34, 36, 39, 43, 47, 51, and 52 were tested for inhibition of nuclear factor kappa B (NF-?B) in 293-NF-?B-luciferase report cell line induced by lipopolysaccharide (LPS), and compounds 1, 2, 3, 9, 15, 21, 24 and 51 were tested for the production of TNF-?, IL-1?, IL-6, IL-10 in RAW 264.7 macrophages induced by LPS. In conclusion, the isolated compounds 1, 2, 3, 9, 15, 21, 24 and 51 exhibited significant activity in anti-inflammatory activity assays. PMID:26473814

  2. Anti-inflammatory and antioxidant properties of a novel resveratrol-salicylate hybrid analog.

    PubMed

    Aldawsari, Fahad S; Aguiar, Rafael Pazinatto; Wiirzler, Luiz Alexandre Marques; Aguayo-Ortiz, Rodrigo; Aljuhani, Naif; Cuman, Roberto Kenji Nakamura; Medina-Franco, Jos L; Siraki, Arno G; Velzquez-Martnez, Carlos A

    2016-03-01

    Resveratrol is a natural compound with a plethora of activities as well as limitations. We recently reported a series of resveratrol-salicylate analogs with potential chemopreventive activity. Herein, we report the anti-inflammatory and antioxidant properties of these resveratrol derivatives. Using an in vitro COX inhibition assay, and two in vivo protocols (carrageenan-induced peritonitis and paw edema), we identified a novel compound (C10) as a potent anti-inflammatory agent. The enhanced potency of C10 was associated with the ability of C10 to decrease the activity of myeloperoxidase (MPO) enzyme at 10mg/kg, whereas resveratrol and it's natural analog (TMS) did not exert the same effect. Additionally, C10 significantly reduced the concentration of intracellular reactive oxygen species. Because of the proven association between cancer, inflammation, and oxidative stress, we believe that C10 is a promising chemopreventive molecule. PMID:26850006

  3. Anti-inflammatory effects of the hydroxycarboxylic acid receptor 2.

    PubMed

    Graff, Emily C; Fang, Han; Wanders, Desiree; Judd, Robert L

    2016-02-01

    The hydroxycarboxylic acid receptors (HCA1-3) are a family of G-protein-coupled receptors that are critical for sensing endogenous intermediates of metabolism. All three receptors are predominantly expressed on adipocytes and mediate anti-lipolytic effects. In addition to adipocytes, HCA2 is highly expressed on immune cells, including macrophages, monocytes, neutrophils and dermal dendritic cells, among other cell types. The endogenous ligand for HCA2 is beta-hydroxybutyrate (?-OHB), a ketone body produced by the liver through ?-oxidation when an individual is in a negative energy balance. Recent studies demonstrate that HCA2 mediates profound anti-inflammatory effects in a variety of tissues, indicating that HCA2 may be an important therapeutic target for treating inflammatory disease processes. This review summarizes the roles of HCA2 on inflammation in a number of tissues and clinical states. PMID:26773933

  4. Is pyruvate an endogenous anti-inflammatory molecule?

    PubMed

    Das, Undurti N

    2006-09-01

    Pyruvic acid is an effective scavenger of reactive oxygen species. Ethyl pyruvate has demonstrated anti-inflammatory actions and improved hyperpermeability and bacterial translocation due to endotoxemia and is of benefit in animal models of sepsis and septic shock. Ethyl pyruvate specifically inhibits tumor necrosis factor-alpha production and decreases circulating levels of high-mobility group box-1 and nuclear factor-kappaB signaling pathways by specifically targeting its p65 subunit in animals with established endotoxemia or sepsis and in macrophage cultures. Ethyl pyruvate also decreases cyclo-oxygenase-2, inducible nitric oxide synthase, and interleukin-6 mRNA expression in the liver, ileal mucosa, and colonic mucosa in animal models with hemorrhagic shock. Similar beneficial actions have been seen in endotoxemia. These and other studies suggest that ethyl pyruvate could be of significant benefit in the treatment of patients who are critically ill and have sepsis/septic shock. PMID:16814517

  5. Sterols and triterpenoids as potential anti-inflammatories: Molecular docking studies for binding to some enzymes involved in inflammatory pathways.

    PubMed

    Loza-Meja, Marco A; Salazar, Juan Rodrigo

    2015-11-01

    Triterpenes and sterols are good candidates for the development of anti-inflammatory drugs and use in chemoprevention or chemotherapy of cancer via the interaction with therapeutic targets related to inflammation, such as COX-1 and -2; LOX-5; MPO, PLA2 and i-NOS. In this study, we use molecular docking to evaluate the potential binding of a database of selected sterol and triterpenoid compounds with several skeletons against enzymes related to inflammation to propose structural requirements beneficial for anti-inflammatory activity that can be used for the design of more potent and selective anti-inflammatory and antitumor drugs. Our results suggest that the substitution pattern is important and that there is an important relationship between the class of sterol or triterpenoid skeleton and enzyme binding. PMID:26342572

  6. Design, synthesis, characterization and in vitro and in vivo anti-inflammatory evaluation of novel pyrazole-based chalcones.

    PubMed

    Chavan, Hemant V; Adsul, Laxman K; Kotmale, Amol S; Dhakane, Valmik D; Thakare, Vishnu N; Bandgar, Babasaheb P

    2015-02-01

    Abstract A series of novel pyrazole-based chalcones have been designed, synthesized from 1-methyl-5-(2,4,6-trimethoxyphenyl)-1H-pyrazole (6). The structures of regioisomers 6 and 7 were determined by 2D (1)H-(1)H COSY, (1)H-(13)C HSQC and (1)H-(13)C HMBC experiments. The newly synthesized compounds were tested for their inhibitory activity against COX-1 and COX-2 using an in vitro cyclooxygenase (COX) inhibition assay. Moreover, they were investigated in vivo for their anti-inflammatory activities using carrageenan-induced rat paw edema model for acute inflammation and cotton pellet-induced granuloma model for chronic inflammation. All the synthesized compounds showed potential to demonstrate anti-inflammatory activities, of particular interest compounds 10i, 10e, 10f, and 10h were found to be potent anti-inflammatory agents. PMID:24666306

  7. Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity

    PubMed Central

    Washburn, Nathaniel; Schwab, Inessa; Ortiz, Daniel; Bhatnagar, Naveen; Lansing, Jonathan C.; Medeiros, Amy; Tyler, Steven; Mekala, Divya; Cochran, Edward; Sarvaiya, Hetal; Garofalo, Kevin; Meccariello, Robin; Meador, James W.; Rutitzky, Laura; Schultes, Birgit C.; Ling, Leona; Avery, William; Nimmerjahn, Falk; Manning, Anthony M.; Kaundinya, Ganesh V.; Bosques, Carlos J.

    2015-01-01

    Despite the beneficial therapeutic effects of intravenous immunoglobulin (IVIg) in inflammatory diseases, consistent therapeutic efficacy and potency remain major limitations for patients and physicians using IVIg. These limitations have stimulated a desire to generate therapeutic alternatives that could leverage the broad mechanisms of action of IVIg while improving therapeutic consistency and potency. The identification of the important anti-inflammatory role of fragment crystallizable domain (Fc) sialylation has presented an opportunity to develop more potent Ig therapies. However, translating this concept to potent anti-inflammatory therapeutics has been hampered by the difficulty of generating suitable sialylated products for clinical use. Therefore, we set out to develop the first, to our knowledge, robust and scalable process for generating a well-qualified sialylated IVIg drug candidate with maximum Fc sialylation devoid of unwanted alterations to the IVIg mixture. Here, we describe a controlled enzymatic, scalable process to produce a tetra-Fcsialylated (s4-IVIg) IVIg drug candidate and its qualification across a wide panel of analytic assays, including physicochemical, pharmacokinetic, biodistribution, and in vivo animal models of inflammation. Our in vivo characterization of this drug candidate revealed consistent, enhanced anti-inflammatory activity up to 10-fold higher than IVIg across different animal models. To our knowledge, this candidate represents the first s4-IVIg suitable for clinical use; it is also a valuable therapeutic alternative with more consistent and potent anti-inflammatory activity. PMID:25733881

  8. Black Cumin (Nigella sativa) and Its Active Constituent, Thymoquinone: An Overview on the Analgesic and Anti-inflammatory Effects.

    PubMed

    Amin, Bahareh; Hosseinzadeh, Hossein

    2016-01-01

    For many centuries, seeds of Nigella sativa (black cumin), a dicotyledon of the Ranunculaceae family, have been used as a seasoning spice and food additive in the Middle East and Mediterranean areas. Traditionally, the plant is used for asthma, hypertension, diabetes, inflammation, cough, bronchitis, headache, eczema, fever, dizziness, and gastrointestinal disturbances. The literature regarding the biological activities of seeds of this plant is extensive, citing bronchodilative, anti-inflammatory, antinociceptive, antibacterial, hypotensive, hypolipidemic, cytotoxic, antidiabetic, and hepatoprotective effects. The active ingredients of N. sativa are mainly concentrated in the fixed or essential oil of seeds, which are responsible for most health benefits. This review will provide all updated reported activities of this plant with an emphasis on the antinociceptive and anti-inflammatory effects. Results of various studies have demonstrated that the oil, extracts, and their active ingredients, in particular, thymoquinone, possess antinociceptive and anti-inflammatory effects, supporting the common folk perception of N. Sativa as a potent analgesic and anti-inflammatory agent. Many protective properties are attributed to reproducible radical scavenging activity as well as an interaction with numerous molecular targets involved in inflammation, including proinflammatory enzymes and cytokines. However, there is a need for further investigations to find out the precise mechanisms responsible for the antinociceptive and anti-inflammatory effects of this plant and its active constituents. PMID:26366755

  9. Estimation of total phenolic content, in-vitro antioxidant and anti-inflammatory activity of flowers of Moringa oleifera

    PubMed Central

    Alhakmani, Fatma; Kumar, Sokindra; Khan, Shah Alam

    2013-01-01

    Objective To evaluate and compare the antioxidant potential and anti-inflammatory activity of ethanolic extract of flowers of Moringa oleifera (M. oleifera) grown in Oman. Methods Flowers of M. oleifera were collected in the month of December 2012 and identified by a botanist. Alcoholic extract of the dry pulverized flowers of M. oleifera were obtained by cold maceration method. The ethanolic flower extract was subjected to preliminary phytochemical screening as the reported methods. Folin-Ciocalteu reagent was used to estimate total phenolic content. DPPH was used to determine in-vitro antioxidant activity and anti-inflammatory activity of flowers was investigated by protein denaturation method. Results Phytochemical analysis of extract showed presence of major classes of phytochemicals such as tannins, alkaloids, flavonoids, cardiac glycosides etc. M. oleifera flowers were found to contain 19.31 mg/g of gallic acid equivalent of total phenolics in dry extract but exhibited moderate antioxidant activity. The anti-inflammatory activity of plant extract was significant and comparable with the standard drug diclofenac sodium. Conclusions The results of our study suggest that flowers of M. oleifera possess potent anti-inflammatory activity and are also a good source of natural antioxidants. Further study is needed to identify the chemical compounds responsible for their anti-inflammatory activity. PMID:23905019

  10. Anti-inflammatory properties of quebecol and its derivatives.

    PubMed

    Cardinal, Sébastien; Azelmat, Jabrane; Grenier, Daniel; Voyer, Normand

    2016-01-15

    Herein we report our results on the anti-inflammatory activity of quebecol, a polyphenolic compound discovered in maple syrup. Bioassays demonstrated that quebecol has an anti-inflammatory effect on LPS-induced NF-κB activation and inhibits the secretion of two pro-inflammatory cytokines, IL-6 and TNF-α. We also prepared and tested precursors of quebecol and its derivatives corresponding to its substructures of interest, with the aim to study the structure-activity relationships. Comparing the results obtained for all tested compounds allowed the identification of the main moiety responsible for the anti-inflammatory activity of quebecol. PMID:26691759

  11. Flavone deglycosylation increases their anti-inflammatory activity and absorption

    PubMed Central

    Hostetler, Gregory; Riedl, Ken; Cardenas, Horacio; Diosa-Toro, Mayra; Arango, Daniel; Schwartz, Steven; Doseff, Andrea I.

    2014-01-01

    Scope Flavones have reported anti-inflammatory activities, but the ability of flavone-rich foods to reduce inflammation is unclear. Here, we report the effect of flavone glycosylation in the regulation of inflammatory mediators in vitro and the absorption of dietary flavones in vivo. Methods and results The anti-inflammatory activities of celery extracts, some rich in flavone aglycones and others rich in flavone glycosides, were tested on the inflammatory mediators tumor necrosis factor α (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in lipopolysaccharide-stimulated macrophages. Pure flavone aglycones and aglycone-rich extracts effectively reduced TNF-α production and inhibited the transcriptional activity of NF-κB, while glycoside-rich extracts showed no significant effects. Deglycosylation of flavones increased cellular uptake and cytoplasmic localization as shown by high-performance liquid chromatography (HPLC) and microscopy using the flavonoid fluorescent dye diphenyl-boric acid 2-aminoethyl ester (DPBA). Celery diets with different glycoside or aglycone contents were formulated and absorption was evaluated in mice fed with 5 or 10% celery diets. Relative absorption in vivo was significantly higher in mice fed with aglycone-rich diets as determined by HPLC-MS/MS (where MS/MS is tandem mass spectrometry). Conclusion These results demonstrate that deglycosylation increases absorption of dietary flavones in vivo and modulates inflammation by reducing TNF-α and NF-κB, suggesting the potential use of functional foods rich in flavones for the treatment and prevention of inflammatory diseases. PMID:22351119

  12. Comparative cardiovascular safety of traditional nonsteroidal anti-inflammatory drugs.

    PubMed

    Maillard, Marc; Burnier, Michel

    2006-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used for their anti-inflammatory and analgesic effects. Unfortunately, these drugs are not without toxicity, namely on the gastric mucosa, but also on the cardiovascular system. In this context, the marketing of the coxibs, a new series of NSAIDs that selectively inhibit COX-2, resulted in a large debate around their cardiovascular safety, because they may increase the incidence of myocardial infarction and stroke. The recent suspension of a large, randomised, controlled trial comparing celecoxib, naproxen and placebo in Alzheimer patients (the ADAPT trial) because of an apparent elevated cardiovascular risk in the naproxen group revived the debate on the cardiovascular safety of these drugs, but this time with special emphasis on the effect of traditional nonselective NSAIDs (tNSAIDs). In this paper that reviews and discusses the cardiovascular safety profile of tNSAIDs, essentially naproxen and ibuprofen in view of the most recent experimental and clinical data, the authors note that the published data are quite discordant and one cannot conclude that there is clear evidence to support a cardiovascular hazard from the administration of naproxen or non-naproxen NSAIDs unless additional information is provided. In addition, the results of retrospective case-control studies have to be interpreted very carefully because of the risk of confounding factors that are not always taken into account when subjects were classified either as cases or controls. Thus, in the absence of clear cut data, physicians will have to use traditional NSAIDs (or coxibs) in patients with a high cardiovascular risk on the basis of their common sense rather than on evidence-based medicine. For these patients, one should not forget that an inadequate long-term control of cardiovascular risk factors such as a hypertension, dyslipidaemia, diabetes, smoking and weight excess is more deleterious in terms of cardiovascular mortality than the administration of NSAIDs itself. PMID:16370958

  13. Anti-inflammatory activity of intravenous immunoglobulins protects against West Nile virus encephalitis

    PubMed Central

    Srivastava, Ruchi; Ramakrishna, Chandran

    2015-01-01

    West Nile virus (WNV), an important global human pathogen, targets neurons to cause lethal encephalitis, primarily in elderly and immunocompromised patients. Currently, there are no approved therapeutic agents or vaccines to treat WNV encephalitis. Recent studies have suggested that inflammation is a major contributor to WNV encephalitis morbidity. In this study we evaluated the use of IVIG (intravenous immunoglobulins – a clinical product comprising pooled human IgG) as an anti-inflammatory treatment in a model of lethal WNV infection. We report here that IVIG and pooled human WNV convalescent sera (WNV-IVIG) inhibited development of lethal WNV encephalitis by suppressing central nervous system (CNS) infiltration by CD45high leukocytes. Pathogenic Ly6Chigh CD11b+ monocytes were the major infiltrating subset in the CNS of infected control mice, whereas IVIG profoundly reduced infiltration of these pathogenic Ly6Chigh monocytes into the CNS of infected mice. Interestingly, WNV-IVIG was more efficacious than IVIG in controlling CNS inflammation when mice were challenged with a high-dose inoculum (105 versus 104 p.f.u.) of WNV. Importantly, adsorption of WNV E-glycoprotein neutralizing antibodies did not abrogate IVIG protection, consistent with virus neutralization not being essential for IVIG protection. These findings confirmed the potent immunomodulatory activity of generic IVIG, and emphasized its potential as an effective immunotherapeutic drug for encephalitis and other virus induced inflammatory diseases. PMID:25667322

  14. Anti-inflammatory therapies for cardiovascular disease

    PubMed Central

    Ridker, Paul M.; Lscher, Thomas F.

    2014-01-01

    Atherothrombosis is no longer considered solely a disorder of lipoprotein accumulation in the arterial wall. Rather, the initiation and progression of atherosclerotic lesions is currently understood to have major inflammatory influences that encompass components of both the innate and acquired immune systems. Promising clinical data for upstream biomarkers of inflammation such as interleukin-6 (IL-6) as well as downstream biomarkers such as C-reactive protein, observations regarding cholesterol crystals as an activator of the IL-1? generating inflammasome, and recent Mendelian randomization data for the IL-6 receptor support the hypothesis that inflammatory mediators of atherosclerosis may converge on the central IL-1, tumour necrosis factor (TNF-?), IL-6 signalling pathway. On this basis, emerging anti-inflammatory approaches to vascular protection can be categorized into two broad groups, those that target the central IL-6 inflammatory signalling pathway and those that do not. Large-scale Phase III trials are now underway with agents that lead to marked reductions in IL-6 and C-reactive protein (such as canakinumab and methotrexate) as well as with agents that impact on diverse non-IL-6-dependent pathways (such as varespladib and darapladib). Both approaches have the potential to benefit patients and reduce vascular events. However, care should be taken when interpreting these trials as outcomes for agents that target IL-6 signalling are unlikely to be informative for therapies that target alternative pathways, and vice versa. As the inflammatory system is redundant, compensatory, and crucial for survival, evaluation of risks as well as benefits must drive the development of agents in this class. PMID:24864079

  15. Acai juice attenuates atherosclerosis in apoe deficient mice through antioxidant and anti-inflammatory activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective - Acai fruit pulp has received much attention because of its high antioxidant capacity and potential anti-inflammatory effects. In this study, athero-protective effects of açaí juice were investigated in apolipoprotein E deficient (apoE -/-) mice. Methods and Results - ApoE-/- mice were f...

  16. Phosphorylation site analysis of the anti-inflammatory and mRNA-destabilizing protein tristetraprolin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tristetraprolin (TTP/TIS11/ZFP36) is a member of the CCCH zinc finger proteins, and is an anti-inflammatory protein. Mice deficient in TTP develop a profound inflammatory syndrome with erosive arthritis, autoimmunity, and myeloid hyperplasia. TTP binds to AU-rich elements with high affinity for UUAU...

  17. Novel chimeric peptide with enhanced cell specificity and anti-inflammatory activity.

    PubMed

    Kim, Young-Min; Kim, Nam-Hong; Lee, Jong-Wan; Jang, Jin-Sun; Park, Yung-Hoon; Park, Seong-Cheol; Jang, Mi-Kyeong

    2015-07-31

    An antimicrobial peptide (AMP), Hn-Mc, was designed by combining the N-terminus of HPA3NT3 and the C-terminus of melittin. This chimeric AMP exhibited potent antibacterial activity with low minimal inhibitory concentrations (MICs), ranging from 1 to 2 ?M against four drug-susceptible bacteria and ten drug-resistant bacteria. Moreover, the hemolysis and cytotoxicity was reduced significantly compared to those of the parent peptides, highlighting its high cell selectivity. The morphological changes in the giant unilamellar vesicles and bacterial cell surfaces caused by the Hn-Mc peptide suggested that it killed the microbial cells by damaging the membrane envelope. An in vivo study also demonstrated the antibacterial activity of the Hn-Mc peptide in a mouse model infected with drug-resistant bacteria. In addition, the chimeric peptide inhibited the expression of lipopolysaccharide (LPS)-induced cytokines in RAW 264.7 cells by preventing the interaction between LPS and Toll-like receptors. These results suggest that this chimeric peptide is an antimicrobial and anti-inflammatory candidate as a pharmaceutic agent. PMID:26028561

  18. Comparative topical anti-inflammatory activity of cannabinoids and cannabivarins.

    PubMed

    Tubaro, Aurelia; Giangaspero, Anna; Sosa, Silvio; Negri, Roberto; Grassi, Gianpaolo; Casano, Salvatore; Della Loggia, Roberto; Appendino, Giovanni

    2010-10-01

    A selection of seven phytocannabinoids representative of the major structural types of classic cannabinoids and their corresponding cannabivarins was investigated for in vivo topical anti-inflammatory activity in the Croton oil mouse ear dermatitis assay. Differences in the terpenoid moiety were far more important for anti-inflammatory activity than those at the C-3 alkyl residue, suggesting the involvement not only of cannabinoid receptors, but also of other inflammatory end-points targeted by phytocannabinoids. PMID:20450962

  19. Sepsis: a pro- and anti-inflammatory disequilibrium syndrome.

    PubMed

    Pinsky, M R

    2001-01-01

    Severe sepsis and probably most prolonged critical illnesses reflect a paradox of combined increased activation and depression of the immune apparatus. The increased activation of the inflammatory response is evidenced from the increased levels of circulating proinflammatory cytokines in the blood, increased endothelial activation with increased expression of inducible nitric oxide synthase, and increased de novo CD11b expression on circulating immune effector cells, such as PMNs, monocytes and lymphocytes. However, coexisting with this proinflammatory process is a profound anti-inflammatory state characterized by increased circulating levels of anti-inflammatory species that both directly block the binding of proinflammatory stimuli to their cell surface receptors (IL-1ra, soluble TNF receptors) and also induce an anti-inflammatory state on their own (IL-10, TFG-beta). This humoral anti-inflammatory state is mirrored at the cellular levels by decreased monocyte ability to process antigen, characterized by a reduced HLA-DR expression and impaired PMN upregulation in response to clearly proinflammatory stimuli. Accordingly, severe sepsis reflects a combined pro- and anti-inflammatory state. Both the pro- and anti-inflammatory arms have protective and destructive aspects, making their modulation by treatment less predictable than if their actions were purely beneficial or detrimental. PMID:11395903

  20. Hemeoxygenase 1 partly mediates the anti-inflammatory effect of dieckol in lipopolysaccharide stimulated murine macrophages.

    PubMed

    Yayeh, Taddesse; Im, Eun Ju; Kwon, Tae-Hyung; Roh, Seong-Soo; Kim, Suk; Kim, Ji Hye; Hong, Seung-Bok; Cho, Jae Youl; Park, Nyun-Ho; Rhee, Man Hee

    2014-09-01

    Eisenia bicyclis is edible brown algae recognized as a rich source of bioactive derivatives mainly phlorotannins reported for their anti-oxidant properties. Of all phlorotannins identified so far, dieckol has shown the most potent effect in anti-inflammatory, radical scavenging and neuroprotective functions. However, whether dieckol up-regulates hemeoxygenase 1 (HO-1) and this mediates its anti-inflammatory effect in murine macrophages remains poorly understood. Dieckol (12.5-50 ?M) inhibited nitric oxide production and attenuated inducible nitric oxide synthase, phospho (p)-PI-3K, p-Akt, p-IKK-?/?, p-I?B-? and nuclear p-NF-?Bp65 protein expressions, and NF-?B transcriptional activity in LPS (0.1 ?g/ml) stimulated murine macrophages. On the other hand, dieckol up-regulated HO-1 which partly mediated its anti-inflammatory effect in murine macrophages. Thus, dieckol appeared to be a potential therapeutic agent against inflammation through HO-1 up-regulation. PMID:24953853

  1. Phytochemical study, cytotoxic, analgesic, antipyretic and anti-inflammatory activities of Strychnos nux-vomica.

    PubMed

    Eldahshan, Omayma A; Abdel-Daim, Mohamed M

    2015-10-01

    The strychnine tree (Strychnos nux-vomica L.) (S. nux-vomica) belonging to family Loganiaceae has been a very promising medication for certain disorders. Different chromatographic methods were used to isolate the phenolic compounds from the aqueous methanolic extract of the S. nux-vomica leaves. Their identification was achieved through spectroscopic techniques. Cytotoxicity, analgesic, antipyretic and anti-inflammatory activities of S. nux-vomica leaves extract were evaluated. Five phenolic compounds were isolated and identified; Kaempferol-7 glucoside 1, 7-Hydroxy coumarin 2, Quercetin-3-rhamnoside 3, Kaempferol 3-rutinoside 4, and Rutin 5. Furthermore, the cytotoxic activity of the extract was evaluated against different cancer cell lines. The extract showed potential cytotoxic activity against human epidermoid larynx carcinoma cells (Hep-2) and against breast carcinoma cell line (MCF-7). Colon carcinoma cells (HCT) were the least one affected by the extract. In addition, the extract exhibited promising analgesic, antipyretic as well as anti-inflammatory activities. It is concluded that, leaves extract of S. nux vomica possess potent cytotoxic, analgesic, antipyretic and anti-inflammatory activities. These activities could be due to the presence of phenolic compounds revealed by our phytochemical investigations. PMID:24711053

  2. Synthesis and anti-inflammatory activity of ent-kaurene derivatives.

    PubMed

    Hueso-Falcn, Idaira; Cuadrado, Irene; Cidre, Florencia; Amaro-Luis, Juan M; Ravelo, Angel G; Estevez-Braun, Ana; de Las Heras, Beatriz; Hortelano, Sonsoles

    2011-04-01

    A series of kaurene derivatives (1-63) were prepared and evaluated for anti-inflammatory activity. Thirteen of the tested compounds were able to inhibit NO production with an IC(50) between 2 and 10 ?M. Compounds 11, 12, 14 and 23 showed low percentage of cell viability, whereas compounds 9, 10, 17, 28, 37, 48, 55, 61 and 62 were non-cytotoxic at the concentration up to 25 ?M. Some structure-activity relationships were outlined. Compounds 28, 55 and 62, were selected as representative compounds and they potently inhibited the protein expression of NOS-2. We also determined that inhibition of NF-?B activation might be the mechanism involved in anti-inflammatory effects of these kaurene derivatives. As expected, cytokines IL-6, IL-1?, TNF-? and IFN-? were downregulated in the presence of compound 28, 55 and 62 after stimulation with LPS. These results indicate that kaurene derivatives might be used for the design of new anti-inflammatory agents. PMID:21334121

  3. Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiling; Nong, Jia; Zhong, Yinghui

    2015-08-01

    Objective. Infection, inflammation, and neuronal loss are common issues that seriously affect the functionality and longevity of chronically implanted neural prostheses. Minocycline hydrochloride (MH) is a broad-spectrum antibiotic and effective anti-inflammatory drug that also exhibits potent neuroprotective activities. In this study, we investigated the development of biocompatible thin film coatings capable of sustained release of MH for improving the long term performance of implanted neural electrodes. Approach. We developed a novel magnesium binding-mediated drug delivery mechanism for controlled and sustained release of MH from an ultrathin hydrophilic layer-by-layer (LbL) coating and characterized the parameters that control MH loading and release. The anti-biofilm, anti-inflammatory and neuroprotective potencies of the LbL coating and released MH were also examined. Main results. Sustained release of physiologically relevant amount of MH for 46 days was achieved from the Mg2+-based LbL coating at a thickness of 1.25 μm. In addition, MH release from the LbL coating is pH-sensitive. The coating and released MH demonstrated strong anti-biofilm, anti-inflammatory, and neuroprotective potencies. Significance. This study reports, for the first time, the development of a bioactive coating that can target infection, inflammation, and neuroprotection simultaneously, which may facilitate the translation of neural interfaces to clinical applications.

  4. Avicenna's Canon of Medicine: a review of analgesics and anti-inflammatory substances.

    PubMed

    Mahdizadeh, Shahla; Khaleghi Ghadiri, Maryam; Gorji, Ali

    2015-01-01

    Naturally occurring substances mentioned in medieval medical literatures currently have, and will continue to have, a crucial place in drug discovery. Avicenna was a Persian physician who is known as the most influential medical writers in the Middle ages. Avicenna`s Canon of Medicine, the most famous books in the history of medicine, presents a clear and organized summary of all the medical knowledge of the time, including a long list of drugs. Several hundred substances and receipts from different sources are mentioned for treatment of different illnesses in this book. The aim of the present study was to provide a descriptive review of all anti-inflammatory and analgesic drugs presented in this comprehensive encyclopedia of medicine. Data for this review were provided by searches of different sections of this book. Long lists of anti-inflammatory and analgesic substances used in the treatment of various diseases are provided. The efficacy of some of these drugs, such as opium, willow oil, curcuma, and garlic, was investigated by modern medicine; pointed to their potent anti-inflammatory and analgesic properties. This review will help further research into the clinical benefits of new drugs for treatment of inflammatory diseases and pain. PMID:26101752

  5. Avicenna's Canon of Medicine: a review of analgesics and anti-inflammatory substances

    PubMed Central

    Mahdizadeh, Shahla; Khaleghi Ghadiri, Maryam; Gorji, Ali

    2015-01-01

    Naturally occurring substances mentioned in medieval medical literatures currently have, and will continue to have, a crucial place in drug discovery. Avicenna was a Persian physician who is known as the most influential medical writers in the Middle ages. Avicenna`s Canon of Medicine, the most famous books in the history of medicine, presents a clear and organized summary of all the medical knowledge of the time, including a long list of drugs. Several hundred substances and receipts from different sources are mentioned for treatment of different illnesses in this book. The aim of the present study was to provide a descriptive review of all anti-inflammatory and analgesic drugs presented in this comprehensive encyclopedia of medicine. Data for this review were provided by searches of different sections of this book. Long lists of anti-inflammatory and analgesic substances used in the treatment of various diseases are provided. The efficacy of some of these drugs, such as opium, willow oil, curcuma, and garlic, was investigated by modern medicine; pointed to their potent anti-inflammatory and analgesic properties. This review will help further research into the clinical benefits of new drugs for treatment of inflammatory diseases and pain. PMID:26101752

  6. Nonsteroidal Anti-inflammatory-Organometallic Anticancer Compounds.

    PubMed

    Păunescu, Emilia; McArthur, Sarah; Soudani, Mylène; Scopelliti, Rosario; Dyson, Paul J

    2016-02-15

    Compounds that combine metal-based drugs with covalently linked targeted organic agents have been shown, in some instances, to exhibit superior anticancer properties compared to the individual counterparts. Within this framework, we prepared a series of organometallic ruthenium(II)- and osmium(II)-p-cymene complexes modified with the nonsteroidal anti-inflammatory drugs (NSAIDs) indomethacin and diclofenac. The NSAIDs are attached to the organometallic moieties via monodentate (pyridine/phosphine) or bidentate (bipyridine) ligands, affording piano-stool Ru(II) and Os(II) arene complexes of general formula [M(η(6)-p-cymene)Cl2(N)], where N is a pyridine-based ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate}, [M(η(6)-p-cymene)Cl2(P)], where P is a phosphine ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate, and [M(η(6)-p-cymene)Cl(N,N')][Cl], where N,N' is a bipyridine-based ligand, (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate), (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(2-((2,6-dichlorophenyl)amino)phenyl)acetate), (bis(2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate), or (bis(2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate). The antiproliferative properties of the complexes were assessed in human ovarian cancer cells (A2780 and A2780cisR, the latter being resistant to cisplatin) and nontumorigenic human embryonic kidney (HEK-293) cells. Some of the complexes are considerably more cytotoxic than the original drugs and also display significant cancer cell selectivity. PMID:26824462

  7. Synthesis and biological evaluation studies of novel quinazolinone derivatives as antibacterial and anti-inflammatory agents

    PubMed Central

    F. Zayed, Mohamed; H. Hassan, Memy

    2013-01-01

    Some novel 6,8-diiodo-2-methyl-3-substituted-quinazolin-4(3H)-ones bearing sulfonamide derivatives (411) were synthesized in good yields and evaluated for their possible antibacterial, anti-inflammatory activities and acute toxicity. The structures of the synthesized compounds were confirmed on the basis of their spectral data and elemental analysis. Their antibacterial activities were evaluated by the agar well diffusion method while their anti-inflammatory activities were evaluated by the carrageenan-induced hind paw edema test. All the tested compounds showed considerable antibacterial activities and high to moderate anti-inflammatory activities that last for 12h compared to ibuprofen. All the tested compounds showed no toxic symptoms or mortality rates 24h post-administration at tested anti-inflammatory doses. In addition, LD50 for all tested compounds was higher than that for ibuprofen implying their good safety margin. The obtained results showed that the most active compounds could be useful as a template for future design, modification and investigation to produce more active analogs. PMID:24648828

  8. The Anti-inflammatory Effects of Acidic Polysaccharide from Artemisia capillaris on Helicobacter pylori Infection

    PubMed Central

    Park, Jong-Min; Hahm, Ki-Baik; Kwon, Sang-Oh; Kim, Eun-Hee

    2013-01-01

    Background: Helicobacter pylori infection is associated with diverse upper gastrointestinal diseases, such as peptic and duodenal ulcers as well as gastric cancer. Longstanding period of infection impose great risk of H. pylori-related gastric disease, based on the evidence that early childhood infection is responsible for ensuing atrophic gastritis and gastric cancer related to H. pylori infection. Artemisiahas been known to be beneficial for heath for a long time. In spite of well-acknowledged cytoprotective and anti-inflammatory actions of Artemisia, the effects of the acidic polysaccharide fractions on the gastroprotection remain to be investigated. Methods: In the current study, we compared anti-inflammatory actions of the acidic polysaccharide fraction between Artemisia and Panax ginseng against H. pylori infection in vitro. The polysaccharide fractions were pretreated 1 h before H. pylori infection on normal gastric mucosal RGM-1 cells and gastric cancer MKN-28 cells. RT-PCR and Western blot was performed to check anti-inflammatory actions. Results: The expressions of inflammatory markers including COX-2, iNOS and IL-8 increased after H. pylori infection, of which levels were significantly decreased when treating with the polysaccharide fractions from Artemisia and ginseng in RGM1 and gastric cancer MKN-28 cells. In addition, the polysaccharide fractions significantly ameliorated H. pylori-induced angiogenic and invasive markers such as HIF-1α and ICAM1. Moreover, H. pylori-induced apoptosis were prevented by pretreatment with the polysaccharide fractions. The polysaccharide fraction from Artemisia showed the most protective effects among the several polysaccharide fractions used in this study. Conclusions: The polysaccharide fraction of Artemisia capillariscan is a candidate substance which can attenuate either H. pylori-induced gastritis or tumorigenesis based on potent anti-inflammatory action. PMID:25337542

  9. Anti-Inflammatory Effects of 4-Methylcyclopentadecanone on Edema Models in Mice

    PubMed Central

    Ma, Yukui; Li, Yue; Li, Xiufeng; Wu, Yingliang

    2013-01-01

    The present study evaluated the anti-inflammatory effects of 4-methylcyclopentadecanone (4-MCPC) on edema models in mice and aimed to determine the safety of 4-MCPC after acute exposure. The acute toxicity of 4-MCPC was evaluated by oral administration to rats of single doses of 0, 5, 50, 500 and 5000 mg/kg. Toxic symptoms were observed for 14 days. The anti-inflammatory activity was evaluated in xylene-induced mouse ear edema and carrageenan-induced mouse paw edema. The animals were treated with 4-MCPC once every day for seven consecutive days. Edema index, % inhibition, IL-1β, TNF-α, PGE2 and MPO levels in paws were detected after the treatment with xylene or carrageenan. Our results indicated that the LD50 value of 4-MCPC in rats is greater than 5000 mg/kg. The ED50 of 4-MCPC in xylene-induced mouse ear edema model was 7.5 mg/kg. 4-MCPC (8 or 16 mg/kg) remarkably inhibited carrageenan-induced mouse paw edema. Further study revealed that 4-MCPC treatment also decreased IL-1β, TNF-α, PGE2 and MPO levels in mice paws. Intragastric administration of 4-MCPC exhibited more significant anti-inflammatory activity than muscone at a dose of 16 mg/kg. Taken together, our results suggest that 4-MCPC has potent anti-inflammatory activity and the mechanisms might be related to the decreases of the levels of IL-1β, TNF-α, PGE2 and MPO in inflamed paws. PMID:24351869

  10. A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia.

    PubMed

    Tynan, Ross J; Weidenhofer, Judith; Hinwood, Madeleine; Cairns, Murray J; Day, Trevor A; Walker, Frederick R

    2012-03-01

    Selective serotonin and serotonin norepinephrine reuptake inhibitors (SSRI; SNRI) are the first choice pharmacological treatment options for major depression. It has long been assumed that the primary therapeutic mechanism of action of these drugs involves the modulation of monoaminergic systems. However, contemporary investigations have revealed that depression is linked with inflammation, and that SSRI/SNRIs possess significant anti-inflammatory actions. While these anti-inflammatory properties initially only related to work undertaken on cells of the peripheral immune system, it has recently become apparent that these drugs also exert anti-inflammatory effects on microglia, the principal cells within the CNS that regulate and respond to inflammatory factors. The aim of the current study was to compare SSRI/SNRIs in terms of their anti-inflammatory potency, and to determine the specific mechanisms through which these effects are mediated. Accordingly, the current study evaluated the ability of five different SSRIs (fluoxetine, sertraline, paroxetine, fluvoxamine and citalopram) and one SNRI (venlafaxine) to suppress microglial responses to an inflammatory stimulus. Specifically, we examined their ability to alter tumour necrosis factor-? (TNF-?) and nitric oxide (NO) production after 4 and 24 h stimulation with lipopolysaccharide. Our results indicated that the SSRIs potently inhibited microglial TNF-? and NO production. We then investigated whether these effects might involve either ?-adrenoceptor or cAMP signalling. Using the protein kinase A inhibitor Rp-CAMPs, we found evidence to suggest that cAMP signalling is involved in regulating the anti-inflammatory response. These findings suggest that antidepressants may owe at least some of their therapeutic effectiveness to their anti-inflammatory properties. PMID:22251606

  11. The Anti-inflammatory Effects of Water Extract from Cordyceps militaris in Murine Macrophage

    PubMed Central

    Jo, Wol Soon; Choi, Yoo Jin; Kim, Hyoun Ji; Lee, Jae Yun; Nam, Byung Hyouk; Lee, Jae Dong; Lee, Sang Wha; Seo, Su Yeong

    2010-01-01

    The aim of this study was to determine the in vitro anti-inflammatory effect of hot water extract from Cordyceps militaris fruiting bodies (CMWE) on lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release in RAW 264.7 cells. The treatment of macrophages with various concentrations of hot CMWE significantly reduced LPS-induced production as well as NO, TNF-α and IL-6 secretion in a concentration-dependent manner. These results suggest that CMWE have potent inhibitory effects on the production of these inflammatory mediators. PMID:23956624

  12. Toxicological Evaluation of Emblica officinalis Fruit Extract and its Anti-inflammatory and Free Radical Scavenging Properties

    PubMed Central

    Middha, Sushil Kumar; Goyal, Arvind Kumar; Lokesh, Prakash; Yardi, Varsha; Mojamdar, Lavanya; Keni, Deepthi Sudhir; Babu, Dinesh; Usha, Talambedu

    2015-01-01

    Background: Emblica officinalis (Euphorbiaceae), popularly known as Indian gooseberry or “Amla” in India, is used in Ayurveda as “rejuvenating herb” since ancient times. Objective: This study was carried out to estimate toxicity, anti-inflammatory, and antioxidative activities of the methanolic extract of Emblica officinalis fruit (MEO) in an animal model. Materials and Methods: Antioxidative property of MEO was assessed by in vitro assays such as phosphomolybdenum assay (total antioxidant capacity), free radical scavenging assays 1,1-diphenyl-2-picrylhydrazyl and 2,2’-azino-bis and 3-ethylbenzthiazoline-6-sulphonic acid (DPPH and ABTS method) and lipid peroxidation assay (LPO). The anti-inflammatory property was evaluated by carrageenan-induced acute inflammation in rats by measuring rat paw volume at different time intervals and toxicological analysis using mice. Results and Discussion: High performance liquid chromatography studies revealed the presence of gallic acid (2.10%), mucic acid (4.90%), ellagic acid (2.10%), quercetin (28.00%), rutin (3.89%), and β-glucogallin (1.46%). MEO showed highest antioxidant activities by using DPPH (17.33–89.00%), ABTS (23.03–94.16%), nitric oxide scavenging activity (12.94–70.16%), LPO (56.54%), and phosphomolybdenum assay (142 ± 6.09 μg/ml). The LD50 was found to be approximately 1125 mg/kg (p.o). High dose of MEO showed significant reduction (72.71%) in the inflammation after 4 h of treatment, which was comparable to diclofenac (10 mg/kg) (61.57%) treated group. Significant reduction (P < 0.05) in the inflammatory cytokine (interleukin-1β and tumor necrosis factor-α) markers were also observed (57.25% and 35.41%, respectively) in serum of MEO treated animals as compared to control. Conclusion: Taken together, phenolic compounds of MEO may serve as a potential herbal drug for amelioration of acute inflammation due to their modulatory action on free radicals. SUMMARY The methanolic extract of Emblica officinalis fruit (MEO) has potent antioxidant activity as assessed by DPPH, ABTS and LPO assaysMEO has potent anti-inflammatory activity in carrageenan induced paw edema modelThe phenolic compounds of MEO might be a potential herbal drug for amelioration of acute inflammation. Abbreviations used: ROS, reactive oxygen species; RNS, reactive nitrogen species, LPO, lipid peroxidation, NO, nitric oxide, IL, interleukin; TNF α tumor necrosis factor alpha; NSAIDs, nonsteroidal anti inflammatory drugs; AA, ascorbic acid; MEO, methanolic extract of Emblica officinalis fruit; ABTS+; 2,2’ azino bis 3 ethylbenzthiazoline 6 sulphonic acid; DPPH, 1,1 diphenyl 2 picrylhydrazyl; HPLC, high performance liquid chromatography; MDA, malondialdehyde; DMSO, dimethyl sulphoxide; ELISA, enzyme linked immunosorbent assay. PMID:26929577

  13. Highly potent fibrinolytic serine protease from Streptomyces.

    PubMed

    Uesugi, Yoshiko; Usuki, Hirokazu; Iwabuchi, Masaki; Hatanaka, Tadashi

    2011-01-01

    We introduce a highly potent fibrinolytic serine protease from Streptomyces omiyaensis (SOT), which belongs to the trypsin family. The fibrinolytic activity of SOT was examined using in vitro assays and was compared with those of known fibrinolytic enzymes such as plasmin, tissue-type plasminogen activator (t-PA), urokinase, and nattokinase. Compared to other enzymes, SOT showed remarkably higher hydrolytic activity toward mimic peptides of fibrin and plasminogen. The fibrinolytic activity of SOT is about 18-fold higher than that of plasmin, and is comparable to that of t-PA by fibrin plate assays. Furthermore, SOT had some plasminogen activator-like activity. Results show that SOT and nattokinase have very different fibrinolytic and fibrinogenolytic modes, engendering significant synergetic effects of SOT and nattokinase on fibrinolysis. These results suggest that SOT presents important possibilities for application in the therapy of thrombosis. PMID:22112764

  14. Physicochemical characteristics and anti-inflammatory activities of antrodan, a novel glycoprotein isolated from Antrodia cinnamomea mycelia.

    PubMed

    Chiu, Chun-Hung; Peng, Chiung-Chi; Ker, Yaw-Bee; Chen, Chin-Chu; Lee, Arwen; Chang, Wan-Lin; Chyau, Charng-Cherng; Peng, Robert Y

    2013-01-01

    Antrodia cinnamomea (AC) is a unique fungus found inhabiting the rotten wood of Cinnamomum kanehirai. A submerged liquid culture of AC has been developed and its bioproducts have been used to meet the market demand for natural fruiting bodies. AC exhibits anti-inflammatory, antitumor, antioxidant, and immunomodulatory effects. Previously, we isolated polysaccharide AC-2 from AC mycelia by means of alkali extraction with subsequent acid precipitation and found it had a pronounced anti-inflammatory effect. In this study, a novel polysaccharide named "antrodan" was obtained by further purification of AC-2 using Sepharose CL-6B column chromatography. Antrodan exhibited a molecular weight of 442 kD and contained a particularly high content of uronic acid (152.60.8 mg/g). The protein content was 71.0%, apparently, higher than the carbohydrate content (14.1%), and thus antrodan was characterized as a glycoprotein. Its total glucan content was 15.65%, in which ?-glucan (14.20%) was prominently higher than ?-glucan (1.45%). Its FTIR confirmed the presence of ?-linkages between sugars, and intramolecular amide bonds between sugars and amino acids. Its 1H-NMR spectrum showed that antrodan was a complex union of ?- and ?-glucans, which had (1?4)-linked ?-Glcp and (1?3)-linked ?-Glcp linkages to the carbohydrate chains via asparagine linked to protein site. Biologically, antrodan was confirmed to be totally non-detrimental to RAW 264.7 cell line even at dose as high as 400 ?g/mL. It showed potent suppressing effect on the lipopolysaccharide-induced inflammatory responses in RAW 264.7 cell line. Moreover, antrodan significantly reduced the nitrogen oxide production at doses as low as 18.75 ?g/mL. PMID:24451244

  15. Anti-Inflammatory and Vasoprotective Activity of a Retroviral-Derived Peptide, Homologous to Human Endogenous Retroviruses: Endothelial Cell Effects

    PubMed Central

    Cianciolo, George J.; Pizzo, Salvatore V.

    2012-01-01

    Malignant and inflammatory tissues sometimes express endogenous retroviruses or their proteins. A highly-conserved sequence from retroviral transmembrane (TM) proteins, termed the immunosuppressive domain (ID), is associated with inhibition of immune and inflammatory functions. An octadecapeptide (MN10021) from the ID of retroviral TM protein p15E inhibits in vitro release of pro-inflammatory cytokines and increases synthesis of anti-inflammatory IL-10. We sought to determine if MN10021 has significant in vivo effects. MN10021, prepared by solid-phase synthesis, was dimerized through a naturally-occurring, carboxy-terminal cysteine. In vivo anti-inflammatory activity was determined using a murine model of sodium periodate (NaIO4)-induced peritonitis. In vivo vasoprotective effects were determined using: (1) a carrageenan-induced model of disseminated intravascular coagulation (DIC) in mice; (2) a reverse passive Arthus model in guinea pigs; and (3) vasoregulatory effects in spontaneously hypertensive rats (SHR). In vitro studies included: (1) binding/uptake of MN10021 using human monocytes, cultured fibroblasts, and vascular endothelial cells (VEC); (2) gene expression by RT-PCR of MN10021-treated VEC; and (3) apoptosis of MN10021-treated VEC exposed to staurosporine or TNF-?. One-tenth nmol MN10021 inhibits 50 percent of the inflammatory response in the mouse peritonitis model. Furthermore, 73 nmol MN10021 completely protects mice in a lethal model of carrageenan-induced DIC and inhibits vascular leak in both the mouse DIC model and a guinea pig reverse passive Arthus reaction. MN10021 binds to and is taken up in a specific manner by both human monocytes and VEC but not by cultured human fibroblasts. Surprisingly, orally-administered MN10021 lowers blood pressure in SHR rats by 1015% within 1 h suggesting a direct or indirect effect on the vascular endothelium. MN10021 and derived octapeptides induce iNOS (inducible nitric oxide synthase) mRNA in VEC and nitrate in VEC cell culture supernatants and protect VEC from induced apoptosis or necrosis. However, pretreatment of VEC with nitro-L-arginine methyl ester (L-NAME), while inhibiting the release of nitrate, does not block the anti-apoptotic effect of MN10021 and derived octapeptides suggesting that their potent vasoprotective and anti-inflammatory activity is not nitric oxide dependent. PMID:23285152

  16. Anti-inflammatory effects of levetiracetam in experimental autoimmune encephalomyelitis.

    PubMed

    Thne, Jan; Ellrichmann, Gisa; Faustmann, Pedro M; Gold, Ralf; Haghikia, Aiden

    2012-09-01

    Levetiracetam (LEV) is an established anticonvulsant with numerous mechanisms of action. Apart from its anti-epileptic effects, recent experimental studies suggest anti-inflammatory properties via modulation of interleukin (IL)-1? and transforming-growth-factor (TGF)-?1. However, its anti-inflammatory properties have not yet been examined in an autoimmune inflammatory disease of the central nervous system (CNS). We investigated LEV anti-inflammatory properties in experimental autoimmune encephalomyelitis, an established mouse model of multiple sclerosis. FACS analyses, ELISA, histology and rt-PCR experiments were done to explore potential anti-inflammatory effects. In line with prior studies, we demonstrate that LEV modulates both the relative gene expression and secretion of IL-1? and TGF-1?. However, these changes were not sufficient to alter the disease course or histological parameters. Additionally, LEV showed no effects on the absolute number of different immune cell subsets. In summary, LEV showed only minor anti-inflammatory effects not sufficient to ameliorate disease course in an autoimmune inflammatory disease of CNS. PMID:22691576

  17. Analgesic and Anti-Inflammatory Activity of Pinus roxburghii Sarg.

    PubMed Central

    Kaushik, Dhirender; Kumar, Ajay; Kaushik, Pawan; Rana, A. C.

