Sample records for highly seasonal malaria

  1. Seasonal vaccination against malaria: a potential use for an imperfect malaria vaccine.

    PubMed

    Greenwood, Brian; Dicko, Alassane; Sagara, Issaka; Zongo, Issaka; Tinto, Halidou; Cairns, Matthew; Kuepfer, Irene; Milligan, Paul; Ouedraogo, Jean-Bosco; Doumbo, Ogobara; Chandramohan, Daniel

    2017-05-02

    In many parts of the African Sahel and sub-Sahel, where malaria remains a major cause of mortality and morbidity, transmission of the infection is highly seasonal. Seasonal malaria chemoprevention (SMC), which involves administration of a full course of malaria treatment to young children at monthly intervals during the high transmission season, is proving to be an effective malaria control measure in these areas. However, SMC does not provide complete protection and it is demanding to deliver for both families and healthcare givers. Furthermore, there is a risk of the emergence in the future of resistance to the drugs, sulfadoxine-pyrimethamine and amodiaquine, that are currently being used for SMC. Substantial progress has been made in the development of malaria vaccines during the past decade and one malaria vaccine, RTS,S/AS01, has received a positive opinion from the European Medicines Authority and will soon be deployed in large-scale, pilot implementation projects in sub-Saharan Africa. A characteristic feature of this vaccine, and potentially of some of the other malaria vaccines under development, is that they provide a high level of efficacy during the period immediately after vaccination, but that this wanes rapidly, perhaps because it is difficult to develop effective immunological memory to malaria antigens in subjects exposed previously to malaria infection. A potentially effective way of using malaria vaccines with high initial efficacy but which provide only a short period of protection could