    2012-01-01

    The Chir Pine, Pinus roxburghii, named after William Roxburgh, is a pine native to the Himalaya. Pinus roxburghii Sarg. (Pinaceae) is traditionally used for several medicinal purposes in India. As the oil of the plant is extensively used in number of herbal preparation for curing inflammatory disorders, the present study was undertaken to assess analgesic and anti-inflammatory activities of its bark extract. Dried and crushed leaves of Pinus roxburghii Sarg. were defatted with petroleum ether and then extracted with alcohol. The alcoholic extract at the doses of 100?mg/kg, 300?mg/kg, and 500?mg/kg body weight was subjected to evaluation of analgesic and anti-inflammatory activities in experimental animal models. Analgesic activity was evaluated by acetic acid-induced writhing and tail immersion tests in Swiss albino mice; acute and chronic anti-inflammatory activity was evaluated by carrageenan-induced paw oedema and cotton pellet granuloma in Wistar albino rats. Diclofenac sodium and indomethacin were employed as reference drugs for analgesic and anti-inflammatory studies, respectively. In the present study, the alcoholic bark extract of Pinus roxburghii Sarg. demonstrated significant analgesic and anti-inflammatory activities in the tested models. PMID:22761611

  18. Anti-inflammatory activity of Bromelia hieronymi: comparison with bromelain.

    PubMed

    Errasti, Mara E; Caffini, Nstor O; Pelzer, Lilian E; Rotelli, Alejandra E

    2013-03-01

    Some plant proteases (e. g., papain, bromelain, ficin) have been used as anti-inflammatory agents for some years, and especially bromelain is still being used as alternative and/or complementary therapy to glucocorticoids, nonsteroidal antirheumatics, and immunomodulators. Bromelain is an extract rich in cysteine endopeptidases obtained from Ananas comosus. In this study the anti-inflammatory action of a partially purified extract of Bromelia hieronymi fruits, whose main components are cysteine endopeptidases, is presented. Different doses of a partially purified extract of B. hieronymi were assayed on carrageenan-induced and serotonine-induced rat paw edema, as well as in cotton pellet granuloma model. Doses with equal proteolytic activity of the partially purified extract and bromelain showed significantly similar anti-inflammatory responses. Treatment of the partially purified extract and bromelain with E-64 provoked loss of anti-inflammatory activity on carrageenan-induced paw edema, a fact which is consistent with the hypothesis that the proteolytic activity would be responsible for the anti-inflammatory action. PMID:23364884

  19. Anti-inflammatory role of obestatin in autoimmune myocarditis.

    PubMed

    Pamukcu, Ozge; Baykan, Ali; Bayram, Latife Cakir; Narin, Figen; Cetin, Nazmi; Narin, Nazmi; Argun, Mustafa; Ozyurt, Abdullah; Uzum, Kazim

    2016-01-01

    Obestatin is a popular endogeneous peptide, known to have an autoimmune regulatory effect on energy metabolism and the gastrointestinal system. Studies regarding the anti-inflammatory effects of obestatin are scarce. The aim of this study was to show the anti-inflammatory effect of obestatin in an experimental model of autoimmune myocarditis in rats. Experimental autoimmune myocarditis was induced in Lewis rats by immunization with subcutaneous administration of porcine cardiac myosin, twice at 7-day intervals. Intraperitoneal pretreatment with obestatin (50?g/kg) was started before the induction of myocarditis and continued for 3weeks. The severity of myocarditis was evidenced by clinical, echocardiographic and histological findings. In addition, by-products of neutrophil activation, lipid peroxidation, inflammatory and anti-inflammatory cytokines were measured in serum. Obestatin significantly ameliorated the clinical and histopathological severity of autoimmune myocarditis. Therapeutic effects of obestatin in myocarditis were associated with reduced lipid peroxidation, suppression of polymorphonuclear leukocyte infiltration and enhancement of glutathione synthesis, inhibition of serum inflammatory and activation of anti-inflammatory cytokines. Histopathologically, the left ventricle was significantly dilated, and its wall thickened, along with widespread lymphocytic and histocytic infiltration. The myocardium was severely infiltrated with relatively large mononuclear cells. These histopathological changes were observed in lesser degrees in obestatin-treated rats. This study demonstrated a novel anti-inflammatory effect of obestatin in an experimental model of autoimmune myocarditis. Consequently, obestatin administration may represent a promising therapeutic approach for myocarditis and dilated cardiomyopathy in the future. PMID:26426263

  20. LyprinolIs It a Useful Anti-Inflammatory Agent?

    PubMed Central

    Doggrell, Sheila A.

    2011-01-01

    The New Zealand green lipped mussel preparation Lyprinol is available without a prescription from a supermarket, pharmacy or Web. The Food and Drug Administration have recently warned Lyprinol USA about their extravagant anti-inflammatory claims for Lyprinol appearing on the web. These claims are put to thorough review. Lyprinol does have anti-inflammatory mechanisms, and has anti-inflammatory effects in some animal models of inflammation. Lyprinol may have benefits in dogs with arthritis. There are design problems with the clinical trials of Lyprinol in humans as an anti-inflammatory agent in osteoarthritis and rheumatoid arthritis, making it difficult to give a definite answer to how effective Lyprinol is in these conditions, but any benefit is small. Lyprinol also has a small benefit in atopic allergy. As anti-inflammatory agents, there is little to choose between Lyprinol and fish oil. No adverse effects have been reported with Lyprinol. Thus, although it is difficult to conclude whether Lyprinol does much good, it can be concluded that Lyprinol probably does no major harm. PMID:19383840

  1. Discovery of novel anti-inflammatory drug-like compounds by aligning in silico and in vivo screening: the nitroindazolinone chemotype.

    PubMed

    Marrero-Ponce, Yovani; Siverio-Mota, Dany; Glvez-Llompart, Mara; Recio, Mara C; Giner, Rosa M; Garca-Domnech, Ramn; Torrens, Francisco; Arn, Vicente J; Cordero-Maldonado, Mara Lorena; Esguera, Camila V; de Witte, Peter A M; Crawford, Alexander D

    2011-12-01

    In this report, we propose the combination of computational methods and in vivo primary screening in zebrafish larvae and confirmatory in mice models as a novel strategy to accelerate anti-inflammatory drug discovery. Initially, a database of 1213 organic chemicals with great structural variability - 587 of them anti-inflammatory agents plus 626 compounds with other clinical uses - was divided into training and test groups. Atom-based quadratic indices - a TOMOCOMD-CARDD molecular descriptors family - and linear discriminant analysis (LDA) were used to develop a total of 13 models to describe the anti-inflammatory activity. The best model (Eq. (13)) shows an accuracy of 87.70% in the training set, and values of Matthews correlation coefficient (C) of 0.75. The robustness of the models was demonstrated using an external test set as validation method, i.e., Eq. (13) revealing classification of 88.44% (C = 0.77) in this series. All models were employed to develop ensemble a QSAR classification system, in which the individual QSAR outputs are the inputs of the aforementioned fusion approach. The fusion model was used for the identification of novel anti-inflammatory compounds using virtual screening of 145 molecules available in our in-house library of indazole, indole, cinnoline and quinoxaline derivatives. Out of these, 34 chemicals were selected, synthesized and tested in a lipopolysaccharide (LPS)-induced leukocyte migration assay in zebrafish larvae. This activity was evaluated based on leukocyte migration to the injury zone of tail-transected larvae. Compounds 18 (3 ?M), 24 (10 ?M), 25 (10 ?M), 6 (10 ?M), 15 (30 ?M), 11 (30 ?M) and 12 (30 ?M) gave the best results displaying relative leukocyte migration (RLM) values of 0.24, 0.27, 0.35, 0.41, 0.17, 0. 26 and 0.27 respectively, date that suggest an anti-inflammatory activity of 76, 73, 65, 59, 83, 84 and 73%, respectively. Compound 18 was the most potent but showed high toxicity together with compound 6. Next, we used the tetradecanoylphorbol acetate (TPA)-induced mouse ear oedema model to evaluate the most potent compounds in the zebrafish larvae tail transection assay. All assayed compounds, with the exception of chemical 15, showed anti-inflammatory activity in mice. Compound 12 (VA5-13l, 2-benzyl-1-methyl-5-nitro-1,2-dihydro-3H-indazol-3-one) was the most active and completely abolished the oedema. Compounds 6, 11 and 24 showed inhibition percentages in the range of the reference drug (indomethacin), whereas compounds 18 and 25 reduced the oedema in a lesser extent (inhibition of 73 and 80%, respectively). In addition, all compounds except chemical 15, significantly reduced neutrophil infiltration, measured as myeloperoxidase activity on TPA application test. Compounds 6, 11, 12 and 18 showed values comparable to indomethacin (inhibition percentage of 61), but compounds 6 and 18 were toxic in zebrafish and showed unspecific cytotoxicity in murine macrophages at 100 ?g/mL, while the remaining compounds 11, 12 and 25 were inactive at most levels. Evidently, this study suggests a new support structure (12, 11 and 24; a nitroindazolinone chemotype) that constitutes a novel promising lead and may represent an important therapeutic alternative for the treatment of inflammatory conditions. PMID:22000935

  2. Furan fatty acid as an anti-inflammatory component from the green-lipped mussel Perna canaliculus.

    PubMed

    Wakimoto, Toshiyuki; Kondo, Hikaru; Nii, Hirohiko; Kimura, Kaori; Egami, Yoko; Oka, Yusuke; Yoshida, Masae; Kida, Eri; Ye, Yiping; Akahoshi, Saeko; Asakawa, Tomohiro; Matsumura, Koichi; Ishida, Hitoshi; Nukaya, Haruo; Tsuji, Kuniro; Kan, Toshiyuki; Abe, Ikuro

    2011-10-18

    A lipid extract of Perna canaliculus (New Zealand green-lipped mussel) has reportedly displayed anti-inflammatory effects in animal models and in human controlled studies. However, the anti-inflammatory lipid components have not been investigated in detail due to the instability of the lipid extract, which has made the identification of the distinct active components a formidable task. Considering the instability of the active component, we carefully fractionated a lipid extract of Perna canaliculus (Lyprinol) and detected furan fatty acids (F-acids). These naturally but rarely detected fatty acids show potent radical-scavenging ability and are essential constituents of plants and algae. Based on these data, it has been proposed that F-acids could be potential antioxidants, which may contribute to the protective properties of fish and fish oil diets against chronic inflammatory diseases. However, to date, in vivo data to support the hypothesis have not been obtained, presumably due to the limited availability of F-acids. To confirm the in vivo anti-inflammatory effect of F-acids in comparison with that of eicosapentaenoic acid (EPA), we developed a semisynthetic preparation and examined its anti-inflammatory activity in a rat model of adjuvant-induced arthritis. Indeed, the F-acid ethyl ester exhibited more potent anti-inflammatory activity than that of the EPA ethyl ester. We report on the in vivo activity of F-acids, confirming that the lipid extract of the green-lipped mussel includes an unstable fatty acid that is more effective than EPA. PMID:21972415

  3. Evaluation of anti-inflammatory, analgesic, and antipyretic activities of the ethanol extract from Murdannia loriformis (Hassk.) Rolla Rao et Kammathy

    PubMed Central

    Kunnaja, Phraepakaporn; Wongpalee, Somsakul Pop; Panthong, Ampai

    2014-01-01

    Introduction: Murdannia loriformis (hassk) Rolla Roa et Kammathy, family Commelinaceae, is used by Chinese practitioners as a remedy for cancer in an early stage, and also for treating other diseases including colds, throat infections, pneumonia, diabetes mellitus, flu and inflammation. Although anticancer as well as other pharmacological effects of M. loriformis have been reported, its anti-inflammatory and other activities related to inflammation are still limited. Methods: The anti-inflammatory activity was evaluated using carrageenan- and arachidonic acid-induced paw edema in rats, and cotton pellet-induced granuloma formation in rats. The analgesic and antipyretic activities were determined by formalin test in mice and yeast-induced hyperthermia in rats, respectively. Results: The ethanol extract of the aerial part of M. loriformis exhibited anti-inflammatory activity on the rat paw edema induced by carrageenan and arachidonic acid. It also showed an inhibitory effect on the granuloma and the transudative formation of the rat implanted with cotton pellets as well as lowered the elevated serum alkaline phosphatase activity to normal level. It exerted potent analgesic effect on both the early and late phase of formalin test as well as the antipyretic effect on yeast-induced hyperthermic rats. The oral single high dose of the extract of 5,000 mg/Kg did not produce death or any abnormalities or changes of the internal organs of rats during 14 days of the observed period. Conclusion: The results obtained from this study support the use of the plant in traditional medicine for inflammatory ailments. PMID:25671174

  4. Topical anti-inflammatory activity of Thymus willdenowii.

    PubMed

    Ismaili, H; Tortora, S; Sosa, S; Fkih-Tetouani, S; Ilidrissi, A; Della Loggia, R; Tubaro, A; Aquino, R

    2001-12-01

    The topical anti-inflammatory activity of Thymus willdenowii Boiss (Labiatae) leaves, a herbal drug used in Moroccan folk medicine, has been studied using the croton oil ear test in mice. A bioassay-oriented fractionation procedure showed that the activity concentrates in the chloroform extract, which has a potency similar to that of indometacin, the non-steroidal anti-inflammatory drug used as reference (ID50 (dose giving 50% oedema inhibition) = 83 microg cm(-2) and 93 microg cm(-2), respectively). The main compounds responsible for the anti-inflammatory activity of T. willdenowii are ursolic acid and oleanolic acid. The flavonoids luteolin-3'-O-glucuronide and eriodictyol-7-O-glucoside were found for the first time in the genus Thymus. PMID:11804395

  5. Aloe vera and gibberellin. Anti-inflammatory activity in diabetes.

    PubMed

    Davis, R H; Maro, N P

    1989-01-01

    Aloe vera inhibits inflammation and adjuvant-induced arthritis. The authors' laboratory has shown that A. vera improves wound healing, which suggests that it does not act like an adrenal steroid. Diabetic animals were used in this study because of their poor wound healing and anti-inflammatory capabilities. The anti-inflammatory activity of A. vera and gibberellin was measured in streptozotocin-induced diabetic mice by measuring the inhibition of polymorphonuclear leukocyte infiltration into a site of gelatin-induced inflammation over a dose range of 2 to 100 mg/kg. Both Aloe and gibberellin similarly inhibited inflammation in a dose-response manner. These data tend to suggest that gibberellin or a gibberellin-like substance is an active anti-inflammatory component in A. vera. PMID:2724102

  6. [Pharmacological study of the anti-inflammatory agent glyderinine].

    PubMed

    Azimov, M M; Zakirov, U B; Radzhapova, Sh D

    1988-01-01

    In experiments on various animals glyderinine, a derivative of glycyrrhizic acid isolated from Glycyrrhiza glabra, was found to exert a pronounced anti-inflammatory effect exceeding that of hydrocortisone and amidopyrine. The mechanism of the anti-inflammatory effect was to a certain degree related to the adrenal cortex, suppression of vascular permeability and antagonism to inflammation as well. Similarly to other anti-inflammatory agents, glyderinine possesses analgesic and antipyretic properties, but unlike them it fails to suppress hemopoiesis and to cause ulceration of the gastrointestinal mucosa. The drug is of low toxicity and exerts the antiallergic effect. Glyderinine was successfully tried and recommended for a wide use as an ointment for treating skin diseases. PMID:3191985

  7. Hesperetin derivatives: Synthesis and anti-inflammatory activity.

    PubMed

    Wang, Qian-Qian; Shi, Jing-Bo; Chen, Chen; Huang, Cheng; Tang, Wen-Jian; Li, Jun

    2016-03-01

    Sixteen novel hesperetin derivatives containing Mannich base moiety were designed and synthesized and their anti-inflammatory activities were evaluated by inhibiting tumor necrosis factor-? (TNF-?) and interleukin-6 (IL-6) in mouse RAW264.7 macrophages. Compounds 3a-3k showed better hydrophilic, while compounds 3l-3p with aromatic groups was hydrophobic. The anti-inflammatory activity of title compounds was correlated with logP values, among them, compounds 3c, 3e and 3i with minus logP values exhibited best anti-inflammatory activity through decreasing both IL-6 and TNF-?. Furthermore, the expression of LPS-induced notch1 and inos was reduced by compounds 3c, 3e, and 3i, and compound 3e attenuated LPS-induced inos protein levels in a dose-dependent manner. PMID:26848111

  8. Terminal signal: anti-inflammatory effects of α-melanocyte-stimulating hormone related peptides beyond the pharmacophore.

    PubMed

    Brzoska, Thomas; Böhm, Markus; Lügering, Andreas; Loser, Karin; Luger, Thomas A

    2010-01-01

    During the last two decades a significant number of investigations has established the fact that α-Melanocyte-stimulating hormone (α-MSH) is a potent anti-inflammatory mediator. The anti-inflammatory effects of α-MSH can be elicited via melanocortin receptors (MC-Rs) broadly expressed in a number of tissues ranging from the central nervous system to cells of the immune system and on resident somatic cells of peripheral tissues. α-MSH affects various pathways regulating inflammatory responses such as NF-κB activation, expression of adhesion molecules, inflammatory cytokines, chemokine receptors, T-cell proliferation and activity and inflammatory cell migration. In vivo α-MSH has been shown to be anti-inflammatory as well in animal models of fever, irritant and allergic contact dermatitis, cutaneous vasculitis, fibrosis, in ocular, gastrointestinal, brain and allergic airway inflammation and arthritis. A broad range of effects of α-MSH exerted beyond the field of inflammation, its pigmentory capacity being only the most visible aspect, has been one of the major impediments limiting the use of α-MSH in human inflammatory disorders. Interestingly KPV, C-terminal tripeptide of α-MSH, which lacks the entire sequence motif required for binding to any of the known MC-Rs, retains almost all of the anti-inflammatory capacity of the full hormone, but in its activities display a lack of any pigmentory action. While the exact signaling mechanism utilized by KPV and related peptides currently is unknown it has been demonstrated already that significant similarities between anti-inflammatory signaling of α-MSH and those short peptides exist. These α-MSH related tripeptides thus may be useful alternatives for anti-inflammatory peptide therapy. KdPT, a derivative of KPV corresponding to IL-1β(193-195), currently is emerging as another tripeptide with potent anti-inflammatory effects. A more limited spectrum of biologic activities, potentially advantageous physicochemical, pharmacokinetic and pharmacodynamic properties as well as the expectation of low costs for pharmaceutical production make these agents interesting candidates for the treatment of immune-mediated inflammatory skin and bowel diseases, allergic asthma and arthritis. PMID:21222263

  9. First total synthesis of antrocamphin A and its analogs as anti-inflammatory and anti-platelet aggregation agents.

    PubMed

    Lee, Chia-Lin; Huang, Chi-Huan; Wang, Hui-Chun; Chuang, Da-Wei; Wu, Ming-Jung; Wang, Sheng-Yang; Hwang, Tsong-Long; Wu, Chin-Chung; Chen, Yeh-Long; Chang, Fang-Rong; Wu, Yang-Chang

    2011-01-01

    Naturally occurring antrocamphin A (1) is a potent anti-inflammatory compound from the edible fungus Antrodia camphorata (Taiwanofungus camphoratus), whose wild fruiting body is used as a valuable folk medicine in Taiwan. This study is the first total synthesis of antrocamphin A (1) and its analogs. Their inhibition ability on NO release, superoxide anion generation, elastase release and platelet aggregation are reported herein. PMID:21088769

  10. Synthesis, cyclooxygenase inhibition, anti-inflammatory evaluation and ulcerogenic liability of new 1,3,5-triarylpyrazoline and 1,5-diarylpyrazole derivatives as selective COX-2 inhibitors.

    PubMed

    Abdellatif, Khaled R A; Abdelall, Eman K A; Fadaly, Wael A A; Kamel, Gehan M

    2016-01-15

    Two new series of 1,3,5-triarylpyrazolines 10a-m and 1,5-diarylpyrazoles 14a-d were synthesized. All prepared compounds were evaluated for their in vitro COX-1/COX-2 inhibitory activity and the in vivo anti-inflammatory activity. All compounds were more selective for COX-2 isozyme and showed good in vivo anti-inflammatory activity. Compound 10k was the most COX-2 selective compound (S.I.=5.91) and the most potent anti-inflammatory derivative (ED50=99?mol/kg) which is approximately five folds more potent than ibuprofen (ED50=499?mol/kg) and had half potency of celecoxib (ED50=47?mol/kg). All compounds were less ulcerogenic (Ulcer Indexes=1.20-5.00) than ibuprofen (Ulcer Index=20.25) and comparable to celecoxib (Ulcer Index=2.90). PMID:26691756

  11. ATP-Binding Pocket-Targeted Suppression of Src and Syk by Luteolin Contributes to Its Anti-Inflammatory Action

    PubMed Central

    Lee, Jeong-Oog; Jeong, Deok; Kim, Mi-Yeon; Cho, Jae Youl

    2015-01-01

    Luteolin is a flavonoid identified as a major anti-inflammatory component of Artemisia asiatica. Numerous reports have demonstrated the ability of luteolin to suppress inflammation in a variety of inflammatory conditions. However, its exact anti-inflammatory mechanism has not been fully elucidated. In the present study, the anti-inflammatory mode of action in activated macrophages of luteolin from Artemisia asiatica was examined by employing immunoblotting analysis, a luciferase reporter gene assay, enzyme assays, and an overexpression strategy. Luteolin dose-dependently inhibited the secretion of nitric oxide (NO) and prostaglandin E2 (PGE2) and diminished the levels of mRNA transcripts of inducible NO synthase (iNOS), tumor necrosis factor- (TNF-) ?, and cyclooxygenase-2 (COX-2) in lipopolysaccharide- (LPS-) and pam3CSK-treated macrophage-like RAW264.7 cells without displaying cytotoxicity. Luteolin displayed potent NO-inhibitory activity and also suppressed the nuclear translocation of NF-?B (p65 and p50) via blockade of Src and Syk, but not other mitogen-activated kinases. Overexpression of wild type Src and point mutants thereof, and molecular modelling studies, suggest that the ATP-binding pocket may be the luteolin-binding site in Src. These results strongly suggest that luteolin may exert its anti-inflammatory action by suppressing the NF-?B signaling cascade via blockade of ATP binding in Src and Syk. PMID:26236111

  12. Anti-Inflammatory Effects of 81 Chinese Herb Extracts and Their Correlation with the Characteristics of Traditional Chinese Medicine

    PubMed Central

    Chen, Chang-Liang; Zhang, Dan-Dan

    2014-01-01

    Inducible nitrogen oxide synthase (iNOS) is the primary contributor of the overproduction of nitric oxide and its inhibitors have been actively sought as effective anti-inflammatory agents. In this study, we prepared 70% ethanol extracts from 81 Chinese herbs. These extracts were subsequently evaluated for their effect on nitrogen oxide (NO) production and cell growth in LPS/IFN?-costimulated and unstimulated murine macrophage RAW264.7 cells by Griess reaction and MTT assay. Extracts of Daphne genkwa Sieb.et Zucc, Caesalpinia sappan L., Iles pubescens Hook.et Arn, Forsythia suspensa (Thunb.) Vahl, Zingiber officinale Rosc, Inula japonica Thunb., and Ligusticum chuanxiong Hort markedly inhibited NO production (inhibition > 90% at 100??g/mL). Among active extracts (inhibition > 50% at 100??g/mL), Rubia cordifolia L., Glycyrrhiza glabra L., Iles pubescens Hook.et Arn, Nigella glandulifera Freyn et Sint, Pueraria lobata (Willd.) Ohwi, and Scutellaria barbata D. Don displayed no cytotoxicity to unstimulated RAW246.7 cells while increasing the growth of LPS/IFN?-costimulated cells. By analyzing the correlation between their activities and their Traditional Chinese Medicine (TCM) characteristics, herbs with pungent flavor displayed potent anti-inflammatory capability. Our study provides a series of potential anti-inflammatory herbs and suggests that herbs with pungent flavor are candidates of effective anti-inflammatory agents. PMID:24696703

  13. Anti-Inflammatory Effect of Emblica officinalis in Rodent Models of Acute and Chronic Inflammation: Involvement of Possible Mechanisms

    PubMed Central

    Golechha, Mahaveer; Sarangal, Vikas; Ojha, Shreesh; Bhatia, Jagriti; Arya, Dharmveer S.

    2014-01-01

    Emblica officinalis, commonly known as amla in Ayurveda, is unarguably the most important medicinal plant for prevention and treatment of various ailments. The present study investigated the anti-inflammatory activity of hydroalcoholic extract of Emblica officinalis (HAEEO). Acute inflammation in rats was induced by the subplantar injection of carrageenan, histamine, serotonin, and prostaglandin E2 and chronic inflammation was induced by the cotton pellet granuloma. Intraperitoneal (i.p.) administration of HAEEO at all the tested doses (300, 500, and 700?mg/kg) significantly (P < 0.001) inhibited rat paw edema against all phlogistic agents and also reduced granuloma formation. However, at the dose of 700?mg/kg, HAEEO exhibited maximum anti-inflammatory activity in all experimental models, and the effects were comparable to that of the standard anti-inflammatory drugs. Additionally, in paw tissue the antioxidant activity of HAEEO was also measured and it was found that HAEEO significantly (P < 0.001) increased glutathione, superoxide dismutase, and catalase activity and subsequently reduced lipid peroxidation evidenced by reduced malondialdehyde. Taken all together, the results indicated that HAEEO possessed potent anti-inflammatory activity and it may hold therapeutic promise in the management of acute and chronic inflammatory conditions. PMID:25215258

  14. The Effect of Polyphenols Isolated from Cynanchi wilfordii Radix with Anti-inflammatory, Antioxidant, and Anti-bacterial Activity

    PubMed Central

    Jeong, Sunyoung; Lee, Sunwoo; Choi, Woo Jin; Sohn, Uy Dong

    2015-01-01

    Recently, Cynanchi wilfordii Radix has gained wide use in Asian countries as a functional food effective for relieving fatigue, osteoporosis, and constipation, particularly in menopausal disorders. However, its anti-inflammatory and anti-microbial activities have not been explored in detail to date. The anti-inflammatory, antioxidant, and anti-bacterial properties of the Cynanchi wilfordii Radix extracts obtained with water, methanol, ethanol, and acetone were compared. All 4 polyphenol-containing extracts exhibited anti-inflammatory and antioxidant effects. The ethanol extract was found to elicit the most potent reduction of nitric oxide (NO), prostaglandin E2 (PGE2), and cytokine (IL-1β, IL-6, IL-10, and TNF-α) levels, as well as inhibit the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a concentration-dependent manner. The evaluation of antioxidant activity also revealed the ethanol extract to have the highest free radical scavenging activity, measured as 85.3±0.4%, which is equivalent to 99.9% of the activity of α -tocopherol. In the assessment of anti-bacterial activity, only ethanol extract was found to inhibit the growth of the Bacillus species Bacillus cereus and Bacillus anthracis. These results show that polyphenols of Cynanchi wilfordii Radix have anti-inflammatory, antioxidant, and anti-bacterial properties that can be exploited and further improved for use as a supplementary functional food, in cosmetics, and for pharmaceutical purposes. PMID:25729277

  15. Anti-Inflammatory Effect of Emblica officinalis in Rodent Models of Acute and Chronic Inflammation: Involvement of Possible Mechanisms.

    PubMed

    Golechha, Mahaveer; Sarangal, Vikas; Ojha, Shreesh; Bhatia, Jagriti; Arya, Dharmveer S

    2014-01-01

    Emblica officinalis, commonly known as amla in Ayurveda, is unarguably the most important medicinal plant for prevention and treatment of various ailments. The present study investigated the anti-inflammatory activity of hydroalcoholic extract of Emblica officinalis (HAEEO). Acute inflammation in rats was induced by the subplantar injection of carrageenan, histamine, serotonin, and prostaglandin E2 and chronic inflammation was induced by the cotton pellet granuloma. Intraperitoneal (i.p.) administration of HAEEO at all the tested doses (300, 500, and 700?mg/kg) significantly (P < 0.001) inhibited rat paw edema against all phlogistic agents and also reduced granuloma formation. However, at the dose of 700?mg/kg, HAEEO exhibited maximum anti-inflammatory activity in all experimental models, and the effects were comparable to that of the standard anti-inflammatory drugs. Additionally, in paw tissue the antioxidant activity of HAEEO was also measured and it was found that HAEEO significantly (P < 0.001) increased glutathione, superoxide dismutase, and catalase activity and subsequently reduced lipid peroxidation evidenced by reduced malondialdehyde. Taken all together, the results indicated that HAEEO possessed potent anti-inflammatory activity and it may hold therapeutic promise in the management of acute and chronic inflammatory conditions. PMID:25215258

  16. Anti-inflammatory properties of drugs from saffron crocus.

    PubMed

    Poma, Anna; Fontecchio, Gabriella; Carlucci, Giuseppe; Chichiricc, Giuseppe

    2012-01-01

    The medicinal uses of saffron (Crocus sativus Linnaeus) have a long history beginning in Asian countries since the Late Bronze Age. Recent studies have validated its potential to lower the risk of several diseases. Some metabolites derived from saffron stigmas exert numerous therapeutic effects due to hypolipidemic, antitussive, antioxidant, antidiabetic activities and many others. Water and ethanol extracts of Crocus sativus L. are cardioprotective and counteract neurodegenerative disorders. Many of these medicinal properties of saffron can be attributed to a number of its compounds such as crocetin, crocins and other substances having strong antioxidant and radical scavenger properties against a variety of radical oxygen species and pro-inflammatory cytokines. Botany, worldwide spreading of cultivars, biochemical pathways, active constituents and chemical detection methods are reviewed. Therapeutic uses of saffron principles with particular regard to those exhibiting antioxidant and thus anti-inflammatory features are discussed. To date, very few adverse health effects of saffron have been demonstrated. At high doses (more than 5 g/die day), it should be avoided in pregnancy owing to its uterine stimulation activity. PMID:22934747

  17. [Meloxicam: the golden mean of nonsteroidal anti-inflammatory drugs].

    PubMed

    Karateev, A E

    2014-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are most commonly used to treat acute and chronic pain in locomotor system (LMS) diseases. However, their administration may be accompanied by the development of dangerous complications as organic and functional disorders of the cardiovascular system (CVS) and gastrointestinal tract (GIT). Physicians have currently a wide range of NSAIDs at their disposal; but none of the representatives of this group can be considered the best. Thus, highly selective cyclooxygenase-2 inhibitors (Coxibs) are substantially safer for GIT; however, their use is clearly associated with the increased risk of severe cardiovascular events. Nonselective NSAIDs, such as naproxen or ketoprofen, are safer for CVS, but more frequently cause significant GIT organic and functional disorders. Moderately selective NSAIDs, such as meloxicam (movalis), conceivably could be the most acceptable choice for treating the majority of patients in this situation. This drug has been long and extensively used in global clinical practice and has gained the confidence of physicians and patients. The major benefits of meloxicam are its proven efficacy, convenient treatment regimen, relatively low risk of complications as organic and functional disorders of the GIT and CVD and good compatibility with low-dose aspirin. PMID:25026810

  18. Nonsteroidal anti-inflammatory drugs in systemic lupus erythematosus.

    PubMed

    stensen, M; Villiger, P M

    2001-01-01

    Up to 80% of patients with systemic lupus erythematosus (SLE) are treated with nonsteroidal anti-inflammatory drugs (NSAID) for musculoskeletal symptoms, serositis and headache. This survey reviews the literature on non-selective and selective inhibitors of cyclooxygenases with an emphasis on the efficacy and safety profile reported in SLE patients. No lupus-specific data on gastro-intestinal side effects of NSAID exist. Both non-selective Cox-inhibitors and selective Cox-2 inhibitors induce renal side effects including sodium retention and reduction of the glomerular filtration rate. Lupus nephritis is a risk factor for NSAID-induced acute renal failure, but not for rare idiosyncratic toxic renal reactions to NSAID. In refractory nephrotic syndrome, NSAID have been used successfully. Cutaneous and allergic reactions to NSAID are increased in SLE patients as well as hepatotoxic effects, particularly with high dose aspirin. Whereas a variety of central nervous system side effects of NSAID are probably no more common in SLE patients than in others, aseptic meningitis has been reported more frequently. Ovulation and pregnancy can be adversely affected by Cox-inhibitors. The antiplatelet effect of aspirin and non-selective Cox-inhibitors has a therapeutic potential in patients with the antiphospholipid syndrome (APS). In summary, treatment of SLE with NSAID requires awareness for the increased frequency of some side effects and close monitoring of toxicity. PMID:11315341

  19. Nonsteroidal anti-inflammatory drugs in systemic lupus erythematosus.

    PubMed

    Ostensen, M; Villiger, P M

    2000-01-01

    Up to 80% of patients with systemic lupus erythematosus (SLE) are treated with nonsteroidal anti-inflammatory drugs (NSAID) for musculoskeletal symptoms, serositis and headache. This survey reviews the literature on non-selective and selective inhibitors of cyclooxygenases, with an emphasis on the efficacy and safety profile reported in SLE patients. No lupus-specific data on gastro-intestinal side effects of NSAID exist. Both non-selective Cox inhibitors and selective Cox-2 inhibitors induce renal side effects, including sodium retention and reduction of the glomerular filtration rate. Lupus nephritis is a risk factor for NSAID-induced acute renal failure, but not for rare idiosyncratic toxic renal reactions to NSAID. In refractory nephrotic syndrome, NSAID have been used successfully. Cutaneous and allergic reactions to NSAID are increased in SLE patients as well as hepatotoxic effects, particularly with high dose aspirin. Whereas a variety of central nervous system side effects of NSAID are probably no more common in SLE patients than others, aseptic meningitis has been reported more frequently. Ovulation and pregnancy can be adversely affected by Cox inhibitors. The antiplatelet effect of aspirin and non-selective Cox inhibitors has a therapeutic potential in patients with antiphospholipid syndrome (APS). In summary, treatment of SLE with NSAID requires awareness for the increased frequency of some side effects and close monitoring of toxicity. PMID:11035430

  20. Anti-inflammatory new coumarin from the Ammi majus L

    PubMed Central

    2012-01-01

    Investigation of the aerial parts of the Egyptian medicinal plant Ammi majus L. led to isolation of new coumarin, 6-hydroxy-7-methoxy-4 methyl coumarin (2) and 6-hydroxy-7-methoxy coumarin (3); this is the first time they have been isolated from this plant. The structures of the compounds (2 &3) were elucidated by spectroscopic data interpretation and showed anti-inflammatory and anti-viral activity. Graphical abstract An efficient, one-new coumarin (2) was isolated from the aerial parts of the A. Majus L. was evaluated for their anti-viral and anti-inflammatory activities. PMID:22373472

  1. Anti-inflammatory activity of some copper(II) complexes.

    PubMed

    Frechilla, D; Lasheras, B; Ucelay, M; Parrondo, E; Craciunescu, G; Cenarruzabeitia, E

    1990-08-01

    Anti-inflammatory activity of some copper(II) neutral complexes and complexated salts on different animal models of inflammation has been investigated. In a preliminary screening 5 complexes were selected for a more extensive study based on their capacity inhibiting the rat hind paw edema induced by carrageenin. These selected complexes showed inhibitory action on acute and subacute inflammation with an activity degree higher than that of indometacin. They were also effective inhibitors of primary and secondary lesions in the adjuvant-induced arthritis, with an activity similar to phenylbutazone. These complexes had no topical anti-inflammatory effect. PMID:2242084

  2. Treatment of traumatic brain injury with anti-inflammatory drugs.

    PubMed

    Bergold, Peter J

    2016-01-01

    Traumatic brain injury rapidly induces inflammation. This inflammation is produced both by endogenous brain cells and circulating inflammatory cells that enter from the brain. Together they drive the inflammatory response through a wide variety of bioactive lipids, cytokines and chemokines. A large number of drugs with anti-inflammatory action have been tested in both preclinical studies and in clinical trials. These drugs either have known anti-inflammatory action or inhibit the inflammatory response through unknown mechanisms. The results of these preclinical studies and clinical trials are reviewed. Recommendations are suggested on how to improve preclinical testing of drugs to make them more relevant to evaluate for clinical trials. PMID:26112314

  3. Diphenpyramide: a review of its pharmacology and anti-inflammatory effects.

    PubMed

    Jochems, O B; Janbroers, J M

    1986-01-01

    Diphenpyramide is a non-steroidal anti-inflammatory compound which has no free ionizable or particularly reactive groups, in contrast to conventional non-steroidal anti-inflammatory agents. In animal tests, diphenpyramide showed anti-inflammatory action as powerful as that of indomethacin or phenylbutazone, with major peripheral analgesic, antipyretic and uricosuric properties. The therapeutic index was more favourable than that of the reference compounds. Diphenpyramide inhibits the synthesis of inflammatory prostaglandins and antagonizes the mediators of inflammation, but does not affect platelet aggregation or blood clotting. The major biotransformation products are biphenylacetate (BPA), which is pharmacologically active, p-hydroxy-biphenylacetate (p-HBPA) and alpha-aminopyridine (AP). The first is metabolized to p-HBPA which is excreted in the urine. The serum levels of the parent drug and BPA do not result in particularly elevated peaks. Elimination occurs mostly through the faeces. The anti-inflammatory action of diphenpyramide has been extensively proven in clinical trials in which patients with various inflammatory conditions, mainly of a musculoskeletal nature, were treated. The overall therapeutic efficacy was over 80% with a high proportion in osteoarthritis. In double-blind studies, the efficacy of diphenpyramide was significantly better than that of acetylsalicylic acid or indomethacin in osteoarthritis, and comparable with that of naproxen. The preferred dose of diphenpyramide in adults was 1000 mg/day in 2 divided doses for a period of about 30 days. The effective and safe dose in children was 13 to 33 mg/day. Side-effects were seldom reported (2.5%), were mild and transient and mainly of a gastro-intestinal nature. Specific tests on possible drug influence on the gastric mucosa showed diphenpyramide to be 'gastrosafe' both on short-term, high-dose as well as on long-term standard treatments. Biopsy and endoscopy of the mucosa failed to indicate any impairment; occult blood in stools could not be detected. Diphenpyramide seems, therefore, to be an anti-inflammatory drug that combines efficacy and tolerance in the treatment of a wide variety of inflammatory musculoskeletal disorders of primary of secondary nature, as well as the associated pain. Clinical observations also suggest that diphenpyramide could safely be administered to susceptible patients, such as children and infants or elderly, in need of effective anti-inflammatory treatment. PMID:3515370

  4. Biological evaluation of synthetic chalcone and flavone derivatives as anti-inflammatory agents

    PubMed Central

    Mateeva, Nelly; Gangapuram, Madhavi; Mazzio, Elizabeth; Eyunni, Suresh; Soliman, Karam F. A.

    2015-01-01

    Flavonoids and chalcones are natural plant derived compounds with inherent therapeutic value for a range of human pathologies. In this study, a series of 24 substituted chalcones and flavones were synthesized and subsequently screened for anti-inflammatory effects on lipopolysaccharide (1 g/ml)-activated BV-2 microglial cells by assessing initial production/release of nitric oxide (NO). The data obtained eliminate the majority of compounds as weak or non-effective, whereas 2?-hydroxy-3,4,5,3?,4?-pentamethoxychalcone (1) and 2?-hydroxy-3,4,5-trimethoxychalcone (2) were potent, having an IC50 of 1.10 and 2.26 M, respectively; with greater potency than L-N6-(1-iminoethyl)lysine selective iNOS inhibitor (IC50 = 3.1 M) but less than steroidal dexamethasone (IC50 < 200 nM). The most potent compound (chalcone 1) attenuated NO parallel to reducing iNOS protein expression, events also corresponding to reduction of IL-1?, IL-10 and IL-6 pro-inflammatory cytokines. These findings suggest that the presence of electron donating groups OH and OCH3 on both A and B rings of synthetic compounds correlate to stronger anti-inflammatory potency. PMID:25866456

  5. Tetra- and pentacyclic triterpene acids from the ancient anti-inflammatory remedy frankincense as inhibitors of microsomal prostaglandin E(2) synthase-1.

    PubMed

    Verhoff, Moritz; Seitz, Stefanie; Paul, Michael; Noha, Stefan M; Jauch, Johann; Schuster, Daniela; Werz, Oliver

    2014-06-27

    The microsomal prostaglandin E2 synthase (mPGES)-1 is the terminal enzyme in the biosynthesis of prostaglandin (PG)E2 from cyclooxygenase (COX)-derived PGH2. We previously found that mPGES-1 is inhibited by boswellic acids (IC50 = 3-30 ?M), which are bioactive triterpene acids present in the anti-inflammatory remedy frankincense. Here we show that besides boswellic acids, additional known triterpene acids (i.e., tircuallic, lupeolic, and roburic acids) isolated from frankincense suppress mPGES-1 with increased potencies. In particular, 3?-acetoxy-8,24-dienetirucallic acid (6) and 3?-acetoxy-7,24-dienetirucallic acid (10) inhibited mPGES-1 activity in a cell-free assay with IC50 = 0.4 ?M, each. Structure-activity relationship studies and docking simulations revealed concrete structure-related interactions with mPGES-1 and its cosubstrate glutathione. COX-1 and -2 were hardly affected by the triterpene acids (IC50 > 10 ?M). Given the crucial role of mPGES-1 in inflammation and the abundance of highly active triterpene acids in frankincence extracts, our findings provide further evidence of the anti-inflammatory potential of frankincense preparations and reveal novel, potent bioactivities of tirucallic acids, roburic acids, and lupeolic acids. PMID:24844534

  6. Tetra- and Pentacyclic Triterpene Acids from the Ancient Anti-inflammatory Remedy Frankincense as Inhibitors of Microsomal Prostaglandin E2 Synthase-1

    PubMed Central

    2014-01-01

    The microsomal prostaglandin E2 synthase (mPGES)-1 is the terminal enzyme in the biosynthesis of prostaglandin (PG)E2 from cyclooxygenase (COX)-derived PGH2. We previously found that mPGES-1 is inhibited by boswellic acids (IC50 = 3–30 μM), which are bioactive triterpene acids present in the anti-inflammatory remedy frankincense. Here we show that besides boswellic acids, additional known triterpene acids (i.e., tircuallic, lupeolic, and roburic acids) isolated from frankincense suppress mPGES-1 with increased potencies. In particular, 3α-acetoxy-8,24-dienetirucallic acid (6) and 3α-acetoxy-7,24-dienetirucallic acid (10) inhibited mPGES-1 activity in a cell-free assay with IC50 = 0.4 μM, each. Structure–activity relationship studies and docking simulations revealed concrete structure-related interactions with mPGES-1 and its cosubstrate glutathione. COX-1 and -2 were hardly affected by the triterpene acids (IC50 > 10 μM). Given the crucial role of mPGES-1 in inflammation and the abundance of highly active triterpene acids in frankincence extracts, our findings provide further evidence of the anti-inflammatory potential of frankincense preparations and reveal novel, potent bioactivities of tirucallic acids, roburic acids, and lupeolic acids. PMID:24844534

  7. Selenium Supplementation of Amaranth Sprouts Influences Betacyanin Content and Improves Anti-Inflammatory Properties via NF?B in Murine RAW 264.7 Macrophages.

    PubMed

    Tyszka-Czochara, Malgorzata; Pasko, Pawel; Zagrodzki, Pawel; Gajdzik, Ewelina; Wietecha-Posluszny, Renata; Gorinstein, Shela

    2016-02-01

    Sprouts contain potent compounds which while influencing crucial transduction pathways in cell reveal anti-inflammatory and anticancer activities. In this study, we report the biological activity for seeds and colourful sprouts of four types of edible amaranth, as amaranth has recently attracted interest due to its appreciable nutritional value. MTT assay conducted for the amaranth seeds and sprouts did not show any adverse effect on the viability of murine RAW 264.7 cells. As amaranth accumulates selenium, the sprouts were supplemented with this trace element (10mg/L; 15mg/L Se as sodium selenite) while growing. Selenium concentration in sprouts was observed to be significantly correlated with betacyanins content of the tested species. The amounts of Se and betacyanins in sprouts varied for various Amaranth species. In the present study, Amaranthus cruentus sprouts with the highest betacyanins (19.300.57-28.852.23mg of amaranthin/100g of fresh weight) and high total selenium (22.511.57-1044.7573.08?g/L in methanol extracts) content prevented NF?B translocation to the cell nucleus and subsequently exerted an anti-inflammatory effect by significant decreasing inflammatory interleukin 6 production (587.334.2-710.088.1pg/mL) in the cell culture of activated RAW 264.7 macrophages (vs LPS control 1520114pg/mL). PMID:26162623

  8. Anti-inflammatory activities of crocetin derivatives from processed Gardenia jasminoides.

    PubMed

    Hong, Yun-Jung; Yang, Ki-Sook

    2013-08-01

    This study was designed to investigate changes of anti-oxidant and anti-nitric oxide (NO) production activities of Gardenia jasminoides (Gj) by roast processing, and anti-inflammatory activities of crocetin derivatives isolated from Gj. In order to evaluate anti-oxidant and anti-inflammatory activities, DPPH radical scavenging activities and inhibitory activities against lipopolysaccharide (LPS)-induced NO production were determined. Then we isolated crocin (1), gentiobiosyl glucosyl crocetin (3), and mono-gentiobiosyl crocetin (4) from the fruit of Gj, and crocetin (2) from the processed fruit of Gj (PGj) by column chromatography. Their structures were based on spectroscopic methods including IR, MS, and NMR (1D and 2D). Then we assayed contents of crocetin derivatives by HPLC analysis. These crocetin derivatives were evaluated the inhibitory activities on NO production in LPS-stimulated macrophage RAW 264.7 cells and expressions of protein and m-RNA of iNOS and COX-2 by western blot analysis and RT-PCR experiment. The DPPH radical scavenging activities were increased and NO productions in LPS-stimulated RAW 264.7 cells were decreased dose-dependently by processing. Crocin contents were decreased and crocetin contents were increased by processing in HPLC analysis. Compounds 1, 2, 3 and 4 reduced NO production in a dose-dependent manner with IC50 values of 58.9 ?M (1), 29.9 ?M (2), 31.1 ?M (3), and 37.6 ?M (4) respectively. Crocetin (2) showed the most potent anti-inflammatory activity (IC?? = 29.9 ?M), and compound 3 and 4 were firstly measured for inhibitory activities on NO production. Their correlation between structure and activity was not clear but the activity of aglycone type showed the most potent activity. They also suppressed the protein and m-RNA expressions of iNOS and COX-2 in LPS-activated macrophage. These results suggest that anti-oxidant and anti-NO production activities of Gj were increased by processing, and increased anti-inflammatory activities of Gj by processing were due to the increase of crocetin, the aglycone that has greater activity than crocin. PMID:23636885

  9. Anti-inflammatory effects of essential oil in Echinacea purpurea L.

    PubMed

    Yu, Deqiang; Yuan, Yi; Jiang, Ling; Tai, Yuling; Yang, Xiumei; Hu, Fang; Xie, Zhongwen

    2013-03-01

    Echinacea purpurea L. is a medicinal plant originally from North America. It has become a commonly used herbal medicine worldwide because it contains various biologically active compounds. This study was designed to investigate the anti-inflammatory effects of essential oils from E. purpurea in both mice and rats. The extract was obtained from flower of E. purpurea by steam distillation. The anti-inflammatory potential was evaluated in vivo by using different animal models such as xylene-induced mouse ear edema, egg-white-induced rat paw edema, and cotton-induced granuloma tissue proliferating inflammation in mice. The serial dosages were used in vivo: the low dosage, the medium dosage and the high dosage. The low, medium and high dosages of extracts produced inhibitions of 39.24%, 47.22% and 44.79% respectively in the ear edema induced by xylene when compare with the control group. Only the high dosage group showed statistically significant inhibition (48.51%) of paw edema formation induced three hours by egg white compared with the control group (P<0.01). Moreover, the granulation formation was also significantly reduced the most by 28.52% in the high dose groups compared with the control group (P <0.05). The pro-inflammatory cytokines such as IL-2, IL-6 and TNF-α in the blood were reduced in the treated groups. The essential oils from extracts of E. purpurea have anti-inflammatory effects. PMID:23455214

  10. Antioxidant activity and anti-inflammatory activity of ethanol extract and fractions of Doenjang in LPS-stimulated RAW 264.7 macrophages

    PubMed Central

    Son, Dahee; Chung, Young-Shin; Kwon, Young Hye

    2015-01-01

    BACKGROUND/OBJECTIVES Fermentation can increase functional compounds in fermented soybean products, thereby improving antioxidant and/or anti-inflammatory activities. We investigated the changes in the contents of phenolics and isoflavones, antioxidant activity and anti-inflammatory activity of Doenjang during fermentation and aging. MATERIALS/METHODS Doenjang was made by inoculating Aspergillus oryzae and Bacillus licheniformis in soybeans, fermenting and aging for 1, 3, 6, 8, and 12 months (D1, D3, D6, D8, and D12). Doenjang was extracted using ethanol, and sequentially fractioned by hexane, dichloromethane (DM), ethylacetate (EA), n-butanol, and water. The contents of total phenolics, flavonoids and isoflavones, 2,2-diphenyl-1 picryl hydrazyl (DPPH) radical scavenging activity, and ferric reducing antioxidant power (FRAP) were measured. Anti-inflammatory effects in terms of nitric oxide (NO), prostaglandin (PG) E2 and pro-inflammatory cytokine production and inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expressions were also measured using LPS-treated RAW 264.7 macrophages. RESULTS Total phenolic and flavonoid contents showed a gradual increase during fermentation and 6 months of aging and were sustained thereafter. DPPH radical scavenging activity and FRAP were increased by fermentation. FRAP was further increased by aging, but DPPH radical scavenging activity was not. Total isoflavone and glycoside contents decreased during fermentation and the aging process, while aglycone content and its proportion increased up to 3 or 6 months of aging and then showed a slow decrease. DM and EA fractions of Doenjang showed much higher total phenolic and flavonoid contents, and DPPH radical scavenging activity than the others. At 100 µg/mL, DM and EA fractions of D12 showed strongly suppressed NO production to 55.6% and 52.5% of control, respectively, and PGE2 production to 25.0% and 28.3% of control with inhibition of iNOS or COX-2 protein expression in macrophages. CONCLUSIONS Twelve month-aged Doenjang has potent antioxidant and anti-inflammatory activities with high levels of phenolics and isoflavone aglycones, and can be used as a beneficial food for human health. PMID:26634044

  11. The Use of Nonsteroidal Anti-Inflammatory Drugs in Sports.

    ERIC Educational Resources Information Center

    Calabrese, Leonard H.; Rooney, Theodore W.

    1986-01-01

    Recent advances in the understanding of the mechanism of action and clinical pharmacology of the new nonsteroidal anti-inflammatory drugs (NSAIDs) can help practitioners decide which to use and how to administer them. Indications for and effects of NSAIDs are described. (MT)

  12. The present status of anti-inflammatory agents in dermatology.

    PubMed

    Stttgen, G

    1988-01-01

    Many classes of drugs exert anti-inflammatory activity through mechanisms which affect all or part of the inflammatory process. Some of these agents are beneficial in the practice of dermatology, while others, such as penicillamine, mast cell blockers and serotonin antagonists, find little or no application. Corticosteroids, for example, are nonspecific in their anti-inflammatory effects and remain a mainstay of therapy, despite their side effect profile. Other drugs, such as the non-steroidal anti-inflammatory agents or gold, can be used in the treatment of diseases associated with rheumatic or autoimmune states. Moreover, antihistamines play an important role in the control of itching, but are mainly indicated in controlling non-dermatological allergic sequelae. Interestingly, chloroquine and dapsone, which were originally developed for use in malaria prophylaxis and leprosy, respectively, have value in treating a wide range of dermatological conditions via mechanisms which include the inhibition of P-450 isoenzymes. In diseases characterised by disturbed cornification (e.g. psoriasis pustulosa), retinoids are of particular value. These drugs are thought to act by inhibition of collagenases, proteases and granulocyte migration. Undoubtedly, further investigation of drug classes such as oxygen radical controllers and immunomodulators will clarify their mechanisms and establish their therapeutic usefulness among the anti-inflammatory agents now available for dermatological use. PMID:3076131

  13. Glycosaminoglycan analogs as a novel anti-inflammatory strategy

    PubMed Central

    Severin, India C.; Soares, Adriano; Hantson, Jennifer; Teixeira, Mauro; Sachs, Daniela; Valognes, Delphine; Scheer, Alexander; Schwarz, Matthias K.; Wells, Timothy N. C.; Proudfoot, Amanda E. I.; Shaw, Jeffrey

    2012-01-01

    Heparin, a glycosaminoglycan (GAG), has both anti-inflammatory and anti-coagulant properties. The clinical use of heparin against inflammation, however, has been limited by concerns about increased bleeding. While the anti-coagulant activity of heparin is well understood, its anti-inflammatory properties are less so. Heparin is known to bind to certain cytokines, including chemokines, small proteins which mediate inflammation through their control of leukocyte migration and activation. Molecules which can interrupt the chemokine-GAG interaction without inhibiting coagulation could therefore, represent a new class of anti-inflammatory agents. In the present study, two approaches were undertaken, both focusing on the heparin-chemokine relationship. In the first, a structure based strategy was used: after an initial screening of potential small molecule binders using protein NMR on a target chemokine, binding molecules were optimized through structure-based design. In the second approach, commercially available short oligosaccharides were polysulfated. In vitro, these molecules prevented chemokine-GAG binding and chemokine receptor activation without disrupting coagulation. However, in vivo, these compounds caused variable results in a murine peritoneal recruitment assay, with a general increase of cell recruitment. In more disease specific models, such as antigen-induced arthritis and delayed-type hypersensitivity, an overall decrease in inflammation was noted, suggesting that the primary anti-inflammatory effect may also involve factors beyond the chemokine system. PMID:23087686

  14. Ethynylphenyl carbonates and carbamates as dual-action acetylcholinesterase inhibitors and anti-inflammatory agents.

    PubMed

    Saxena, Jaya; Meloni, David; Huang, Mou-Tuan; Heck, Diane E; Laskin, Jeffrey D; Heindel, Ned D; Young, Sherri C

    2015-12-01

    Novel ethynylphenyl carbonates and carbamates containing carbon- and silicon-based choline mimics were synthesized from their respective phenol and aniline precursors and screened for anticholinesterase and anti-inflammatory activities. All molecules were micromolar inhibitors of acetylcholinesterase (AChE), with IC50s of 28-86 ?M; the carbamates were two-fold more potent than the carbonates. Two of the most potent AChE inhibitors suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation by 40%. Furthermore, these molecules have physicochemical properties in the range of other CNS drugs. These molecules have the potential to treat inflammation; they could also dually target Alzheimer's disease through restoration of cholinergic balance and inflammation suppression. PMID:26510670

  15. Anti-inflammatory pathways as a host evasion mechanism for pathogens.

    PubMed

    Aliberti, Julio; Bafica, Andre

    2005-01-01

    Lipoxins play a key role in controlling potent pro-inflammatory responses triggered by infection with pathogens, such as Toxoplasma gondii and Mycobacterium tuberculosis. In order to contain microbial dissemination, infected hosts must mount a powerful immune response to prevent mortality. The onset of the chronic phase of infection is characterized by continuous cell-mediated immunity. Such potent responses are kept under tight control by a class of anti-inflammatory eicosanoids, the lipoxins. Here, we review such immune-containment strategies from the host's perspective, to keep pro-inflammatory responses under control during chronic disease, as well as from the perspective of the pathogen, which pirates the host's lipoxygenase machinery to its own advantage as a probable immune-escape mechanism. PMID:15982863

  16. Analgesic, anti-inflammatory and anti-hyperlipidemic activities of Commiphora molmol extract (Myrrh)

    PubMed Central

    Shalaby, Mostafa Abbas; Hammouda, Ashraf Abd-Elkhalik

    2014-01-01

    Aim: The aim was to evaluate the analgesic, anti-inflammatory, and anti-hyperlipidemic activities of Commiphora molmol extract (CME) and its effects on body weight and blood lipids. Materials and Methods: The analgesic effect was assessed using thermal (hot plate test) and chemical (writhing test) stimuli to induce central and peripheral pain in mice. The anti-inflammatory activity was determined using formalin-induced paw edema in rats. For anti-hyperlipidemic effect, 25 rats were randomly divided into five groups (n = 5). Group 1 was fed on basal diet (normal control), while the other four groups were fed on high-fat diet for 6 weeks to induce obesity and hyperlipidemia. Thereafter, Group 2 was kept obese hyperlipidemic, and Groups 3, 4 and 5 were orally given CME in doses of 125, 250, and 500 mg/kg for 6 weeks, respectively. Body weight gains of rats were calculated, and blood samples were collected for analysis of blood lipids. Results: CME produced a dose-dependent analgesic effect using both hot plate and writhing tests in mice. The hot plate method appeared to be more sensitive than writhing test. CME exhibited an anti-inflammatory activity as it decreased volume of paw edema induced by formalin in rats. The extract decreased body weight gain; normalized the high levels of blood lipids and decreased atherogenic index low-density lipoprotein/ high-density lipoprotein in obese hyperlipidemic rats. Conclusion: The results denote that C. molmol extract (myrrh) has significant analgesic, anti-inflammatory and anti-hyperlipidemic effects and reduces body weight gain and improves blood lipids profile. These results affirm the traditional use of C. molmol for the treatment of pain, inflammations, and hyperlipidemia. PMID:26401348

  17. Synthesis, Characterization and Screening for Analgesic and Anti-inflammatory activities of 2, 5-disubstituted 1, 3, 4-oxadiazole derivatives.

    PubMed

    Dewangan, Dhansay; Nakhate, Kartik T; Tripathi, D K; Kashyap, Pranita; Dhongde, Hemant

    2015-01-01

    The aim of the present investigation was to synthesize, characterize and evaluate analgesic and anti- inflammatory activities of 2, 5-disubstituted 1, 3, 4-oxadiazole derivatives. The reaction of starting material 4-chloro-m-cresol with ethyl chloroacetate in dry acetone affords ethyl (4-chloro-3-methylphenoxy) acetate, which after reacting with the hydrazine hydrate in ethanol yields 2(4-chloro-3-methylphenoxy) acetohydrazide. When 2(4-chloro-3-methylphenoxy) acetohydrazide was treated with different aromatic aldehydes, aromatic acids and carbon disulfide in alcoholic solution, different 3-acetyl-5-[(4-chloro-3-methylphenoxy) methyl]-2-aryl-2, 3-dihydro-1, 3, 4-oxadiazole and 2-[(4-chloro-3-methylphenoxy) methyl]-5-aryl-1, 3, 4-oxadiazole derivatives were obtained. Purity of the derivatives was confirmed by thin layer chromatography and melting point. Structure of these derivatives was set up by determining infrared spectroscopy, nuclear magnetic resonance spectroscopy and mass spectroscopy. Further, the synthesized derivatives were evaluated for their analgesic and anti-inflammatory activities in rodents. In animal studies, the derivatives 3-acetyl-5-[(4-chloro-3- methylphenoxy)methyl]-2-(4-methoxyphenyl)-2,3-dihydro-1, 3, 4-oxadiazole and 4-{5-[(4-chloro-3- methylphenoxy)methyl]-1, 3, 4-oxadiazol-2-yl}pyridine show more potent analgesic activity and the derivatives 2-{3-acetyl-5-[(4-chloro-3-methylphenoxy)methyl]-2,3-dihydro-1, 3, 4-oxadiazol-2-yl}phenol and 3-acetyl-5- [(4-chloro-3-methylphenoxy)methyl]-2-(4-methoxyphenyl)-2,3-dihydro-1, 3, 4-oxadiazole exhibit more potent anti-inflammatory effect as compared to other derivatives. The results of the current study indicate that cyclization of acetohydrazide produces novel oxadiazole derivatives with potent analgesic and anti-inflammatory activities. PMID:26290079

  18. Viscum album exerts anti-inflammatory effect by selectively inhibiting cytokine-induced expression of cyclooxygenase-2.

    PubMed

    Hegde, Pushpa; Maddur, Mohan S; Friboulet, Alain; Bayry, Jagadeesh; Kaveri, Srini V

    2011-01-01

    Viscum album (VA) preparations are extensively used as complementary therapy in cancer and are shown to exert anti-tumor activities which involve the cytotoxic properties, induction of apoptosis, inhibition of angiogenesis and several other immunomodulatory mechanisms. In addition to their application in cancer therapy, VA preparations have also been successfully utilized in the treatment of several inflammatory pathologies. Owing to the intricate association of inflammation and cancer and in view of the fact that several anti-tumor phytotherapeutics also exert a potent anti-inflammatory effect, we hypothesized that VA exerts an anti-inflammatory effect that is responsible for its therapeutic benefit. Since, inflammatory cytokine-induced cyclo-oxygenase-2 (COX-2) and prostaglandin E2 (PGE2) play a critical role in the pathogenesis of inflammatory diseases, we investigated the anti-inflammatory effect of VA on regulation of cyclo-oxygenase expression and PGE2 biosynthesis by using human lung adenocarcinoma cells (A549 cells) as a model. A549 cells were stimulated with IL-1? and treated with VA preparation (VA Qu Spez) for 18 hours. PGE2 was analysed in the culture supernatants by enzyme immunoassay. Expression of COX-2 and COX-1 proteins was analyzed by immunoblotting and the expression of COX-2 mRNA was assessed by semi-quantitative RT-PCR. We found that VA Qu Spez inhibit the secretion of IL-1?-induced PGE2 in a dose-dependent manner. Further, we also show that this inhibitory action was associated with a reduced expression of COX-2 without modulating the COX-1 expression. Together these results demonstrate a novel anti-inflammatory mechanism of action of VA preparations wherein VA exerts an anti-inflammatory effect by inhibiting cytokine-induced PGE2 via selective inhibition of COX-2. PMID:22028854

  19. Fatty acid-binding protein 5 limits the anti-inflammatory response in murine macrophages.

    PubMed

    Moore, Sherri M; Holt, Vivian V; Malpass, Lillie R; Hines, Ian N; Wheeler, Michael D

    2015-10-01

    The beginning stages of liver damage induced by various etiologies (i.e. high fat diet, alcohol consumption, toxin exposure) are characterized by abnormal accumulation of lipid in liver. Alterations in intracellular lipid transport, storage, and metabolism accompanied by cellular insult within the liver play an important role in the pathogenesis of liver disease, often involving a sustained inflammatory response. The intracellular lipid transporter, fatty acid binding protein 5 (FABP5), is highly expressed in macrophages and may play an important role in the hepatic inflammatory response after endotoxin exposure in mice. This study tested the hypothesis that FABP5 regulates macrophage response to LPS in male C57bl/6 (wild type) and FABP5 knockout mice, both in vitro and in vivo. Treatment with LPS revealed that loss of FABP5 enhances the number of hepatic F4/80(+) macrophages in the liver despite limited liver injury. Conversely, FABP5 knock out mice display higher mRNA levels of anti-inflammatory cytokines IL-10, arginase, YM-1, and Fizz-1 in liver compared to wild type mice. Bone marrow derived macrophages stimulated with inflammatory (LPS and IFN-?) or anti-inflammatory (IL-4) mediators also showed significantly higher expression of anti-inflammatory/regulatory factors. These findings reveal a regulatory role of FABP5 in the acute inflammatory response to LPS-induced liver injury, which is consistent with the principle finding that FABP5 is a regulator of macrophage phenotype. Specifically, these findings demonstrate that loss of FABP5 promotes a more anti-inflammatory response. PMID:26105806

  20. Anti-inflammatory effects of electronic signal treatment.

    PubMed

    Odell, Robert H; Sorgnard, Richard E

    2008-01-01

    Inflammation often plays a key role in the perpetuation of pain. Chronic inflammatory conditions (e.g. osteoarthritis, immune system dysfunction, micro-circulatory disease, painful neuritis, and even heart disease) have increased as baby boomers age. Medicine's current anti-inflammatory choices are NSAIDs and steroids; the value in promoting cure and side effect risks of these medications are unclear and controversial, especially considering individual patient variations. Electricity has continuously been a powerful tool in medicine for thousands of years. All medical professionals are, to some degree, aware of electrotherapy; those who directly use electricity for treatment know of its anti-inflammatory effects. Electronic signal treatment (EST), as an extension of presently available technology, may reasonably have even more anti-inflammatory effects. EST is a digitally produced alternating current sinusoidal electronic signal with associated harmonics to produce theoretically reasonable and/or scientifically documented physiological effects when applied to the human body. These signals are produced by advanced electronics not possible even 10 to 15 years ago. The potential long-lasting anti-inflammatory effects of some electrical currents are based on basic physical and biochemical facts listed in the text below, namely that of stimulating and signaling effective and long-lasting anti-inflammatory effects in nerve and muscle cells. The safety of electrotherapeutic treatments in general and EST in particular has been established through extensive clinical use. The principles of physics have been largely de-emphasized in modern medicine in favor of chemistry. These electrical treatments, a familiar application of physics, thus represent powerful and appropriate elements of physicians' pain care armamentaria in the clinic and possibly for prescription for use at home to improve overall patient care and maintenance of quality of life via low-risk and potentially curative treatments. PMID:19057635

  1. Evaluation of analgesic, antipyretic and anti-inflammatory activity on Cordia dichotoma G. Forst. Leaf

    PubMed Central

    Gupta, Richa; Kaur, Jagjit

    2015-01-01

    Background: Cordia dichotoma G. Forst. is an important medicinal plant of family Boraginaceae. Traditionally, its leaves are used to treat fever, headache, and joint pain but its medicinal activities have not been proven by research. Objective: To evaluate the analgesic, anti-inflammatory, and antipyretic activity of C. dichotoma G. Forst. leaf extract. Material and Methods: The various extracts of leaf powder were prepared by using soxhlet apparatus. The methanol extract was selected for pharmacological study. To evaluate analgesic activity, Eddy's hot plate method, to study anti-inflammatory activity, carageenan-induced rat paw edema method, and to study antipyretic activity, yeast-induced pyrexia method was used. SD female rats (180-200 g) were used for the study. Results: In all three tests, the methanol extract high dose (400 mg/kg) was found to be highly significant as compared to standard drug. Conclusion: This study proved the traditional uses of plant leaves and concluded the analgesic, anti-inflammatory, and antipyretic activity of the leaf methanol extract. PMID:25598647

  2. Evolving Therapeutic Strategies to Improve Nonsteroidal Anti-inflammatory Drug Safety.

    PubMed

    McCarberg, Bill H; Cryer, Byron

    2015-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) possess potent anti-inflammatory and analgesic properties through inhibition of cyclooxygenase enzymes (COX-1 and COX-2), which are responsible for synthesis of proinflammatory mediators. NSAIDs are frequently used for treatment of acute and chronic pain conditions. However, their use is associated with serious dose-dependent gastrointestinal (GI), cardiovascular, renal, and hepatic adverse effects, which pose a serious clinical concern for both patients and physicians. During the past 2 decades, approaches to improving the tolerability of NSAIDs were mainly directed toward discovery of COX-2 selective NSAIDs (coxibs), which were expected to minimize the risk of GI injury. Unfortunately, the results from multiple clinical studies have shown that treatment with coxibs may increase the risk for cardiovascular complications. This review summarizes current strategies used to reduce the toxicity of NSAIDs and outlines novel therapeutic approaches still in preclinical development. To minimize the risk of GI ulcerations and bleeding, combination therapies with gastroprotective agents are currently recommended. The new therapeutic agents anticipated to have similar effects include nitric oxide- and hydrogen sulfide-releasing NSAIDs. Novel manufacturing technologies enhance dissolution and absorption of NSAID products, allowing for their administration at low doses, which could lead to improved drug tolerability without diminishing the analgesic and anti-inflammatory efficacy of NSAIDs. This principle is in line with the current recommendation by the US Food and Drug Administration that NSAIDs should be used at the lowest effective dosage. Finally, NSAID formulations targeted directly to the site of inflammation are expected to reduce systemic drug exposure and thus decrease the risk of systemic adverse effects. PMID:25251373

  3. The Combination of N-Acetyl Cysteine, Alpha-Lipoic Acid, and Bromelain Shows High Anti-Inflammatory Properties in Novel In Vivo and In Vitro Models of Endometriosis

    PubMed Central

    Agostinis, C.; Zorzet, S.; De Leo, R.; Zauli, G.; De Seta, F.; Bulla, R.

    2015-01-01

    To evaluate the efficacy of an association of N-acetyl cystein, alpha-lipoic acid, and bromelain (NAC/LA/Br) in the treatment of endometriosis we set up a new in vivo murine model. We explored the anti-inflammatory and proapoptotic effect of this combination on human endometriotic endothelial cells (EECs) and on endothelial cells isolated from normal uterus (UtMECs). We implanted fragments of human endometriotic cysts intraperitoneally into SCID mice to evaluate the efficacy of NAC/LA/Br treatment. UtMECs and EECs, untreated or treated with NAC/LA/Br, were activated with the proinflammatory stimulus TNF-? and their response in terms of VCAM1 expression was evaluated. The proapoptotic effect of higher doses of NAC/LA/Br on UtMECs and EECs was measured with a fluorogenic substrate for activated caspases 3 and 7. The preincubation of EECs with NAC/LA/Br prior to cell stimulation with TNF-? prevents the upregulation of the expression of the inflammatory marker VCAM1. Furthermore NAC/LA/Br were able to induce EEC, but not UtMEC, apoptosis. Finally, the novel mouse model allowed us to demonstrate that mice treated with NAC/LA/Br presented a lower number of cysts, smaller in size, compared to untreated mice. Our findings suggest that these dietary supplements may have potential therapeutic uses in the treatment of chronic inflammatory diseases like endometriosis. PMID:25960622

  4. The combination of N-acetyl cysteine, alpha-lipoic acid, and bromelain shows high anti-inflammatory properties in novel in vivo and in vitro models of endometriosis.

    PubMed

    Agostinis, C; Zorzet, S; De Leo, R; Zauli, G; De Seta, F; Bulla, R

    2015-01-01

    To evaluate the efficacy of an association of N-acetyl cystein, alpha-lipoic acid, and bromelain (NAC/LA/Br) in the treatment of endometriosis we set up a new in vivo murine model. We explored the anti-inflammatory and proapoptotic effect of this combination on human endometriotic endothelial cells (EECs) and on endothelial cells isolated from normal uterus (UtMECs). We implanted fragments of human endometriotic cysts intraperitoneally into SCID mice to evaluate the efficacy of NAC/LA/Br treatment. UtMECs and EECs, untreated or treated with NAC/LA/Br, were activated with the proinflammatory stimulus TNF-? and their response in terms of VCAM1 expression was evaluated. The proapoptotic effect of higher doses of NAC/LA/Br on UtMECs and EECs was measured with a fluorogenic substrate for activated caspases 3 and 7. The preincubation of EECs with NAC/LA/Br prior to cell stimulation with TNF-? prevents the upregulation of the expression of the inflammatory "marker" VCAM1. Furthermore NAC/LA/Br were able to induce EEC, but not UtMEC, apoptosis. Finally, the novel mouse model allowed us to demonstrate that mice treated with NAC/LA/Br presented a lower number of cysts, smaller in size, compared to untreated mice. Our findings suggest that these dietary supplements may have potential therapeutic uses in the treatment of chronic inflammatory diseases like endometriosis. PMID:25960622

  5. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-κB and MAPK pathways.

    PubMed

    Kim, Young-Sang; Ahn, Chang-Bum; Je, Jae-Young

    2016-07-01

    Anti-inflammatory Mytilus edulis hydrolysates (MEHs) were prepared by peptic hydrolysis and MEH was further fractionated into three fractions based on molecular weight, namely >5kDa, 1-5kDa, and <1kDa. The >5kDa peptide fraction exerted the highest nitric oxide (NO) inhibitory activity and inhibited prostaglandin E2 (PGE2) secretion in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Pretreatment with the >5kDa peptide fraction markedly inhibited LPS-stimulated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and gene expressions. Stimulation by LPS induced the production of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and -1β (IL-1β), whereas co-treatment with the >5kDa peptide fraction suppressed pro-inflammatory cytokine production. The >5kDa peptide fraction inhibited the translocation of NF-κB (nuclear factor-kappa B) through the prevention of IκBα (inhibitory factor kappa B alpha) phosphorylation and degradation and also inhibited the MAPK signaling pathway in LPS-stimulated RAW264.7 macrophages. PMID:26920260

  6. Cell-based screening assay for anti-inflammatory activity of bioactive compounds.

    PubMed

    Meijer, Kees; Vonk, Roel J; Priebe, Marion G; Roelofsen, Han

    2015-01-01

    Excess dietary intake may induce metabolic inflammation which is associated with insulin resistance and cardiovascular disease. Recent evidence indicates that dietary bioactive compounds may diminish metabolic inflammation. To identify anti-inflammatory bioactives, we developed a screening assay using the human H293-NF-?B-RE-luc2P reporter cell line. Under optimised conditions we determined the anti-inflammatory activity of vegetables and purified bioactives, by monitoring their potency to inhibit TNF-?-induced NF-?B activity, as assessed by sensitive chemiluminescence detection in a 96-well assay format. Minced broccoli seedlings reduced NF-?B activity by 16%, while sulphoraphane, the dominant bioactive in broccoli seedlings, inhibited NF-?B activity with an IC?? of 5.11 ?mol/l. Short-chain fatty acids also reduced NF-?B activity in the order butyrate>propionate?acetate with IC?? of 51, 223, and 1300 ?mol/l, respectively. The H293-NF-?B-RE-luc2P reporter cell line is a sensitive tool for rapid high-throughput screening for bioactives with anti-inflammatory activity. PMID:25053041

  7. Anti-inflammatory properties of culinary herbs and spices that ameliorate the effects of metabolic syndrome.

    PubMed

    Jungbauer, Alois; Medjakovic, Svjetlana

    2012-03-01

    Obesity and metabolic syndrome are increasing global health problems. In addition to the malnutrition of a sedentary lifestyle, high calorie intake leads to obesity with many negative health consequences. Macrophages infiltrate adipose tissue and induce chronic inflammation by secreting pro-inflammatory cytokines, including COX-2 and iNOS, among other mediators of inflammation. Free fatty acids mediate adipose tissue signalling through toll-like receptor 4 and the expression of these pro-inflammatory mediators via NF-?B or JNK. PPAR ? activators can inhibit the activation of NF-?B, down-regulating the expression of pro-inflammatory cytokines. Here we provide an overview of how different culinary herbs and spices exert anti-inflammatory activities and the extent to which they activate PPAR ? and PPAR ?, inhibit the activation of NF-?B, and enhance expression of anti-inflammatory cytokines. Spices can play essential roles as anti-inflammatory agents in our diet, acting as pan PPAR activators and improving insulin sensitivity, counteracting dyslipidaemia and weight gain. The effects of chronic inflammation caused by obesity are counteracted and, consequently, the progression of diseases associated with chronic inflammation slowed. PMID:22226987

  8. Mechanisms of Action of Ig Preparations: Immunomodulatory and Anti-Inflammatory Effects

    PubMed Central

    Matucci, Andrea; Maggi, Enrico; Vultaggio, Alessandra

    2015-01-01

    Primary immunodeficiency (PID) disorders that predispose patients to recurrent infections require immunoglobulin (Ig) replacement therapy. Ig replacement therapy has been stated as beneficial, although the optimal IgG trough level to be maintained over time in order to minimize infectious risk has not been established. The most common route of administration of Ig has been intravenously, although there are different options, one of them being the subcutaneous route. Ig replacement therapy has been a life-saving treatment for patients suffering from primary and secondary antibody immunodeficiency. The key role of regular Ig replacement in patients with antibody deficiencies is related to the ability to provide specific antibodies that could not be produced by these patients as demonstrated by the reduction of severe infections such as meningitis and pneumonia. The therapeutic benefits of Ig may also be due to an active role in various anti-inflammatory and immunomodulatory activities, which may complicate the clinical picture of PID. Anti-inflammatory activities are seen more generally when intravenous Ig is administered at high dose. The immunomodulatory and anti-inflammatory activities are important not only in the treatment of autoimmune diseases but also in patients suffering from immunodeficiency. PMID:25628625

  9. Antioxidant, Analgesic, Anti-Inflammatory, and Hepatoprotective Effects of the Ethanol Extract of Mahonia oiwakensis Stem

    PubMed Central

    Chao, Jung; Liao, Jiunn-Wang; Peng, Wen-Huang; Lee, Meng-Shiou; Pao, Li-Heng; Cheng, Hao-Yuan

    2013-01-01

    The aim of this study was to evaluate pharmacological properties of ethanol extracted from Mahonia oiwakensis Hayata stems (MOSEtOH). The pharmacological properties included antioxidant, analgesic, anti-inflammatory and hepatoprotective effects. The protoberberine alkaloid content of the MOSEtOH was analyzed by high-performance liquid chromatography (HPLC). The results revealed that three alkaloids, berberine, palmatine and jatrorrhizine, could be identified. Moreover, the MOSEtOH exhibited antioxidative activity using the DPPH assay (IC50, 0.743 mg/mL). The DPPH radical scavenging activity of MOSEtOH was five times higher that that of vitamin C. MOSEtOH was also found to inhibit pain induced by acetic acid, formalin, and carrageenan inflammation. Treatment with MOSEtOH (100 and 500 mg/kg) or silymarin (200 mg/kg) decreased the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels compared with the CCl4-treated group. Histological evaluation showed that MOSEtOH reduced the degree of liver injury, including vacuolization, inflammation and necrosis of hepatocytes. The anti-inflammatory and hepatoprotective effect of MOSEtOH were found to be related to the modulation of antioxidant enzyme activity in the liver and decreases in malondialdehyde (MDA) level and nitric oxide (NO) contents. Our findings suggest that MOSEtOH has analgesic, anti-inflammatory and hepatoprotective effects. These effects support the use of MOSEtOH for relieving pain and inflammation in folk medicine. PMID:23364614

  10. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment.

    PubMed

    Basnet, Purusotam; Skalko-Basnet, Natasa

    2011-01-01

    Oxidative damage and inflammation have been pointed out in preclinical studies as the root cause of cancer and other chronic diseases such as diabetes, hypertension, Alzheimer's disease, etc. Epidemiological and clinical studies have suggested that cancer could be prevented or significantly reduced by treatment with anti-oxidant and anti-inflammatory drugs, therefore, curcumin, a principal component of turmeric (a curry spice) showing strong anti-oxidant and anti-inflammatory activities, might be a potential candidate for the prevention and/or treatment of cancer and other chronic diseases. However, curcumin, a highly pleiotropic molecule with an excellent safety profile targeting multiple diseases with strong evidence on the molecular level, could not achieve its optimum therapeutic outcome in past clinical trials, largely due to its low solubility and poor bioavailability. Curcumin can be developed as a therapeutic drug through improvement in formulation properties or delivery systems, enabling its enhanced absorption and cellular uptake. This review mainly focuses on the anti-inflammatory potential of curcumin and recent developments in dosage form and nanoparticulate delivery systems with the possibilities of therapeutic application of curcumin for the prevention and/or treatment of cancer. PMID:21642934

  11. Anti-inflammatory effect of Momordica charantia in sepsis mice.

    PubMed

    Chao, Che-Yi; Sung, Ping-Jyun; Wang, Wei-Hsien; Kuo, Yueh-Hsiung

    2014-01-01

    Wild bitter gourd (Momordica charantia L. var. abbreviate Seringe), a common vegetable in Asia, is used in traditional medicine to treat various diseases, including inflammation. Extant literature indicates that wild bitter gourds have components that activate PPAR? and PPAR?. This research probed the influence of adding wild bitter gourd to diets on inflammation responses in mice with sepsis induced by intraperitoneal injection of LPS. Male BALB/c mice were divided normal, sepsis, positive control, and three experimental groups. The latter ate diets with low (1%), moderate (2%), and high (10%) ratios of wild bitter gourd lyophilized powder. Before mice were sacrificed, with the exception of the normal group, intraperitoneal injection of LPS induced sepsis in each group; positive control group was injected with LPS after PDTC. This experiment revealed starkly lower weights in groups with added wild bitter gourd than those of the remaining groups. Blood lipids (TG, cholesterol, and NEFA) were also lower in comparison to the sepsis group, and blood glucose concentrations recovered and approached normal levels. Blood biochemistry values related to inflammation reactions indicated GOT, GPT, C-RP, and NO concentrations of groups with added wild bitter gourd were all lower than those of the sepsis group. Secretion levels of the spleen pro-inflammatory cytokines IL-1, IL-6, and TNF-? tallied significantly lower in comparison to the sepsis group, whereas secretion levels of IL-10 anti-inflammatory cytokine increased. Expression level of proteins NF-?B, iNOS, and COX-2 were significantly inhibited. Results indicate wild bitter gourd in diets promoted lipid metabolism, reducing fat accumulation, and improving low blood glucose in sepsis. Addition of wild bitter gourd can reduce inflammation biochemical markers or indicators and pro-inflammatory cytokines in the body, hence improving the inflammation responses in mice with sepsis. PMID:25153878

  12. Anti-Inflammatory Effect of Taurine in Burned Patients

    PubMed Central

    Lak, Sima; Ostadrahimi, Alireza; Nagili, Behrooz; Asghari-Jafarabadi, Mohammad; Beigzali, Sanaz; Salehi, Feridoon; Djafarzadeh, Roxana

    2015-01-01

    Purpose: Burn induced inflammatory response can be mediated by reactive oxygen metabolites and accompanied by multiple organ dysfunction. Taurine has protective effects against various inflammatory conditions. The aim of this study was to determine the effect of Taurine supplement in thermal burn victims. Methods: Thirty patients with severe thermal burns were enrolled in this randomized double-blinded clinical trial. These patients were randomly divided into two equal groups (namely Control and Taurine groups), where both received isocaloric and isonitrogenous formula. One group was supplemented with 50 mg/kg of Taurine per day for a duration of 10 days. Blood samples were obtained to measure Interleukin-10 (IL-10), high-sensitivity C-reactive protein (hs-CRP), and Tumor Necrosis Factor alpha (TNF-α) levels at the beginning and the end of the study. Results: Change in serum level of IL-10 in Taurine group was more than Control group [-13.60(-31.40, -10.40) compared to -4.00(-20.00, -0.20) respectively; P = 0.030]. This change was significant in patients with more than 30% TBSA of burn [-14.20(-31.40, -10.40) compared to -2.40(-9.60, 0.40) respectively; P = 0.013]. As for the hs-CRP and TNF-α levels, the difference between the two groups were not significant. Conclusion: Based on the results obtained, Taurine supplement showed a positive outcome on anti-inflammatory cytokine IL-10 in all burn patients. This effect was even more significant in patients with higher percentage of burn area. Taurine had no significant effect on the inflammatory marker hs-CRP and the pro-inflammatory cytokine TNF-α level. For a more thorough verification, measurement of a wider range of inflammatory cytokines in more frequent time intervals are suggested. PMID:26819926

  13. Nanoparticles with dual responses to oxidative stress and reduced ph for drug release and anti-inflammatory applications.

    PubMed

    Pu, Hsiao-Lan; Chiang, Wei-Lun; Maiti, Barnali; Liao, Zi-Xian; Ho, Yi-Cheng; Shim, Min Suk; Chuang, Er-Yuan; Xia, Younan; Sung, Hsing-Wen

    2014-02-25

    Oxidative stress and reduced pH are involved in many inflammatory diseases. This study describes a nanoparticle-based system that is responsive to both oxidative stress and reduced pH in an inflammatory environment to effectively release its encapsulated curcumin, an immune-modulatory agent with potent anti-inflammatory and antioxidant capabilities. Because of the presence of Frster resonance energy transfer between curcumin and the carrier, this system also allowed us to monitor the intracellular release behavior. The curcumin released upon triggering could efficiently reduce the excess oxidants produced by the lipopolysaccharide (LPS)-stimulated macrophages. The feasibility of using the curcumin-loaded nanoparticles for anti-inflammatory applications was further validated in a mouse model with ankle inflammation induced by LPS. The results of these studies demonstrate that the proposed nanoparticle system is promising for treating oxidative stress-related diseases. PMID:24386907

  14. Anti-inflammatory and cytotoxic activities of Bursera copallifera

    PubMed Central

    Columba-Palomares, M. F. Mara C.; Villareal, Dra. Mara L.; Acevedo Quiroz, M. C. Macdiel E.; Marquina Bahena, M. C. Silvia; lvarez Berber, Dra. Laura P.; Rodrguez-Lpez, Dra. Vernica

    2015-01-01

    Background: The plant species Bursera copallifera (DC) bullock is used in traditional medicine to treat inflammation. The leaves of this plant can be prepared as an infusion to treat migraines, bronchitis, and dental pain Objective: The purpose of this study was to determine the anti-inflammatory and cytotoxic activities of organic extracts from the stems, stem bark, and leaves of B. copallifera, which was selected based on the knowledge of its traditional use. Materials and Methods: We evaluated the ability of extracts to inhibit mouse ear inflammation in response to topical application of 12-O tetradecanoylphorbol-13-acetate. The extracts with anti-inflammatory activity were evaluated for their inhibition of pro-inflammatory enzymes. In addition, the in vitro cytotoxic activities of the organic extracts were evaluated using the sulforhodamine B assay. Results: The hydroalcoholic extract of the stems (HAS) exhibited an anti-inflammatory activity of 54.3% (0.5 mg/ear), whereas the anti-inflammatory activity of the dichloromethane-methanol extract from the leaves (DMeL) was 55.4% at a dose of 0.1 mg/ear. Methanol extract from the leaves (MeL) showed the highest anti-inflammatory activity (IC50 = 4.4 ?g/mL), hydroalcoholic extract of leaves, and DMeL also reduce the enzyme activity, (IC50 = 6.5 ?g/mL, IC50 = 5.7 ?g/mL), respectively, from stems HAS exhibit activity at the evaluated concentrations (IC50 =6.4 ?g/mL). The hydroalcoholic extract of the stems exhibited the highest cytotoxic activity against a breast adenocarcinoma cell line (MCF7, IC50 = 0.90 ?g/mL), whereas DMeL exhibited an IC50 value of 19.9 ?g/mL. Conclusion: In conclusion, extracts from leaves and stems inhibited cyclooxygenase-1, which is the target enzyme for nonsteroidal anti inflammatory drugs, and some of these extracts demonstrated substantial antiproliferative effects against the MCF7 cell line. These results validate the traditional use of B. copallifera. PMID:26664022

  15. The intestinal anti-inflammatory effect of dersalazine sodium is related to a down-regulation in IL-17 production in experimental models of rodent colitis

    PubMed Central

    Camuesco, D; Rodrguez-Cabezas, ME; Garrido-Mesa, N; Cueto-Sola, M; Bailn, E; Comalada, M; Arribas, B; Merlos, M; Balsa, D; Zarzuelo, A; Janer, G; Xaus, J; Romn, J; Glvez, J

    2012-01-01

    BACKGROUND AND PURPOSE Dersalazine sodium (DS) is a new chemical entity formed by combining, through an azo bond, a potent platelet activating factor (PAF) antagonist (UR-12715) with 5-aminosalicylic acid (5-ASA). DS has been demonstrated to have anti-inflammatory effects on trinitrobenzene sulphonic acid (TNBS)-induced colitis in rats and recently in UC patients in phase II PoC. There is Increasing evidence that Th17 cells have an important role in the pathogenesis of inflammatory bowel disease (IBD). The aim of this study was to further characterize the anti-inflammatory effects of DS. EXPERIMENTAL APPROACH Effect of DS (10 or 30 mgkg?1 b.i.d.) on TNBS-induced colitis in rats was studied after 2 and 7 days with special focus on inflammatory mediators. Additionally, its anti-inflammatory properties were analysed in two different models of dextran sodium sulphate (DSS)-induced colitis, BALB/c and C57BL/6 mice, the latter being dependent on IL-17. KEY RESULTS DS, when administered for 7 days, showed intestinal anti-inflammatory effects in TNBS-induced colitis; these effects were observed both macroscopically and through the profile of inflammatory mediators (TNF, IL-1?, IL-6 and IL-17). Although the 2 day treatment with DS did not induce intestinal anti-inflammatory effects, it was sufficient to reduce the enhanced IL-17 expression. DS showed beneficial effects on DSS-induced colitis in C57BL/6 mice and reduced colonic pro-inflammatory cytokines IL-1?, IL-6 and IL-17. In contrast, it did not exert intestinal anti-inflammatory effects on DSS-induced colitis in BALB/c mice. CONCLUSIONS AND IMPLICATIONS DS exerts intestinal anti-inflammatory activity in different rodent models of colitis through down-regulation of IL-17 expression. PMID:21790535

  16. Enhancement of the anti-inflammatory activity of temporin-1Tl-derived antimicrobial peptides by tryptophan, arginine and lysine substitutions.

    PubMed

    Rajasekaran, Ganesan; Kamalakannan, Radhakrishnan; Shin, Song Yub

    2015-10-01

    Temporin-1Tl (TL) is a 13-residue frog antimicrobial peptide (AMP) exhibiting potent antimicrobial and anti-inflammatory activity. To develop novel AMP with improved anti-inflammatory activity and antimicrobial selectivity, we designed and synthesized a series of TL analogs by substituting Trp, Arg and Lys at selected positions. Except for Escherichia coli and Staphylococcus epidermidis, all TL analogs exhibited retained or increased antimicrobial activity against seven bacterial strains including three methicillin-resistant Staphylococcus aureus strains compared with TL. TL-1 and TL-4 showed a little increase in antimicrobial selectivity, while TL-2 and TL-3 displayed slightly decreased antimicrobial selectivity because of their about twofold increased hemolytic activity. All TL analogs demonstrated greatly increased anti-inflammatory activity, evident by their higher inhibition of the production tumor necrosis factor-α (TNF-α) and nitric oxide and the mRNA expression of inducible nitric oxide synthase and TNF-α in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells, compared with TL. Taken together, the peptide anti-inflammatory activity is as follows: TL-2 ≈ TL-3 ≈ TL-4 > TL-1 > TL. In addition, LPS binding ability of the peptides corresponded with their anti-inflammatory activity. These results apparently suggest that the anti-inflammatory activity of TL analogs is associated with the direct binding ability between these peptides and LPS. Collectively, our designed TL analogs possess improved anti-inflammatory activity and retain antimicrobial activity without a significant increase in hemolysis. Therefore, it is evident that our TL analogs constitute promising candidates for the development of peptide therapeutics for gram-negative bacterial infection. PMID:26311041

  17. Anti-inflammatory, gastroprotective, and cytotoxic effects of Sideritis scardica extracts.

    PubMed

    Tadi?, Vanja M; Jeremic, Ivica; Dobric, Silva; Isakovic, Aleksandra; Markovic, Ivanka; Trajkovic, Vladimir; Bojovic, Dragica; Arsic, Ivana

    2012-03-01

    Sideritis scardica Griseb. (ironwort, mountain tea), an endemic plant of the Balkan Peninsula, has been used in traditional medicine in the treatment of gastrointestinal complaints, inflammation, and rheumatic disorders. This study aimed to evaluate its gastroprotective and anti-inflammatory activities. Besides, continuously increasing interest in assessing the role of the plant active constituents preventing the risk of cancer was a reason to make a detailed examination of the investigated ethanol, diethyl ether, ethyl acetate, and N-butanol extracts regarding cytotoxicity. Oral administration of the investigated extracts caused a dose-dependent anti-inflammatory effect in a model of carrageenan-induced rat paw edema. Gastroprotective activity of the extracts was investigated using an ethanol-induced acute stress ulcer in rats. The cytotoxic activity of plant extracts was assessed on PBMC, B16, and HL-60 cells and compared to the cytotoxicity of phenolic compounds identified in extracts. Apoptotic and necrotic cell death were analyzed by double staining with fluoresceinisothiocyanate (FITC)-conjugated annexin V and PI. The developed HPLC method enabled qualitative fingerprint analysis of phenolic compounds in the investigated extracts. Compared to the effect of the positive control, the anti-inflammatory drug indomethacine (4 mg/kg), which produced a 50 % decrease in inflammation, diethyl ether and N-butanol extracts exhibited about the same effect in doses of 200 and 100 mg/kg (53.6 and 48.7 %; 48.4 and 49.9 %, respectively). All investigated extracts produced dose-dependent gastroprotective activity with the efficacy comparable to that of the reference drug ranitidine. The diethyl ether extract showed significant dose-dependent cytotoxicity on B16 cells and HL-60 cells, decreasing cell growth to 51.3 % and 77.5 % of control, respectively, when used at 100 g/mL. It seems that phenolic compounds (apigenin, luteolin, and their corresponding glycosides) are responsible for the diethyl ether extract cytotoxic effect. It also appears that induction of oxidative stress might be involved in its cytotoxicity, since B16 and HL-60 cells increased their ROS production in response to treatment with diethyl ether extract. Neither of the tested extracts nor any phenolic compounds showed significant cytotoxic effect to human PBMC. These results demonstrated the potent anti-inflammatory and gastroprotective activities, as well as the promising cytotoxicity. PMID:22274814

  18. Physicochemical, antimicrobial and anti-inflammatory evaluation of fixed oil from Boa constrictor.

    PubMed

    Falodun, Abiodun; Owolabi, Omonkhelin Josephine; Osahon, Obasuyi

    2008-01-01

    Boa constrictor is one of the snakes found in the riverine areas of Nigeria, especially in the Niger Delta regions. The fat obtained from the snake is used ethno-medicinally for the treatment of burns and inflammatory conditions. The purpose of this study was to validate the traditional use of this crude fat and oil. The fat obtained from the Boa snake was subjected to some physiochemical screening tests. A systematic chemical and antimicrobial investigation was carried out using some bacterial found in wound such as Staphylococcus aureus, B. subtilis and Streptococcus pyrogenes. The degree of zone of inhibition was a measure of the antimicrobial activity of the fat and oil. The maximal inhibitory dilution was determined for significant zone. The anti-inflammatory investigation was done using the croton oil induced ear edema. The results of the study revealed a potent anti-inflammatory and a significant antimicrobial activity of the fat from Boa constrictor against S. aureus and S. pyrogenes organisms, thus, justifying the traditional usage of the fat of Boa constrictor. PMID:19051590

  19. Anti-inflammatory potential of probiotic Lactobacillus spp. on carrageenan induced paw edema in Wistar rats.

    PubMed

    Archer, Ann Catherine; Muthukumar, S P; Halami, Prakash M

    2015-11-01

    The aim of the present study was to evaluate the anti-inflammatory ability of novel indigenous probiotic Lactobacillus fermentum MCC 2759, L. fermentum MCC 2760 and Lactobacillus delbrueckii MCC 2775 in a carrageenan induced acute inflammatory paw edema model. Probiotic cultures were administered to male Wistar rats via oral route. Carrageenan at a concentration of 1% was injected into hind paw of rats 30min after oral gavage on the 8th day of treatment regimen. Paw thickness (mm), stair climbing activity and motility score were the parameters used to score the inflammatory response. L. fermentum MCC 2759, L. fermentum MCC 2760 and L. delbrueckii MCC 2775 showed significant reduction in paw thickness (P<0.05) showing percentage inhibition of 15.67%, 14.72% and 14.84%, respectively, 24h after carrageenan induction. Probiotic treatment also markedly alleviated the stair climbing and motility score. Histological analysis of tissue sections revealed reduction in cellular infiltration of probiotic and drug treatment groups. Adhesion to resected rat intestinal tissue also showed significant adherence capability (>40%) of the probiotic cultures used. Therefore, L. fermentum MCC 2759, L. fermentum MCC 2760 and L. delbrueckii MCC 2775 may be used as potent anti-inflammatory agents with probiotic health benefits. PMID:26314910

  20. Isolation and identification of phlorotannins from Ecklonia stolonifera with antioxidant and anti-inflammatory properties.

    PubMed

    Kim, A-Reum; Shin, Tai-Sun; Lee, Min-Sup; Park, Ji-Young; Park, Kyoung-Eun; Yoon, Na-Young; Kim, Jong-Soon; Choi, Jae-Sue; Jang, Byeong-Churl; Byun, Dae-Seok; Park, Nam-Kyu; Kim, Hyeung-Rak

    2009-05-13

    Bioactivity-guided fractionation of Ecklonia stolonifera was used to determine the chemical identity of bioactive constituents, with potent antioxidant activities. The structures of the phlorotannins were determined on the basis of spectroscopic analysis, including NMR and mass spectrometry analysis. The antioxidant activities of the isolated compounds were evaluated by free radical scavenging activities in both in vitro and cellular systems. The anti-inflammatory effects of the isolated compounds were evaluated by determining their inhibitory effects on the production of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) in lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophage cells. The results indicated that phlorofucofuroeckol A, dieckol, and dioxinodehydroeckol showed potential radical scavenging activities against 2,2-diphenyl-1-picrylhydrazyl. Among them, phlorofucofuroeckol A and dieckol significantly suppressed the intracellular reactive oxygen species level assayed by 2',7'-dichlorofluorescein diacetate assay in LPS-induced RAW 264.7 cells. Phlorofucofuroeckol A significantly inhibited the LPS-induced production of NO and PGE(2) through the down-regulation of inducible nitric oxide synthase and cyclooxygenase 2 protein expressions. In conclusion, these results suggest that phlorofucofuroeckol A has a potential for functional foods with antioxidant and anti-inflammatory activities. PMID:19338274

  1. Anti-inflammatory activity of Yanshu spraying agent in animal models

    PubMed Central

    ZHANG, JIANQIAO; WANG, HONGSHENG; WANG, TIAN; CHONG, YATING; YU, PENGFEI; LU, CHENGWEN; XUE, YUNLI; FU, FENGHUA; ZHANG, LEIMING

    2013-01-01

    Acute pharyngitis is characterized by an inflammation of the mucous membranes in the pharynx. Yanshu spraying agent was prepared according to the traditional Chinese formulation for the treatment of acute pharyngitis. The present study aimed to investigate the anti-inflammatory effect of Yanshu in xylene-induced ear edema in mice and carrageenan-induced paw edema in rats by measuring the degree of edema in the animal models. The histopathology and the levels of prostaglandin E2 (PGE2) and cycloxygenase-2 (COX-2) in the hind paws of the carrageenan-treated rats were also analyzed. The results showed that Yanshu significantly reduced ear edema in the mice and paw edema in the rats. Furthermore, treatment with Yanshu also reduced the number of inflammatory cells in tissue and decreased the production of PGE2 and COX-2. These results suggest that Yanshu possesses potent anti-inflammatory activity mediated by the inhibition of COX-2 expression which, in turn, downregulates the inflammatory mediator PGE2. PMID:23251244

  2. Design and synthesis of azolopyrimidoquinolines, pyrimidoquinazolines as anti-oxidant, anti-inflammatory and analgesic activities.

    PubMed

    El-Gazzar, A B A; Youssef, M M; Youssef, A M S; Abu-Hashem, A A; Badria, F A

    2009-02-01

    The 5,10-dihydro-2-thioxo-pyrimido[4,5-b]quinolines (2a-c) and its oxidized form 3 were prepared and used as key intermediates for the synthesis of thiazolo[3',2':1,2]pyrimido[4,5-b]-quinolines (5a-c), isoxazolo[5'',4'':4',5']thiazolo[3',2':1,2]pyrimido[4,5-b]quinolines (6a-c), 4-chloro-2-methylthio-pyrimido[4,5-b]quinoline, its amino derivatives (19-21) and 10,11,12,13-tetrahydro-5H-quino[2',3':4,5]pyrimido[6,1-b]quinazoline (22). The newly synthesized compounds were characterized by IR, NMR (1H, 13C) and mass spectral studies. Representative of the synthesized compounds was tested and evaluated for anti-oxidant, anti-inflammatory and analgesic activities. Compounds 2a-c showed the highest inhibitory anti-oxidant activity either using erythrocyte hemolysis or ABTS methods. Compounds 2a, 10b, 16, and 17a manifested the best protective effect against DNA damage induced by bleomycin. Compounds 2c, 5a, 20a, 2a, and 2b exhibited a potent anti-inflammatory activity using carrageenan-induced paw edema test in rats. PMID:18462840

  3. Anti-inflammatory effects of methylthiouracil in vitro and in vivo.

    PubMed

    Ku, Sae-Kwang; Baek, Moon-Chang; Bae, Jong-Sup

    2015-11-01

    The screening of bioactive compound libraries can be an effective approach for repositioning FDA-approved drugs or discovering new treatments for human diseases. Here, methylthiouracil (MTU), an antithyroid drug, was examined for its effects on lipopolysaccharide (LPS)-mediated vascular inflammatory responses. The anti-inflammatory activities of MTU were determined by measuring permeability, human neutrophil adhesion and migration, and activation of pro-inflammatory proteins in LPS-activated human umbilical vein endothelial cells and mice. We found that post-treatment with MTU inhibited LPS-induced barrier disruption, expression of cell adhesion molecules (CAMs), and adhesion/transendothelial migration of human neutrophils to human endothelial cells. MTU induced potent inhibition of LPS-induced endothelial cell protein C receptor (EPCR) shedding. It also suppressed LPS-induced hyperpermeability and neutrophil migration in vivo. Furthermore, MTU suppressed the production of tumor necrosis factor-? (TNF-?) and interleukin (IL)-6, and the activation of nuclear factor-?B (NF-?B) and extracellular regulated kinases (ERK) 1/2 by LPS. Moreover, post-treatment with MTU resulted in reduced LPS-induced lethal endotoxemia. These results suggest that MTU exerts anti-inflammatory effects by inhibiting hyperpermeability, expression of CAMs, and adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases. PMID:26298005

  4. Chemical composition and anti-inflammatory activities of the essential oils from Acacia mearnsii de Wild.

    PubMed

    Avoseh, Opeyemi N; Oyedeji, Ope-oluwa O; Aremu, Kayode; Nkeh-Chungag, Benedicta N; Songca, Sandile P; Oluwafemi, Samuel O; Oyedeji, Adebola O

    2015-01-01

    The volatile oils of the leaves and the stem bark of Acacia mearnsii de Wild obtained by hydro-distillation were analysed by gas chromatography-mass spectrometry. A total of 20, 38, 29 and 38 components accounted for 93.8%, 92.1%, 78.5% and 90.9% of the total oils of the fresh, dry leaves and fresh, dry stem bark, respectively. The major components of the oil were octadecyl alcohol (25.5%) and phytol (10.5%); cis-verbenol (29.5%); phytol (10.1%) and phytol (23.4%) for the fresh leaves, dried leaves, fresh stem, dry stem bark, respectively. Oral administration of essential oils at a dose of 2% showed significant (p < 0.05) anti-inflammatory properties in the albumin-induced test model in rats. Oils from the fresh leaves and dry stems inhibited inflammation beyond 4 h post treatment. The potent anti-inflammatory activity of essential oils of A. mearnsii hereby confirmed its traditional use in treating various inflammatory diseases. PMID:25422136

  5. Antioxidant, Anti-inflammatory, and Chemoprotective Properties of Acacia catechu Heartwood Extracts.

    PubMed

    Stohs, Sidney J; Bagchi, Debasis

    2015-06-01

    Aqueous extracts of Acacia catechu heartwood are rich source of catechin and epicatechin (gallic acid derivatives), with smaller amounts of flavonoids. Extracts have also been prepared with ethyl acetate, ethanol, and methanol, and the properties of these extracts have been studied and are reviewed. Potent antioxidant activity has been well established in both in vitro and in vivo studies. This antioxidant activity is believed to be responsible for the anti-inflammatory, tissue protectant, antineoplastic, and analgesic activities that have been demonstrated and clearly established in animal and cell culture systems. Furthermore, antihyperglycemic, antidiarrheal, antinociceptive, and antipyretic activities have been demonstrated in animal studies. No adverse effects have been observed in animal or human studies or in cell culture systems. In spite of the fact that Acacia products have been used for many years and the general safety of catechins and epicatechins is well documented, few human studies have ever been conducted on the efficacy or safety of A.?catechu heartwood extracts. Several studies have shown that a two-ingredient combination product containing A.?catechu extract exhibited no adverse effects when administered daily for up to 12?weeks while exhibiting significant anti-inflammatory activity in subjects with osteoarthritis of the knee. There is a need for additional human clinical studies with regard to efficacy and safety. PMID:25802170

  6. Arzanol, a prenylated heterodimeric phloroglucinyl pyrone, inhibits eicosanoid biosynthesis and exhibits anti-inflammatory efficacy in vivo.

    PubMed

    Bauer, Julia; Koeberle, Andreas; Dehm, Friederike; Pollastro, Federica; Appendino, Giovanni; Northoff, Hinnak; Rossi, Antonietta; Sautebin, Lidia; Werz, Oliver

    2011-01-15

    Based on its capacity to inhibit in vitro HIV-1 replication in T cells and the release of pro-inflammatory cytokines in monocytes, the prenylated heterodimeric phloroglucinyl α-pyrone arzanol was identified as the major anti-inflammatory and anti-viral constituent from Helichrysum italicum. We have now investigated the activity of arzanol on the biosynthesis of pro-inflammatory eicosanoids, evaluating its anti-inflammatory efficacy in vitro and in vivo. Arzanol inhibited 5-lipoxygenase (EC 7.13.11.34) activity and related leukotriene formation in neutrophils, as well as the activity of cyclooxygenase (COX)-1 (EC 1.14.99.1) and the formation of COX-2-derived prostaglandin (PG)E(2)in vitro (IC(50)=2.3-9μM). Detailed studies revealed that arzanol primarily inhibits microsomal PGE(2) synthase (mPGES)-1 (EC 5.3.99.3, IC(50)=0.4μM) rather than COX-2. In fact, arzanol could block COX-2/mPGES-1-mediated PGE(2) biosynthesis in lipopolysaccharide-stimulated human monocytes and human whole blood, but not the concomitant COX-2-derived biosynthesis of thromboxane B(2) or of 6-keto PGF(1α), and the expression of COX-2 or mPGES-1 protein was not affected. Arzanol potently suppressed the inflammatory response of the carrageenan-induced pleurisy in rats (3.6mg/kg, i.p.), with significantly reduced levels of PGE(2) in the pleural exudates. Taken together, our data show that arzanol potently inhibits the biosynthesis of pro-inflammatory lipid mediators like PGE(2)in vitro and in vivo, providing a mechanistic rationale for the anti-inflammatory activity of H. italicum, and a rationale for further pre-clinical evaluation of this novel anti-inflammatory lead. PMID:20933508

  7. Anti-Diabetic and Anti-Inflammatory Effects of Green and Red Kohlrabi Cultivars (Brassica oleracea var. gongylodes)

    PubMed Central

    Jung, Hyun Ah; Karki, Subash; Ehom, Na-Yeon; Yoon, Mi-Hee; Kim, Eon Ji; Choi, Jae Sue

    2014-01-01

    The aim of the present study was to evaluate the anti-diabetic, anti-inflammatory, antioxidant potential, and total phenolic content (TPC) of green and red kohlrabi cultivars. Anti-diabetic and anti-inflammatory activities were evaluated via protein tyrosine phosphatase (PTP1B) and rat lens aldose reductase inhibitory assays and cell-based lipopolysaccharide (LPS)-induced nitric oxide (NO) inhibitory assays in RAW 264.7 murine macrophages. In addition, scavenging assays using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, 2,2?-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical, and peroxynitrite (ONOO?) were used to evaluate antioxidant potential and TPC was selected to assess phytochemical characteristics. Between the two kohlrabi cultivars, red kohlrabi (RK) had two times more TPC than green kohlrabi (GK) and showed significant antioxidant effects in DPPH, ABTS, and ONOO? scavenging assays. Likewise, methanol (MeOH) extracts of RK and GK inhibited LPS-induced NO production in a dose dependent manner that was further clarified by suppression of iNOS and COX-2 protein production. The MeOH extracts of RK and GK exhibited potent inhibitory activities against PTP1B with the corresponding IC50 values of 2073.48 and 2873.22 ?g/mL, respectively. Interestingly, the RK MeOH extract exhibited significantly stronger anti-inflammatory, anti-diabetic, and antioxidant effects than that of GK MeOH extract. As a result, our study establishes that RK extract with a higher TPC might be useful as a potent anti-diabetic, antioxidant, and anti-inflammatory agent. PMID:25580392

  8. Anti-inflammatory pharmacotherapy during pregnancy.

    PubMed

    stensen, Monika E; Skomsvoll, Johan F

    2004-03-01

    NSAIDs or cyclooxygenase inhibitors (COX inhibitors), including aspirin, are widely used to treat pain, fever and the articular symptoms of chronic rheumatic diseases. Manifestations of connective tissue or autoimmune diseases are commonly treated with glucocorticosteroids. The effect and side effects of NSAIDs depend on the isoforms of cyclooxygenases that they preferentially or selectively inhibit. The use of COX inhibitors has recently been associated with infertility and miscarriage. The classical nonselective COX inhibitors, including aspirin, do not increase the risk of congenital malformations in humans but administered in the latter part of gestation, they can affect pregnancy and the fetus. The ability of nonselective and selective COX inhibitors to prolong gestation has been used by obstetricians to inhibit premature delivery. The vascular effects of prostaglandin inhibitors can cause constriction of the fetal ductus arteriosus and reduce renal blood flow. These complications have been described for most nonselective COX inhibitors but are increasingly reported also for the selective COX-2 inhibitors. Aspirin, which causes irreversible inhibition of cyclooxygenases, differs from other NSAIDs with regard to indication, effects and side effects. Prematurity, which is increased in pregnancies of women with connective tissue diseases, is an additional risk factor for adverse effects of antenatal exposure to NSAIDs. Therefore, treatment with COX inhibitors should be discontinued at week 32 of gestation. The ability of NSAIDs to compromise reproductive function by inhibition of ovulation and as causative agents for miscarriage is still under debate. Glucocorticosteroids given in early pregnancy are a risk factor for the development of oral clefts. Therefore, the daily dose should be kept to High doses of glucocorticosteroids in the second and third trimester are reserved for flares of autoimmune diseases. Intrauterine fetal growth restriction and premature delivery are possible side effects of high doses. PMID:15013926

  9. Anti-inflammatory activity of Heliotropium strigosum in animal models.

    PubMed

    Khan, Haroon; Khan, Murad Ali; Gul, Farah; Hussain, Sajjid; Ashraf, Nadeem

    2015-12-01

    The current project was designed to evaluate the anti-inflammatory activity of crude extract of Heliotropium strigosum and its subsequent solvent fractions in post carrageenan-induced edema and post xylene-induced ear edema at 50, 100, and 200 mg/kg intraperitoneally. The results revealed marked attenuation of edema induced by carrageenan injection in a dose-dependent manner. The ethyl acetate fraction was most dominant with 73.33% inhibition followed by hexane fraction (70.66%). When the extracts were challenged against xylene-induced ear edema, again ethyl acetate and hexane fractions were most impressive with 38.21 and 35.77% inhibition, respectively. It is concluded that various extracts of H. strigosum possessed strong anti-inflammatory activity in animal models. PMID:23823617

  10. Anti-inflammatory and Antinociceptive Activity of Ouabain in Mice

    PubMed Central

    de Vasconcelos, Danielle Ingrid Bezerra; Leite, Jacqueline Alves; Carneiro, Luciana Teles; Piuvezam, Mrcia Regina; de Lima, Maria Raquel Vitorino; de Morais, Liana Clbia Lima; Rumjanek, Vivian Mary; Rodrigues-Mascarenhas, Sandra

    2011-01-01

    Ouabain, an inhibitor of the Na+/K+-ATPase pump, was identified as an endogenous substance of human plasma. Ouabain has been studied for its ability to interfere with various regulatory mechanisms. Despite the studies portraying the ability of ouabain to modulate the immune response, little is known about the effect of this substance on the inflammatory process. The aim of this work was to study the effects triggered by ouabain on inflammation and nociceptive models. Ouabain produced a reduction in the mouse paw edema induced by carrageenan, compound 48/80 and zymosan. This anti-inflammatory potential might be related to the inhibition of prostaglandin E2, bradykinin, and mast-cell degranulation but not to histamine. Ouabain also modulated the inflammation induced by concanavalin A by inhibiting cell migration. Besides that, ouabain presented antinociceptive activity. Taken these data together, this work demonstrated, for the first time, that ouabain presented in vivo analgesic and anti-inflammatory effects. PMID:21772669

  11. Antibiotic and anti-inflammatory therapies for cystic fibrosis.

    PubMed

    Chmiel, James F; Konstan, Michael W; Elborn, J Stuart

    2013-10-01

    Cystic fibrosis (CF) lung disease is characterized by chronic bacterial infection and an unremitting inflammatory response, which are responsible for most of CF morbidity and mortality. The median expected survival has increased from <6 mo in 1940 to >38 yr now. This dramatic improvement, although not great enough, is due to the development of therapies directed at secondary disease pathologies, especially antibiotics. The importance of developing treatments directed against the vigorous inflammatory response was realized in the 1990s. New therapies directed toward the basic defect are now visible on the horizon. However, the impact of these drugs on downstream pathological consequences is unknown. It is likely that antibiotics and anti-inflammatory drugs will remain an important part of the maintenance regimen for CF in the foreseeable future. Current and future antibiotic and anti-inflammatory therapies for CF are reviewed. PMID:23880054

  12. Marine natural products with anti-inflammatory activity.

    PubMed

    Cheung, Randy Chi Fai; Ng, Tzi Bun; Wong, Jack Ho; Chen, Yangchao; Chan, Wai Yee

    2016-02-01

    Chronic inflammation is believed to play crucial roles in the pathogenesis of various diseases. Several types of drugs are used to treat inflammatory disorders, but they cause adverse side effects. Natural products are alternatives to these drugs which offer hope for discovery of bioactive lead compounds that may be developed into drugs for treatment of inflammatory disorders. The biological and chemical diversity of marine habitats constitutes a sizeable reservoir of novel compounds. Some of them, like sesquiterpenoids, diterpenes, steroids, polysaccharides, alkaloids, fatty acids, proteins, and other chemical compounds, isolated from marine organisms are found to exhibit anti-inflammatory activity. This review reports some recent (2011-2015) investigations and examples of marine natural products and their synthetic derivatives with anti-inflammatory activity. It also highlights those compounds that are currently undergoing preclinical or clinical evaluation. PMID:26711278

  13. Non-steroid anti-inflammatory drugs, prostaglandins, and cancer

    PubMed Central

    2013-01-01

    Fatty acids are involved in multiple pathways and play a pivotal role in health. Eicosanoids, derived from arachidonic acid, have received extensive attention in the field of cancer research. Following release from the phospholipid membrane, arachidonic acid can be metabolized into different classes of eicosanoids through cyclooxygenases, lipoxygenases, or p450 epoxygenase pathways. Non-steroid anti-inflammatory drugs (NSAIDs) are widely consumed as analgesics to relieve minor aches and pains, as antipyretics to reduce fever, and as anti-inflammatory medications. Most NSAIDs are nonselective inhibitors of cyclooxygenases, the rate limiting enzymes in the formation of prostaglandins. Long term use of some NSAIDs has been linked with reduced incidence and mortality in many cancers. In this review, we appraise the biological activities of prostanoids and their cognate receptors in the context of cancer biology. The existing literature supports that these lipid mediators are involved to a great extent in the occurrence and progression of cancer. PMID:23388178

  14. Constituents from Vigna vexillata and Their Anti-Inflammatory Activity

    PubMed Central

    Leu, Yann-Lii; Hwang, Tsong-Long; Kuo, Ping-Chung; Liou, Kun-Pei; Huang, Bow-Shin; Chen, Guo-Feng

    2012-01-01

    The seeds of Vigna genus are important food resources and there have already been many reports regarding their bioactivities. In our preliminary bioassay, the chloroform layer of methanol extracts of V. vexillata demonstrated significant anti-inflammatory bioactivity. Therefore, the present research is aimed to purify and identify the anti-inflammatory principles of V. vexillata. One new sterol (1) and two new isoflavones (2,3) were reported from the natural sources for the first time and their chemical structures were determined by the spectroscopic and mass spectrometric analyses. In addition, 37 known compounds were identified by comparison of their physical and spectroscopic data with those reported in the literature. Among the isolates, daidzein (23), abscisic acid (25), and quercetin (40) displayed the most significant inhibition of superoxide anion generation and elastase release. PMID:22949828

  15. Anti-inflammatory neolignans from the roots of Magnolia officinalis.

    PubMed

    Shih, Hung-Cheng; Kuo, Ping-Chung; Wu, Shwu-Jen; Hwang, Tsong-Long; Hung, Hsin-Yi; Shen, De-Yang; Shieh, Po-Chuen; Liao, Yu-Ren; Lee, E-Jian; Gu, Qiong; Lee, Kuo-Hsiung; Wu, Tian-Shung

    2016-04-01

    Nine neolignan derivatives (1-9) were characterized from the roots of Magnolia officinalis, and their structures were elucidated based on spectroscopic and physicochemical analyses. Among them, houpulins E (1) and M (9) possess novel homo- and trinor-neolignan skeletons. In addition, 15 known compounds (10-24) were identified by comparison of their spectroscopic and physical data with those reported in the literature. Some of the purified constituents were examined for anti-inflammatory activity and, among the tested compounds, houpulins G (3), I (5), J (6), and 2,2'-dihydroxy-3-methoxy-5,5'-di-(2-propenylbiphenyl) (19) significantly inhibited superoxide anion generation and elastase release with IC50 values ranging from 3.54 to 5.48μM and 2.16 to 3.39μM, respectively. Therefore, these neolignan derivatives have tremendous potential to be explored as anti-inflammatory agents. PMID:26928286

  16. Anti-inflammatory flavanol glycosides from Saraca asoca bark.

    PubMed

    Ahmad, Furkan; Misra, Laxminarain; Tewari, Rashi; Gupta, Preeti; Mishra, Pratikshita; Shukla, Rakesh

    2016-02-01

    Saraca asoca (Roxb.) de Wilde, a common tree of India, is popularly used in the Ayurvedic and modern herbal systems of medicine for genito-urinary problems of women. Considering the reported antimicrobial or anti-inflammatory effect of S. asoca bark against such infections, we studied the anti-inflammatory activity-guided isolation of active compounds from methanol extract. The methanol extract of bark has yielded 10 compounds out of which 3'-deoxyepicatechin-3-O-β-d-glucopyranoside (6) and 3'-deoxycatechin-3-O-α-l-rhamnopyranoside (8) have been found to be in vitro and in vivo active. 3',5-Dimethoxy epicatechin (3), 3'-deoxyepicatechin-3-O-β-d-glucopyranoside (6), 3'-deoxycatechin-3-O-α-l-rhamnopyranoside (8) and epigallocatechin (9) are being reported for the first time from S. asoca. PMID:25801341

  17. Anti-Inflammatory Drug Design Using a Molecular Hybridization Approach

    PubMed Central

    Bosquesi, Priscila Longhin; Melo, Thais Regina Ferreira; Vizioli, Ednir Oliveira; dos Santos, Jean Leandro; Chung, Man Chin

    2011-01-01

    The design of new drugs with better physiochemical properties, adequate absorption, distribution, metabolism, and excretion, effective pharmacologic potency and lacking toxicity remains is a challenge. Inflammation is the initial trigger of several different diseases, such as Alzheimer's disease, asthma, atherosclerosis, colitis, rheumatoid arthritis, depression, cancer; and disorders such as obesity and sexual dysfunction. Although inflammation is not the direct cause of these disorders, inflammatory processes often increase related pain and suffering. New anti-inflammatory drugs developed using molecular hybridization techniques to obtain multiple-ligand drugs can act at one or multiple targets, allowing for synergic action and minimizing toxicity. This work is a review of new anti-inflammatory drugs developed using the molecular modification approach.

  18. Nonsteroidal Anti-Inflammatory Drugs and Prostatic Diseases

    PubMed Central

    Ishiguro, Hitoshi; Kawahara, Takashi

    2014-01-01

    Prostatic diseases are characterized by increased activity of cytokines, growth factors, and cyclooxygenases- (COX-) 1 and 2. Activation of COX-1 and COX-2 results in increased levels of prostaglandins and the induction of angiogenic, antiapoptotic and inflammatory processes. Inhibition of COX enzymes by members of the widely used nonsteroidal anti-inflammatory drug (NSAID) class of drugs decreases prostaglandin production, and exerts a variety of anti-inflammatory, antipyretic, and antinociceptive effects. While numerous in vitro, in vivo, and clinical studies have shown that NSAIDs inhibit the risk and progression of prostatic diseases, the relationship between NSAIDs and such diseases remains controversial. Here we review the literature in this area, critically analyzing the benefits and caveats associated with the use of NSAIDs in the treatment of prostatic diseases. PMID:24900965

  19. Multitargeting of selected prostanoid receptors provides agents with enhanced anti-inflammatory activity in macrophages.

    PubMed

    Wang, Jenny W; Woodward, David F; Martos, Jose L; Cornell, Clive L; Carling, Robert W; Kingsley, Philip J; Marnett, Lawrence J

    2016-01-01

    A polypharmacologic approach to prostanoid based anti-inflammatory therapeutics was undertaken in order to exploit both the anti- and proinflammatory properties attributed to the various prostanoid receptors. Multitargeting of selected prostanoid receptors yielded a prototype compound, compound 1 (AGN 211377), that antagonizes prostaglandin D2 receptors (DPs) DP1 (49) and DP2 (558), prostaglandin E2 receptors (EPs) EP1 (266) and EP4 (117), prostaglandin F2? receptor (FP) (61), and thromboxane A2 receptor (TP) (11) while sparing EP2, EP3, and prostaglandin I2 receptors (IPs); Kb values (in nanomoles) are given in parentheses. Compound 1 evoked a pronounced inhibition of cytokine/chemokine secretion from lipopolysaccharide or TNF-? stimulated primary human macrophages. These cytokine/chemokines included cluster of designation 40 receptor (CD40), epithelial-derived neutrophil-activating protein 78 (ENA-78), granulocyte colony stimulating factor (G-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), IL-8, IL-18, monocyte chemotactic protein-1 (CCL2) (MCP-1), tissue plasminogen activator inhibitor (PAI-1), and regulated on activation, normal T cell expressed and secreted (RANTES). In contrast, the inhibitory effects of most antagonists selective for a single receptor were modest or absent, and selective EP2 receptor blockade increased cytokine release in some instances. Compound 1 also showed clear superiority to the cyclooxygenase inhibitors diclofenac and rofecoxib. These findings reveal that blockade of multiple prostanoid receptors, with absent antagonism of EP2 and IP, may provide more effective anti-inflammatory activity than global suppression of prostanoid synthesis or highly selective prostanoid receptor blockade. These investigations demonstrate the first working example of prostanoid receptor polypharmacology for potentially safer and more effective anti-inflammatory therapeutics by blocking multiple proinflammatory receptors while sparing those with anti-inflammatory activity.-Wang, J. W., Woodward, D. F., Martos, J. L., Cornell, C. L., Carling, R. W., Kingsley, P. J., Marnett, L. J. Multitargeting of selected prostanoid receptors provides agents with enhanced anti-inflammatory activity in macrophages. PMID:26420849

  20. Metallothionein as an Anti-Inflammatory Mediator

    PubMed Central

    Inoue, Ken-ichiro; Takano, Hirohisa; Shimada, Akinori; Satoh, Masahiko

    2009-01-01

    The integration of knowledge concerning the regulation of MT, a highly conserved, low molecular weight, cystein-rich metalloprotein, on its proposed functions is necessary to clarify how MT affects cellular processes. MT expression is induced/enhanced in various tissues by a number of physiological mediators. The cellular accumulation of MT depends on the availability of cellular zinc derived from the diet. MT modulates the binding and exchange/transport of heavy metals such as zinc, cadmium, or copper under physiological conditions and cytoprotection from their toxicities, and the release of gaseous mediators such as hydroxyl radicals or nitric oxide. In addition, MT reportedly affects a number of cellular processes, such as gene expression, apoptosis, proliferation, and differentiation. Given the genetic approach, the apparently healthy status of MT-deficient mice argues against an essential biological role for MT; however, this molecule may be critical in cells/tissues/organs in times of stress, since MT expression is also evoked/enhanced by various stresses. In particular, because metallothionein (MT) is induced by inflammatory stress, its roles in inflammation are implied. Also, MT expression in various organs/tissues can be enhanced by inflammatory stimuli, implicating in inflammatory diseases. In this paper, we review the role of MT of various inflammatory conditions. PMID:19436762

  1. Analgesic and Anti-Inflammatory Properties of Arylnitroalkenes.

    PubMed

    Celano, Laura; Cupertino Da Silva, Yolanda K; Cataldo, Nicols; Gabay, Martn; Merlino, Alicia; Alexandre-Moreira, Magna S; Lima, Lidia Moreira; Cerecetto, Hugo; Gonzlez, Mercedes; Thomson, Leonor

    2015-01-01

    In a recent work, we described the design and synthesis of arylnitroalkenes, able to scavenge macrophagederived oxidants, in particular peroxynitrite and peroxynitrite derived radicals. Four compounds emerged as potential leads, 1,1-dimethylamino-4-(2-nitro-1Z-ethenyl)benzene (1), 1,1-dimethylamino-4-(2-nitro-1Z-propenyl)benzene (2), 5- (2-nitro-1Z-ethenyl)benzo[d][1,3]dioxol (3), and 5-(2-nitro-1Z-ethenyl)benzo[d][1,3]dioxol (4). In the present work, the possibility of the preclinical validation of these molecules as anti-inflammatory and analgesic was explored in appropriate in vivo mouse models. Compounds 1, 2 and 4, administered orally as a single dose (30 mol kg-(1)) to the mice showed anti-inflammatory and analgesic properties similar to classic nonsteroidal anti-inflammatory agents. The pharmacological effects were consistent with the inhibitory effect observed on prostaglandin endoperoxide H synthase (PGHS). In fact, both PGHS-1 and PGHS-2 were inhibited by the compounds, with compound 2 being more specific as PGHS-2 inhibitor with a specificity index superior to 70%. Conversely to classical nonsteroidal anti-inflammatory drugs, compound 2 inhibited peroxidase half reaction of the enzyme (IC50 2.3 M) while the cyclooxygenase activity of hrPGHS-2 remained unchanged. In vitro experiments were reinforced by docking and molecular dynamics simulations showing arylnitroalkene moiety located in the region of the peroxidase active site, competing with the peroxide intermediate. The absence of toxicity and mutagenicity of the compounds was also demonstrated. PMID:26490661

  2. Anti-inflammatory activity of emu oils in rats.

    PubMed

    Snowden, J M; Whitehouse, M W

    1997-01-01

    The anti-inflammatory activities of five different preparations of emu (Dromais Novae-Hollandiae) oil, applied topically, have been examined using an experimental polyarthritis- in rats. Four of the preparations were found to be active against adjuvant-induced arthritis in rats. The efficacies of the emu oils acting transdermally are compared with that of orally administered ibuprofen (40 mg/kg). PMID:17694361

  3. Evidence for Anti-Inflammatory Effects of Exercise in CKD

    PubMed Central

    Kosmadakis, George C.; Watson, Emma L.; Bevington, Alan; Feehally, John; Bishop, Nicolette C.; Smith, Alice C.

    2014-01-01

    CKD is associated with a complex state of immune dysfunction characterized by immune depression, predisposing patients to infections, and immune activation, resulting in inflammation that associates with higher risk of cardiovascular disease. Physical exercise may enhance immune function and exert anti-inflammatory effects, but such effects are unclear in CKD. We investigated the separate effects of acute and regular moderate-intensity aerobic exercise on neutrophil degranulation (elastase release), activation of T lymphocytes (CD69 expression) and monocytes (CD86 and HLA-DR expression), and plasma inflammatory markers (IL-6, IL-10, soluble TNF-receptors, and C-reactive protein) in patients with predialysis CKD. A single 30-minute (acute) bout of walking induced a normal pattern of leukocyte mobilization and had no effect on T-lymphocyte and monocyte activation but improved neutrophil responsiveness to a bacterial challenge in the postexercise period. Furthermore, acute exercise induced a systemic anti-inflammatory environment, evidenced by a marked increase in plasma IL-10 levels (peaked at 1 hour postexercise), that was most likely mediated by increased plasma IL-6 levels (peaked immediately postexercise). Six months of regular walking exercise (30 min/d for 5 times/wk) exerted anti-inflammatory effects (reduction in the ratio of plasma IL-6 to IL-10 levels) and a downregulation of T-lymphocyte and monocyte activation, but it had no effect on circulating immune cell numbers or neutrophil degranulation responses. Renal function, proteinuria, and BP were also unaffected. These findings provide compelling evidence that walking exercise is safe with regard to immune and inflammatory responses and has the potential to be an effective anti-inflammatory therapy in predialysis CKD. PMID:24700875

  4. Hepatoprotective and anti-inflammatory activities of Plantago major L

    PubMed Central

    Trel, Idris; zbek, Hanefi; Erten, Remzi; ner, Ahmet Cihat; Cengiz, Nureddin; Yilmaz, Orhan

    2009-01-01

    Objective: The aim of this study was to investigate anti-inflammatory and hepatoprotective activities of Plantago major L. (PM). Materials and Methods: Anti-inflammatory activity: Control and reference groups were administered isotonic saline solution (ISS) and indomethacin, respectively. Plantago major groups were injected PM in doses of 5 mg/kg (PM-I), 10 mg/kg (PM-II), 20 mg/kg (PM-III) and 25 mg/kg (PM-IV). Before and three hours after the injections, the volume of right hind-paw of rats was measured using a plethysmometer. Hepatoprotective Activity: The hepatotoxicity was induced by carbon tetrachloride (CCl4) administration. Control, CCl4 and reference groups received isotonic saline solution, CCl4 and silibinin, respectively. Plantago major groups received CCl4 (0.8 ml/kg) and PM in doses of 10, 20 and 25 mg/kg, respectively for seven days. Blood samples and liver were collected on the 8th day after the animals were killed. Results: Plantago major had an anti-inflammatory effect matching to that of control group at doses of 20 and 25 mg/kg. It was found that reduction in the inflammation was 90.01% with indomethacin, 3.10% with PM-I, 41.56% with PM-II, 45.87% with PM-III and 49.76% with PM-IV. Median effective dose (ED50) value of PM was found to be 7.507 mg/kg. Plantago major (25 mg/kg) significantly reduced the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels when compared to the CCl4 group. The histopathological findings showed a significant difference between the PM (25 mg/kg) and CCl4 groups. Conclusion: The results showed that PM had a considerable anti-inflammatory and hepatoprotective activities. PMID:20442819

  5. Anti-inflammatory activity and chemical profile of Galphimia glauca.

    PubMed

    Gonzlez-Cortazar, Manass; Herrera-Ruiz, Maribel; Zamilpa, Alejandro; Jimnez-Ferrer, Enrique; Marquina, Silvia; Alvarez, Laura; Tortoriello, Jaime

    2014-01-01

    Galphimia glauca, commonly known as "flor de estrella", is a plant species used in Mexican traditional medicine for the treatment of different diseases that have an acute or chronic inflammatory process in common. Aerial parts of this plant contain nor-seco-triterpenoids with anxiolytic properties, which have been denominated galphimines. Other compounds identified in the plant are tetragalloyl-quinic acid, gallic acid, and quercetin, which are able to inhibit the bronchial obstruction induced by platelet-activating factor. The objective of this work was to evaluate the anti-inflammatory effect of crude extracts from G. glauca and, by means of bioguided chemical separation, to identify the compounds responsible for this pharmacological activity. n-Hexane, ethyl acetate, dichloromethane, and methanol extracts showed an important anti-inflammatory effect. Chemical separation of the active methanol extract allowed us to identify the nor-seco-triterpenes galphimine-A (1) and galphimine-E (3) as the anti-inflammatory principles. Analysis of structure-activity relationships evidenced that the presence of an oxygenated function in C6 is absolutely necessary to show activity. In this work, the isolation and structural elucidation of two new nor-seco-triterpenes denominated as galphimine-K (4) and galphimine-L (5), together with different alkanes, fatty acids, as well as three flavonoids (17-19), are described, to our knowledge for the first time, from Galphimia glauca. PMID:24338551

  6. Anti-Inflammatory Activity and Composition of Senecio salignus Kunth

    PubMed Central

    Prez Gonzlez, Cuauhtemoc; Serrano Vega, Roberto; Gonzlez-Chvez, Marco; Zavala Snchez, Miguel Angel; Prez Gutirrez, Salud

    2013-01-01

    We investigated the anti-inflammatory activity of Senecio salignus. This medicinal plant is often used in Mexico for the treatment of fever and rheumatism. Chloroform and methanol extracts of the plant were tested on 12-O-tetradecanoylphorbol-13-acetate- (TPA-) induced edema in mice ears. The methanol extract of the plant inhibited edema by 36 4.4% compared with the control, while the chloroform extract exhibited an even greater level of inhibition (64.1%). The chloroform extract was then fractionated, and the composition of the active fraction was determined by GC-MS. The anti-inflammatory activity of this fraction was then tested on TPA-induced ear edema in mice, and we found that the active fraction could inhibit edema by 46.9%. The anti-inflammatory effect of the fraction was also tested on carrageenan-induced paw edema in rats at doses of 100?mg/kg; a 58.9 2.8% reduction of the edema was observed 4?h after administration of carrageenan, and the effect was maintained for 5?h. PMID:23691512

  7. Anti-inflammatory activity of traditional Chinese medicinal herbs

    PubMed Central

    Pan, Min-Hsiung; Chiou, Yi-Shiou; Tsai, Mei-Ling; Ho, Chi-Tang

    2011-01-01

    Accumulating epidemiological and clinical evidence shows that inflammation is an important risk factor for various human diseases. Thus, suppressing chronic inflammation has the potential to delay, prevent, and control various chronic diseases, including cerebrovascular, cardiovascular, joint, skin, pulmonary, blood, lymph, liver, pancreatic, and intestinal diseases. Various natural products from traditional Chinese medicine (TCM) have been shown to safely suppress proinflammatory pathways and control inflammation-associated disease. In vivo and/or in vitro studies have demonstrated that anti-inflammatory effects of TCM occur by inhibition of the expression of master transcription factors (for example, nuclear factor-?B (NF-?B)), pro-inflammatory cytokines (for example, tumor necrosis factor-? (TNF-?), chemokines (for example, chemokine (C-C motif) ligand (CCL)-24), intercellular adhesion molecule expression and pro-inflammatory mediators (for example, inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2)). However, a handful of review articles have focused on the anti-inflammatory activities of TCM and explore their possible mechanisms of action. In this review, we summarize recent research attempting to identify the anti-inflammatory constituents of TCM and their molecular targets that may create new opportunities for innovation in modern pharmacology. PMID:24716101

  8. Anti-inflammatory effects of Allium schoenoprasum L. leaves.

    PubMed

    Parvu, A E; Parvu, M; Vlase, L; Miclea, P; Mot, A C; Silaghi-Dumitrescu, R

    2014-04-01

    Allium schoenoprasum has antimicrobial and antifungal properties and is used to relieve pain from sunburn and sore throat. The aim of the present study was to evaluate the anti-inflammatory effects of the extracts from A. schoenoprasum leaves. A 1:1 (w:v) extract was prepared by a modified Squibb repercolation method. The total phenolic content of 68.52 g gallic acid aquivalent (GAE)/g plant was determined using the Folin-Ciocalteu method. The in vitro antioxidant activity was determined using the 1,1-diphenyl-2-picrylhydrazyl bleaching method (6.720.44 g/mg DPPH) and the trolox equivalent antioxidant capacity (132.823 g trolox eq./g plant) assay. Analysis of the extracts using the hemoglobin ascorbate peroxidase activity inhibition assay or the electron spin resonance did not yield signals above the detection limit. The anti-inflammatory effects of three extract concentrations (25%, 50%, 100%) were evaluated in vivo on a model turpentine oil-induced inflammation in rats. These three extracts were also evaluated in vitro for the ability to inhibit phagocytosis, the accumulation of total nitrites and nitrates in the serum, the total oxidative status, the total antioxidant response and the oxidative stress index. Pure extracts (100% concentration) had the best inhibitory activity on phagocytosis and oxidative stress. In conclusion, these results support the hypothesis that extracts from A. schoenoprasum leaves exert anti-inflammatory activities by inhibiting phagocytosis through the reduction of nitro-oxidative stress. PMID:24781739

  9. Anti-inflammatory activity of Shirishavaleha: An Ayurvedic compound formulation.

    PubMed

    Yadav, Shyamlal Singh; Galib; Ravishankar, B; Prajapati, P K; Ashok, B K; Varun, B

    2010-10-01

    The purpose of the present study was to evaluate the anti-inflammatory activity of Shirishavaleha prepared from two different parts of Shirisha (Albizia lebbeck Benth.), viz. the bark (Twak) and the heartwood (Sara). The activity was screened in the carrageenan-induced rat paw edema model in albino rats. The raw materials were collected and authenticated in the university and the trial formulations were prepared by following standard classical guidelines. Randomly selected animals were divided into four groups of six animals each. The test drugs were administered orally at a dose of 1.8 g/kg for 5 days. Phenylbutazone was used as the standard anti-inflammatory drug for comparison. Between the two different test samples studied, the formulation made from heartwood showed a weak anti-inflammatory activity in this model while that made from the bark produced a considerable suppression of edema after 6 h. It appears that the bark sample would be preferable for clinical use. PMID:21455445

  10. Anti-inflammatory activity of Shirishavaleha: An Ayurvedic compound formulation

    PubMed Central

    Yadav, Shyamlal Singh; Galib; Ravishankar, B.; Prajapati, P.K.; Ashok, B.K.; Varun, B.

    2010-01-01

    The purpose of the present study was to evaluate the anti-inflammatory activity of Shirishavaleha prepared from two different parts of Shirisha (Albizia lebbeck Benth.), viz. the bark (Twak) and the heartwood (Sara). The activity was screened in the carrageenan-induced rat paw edema model in albino rats. The raw materials were collected and authenticated in the university and the trial formulations were prepared by following standard classical guidelines. Randomly selected animals were divided into four groups of six animals each. The test drugs were administered orally at a dose of 1.8 g/kg for 5 days. Phenylbutazone was used as the standard anti-inflammatory drug for comparison. Between the two different test samples studied, the formulation made from heartwood showed a weak anti-inflammatory activity in this model while that made from the bark produced a considerable suppression of edema after 6 h. It appears that the bark sample would be preferable for clinical use. PMID:21455445

  11. UV Filters, Ingredients with a Recognized Anti-Inflammatory Effect

    PubMed Central

    Couteau, Céline; Chauvet, Catherine; Paparis, Eva; Coiffard, Laurence

    2012-01-01

    Background To explain observed differences during SPF determination using either an in vivo or in vitro method, we hypothesized on the presence of ingredients having anti-inflammatory properties. Methodology/Principal Findings To research our hypothesis, we studied the 21 UV filters both available on the market and authorized by European regulations and subjected these filters to the phorbol-myristate-acetate test using mice. We then catalogued the 13 filters demonstrating a significant anti-inflammatory effect with edema inhibition percentages of more than 70%. The filters are: diethylhexyl butamido triazone (92%), benzophenone-5 and titanium dioxide (90%), benzophenone-3 (83%), octocrylène and isoamyl p-methoxycinnamate (82%), PEG-25 PABA and homosalate (80%), octyl triazone and phenylbenzimidazole sulfonic acid (78%), octyl dimethyl PABA (75%), bis-ethylhexyloxyphenol methoxyphenyl triazine and diethylamino hydroxybenzoyl hexylbenzoate (70%). These filters were tested at various concentrations, including their maximum authorized dose. We detected a dose-response relationship. Conclusions/Significance The anti-inflammatory effect of a sunscreen ingredient may affect the in vivo SPF value. PMID:23284607

  12. Anti-inflammatory phytochemicals for chemoprevention of colon cancer.

    PubMed

    Madka, Venkateshwar; Rao, Chinthalapally V

    2013-06-01

    Every year more than a million new cancer cases and 600,000 deaths are reported world-wide. Colorectal cancer is the fourth most commonly occurring and second leading cause of cancer deaths in the United States. Significant progress has been made in understanding colorectal cancer through epidemiological, laboratory and clinical studies. Development of metastatic adenocarcinomas is a multistage process occurring over several years during which multiple genetic alterations and pathophysiological changes are associated. Colorectal cancer can be prevented if the transformation of normal colonic crypt cells to malignant can be halted or reversed. Some of the key molecules that are altered significantly and play important roles in colorectal tumor progression are associated with inflammation. Since chronic inflammation is now recognized as a potential risk factor for tumor development, targeting inflammatory pathways has proven effective in preventing formation of colonic tumors and their malignant progression in both preclinical and clinical studies. Synthetic non-steroidal anti-inflammatory drugs (NSAIDS) have been identified as potential colorectal cancer chemopreventive agents; however, most of these synthetic agents are associated with unwanted and sometimes fatal side effects. There is mounting evidence in support of the efficacy of naturally-occurring phytochemicals possessing anti-inflammatory activity. In this review we discuss key inflammatory pathways associated with colorectal cancer and promising naturally-occurring phytochemicals as anti-inflammatory agents for the prevention and treatment of colorectal cancer. PMID:23597198

  13. Acai Juice Attenuates Atherosclerosis Through Antioxidant and Anti-Inflammatory Effects in ApoE Deficient Mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Acai fruit (Euterpe oleracea Mart.) has been shown to exhibit extremely high antioxidant capacity. Antioxidant capacities and anti-inflammatory effects of acai pulp or acai juices have been studied in human, animal and cell culture models. However, their potential effects on atheroscl...

  14. Design, synthesis, and biological evaluation of novel disubstituted dibenzosuberones as highly potent and selective inhibitors of p38 mitogen activated protein kinase.

    PubMed

    Koeberle, Solveigh C; Fischer, Stefan; Schollmeyer, Dieter; Schattel, Verena; Grtter, Christian; Rauh, Daniel; Laufer, Stefan A

    2012-06-28

    Synthesis, biological testing, structure-activity relationships (SARs), and selectivity of novel disubstituted dibenzosuberone derivatives as p38 MAP kinase inhibitors are described. Hydrophilic moieties were introduced at the 7-, 8-, and 9-position of the 2-phenylamino-dibenzosuberones, improving physicochemical properties as well as potency. Extremely potent inhibitors were obtained, with half-maximal inhibitory concentration (IC(50)) values in the low nM range in a whole blood assay measuring the inhibition of cytokine release. The high potency of the target compounds together with the outstanding selectivity of this novel class of compounds toward p38 mitogen activated protein (MAP) kinase as compared to other kinases indicate them to be most applicable as tools in pharmacological research and eventually they may foster a new generation of anti-inflammatory drugs. PMID:22676210

  15. Cytotoxic, anti-inflammatory and hemostatic spirostane-steroidal saponins from the ethanol extract of the roots of Bletilla striata.

    PubMed

    Wang, Wei; Meng, Hui

    2015-03-01

    Four new spirostane steroidal saponins, (1?,3?)-1-O-[(?-d-xylopyranosyl-(1?2)-?-l-rhamnopyranosyl)]-3-O-d-glucopyranosyl-5?-spirostan (1), (1?,3?)-1-O-[(?-d-xylopyranosyl-(1?2)-?-l-rhamnopyranosyl)oxy]-3-O-d-glucopyranosyl-25(27)-ene-5?-spirostan (2), (1?,3?)-1-O-[(?-d-xylopyranosyl-(1?2)-?-l-rhamnopyranosyl)oxy]-epiruscogenin (3), and (1?,3?)-1-O-[(?-d-xylopyranosyl-(1?2)-?-l-rhamnopyranosyl)oxy]-epineoruscogenin (4) together with two known compounds, bletilnoside A (5) and 3-O-?-d-glucopyranosyl-3-epi-neoruscogenin (6), were isolated from the ethanol extract of the roots of Bletilla striata (Thunb.) Reichb. f. The structures of the isolated compounds were established based on 1D and 2D ((1)H-(1)H COSY, HMQC, and HMBC) NMR spectroscopy, in addition to high resolution mass spectrometry. The isolated compounds were tested in vitro for cytotoxicities against seven tumor cell lines, anti-inflammatory activities against Cox-1 and Cox-2, and hemostatic activities. As a result, compounds 1-4 and 6 exhibited significant cytotoxicities against all the tested tumor cell lines with IC50 value less than 30?M and selective inhibition of Cox-2 comparable with the standard drug NS-398 (>90%). Additionally, compounds 1-6 showed potent hemostatic activities. PMID:25447157

  16. Antioxidant and anti-inflammatory activities of silver nanoparticles biosynthesized from aqueous leaves extracts of four Terminalia species

    NASA Astrophysics Data System (ADS)

    El-Rafie, Hanaa Mohamed; Abdel-Aziz Hamed, Manal

    2014-09-01

    The environmentally friendly synthesis of nanoparticles process is a revolutionary step in the field of nanotechnology. In recent years plant mediated biological synthesis of nanoparticles has been gaining importance due to its simplicity and eco-friendliness. In this study, a simple and an efficient eco-friendly approach for the biosynthesis of stable, monodisperse silver nanoparticles using aqueous extracts of four Terminalia species, namely, Terminalia catappa, Terminalia mellueri, Terminalia bentazoe and Terminalia bellerica were described. The silver nanoparticles were characterized in terms of synthesis, capping functionalities (polysaccharides, phenolics and flavonoidal compounds) and microscopic evaluation by UV-visible spectroscopy, Fourier transform infrared spectroscopy and transmission electron microscopy. The results showed a simple and feasible approach for obtaining stable aqueous monodispersive silver nanoparticles. Furthermore, biological activity of the biosynthesized silver nanoparticles was examined. Concerning this, dose-dependent antioxidant activity of silver nanoparticles imparted by the plant phenolic and flavonoidal components was evaluated using in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and found to be comparable to standard ascorbic acid. The same holds true for the anti-inflammatory activity where Terminalia catappa and Terminalia mellueri have a high-test inhibition percentage better than that of ascorbic acid in the carrageenan induced hind paw edema. The results also revealed that the aqueous extract of Terminallia catapa and its silver nanoparticles recorded the most potent in vivo antioxidant effect.

  17. Melittin-glutathione S-transferase fusion protein exhibits anti-inflammatory properties and minimal toxicity

    PubMed Central

    Rayahin, Jamie E.; Buhrman, Jason S.; Gemeinhart, Richard A.

    2014-01-01

    Although potent, proteins often require chemical modification for therapeutic use. Immunogenicity, difficult synthesis, and scale-up of these modifications are all engineering obstacles that stand in the way of expanding the use of these therapeutics. Melittin, a peptide derived from bee venom, has been shown to modulate inflammation. Although potentially therapeutic, the native peptide causes cell lysis and toxicity significantly hindering therapeutic application. Based upon the knowledge of the pore formation mechanism, we examined the toxicity and therapeutic effect of a melittin fusion protein with glutathione-S-transferase. The fusion of melittin and glutathione S-transferase results in diminished toxicity of the peptide and retained anti-inflammatory properties at doses that exceed toxic concentration of native melittin. Our results suggest that fusion proteins, particularly those of glutathione-S-transferase, may be facile modifications to control protein activity. PMID:25240321

  18. Repositioning of 2,4-dichlorophenoxy acetic acid as a potential anti-inflammatory agent: in silico and pharmaceutical formulation study.

    PubMed

    Khedr, Mohammed A; Shehata, Tamer M; Mohamed, Maged E

    2014-12-18

    2,4-Dichlorophenoxy acetic acid (2,4-D) is a well-known plant auxin which is widely used in plant tissue culture experiments as well as a weed killer and a herbicide. In this study, 2,4-D was rediscovered as a new anti-inflammatory agent through an in silico molecular modeling and docking studies along with drug formulation and in vivo anti-inflammatory inspection. The molecular modeling and docking studies indicated high affinity of 2,4-D toward COX-2 enzyme in a way similar to Ibuprofen, suggesting a higher anti-inflammatory activity. Molecular docking by both MOE 2013.08 and Leadit 2.1.2 revealed excellent binding pattern compared to some of well-known non-steroidal anti-inflammatory drugs. 2,4-D was formulated in different gel bases. In vitro drug release experiments were used to examine the best 2,4-D formula for in vivo studies. In vivo carrageenan-induced hind paw edema inflammatory model in rats was used to test the in silico finding. 2,4-D showed potential in vivo anti-inflammatory activity and significantly reduced the concentration of prostaglandin E2 in hind paw tissues in a way similar to Ibuprofen. These results may open the door to introduce a new anti-inflammatory molecule; especially that 2,4-D is a well-investigated regarding its toxicity and side effect. PMID:25245006

  19. Cholesterol Efflux Potential and Anti-inflammatory Properties of HDL following Treatment with Niacin or Anacetrapib

    PubMed Central

    Yvan-Charvet, Laurent; Kling, Jelena; Pagler, Tamara; Li, Hongna; Hubbard, Brian; Fisher, Tim; Sparrow, Carl P.; Taggart, Andrew K.; Tall, Alan R.

    2010-01-01

    Objective This study examines the effects of treatments with niacin or anacetrapib (an inhibitor of cholesteryl ester transfer protein (CETP)) on the ability of HDL to promote net cholesterol efflux and reduce Toll-like receptor-mediated inflammation in macrophages. Methods and Results 18 subjects received niacin 2g daily for 4 weeks, 20 subjects received anacetrapib 300mg daily for 8 weeks and 2 groups of 4 and 5 subjects, respectively received placebo. HDL samples were isolated by PEG precipitation or ultracentrifugation, tested for ability to promote cholesterol efflux in cholesterol-loaded THP-1 or mouse peritoneal macrophages, or used to pre-treat macrophages followed by LPS exposure. HDL cholesterol levels were increased by 30% in response to niacin and by ~100% in response to anacetrapib. Niacin treatment increased HDL-mediated net cholesterol efflux from foam cells primarily by increasing HDL concentration, whereas anacetrapib treatment increased cholesterol efflux both by increasing HDL concentration and by causing increased efflux at matched HDL concentrations. The increased efflux potential of anacetrapib-HDL was more prominent at higher HDL cholesterol concentrations (> 12?g/ml), associated with an increased content of lecithin:cholesterol acyltransferase (LCAT) and apolipoprotein E (apoE) and completely dependent on expression of ATP binding cassette transporters, ABCA1 and ABCG1. Potent anti-inflammatory effects of HDL were observed at low HDL concentrations (320 ?g/ml) and were partly dependent on expression of ABCA1 and ABCG1. All HDL preparations showed similar anti-inflammatory effects, proportionate to HDL cholesterol concentration. Conclusions Niacin treatment caused a moderate increase in the ability of HDL to promote net cholesterol efflux while inhibition of CETP via anacetrapib led to a more dramatic increase in association with enhanced particle functionality at higher HDL concentrations. All HDLs exhibited potent ability to suppress macrophage TLR4-mediated inflammatory responses, in a process partly dependent on cholesterol efflux via ABCA1 and ABCG1. PMID:20448206

  20. Anti-inflammatory effect of pigment epithelium-derived factor in DBA/2J mice

    PubMed Central

    Zhou, Xiaohong; Li, Feng; Kong, Li; Chodosh, James

    2009-01-01

    Purpose Glaucoma is the second leading cause of blindness. The ultimate cause of vision loss in glaucoma is thought to be retinal ganglion cell (RGC) death. Neuroprotection of RGC is therefore an important goal of glaucoma therapy. Several lines of evidence suggest that pigment epithelium derived factor (PEDF) is a potent anti-angiogenic, neuroprotective, and anti-inflammatory factor for neurons. In this study, we examined the potential role of PEDF in protection of RGC in the DBA/2J mouse, an animal model of inherited glaucoma. Methods DBA/2J mice at two months of age were transfected intravitreally with adeno-associated virus (AAV)-PEDF or AAV-green fluorescent protein (AAV-GFP). RGC and nerve fiber layer protection wereevaluated in retinal cross sections. Biochemical alterations in the retinas of DBA/2J mice in response to intravitreal transfection of PEDF were also examined by reverse transcriptase PCR (RTPCR) and western blot. Cellular localization of PEDF and glial fibrillary acidic protein (GFAP) was determined by immunohistochemistry. Visual acuity was determined by optomotor testing. Results PEDF protein levels in the retina and optic nerves of DBA/2J mice declined with age. The expression of tumor necrosis factor (TNF), GFAP, and interleukin-18 (IL-18) increased with age in the retina and optic nerve of DBA/2J mice. Intravitreal PEDF transfection in DBS/2J mice reduced loss of RGC and nerve fiber layer, delayed vision loss, and reduced TNF, IL-18, and GFAP expression in the retina and optic nerve. Conclusions Transduced PEDF potently and efficaciously reduces RGC loss and vision decline in DBA/2J mice, possibly via the reduction of TNF and IL-18, and downregulation of GFAP. The anti-inflammatory effect of PEDF represents a novel approach to the prevention of glaucomatous RGC death. PMID:19247457

  1. Hydrolyzed olive vegetation water in mice has anti-inflammatory activity.

    PubMed

    Bitler, Catherine M; Viale, Tiffany M; Damaj, Bassam; Crea, Roberto

    2005-06-01

    Fruit and vegetable simple and polyphenols are potent antioxidants. One of the most effective in terms of free radical scavenging is 3,4-dihydroxyphenyl ethanol or hydroxytyrosol (HT), a simple phenol found predominantly in Olea europea, or the olive plant. HT is most abundant in the aqueous fraction of olive pulp with trace amounts in the olive oil fraction and in the leaves. For these experiments, we evaluated the anti-inflammatory activity of olive vegetation water (OVW), which we showed previously to have potent antioxidant activity. Because some simple phenols and polyphenols with antioxidant activity have shown varying anti-inflammatory activities, we tested OVW and HT for their ability to inhibit the production of tumor necrosis factor-alpha (TNF-alpha), a pivotal cytokine in inflammation. In lipopolysaccharide (LPS)-treated BALB/c mice, a model system of inflammation, OVW at a dose of 125 mg/mouse (500 mg/kg) reduced serum TNF-alpha levels by 95%. In the human monocyte cell line, THP-1, OVW reduced LPS-induced TNF-alpha production by 50% at a concentration of 0.5 g/L (equivalent to approximately 0.03 g/L simple and polyphenols). OVW had no toxic effects in vitro or in vivo. When OVW was combined with glucosamine, a component of proteoglycans and glycoproteins that was shown to decrease inducible nitric oxide synthase production in cultured macrophage cells, the 2 compounds acted synergistically to reduce serum TNF-alpha levels in LPS-treated mice. These findings suggest that a combination of OVW and glucosamine may be an effective therapy for a variety of inflammatory processes, including rheumatoid and osteoarthritis. PMID:15930455

  2. Improved antioxidant and anti-inflammatory potential in mice consuming sour cherry juice (Prunus Cerasus cv. Maraska).

    PubMed

    Sari?, Ana; Sobocanec, Sandra; Balog, Tihomir; Kusi?, Borka; Sverko, Visnja; Dragovi?-Uzelac, Verica; Levaj, Branka; Cosi?, Zrinka; Macak Safranko, Zeljka; Marotti, Tatjana

    2009-12-01

    The present investigation tested the in vivo antioxidant efficacy (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase; Gpx), lipid peroxidation (LPO) and anti-inflammatory properties (cyclooxygenase-2; COX-2) of sour cherry juices obtained from an autochthonous cultivar (Prunus cerasus cv. Maraska) that is grown in coastal parts of Croatia. Antioxidant potential was tested in mouse tissue (blood, liver, and brain), LPO (liver, brain) and anti-inflammatory properties in glycogen elicited macrophages. Additionally, the concentration of cyanidin-3-glucoside, cyanidin-3-rutinoside, pelargonidin-3-glucoside, pelargonidin-3-rutinoside and total anthocyanins present in Prunus cerasus cv. Maraska cherry juice was determined. Mice were randomly divided into a control group (fed with commercial food pellets) and 2 experimental groups (fed with commercial food pellets with 10% or 50% of cherry juice added). Among the anthocyanins, the cyanidin-3-glucoside was present in the highest concentration. These results show antioxidant action of cherry juice through increased SOD (liver, blood) and Gpx (liver) activity and decreased LPO concentration. The study highlights cherry juice as a potent COX-2 inhibitor and antioxidant in the liver and blood of mice, but not in the brain. Thus, according to our study, Prunus cerasus cv. Maraska cherry juice might potentially be used as an antioxidant and anti-inflammatory product with beneficial health-promoting properties. PMID:19763832

  3. Antinociceptive and anti-inflammatory activities of the essential oil of Nepeta crispa Willd. in experimental rat models.

    PubMed

    Ali, Taskina; Javan, Mohammad; Sonboli, Ali; Semnanian, Saeed

    2012-01-01

    This study was conducted to evaluate the antinociceptive and anti-inflammatory activities of the essential oil of Nepeta crispa. The study was done using the tail-flick and formalin test pain models and the paw oedema model of inflammation. Male Wistar rats were used as the animal model. The essential oil dose-dependently produced analgesia in the acute pain models, including the tail-flick (p?potent anti-inflammatory effects in the formalin-induced paw inflammation model and significantly reduced the paw oedema in all applied doses (p?anti-inflammatory effect suggest both central and peripheral mechanisms of action for the essential oil obtained from N. crispa. PMID:21981349

  4. Isolation and Identification of a Flavone Apigenin from Marine Red Alga Acanthophora spicifera with Antinociceptive and Anti-Inflammatory Activities

    PubMed Central

    El Shoubaky, Gihan A.; Abdel-Daim, Mohamed M.; Mansour, Mohamed H.; Salem, Essam A.

    2016-01-01

    Physicochemical investigation of the red alga Acanthophora spicifera (Vahl) Borgesen, collected from Al-Shoaiba coast, Red Sea, Saudi Arabia, led to the isolation of a flavone from the algal tissue with acetone. Preparative chromatography on silica gel thin-layer chromatography was used for the separation of the flavone and eluted with the methanol:chloroform:ethyl acetate (1:7:2) solvent system. The physicochemical analyses infrared, mass spectra, and ultraviolet spectra in addition to shift reagents (NaOMe, NaOAc, NaOAc + H3BO3, AlCl3, and AlCl3 + HCl) were used for the identification and elucidation of the structure of the flavone compound (4,5,7-trihydroxy flavonoids). The flavone compound was identified as apigenin bycomparing its physicochemical data with those in the literature. Analgesic and anti-inflammatory activities of apigenin were evaluated. Apigenin showed promising analgesic and anti-inflammatory activities in the hot plate test and writhing test in mice as well as tail-immersion tests and carrageenan-induced paw edema and cotton pellet-induced granuloma formation in rats. It is concluded that apigenin possesses potent analgesic, anti-inflammatory, and antiproliferative activities, which might be due to the inhibition of PGE2 as well as proinflammatory cytokines such as interleukin-1β, interleukin-6, and tumor necrosis factor-α. PMID:26917974

  5. Isolation and Identification of a Flavone Apigenin from Marine Red Alga Acanthophora spicifera with Antinociceptive and Anti-Inflammatory Activities.

    PubMed

    El Shoubaky, Gihan A; Abdel-Daim, Mohamed M; Mansour, Mohamed H; Salem, Essam A

    2016-01-01

    Physicochemical investigation of the red alga Acanthophora spicifera (Vahl) Borgesen, collected from Al-Shoaiba coast, Red Sea, Saudi Arabia, led to the isolation of a flavone from the algal tissue with acetone. Preparative chromatography on silica gel thin-layer chromatography was used for the separation of the flavone and eluted with the methanol:chloroform:ethyl acetate (1:7:2) solvent system. The physicochemical analyses infrared, mass spectra, and ultraviolet spectra in addition to shift reagents (NaOMe, NaOAc, NaOAc + H3BO3, AlCl3, and AlCl3 + HCl) were used for the identification and elucidation of the structure of the flavone compound (4,5,7-trihydroxy flavonoids). The flavone compound was identified as apigenin bycomparing its physicochemical data with those in the literature. Analgesic and anti-inflammatory activities of apigenin were evaluated. Apigenin showed promising analgesic and anti-inflammatory activities in the hot plate test and writhing test in mice as well as tail-immersion tests and carrageenan-induced paw edema and cotton pellet-induced granuloma formation in rats. It is concluded that apigenin possesses potent analgesic, anti-inflammatory, and antiproliferative activities, which might be due to the inhibition of PGE2 as well as proinflammatory cytokines such as interleukin-1?, interleukin-6, and tumor necrosis factor-?. PMID:26917974

  6. Analgesic and Anti-Inflammatory Activities of the Methanolic Stem Bark Extract of Nyctanthes arbor-tristis Linn.

    PubMed Central

    Kakoti, Bibhuti Bhusan; Pradhan, Paresh; Borah, Sudarshana; Mahato, Kabita; Kumar, Mritunjay

    2013-01-01

    Stem bark of Nyctanthes arbor-tristis Linn. was extracted in methanol to evaluate their analgesic and anti-inflammatory activities. The analgesic activity was determined on Wistar albino rats by hot plate method, tail flick assay, and tail immersion method using Morphine sulphate as standard drug at a dose of 5?mg/kg of body weight and the results were expressed as mean increase in latency after drug administration??SEM. The anti-inflammatory activity was assessed by Carrageenan-induced rat paw oedema using diclofenac sodium as standard drug at a dose of 100?mg/kg of body weight and expressed in terms of mean increase in paw volume??SEM. Stem bark extract was given at a dose of 250?mg/kg and 500?mg/kg of body weight. Both standard drugs and extract were administered orally to the animals. Control received distilled water orally. Results showed that Nyctanthes arbor-tristis Linn. had potent analgesic and anti-inflammatory activities. PMID:23984409

  7. Pharmacoeconomics of nonsteroidal anti-inflammatory drugs (NSAIDs).

    PubMed

    Wynne, H A; Campbell, M

    1993-02-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used for the relief of the symptoms of osteoarthritis (OA), rheumatoid arthritis (RA), sprains and strains, sports injuries and menstrual disorders, and have a small role in the management of patent ductus arteriosus in the neonate. In patients with RA, symptom relief through use of NSAIDs is firmly established, although it remains unclear whether they influence the course and outcome of the disease. For the average patient with RA taking NSAIDs, the attributable risk of hospitalisation with gastrointestinal problems related to NSAIDs is 1.3 to 1.6% annually and risk of death is 0.15%. Associations of therapy with risk are greatest with age, corticosteroid use and previous NSAID-related gastrointestinal adverse effects, and less marked with disability and high NSAID dose. These are important data in attempting to balance risk of therapy with clinical efficacy in an individual patient, and assessing the cost-effectiveness of prophylaxis. Although half of all NSAID consumption is for control of pain associated with degenerative conditions, their superiority over simple analgesics in osteoarthritis is poorly documented. This finding supports the use of the simple analgesic paracetamol (acetaminophen) as the preferred therapy of osteoarthritis, especially when its lower cost and low incidence of adverse effects are taken into consideration. Consistent differences in clinical effectiveness of individual NSAIDs have not been demonstrated, although unpredictable interpatient variation in response to individual agents is of considerable clinical importance, and a more expensive NSAID may prove cost effective for some patients. Cost effectiveness can be improved by a self-adjusted dosage regime which also leads to lower overall drug consumption. The adverse gastrointestinal effects of these drugs account for about 30% of the overall cost of arthritis treatment, and although studies to date have been too limited to assess the relative risk of gastrointestinal toxicity of the different NSAIDs reliably, ibuprofen appears to be one of the least hazardous, and azapropazone one of the most hazardous. Although the effectiveness of prophylaxis with H 2-antagonists and with prostaglandin E 1 analogues (prostaglandin-E 1 analogues) has been established, estimates of cost-benefit ratios are widely divergent. To establish the most cost-effective therapy with NSAIDs, more data are required to establish multivariable risk profiles for identification of patients at particular risk, the optimal drug, and its optimal dosage and duration of treatment.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:10146960

  8. Appraisal of antioxidant and anti-inflammatory activities of various extracts from the fruiting bodies of Pleurotus florida.

    PubMed

    Im, Kyung Hoan; Nguyen, Trung Kien; Shin, Do Bin; Lee, Kyung Rim; Lee, Tae Soo

    2014-01-01

    Pleurotus florida has been widely used for nutritional and medicinal purposes. The present study was conducted to evaluate the antioxidant and anti-inflammatory effects of the fruiting bodies of P. florida extracted with acetone, methanol, and hot water. The antioxidant activities of the acetone and methanol extracts of P. florida showed stronger inhibition of ?-carotene-linoleic acid compared to that of the hot water extract. The acetone extract (8 mg/mL) showed a high reducing power of 1.86. The acetone and methanol extracts showed more effective DPPH radical scavenging activities than the hot water extract. The chelating effect of the extracts at lower concentrations was significantly effective compared to that of the positive control. Thirteen phenolic compounds were detected from acetonitrile and hydrochloric acid solvent extracts. Nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in lipolysaccahride (LPS) stimulated RAW 264.7 cells, a murine macrophage cell line, were inhibited significantly by the mushroom extracts in a concentration dependent manner. The anti-inflammatory activity on carrageenan-induced edema in the rat hind-paw reduced significantly by the mushroom extracts. Therefore, we have demonstrated that P. florida fruiting bodies possess antioxidant and anti-inflammatory activites related to their inhibitory activities on NO production, iNOS protein expression, and carrageenan-induced paw edema in rats. The results suggest that the fruiting bodies of P. florida are a good source of natural antioxidant and anti-inflammatory agents. PMID:24647033

  9. Antioxidant and anti-inflammatory activities of selected medicinal plants and fungi containing phenolic and flavonoid compounds

    PubMed Central

    2012-01-01

    Background This study aims to determine the relationship between the antioxidant and anti-inflammatory activities of the thirteen herbs and two fungi extracts, and their total phenolic and flavonoid contents. Methods Antioxidant activities were evaluated by four assays: an antioxidant activity assay using Saccharomyces cerevisiae, a DPPH ((2, 2-diphenyl-1-picrylhydrazyl) assay to assess free radical scavenging, an assay assessing ferrous ions or iron (II) chelating ability, and a ferric reducing antioxidant power (FRAP) assay. Total phenolic and flavonoid contents were determined using the Folin-Ciocalteu and aluminium chloride methods, respectively. Anti-inflammatory activities were determined by measuring the inhibition of nitric oxide and TNF-? production in lipopolysaccharide- and interferon-?-activated J774A.1 macrophages. Their cytotoxicities against macrophages were determined by MTT assay. Results A positive linear correlation between antioxidant activities and the total phenolic and flavonoid content of the plant extracts was found. The plant extracts with high phenolic and flavonoid content also exhibited significant anti-inflammatory activity with good cell viability. Conclusion The selected herbs could be a rich source of antioxidants and free radical scavenging compounds. The levels of phenolic and flavonoid compounds were correlated with the antioxidant and anti-inflammatory activities of the extracts from the herbs. PMID:23176585

  10. Differences in Anti-Inflammatory Actions of Intravenous Immunoglobulin between Mice and Men: More than Meets the Eye

    PubMed Central

    Tjon, Angela S. W.; van Gent, Rogier; Geijtenbeek, Teunis B.; Kwekkeboom, Jaap

    2015-01-01

    Intravenous immunoglobulin (IVIg) is a therapeutic preparation of polyspecific human IgGs purified from plasma pooled from thousands of individuals. When administered at a high dose, IVIg inhibits inflammation and has proven efficacy in the treatment of various autoimmune and systemic inflammatory diseases. Importantly, IVIg therapy can ameliorate both auto-antibody-mediated and T-cell mediated immune pathologies. In the last few decades, extensive research in murine disease models has resulted in the elucidation of two novel anti-inflammatory mechanisms-of-action of IVIg: induction of Fc?RIIB expression by sialylated Fc, and stimulation of regulatory T cells. Whereas controversial findings in mice studies have recently inspired intense scientific debate regarding the validity of the sialylated Fc-Fc?RIIB model, the most fundamental question is whether these anti-inflammatory mechanisms of IVIg are operational in humans treated with IVIg. In this review, we examine the evidence for the involvement of these anti-inflammatory mechanisms in the therapeutic effects of IVIg in humans. We demonstrate that although several elements of both immune-modulatory pathways of IVIg are activated in humans, incorrect extrapolations from mice to men have been made on the molecular and cellular components involved in these cascades that warrant for critical re-evaluation of these anti-inflammatory mechanisms of IVIg in humans. PMID:25972869

  11. Anti-inflammatory potential of curcumin and quercetin in rats: role of oxidative stress, heme oxygenase-1 and TNF-?.

    PubMed

    Heeba, Gehan H; Mahmoud, Magda E; El Hanafy, Amr A

    2014-07-01

    Flavonoids are group of compounds that have been shown to possess potent anti-inflammatory effects in both cellular and animal models of inflammation. In the current study, the single and combined effects of the two flavonoids, curcumin and quercetin, against carrageenan-induced acute inflammation in rats were evaluated with emphasis on the role of oxidative stress, anti-inflammatory enzyme, heme oxygenase-1 (HO-1) and proinflammatory cytokine, tumor necrosis factor-alpha (TNF-?). Curcumin (50 mg/kg), quercetin (50 mg/kg) and a combination of both were orally administered for 14 days before carrageenan injection in rats and compared with the reference nonsteroidal anti-inflammatory drug, indomethacin (10 mg/kg). The percentage increase in paw thickness was calculated. Frozen hind paws were used for the estimation of lipid peroxides (malondialdehyde, MDA), nitric oxide (NO), reduced glutathione (GSH), TNF-? level and HO-1 messenger RNA (mRNA) expression. Formalin-fixed hind paws were used for histopathological examination. Results showed that both curcumin and quercetin caused reduction in carrageenin-induced edema and lymphocytes infiltration along with the decrease is being even higher in case of their combination. Additionally, both flavonoids reduced MDA and NO formation, and restored GSH contents in the paw. Furthermore, both flavonoids increased HO-1 mRNA expression and decreased the elevated TNF-? level. Results showed that both flavonoids moderately lowered inflammation, while their combination was more effective. Accordingly, this study suggests that the reduction in oxidative stress and modulation of HO-1 mRNA expression and TNF-? release by curcumin and quercetin may contribute to the synergistic anti-inflammatory effects of these two flavonoids upon combination. PMID:23024111

  12. Anti-inflammatory effect of dual nociceptin and opioid receptor agonist, BU08070, in experimental colitis in mice.

    PubMed

    Zieli?ska, Marta; Ben Haddou, Tanila; Cami-Kobeci, Gerta; Sa?aga, Maciej; Jarmu?, Agata; Padysz, Milena; Kordek, Radzis?aw; Spetea, Mariana; Husbands, Stephen M; Fichna, Jakub

    2015-10-15

    Endogenous opioid and nociceptin systems are widely distributed in the gastrointestinal tract where they seem to play a crucial role in maintaining the intestinal homeostasis. The aim of our study was to assess whether activation of nociceptin (NOP) and -opioid (MOP) receptors by a mixed NOP/MOP receptor agonist, BU08070, induces anti-inflammatory response in experimental colitis. The anti-inflammatory effect of BU08070 (1 mg/kg i.p.) was characterized in the mouse model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis, based on the assessment of the macroscopic and microscopic total damage scores and determination of myeloperoxidase (MPO) activity and TNF-? level in the colon. The effect of BU08070 on cell viability and NF-?B was characterized in THP-1 Blue cell line. The antinociceptive activity of BU08070 was examined in mustard oil-induced mouse model of abdominal pain. A potent anti-inflammatory effect of BU08070 (1 mg/kg i.p.) was observed as indicated by decrease in macroscopic damage score (1.880.39 vs. 5.190.43 units in TNBS alone treated mice), MPO activity (2.290.37 vs. 9.642.55 units) and TNF-? level in the colon (35.852.45 vs. 49.793.81 pg/ml). The anti-inflammatory effect of BU08070 was reversed by selective NOP and MOP receptor antagonists. BU08070 produced concentration-dependent inhibition of TNF-? and LPS-induced NF-?B activation. BU08070 exerted antinociceptive action in mice with experimental colitis. In conclusion, BU08070 significantly reduced the severity of colitis in TNBS-treated mice compared with controls. These results suggest that BU08070 is a potential therapeutic agent for inflammatory bowel diseases therapy. PMID:26404500

  13. Anti-inflammatory and immunomodulating properties of grape melanin. Inhibitory effects on paw edema and adjuvant induced disease.

    PubMed

    Avramidis, N; Kourounakis, A; Hadjipetrou, L; Senchuk, V

    1998-07-01

    Natural or synthetic melanin (CAS 8049-97-6) is a high molecular weight heteropolymer, product of the enzyme tyrosinase, found to possess radical scavenging and antioxidant functions. It was of interest, therefore, to study in detail the possible anti-inflammatory and/or immunosuppressive properties of a melanin isolated from grapes. The inhibitory effect of melanin on carrageenin-induced edema, as well as on edemas produced by other phlogistics, was remarkable suggesting that melanin interferes with the prostaglandin as well as the leukotriene and/or complement system mediated inflammation. Grape melanin showed potent inhibitory effect on adjuvant induced disease (AID) in rat, suppressing significantly the primary inflammation and almost totally the secondary lesions of arthritis. Melanin under the present experimental conditions not only strongly inhibited the in vitro lipid peroxidation of rat liver microsomal membranes, but furthermore protected the in vivo hepatic peroxidation occurring in AID rats, demonstrating its antioxidant and cytoprotective properties. The serum proinflammatory cytokines IL-1, IL-6 and TNF-a and the serum globulin fraction were elevated in AID rats, parameters which were more or less normalised by melanin treatment in contrast to the reduced serum levels of IL-2 which were not affected. Similarly to other lipoxygenase inhibitors and hydroxyl radical scavenger NSAIDs, melanin treatment did not affect IL-1 neither increased the splenic mitogenic responses, unlike the classical cyclooxygenase inhibitory NSAIDs. The subpopulation Th1 (T4+ or T8+) of lymphocytes is mainly responsible for cellular immune responses and thus their possible inhibition by melanin could lead to suppression of the development of AID, a model for cell-mediated immunity. The effect of melanin on T-cells is exhibited by the reduced spleen mitogenic responses to a T-cell mitogen and the reduced serum levels of IL-2 of treated rats. In conclusion, grape melanin is an interesting anti-inflammatory and immunomodulating natural product which appears to have multiple cellular targets within the reticuloendothelial and immune system. PMID:9706378

  14. Anti-inflammatory, anti-bacterial, and cytotoxic activity of fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio-; Ramírez-Apan, María Teresa; Gómez-Vidales, Virginia; Palacios, Eduardo; Montoya, Ascención; Ronquillo de Jesús, Elba

    2015-05-01

    Produced worldwide at 1.2m tons per year, fibrous clays are used in the production of pet litter, animal feed stuff to roof parcels, construction and rheological additives, and other applications needing to replace long-fiber length asbestos. To the authors' knowledge, however, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the anti-inflammatory, anti-bacterial, and cytotoxic activity by sepiolite (Vallecas, Spain) and palygorskite (Torrejon El Rubio, Spain). The anti-inflammatory activity was determined using the 12-O-tetradecanoylphorbol-13-acetate (TPA) and myeloperoxidase (MPO) methods. Histological cuts were obtained for quantifying leukocytes found in the epidermis. Palygorkite and sepiolite caused edema inhibition and migration of neutrophils ca. 68.64 and 45.54%, and 80 and 65%, respectively. Fibrous clays yielded high rates of infiltration, explained by cleavage of polysomes and exposure of silanol groups. Also, fibrous clays showed high inhibition of myeloperoxidase contents shortly after exposure, but decreased sharply afterwards. In contrast, tubular clays caused an increasing inhibition of myeloperoxidase with time. Thus, clay structure restricted the kinetics and mechanism of myeloperoxidase inhibition. Fibrous clays were screened in vitro against human cancer cell lines. Cytotoxicity was determined using the protein-binding dye sulforhodamine B (SRB). Exposing cancer human cells to sepiolite or palygorskite showed growth inhibition varying with cell line. This study shows that fibrous clays served as an effective anti-inflammatory, limited by chemical transfer and cellular-level signals responding exclusively to an early exposure to clay, and cell viability decreasing significantly only after exposure to high concentrations of sepiolite. PMID:25819359

  15. Anti-inflammatory, Anti-estrogenic, and Anti-implantation Activity of Bergia suffruticosa (Delile) Fenzl

    PubMed Central

    Bind, Sandeep Kumar; Jivrajani, Mehul; Anandjiwala, Sheetal; Nivsarkar, Manish

    2015-01-01

    Background: Bergia suffruticosa (Delile) Fenzl (Syn. Bergia odorata Edgew) (Elatinaceae family) is used traditionally to repair bones and is applied as a poultice on sores. It is also used for stomach troubles and as an antidote to scorpion stings. So far, very little scientific work has been reported to validate its ethnomedical uses in the alleviation of pain, bone repair, etc., Objective: This study was designed to explore the anti-inflammatory and anti-implantation potential of n-hexane extract of B. suffruticosa whole plant in mice along with identification of its chemical constituents. Materials and Methods: n-Hexane extract of B. suffruticosa whole plant was screened for acute and chronic anti-inflammatory activity followed by an anti-estrogenic activity. Eventually, n-hexane extract was tested for anti-implantation activity by exploiting markers of uterine receptivity, lipid peroxidation, and superoxide enzyme activity. The extract was administered orally at a dose of 100 mg/kg body weight in each study. Results: Thin layer chromatography fingerprint profile of n-hexane extract revealed the presence of lupeol and β-sitosterol. The n-hexane extract reduced the edema by 80% in acute inflammation, whereas it reduced edema to 75% on the 5th day in chronic inflammation. The n-hexane extract reduced elevated malonaldehyde level from 6 to 2.5 nmol/g × 10−5 and increased superoxide dismutase enzyme activity from 0 to 350 units/g in treated animals on the 5th day of pregnancy. Moreover, extract decreased uterine weight from 0.33 to 0.2 g in estradiol treated animals. Conclusion: These results indicate that n-hexane extract of B. suffruticosa is having potent anti-inflammatory, anti-estrogenic, and anti-implantation activity. This is the first report of all the pharmacological activities of B. suffruticosa mentioned above. SUMMARY TLC fingerprint profile of n-hexane extract of Bergia suffruticosa whole plant revealed the presence of lupeol and β-sitosteroln-Hexane extract showed in vivo anti-inflammatory activity in both acute and chronic model of inflammation in ratsn-Hexane extract possess significant anti-estrogenic activityn-Hexane extract altered the levels superoxide anion radical and superoxide dismutase enzyme activity during the blastocyst implantationAnti-implantation activity of n-hexane extract is attributed to its anti-inflammatory and anti-estrogenic potential. Abbreviations used: TLC: Thin layer chromatography; LPO: Lipid peroxidation; SOD: Superoxide dismutase; B. suffruticosa: Bergia suffruticosa; TNF-α: Tumor necrosis factor-α; NO: Nitric oxide; IL-1: Interleukin-1; LIF: Leukemia inhibitory factor; CSF-1: Colony-stimulating factor; COX: Cyclooxygenase; SDS: Sodium dodecyl sulfate; IAEC: Animal House Ethics Committee; CPCSEA: Committee for the Purpose of Control and Supervision of Experiments on Animals; HBSS: Hank's balanced salt solution; MDA: Malonaldehyde; and TBA: Thiobarbituric acid. PMID:26929574

  16. Heterotheca inuloides: anti-inflammatory and analgesic effect.

    PubMed

    Gen, R M; Segura, L; Adzet, T; Marin, E; Iglesias, J

    1998-03-01

    Heterotheca inuloides Cass. (Asteraceae) is used in the traditional medicine of Mexico. The aqueous extract obtained from the flowers of H. inuloides was assessed for anti-inflammatory activity by carrageenan-induced edema test. At 100 mg/kg, i.p, it produced 29% inhibition of inflammation. Ethyl ether (HI-1), butanol (HI-2) and aqueous fraction (HI-3) were obtained from the aqueous extract. The biological assay, by carrageenan-induced edema test, gave the following values (% inhibition): HI-1, 19.9; HI-2, 58.0 and HI-3, 30.0. HI-2 was significantly more effective than HI-1 and HI-3. The dose-effect curve of HI-2 was obtained and the calculated ED50 was 29.7 (22.5-39.2) mg/kg. The peritoneal examination after the treatment with HI-2 showed that the anti-inflammatory action of H. inuloides was not due to an irritating effect at the injection site. At 50-100 mg/kg, i.p., HI-2 inhibited inflammation induced by dextran (38.9-68.1% inhibition) and arachidonic acid (0-33.9%). No effect was observed at the same doses for zymosan or C16-paf-induced edema. In addition, HI-2 reduced abdominal constrictions in mice following injection of acetic acid: at 50-100 mg/kg, it gave 73.8-78.2% inhibition. The ulcerogenic assay showed that ulcer indices after HI-2 i.p. treatment were 0.5 +/- 0.5 at 50 mg/kg and 1.2 +/- 0.4 at 100 mg/kg. The results showed related anti-inflammatory activity and the analgesic effect of HI-2. PMID:9582006

  17. Anti-inflammatory activity of Euphorbia aegyptiaca extract in rats

    PubMed Central

    Abo-dola, Marium A.; Lutfi, Mohamed F.

    2016-01-01

    Background There were no studies on the anti-inflammatory activity of Euphorbia aegyptiaca, though it is commonly used by Sudanese herbalists in the treatment of rheumatoid arthritis. Objectives To determine phytochemical constituents of Euphorbia aegyptiaca To investigate the anti-inflammatory activity of Euphorbia aegyptiaca in rats. Methodology Plant material was extracted by ethanol and phytochemical screening was done according to standard methods. The thickness of Albino rats’ paws were measured before injection of 0.1 ml of 1% formalin in the sub planter region and then, 1, 2, 3, 4 and 24 hours after oral dose of ethanolic extract of Euphorbia aegyptiaca at a rate of 400mg/kg, 800mg/kg, indomethacin (5mg/kg) and normal saline (5ml/kg). Edema inhibition percentage (EI%) and mean paw thickness (MPT) were measured in the different groups and compared using appropriate statistical methods. Results The phytochemical screening revealed the presence of saponins, cumarins, flavonoids, tannins, sterols, triterpenes, and absence of alkaloids, anthraquinones glycosides and cyanogenic glycosides. The mean of EI% of rats treated with indomethacin at a dose of 5 mg/kg over different time intervals (64.0%) was significantly lower compared to those treated with Euphorbia aegyptiaca at a dose of 800 mg/kg (75.0%, P< 0.001), but higher compared to rats treated at higher dose of 400 mg/kg (57.4%, P< 0.001). In contrast, MPT of rats treated with indomethacin at a dose of 5 mg/kg (6.5±1.1 mm) was significantly higher compared to those treated with Euphorbia aegyptiaca at a dose of 800 mg/kg (6.1±.7 mm, P< 0.001) as well as 400 mg/kg (5.9±.5, P< 0.001). Conclusion Euphorbia aegyptiaca ethanolic extract has a sustained dose-dependent anti-inflammatory activity. PMID:27004059

  18. Effects of C-glycosylation on anti-diabetic, anti-Alzheimer's disease and anti-inflammatory potential of apigenin.

    PubMed

    Choi, Jae Sue; Islam, Md Nurul; Ali, Md Yousof; Kim, Eon Ji; Kim, Young Myeong; Jung, Hyun Ah

    2014-02-01

    Apigenin has gained particular interests in recent years as a beneficial and health promoting agent because of its low intrinsic toxicity. Vitexin and isovitexin, naturally occurring C-glycosylated derivatives of apigenin, have been known to possess potent anti-diabetic, anti-Alzheimer's disease (anti-AD), and anti-inflammatory activities. The present study was designed to investigate the anti-diabetic, anti-AD, and anti-inflammatory potential of apigenin and its two C-glycosylated derivatives, vitexin and isovitexin by in vitro assays including rat lens aldose reductase (RLAR), human recombinant aldose reductase (HRAR), advanced glycation endproducts (AGEs), protein tyrosine phosphatase 1B (PTP1B), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), β-site amyloid precursor (APP) cleaving enzyme 1 (BACE1), and nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Among them, isovitexin was found as the most potent inhibitor against RLAR, HRAR, AGE, AChE, and BChE while vitexin showed the most potent PTP1B inhibitory activity. Despite the relatively weak anti-diabetic and anti-AD potentials, apigenin showed powerful antiinflammatory activity by inhibiting NO production and iNOS and COX-2 expression while vitexin and isovitexin were inactive. Therefore, it could be speculated that C-glycosylation of apigenin at different positions might be closely linked to relative intensity of anti-diabetic, anti-AD, and anti-inflammatory potentials. PMID:24291393

  19. Natural anti-inflammatory agents for pain relief

    PubMed Central

    Maroon, Joseph C.; Bost, Jeffrey W.; Maroon, Adara

    2010-01-01

    The use of both over-the-counter and prescription nonsteroidal medications is frequently recommended in a typical neurosurgical practice. But persistent long-term use safety concerns must be considered when prescribing these medications for chronic and degenerative pain conditions. This article is a literature review of the biochemical pathways of inflammatory pain, the potentially serious side effects of nonsteroidal drugs and commonly used and clinically studied natural alternative anti-inflammatory supplements. Although nonsteroidal medications can be effective, herbs and dietary supplements may offer a safer, and often an effective, alternative treatment for pain relief, especially for long-term use. PMID:21206541

  20. Anti-inflammatory anthraquinones from the crinoid Himerometra magnipinna.

    PubMed

    Lin, Yen-You; Tsai, Su-June; Chiang, Michael Y; Wen, Zhi-Hong; Su, Jui-Hsin

    2015-02-01

    Chemical investigation of a crinoid Himerometra magnipinna has afforded three anthraquinones (1-3), including one new metabolite, (+)-rhodoptilometrin (1). The structures of these compounds were elucidated on the basis of their spectroscopic data and the absolute configuration of 1 was further confirmed by single-crystal X-ray diffraction analysis. In the in vitro anti-inflammatory effects test, compound 2 was found to significantly inhibit the accumulation of the pro-inflammatory iNOS protein of the LPS-stimulated RAW264.7 macrophage cells. PMID:25920272

  1. NSAIDs: eNdocannabinoid stimulating anti-inflammatory drugs?

    PubMed

    Fowler, Christopher J

    2012-09-01

    Read any pharmacology textbook and the message is clear: nonsteroidal anti-inflammatory drugs (NSAIDs) act by inhibiting the activity of cyclooxygenase (COX) and thereby the production of prostaglandins. However, evidence is accumulating that NSAIDs involve the endocannabinoid system in their actions, and that such effects may pave the way towards the design of new analgesics that are not plagued with the gastrointestinal and cardiovascular adverse actions that are associated with this class of drugs. In this Opinion article, our current understanding of the involvement of the endocannabinoid system in the actions of NSAIDs is described, and the ways in which this can lead to novel drug development is discussed. PMID:22664342

  2. Anti-inflammatory and immunosuppressive drugs and reproduction

    PubMed Central

    stensen, Monika; Khamashta, Munther; Lockshin, Michael; Parke, Ann; Brucato, Antonio; Carp, Howard; Doria, Andrea; Rai, Raj; Meroni, Pierluigi; Cetin, Irene; Derksen, Ronald; Branch, Ware; Motta, Mario; Gordon, Caroline; Ruiz-Irastorza, Guillermo; Spinillo, Arsenio; Friedman, Deborah; Cimaz, Rolando; Czeizel, Andrew; Piette, Jean Charles; Cervera, Ricard; Levy, Roger A; Clementi, Maurizio; De Carolis, Sara; Petri, Michelle; Shoenfeld, Yehuda; Faden, David; Valesini, Guido; Tincani, Angela

    2006-01-01

    Rheumatic diseases in women of childbearing years may necessitate drug treatment during a pregnancy, to control maternal disease activity and to ensure a successful pregnancy outcome. This survey is based on a consensus workshop of international experts discussing effects of anti-inflammatory, immunosuppressive and biological drugs during pregnancy and lactation. In addition, effects of these drugs on male and female fertility and possible long-term effects on infants exposed to drugs antenatally are discussed where data were available. Recommendations for drug treatment during pregnancy and lactation are given. PMID:16712713

  3. Biogenic Synthesis, Purification, and Chemical Characterization of Anti-inflammatory Resolvins Derived from Docosapentaenoic Acid (DPAn-6)

    PubMed Central

    Dangi, Bindi; Obeng, Marcus; Nauroth, Julie M.; Teymourlouei, Mah; Needham, Micah; Raman, Krishna; Arterburn, Linda M.

    2009-01-01

    Enzymatically oxygenated derivatives of the ω-3 fatty acids cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) and cis-5,8,11,14,17-eicosapentaenoic acid, known as resolvins, have potent inflammation resolution activity (Serhan, C. N., Clish, C. B., Brannon, J., Colgan, S. P., Chiang, N., and Gronert, K. (2000) J. Exp. Med. 192, 1197–1204; Hong, S., Gronert, K., Devchand, P. R., Moussignac, R., and Serhan, C. N. (2003) J. Biol. Chem. 278, 14677–14687). Our objective was to determine whether similar derivatives are enzymatically synthesized from other C-22 fatty acids and whether these molecules possess inflammation resolution properties. The reaction of DHA, DPAn-3, and DPAn-6 with 5-, 12-, and 15-lipoxygenases produced oxylipins, which were identified and characterized by liquid chromatography coupled with tandem mass-spectrometry. DPAn-6 and DPAn-3 proved to be good substrates for 15-lipoxygenase. 15-Lipoxygenase proved to be the most efficient enzyme of the three tested for conversion of long chain polyunsaturated fatty acids to corresponding oxylipins. Since DPAn-6 is a major component of Martek DHA-S™ oil, we focused our attention on reaction products obtained from the DPAn-6 and 15-lipoxygenase reaction. (17S)-hydroxy-DPAn-6 and (10,17S)-dihydroxy-DPAn-6 were the main products of this reaction. These compounds were purified by preparatory high performance liquid chromatography techniques and further characterized by NMR, UV spectrophotometry, and tandem mass spectrometry. We tested both compounds in two animal models of acute inflammation and demonstrated that both compounds are potent anti-inflammatory agents that are active on local intravenous as well as oral administration. These oxygenated DPAn-6 compounds can thus be categorized as a new class of DPAn-6-derived resolvins. PMID:19324874

  4. Magnetoliposomes Loaded with Poly-Unsaturated Fatty Acids as Novel Theranostic Anti-Inflammatory Formulations

    PubMed Central

    Calle, Daniel; Negri, Viviana; Ballesteros, Paloma; Cerdn, Sebastin

    2015-01-01

    We describe the preparation, physico-chemical characterization and anti-inflammatory properties of liposomes containing the superparamagnetic nanoparticle Nanotex, the fluorescent dye Rhodamine-100 and omega-3 polyunsaturated fatty acid ethyl ester (?-3 PUFA-EE), as theranostic anti-inflammatory agents. Liposomes were prepared after drying chloroform suspensions of egg phosphatidylcholine, hydration of the lipid film with aqueous phases containing or not Nanotex, Rhodamine-100 dye or ?-3 PUFA-EE, and eleven extrusion steps through nanometric membrane filters. This resulted in uniform preparations of liposomes of approximately 200 nm diameter. Extraliposomal contents were removed from the preparation by gel filtration chromatography. High Resolution Magic Angle Spinning 1H NMR Spectroscopy of the liposomal preparations containing ?-3 PUFA-EE revealed well resolved 1H resonances from highly mobile ?-3 PUFA-EE, suggesting the formation of very small (ca. 10 nm) ?-3 PUFA-EE nanogoticules, tumbling fast in the NMR timescale. Chloroform extraction of the liposomal preparations revealed additionally the incorporation of ?-3 PUFA-EE within the membrane domain. Water diffusion weighted spectra, indicated that the goticules of ?-3 PUFA-EE or its insertion in the membrane did not affect the average translational diffusion coefficient of water, suggesting an intraliposomal localization, that was confirmed by ultrafiltration. The therapeutic efficacy of these preparations was tested in two different models of inflammatory disease as inflammatory colitis or the inflammatory component associated to glioma development. Results indicate that the magnetoliposomes loaded with ?-3 PUFA-EE allowed MRI visualization in vivo and improved the outcome of inflammatory disease in both animal models, decreasing significantly colonic inflammation and delaying, or even reversing, glioma development. Together, our results indicate that magnetoliposomes loaded with ?-3 PUFA-EE may become useful anti-inflammatory agents for image guided drug delivery. PMID:25767616

  5. Salivary gland derived peptides as a new class of anti-inflammatory agents: review of preclinical pharmacology of C-terminal peptides of SMR1 protein

    PubMed Central

    2010-01-01

    The limitations of steroidal and non steroidal anti-inflammatory drugs have prompted investigation into other biologically based therapeutics, and identification of immune selective anti-inflammatory agents of salivary origin. The traditional view of salivary glands as accessory digestive structures is changing as their importance as sources of systemically active immunoregulatory and anti-inflammatory factors is recognized. Salivary gland involvement in maintenance of whole body homeostasis is regulated by the nervous system and thus constitutes a "neuroendocrine axis". The potent anti-inflammatory activities, both in vivo and in vitro, of the tripeptide Phe-Glu-Gly (FEG) are reviewed. FEG is a carboxyl terminal peptide of the prohormone SMR1 identified in the rat submandibular salivary gland, The D-isomeric form (feG) mimics the activity of its L-isomer FEG. Macropharmacologically, feG attenuates the cardiovascular and inflammatory effects of endotoxemia and anaphylaxis, by inhibition of hypotension, leukocyte migration, vascular leak, and disruption of pulmonary function and intestinal motility. Mechanistically, feG affects activated inflammatory cells, especially neutrophils, by regulating integrins and inhibiting intracellular production of reactive oxygen species. Pharmacodynamically, feG is active at low doses (100 μg/kg) and has a long (9-12 hour) biological half life. As a therapeutic agent, feG shows promise in diseases characterized by over exuberant inflammatory responses such as systemic inflammatory response syndrome and other acute inflammatory diseases. Arthritis, sepsis, acute pancreatitis, asthma, acute respiratory inflammation, inflammatory bowel disease, and equine laminitis are potential targets for this promising therapeutic peptide. The term "Immune Selective Anti-Inflammatory Derivatives" (ImSAIDs) is proposed for salivary-derived peptides to distinguish this class of agents from corticosteroids and nonsteroidal anti-inflammatory drugs. PMID:20920210

  6. Evaluation of Anti-Inflammatory Activity of Aqueous Extract of Leaves of Solanum Melongena Linn. in Experimental Animals

    PubMed Central

    Maniyar, Yasmeen A

    2015-01-01

    Introduction: Aqueous extract of leaves of Solanum melongena Linn was investigated for its anti-inflammatory activity. Materials and Methods: Acute oral toxicity study according to OECD425 guidelines was done to find out the LD50 of test drug. Carrageenan induced paw oedema method in Wistar Albino rats were used in this study. Aspirin in the dose of 300mg/kg was used as the standard drug and three doses of aqueous extract of leaves of Solanum melongena L. (100mg/kg, 200mg/kg, 400mg/kg b.w.) was used as the test drug. The results were measured at 1st h, 3rd h, and 5th h after the carrageenan injection. Results: In acute oral toxicity study none of the animals died at the dose of 2000mg/kg. Aqueous extract of Solanum melongena Linn leaf in the dose of 200mg/kg showed significant anti-inflammatory activity (p <0.05) at 3rd hr and highly significant anti-inflammatory activity (p<0.001) at 5th hr; in the dose of 400 mg/kg, test drug showed p<0.01 at 3rd and p<0.001 at 5th hr and in the dose of 100mg/kg it showed significant (p<0.05) anti-inflammatory activity at 5th hr. In doses of 200mg/kg and 400 mg/kg of aqueous extract of S. melongena L showed the percentage of inhibition of 42.62% which is less than the standard drug aspirin which showed 64.5% inhibition. Conclusion: Aqueous extract of leaves of Solanum melongena Linn has anti-inflammatory activity. PMID:25738003

  7. Pterostilbene exerts an anti-inflammatory effect via regulating endoplasmic reticulum stress in endothelial cells.

    PubMed

    Liu, Jun; Fan, Chongxi; Yu, Liming; Yang, Yang; Jiang, Shuai; Ma, Zhiqiang; Hu, Wei; Li, Tian; Yang, Zhi; Tian, Tian; Duan, Weixun; Yu, Shiqiang

    2016-01-01

    Pterostilbene (PT), an analog of resveratrol, exerts a potent anti-inflammatory effect. However, the protective effects of PT against inflammation in endothelial cells have not been elucidated. Previous studies have confirmed that endoplasmic reticulum stress (ERS) plays an important role in regulating the pathological process of endothelial cell inflammation. In this study, we explored the effect of PT on the tumor necrosis factor-? (TNF-?)-induced inflammatory response in human umbilical vein endothelial cells (HUVECs) and elaborated the role of ERS in this process. TNF-? treatment significantly upregulated the levels of inflammation-related molecules in cell culture media, increased the adhesion of monocytes to HUVECs, and enhanced the expression of the MMP9 and ICAM proteins in HUVECs. Additionally, TNF-? potently increased ERS-related protein levels, such as GRP78 and p-eIF2?. However, PT treatment reversed the increased production of inflammatory cytokines and the adhesion of monocytes to HUVECs, as well as reduced the TNF-?-induced effects exerted by ERS-related molecules. Furthermore, thapsigargin (THA), an ERS inducer, attenuated the protective effect of PT against TNF-?-induced inflammation and ERS in HUVECs. Additionally, the downregulation of ERS signaling using siRNA targeting eIF2? and IRE1 not only inhibited ERS-related molecules but also simulated the therapeutic effects of PT on TNF-?-induced inflammation. In summary, PT treatment potently attenuates inflammation in vascular endothelial cells, which at least partly depends on the reduction of ERS. PMID:26551859

  8. Synthesis and biological evaluation of quinic acid derivatives as anti-inflammatory agents.

    PubMed

    Zeng, Kui; Thompson, Karin Emmons; Yates, Charles R; Miller, Duane D

    2009-09-15

    Quinic acid (QA) esters found in hot water extracts of Uncaria tomentosa (a.k.a. cat's claw) exert anti-inflammatory activity through mechanisms involving inhibition of the pro-inflammatory transcription factor nuclear factor kappa B (NF-kappaB). Herein, we describe the synthesis and biological testing of novel QA derivatives. Inhibition of NF-kappaB was assessed using A549 (Type II alveolar epithelial-like) cells that stably express a secreted alkaline phosphatase (SEAP) reporter driven by an NF-kappaB response element. A549-NF-kappaB cells were stimulated with TNF-alpha (10 ng/mL) in the presence or absence of QA derivative for 18 hours followed by measurement of SEAP activity. Amide substitution at the carboxylic acid position yielded potent inhibitors of NF-kappaB. A variety of modifications to the amide substitution were tolerated with the N-propyl amide derivative being the most potent. Further examination of the SAR demonstrated that acetylation of the hydroxyl groups reduced NF-kappaB inhibitory activity. QA amide derivatives lacked anti-oxidant activity and were found to be neither anti-proliferative nor cytotoxic at concentrations up to 100 microM. In conclusion, we have discovered a novel series of non-toxic QA amides that potently inhibit NF-kappaB, despite their lack of anti-oxidant activity. Mechanistic studies and pre-clinical efficacy studies in various inflammatory animal models are on-going. PMID:19674895

  9. Synthesis and anti-inflammatory testing of some new compounds incorporating 5-aminosalicylic acid (5-ASA) as potential prodrugs.

    PubMed

    Abdel-Alim, Abdel-Alim Mohamed; El-Shorbagi, Abdel-Nasser Ahmed; Abdel-Moty, Samia Galal; Abdel-Allah, Hajjaj Hassan Mohamed

    2005-06-01

    This work includes the synthesis of 15 final compounds (6a-h and 7b-h) as prodrugs of 5-ASA in the form of the acid itself, esters and amides linked by an amide linkage through a spacer to the endocyclic ring N of nicotinamide. Also, 15 new intermediate compounds were prepared. The target compounds (6b, 6f, 7b, and 7e-h) revealed potent analgesic and anti-inflammatory activities in comparison to sulfasalazine and 5-ASA. In addition, ulcerogenicity, LD50, in vivo and in vitro metabolism of compound 7f were determined. PMID:16042070

  10. Induction of anti-inflammatory cytokine expression by IPNV in persistent infection.

    PubMed

    Reyes-Cerpa, Sebastián; Reyes-López, Felipe; Toro-Ascuy, Daniela; Montero, Ruth; Maisey, Kevin; Acuña-Castillo, Claudio; Sunyer, J Oriol; Parra, David; Sandino, Ana María; Imarai, Mónica

    2014-12-01

    Infectious Pancreatic Necrosis Virus (IPNV) is the agent of a well-characterized acute disease that produces a systemic infection and high mortality in farmed fish species but also persistent infection in surviving fish after outbreaks. Because viral persistence of susceptible mammal hosts appears to be associated with the modulation of anti-inflammatory cytokine expression, in this study we examined the expression levels of key pro- and anti-inflammatory cytokines in kidney and spleen of trout, as well as humoral immune response (IgM and IgT) during experimental persistent viral infection and in the acute phase of infection as a comparison. IPNV infection in rainbow trout resulted in a distinct profile of cytokine expression depending on the type of infection, acute or persistent. Levels of early pro-inflammatory cytokines, IL-1β and IL-8, did not increase in the head kidney of the fish with persistent asymptomatic infection but increased in some of the symptomatic infected fish. The antiviral cytokine IFNα was not significantly induced in any of the infected fish groups. The level of expression of the Th1-related cytokine IL-12 was significantly higher in trout with persistent asymptomatic infection than in symptomatic fish. This was also accompanied by an increase in IFNγ. The anti-inflammatory cytokines IL-10 and TGF-β1 had distinct expression profiles. While IL-10 expression increased in all infected fish, TGF-β1 was only up-regulated in fish with persistent infection. All infected fish had significantly lower total IgM levels than the non-infected fish whereas IgT levels did not change. Specific and neutralizing antibodies against IPNV were not observed in acute and persistent infection except in the group of fish with the lowest degree of clinical signs. Interestingly, the lack of humoral immune response could be associated with the high expression of anti-inflammatory cytokines, which might inhibit antibody production. The balance between pro-inflammatory Th1 type cytokines and the regulatory cytokines could explain the high percentage of survival and the resolution of the inflammatory response in the IPNV-infected fish but also the establishment of viral persistence. PMID:25193394

  11. Novel methylxanthine derivative-mediated anti-inflammatory effects in inflammatory bowel disease.

    PubMed

    Lee, In-Ah; Kamba, Alan; Low, Daren; Mizoguchi, Emiko

    2014-02-01

    Family 18 chitinases have a binding capacity with chitin, a polymer of N-acetylglucosamine. Recent studies strongly suggested that chitinase 3-like 1 (CHI3L1, also known as YKL-40) and acidic mammalian chitinase, the two major members of family 18 chitinases, play a pivotal role in the pathogenesis of inflammatory bowel disease (IBD), bronchial asthma and several other inflammatory disorders. Based on the data from high-throughput screening, it has been found that three methylxanthine derivatives, caffeine, theophylline, and pentoxifylline, have competitive inhibitory effects against a fungal family 18 chitinase by specifically interacting with conserved tryptophans in the active site of this protein. Methylxanthine derivatives are also known as adenosine receptor antagonists, phosphodiesterase inhibitors and histone deacetylase inducers. Anti-inflammatory effects of methylxanthine derivatives have been well-documented in the literature. For example, a beneficial link between coffee or caffeine consumption and type 2 diabetes as well as liver cirrhosis has been reported. Furthermore, theophylline has a long history of being used as a bronchodilator in asthma therapy, and pentoxifylline has an immuno-modulating effect for peripheral vascular disease. However, it is still largely unknown whether these methylxanthine derivative-mediated anti-inflammatory effects are associated with the inhibition of CHI3L1-induced cytoplasmic signaling cascades in epithelial cells. In this review article we will examine the above possibility and summarize the biological significance of methylxanthine derivatives in intestinal epithelial cells. We hope that this study will provide a rationale for the development of methylxanthine derivatives, in particular caffeine, -based anti-inflammatory therapeutics in the field of IBD and IBD-associated carcinogenesis. PMID:24574789

  12. Novel Anti-inflammatory Activity of Epoxyazadiradione against Macrophage Migration Inhibitory Factor

    PubMed Central

    Alam, Athar; Haldar, Saikat; Thulasiram, Hirekodathakallu V.; Kumar, Rahul; Goyal, Manish; Iqbal, Mohd Shameel; Pal, Chinmay; Dey, Sumanta; Bindu, Samik; Sarkar, Souvik; Pal, Uttam; Maiti, Nakul C.; Bandyopadhyay, Uday

    2012-01-01

    Macrophage migration inhibitory factor (MIF) is responsible for proinflammatory reactions in various infectious and non-infectious diseases. We have investigated the mechanism of anti-inflammatory activity of epoxyazadiradione, a limonoid purified from neem (Azadirachta indica) fruits, against MIF. Epoxyazadiradione inhibited the tautomerase activity of MIF of both human (huMIF) and malaria parasites (Plasmodium falciparum (PfMIF) and Plasmodium yoelii (PyMIF)) non-competitively in a reversible fashion (Ki, 2.11–5.23 μm). Epoxyazadiradione also significantly inhibited MIF (huMIF, PyMIF, and PfMIF)-mediated proinflammatory activities in RAW 264.7 cells. It prevented MIF-induced macrophage chemotactic migration, NF-κB translocation to the nucleus, up-regulation of inducible nitric-oxide synthase, and nitric oxide production in RAW 264.7 cells. Epoxyazadiradione not only exhibited anti-inflammatory activity in vitro but also in vivo. We tested the anti-inflammatory activity of epoxyazadiradione in vivo after co-administering LPS and MIF in mice to mimic the disease state of sepsis or bacterial infection. Epoxyazadiradione prevented the release of proinflammatory cytokines such as IL-1α, IL-1β, IL-6, and TNF-α when LPS and PyMIF were co-administered to BALB/c mice. The molecular basis of interaction of epoxyazadiradione with MIFs was explored with the help of computational chemistry tools and a biological knowledgebase. Docking simulation indicated that the binding was highly specific and allosteric in nature. The well known MIF inhibitor (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) inhibited huMIF but not MIF of parasitic origin. In contrast, epoxyazadiradione inhibited both huMIF and plasmodial MIF, thus bearing an immense therapeutic potential against proinflammatory reactions induced by MIF of both malaria parasites and human. PMID:22645149

  13. Identification of Metabolic Signatures Linked to Anti-Inflammatory Effects of Faecalibacterium prausnitzii

    PubMed Central

    Miquel, Sylvie; Leclerc, Marion; Martin, Rebeca; Chain, Florian; Lenoir, Marion; Raguideau, Sébastien; Hudault, Sylvie; Bridonneau, Chantal; Northen, Trent; Bowen, Benjamin; Bermúdez-Humarán, Luis G.; Sokol, Harry; Thomas, Muriel

    2015-01-01

    ABSTRACT Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified on the basis of human clinical data. The mechanisms underlying its beneficial effects are still unknown. Gnotobiotic mice harboring F. prausnitzii (A2-165) and Escherichia coli (K-12 JM105) were subjected to 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced acute colitis. The inflammatory colitis scores and a gas chromatography-time of flight (GC/TOF) mass spectrometry-based metabolomic profile were monitored in blood, ileum, cecum, colon, and feces in gnotobiotic mice. The potential anti-inflammatory metabolites were tested in vitro. We obtained stable E. coli and F. prausnitzii-diassociated mice in which E. coli primed the gastrointestinal tract (GIT), allowing a durable and stable establishment of F. prausnitzii. The disease activity index, histological scores, myeloperoxidase (MPO) activity, and serum cytokine levels were significantly lower in the presence of F. prausnitzii after TNBS challenge. The protective effect of F. prausnitzii against colitis was correlated to its implantation level and was linked to overrepresented metabolites along the GIT and in serum. Among 983 metabolites in GIT samples and serum, 279 were assigned to known chemical reactions. Some of them, belonging to the ammonia (α-ketoglutarate), osmoprotective (raffinose), and phenolic (including anti-inflammatory shikimic and salicylic acids) pathways, were associated with a protective effect of F. prausnitzii, and the functional link was established in vitro for salicylic acid. We show for the first time that F. prausnitzii is a highly active commensal bacterium involved in reduction of colitis through in vivo modulation of metabolites along the GIT and in the peripheral blood. PMID:25900655

  14. Anti-inflammatory guaiane-type sesquiterpenes from the fruits of Pittosporum undulatum.

    PubMed

    Mendes, Sofia A C; Mansoor, Tayyab A; Rodrigues, Ana; Armas, Jcome Bruges; Ferreira, Maria-Jos U

    2013-11-01

    Two unprecedented guaiane-type sesquiterpene glycosides (undulatumosides A and B) were isolated by bioassay-guided fractionation from the MeOH extract of Pittosporum undulatum fruits, along with six known compounds, including the guaiane isomers 5-guaien-11-ol and 4-guaien-11-ol. The structures of the compounds were established as 4-guaiene-11-O-?-d-(3'-angeloxy-6'-deoxy)-glucopyranoside and 1(5)-guaiene-11-O-?-d-(3'-angeloxy-6'-deoxy)-glucopyranoside by spectroscopic methods, including 1D and 2D homo- and heteronuclear NMR experiments (COSY, HSQC, HMBC and NOESY), and HR-mass spectrometry. P. undulatum is a highly invasive weed that often outcompetes other plants, yet its fruits have become a traditional anti-inflammatory medicine in Azores. Therefore, aiming to investigate the claimed properties, the in vitro anti-inflammatory activity of guaiane-type sesquiterpenes was evaluated by analyzing their inhibitory effects on chemical mediators released by the LPS activated RAW 264.7 murine macrophages cell line. In addition, the cytotoxicity of these compounds was also evaluated in this cell line. Undulatumoside A, 5-guaien-11-ol and 4-guaien-11-ol displayed anti-inflammatory activity with IC50 values of 16.4, 8.1 and 7.2?M, respectively, comparable to that of the positive control, indomethacin (IC50=18.2 ?M), with no cytotoxic effects (IC50 ? 198 ?M). Furthermore, the same set of compounds was also assessed for anti-proliferative activity in lung large cell carcinoma COR-L23 and amelanotic melanoma C32 cells. PMID:23899690

  15. Anti-inflammatory and chemopreventive effects of triterpene cinnamates and acetates from shea fat.

    PubMed

    Akihisa, Toshihiro; Kojima, Nobuo; Kikuchi, Takashi; Yasukawa, Ken; Tokuda, Harukuni; T Masters, Eliot; Manosroi, Aranya; Manosroi, Jiradej

    2010-01-01

    Four triterpene acetates, alpha-amyrin acetate (1a), beta-amyrin acetate (2a), lupeol acetate (3a), and butyrospermol acetate (4a), and four triterpene cinnamates, alpha-amyrin cinnamate (1c), beta-amyrin cinnamate (2c), lupeol cinnamate (3c), and butyrospermol cinnamate (4c), were isolated from the kernel fat (n-hexane extract) of the shea tree (Vitellaria paradoxa; Sapotaceae). Upon evaluation of these eight triterpene esters for inhibitory activity against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation (1 microg/ear) in mice, all of the compounds tested exhibited marked anti-inflammatory activity, with ID50 values in the range of 0.15-0.75 micromol/ear, and among which compound 3c showed the highest activity with ID(50) of 0.15 micromol/ear. Compound 3c (10 mg/kg) further exhibited anti-inflammatory activity on rat hind paw edema induced by carrageenan, with the percentage of inflammation at 1, 3, and 5 h of 35.4, 41.5, and 45.5%, respectively. The eight triterpene esters were then evaluated for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) in Raji cells as a primary screening test for inhibitors of tumor promoters. All the compounds showed moderate inhibitory effects. Furthermore, compound 3c exhibited inhibitory effect on skin tumor promotion in an in vivo two-stage carcinogenesis test using 7,12-dimethylbenz [a] anthracene (DMBA) as an initiator and TPA as a promoter. The biological activities of triterpene acetate and cinnamate esters, together with the exceptionally high levels of these triterpenes in shea fat, indicate that shea nuts and shea fat (shea butter) constitute a significant source of anti-inflammatory and anti-tumor promoting compounds. PMID:20484832

  16. Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii

    DOE PAGESBeta

    Miquel, Sylvie; Leclerc, Marion; Martin, Rebeca; Chain, Florian; Lenoir, Marion; Raguideau, Sébastien; Hudault, Sylvie; Bridonneau, Chantal; Northen, Trent; Bowen, Benjamin; et al

    2015-04-21

    Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified on the basis of human clinical data. The mechanisms underlying its beneficial effects are still unknown. Gnotobiotic mice harboring F. prausnitzii (A2-165) and Escherichia coli (K-12 JM105) were subjected to 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced acute colitis. The inflammatory colitis scores and a gas chromatography-time of flight (GC/TOF) mass spectrometry-based metabolomic profile were monitored in blood, ileum, cecum, colon, and feces in gnotobiotic mice. The potential anti-inflammatory metabolites were tested in vitro. We obtained stable E. coli and F. prausnitzii-diassociated mice in which E. coli primed the gastrointestinal tract (GIT), allowing a durable andmore » stable establishment of F. prausnitzii. The disease activity index, histological scores, myeloperoxidase (MPO) activity, and serum cytokine levels were significantly lower in the presence of F. prausnitzii after TNBS challenge. The protective effect of F. prausnitzii against colitis was correlated to its implantation level and was linked to overrepresented metabolites along the GIT and in serum. Among 983 metabolites in GIT samples and serum, 279 were assigned to known chemical reactions. Some of them, belonging to the ammonia (α-ketoglutarate), osmoprotective (raffinose), and phenolic (including anti-inflammatory shikimic and salicylic acids) pathways, were associated with a protective effect of F. prausnitzii, and the functional link was established in vitro for salicylic acid. We show for the first time that F. prausnitzii is a highly active commensal bacterium involved in reduction of colitis through in vivo modulation of metabolites along the GIT and in the peripheral blood.« less

  17. Novel methylxanthine derivative-mediated anti-inflammatory effects in inflammatory bowel disease

    PubMed Central

    Lee, In-Ah; Kamba, Alan; Low, Daren; Mizoguchi, Emiko

    2014-01-01

    Family 18 chitinases have a binding capacity with chitin, a polymer of N-acetylglucosamine. Recent studies strongly suggested that chitinase 3-like 1 (CHI3L1, also known as YKL-40) and acidic mammalian chitinase, the two major members of family 18 chitinases, play a pivotal role in the pathogenesis of inflammatory bowel disease (IBD), bronchial asthma and several other inflammatory disorders. Based on the data from high-throughput screening, it has been found that three methylxanthine derivatives, caffeine, theophylline, and pentoxifylline, have competitive inhibitory effects against a fungal family 18 chitinase by specifically interacting with conserved tryptophans in the active site of this protein. Methylxanthine derivatives are also known as adenosine receptor antagonists, phosphodiesterase inhibitors and histone deacetylase inducers. Anti-inflammatory effects of methylxanthine derivatives have been well-documented in the literature. For example, a beneficial link between coffee or caffeine consumption and type 2 diabetes as well as liver cirrhosis has been reported. Furthermore, theophylline has a long history of being used as a bronchodilator in asthma therapy, and pentoxifylline has an immuno-modulating effect for peripheral vascular disease. However, it is still largely unknown whether these methylxanthine derivative-mediated anti-inflammatory effects are associated with the inhibition of CHI3L1-induced cytoplasmic signaling cascades in epithelial cells. In this review article we will examine the above possibility and summarize the biological significance of methylxanthine derivatives in intestinal epithelial cells. We hope that this study will provide a rationale for the development of methylxanthine derivatives, in particular caffeine, -based anti-inflammatory therapeutics in the field of IBD and IBD-associated carcinogenesis. PMID:24574789

  18. Biochemical effects, hypolipidemic and anti-inflammatory activities of Artemisia vulgaris extract in hypercholesterolemic rats

    PubMed Central

    El-Tantawy, Walid Hamdy

    2015-01-01

    The purpose of the present study was to investigate hypolipidemic and anti-inflammatory effects of Artemisia vulgaris extract in hypercholesterolemic rats. Hypercholesterolemia was induced by feeding of rats with high fat diet containing 3% cholesterol in olein oil, for 8 weeks. Feeding of rats with high fat diet for 8 weeks, leading to a significant increase in serum triglycerides, total cholesterol, low density lipoprotein cholesterol, malondialdehyde and nitric oxide, tumor necrosis factor-α levels and a significant decrease in serum high density lipoprotein cholesterol level, liver hydroxymethylglutaryl-CoA reductase activity and paraoxonase-1 activities as compared to the normal control group. Treatment of high fat diet rats with Artemisia vulgaris extract for 4 weeks at a dose of 100 mg/kg per day, resulted in normalized serum lipid profile, a significant increase in paraoxonase-1 activity and decrease in serum malondialdehyde, nitric oxide and tumor necrosis factor-α level as compared to high fat diet-treated animals. Also the extract caused a significant decrease in hydroxymethylglutaryl-CoA reductase activity as compared with both high fat diet-treated animals and control ones. In conclusion, Artemisia vulgaris extract has hypolipidemic, anti-inflammatory, antioxidant properties; it may serve as a source for the prevention of atherosclerosis and cardiovascular diseases. PMID:26236098

  19. Potential anti-inflammatory actions of the elmiric (lipoamino) acids

    PubMed Central

    Burstein, Sumner H.; Adams, Jeffrey K.; Bradshaw, Heather B.; Fraioli, Cristian; Rossetti, Ronald G.; Salmonsen, Rebecca A.; Shaw, John W.; Walker, J. Michael; Zipkin, Robert E.; Zurier, Robert B.

    2007-01-01

    A library of amino acid-fatty acid conjugates (elmiric acids) was synthesized and evaluated for activity as potential anti-inflammatory agents. The compounds were tested in vitro for their effects on cell proliferation and prostaglandin production and compared with their effects on in vivo models of inflammation. LPS stimulated RAW 267.4 mouse macrophage cells was the in vitro model and phorbol ester-induced mouse ear edema served as the principal in vivo model. The prostaglandin responses were found to be strongly dependent on the nature of the fatty acid part of the molecule. Polyunsaturated acid conjugates produced a marked increase in media levels of i15-deoxy-PGJ2 with minimal effects on PGE production. It is reported in the literature that prostaglandin ratios in which the J series predominates over the E series promote the resolution of inflammatory conditions. Several of the elmiric acids tested here produced such favorable ratios suggesting that their potential anti-inflammatory activity occurs via a novel mechanism of action. The ear edema assay results were generally in agreement with the prostaglandin assay findings indicating a connection between them. PMID:17383881

  20. Anti-inflammatory and antinociceptive activity of Urera aurantiaca.

    PubMed

    Riedel, R; Marrassini, C; Anesini, C; Gorzalczany, S

    2015-01-01

    Urera aurantiaca Wedd. (Urticaceae) is a medicinal plant commonly used in traditional medicine to relieve pain in inflammatory processes. In the present study, the in vivo anti-inflammatory and antinociceptive effects of U. aurantiaca methanolic extract and its possible mechanisms of action were investigated. The extract showed anti-inflammatory activity in the ear edema in mice test (34.3% inhibition), myeloperoxidase (MPO) activity was markedly reduced in animals administered with the extract: within 49.6% and 68.5%. In the histological analysis, intense dermal edema and intense cellular infiltration of inflammatory cells were markedly reduced in the ear tissue of the animals treated with the extract. In the carrageenan-induced hind paw edema in rats assay the extract provoked a significant inhibition of the inflammation (45.5%, 5 h after the treatment) and the MPO activity was markedly reduced (maximum inhibition 71.7%), The extract also exhibited significant and dose-dependent inhibitory effect on the increased vascular permeability induced by acetic acid. The extract presented antioxidant activity in both 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azinobis 3-ethylbenzothiazoline 6-sulfonic acid tests and its total phenol content was 35.4 0.06 mg GAE/g of extract. Also, the extract produced significant inhibition on nociception induced by acetic acid (ED50 : 8.7 mg/kg, i.p.) administered intraperitoneally and orally. Naloxone significantly prevented this activity. PMID:25256913

  1. Anti-inflammatory strategies in the treatment of schizophrenia.

    PubMed

    Andrade, Chittaranjan

    2016-02-01

    Schizophrenia is a major mental illness with a lifetime prevalence of about 1%. Antipsychotic drugs, with a primary mechanism of action that involves dopamine receptor blockade, are the mainstay in the treatment of the disorder. However, despite optimum antipsychotic treatment, few patients return to pre-morbid levels; the treatment deficit includes refractory positive symptoms, negative symptoms, mood impairments, cognitive impairments, social impairments, and/or a variety of medication-related adverse effects, including extrapyramidal symptoms, metabolic disturbances, hyperprolactinemia, and others. To address these, antipsychotic treatment has been augmented with psychosocial interventions, cognitive rehabilitation, different kinds of electrical and magnetic brain stimulation, and a large range of drugs from the neuropsychiatric as well as, surprise, the general medical pharmacopeia. The pleomorphic pathophysiology of schizophrenia includes abnormalities in immunological and inflammatory pathways, and so it is not surprising that anti-inflammatory drugs have also been trialed as augmentation agents in schizophrenia. This article critically examines the outcomes after augmentation with conventional anti-inflammatory interventions; results from randomized controlled trials do not encourage the use of either aspirin (1000 mg/day) or celecoxib (400 mg/day), both of which have been studied for this indication during the past decade and a half. PMID:26427750

  2. ?-Mangostin: Anti-Inflammatory Activity and Metabolism by Human Cells

    PubMed Central

    Gutierrez-Orozco, Fabiola; Chitchumroonchokchai, Chureeporn; Lesinski, Gregory B.; Suksamrarn, Sunit; Failla, Mark L.

    2013-01-01

    Information about the anti-inflammatory activity and metabolism of ?-mangostin (?-MG), the most abundant xanthone in mangosteen fruit, in human cells is limited. On the basis of available literature, we hypothesized that ?-MG will inhibit the secretion of pro-inflammatory mediators by control and activated macrophage-like THP-1, hepatic HepG2, enterocyte-like Caco-2, and colon HT-29 human cell lines, as well as primary human monocyte-derived macrophages (MDM), and that such activity would be influenced by the extent of metabolism of the xanthone. ?-MG attenuated TNF-? and IL-8 secretion by the various cell lines but increased TNF-? output by both quiescent and LPS-treated MDM. The relative amounts of free and phase II metabolites of ?-MG and other xanthones present in media 24 h after addition of ?-MG was shown to vary by cell type and inflammatory insult. Increased transport of xanthones and their metabolites across Caco-2 cell monolayers suggests enhanced absorption during an inflammatory episode. The anti-inflammatory activities of xanthones and their metabolites in different tissues merit consideration. PMID:23578285

  3. Immunosuppressive and anti-inflammatory properties of engineered nanomaterials

    PubMed Central

    Ilinskaya, A N; Dobrovolskaia, M A

    2014-01-01

    Nanoparticle interactions with various components of the immune system are determined by their physicochemical properties such as size, charge, hydrophobicity and shape. Nanoparticles can be engineered to either specifically target the immune system or to avoid immune recognition. Nevertheless, identifying their unintended impacts on the immune system and understanding the mechanisms of such accidental effects are essential for establishing a nanoparticle's safety profile. While immunostimulatory properties have been reviewed before, little attention in the literature has been given to immunosuppressive and anti-inflammatory properties. The purpose of this review is to fill this gap. We will discuss intended immunosuppression achieved by either nanoparticle engineering, or the use of nanoparticles to carry immunosuppressive or anti-inflammatory drugs. We will also review unintended immunosuppressive properties of nanoparticles per se and consider how such properties could be either beneficial or adverse. Linked Articles This article is part of a themed section on Nanomedicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-17 PMID:24724793

  4. The anti-inflammatory properties of cocoa flavanols.

    PubMed

    Selmi, Carlo; Mao, Tin K; Keen, Carl L; Schmitz, Harold H; Eric Gershwin, M

    2006-01-01

    Signs of chronic or acute inflammation have been demonstrated in most cardiovascular diseases of multifactorial pathogenesis, including atherosclerosis and chronic heart failure. The triggers and mechanisms leading to inflammation may vary between clinical conditions but they share many common mediators, including specific patterns of eicosanoid and cytokine production. Certain cocoa-based products can be rich in a subclass of flavonoids known as flavanols, some of which have been found in model systems to possess potential anti-inflammatory activity relevant to cardiovascular health. Indeed, experimental evidence demonstrates that some cocoa-derived flavanols can reduce the production and effect of pro-inflammatory mediators either directly or by acting on signaling pathways. However, it should be noted that the evidence for any beneficial effects of cocoa flavanols in providing a meaningful anti-inflammatory action has been gathered predominantly from in vitro experiments. Therefore, additional research in well-designed human clinical experiments, using cocoa properly characterized in terms of flavanol content, would be a welcome addition to the evidence base to determine unambiguously if this benefit does indeed exist. If so, then flavanol-rich cocoa could be a potential candidate for the treatment, or possibly prevention, of the broad array of chronic diseases that are linked to dysfunctional inflammatory responses. PMID:16794453

  5. Antibacterial, anti-inflammatory, and antioxidant effects of Yinzhihuang injection.

    PubMed

    Liu, Juan; Qiu, Hong; Zhu, Zhaorong; Zou, Tangbin

    2015-01-01

    The Yinzhihuang injection, a traditional Chinese medicine, has been the recent target of increasing interest due to its anti-inflammatory properties. The molecular basis by which Yinzhihuang injection could cure Riemerella anatipestifer (RA) serositis in ducks is unclear. This study evaluated the antibacterial, anti-inflammatory and antioxidant effects of Yinzhihuang injection, using disease models of RA-induced infectious serositis in ducks and heptane-induced inflammation in mice and rats. The duck mortality rate was reduced from 60% to 20% and both the inflammatory response and histological damage were ameliorated by treatment with Yinzhihuang injection (0.02 g/kg). Further studies indicated that superoxide dismutase (SOD), nitric oxide synthase (NOS), and inducible nitric oxide synthase (iNOS) were elevated while malondialdehyde (MDA), nitric oxide (NO) and RA growth were inhibited when the ducks were treated by Yinzhihuang injection. In addition, Yinzhihuang injection (0.04 g/ml) effectively inhibited xylene-induced auricle swelling in mice, (demonstrating an inhibition rate of 35.21%), egg albumen-induced paw metatarsus swelling in rats, (demonstrating an inhibition rate of 22.30%), and agar-induced formation of granulation tissue. These results suggest that Yinzhihuang injection ameliorates RA-induced infectious serositis in ducks by modulation of inflammatory mediators and antioxidation. PMID:26405991

  6. Anti-inflammatory and Antinociceptive Constituents of Atractylodes japonica Koidzumi.

    PubMed

    Chen, Lih-Geeng; Jan, Yun-Sheng; Tsai, Po-Wei; Norimoto, Hisayoshi; Michihara, Seiwa; Murayama, Chiaki; Wang, Ching-Chiung

    2016-03-23

    The rhizomes of many Atractylodes species, including Atractylodes chinensis Koidzumi, Atractylodes macrocephala Koidzumi, and Atractylodes japonica Koidzumi, are collectively termed Atractylodis Rhizoma. We prepared n-hexane extracts of the three species and evaluated their anti-inflammatory effects on lipopolysaccharide (LPS)-induced RAW 264.7 cells. Among all n-hexane extracts, those of A. japonica most strongly inhibited nitric oxide (NO) production in LPS-induced RAW 264.7 cells; five sesquiterpenes, atractylon, atractylenolide I, atractylenolide II, atractylenolide III, and 8-epiasterolid, were isolated from A. japonica. The phytochemical content of A. japonica was similar to those of A. chinensis and A. macrocephala. Moreover, the atractylon concentration was higher in A. japonica than in A. chinensis and A. macrocephala. Atractylon significantly inhibited NO and prostaglandin E2 production as well as inducible NO synthase and cyclooxygenase-2 expression in LPS-induced RAW 264.7 cells. Atractylon (40 mg/kg) also significantly reduced the acetic-acid-induced writhing response, carrageenan-induced paw edema, and hot-plate latent pain response in mice. According to the results, A. japonica has anti-inflammatory and antinociceptive effects and atractylon is the major active component of A. japonica. Therefore, atractylon can be used as a bioactivity marker in A. japonica. PMID:26919689

  7. Anti-Inflammatory Polymeric Coatings for Implantable Biomaterials and Devices

    PubMed Central

    Bridges, Amanda W.; Garca, Andrs J.

    2008-01-01

    Synthetic polymer coatings are used extensively in modern medical devices and implants because of their material versatility and processability. These coatings are designed for specific applications by controlling composition and physical and chemical properties, and they can be formed into a variety of complex structures and shapes. However, implantation of these materials into the body elicits a strong inflammatory host response that significantly limits the integration and biological performance of devices. Biomaterial-mediated inflammation is a complex reaction involving protein adsorption, leukocyte recruitment and activation, secretion of inflammatory mediators, and fibrous encapsulation of the implant. Significant research efforts have focused on modifying material properties using various anti-inflammatory polymeric surface coatings to generate more biocompatible implants. This minireview provides a brief background on the events of biomaterial-mediated inflammation and highlights various approaches used for modifying material surfaces to modulate inflammatory responses. These include both passive and active strategies, such as nonfouling surface treatments and delivery of anti-inflammatory agents, respectively. Novel approaches will be needed to extend the in vivo lifetime and performance of devices and reduce the need for multiple implantation surgeries. PMID:19885288

  8. Synthesis of diosgenin analogues as potential anti-inflammatory agents.

    PubMed

    Singh, Monika; Hamid, A A; Maurya, Anil K; Prakash, Om; Khan, Feroz; Kumar, Anant; Aiyelaagbe, O O; Negi, Arvind S; Bawankule, Dnyaneshwar U

    2014-09-01

    We herein report the synthesis of diosgenin analogues from commercially available diosgenin as the starting material. The structures of newly synthesised compounds were confirmed by (1)H NMR, (13)C NMR and mass spectrometry. All analogues were evaluated for in-vitro anti-inflammatory profile against LPS-induced inflammation in primary peritoneal macrophages isolated from mice by quantification of pro-inflammatory (TNF-?, IL-6 and IL-1?) cytokines in cell culture supernatant using the ELISA technique followed by in-vitro cytotoxicity study. Among the synthesised analogues, analogue 15 [(E) 26-(3',4',5'-trimethoxybenzylidene)-furost-5en-3?-acetate)] showed significant anti-inflammatory activity by inhibiting LPS-induced pro-inflammatory cytokines in a dose-dependent manner without any cytotoxicity. Efficacy and safety of analogue 15 were further validated in an in-vivo system using LPS-induced sepsis model and acute oral toxicity in mice. Oral administration of analogue 15 inhibited the pro-inflammatory cytokines in serum, attenuated the liver and lung injury and reduced the mortality rate in sepsis mice. Acute oral toxicity study showed that analogue 15 is non-toxic at higher dose in BALB/c mice. Molecular docking study revealed the strong binding affinity of diosgenin analogues to the active site of the pro-inflammatory proteins. These findings suggested that analogue 15 may be a useful therapeutic candidate for the treatment of inflammatory diseases. PMID:24816230

  9. Anti-inflammatory Cerebrosides from Cultivated Cordyceps militaris.

    PubMed

    Chiu, Ching-Peng; Liu, Shan-Chi; Tang, Chih-Hsin; Chan, You; El-Shazly, Mohamed; Lee, Chia-Lin; Du, Ying-Chi; Wu, Tung-Ying; Chang, Fang-Rong; Wu, Yang-Chang

    2016-02-24

    Cordyceps militaris (bei-chong-chaw, northern worm grass) is a precious and edible entomopathogenic fungus, which is widely used in traditional Chinese medicine (TCM) as a general booster for the nervous system, metabolism, and immunity. Saccharides, nucleosides, mannitol, and sterols were isolated from this fungus. The biological activity of C. militaris was attributed to the saccharide and nucleoside contents. In this study, the aqueous methanolic fraction of C. militaris fruiting bodies exhibited a significant anti-inflammatory activity. Bioactivity-guided fractionation of the active fraction led to the isolation of eight compounds, including one new and two known cerebrosides (ceramide derivatives), two nucleosides, and three sterols. Cordycerebroside A (1), the new cerebroside, along with soyacerebroside I (2) and glucocerebroside (3) inhibited the accumulation of pro-inflammatory iNOS protein and reduced the expression of COX-2 protein in LPS-stimulated RAW264.7 macrophages. This is the first study on the isolation of cerebrosides with anti-inflammatory activity from this TCM. PMID:26853111

  10. Anticancer and anti-inflammatory activities of some dietary cucurbits.

    PubMed

    Sharma, Dhara; Rawat, Indu; Goel, H C

    2015-04-01

    In this study, we investigated few dietary cucurbits for anticancer activity by monitoring cytotoxic (MTT and LDH assays), apoptotic (caspase-3 and annexin-V assays), and also their anti-inflammatory effects by IL-8 cytokine assay. Aqua-alcoholic (50:50) whole extracts of cucurbits [Lagenaria siceraria (Ls), Luffa cylindrica (Lc) and Cucurbita pepo (Cp)] were evaluated in colon cancer cells (HT-29 and HCT-15) and were compared with isolated biomolecule, cucurbitacin-B (Cbit-B). MTT and LDH assays revealed that the cucurbit extracts and Cbit-B, in a concentration dependent manner, decreased the viability of HT-29 and HCT-15 cells substantially. The viability of lymphocytes was, however, only marginally decreased, yielding a potential advantage over the tumor cells. Caspase-3 assay revealed maximum apoptosis with Ls while annexin V assay demonstrated maximum efficacy of Lc in this context. These cucurbits have also shown decreased secretion of IL-8, thereby revealing their anti-inflammatory capability. The results have demonstrated the therapeutic potential of dietary cucurbits in inhibiting cancer and inflammatory cytokine. PMID:26011982

  11. Antinociceptive and anti-inflammatory activities of Cuscuta chinensis seeds in mice.

    PubMed

    Liao, Jung-Chun; Chang, Wen-Te; Lee, Meng-Shiou; Chiu, Yung-Jia; Chao, Wei-Kai; Lin, Ying-Chih; Lin, Ming-Kuem; Peng, Wen-Huang

    2014-01-01

    The seeds of Cuscuta chinensis, Cuscutae Semen, are commonly used as a medicinal material for treating the aching and weakness of the loins and knees, tonifying the defects of the liver and the kidney, and treating the diarrhea due to hypofunction of the kidney and the spleen. Since aching and inflammation are highly correlated with such diseases, the aim of this study is to investigate the possible antinociceptive and anti-inflammatory mechanisms of the seeds of C. chinensis. The antinociceptive effect of the seeds of C. chinensis was evaluated via the acetic acid-induced writhing response and formalin-induced paw licking methods. The anti-inflammatory effect was evaluated via the λ-carrageenan induced mouse paw edema method. The results found that 100 and 500 mg/kg of the methanol extract of the seeds of C. chinensis( CC MeOH ) significantly decreased (p < 0.01 and p < 0.001, respectively) the writhing response in the acetic acid assay. Additionally, 20-500 mg/kg of CC MeOH significantly decreased licking time at the early (20 and 100 mg/kg, p < 0.001) and late phases (100 mg/kg, p < 0.01; 500 mg/kg, p < 0.001) of the formalin test, respectively. Furthermore, CC MeOH (100 and 500 mg/kg) significantly decreased (p < 0.01 and p < 0.001, respectively) edema paw volume four hours after λ-carrageenan had been injected. The results in the following study also revealed that the anti-inflammatory mechanism of CC MeOH may be due to declined levels of NO and MDA in the edema paw by increasing the activities of SOD, GPx and GRd in the liver. In addition, CC MeOH also decreased IL-1β, IL-6, NF-κB, TNF-α, and COX-2 levels. This is the first study to demonstrate the possible mechanisms for the antinociceptive and anti-inflammatory effects of CC MeOH in vivo. Thus, it provides evidence for the treatment of Cuscutae Semen in inflammatory diseases. PMID:24467546

  12. Imbricaric acid and perlatolic acid: multi-targeting anti-inflammatory depsides from Cetrelia monachorum.

    PubMed

    Oettl, Sarah K; Gerstmeier, Jana; Khan, Shafaat Y; Wiechmann, Katja; Bauer, Julia; Atanasov, Atanas G; Malainer, Clemens; Awad, Ezzat M; Uhrin, Pavel; Heiss, Elke H; Waltenberger, Birgit; Remias, Daniel; Breuss, Johannes M; Boustie, Joel; Dirsch, Verena M; Stuppner, Hermann; Werz, Oliver; Rollinger, Judith M

    2013-01-01

    In vitro screening of 17 Alpine lichen species for their inhibitory activity against 5-lipoxygenase, microsomal prostaglandin E2 synthase-1 and nuclear factor kappa B revealed Cetrelia monachorum (Zahlbr.) W.L. Culb. & C.F. Culb. As conceivable source for novel anti-inflammatory compounds. Phytochemical investigation of the ethanolic crude extract resulted in the isolation and identification of 11 constituents, belonging to depsides and derivatives of orsellinic acid, olivetolic acid and olivetol. The two depsides imbricaric acid (4) and perlatolic acid (5) approved dual inhibitory activities on microsomal prostaglandin E2 synthase-1 (IC50 = 1.9 and 0.4 M, resp.) and on 5-lipoxygenase tested in a cell-based assay (IC50 = 5.3 and 1.8 M, resp.) and on purified enzyme (IC50 = 3.5 and 0.4 M, resp.). Additionally, these two main constituents quantified in the extract with 15.22% (4) and 9.10% (5) showed significant inhibition of tumor necrosis factor alpha-induced nuclear factor kappa B activation in luciferase reporter cells with IC50 values of 2.0 and 7.0 M, respectively. In a murine in vivo model of inflammation, 5 impaired the inflammatory, thioglycollate-induced recruitment of leukocytes to the peritoneum. The potent inhibitory effects on the three identified targets attest 4 and 5 a pronounced multi-target anti-inflammatory profile which warrants further investigation on their pharmacokinetics and in vivo efficacy. PMID:24130812

  13. Anti-inflammatory effects of freeze-dried black raspberry powder in ulcerative colitis

    PubMed Central

    Montrose, David C.; Horelik, Nicole A.; Madigan, James P.; Stoner, Gary D.; Wang, Li-Shu; Bruno, Richard S.; Park, Hea Jin; Giardina, Charles; Rosenberg, Daniel W.

    2011-01-01

    Ulcerative colitis (UC) is a chronic inflammatory disease of the colonic mucosa that can dramatically increase the risk of colon cancers. In the present study, we evaluated the effects of a dietary intervention of freeze-dried black raspberries (BRB), a natural food product with antioxidant and anti-inflammatory bioactivities, on disease severity in an experimental mouse model of UC using 3% dextran sodium sulfate (DSS). C57BL/6J mice were fed either a control diet or a diet containing BRB (5 or 10%) for 714 days and then the extent of colonic injury was assessed. Dietary BRB markedly reduced DSS-induced acute injury to the colonic epithelium. This protection included better maintenance of body mass and reductions in colonic shortening and ulceration. BRB treatment, however, did not affect the levels of either plasma nitric oxide or colon malondialdehyde, biomarkers of oxidative stress that are otherwise increased by DSS-induced colonic injury. BRB treatment for up to 7 days suppressed tissue levels of several key pro-inflammatory cytokines, including tumor necrosis factor ? and interleukin 1?. Further examination of the inflammatory response by western blot analysis revealed that 7 day BRB treatment reduced the levels of phospho-I?B? within the colonic tissue. Colonic cyclooxygenase 2 levels were also dramatically suppressed by BRB treatment, with a concomitant decrease in the plasma prostaglandin E2 (276 versus 34 ng/ml). These findings demonstrate a potent anti-inflammatory effect of BRB during DSS-induced colonic injury, supporting its possible therapeutic or preventive role in the pathogenesis of UC and related neoplastic events. PMID:21098643

  14. Anti-inflammatory effects of freeze-dried black raspberry powder in ulcerative colitis.

    PubMed

    Montrose, David C; Horelik, Nicole A; Madigan, James P; Stoner, Gary D; Wang, Li-Shu; Bruno, Richard S; Park, Hea Jin; Giardina, Charles; Rosenberg, Daniel W

    2011-03-01

    Ulcerative colitis (UC) is a chronic inflammatory disease of the colonic mucosa that can dramatically increase the risk of colon cancers. In the present study, we evaluated the effects of a dietary intervention of freeze-dried black raspberries (BRB), a natural food product with antioxidant and anti-inflammatory bioactivities, on disease severity in an experimental mouse model of UC using 3% dextran sodium sulfate (DSS). C57BL/6J mice were fed either a control diet or a diet containing BRB (5 or 10%) for 7-14 days and then the extent of colonic injury was assessed. Dietary BRB markedly reduced DSS-induced acute injury to the colonic epithelium. This protection included better maintenance of body mass and reductions in colonic shortening and ulceration. BRB treatment, however, did not affect the levels of either plasma nitric oxide or colon malondialdehyde, biomarkers of oxidative stress that are otherwise increased by DSS-induced colonic injury. BRB treatment for up to 7 days suppressed tissue levels of several key pro-inflammatory cytokines, including tumor necrosis factor ? and interleukin 1?. Further examination of the inflammatory response by western blot analysis revealed that 7 day BRB treatment reduced the levels of phospho-I?B? within the colonic tissue. Colonic cyclooxygenase 2 levels were also dramatically suppressed by BRB treatment, with a concomitant decrease in the plasma prostaglandin E? (276 versus 34 ng/ml). These findings demonstrate a potent anti-inflammatory effect of BRB during DSS-induced colonic injury, supporting its possible therapeutic or preventive role in the pathogenesis of UC and related neoplastic events. PMID:21098643

  15. Imbricaric Acid and Perlatolic Acid: Multi-Targeting Anti-Inflammatory Depsides from Cetrelia monachorum

    PubMed Central

    Oettl, Sarah K.; Gerstmeier, Jana; Khan, Shafaat Y.; Wiechmann, Katja; Bauer, Julia; Atanasov, Atanas G.; Malainer, Clemens; Awad, Ezzat M.; Uhrin, Pavel; Heiss, Elke H.; Waltenberger, Birgit; Remias, Daniel; Breuss, Johannes M.; Boustie, Joel; Dirsch, Verena M.; Stuppner, Hermann; Werz, Oliver; Rollinger, Judith M.

    2013-01-01

    In vitro screening of 17 Alpine lichen species for their inhibitory activity against 5-lipoxygenase, microsomal prostaglandin E2 synthase-1 and nuclear factor kappa B revealed Cetrelia monachorum (Zahlbr.) W.L. Culb. & C.F. Culb. As conceivable source for novel anti-inflammatory compounds. Phytochemical investigation of the ethanolic crude extract resulted in the isolation and identification of 11 constituents, belonging to depsides and derivatives of orsellinic acid, olivetolic acid and olivetol. The two depsides imbricaric acid (4) and perlatolic acid (5) approved dual inhibitory activities on microsomal prostaglandin E2 synthase-1 (IC50 = 1.9 and 0.4 µM, resp.) and on 5-lipoxygenase tested in a cell-based assay (IC50 = 5.3 and 1.8 µM, resp.) and on purified enzyme (IC50 = 3.5 and 0.4 µM, resp.). Additionally, these two main constituents quantified in the extract with 15.22% (4) and 9.10% (5) showed significant inhibition of tumor necrosis factor alpha-induced nuclear factor kappa B activation in luciferase reporter cells with IC50 values of 2.0 and 7.0 µM, respectively. In a murine in vivo model of inflammation, 5 impaired the inflammatory, thioglycollate-induced recruitment of leukocytes to the peritoneum. The potent inhibitory effects on the three identified targets attest 4 and 5 a pronounced multi-target anti-inflammatory profile which warrants further investigation on their pharmacokinetics and in vivo efficacy. PMID:24130812

  16. Convergence of Nitric Oxide and Lipid Signaling: Anti-Inflammatory Nitro-Fatty Acids

    PubMed Central

    Baker, Paul R.S.; Schopfer, Francisco J.; O’Donnell, Valerie B.; Freeman, Bruce A.

    2009-01-01

    The signaling mediators nitric oxide (·NO) and oxidized lipids, once viewed to transduce metabolic and inflammatory information via discrete and independent pathways, are now appreciated as interdependent regulators of immune response and metabolic homeostasis. The interactions between these two classes of mediators result in reciprocal control of mediator sythesis that is strongly influenced by the local chemical environment. The relationship between the two pathways extends beyond co-regulation of ·NO and eicosanoid formation to converge via the nitration of unsaturated fatty acids to yield nitro derivatives (NO2-FA). These pluripotent signaling molecules are generated in vivo as an adaptive response to oxidative inflammatory conditions and manifest predominantly anti-inflammatory signaling reactions. These actions of NO2-FA are diverse, with these species serving as a potential chemical reserve of ·NO, reacting with cellular nucleophiles to post-translationally modify protein structure, function and localization. In this regard these species act as potent endogenous ligands for peroxisome proliferator activated receptor γ. Functional consequences of these signaling mechanisms have been shown in multiple model systems, including the inhibition of platelet and neutrophil functions, induction of heme oxygenase-1, inhibition of LPS-induced cytokine release in monocytes, increased insulin sensitivity and glucose uptake in adipocytes and relaxation of pre-constricted rat aortic segments. These observations have propelled further in vitro and in vivo studies of mechanisms of NO2-FA signaling and metabolism, highlighting the therapeutic potential of this class of molecules as anti-inflammatory drug candidates. PMID:19200454

  17. Hugan Qingzhi Exerts Anti-Inflammatory Effects in a Rat Model of Nonalcoholic Fatty Liver Disease

    PubMed Central

    Tang, WaiJiao; Zeng, Lu; Yin, JinJin; Yao, YuFa; Feng, LiJuan; Yao, XiaoRui; Sun, XiaoMin; Zhou, BenJie

    2015-01-01

    Ethnopharmacological Relevance. The Hugan Qingzhi tablet (HQT) is a traditional Chinese medicine used for treating NAFLD (nonalcoholic fatty liver disease). The present study evaluated the anti-inflammatory effects of HQT in rats with NAFLD. Materials and Methods. HQT was administered daily to the NAFLD experimental groups. Biochemical markers, histopathological data, and oxidative stress/antioxidant biomarkers were determined. Proinflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6) were detected by enzyme-linked immunoassay. Expressions of silent information regulator 1 (SIRT1) and acetylated-nuclear-factor kappaB-p65 (Ac-NF-κB-p65) were performed by western blotting. Results. At high and moderate doses, HQT was highly effective in decreasing serum alanine aminotransferase (P < 0.01), aspartate aminotransferase (P < 0.01), hepatic total cholesterol (P < 0.01), triglycerides (P < 0.01), and free fatty acid levels (P < 0.01). Moreover, high and moderate doses of HQT reduced hepatic levels of the proinflammatory cytokines TNF-α (P < 0.01), IL-1β (P < 0.01), and IL-6 (P < 0.01), enhanced SIRT1 expression, and depressed Ac-NF-κB-p65 expression at protein level. Conclusions. In our NAFLD rat model, HQT exerted substantial anti-inflammatory and antioxidant activities, possibly involving the regulation of SIRT1 and Ac-NF-κB-p65 expression. PMID:26146507

  18. A cluster randomised stepped wedge trial to evaluate the effectiveness of a multifaceted information technology-based intervention in reducing high-risk prescribing of non-steroidal anti-inflammatory drugs and antiplatelets in primary medical care: The DQIP study protocol

    PubMed Central

    2012-01-01

    Background High-risk prescribing of non-steroidal anti-inflammatory drugs (NSAIDs) and antiplatelet agents accounts for a significant proportion of hospital admissions due to preventable adverse drug events. The recently completed PINCER trial has demonstrated that a one-off pharmacist-led information technology (IT)-based intervention can significantly reduce high-risk prescribing in primary care, but there is evidence that effects decrease over time and employing additional pharmacists to facilitate change may not be sustainable. Methods/design We will conduct a cluster randomised controlled with a stepped wedge design in 40 volunteer general practices in two Scottish health boards. Eligible practices are those that are using the INPS Vision clinical IT system, and have agreed to have relevant medication-related data to be automatically extracted from their electronic medical records. All practices (clusters) that agree to take part will receive the data-driven quality improvement in primary care (DQIP) intervention, but will be randomised to one of 10 start dates. The DQIP intervention has three components: a web-based informatics tool that provides weekly updated feedback of targeted prescribing at practice level, prompts the review of individual patients affected, and summarises each patient's relevant risk factors and prescribing; an outreach visit providing education on targeted prescribing and training in the use of the informatics tool; and a fixed payment of 350 GBP (560 USD; 403 EUR) up front and a small payment of 15 GBP (24 USD; 17 EUR) for each patient reviewed in the 12 months of the intervention. We hypothesise that the DQIP intervention will reduce a composite of nine previously validated measures of high-risk prescribing. Due to the nature of the intervention, it is not possible to blind practices, the core research team, or the data analyst. However, outcome assessment is entirely objective and automated. There will additionally be a process and economic evaluation alongside the main trial. Discussion The DQIP intervention is an example of a potentially sustainable safety improvement intervention that builds on the existing National Health Service IT-infrastructure to facilitate systematic management of high-risk prescribing by existing practice staff. Although the focus in this trial is on Non-steroidal anti-inflammatory drugs and antiplatelets, we anticipate that the tested intervention would be generalisable to other types of prescribing if shown to be effective. Trial registration ClinicalTrials.gov, dossier number: NCT01425502 PMID:22444945

  19. A Polysaccharide Virulence Factor from Aspergillus fumigatus Elicits Anti-inflammatory Effects through Induction of Interleukin-1 Receptor Antagonist

    PubMed Central

    Gresnigt, Mark S.; Bozza, Silvia; Becker, Katharina L.; Joosten, Leo A. B.; Abdollahi-Roodsaz, Shahla; van der Berg, Wim B.; Dinarello, Charles A.; Netea, Mihai G.; Fontaine, Thierry; De Luca, Antonella; Moretti, Silvia; Romani, Luigina; Latge, Jean-Paul; van de Veerdonk, Frank L.

    2014-01-01

    The galactosaminogalactan (GAG) is a cell wall component of Aspergillus fumigatus that has potent anti-inflammatory effects in mice. However, the mechanisms responsible for the anti-inflammatory property of GAG remain to be elucidated. In the present study we used in vitro PBMC stimulation assays to demonstrate, that GAG inhibits proinflammatory T-helper (Th)1 and Th17 cytokine production in human PBMCs by inducing Interleukin-1 receptor antagonist (IL-1Ra), a potent anti-inflammatory cytokine that blocks IL-1 signalling. GAG cannot suppress human T-helper cytokine production in the presence of neutralizing antibodies against IL-1Ra. In a mouse model of invasive aspergillosis, GAG induces IL-1Ra in vivo, and the increased susceptibility to invasive aspergillosis in the presence of GAG in wild type mice is not observed in mice deficient for IL-1Ra. Additionally, we demonstrate that the capacity of GAG to induce IL-1Ra could also be used for treatment of inflammatory diseases, as GAG was able to reduce severity of an experimental model of allergic aspergillosis, and in a murine DSS-induced colitis model. In the setting of invasive aspergillosis, GAG has a significant immunomodulatory function by inducing IL-1Ra and notably IL-1Ra knockout mice are completely protected to invasive pulmonary aspergillosis. This opens new treatment strategies that target IL-1Ra in the setting of acute invasive fungal infection. However, the observation that GAG can also protect mice from allergy and colitis makes GAG or a derivative structure of GAG a potential treatment compound for IL-1 driven inflammatory diseases. PMID:24603878

  20. Acute inflammation primes myeloid effector cells for anti-inflammatory STAT6 signaling.

    PubMed

    Wermeling, Fredrik; Anthony, Robert M; Brombacher, Frank; Ravetch, Jeffrey V

    2013-08-13

    The anti-inflammatory drug high-dose intravenous immunoglobulin, widely used to suppress inflammation, depends on a specific α-2,6-sialylated glycoform of IgG Fc to induce Interleukin 4 (IL-4) and Signal Transducer and Activator of Transcription 6 (STAT6) signaling for its activity. Here we show that anti-inflammatory activities of IL-4 can be attributed to the direct action of this cytokine on myeloid effector cells, depending on their expression of the IL-4 receptor alpha chain (IL-4Rα/CD124). However, in their basal state, these cells express low levels of IL-4Rα and would not be expected to result in significant signaling compared with other cell populations. This apparent paradox can be explained by the observation that during inflammation, triggered by a variety of stimuli (including autoantibodies, adjuvants, and TLR ligands), IL-4Rα is up-regulated specifically on these cells, priming them for STAT6 signaling. The regulation is mediated by a soluble, proteinase K-sensitive factor, released to the circulation by bone marrow-derived, non-B/non-T cells found in several organs, including the lungs, and fat. We propose that this regulation is part of a homeostatic mechanism to limit excessive inflammation and tissue damage. High-dose intravenous immunoglobulin thus exploits an endogenous feedback loop, general to inflammation, that could be further targeted for therapeutic purposes. PMID:23898202

  1. The generation of macrophages with anti-inflammatory activity in the absence of STAT6 signaling.

    PubMed

    Fleming, Bryan D; Chandrasekaran, Prabha; Dillon, Laura A L; Dalby, Elizabeth; Suresh, Rahul; Sarkar, Arup; El-Sayed, Najib M; Mosser, David M

    2015-09-01

    Macrophages readily change their phenotype in response to exogenous stimuli. In this work, macrophages were stimulated under a variety of experimental conditions, and phenotypic alterations were correlated with changes in gene expression. We identified 3 transcriptionally related populations of macrophages with immunoregulatory activity. They were generated by stimulating cells with TLR ligands in the presence of 3 different "reprogramming" signals: high-density ICs, PGE2, or Ado. All 3 of these cell populations produced high levels of transcripts for IL-10 and growth and angiogenic factors. They also secreted reduced levels of inflammatory cytokines IL-1?, IL-6, and IL-12. All 3 macrophage phenotypes could partially rescue mice from lethal endotoxemia, and therefore, we consider each to have anti-inflammatory activity. This ability to regulate innate-immune responses occurred equally well in macrophages from STAT6-deficient mice. The lack of STAT6 did not affect the ability of macrophages to change cytokine production reciprocally or to rescue mice from lethal endotoxemia. Furthermore, treatment of macrophages with IL-4 failed to induce similar phenotypic or transcriptional alterations. This work demonstrates that there are multiple ways to generate macrophages with immunoregulatory activity. These anti-inflammatory macrophages are transcriptionally and functionally related to each other and are quite distinct from macrophages treated with IL-4. PMID:26048978

  2. Anti-inflammatory and antifibrotic effects of methyl palmitate

    SciTech Connect

    El-Demerdash, Ebtehal

    2011-08-01

    Methyl palmitate (MP) has been shown earlier to inhibit Kupffer cells and rat peritoneal macrophages. To evaluate the potential of MP to inhibit the activation of other macrophages, RAW cells (macrophages of alveolar origin) were treated with varying concentrations of MP (0.25, 0.5, 1 mM). Assessment of cytotoxicity using MTT assay revealed that 0.25 and 0.5 mM are not toxic to RAW cells. MP was able to inhibit the phagocytic function of RAW cells. Treatment of cells with MP 24 hours prior to LPS stimulation significantly decreased nitric oxide release and altered the pattern of cytokines release; there was a significant decrease in TNF-{alpha} and a significant increase in IL-10 compared to the controls. However, there is a non-significant change in IL-6 level. Furthermore, phosphorylation of inhibitory kappa B (I{kappa}B{alpha}) protein was significantly decreased in RAW cells treated with 0.5 mM MP after LPS stimulation. Based upon the in-vitro results, it was examined whether MP treatment will be effective in preventing bleomycin-induced lung inflammation and fibrosis in-vivo. Bleomycin given by itself caused destruction of the lung architecture characterized by pulmonary fibrosis with collapse of air alveoli and emphysematous. Bleomycin induced a significant increase in hydroxyproline level and activated NF-{kappa}B, p65 expression in the lung. MP co-treatment significantly ameliorated bleomycin effects. These results suggest that MP has a potential of inhibiting macrophages in general. The present study demonstrated for the first time that MP has anti-inflammatory and antifibrotic effect that could be through NF-kB inhibition. Thus MP like molecule could be a promising anti-inflammatory and antifibrotic drug. - Research Highlights: >Methyl palmitate is a universal macrophage inhibitor. >It could be a promising nucleus of anti-inflammatory and antifibrotic drugs. >The underlying mechanism of these effects could be through NF-kB inhibition.

  3. Synthesis and anti-inflammatory activity evaluation of a novel series of 6-phenoxy-[1,2,4]triazolo[3,4-a]phthalazine-3-carboxamide derivatives.

    PubMed

    Liu, Da-Chuan; Gong, Guo-Hua; Wei, Cheng-Xi; Jin, Xue-Jun; Quan, Zhe-Shan

    2016-03-15

    The transcription factor nuclear factor-?B (NF-?B) controls many physiological processes including inflammation, immunity, and apoptosis. In this study, a novel series of 6-phenoxy-[1,2,4]triazolo[3,4-a]phthalazine-3-carboxamide derivatives were synthesized as potent anti-inflammatory agents, which acted on tumor necrosis factor (TNF-?) as inhibitors of NF-?B activation. We showed that compounds 6h (6-(2,4-dichlorophenoxy)-[1,2,4]triazolo[3,4-a]phthalazine-3-carboxamide) and 6i (6-(3-tolyloxy)-[1,2,4]triazolo[3,4-a]phthalazine-3-carboxamide) showed more prominent anti-inflammatory activity than other compounds, with similar activities as the reference drug dihydrotanshinone; compound 6i showed the lowest cellular toxicity among the tested compounds. In vivo evaluation of the anti-inflammatory activity showed that compound 6i exhibited excellent anti-inflammatory activity with 58.19% inhibition at 50mg/kg intraperitoneal (i.p.), with equal efficacy as the positive control indomethacin (100mg/kg i.p.; 59.21% inhibition). PMID:26876930

  4. Synthesis, characterization and biological evaluation of novel 4'-fluoro-2'-hydroxy-chalcone derivatives as antioxidant, anti-inflammatory and analgesic agents.

    PubMed

    Abdellatif, Khaled R A; Elshemy, Heba A H; Salama, Samir A; Omar, Hany A

    2015-06-01

    In an effort to develop safe and potent anti-inflammatory agents, a series of novel 4'-fluoro-2'-hydroxychalcones 5a-d and their dihydropyrazole derivatives 6a-d was prepared. It was synthesized via aldol condensation of 4'-fluoro-2'-hydroxyacetophenone with appropriately substituted aldehydes followed by cyclization with hydrazine hydrate. All the synthesized compounds were evaluated for their antioxidant, anti-inflammatory, cyclooxygenase inhibition selectivity and analgesic activities. The dimethoxychalcone 5a and its dihydropyrazole derivative 6a showed the highest antioxidant activity, while the monomethoxychalcone 5d and its dihydropyrazole derivative 6d showed the highest analgesic and anti-inflammatory activities. It was also found that there is a close correlation between 4'-fluoro-2'-hydroxychalcones 5a-d and their dihydropyrazole derivatives 6a-d in the screened biological activities. To explain the correlation between the synthesized chalcones and their dihydropyrazole derivatives, especially for the anti-inflammatory activity, docking studies were performed. PMID:25198887

  5. Evaluation of anti-inflammatory activity of Solanum xanthocarpum Schrad and Wendl (Kaṇṭakāri) extract in laboratory animals

    PubMed Central

    More, Shraddha K.; Lande, Anirudha A.; Jagdale, Priti G.; Adkar, Prafulla P.; Ambavade, Shirishkumar D.

    2013-01-01

    Context: Solanum xanthocarpum Schrad and Wendl (Kaṇṭakāri) is a diffuse herb with prickly stem, traditionally used for the treatment of inflammation and one in the group of daśamūla (group of ten herbs) herbs commonly used drug in Ayurveda. Aims: In continuation of search for potent natural anti-inflammatory agents, the present research work was planned to evaluate the anti-inflammatory activity of ethanol extract of S. xanthocarpum whole plant. Settings and Design: The ethanol extract was evaluated at dose 10, 30 and 100 mg/kg p.o. in rats. Materials and Methods: Using pharmacological screening models carrageenan induced rat paw edema, histamine induced rat paw edema and cotton pellet granuloma in rats. Statistical Analysis Used: Data obtained was analyzed statistically using analysis of variance followed by post-hoc Dunnett test, P < 0.05 is considered as statistically significant. Results: Acute treatment didn’t show anti-inflammatory activity against carrageenan and histamine induced paw edema. However, administration of 100 mg/kg p.o for 7 day reduced the granuloma formation in cotton pellet granuloma model. Conclusions: Present results support the traditional use of plant for anti-inflammatory activity. In brief, the results provide scientific pharmacological basis for the therapeutic use of S. xanthocarpum. PMID:24991071

  6. Exopolysaccharide produced by Pleurotus sajor-caju: its chemical structure and anti-inflammatory activity.

    PubMed

    Silveira, Marcia L L; Smiderle, Fhernanda R; Agostini, Franciane; Pereira, Eduardo M; Bonatti-Chaves, Mariane; Wisbeck, Elisabeth; Ruthes, Andra Caroline; Sassaki, Guilherme L; Cipriani, Thales R; Furlan, Sandra A; Iacomini, Marcello

    2015-04-01

    Edible mushrooms are high nutritional value foods, which contain proteins, fibers, minerals, vitamins, and carbohydrates. Among their carbohydrates are some polysaccharides with recognized therapeutic effects. It was reported in this manuscript the structural characterization and antinociceptive and anti-inflammatory activities of an exopolysaccharide (EPS) produced by Pleurotus sajor-caju. The purified EPS was a mannogalactan (PEIsR), which was composed by mannose (37.0%), galactose (39.7%), and 3-O-methyl-galactose (23.3%). The polysaccharide was purified by freeze-thawing and dialysis, and it was characterized by GC-MS analysis and NMR spectroscopy. The mannogalactan is constituted by a main chain of (1 ? 6)-linked ?-D-Galp and 3-O-methyl-?-D-Galp units. Some of the ?-D-Galp units were substituted at O-2 by non-reducing end units of ?-D-Manp. According to the literature review conducted, this is the first time that a methylated polysaccharide was observed on EPS of P. sajor-caju. The mannogalactan was able to reduce the nociception, in vivo, in the writhing and formalin tests and also reduced the carrageenan-induced paw edema, which indicates that it could be an effective antinociceptive and anti-inflammatory agent. PMID:25600989

  7. Identification of Novel Anti-inflammatory Agents from Ayurvedic Medicine for Prevention of Chronic Diseases

    PubMed Central

    Aggarwal, Bharat B.; Prasad, Sahdeo; Reuter, Simone; Kannappan, Ramaswamy; Yadev, Vivek R.; Park, Byoungduck; Kim, Ji Hye; Gupta, Subash C.; Phromnoi, Kanokkarn; Sundaram, Chitra; Prasad, Seema; Chaturvedi, Madan M.; Sung, Bokyung

    2011-01-01

    Inflammation, although first characterized by Cornelius Celsus, a physician in first Century Rome, it was Rudolf Virchow, a German physician in nineteenth century who suggested a link between inflammation and cancer, cardiovascular diseases, diabetes, pulmonary diseases, neurological diseases and other chronic diseases. Extensive research within last three decades has confirmed these observations and identified the molecular basis for most chronic diseases and for the associated inflammation. The transcription factor, Nuclear Factor-kappaB (NF-κB) that controls over 500 different gene products, has emerged as major mediator of inflammation. Thus agents that can inhibit NF-κB and diminish chronic inflammation have potential to prevent or delay the onset of the chronic diseases and further even treat them. In an attempt to identify novel anti-inflammatory agents which are safe and effective, in contrast to high throughput screen, we have turned to “reverse pharmacology” or “bed to benchside” approach. We found that Ayurveda, a science of long life, almost 6000 years old, can serve as a “goldmine” for novel anti-inflammatory agents used for centuries to treat chronic diseases. The current review is an attempt to provide description of various Ayurvedic plants currently used for treatment, their active chemical components, and the inflammatory pathways that they inhibit. PMID:21561421

  8. Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate.

    PubMed

    Ahn, Chang-Bum; Cho, Young-Sook; Je, Jae-Young

    2015-02-01

    In this study, the anti-inflammatory peptide from salmon pectoral fin byproduct protein hydrolysate by pepsin hydrolysis, was purified and identified using Sephadex G-25 gel permeation chromatography, high performance liquid chromatography and time-of-flight liquid chromatography/tandem mass spectrometry (TOF LC/MS/MS). The purified anti-inflammatory peptide was identified to be a tripeptide (PAY). Lipopolysaccharide treatment significantly (p<0.05) stimulated the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW264.7 cells. However, PAY treatment significantly (p<0.05) inhibited the production of NO by 63.80% and PGE2 by 45.33%. Western blotting analysis revealed that PAY significantly (p<0.05) suppressed the protein expression of inducible nitric oxide synthase and cyclooxygenase-2, which are responsible for the production of NO and PGE2. Additionally, PAY treatment also significantly (p<0.05) attenuated the production of pro-inflammatory cytokines, including tumour necrosis factor-?, interleukin-6 and -1?. PMID:25172694

  9. Recent Breakthroughs in the Antioxidant and Anti-Inflammatory Effects of Morella and Myrica Species.

    PubMed

    Silva, Bruno J C; Seca, Ana M L; Barreto, Maria do Carmo; Pinto, Diana C G A

    2015-01-01

    Oxidative stress is one of the risk factors for the development of several chronic diseases, such as diabetes, cancer, cardiovascular and neurodegenerative diseases. Antioxidants are therefore highly sought and can be seen as a type of preventive medicine against several diseases. Myrica and Morella genus (Myricaceae) are taxonomically very close and their species are trees or shrubs with edible fruits that exhibit relevant uses in traditional medicine, for instance in Chinese or Japanese folk medicine they are used to treat diarrhea, digestive problems, headache, burns and skin diseases. Nearly 36 compounds were isolated from different morphological parts of Myrica and/or Morella species and their antioxidant and anti-inflammatory activities evaluated. Thirteen of these compounds exhibit greater effects than the positive controls used. Adenodimerin A was the most active compound reported (in a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay EC50= 7.9 0.3 M). These results are just one aspect of the antioxidant and anti-inflammatory evaluations reported regarding Myrica and Morella species, so a comprehensive overview on the current status, highlighting the antioxidant health promoting effect of these species, their key antioxidant compounds as well as the compounds with protective effects against oxidative stress related diseases such as inflammation, is relevant. PMID:26308834

  10. Recent Breakthroughs in the Antioxidant and Anti-Inflammatory Effects of Morella and Myrica Species.

    PubMed

    Silva, Bruno J C; Seca, Ana M L; Barreto, Maria do Carmo; Pinto, Diana C G A

    2015-01-01

    Oxidative stress is one of the risk factors for the development of several chronic diseases, such as diabetes, cancer, cardiovascular and neurodegenerative diseases. Antioxidants are therefore highly sought and can be seen as a type of preventive medicine against several diseases. Myrica and Morella genus (Myricaceae) are taxonomically very close and their species are trees or shrubs with edible fruits that exhibit relevant uses in traditional medicine, for instance in Chinese or Japanese folk medicine they are used to treat diarrhea, digestive problems, headache, burns and skin diseases. Nearly 36 compounds were isolated from different morphological parts of Myrica and/or Morella species and their antioxidant and anti-inflammatory activities evaluated. Thirteen of these compounds exhibit greater effects than the positive controls used. Adenodimerin A was the most active compound reported (in a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay EC50= 7.9 0.3 M). These results are just one aspect of the antioxidant and anti-inflammatory evaluations reported regarding Myrica and Morella species, so a comprehensive overview on the current status, highlighting the antioxidant health promoting effect of these species, their key antioxidant compounds as well as the compounds with protective effects against oxidative stress related diseases such as inflammation, is relevant. PMID:26287159

  11. Recent Breakthroughs in the Antioxidant and Anti-Inflammatory Effects of Morella and Myrica Species.

    PubMed

    Silva, Bruno J C; Seca, Ana M L; Barreto, Maria do Carmo; Pinto, Diana C G A

    2015-01-01

    Oxidative stress is one of the risk factors for the development of several chronic diseases, such as diabetes, cancer, cardiovascular and neurodegenerative diseases. Antioxidants are therefore highly sought and can be seen as a type of preventive medicine against several diseases. Myrica and Morella genus (Myricaceae) are taxonomically very close and their species are trees or shrubs with edible fruits that exhibit relevant uses in traditional medicine, for instance in Chinese or Japanese folk medicine they are used to treat diarrhea, digestive problems, headache, burns and skin diseases. Nearly 36 compounds were isolated from different morphological parts of Myrica and/or Morella species and their antioxidant and anti-inflammatory activities evaluated. Thirteen of these compounds exhibit greater effects than the positive controls used. Adenodimerin A was the most active compound reported (in a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay EC50= 7.9 0.3 M). These results are just one aspect of the antioxidant and anti-inflammatory evaluations reported regarding Myrica and Morella species, so a comprehensive overview on the current status, highlighting the antioxidant health promoting effect of these species, their key antioxidant compounds as well as the compounds with protective effects against oxidative stress related diseases such as inflammation, is relevant. PMID:26225964

  12. Ultrasound Prevents Renal Ischemia-Reperfusion Injury by Stimulating the Splenic Cholinergic Anti-Inflammatory Pathway

    PubMed Central

    Gigliotti, Joseph C.; Huang, Liping; Ye, Hong; Bajwa, Amandeep; Chattrabhuti, Kryt; Lee, Sangju; Klibanov, Alexander L.; Kalantari, Kambiz; Rosin, Diane L.

    2013-01-01

    AKI affects both quality of life and health care costs and is an independent risk factor for mortality. At present, there are few effective treatment options for AKI. Here, we describe a nonpharmacologic, noninvasive, ultrasound-based method to prevent renal ischemia-reperfusion injury in mice, which is a model for human AKI. We exposed anesthetized mice to an ultrasound protocol 24 hours before renal ischemia. After 24 hours of reperfusion, ultrasound-treated mice exhibited preserved kidney morphology and function compared with sham-treated mice. Ultrasound exposure before renal ischemia reduced the accumulation of CD11b+Ly6Ghigh neutrophils and CD11b+F4/80high myeloid cells in kidney tissue. Furthermore, splenectomy and adoptive transfer studies revealed that the spleen and CD4+ T cells mediated the protective effects of ultrasound. Last, blockade or genetic deficiency of the ?7 nicotinic acetylcholine receptor abrogated the protective effect of ultrasound, suggesting the involvement of the cholinergic anti-inflammatory pathway. Taken together, these results suggest that an ultrasound-based treatment could have therapeutic potential for the prevention of AKI, possibly by stimulating a splenic anti-inflammatory pathway. PMID:23907510

  13. Neuroprotective and anti-inflammatory activities of ketogenic diet on MPTP-induced neurotoxicity.

    PubMed

    Yang, Xinxin; Cheng, Baohua

    2010-10-01

    Ketogenic diet (KD) is a high-fat, low-protein and low-carbohydrate diet. It is reported that KD can provide the neuroprotection for the neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease (PD) and amyotrophic lateral sclerosis. The main clinical symptom of PD is motor dysfunction derived from the loss of dopaminergic neurons in the substantia nigra (SN) and dopamine content in the striatum subsequently. It is well known that treatments with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice produce motor dysfunction, biochemical, and neurochemical changes remarkably similar to idiopathic PD patients. In this study, we investigated the neuroprotective and anti-inflammatory effects of KD in MPTP-treated mice. The data showed that pretreatment with KD alleviated the motor dysfunction induced by MPTP. The decrease of Nissl-staining and tyrosine hydroxylase (TH)-positive neurons induced by MPTP was inhibited in the SN. The change of dopamine was very similar to dopaminergic neurons in the SN. KD inhibited the activation of microglia induced by MPTP in the SN. The levels of proinflammatory cytokines (interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha) in the SN were also decreased and induced by MPTP. So, we concluded that KD was neuroprotective and anti-inflammatory against MPTP-neurotoxicity. PMID:20333481

  14. Obtaining from grape pomace an enzymatic extract with anti-inflammatory properties.

    PubMed

    Rodrguez-Morgado, B; Candiracci, M; Santa-Mara, C; Revilla, E; Gordillo, B; Parrado, J; Castao, A

    2015-03-01

    Grape pomace, a winemaking industry by-product, is a rich source of bioactive dietary compounds. Using proteases we have developed an enzymatic process for obtaining a water-soluble extract (GP-EE) that contains biomolecules such as peptides, carbohydrates, lipids and polyphenols in soluble form. Of especial interest is its high polyphenol content (12%), of which 77% are flavonoids and 33% are phenolic acids. The present study evaluates in vitro the potential anti-inflammatory effect of GP-EE by monitoring the expression of inflammatory molecules on N13 microglia cells stimulated with lipopolysaccharide (LPS). GP-EE decreases the mRNA levels of the inflammatory molecules studied. The molecules under study were as follows: inducible nitric oxide synthase (iNOS), tumor necrosis factor- ? (TNF-?), interleukin-1? (IL-1?), the ionized calcium binding adaptor molecule-1(Iba-1) and the Toll like receptor-4 (TLR-4), as well as the iNOS protein level in LPS-stimulated microglia. Our findings suggest that, as a result of its ability to regulate excessive microglial activation, GP-EE possesses anti-inflammatory properties. Therefore, acting as a chemopreventive agent, it may be of therapeutic interest in neurodegenerative diseases involving neuroinflammation. We can, therefore, propose GP-EE as a useful natural extract and one that would be beneficial to apply in the field of functional foods. PMID:25535003

  15. Recent Breakthroughs in the Antioxidant and Anti-Inflammatory Effects of Morella and Myrica Species

    PubMed Central

    Silva, Bruno J. C.; Seca, Ana M. L.; Barreto, Maria do Carmo; Pinto, Diana C. G. A.

    2015-01-01

    Oxidative stress is one of the risk factors for the development of several chronic diseases, such as diabetes, cancer, cardiovascular and neurodegenerative diseases. Antioxidants are therefore highly sought and can be seen as a type of preventive medicine against several diseases. Myrica and Morella genus (Myricaceae) are taxonomically very close and their species are trees or shrubs with edible fruits that exhibit relevant uses in traditional medicine, for instance in Chinese or Japanese folk medicine they are used to treat diarrhea, digestive problems, headache, burns and skin diseases. Nearly 36 compounds were isolated from different morphological parts of Myrica and/or Morella species and their antioxidant and anti-inflammatory activities evaluated. Thirteen of these compounds exhibit greater effects than the positive controls used. Adenodimerin A was the most active compound reported (in a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay EC50= 7.9 ± 0.3 µM). These results are just one aspect of the antioxidant and anti-inflammatory evaluations reported regarding Myrica and Morella species, so a comprehensive overview on the current status, highlighting the antioxidant health promoting effect of these species, their key antioxidant compounds as well as the compounds with protective effects against oxidative stress related diseases such as inflammation, is relevant.

  16. Substrate-anchored and degradation-sensitive anti-inflammatory coatings for implant materials

    PubMed Central

    Wu, Duo; Chen, Xingyu; Chen, Tianchan; Ding, Chunmei; Wu, Wei; Li, Jianshu

    2015-01-01

    Implant materials need to be highly biocompatible to avoid inflammation in clinical practice. Although biodegradable polymeric implants can eliminate the need for a second surgical intervention to remove the implant materials, they may produce acidic degradation products in vivo and cause non-bacterial inflammation. Here we show the strategy of substrate-anchored and degradation-sensitive coatings for biodegradable implants. Using poly(lactic acid)/hydroxyapatite as an implant material model, we constructed a layer-by-layer coating using pH-sensitive star polymers and dendrimers loaded with an anti-inflammatory drug, which was immobilised through a hydroxyapatite-anchored layer. The multifunctional coating can effectively suppress the local inflammation caused by the degradation of implant materials for at least 8 weeks in vivo. Moreover, the substrate-anchored coating is able to modulate the degradation of the substrate in a more homogeneous manner. The substrate-anchored and degradation-sensitive coating strategy therefore exhibits potential for the design of various self-anti-inflammatory biodegradable implant materials. PMID:26077243

  17. Anti-inflammatory response following uptake of apoptotic bodies by meningothelial cells

    PubMed Central

    2014-01-01

    Background Meningothelial cells (MECs) are the cellular components of the meninges. As such, they provide important barrier function for the central nervous system (CNS) building the interface between neuronal tissue and the cerebrospinal fluid (CSF), and are also part of the immune response of the CNS. Methods Human, immortalized MECs were analyzed by flow cytometry and confocal microscopy to study the uptake of apoptotic cells. Furthermore, cytokine and chemokine production by MECs was analyzed by cytokine array and ELISA. Results We found that MECs are highly active phagocytes able of ingesting and digesting large amounts of apoptotic cells. Furthermore, the uptake of apoptotic cells by MECs was immune suppressive via inhibiting the secretion of pro-inflammatory and chemoattractant cytokines and chemokines IL-6, IL-8, IL-16, MIF, and CXCL1, while increasing the secretion of anti-inflammatory IL-1 receptor antagonist by MECs. Conclusion MECs respond with the secretion of anti-inflammatory cytokines and chemokines following the uptake of apoptotic cells potentially connecting these cells to processes important for the shut-down of immune responses in the brain. PMID:24565420

  18. Design of cissus-alginate microbeads revealing mucoprotection properties in anti-inflammatory therapy.

    PubMed

    Okunlola, Adenike; Odeku, Oluwatoyin A; Lamprecht, Alf; Oyagbemi, Ademola A; Oridupa, Olayinka A; Aina, Oluwasanmi O

    2015-08-01

    Cissus gum has been employed as polymer with sodium alginate in the formulation of diclofenac microbeads and the in vivo mucoprotective properties of the polymer in anti-inflammatory therapy assessed in rats with carrageenan-induced paw edema in comparison to diclofenac powder and commercial diclofenac tablet. A full 2(3) factorial experimental design has been used to investigate the influence of concentration of cissus gum (X1); concentration of calcium acetate (X2) and stirring speed (X3) on properties of the microbeads. Optimized small discrete microbeads with size of 1.220.10 mm, entrapment efficiency of 84.6% and t80 of 15.23.5 h were obtained at ratio of cissus gum:alginate (1:1), low concentration of calcium acetate (5% w/v) and high stirring speed (400 rpm). In vivo studies showed that the ranking of percent inhibition of inflammation after 3h was diclofenac powder>commercial tablet=cissus>alginate. Histological damage score and parietal cell density were lower while crypt depth and mucosal width were significantly higher (p<0.05) in the groups administered with the diclofenac microbeads than those administered with diclofenac powder and commercial tablet, suggesting the mucoprotective property of the gum. Thus, cissus gum could be suitable as polymer in the formulation of non-steroidal anti-inflammatory drugs ensuring sustained release while reducing gastric side effects. PMID:25940525

  19. Substrate-anchored and degradation-sensitive anti-inflammatory coatings for implant materials

    NASA Astrophysics Data System (ADS)

    Wu, Duo; Chen, Xingyu; Chen, Tianchan; Ding, Chunmei; Wu, Wei; Li, Jianshu

    2015-06-01

    Implant materials need to be highly biocompatible to avoid inflammation in clinical practice. Although biodegradable polymeric implants can eliminate the need for a second surgical intervention to remove the implant materials, they may produce acidic degradation products in vivo and cause non-bacterial inflammation. Here we show the strategy of “substrate-anchored and degradation-sensitive coatings” for biodegradable implants. Using poly(lactic acid)/hydroxyapatite as an implant material model, we constructed a layer-by-layer coating using pH-sensitive star polymers and dendrimers loaded with an anti-inflammatory drug, which was immobilised through a hydroxyapatite-anchored layer. The multifunctional coating can effectively suppress the local inflammation caused by the degradation of implant materials for at least 8 weeks in vivo. Moreover, the substrate-anchored coating is able to modulate the degradation of the substrate in a more homogeneous manner. The “substrate-anchored and degradation-sensitive coating” strategy therefore exhibits potential for the design of various self-anti-inflammatory biodegradable implant materials.

  20. Studies on the antiplatelet and antithrombotic profile of anti-inflammatory coumarin derivatives.

    PubMed

    Kontogiorgis, Christos; Nicolotti, Orazio; Mangiatordi, Giuseppe Felice; Tognolini, Massimiliano; Karalaki, Foteini; Giorgio, Carmine; Patsilinakos, Alexandros; Carotti, Angelo; Hadjipavlou-Litina, Dimitra; Barocelli, Elisabetta

    2015-12-01

    The interest towards coumarin-based structures stems from their polypharmacological profile. Herein, we present a series of Mannich bases and 7-azomethine-linked coumarin derivatives exhibiting antiplatelet and antithrombotic activities, in addition to the already known anti-inflammatory and antioxidant activities. Among others, compounds 15 and 16 were found to be the most potent and selective inhibitors of platelet aggregation whereas compound 3 also proved to be the most potent in the clot retraction assay. Structure-activity relationship studies were conducted to elucidate the molecular determinants responsible for the herein observed activities. The chance of inhibiting cyclooxygenase-1 was also investigated for evaluating the platelet aggregation induced by arachidonic acid. Taken together, these results suggest that the investigation of other targets connected to the antiplatelet activity, such as phosphodiesterase-3 (PDE3), could be a viable strategy to shed light on the polypharmacological profile of coumarin-based compounds. Docking simulations towards PDE3 were also carried out. PMID:25807297

  1. Anti-inflammatory cyclopeptides from exocarps of sugar-apples.

    PubMed

    Wu, Ping; Wu, Min; Xu, Liangxiong; Xie, Haihui; Wei, Xiaoyi

    2014-01-01

    Two new cyclic peptides, fanlizhicyclopeptide A, cyclo(Pro(1)-Pro(2)-Tyr(3)-Leu(4)-Pro(5)-Gly(6)-Val(7)) (1), and fanlizhicyclopeptide B, cyclo(Pro(1)-Ile(2)-Tyr(3)-Ala(4)-Gly(5)) (2), were isolated along with six known kaurane diterpenoids and a known clovane sesquiterpene from the exocarps of sugar-apples, the fruit of Annona squamosa. Their structures were elucidated by ESI MS/MS experiments, 1D and 2D NMR data and chemical degradation. In the anti-inflammatory assay, both 1 and 2 showed in vitro inhibitory effects on the production of pro-inflammatory cytokines, TNF-? and IL-6, in LPS-stimulated RAW 264.7 macrophages. PMID:24444902

  2. Cardiovascular Effects of Nonsteroidal Anti-inflammatory Drugs.

    PubMed

    Patrono, Carlo

    2016-03-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) include aspirin, other traditional NSAIDs, and coxibs. Evidence obtained during the past 10 years has focused attention on the cardiovascular hazard associated with coxibs and some traditional NSAIDs. The large randomized trials of prolonged coxib treatment added importantly to information provided by epidemiological studies that had previously associated regular use of NSAIDs with increased blood pressure and enhanced risk of congestive heart failure, and identified an increased risk of myocardial infarction as a class effect of cyclooxygenase-2 inhibitors. The aim of this article is to review the cardiovascular effects of aspirin, other traditional NSAIDs, and coxibs, to discuss the mechanisms underlying these effects, and to provide a clinical perspective on the cardiovascular hazard associated with their use. PMID:26841787

  3. Non-Steroidal Anti-Inflammatory Drug-Induced Enteropathy

    PubMed Central

    Lim, Yun Jeong

    2012-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most commonly prescribed drugs in the world. NSAID-induced lower gastrointestinal (GI) complications are increasing while upper GI complications are decreasing. Lower GI events accounted for 40% of all serious GI events in patients on NSAIDs. Capsule endoscopy and device assisted enteroscopy are available for detection of small intestinal lesions. Capsule endoscopy studies have demonstrated that NSAIDs use in healthy volunteers raised the incidence (55% to 75%) of intestinal damage. It appears that selective cyclooxygenase-2 inhibitors (coxibs) improved upper and lower GI safety based on results of clinical trials. Selective coxibs are still capable of triggering GI adverse events and cardiovascular toxicity issues were the main focus of concerns. Unfortunately, definite strategies are not available to prevent or heal NSAID-induced intestinal injuries. Thus, there is still a strong clinical need for effective drugs with improved safety profiles than the existing NSAIDs. PMID:22866254

  4. Inflammation, Bone Healing, and Anti-Inflammatory Drugs: An Update.

    PubMed

    Giannoudis, Peter V; Hak, David; Sanders, David; Donohoe, Erin; Tosounidis, Theodoros; Bahney, Chelsea

    2015-12-01

    Fracture healing is a unique multifaceted process requiring the presence of cells, molecular mediators, and angiogenic factors. The state of inflammation dominates the initial phase, but the ideal magnitude and duration of the process for an optimal outcome remains obscure. Biological response modifiers, such as platelet-rich plasma (PRP) preparations, have been used to reconstitute the desirable early inflammatory state, but the results obtained remain inconclusive. Ongoing research to characterize and quantify the inflammatory response after bone fracture is essential in order to better understand the molecular insights of this localized reaction and to expand our armamentarium in the management of patients with an impaired fracture healing response. Non-steroidal anti-inflammatory drugs frequently administered for analgesia after trauma procedures continue to be a cause of concern for a successful bone repair response. PMID:26584270

  5. Harnessing the anti-inflammatory potential of palmitoylethanolamide.

    PubMed

    Alhouayek, Mireille; Muccioli, Giulio G

    2014-10-01

    Palmitoylethanolamide (PEA) is a peroxisome proliferator-activated receptor alpha (PPAR-?) ligand that exerts anti-inflammatory, analgesic and neuroprotective actions. PEA is synthetized from phospholipids through the sequential actions of N-acyltransferase and N-acylphosphatidylethanolamine-preferring phospholipase D (NAPE-PLD), and its actions are terminated by its hydrolysis by two enzymes, fatty acid amide hydrolase (FAAH) and N-acylethanolamine-hydrolysing acid amidase (NAAA). Here, we review the impact of PEA administration in inflammatory and neurodegenerative settings and the differential role of FAAH and NAAA in controlling PEA levels. Recent studies with NAAA inhibitors put forth this enzyme as capable of increasing PEA levels in vivo in inflammatory processes, and identified it as an interesting target for drug discovery research. Thus, PEA hydrolysis inhibitors could constitute potential therapeutic alternatives in chronic inflammatory and neurodegenerative diseases. PMID:24952959

  6. Anti-inflammatory effects of hydroxycinnamic acid derivatives

    SciTech Connect

    Nagasaka, Reiko; Chotimarkorn, Chatchawan; Shafiqul, Islam Md.; Hori, Masatoshi; Ozaki, Hiroshi; Ushio, Hideki . E-mail: hushio@kaiyodai.ac.jp

    2007-06-29

    NF-{kappa}B family of transcription factors are involved in numerous cellular processes, including differentiation, proliferation, and inflammation. It was reported that hydroxycinnamic acid derivatives (HADs) are inhibitors of NF-{kappa}B activation. Rice bran oil contains a lot of phytosteryl ferulates, one of HADs. We have investigated effects of phytosteryl ferulates on NF-{kappa}B activation in macrophage. Cycloartenyl ferulate (CAF), one of phytosteryl ferulates, significantly reduced lipopolysaccharide (LPS)-induced NO production and mRNA expression of inducible NO synthase and cyclooxygenese-2 but upregulated SOD activity. Electrophoresis mobility shift assay revealed that CAF inhibited DNA-binding of NF-{kappa}B. CAF and phytosteryl ferulates probably have potentially anti-inflammatory properties.

  7. Antioxidant and Anti-Inflammatory Activities of Barettin

    PubMed Central

    Lind, Karianne F.; Hansen, Espen; sterud, Bjarne; Eilertsen, Karl-Erik; Bayer, Annette; Engqvist, Magnus; Leszczak, Kinga; Jrgensen, Trond .; Andersen, Jeanette H.

    2013-01-01

    In this paper, we present novel bioactivity for barettin isolated from the marine sponge Geodia barretti. We found that barettin showed strong antioxidant activity in biochemical assays as well as in a lipid peroxidation cell assay. A de-brominated synthetic analogue of barettin did not show the same activity in the antioxidant cell assay, indicating that bromine is important for cellular activity. Barettin was also able to inhibit the secretion of the inflammatory cytokines IL-1? and TNF? from LPS-stimulated THP-1 cells. This combination of anti-inflammatory and antioxidant activities could indicate that barettin has an atheroprotective effect and may therefore be an interesting product to prevent development of atherosclerosis. PMID:23880935

  8. Thymoquinone Poly(lactide-co-glycolide) Nanoparticles Exhibit Enhanced Anti-proliferative, Anti-inflammatory, and Chemosensitization Potential

    PubMed Central

    Ravindran, Jayaraj; Nair, Hareesh B; Sung, Bokyung; Prasad, Sahdeo; Tekmal, Rajeshwar R.; Aggarwal, Bharat B.

    2010-01-01

    Thymoquinone (TQ), derived from the medicinal spice Nigella sativa (also called black cumin), has been shown to exhibit anti-inflammatory and anti-cancer activities. In this report we employed polymer-based nanoparticle approach to improve upon its effectiveness and bioavailability. TQ was encapsulated with 97.5% efficiency in biodegradable nanoparticulate formulation based on poly (lactide-co-glycolide) (PLGA) and the stabilizer polyethylene glycol (PEG)-5000. Dynamic laser light scattering and transmission electron microscopy confirmed particle diameter ranged between 150–200 nm. Electrophoretic gel shift mobility assay showed that TQ nanoparticles (NP) were more active than TQ in inhibiting NF-κB activation and in suppressing the expression of cyclin D1, matrix metalloproteinase (MMP)-9, vascular endothelial growth factor (VEGF), markers of cell proliferation, metastasis and angiogenesis, respectively. TQ-NP was also more potent than TQ in suppressing proliferation of colon cancer, breast cancer, prostate cancer, and multiple myeloma cells. Esterase staining for plasma membrane integrity revealed that TQ-NP was more potent than TQ in sensitizing leukemic cells to TNF- and paclitaxel-induced apoptosis. Overall our results demonstrate that encapsulation of TQ into nanoparticles enhances its anti-proliferative, anti-inflammatory, and chemosensitizing effects. PMID:20105430

  9. Anti-inflammatory activity of hamamelis distillate applied topically to the skin. Influence of vehicle and dose.

    PubMed

    Korting, H C; Schfer-Korting, M; Hart, H; Laux, P; Schmid, M

    1993-01-01

    The anti-inflammatory activity of hamamelis distillate has been evaluated with respect to drug concentration (0.64 mg/2.56 mg hamamelis ketone/100 g) and the effect of the vehicle (O/W emulsion with/without phosphatidylcholine (PC) in an experimental study. The effects were compared with those of chamomile cream, hydrocortisone 1% cream and 4 base preparations. Erythema was induced by UV irradiation and cellophane tape stripping of the horny layer in 24 healthy subjects per test. Skin blanching was quantified by visual scoring and chromametry. Drug effects were compared with one another and with an untreated control area, as well as with any action due to the vehicle. UV-induced erythema at 24 h was suppressed by low dose hamamelis PC-cream and hydrocortisone cream. Hydrocortisone appeared superior to both hamamelis vehicles, hamamelis cream (without PC) and chamomile cream. The latter preparation was also less potent than hamamelis PC-cream. Erythema 4 to 8 h after the stripping of the horny layer was suppressed by hydrocortisone (P < or = 0.05). Inflammation was also less pronounced following low dose hamamelis PC-cream and chamomile cream. Hamamelis PC-cream, however, appeared less potent than hydrocortisone. In general, visual scoring was more discriminatory than chromametry. The results have demonstrated an anti-inflammatory activity of hamamelis distillate in a PC-containing vehicle. A fourfold increase of drug concentration, however, did not produce an increase in activity. PMID:8513841

  10. Anti-inflammatory and antinociceptive activities of azadirachtin in mice.

    PubMed

    Soares, Darly G; Godin, Adriana M; Menezes, Raquel R; Nogueira, Rafaela D; Brito, Ana Mercy S; Melo, Ivo S F; Coura, Giovanna Maria E; Souza, Danielle G; Amaral, Flvio A; Paulino, Tony P; Coelho, Mrcio M; Machado, Renes R

    2014-06-01

    Azadirachta indica (Meliaceae) extracts have been reported to exhibit anti-inflammatory and antinociceptive properties. However, the activities of azadirachtin, a limonoid and the major bioactive compound found in the extracts, have been poorly investigated in animal models. In the present study, we investigated the effects induced by azadirachtin in experimental models of pain and inflammation in mice. Carrageenan-induced paw edema and fibrovascular tissue growth induced by subcutaneous cotton pellet implantation were used to investigate the anti-inflammatory activity of azadirachtin in mice. Zymosan-induced writhing and hot plate tests were employed to evaluate the antinociceptive activity. To explore putative mechanisms of action, the level of tumor necrosis factor-? in inflammatory tissue was measured and the effect induced by opioidergic and serotonergic antagonists was evaluated. Previous per os (p.?o.) administration of azadirachtin (120 mg/kg) significantly reduced the acute paw edema induced by carrageenan. However, the concomitant increase of the paw concentration of tumor necrosis factor-? induced by this inflammatory stimulus was not reduced by azadirachtin. In addition to inhibiting the acute paw edema induced by carrageenan, azadirachtin (6, 60, and 120 mg/kg) inhibited the proliferative phase of the inflammatory response, as demonstrated by the reduced formation of fibrovascular tissue growth. Azadirachtin (120 mg/kg) also inhibited the nociceptive response in models of nociceptive (hot plate) and inflammatory (writhing induced by zymosan) pain. The activity of azadirachtin (120 mg/kg) in the model of nociceptive pain was attenuated by a nonselective opioid antagonist, naltrexone (10 mg/kg, i.?p.), but not by a nonselective serotonergic antagonist, cyproheptadine. In conclusion, this study demonstrates the activity of azadirachtin in experimental models of nociceptive and inflammatory pain, and also in models of acute and chronic inflammation. Finally, multiple mechanisms, including the inhibition of the production of inflammatory mediators and activation of endogenous opioid pathways, may mediate azadirachtin activities in experimental models of inflammation and pain. PMID:24871207

  11. Anti-inflammatory effects of anthocyanins-rich extract from bilberry (Vaccinium myrtillus L.) on croton oil-induced ear edema and Propionibacterium acnes plus LPS-induced liver damage in mice.

    PubMed

    Luo, Hui; Lv, Xiao-Dan; Wang, Guo-En; Li, Yi-Fang; Kurihara, Hiroshi; He, Rong-Rong

    2014-08-01

    Bilberry (Vaccinium myrtillus L.) has been known to play a protective role in human health due to its high anthocyanin content. This study investigated the anti-inflammatory effects of bilberry extract (BE, containing 42.04% anthocyanin) on Propionibacterium acnes (P. acnes) plus lipopolysaccharide (LPS) induced liver injury and croton oil-induced ear edema in mice. Results showed that BE could effectively inhibit croton oil-induced ear edema and liver inflammation provoked by P. acnes plus LPS, as reflected by the reduced plasma alanine aminotransferase and aspartate aminotransferase activities. These findings were confirmed by hepatic pathological examination. Moreover, BE administration markedly suppressed the increase of liver mRNA levels of iNOS, TNF-?, IL-1? and IL-6, and the protein levels of iNOS, TNF-? and NF-?B. In addition, liver malondialdehyde and NO contents were significantly reduced by BE treatment. These results indicated that BE has potent protective effects on acute and immunological inflammation, which might contribute to the study of the anti-inflammatory effects of natural products and healthy food. PMID:24548119

  12. Synthesis of Diarylpyrazoles Containing a Phenylsulphone or Carbonitrile Moiety and their Chalcones as Possible Anti-Inflammatory Agents

    PubMed Central

    Nassar, Ekhlass; Abdel-Aziz, Hatem A.; Ibrahim, Hany S.; Mansour, Ahmed M.

    2011-01-01

    A series of chalcone-based diarylpyrazoles containing a phenylsulphone or carbonitrile moiety was synthesized. Thus, 3-acetylpyrazoles 6ac and 10ac were used as useful substrates in facile synthesis of functional pyrazoles 7af and 11af, respectively. The anti-inflammatory activity and ulcerogenic effect were evaluated and some of the obtained products possessed a significant anti-inflammatory activity. 1-[1-(3-Methylphenyl)-5-phenyl-4-(phenylsulfonyl)-1H-pyrazol-3-yl]ethanone (6b) showed a high activity when compared with indomethacin as reference drug with lower gastrointestinal (GI) profile. Furthermore, molecular docking studies were performed in order to rationalize the obtained biological results. PMID:21886900

  13. Analgesic and anti-inflammatory effects of A-286501, a novel orally active adenosine kinase inhibitor.

    PubMed

    Jarvis, Michael F; Yu, Haixia; McGaraughty, Steve; Wismer, Carol T; Mikusa, Joe; Zhu, Chang; Chu, Katharine; Kohlhaas, Kathy; Cowart, Marlon; Lee, Chih Hung; Stewart, Andrew O; Cox, Bryan F; Polakowski, James; Kowaluk, Elizabeth A

    2002-03-01

    Adenosine (ADO) is an inhibitory neuromodulator that can increase nociceptive thresholds in response to noxious stimulation. Inhibition of the ADO-metabolizing enzyme, adenosine kinase (AK) increases extracellular ADO concentrations at sites of tissue trauma and AK inhibitors may have therapeutic potential as analgesic and anti-inflammatory agents. N7-((1'R,2'S,3'R,4'S)-2',3'-dihydroxy-4'-amino-cyclopentyl)-4-amino-5-bromo-pyrrolo[2,3-a]pyrimidine (A-286501) is a novel and potent (IC50=0.47 nM) carbocyclic nucleoside AK inhibitor that has no significant activity (IC50 >100 microM) at other sites of ADO interaction (A1, A2A, A3 receptors, ADO transporter, and ADO deaminase) or other (IC50 value >10 microM) neurotransmitter and peptide receptors, ion channel proteins, neurotransmitter reuptake sites and enzymes, including cyclooxygenases-1 and -2. A-286501 showed equivalent potency to inhibit AK from several mammalian species and kinetic studies revealed that A-286501 was a reversible and competitive inhibitor with respect to ADO and non-competitive with respect to MgATP2-. A-286501 was orally effective to reduce nociception in animal models of acute (thermal), inflammatory (formalin and carrageenan), and neuropathic (L5/L6 nerve ligation and streptozotocin-induced diabetic) pain. A-286501 was particularly potent (ED50=1 micromol/kg, p.o.) to reduce carrageenan-induced inflammatory thermal hyperalgesia as compared to its analgesic actions in other pain models (acute and neuropathic) and its ability to alter hemodynamic function and motor performance. A-286501 was also effective to reduce carrageenan-induced paw edema and myeloperoxidase activity, a measure of neutrophil influx (ED50=10 micromol/kg, p.o.), in the injured paw. The anti-nociceptive effects of A-286501 in the L5/L6 nerve injury model of neuropathic pain (ED50=20 micromol/kg, p.o.) were not blocked by the opioid antagonist naloxone, but were blocked by the ADO receptor antagonist, theophylline. Following repeated administration, A-286501 showed less potential to produce tolerance as compared to morphine. Thus, A-286501 is a structurally novel AK inhibitor that effectively attenuates nociception by a non-opioid, non-non-steroidal anti-inflammatory drug ADO, receptor mediated mechanism. PMID:11932067

  14. Preventative oral methylthioadenosine is anti-inflammatory and reduces DSS-induced colitis in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methylthioadenosine (MTA) is a precursor of the methionine salvage pathway and has been shown to have anti-inflammatory properties in various models of acute and chronic inflammation. However, the anti-inflammatory properties of MTA in models of intestinal inflammation are not defined. We hypothesiz...

  15. Hypericum in Infection: Identification of Anti-viral and Anti-inflammatory Constituents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Iowa Center for Research on Botanical Dietary Supplements seeks to optimize Echinacea, Hypericum and Prunella supplements for human-health benefit, focusing on anti-viral, anti-inflammatory and anti-pain effects. This paper reports on ongoing anti-viral and anti-inflammatory studies on Hypericu...

  16. Issues surrounding the anti-inflammatory actions of the citrus polymethoxylated flavones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The polymethoxylated flavones in citrus have been evaluated for their in vivo anti-inflammatory actions in several animal assays. Strong anti-inflammatory effects were observed following administration of 3,5,6,7,8,3',4'-heptamethoxyflavone (HMF) dissolved in vegetable oil by intraperitoneal (i.p.) ...

  17. Glitazones inhibit human monoamine oxidase but their anti-inflammatory actions are not mediated by VAP-1/semicarbazide-sensitive amine oxidase inhibition.

    PubMed

    Carpn, Christian; Bizou, Mathilde; Trguer, Karine; Hasnaoui, Mounia; Grs, Sandra

    2015-09-01

    Glitazones are peroxisome proliferator-activated receptor gamma (PPAR?) agonists widely used as antidiabetic drugs also known as thiazolidinediones. Most of them exert other effects such as anti-inflammatory actions via mechanisms supposed to be independent from PPAR? activation (e.g., decreased plasma monocyte chemoattractant protein-1 (MCP-1) levels). Recently, pioglitazone has been shown to inhibit the B form of monoamine oxidase (MAO) in mouse, while rosiglitazone and troglitazone were described as non-covalent inhibitors of both human MAO A and MAO B. Since molecules interacting with MAO might also inhibit semicarbazide-sensitive amine oxidase (SSAO), known as vascular adhesion protein-1 (VAP-1), and since VAP-1/SSAO inhibitors exhibit anti-inflammatory activity, our aim was to elucidate whether VAP-1/SSAO inhibition could be a mechanism involved in the anti-inflammatory behaviour of glitazones. To this aim, MAO and SSAO activities were measured in human subcutaneous adipose tissue biopsies obtained from overweight women undergoing plastic surgery. The production of hydrogen peroxide, an end-product of amine oxidase activity, was determined in tissue homogenates using a fluorometric method. The oxidation of 1mM tyramine was inhibited by pargyline and almost resistant to semicarbazide, therefore predominantly MAO-dependent. Rosiglitazone was more potent than pioglitazone in inhibiting tyramine oxidation. By contrast, benzylamine oxidation was only abolished by semicarbazide: hence SSAO-mediated. Pioglitazone hampered SSAO activity only when tested at 1mM while rosiglitazone was inefficient. However, rosiglitazone exhibited anti-inflammatory activity in human adipocytes by limiting MCP-1 expression. Our observations rule out any involvement of VAP-1/SSAO inhibition and subsequent limitation of leukocyte extravasation in the anti-inflammatory action of glitazones. PMID:25572340

  18. A fraction from Dojuksan 30%ethanol extract exerts its anti-inflammatory effects through Nrf2-dependent heme oxygenase-1 expression.

    PubMed

    Lee, Dong-Sung; Kim, Kyoung-Su; Ko, Wonmin; Bae, Gi-Sang; Park, Sung-Joo; Jang, Jun-Hyeog; Oh, Hyuncheol; Kim, Youn-Chul

    2016-02-01

    Dojuksan is a traditional herbal medicine used in Korea and China to treat urinary diseases. In the present study, we aimed to examine the anti-inflammatory effects of an ethanol solvent extract of Dojuksan and a fraction (by bioassay-guided fractionation) derived from this extract, and to elucidate the specific mechanisms involved. The Dojuksan 30%ethanol extract(DEE) had a more significant and potent anti-inflammatory effect than the Dojuksan water extract(DWE). DEE markedly inhibited the production of inducible nitric oxide synthase(iNOS), cyclooxygenase-2(COX-2), nitric oxide(NO), prostaglandinE2(PGE2), tumor necrosis factor-?(TNF-?) and interleukin-1?(IL-1?), as well as nuclear factor-?B (NF-?B) binding activity. We found that the anti-inflammatory effects of DEE were mediated by the induction of nuclear factorE2-related factor2(Nrf2)-dependent heme oxygenase-1(HO-1). To further explore the anti-inflammatory effects of DEE, we generated 6different fractions of DEE. Of these, DEE-5 decreased the production of NO more significantly than the other fractions. DEE-5 also significantly decreased the expression of iNOS and COX-2, and the production of NO, PGE2, TNF-? and IL-1?. In addition, DEE-5 also significantly increased HO-1 levels; HO-1 significanlty contributed to the inhibitory effects of DEE-5 on the production of pro-inflammatory mediators. In this study, we determined whether the choice of extraction solvent affects the biological activity of Dojuksan, a traditional herbal formula. Our findings demonstrate that DEE and a fraction derived from this extract exerts anti-inflammatory effects through Nrf2?dependent HO-1 expression, and that DEE may thus have greater potential therapeutic application than DWE. PMID:26647788

  19. Anti-inflammatory effect of Prunus yedoensis through inhibition of nuclear factor-κB in macrophages

    PubMed Central

    2013-01-01

    Background Prunus yedoensis (PY) is a traditional anti-allergy and anti-inflammatory herb medicine used in South Korea. However, until date, little is known regarding its mechanism of action. Methods In order to elucidate the mechanism of anti-inflammatory effect of PY, the constituents of PY were analysed by high performance liquid chromatography (HPLC), and nitric oxide (NO) and prostaglandin E2 (PGE2) production were measured enzyme-linked immuno sorbent assay (ELISA). The expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor-κB (NF-κB) were also measured by western blotting in lipopolysaccharide (LPS)-induced RAW 264.7 macrophage cells treated with PY. Results The results indicate that (50, 100 μg/mL) methanol and ethyl acetate fractionation extracts of PY not only inhibited LPS-mediated NO production and iNOS expression, but also decreased LPS-induced PGE2 production and COX-2 expression. The anti-inflammatory effects of PY were also due to the attenuation of nuclear translocation of NF-κB, as evaluated by the use of anti-p50 on nuclear fractions. LPS-induced nuclear translocation of NF-κB decreased significantly by the methanol extract and ethyl acetate fraction of PY. High performance liquid chromatography (HPLC) analyses revealed that methanol extract and ethyl acetate fraction have similar patterns of retention time and peaks. Conclusion Our results demonstrate that methanol extracts and the ethyl acetate fraction of PY have anti-inflammatory properties, thus emphasizing the potential of PY as a natural health product. PMID:23631356

  20. Therapeutic potential of caffeic acid phenethyl ester and its anti-inflammatory and immunomodulatory effects (Review)

    PubMed Central

    ARMUTCU, FERAH; AKYOL, SUMEYYA; USTUNSOY, SEYFETTIN; TURAN, FATIME FILIZ

    2015-01-01

    Caffeic acid phenethyl ester (CAPE), a naturally occurring compound isolated from propolis extract, has been reported to have a number of biological and pharmacological properties, exerting antioxidant, anti-inflammatory, anticarcinogenic, antibacterial and immunomodulatory effects. Recent in vivo and in vitro study findings have provided novel insights into the molecular mechanisms involved in the anti-inflammatory and immunomodulatory activities of this natural compound. CAPE has been reported to have anti-inflammatory properties involving the inhibition of certain enzyme activities, such as xanthine oxidase, cyclooxygenase and nuclear factor-κB (NF-κB) activation. Since inflammation and immune mechanisms play a crucial role in the onset of several inflammatory diseases, the inhibition of NF-κB represents a rationale for the development of novel and safe anti-inflammatory agents. The primary goal of the present review is to highlight the anti-inflammatory and immunomodulatory activities of CAPE, and critically evaluate its potential therapeutic effects. PMID:26136862

  1. Antimicrobial and Anti-Inflammatory Activities of Endophytic Fungi Talaromyces wortmannii Extracts against Acne-Inducing Bacteria

    PubMed Central

    Schwendinger, Katja; Kreiseder, Birgit; Wiederstein, Martina; Pretsch, Dagmar; Genov, Miroslav; Hollaus, Ralph; Zinssmeister, Daniela; Debbab, Abdesamad; Hundsberger, Harald; Eger, Andreas; Proksch, Peter; Wiesner, Christoph

    2014-01-01

    Acne vulgaris is the most common skin disease, causing significant psychosocial problems such as anxiety and depression similar to a chronic illness for those afflicted. Currently, obtainable agents for acne treatment have limited use. Thus, development of novel agents to treat this disease is a high medical need. The anaerobic bacterium Propionibacterium acnes has been implicated in the inflammatory phase of acne vulgaris by activating pro-inflammatory mediators such as the interleukin-8 (IL-8) via the NF-?B and MAPK pathways. Talaromyces wortmannii is an endophytic fungus, which is known to produce high bioactive natural compounds. We hypothesize that compound C but also the crude extract from T. wortmannii may possess both antibacterial activity especially against P. acnes and also anti-inflammatory properties by inhibiting TNF-?-induced ICAM-1 expression and P. acnes-induced IL-8 release. Treatment of keratinocytes (HaCaT) with P. acnes significantly increased NF-?B and activator protein-1 (AP-1) activation, as well as IL-8 release. Compound C inhibited P. acnes-mediated activation of NF-?B and AP-1 by inhibiting I?B degradation and the phosphorylation of ERK and JNK MAP kinases, and IL-8 release in a dose-dependent manner. Based on these results, compound C has effective antimicrobial activity against P. acnes and anti-inflammatory activity, and we suggest that this substance or the crude extract are alternative treatments for antibiotic/anti-inflammatory therapy for acne vulgaris. PMID:24887557

  2. Phytochemical Compositions and Antioxidant and Anti-Inflammatory Activities of Crude Extracts from Ficus pandurata H. (Moraceae)

    PubMed Central

    Lv, Huiqing; Zhang, Xiaoping; Chen, XueZhi; Xie, Zhijun; Wen, Chengping; Jiang, Kezhi

    2013-01-01

    Background. Ficus pandurata H. (Moraceae) is widely used in traditional Chinese medicine as a healthy food condiment or a medicine for treatment of various diseases including inflammation. Objective. The purpose of the present study is to investigate the phytochemical compositions and antioxidant and anti-inflammatory activities of crude water (FPW) and ethanolic extracts (FPE) from Ficus pandurata H. Methods. Phytochemical compositions were identified by a high-performance liquid chromatography-electrospray ionization-mass spectrometry method (HPLC-ESI-MS). The antioxidant activities were evaluated by diphenylpicrylhydrazyl (DPPH) and hydroxyl radical assays, and the anti-inflammatory activities were evaluated by paw edema and levels of inflammatory mediator TNF-? and PGE2 in monosodium urate (MSU) crystal-induced rats. Results. Six compounds were identified by HPLC-MS method, and abundance of phenolics was found in FPE. The FPE showed concentration-dependent-significant scavenging of DPPH and hydroxyl radicals with IC50 values 118.4 and 192.9??g/mL, respectively. The FPE treatment significantly inhibited the paw edema and the production of TNF-? and PGE2 in MSU crystal-induced rats. Conclusion. The FPE exerted stronger antioxidant and anti-inflammatory activities which may be attributed to its high phenolic content. PMID:24191163

  3. Antimicrobial and anti-inflammatory activities of endophytic fungi Talaromyces wortmannii extracts against acne-inducing bacteria.

    PubMed

    Pretsch, Alexander; Nagl, Michael; Schwendinger, Katja; Kreiseder, Birgit; Wiederstein, Martina; Pretsch, Dagmar; Genov, Miroslav; Hollaus, Ralph; Zinssmeister, Daniela; Debbab, Abdesamad; Hundsberger, Harald; Eger, Andreas; Proksch, Peter; Wiesner, Christoph

    2014-01-01

    Acne vulgaris is the most common skin disease, causing significant psychosocial problems such as anxiety and depression similar to a chronic illness for those afflicted. Currently, obtainable agents for acne treatment have limited use. Thus, development of novel agents to treat this disease is a high medical need. The anaerobic bacterium Propionibacterium acnes has been implicated in the inflammatory phase of acne vulgaris by activating pro-inflammatory mediators such as the interleukin-8 (IL-8) via the NF-?B and MAPK pathways. Talaromyces wortmannii is an endophytic fungus, which is known to produce high bioactive natural compounds. We hypothesize that compound C but also the crude extract from T. wortmannii may possess both antibacterial activity especially against P. acnes and also anti-inflammatory properties by inhibiting TNF-?-induced ICAM-1 expression and P. acnes-induced IL-8 release. Treatment of keratinocytes (HaCaT) with P. acnes significantly increased NF-?B and activator protein-1 (AP-1) activation, as well as IL-8 release. Compound C inhibited P. acnes-mediated activation of NF-?B and AP-1 by inhibiting I?B degradation and the phosphorylation of ERK and JNK MAP kinases, and IL-8 release in a dose-dependent manner. Based on these results, compound C has effective antimicrobial activity against P. acnes and anti-inflammatory activity, and we suggest that this substance or the crude extract are alternative treatments for antibiotic/anti-inflammatory therapy for acne vulgaris. PMID:24887557

  4. A nicotinic receptor-mediated anti-inflammatory effect of the flavonoid rhamnetin in BV2 microglia

    PubMed Central

    Lutz, Joseph A.; Kulshrestha, Manish; Rogers, Dennis T.; Littleton, John M.

    2014-01-01

    The alpha7 nicotinic acetylcholine receptor (nAChR) is a potential target in neuroinflammation. Screening a plant extract library identified Solidago nemoralis as containing methyl-quercetin derivatives that are relatively selective ligands for the alpha7 nAChR. Flavonoids are not known for this activity, so we screened a small library of pure flavonoids to confirm our findings. Some flavonoids, e.g. rhamnetin, displaced a selective alpha7 nAChR radioligand from rat brain membranes whereas similar structures e.g. sakuranetin, did not. To evaluate the contribution of this putative nAChR activity to the known anti-inflammatory properties of these flavonoids, we compared their effects on lipopolysaccharide induced release of inflammatory mediators from BV2 microglia. Both rhamnetin and sakuranetin reduced mediator release, but differed in potency (rhamnetin>sakuranetin) and the Hill slope of their concentration response curves. For rhamnetin the Hill coefficient was >3.0 whereas for sakuranetin the coefficient was 1.0, suggesting that effects of rhamnetin are mediated through more than one mechanism, whereas sakuranetin has a single mechanism. nACHR antagonists decreased the Hill coefficient for rhamnetin toward unity, which suggests that a nAChR-mediated mechanism contributes cooperatively to its overall anti-inflammatory effect. In contrast nAChR antagonists had no effect on the potency or Hill coefficient for sakuranetin, but a concentration of nicotine (1μM) that had no effect alone, significantly increased the Hill coefficient of this flavonoid. In conclusion, the anti-inflammatory effects of rhamnetin benefit cooperatively from a nAChR-mediated mechanism. This action, together with potent free radical scavenging activity, suggests that flavonoids with alpha7 nAChR activity have therapeutic potential in neuroinflammatory conditions. PMID:24972350

  5. Anti-inflammatory properties of anthraquinones and their relationship with the regulation of P-glycoprotein function and expression.

    PubMed

    Choi, Ran Joo; Ngoc, Tran Minh; Bae, Kihwan; Cho, Hyun-Jong; Kim, Dae-Duk; Chun, Jaemoo; Khan, Salman; Kim, Yeong Shik

    2013-01-23

    There is a growing interest in natural products that potentially have anti-inflammatory properties and inhibit P-glycoprotein (P-gp) function. In this report, we assessed the effects of anthraquinone derivatives from rhubarb on LPS-induced RAW 264.7 macrophages to determine their anti-inflammatory potential. The derivatives were also tested in Caco-2 cell lines to evaluate the inhibition of the drug efflux function of P-gp. The transport abilities were examined and the cellular accumulation of rhodamine-123 (R-123) was also measured. Electorphoretic mobility shift assay (EMSA) was performed to check the activator protein-1 (AP-1) DNA binding affinity. Five anthraquinones were tested to determine their inhibitory activities on NO production and the protein and mRNA expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, the level of prostaglandin E(2) (PGE(2)) was determined in LPS-induced RAW264.7 macrophages. Emodin was found to be the most potent inhibitor, and it also reduced paw swelling in the mouse model of carrageenan-induced paw edema. In Caco-2 cells, emodin elevated the accumulation of R-123 and decreased the efflux ratio of R-123, which indicates the inhibition of P-gp function. The inhibition of COX-2 protein by emodin paralleled the decrease in P-gp expression. In addition, mitogen-activated protein kinase (MAPK) expression was decreased through the prevention of AP-1 DNA binding, which leads to downregulation in the expression of P-gp. Our data indicate that the decrease of P-gp expression is caused by the decreased expression of COX-2 through the MAPK/AP-1 pathway. Based on our results, we suggest that anti-inflammatory drugs with COX-2 inhibitory activity might be used to modulate P-gp function and expression. PMID:23174748

  6. The flavonoid content and antiproliferative, hypoglycaemic, anti-inflammatory and free radical scavenging activities of Annona dioica St. Hill

    PubMed Central

    2013-01-01

    Background Annona dioica St. Hill (Annonacaeae) is a Brazilian plant used in folk medicine for the treatment of several types of rheumatisms and diarrhoea. The focus of this work was to evaluate the in vitro antiproliferative and antioxidant activity and the in vivo hypoglycaemic and anti-inflammatory activity of A. dioica and identify the principal constituents of this plant. Methods The crude methanol extract (EAD) and hexane (HF), chloroform (CF), ethyl acetate (EAF) and hydromethanol fractions (HMF) were evaluated for free radical scavenging activity using the DPPH assay. The EAD and EAF were assayed for hypoglycaemic activity in rats. The EAD was tested in an antiproliferation assay and for anti-inflammatory effects in paw oedema, in addition to myeloperoxidase activity induced by carrageenan (Cg) in mice. The EAF was assayed using chromatographic methods. Results The fractionation of the EAF through chromatographic methods identified derivatives of the flavonoids quercetin and kaempferol. Among all the tested fractions, the ethyl acetate and hydromethanol fractions were the most potent, exhibiting an IC50 of 8.53 and 10.57 ?g/mL, respectively, which is comparable to that of the commercial antioxidant butylated hydroxytoluene (BHT). The oral administration of the EAD (100 mg/kg) and EAF (15 mg/kg) inhibited the increase of glucose levels, resulting in a hypoglycaemic effect. The EAD (30 to 300 mg/kg) exhibited an anti-oedematogenic effect in Cg-induced paw oedema in a time- and dose-dependent manner. The results showed a reduction of MPO activity by A. dioica 6 h after the induction of paw oedema at all doses tested with maximal inhibition at 300 mg/kg. Conclusions Our results reveal for the first time that compounds contained in the A. dioica leaves exert anti-inflammatory, hypoglycaemic, antiproliferative, and antioxidant effects. The antioxidant activity may be associated with the presence of flavonoids. PMID:23311341

  7. Green synthesis and anti-inflammatory studies of a series of 1,1-bis(heteroaryl)alkane derivatives.

    PubMed

    Jaratjaroonphong, Jaray; Tuengpanya, Surisa; Saeeng, Rungnapha; Udompong, Sarinporn; Srisook, Klaokwan

    2014-08-18

    Molecular iodine has been used as an efficient catalyst for a double Friedel-Crafts reaction of various heteroarenes, i.e. 2-methylfuran, 2-ethylfuran, 2-methylthiophene, pyrrole, N-methylpyrrole and indole, using aldehydes as alkylating agents under "open-flask" conditions with toluene or water as the reaction media. In the presence of 10 mol% iodine in toluene at room temperature, both aliphatic and aromatic aldehydes reacted smoothly to give the corresponding bis(heteroaryl)alkanes in good to excellent yields. Interestingly, with water as the solvent, the bis(heteroaryl)alkane adducts were obtained in moderate to good yields. The use of mild reaction conditions, low catalyst loadings, and eco-friendly reagents in a single step synthesis are the advantages of the present procedure. In an effort to discover novel non-steroidal anti-inflammatory agents, the synthesized bis(heteroaryl)alkanes were evaluated for the anti-inflammatory activity in the lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage model. These compounds (50 μM) significantly inhibited NO production and did not exhibit significant cytotoxic effects on macrophage cells. Among them, bis[(5-methyl)2-furyl](4-nitrophenyl) methane exhibited the most potent inhibition of NO with IC50 value of 42.4 ± 1.9, which is similar to that of the positive control, aminoguanidine (43.3 ± 2.5 μM). Thus, the bis[(5-methyl)2-furyl](4-nitrophenyl) methane could be considered a lead compound for the development of novel anti-inflammatory agents. PMID:24996142

  8. Involvement of proton-sensing receptor TDAG8 in the anti-inflammatory actions of dexamethasone in peritoneal macrophages

    SciTech Connect

    He, Xiao-dong; Tobo, Masayuki; Mogi, Chihiro; Nakakura, Takashi; Komachi, Mayumi; Murata, Naoya; Takano, Mutsumi; Tomura, Hideaki; Sato, Koichi; Okajima, Fumikazu

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Glucocorticoid (GC) induced the expression of proton-sensing TDAG8 in macrophages. Black-Right-Pointing-Pointer GC enhanced acidic pH-induced cAMP accumulation and inhibition of TNF-{alpha} production. Black-Right-Pointing-Pointer The enhancement of the GC-induced actions was lost by TDAG8 deficiency. Black-Right-Pointing-Pointer GC-induced anti-inflammatory actions are partly mediated by TDAG8 expression. -- Abstract: Dexamethasone (DEX), a potent glucocorticoid, increased the expression of T-cell death associated gene 8 (TDAG8), a proton-sensing G protein-coupled receptor, which is associated with the enhancement of acidic pH-induced cAMP accumulation, in peritoneal macrophages. We explored the role of increased TDAG8 expression in the anti-inflammatory actions of DEX. The treatment of macrophages with either DEX or acidic pH induced the cell death of macrophages; however, the cell death was not affected by TDAG8 deficiency. While DEX inhibited lipopolysaccharide-induced production of tumor necrosis factor-{alpha}, an inflammatory cytokine, which was independent of TDAG8, at neutral pH, the glucocorticoid enhanced the acidic pH-induced inhibition of tumor necrosis factor-{alpha} production in a manner dependent on TDAG8. In conclusion, the DEX-induced increase in TDAG8 expression is in part involved in the glucocorticoid-induced anti-inflammatory actions through the inhibition of inflammatory cytokine production under the acidic pH environment. On the other hand, the role of TDAG8 in the DEX-induced cell death is questionable.

  9. Evidence for anti-inflammatory and antioxidative properties of dried plum polyphenols in macrophage RAW 264.7 cells.

    PubMed

    Hooshmand, Shirin; Kumar, Ajay; Zhang, Ji Yao; Johnson, Sarah A; Chai, Sheau C; Arjmandi, Bahram H

    2015-05-01

    This study presents the anti-inflammatory and antioxidative properties of dried plum (Prunus domestica L.) polyphenols in macrophage RAW 264.7 cells. We hypothesized that dried plum polyphenols have strong anti-inflammatory and antioxidant properties against lipopolysaccharide (LPS)-induced production of the pro-inflammatory markers, nitric oxide (NO) and cyclooxygenase-2 (COX-2), and the lipid peroxidation product, malondialdehyde, in activated macrophage RAW 264.7 cells. To test this hypothesis, macrophage RAW 264.7 cells were stimulated with either 1 ?g ml(-1) (for measurement of NO production) or 1 ng ml(-1) (for measurement of COX-2 expression) of LPS to induce inflammation and were treated with different doses of dried plum polyphenols (0.0, 0.1, 1, 10, 100 and 1000 ?g ml(-1)). Dried plum polyphenols at a dose of 1000 ?g ml(-1) was able to significantly (P < 0.05) reduce NO production by 43%. Additionally, LPS-induced expression of COX-2 was significantly (P < 0.05) reduced by 100 and 1000 ?g ml(-1) dried plum polyphenols. To investigate the antioxidant activity of dried plum polyphenols, macrophage RAW 264.7 cells were stimulated with 100 ?g ml(-1) of FeSO4 + 1 mM ml(-1) of H2O2 to induce lipid peroxidation. Dried plum polyphenols at a dose of 1000 ?g ml(-1) showed a 32% reduction in malondialdehyde production. These findings indicate that dried plum polyphenols are potent anti-inflammatory and antioxidative agents in vitro. PMID:25921826

  10. A nicotinic receptor-mediated anti-inflammatory effect of the flavonoid rhamnetin in BV2 microglia.

    PubMed

    Lutz, Joseph A; Kulshrestha, Manish; Rogers, Dennis T; Littleton, John M

    2014-10-01

    The alpha7 nicotinic acetylcholine receptor (nAChR) is a potential target in neuroinflammation. Screening a plant extract library identified Solidago nemoralis as containing methyl-quercetin derivatives that are relatively selective ligands for the alpha7 nAChR. Flavonoids are not known for this activity, so we screened a small library of pure flavonoids to confirm our findings. Some flavonoids, e.g. rhamnetin, displaced a selective alpha7 nAChR radioligand from rat brain membranes whereas similar structures e.g. sakuranetin, did not. To evaluate the contribution of this putative nAChR activity to the known anti-inflammatory properties of these flavonoids, we compared their effects on lipopolysaccharide induced release of inflammatory mediators from BV2 microglia. Both rhamnetin and sakuranetin reduced mediator release, but differed in potency (rhamnetin>sakuranetin) and the Hill slope of their concentration-response curves. For rhamnetin the Hill coefficient was >3.0 whereas for sakuranetin the coefficient was 1.0, suggesting that effects of rhamnetin are mediated through more than one mechanism, whereas sakuranetin has a single mechanism. nAChR antagonists decreased the Hill coefficient for rhamnetin toward unity, which suggests that a nAChR-mediated mechanism contributes cooperatively to its overall anti-inflammatory effect. In contrast nAChR antagonists had no effect on the potency or Hill coefficient for sakuranetin, but a concentration of nicotine (1?M) that had no effect alone, significantly increased the Hill coefficient of this flavonoid. In conclusion, the anti-inflammatory effects of rhamnetin benefit cooperatively from a nAChR-mediated mechanism. This action, together with potent free radical scavenging activity, suggests that flavonoids with alpha7 nAChR activity have therapeutic potential in neuroinflammatory conditions. PMID:24972350

  11. Comparison of Piroxicam Pharmacokinetics and Anti-Inflammatory Effect in Rats after Intra-Articular and Intramuscular Administration

    PubMed Central

    Park, Chan Woong; Ma, Kyung Wan; Jang, Sun Woo; Son, Miwon; Kang, Myung Joo

    2014-01-01

    This study evaluated the pharmacokinetic profile and therapeutic efficacy of piroxicam (PX), a long acting non-steroidal anti-inflammatory drug for the treatment of arthritis, following intra-articular (IA) injection in comparison to the pharmacokinetic profile and therapeutic efficacy of PX after intramuscular (IM) injection. In the pharmacokinetic study in rats, systemic exposure and pharmacokinetic parameters of PX after a single IA dose were compared with systemic exposure and pharmacokinetic parameters of PX after administration of the same dose IM (0.6 mg/kg). The anti-inflammatory and analgesic effects of IA PX were evaluated simultaneously in a monoiodoacetate-induced osteoarthritis rat model. The plasma PX concentration rapidly rose following IA injection, and it was comparable to the plasma PX concentration following IM injection, suggesting the rapid efflux of the drug molecule from the joint cavity. However, in the efficacy study, the IA PX administration significantly reduced the knee swelling by reducing the level of prostaglandin E2 in the joint, compared to that following administration of IA vehicle and after administration of the IM PX dose. In addition, we found that the anti-inflammatory and anti-nociceptive efficacies of IA PX were synergistically increased upon co-treatment with hyaluronic acid (HA), a potent agent for the treatment of osteoarthritis, at the weight ratio of 1:1 or 1:2, and these effects were more pronounced than those following administration of HA or PX alone. In conclusion, this study demonstrated the efficacy of the IA use of PX alone and/or in combination with HA in osteoarthritis. PMID:25009708

  12. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content

    PubMed Central

    2012-01-01

    Background The main aim of this study is to evaluate the antioxidant and anti-inflammatory properties of forty four traditional Chinese medicinal herbal extracts and to examine these activities in relation to their antioxidant content. Methods The antioxidant activities were investigated using DPPH radical scavenging method and yeast model. The anti-inflammatory properties of the herbal extracts were evaluated by measuring their ability to inhibit the production of nitric oxide and TNF-? in RAW 264.7 macrophages activated by LPS and IFN- ?, respectively. The cytotoxic effects of the herbal extracts were determined by Alomar Blue assay by measuring cell viability. In order to understand the variation of antioxidant activities of herbal extracts with their antioxidant contents, the total phenolics, total flavonoids and trace metal (Mg, Mn, Cu, Zn, Se and Mo) quantities were estimated and a correlation analysis was carried out. Results Results of this study show that significant levels of phenolics, flavonoids and trace metal contents were found in Ligustrum lucidum, Paeonia suffuticosa, Salvia miltiorrhiza, Sanguisorba officinalis, Spatholobus suberectus, Tussilago farfara and Uncaria rhyncophylla, which correlated well with their antioxidant and anti-inflammatory activities. Some of the plants displayed high antioxidant and anti-inflammatory activities but contained low levels of phenolics and flavonoids. Interestingly, these plants contained significant levels of trace metals (such as Zn, Mg and Se) which are likely to be responsible for their activities. Conclusions The results indicate that the phenolics, flavonoids and trace metals play an important role in the antioxidant activities of medicinal plants. Many of the plants studied here have been identified as potential sources of new antioxidant compounds. PMID:23038995

  13. Comparative study on anti-oxidant and anti-inflammatory activities of Caesalpinia crista and Centella asiatica leaf extracts

    PubMed Central

    Ramesh, B. N.; Girish, T. K.; Raghavendra, R. H.; Naidu, K. Akhilender; Rao, U. J. S. Prasada; Rao, K. S.

    2014-01-01

    Background: Amyloidosis, oxidative stress and inflammation have been strongly implicated in neurodegenerative disorders like Alzheimer's disease. Traditionally, Caesalpinia crista and Centella asiatica leaf extracts are used to treat brain related diseases in India. C. crista is used as a mental relaxant drink as well as to treat inflammatory diseases, whereas C. asiatica is reported to be used to enhance memory and to treat dementia. Objective: The present study is aimed to understand the anti-oxidant and anti-inflammatory potential of C. asiatica and C. crista leaf extracts. Materials and Methods: Phenolic acid composition of the aqueous extracts of C. crista and C. asiatica were separated on a reverse phase C18 column (4.6 x 250 mm) using HPLC system. Antioxidant properties of the leaf extracts were determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and the reducing potential assay. The anti-inflammatory activities of aqueous extracts of C. crista and C. asiatica were studied using 5-lipoxygenase assay. Polymorphonuclear leukocytes (PMNLs) were isolated from blood by Ficoll-Histopaque density gradient followed by hypotonic lysis of erythrocytes. Results: Gallic, protocatechuic, gentisic, chlorogenic, caffeic, p-coumaric and ferulic acids were the phenolic acids identified in C. crista and C. asiatica leaf aqueous extracts. However, gallic acid and ferulic acid contents were much higher in C. crista compared to C. asiatica. Leaf extracts of C. asiatica and C. crista exhibited antioxidant properties and inhibited 5-lipoxygenase (anti-inflammatory) in a dose dependent manner. However, leaf extracts of C. crista had better antioxidant and anti-inflammatory activity compared to that of C. asiatica. The better activity of C. crista is attributed to high gallic acid and ferulic acid compared to C. asiatica. Conclusions: Thus, the leaf extract of C. crista can be a potential therapeutic role for Alzheimer's disease. PMID:24741275

  14. Atypical Activin A and IL-10 Production Impairs Human CD16+ Monocyte Differentiation into Anti-Inflammatory Macrophages.

    PubMed

    Gonzlez-Domnguez, rika; Domnguez-Soto, ngeles; Nieto, Concha; Flores-Sevilla, Jos Luis; Pacheco-Blanco, Mariana; Campos-Pea, Victoria; Meraz-Ros, Marco A; Vega, Miguel A; Corb, ngel L; Snchez-Torres, Carmen

    2016-02-01

    Human CD14(++)CD16(-) and CD14(+/lo)CD16(+) monocyte subsets comprise 85 and 15% of blood monocytes, respectively, and are thought to represent distinct stages in the monocyte differentiation pathway. However, the differentiation fates of both monocyte subsets along the macrophage (M?) lineage have not yet been elucidated. We have now evaluated the potential of CD14(++) CD16(-) and CD16(+) monocytes to differentiate and to be primed toward pro- or anti-inflammatory M?s upon culture with GM-CSF or M-CSF, respectively (subsequently referred to as GM14, M14, GM16, or M16). Whereas GM16 and GM14 were phenotypic and functionally analogous, M16 displayed a more proinflammatory profile than did M14. Transcriptomic analyses evidenced that genes associated with M-CSF-driven M? differentiation (including FOLR2, IL10, IGF1, and SERPINB2) are underrepresented in M16 with respect to M14. The preferential proinflammatory skewing of M16 relative to M14 was found to be mediated by the secretion of activin A and the low levels of IL-10 produced by M16. In fact, activin A receptor blockade during the M-CSF-driven differentiation of CD16(+) monocytes, or addition of IL-10-containing M14-conditioned medium, significantly enhanced their expression of anti-inflammatory-associated molecules while impairing their acquisition of proinflammatory-related markers. Thus, we propose that M-CSF drives CD14(++)CD16- monocyte differentiation into bona fide anti-inflammatory M?s in a self-autonomous manner, whereas M-CSF-treated CD16(+) monocytes generate M?s with a skewed proinflammatory profile by virtue of their high activin A expression unless additional anti-inflammatory stimuli such as IL-10 are provided. PMID:26729812

  15. A Potent Systemically Active N-Acylethanolamine Acid Amidase Inhibitor that Suppresses Inflammation and Human Macrophage Activation.

    PubMed

    Ribeiro, Alison; Pontis, Silvia; Mengatto, Luisa; Armirotti, Andrea; Chiurchi, Valerio; Capurro, Valeria; Fiasella, Annalisa; Nuzzi, Andrea; Romeo, Elisa; Moreno-Sanz, Guillermo; Maccarrone, Mauro; Reggiani, Angelo; Tarzia, Giorgio; Mor, Marco; Bertozzi, Fabio; Bandiera, Tiziano; Piomelli, Daniele

    2015-08-21

    Fatty acid ethanolamides such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) are lipid-derived mediators that potently inhibit pain and inflammation by ligating type-? peroxisome proliferator-activated receptors (PPAR-?). These bioactive substances are preferentially degraded by the cysteine hydrolase, N-acylethanolamine acid amidase (NAAA), which is highly expressed in macrophages. Here, we describe a new class of ?-lactam derivatives that are potent, selective, and systemically active inhibitors of intracellular NAAA activity. The prototype of this class deactivates NAAA by covalently binding the enzyme's catalytic cysteine and exerts profound anti-inflammatory effects in both mouse models and human macrophages. This agent may be used to probe the functions of NAAA in health and disease and as a starting point to discover better anti-inflammatory drugs. PMID:25874594

  16. Antioxidant, Antibacterial, Cytotoxic, and Anti-Inflammatory Potential of the Leaves of Solanum lycocarpum A. St. Hil. (Solanaceae)

    PubMed Central

    da Costa, Guilherme Augusto Ferreira; Morais, Melissa Grazielle; Saldanha, Aline Aparecida; Assis Silva, Izabela Caputo; Aleixo, lan Alex; Ferreira, Jaqueline Maria Siqueira; Soares, Adriana Cristina; Duarte-Almeida, Joaquim Maurcio; Lima, Luciana Alves Rodrigues dos Santos

    2015-01-01

    Ethanol extract and fractions obtained from leaves of Solanum lycocarpum were examined in order to determine their phenolic composition, antioxidant, antibacterial, anti-inflammatory, and cytotoxic potential. High performance liquid chromatography coupled with DAD analysis indicated that the flavonoids apigenin and kaempferol were the main phenolic compounds present in dichloromethane and ethyl acetate fractions, respectively. The antioxidant activity was significantly more pronounced for dichloromethane, ethyl acetate, and hydroethanol fractions than that of the commercial antioxidant 2,6-di-tert-butyl-4-methylphenol. The hexane and dichloromethane fractions were more active against the tested bacteria. The hydroethanol fraction exhibited significant anti-inflammatory activity at the dose of 75 and 150?mg/kg in the later phase of inflammation. However, the antiedematogenic effect of the higher dose of the ethyl acetate fraction (150?mg/kg) was more pronounced. The ethyl acetate fraction also presented a less cytotoxic effect than the ethanol extract and other fractions. These activities found in S. lycocarpum leaves can be attributed, at least in part, to the presence of phenolic constituents such as flavonoids. This work provided the knowledge of phenolic composition in the extract and fractions and the antioxidant, antibacterial, anti-inflammatory, and cytotoxic activities of leaves of S. lycocarpum. PMID:26064159

  17. Anti-Inflammatory and Anticancer Activities of Taiwanese Purple-Fleshed Sweet Potatoes (Ipomoea batatas L. Lam) Extracts.

    PubMed

    Sugata, Marcelia; Lin, Chien-Yih; Shih, Yang-Chia

    2015-01-01

    Purple-fleshed sweet potato (PFSP) (Ipomoea batatas L. Lam) has been known to possess high amount of anthocyanins which contribute to its antioxidant activity. However, a few reports are available concerning its anti-inflammatory and anticancer properties. In this study, PFSP "Tainung 73," which is locally grown in Taiwan, was steamed and extracted using acidified ethanol pH 3.5 under 80°C. Two kinds of crude anthocyanins extracts were obtained, namely, SP (Steamed, Peeled) and SNP (Steamed, No Peeled). Then, anti-inflammatory and anticancer activities of these extracts were investigated. Cell viability assay (MTT) showed that SP and SNP extracts were not toxic to RAW 264.7 cells. They even exhibited anti-inflammatory activities by suppressing the production of NO and proinflammatory cytokines, such as NF-κβ, TNF-α, and IL-6, in LPS-induced macrophage cells. Anticancer activities of these extracts were displayed through their ability to inhibit the growth of cancer cell lines, such as MCF-7 (breast cancer), SNU-1 (gastric cancer), and WiDr (colon adenocarcinoma), in concentration- and time-dependent manner. Further studies also revealed that SP extracts could induce apoptosis in MCF-7 and SNU-1 cancer cells through extrinsic and intrinsic pathway. In the future, PSFP extracts may have potential to be applied in nutraceutical, pharmaceutical, and food industries. PMID:26509161

  18. Synthesis and biological evaluation of novel indole-2-one and 7-aza-2-oxindole derivatives as anti-inflammatory agents

    PubMed Central

    Chen, Gaozhi; Jiang, Lili; Dong, Lili; Wang, Zhe; Xu, Fengli; Ding, Ting; Fu, Lili; Fang, Qilu; Liu, Zhiguo; Shan, Xiaoou; Liang, Guang

    2014-01-01

    Sepsis, a typically acute inflammatory disease, is the biggest cause of death in ICU (intensive care unit). Novel anti-inflammatory alternatives are still in urgent need. In this study, we designed and synthesized 30 indole-2-one and 7-aza-2-oxindole derivatives based on the skeleton of tenidap, and their anti-inflammatory activity was determined by evaluating the inhibitory potency against lipopolysaccharide (LPS)-stimulated tumor necrosis factor (TNF)-α and interleukin (IL)-6 release in RAW264.7 macrophages. Quantitative SAR (structure–activity relationship) analysis revealed that a high molecular polarizability and low lipid/water partition coefficient (ALogP) in indole-2-one are beneficial for anti-inflammatory activity. Moreover, compounds 7i and 8e inhibited the expression of TNF-α, IL-6, COX-2, PGES, and iNOS in LPS-stimulated macrophages, and 7i exhibited a significant protection from LPS-induced septic death in mouse models. These data present a series of new indole-2-one compounds with potential therapeutic effects in acute inflammatory diseases. PMID:25378906

  19. A comparative anti-inflammatory activity of raw and processed Kupeelu (Strychnos nux-vomica Linn.) seeds on albino rats.

    PubMed

    Mitra, Swarnendu; Kumar, Vijay; Ashok, Bk; Acharya, R N; Ravishankar, B

    2011-10-01

    Seeds of Kupeelu (Strychnos nux-vomica Linn.), a known poisonous drug, is used extensively in various Ayurvedic formulations with great therapeutic significance. Ayurveda recommends the administration of Kupeelu only after passing through specific purificatory procedures in different media like cow's urine (Go mutra), cow's milk (Go dugdha), cow's ghee (Go ghrita), Kanji (thin gruel) etc. Strychnos nux vomica seeds are extensively advocated for nervous debility, paralysis, and weakness of limbs, sexual weakness, dyspepsia, and dysentery and in rheumatism where it can be assumed that besides other properties, Kupeelu may have some sort of anti-inflammatory activity too. In the present study, the powder of raw and processed Kupeelu seeds (processed / purified with Kanji i.e sour gruel) as test drugs were assessed for anti-inflammatory activity by employing Carrageenan and Formaldehyde induced hind paw oedema in Wistar strain albino rats at a dose of 22.5 mg/kg body weight orally. This study reveals that both raw and purified Kupeelu showed presence of highly significant anti-inflammatory activity against formaldehyde induced hind paw oedema, but did not have similar activity against Carrageenan induced hind paw oedema. PMID:23284209

  20. A comparative anti-inflammatory activity of raw and processed Kupeelu (Strychnos nux-vomica Linn.) seeds on albino rats

    PubMed Central

    Mitra, Swarnendu; Kumar, Vijay; Ashok, BK; Acharya, R N; Ravishankar, B

    2011-01-01

    Seeds of Kupeelu (Strychnos nux-vomica Linn.), a known poisonous drug, is used extensively in various Ayurvedic formulations with great therapeutic significance. Ayurveda recommends the administration of Kupeelu only after passing through specific purificatory procedures in different media like cow's urine (Go mutra), cow's milk (Go dugdha), cow's ghee (Go ghrita), Kanji (thin gruel) etc. Strychnos nux vomica seeds are extensively advocated for nervous debility, paralysis, and weakness of limbs, sexual weakness, dyspepsia, and dysentery and in rheumatism where it can be assumed that besides other properties, Kupeelu may have some sort of anti-inflammatory activity too. In the present study, the powder of raw and processed Kupeelu seeds (processed / purified with Kanji i.e sour gruel) as test drugs were assessed for anti-inflammatory activity by employing Carrageenan and Formaldehyde induced hind paw oedema in Wistar strain albino rats at a dose of 22.5 mg/kg body weight orally. This study reveals that both raw and purified Kupeelu showed presence of highly significant anti-inflammatory activity against formaldehyde induced hind paw oedema, but did not have similar activity against Carrageenan induced hind paw oedema. PMID:23284209

  1. [Active ingredients and its pharmacokinetic behavior and anti-inflammatory effects of ginseng with different steamed times].

    PubMed

    Qian, Jing; Kang, An; Di, Liu-qing; Di, Ya-wei; Li, Jie; Liu, Ting

    2015-10-01

    HPLC analysis was performed to study the changes in chemical composition of ginseng extracts prepared from high quality ginseng with 0, 2, 4, 8 h of steamed times. An UFLC-MS/MS multiple-reaction monitoring (MRM) quantitative analysis was made to investigate the pharmacokinetic behavior differences of ginsenosides in mice ig administered of ginseng extracts with different steamed times in the negative ion mode, with Digoxin as the internal standard substance. The mice were injected with LPS to establish inflammation model after ig administration of ginseng for a week and the contents of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in mice plasma were detected by ELISA, in order to study on anti-inflammatory effects of ginseng with different steamed times. It was determined that levels of TNF-α and IL-1β were significantly decreased in inflammation model group ig administered of ginseng extracts with 8h of steamed time. The results showed that the chemical components in ginseng changed after steaming and the components into the blood changed, correspondingly. Ginseng with steamed 8 h contributes to anti-inflammatory effects. These results provided an experimental basis for revealing the active substance basis and dose-effect relationship of ginseng on anti-inflammatory effect. PMID:26975100

  2. Anti-Inflammatory and Anticancer Activities of Taiwanese Purple-Fleshed Sweet Potatoes (Ipomoea batatas L. Lam) Extracts

    PubMed Central

    Sugata, Marcelia; Lin, Chien-Yih; Shih, Yang-Chia

    2015-01-01

    Purple-fleshed sweet potato (PFSP) (Ipomoea batatas L. Lam) has been known to possess high amount of anthocyanins which contribute to its antioxidant activity. However, a few reports are available concerning its anti-inflammatory and anticancer properties. In this study, PFSP “Tainung 73,” which is locally grown in Taiwan, was steamed and extracted using acidified ethanol pH 3.5 under 80°C. Two kinds of crude anthocyanins extracts were obtained, namely, SP (Steamed, Peeled) and SNP (Steamed, No Peeled). Then, anti-inflammatory and anticancer activities of these extracts were investigated. Cell viability assay (MTT) showed that SP and SNP extracts were not toxic to RAW 264.7 cells. They even exhibited anti-inflammatory activities by suppressing the production of NO and proinflammatory cytokines, such as NF-κβ, TNF-α, and IL-6, in LPS-induced macrophage cells. Anticancer activities of these extracts were displayed through their ability to inhibit the growth of cancer cell lines, such as MCF-7 (breast cancer), SNU-1 (gastric cancer), and WiDr (colon adenocarcinoma), in concentration- and time-dependent manner. Further studies also revealed that SP extracts could induce apoptosis in MCF-7 and SNU-1 cancer cells through extrinsic and intrinsic pathway. In the future, PSFP extracts may have potential to be applied in nutraceutical, pharmaceutical, and food industries. PMID:26509161

  3. Systematic review of herbals as potential anti-inflammatory agents: Recent advances, current clinical status and future perspectives

    PubMed Central

    Beg, Sarwar; Swain, Suryakanta; Hasan, Hameed; Barkat, M Abul; Hussain, Md Sarfaraz

    2011-01-01

    Many synthetic drugs reported to be used for the treatment of inflammatory disorders are of least interest now a days due to their potential side effects and serious adverse effects and as they are found to be highly unsafe for human assistance. Since the last few decades, herbal drugs have regained their popularity in treatment against several human ailments. Herbals containing anti-inflammatory activity (AIA) are topics of immense interest due to the absence of several problems in them, which are associated with synthetic preparations. The primary objective of this review is to provide a deep overview of the recently explored anti-inflammatory agents belonging to various classes of phytoconstituents like alkaloids, glycosides, terpenoids, steroids, polyphenolic compounds, and also the compounds isolated from plants of marine origin, algae and fungi. Also, it enlists a distended view on potential interactions between herbals and synthetic preparations, related adverse effects and clinical trials done on herbals for exploring their AIA. The basic aim of this review is to give updated knowledge regarding plants which will be valuable for the scientists working in the field of anti-inflammatory natural chemistry. PMID:22279370

  4. Esculin exhibited anti-inflammatory activities in vivo and regulated TNF-? and IL-6 production in LPS-stimulated mouse peritoneal macrophages in vitro through MAPK pathway.

    PubMed

    Niu, Xiaofeng; Wang, Yu; Li, Weifeng; Zhang, Hailin; Wang, Xiumei; Mu, Qingli; He, Zehong; Yao, Huan

    2015-12-01

    Esculin, a coumarinic derivative found in Aesculus hippocastanum L. (Horse-chestnut), has been reported to have potent anti-inflammatory properties. The present study is designed to investigate the protective effects of esculin on various inflammation models in vivo and in vitro and to clarify the possible mechanism. Induced-animal models of inflammation and lipopolysaccharide (LPS)-challenged mouse peritoneal macrophages were used to examine the anti-inflammatory activity of esculin. In present study, xylene-induced mouse ear edema, carrageenan-induced rat paw edema, and carrageenan-induced mouse pleurisy were attenuated by esculin. In vitro, the pro-inflammatory cytokine levels of tumor necrosis factor-? (TNF-?) and interleukin-6 (IL-6) in supernatant were reduced by esculin. Meanwhile, we found that esculin significantly inhibited LPS-induced activation of mitogen-activated protein kinase (MAPK) pathway in peritoneal macrophages. These results suggest that esculin has potent anti-inflammatory activities in vivo and in vitro, which may involve the inhibition of the MAPK pathway. Esculin may be a promising preventive agent for inflammatory diseases in human. PMID:26391063

  5. Anti-inflammatory components from the root of Solanum erianthum.

    PubMed

    Chen, Yu-Chang; Lee, Hong-Zin; Chen, Hsin-Chun; Wen, Chi-Luan; Kuo, Yueh-Hsiung; Wang, Guei-Jane

    2013-01-01

    Two new norsesquiterpenoids, solanerianones A and B (1-2), together with nine known compounds, including four sesquiterpenoids, (-)-solavetivone (3), (+)-anhydro-β-rotunol (4), solafuranone (5), lycifuranone A (6); one alkaloid, N-trans-feruloyltyramine (7); one fatty acid, palmitic acid (8); one phenylalkanoid, acetovanillone (9), and two steroids, β-sitosterol (10) and stigmasterol (11) were isolated from the n-hexane-soluble part of the roots of Solanum erianthum. Their structures were elucidated on the basis of physical and spectroscopic data analyses. The anti-inflammatory activity of these isolates was monitored by nitric oxide (NO) production in lipopolysaccharide (LPS)-activated murine macrophage RAW264.7 cells. The cytotoxicity towards human lung squamous carcinoma (CH27), human hepatocellular carcinoma (Hep 3B), human oral squamous carcinoma (HSC-3) and human melanoma (M21) cell lines was also screened by using an MTT assay. Of the compounds tested, 3 exhibited the strongest NO inhibition with the average maximum inhibition (Emax) at 100 μM and median inhibitory concentration (IC50) values of 98.23% ± 0.08% and 65.54 ± 0.18 μM, respectively. None of compounds (1-9) was found to possess cytotoxic activity against human cancer cell lines at concentrations up to 30 μM. PMID:23771024

  6. Anti-Inflammatory Dimethylfumarate: A Potential New Therapy for Asthma?

    PubMed Central

    Roth, Michael

    2013-01-01

    Asthma is a chronic inflammatory disease of the airways, which results from the deregulated interaction of inflammatory cells and tissue forming cells. Beside the derangement of the epithelial cell layer, the most prominent tissue pathology of the asthmatic lung is the hypertrophy and hyperplasia of the airway smooth muscle cell (ASMC) bundles, which actively contributes to airway inflammation and remodeling. ASMCs of asthma patients secrete proinflammatory chemokines CXCL10, CCL11, and RANTES which attract immune cells into the airways and may thereby initiate inflammation. None of the available asthma drugs cures the diseaseonly symptoms are controlled. Dimethylfumarate (DMF) is used as an anti-inflammatory drug in psoriasis and showed promising results in phase III clinical studies in multiple sclerosis patients. In regard to asthma therapy, DMF has been anecdotally reported to reduce asthma symptoms in patients with psoriasis and asthma. Here we discuss the potential use of DMF as a novel therapy in asthma on the basis of in vitro studies of its inhibitory effect on ASMC proliferation and cytokine secretion in ASMCs. PMID:23606796

  7. Pain control: non-steroidal anti-inflammatory agents.

    PubMed

    Jacqz-Aigrain, Evelyne; Anderson, Brian J

    2006-08-01

    The non-steroidal anti-inflammatory drugs (NSAIDs) and acetaminophen (paracetamol) are the most common analgesic drugs used in neonates and infants despite limited pharmacodynamic data. Both drugs act through inhibition of cyclooxygenase enzymes. Neonatal acetaminophen clearance is reduced in premature neonates (0.7 L h(-1) x 70 kg(-1)) and increases to 5 L h(-1) x 70 kg(-1) at term (40% adult rates); adult rates are reached within the first year of life; NSAID clearance follows similar trends. Volume of distribution is increased in the neonatal period. Dosing of both drug groups is tempered by concerns about toxicity. Acetaminophen hepatotoxicity is less common in neonates than in older children and adults, possibly due to reduced oxidative enzyme activity (e.g. CYP 2E1). Data concerning NSAID adverse effects in the neonatal period are few. Renal function is reduced 20% after NSAID use for patent ductus arteriosus closure in premature neonates and there is no increased frequency of intraventricular haemorrhage. No significant difference in the change in cerebral blood volume, change in cerebral blood flow, or tissue oxygenation index was found between administration of ibuprofen or placebo in neonates. Future studies should define concentration-response relationships for these drugs that are age and pathology specific. PMID:16679073

  8. Anti-inflammatory, Analgesic and Antiulcer properties of Porphyra vietnamensis

    PubMed Central

    Bhatia, Saurabh; Sharma, Kiran; Sharma, Ajay; Nagpal, Kalpana; Bera, Tanmoy

    2015-01-01

    Objectives: Aim of the present work was to investigate the anti-inflammatory, analgesic and antiulcer effects of red seaweed Porphyra vietnamensis (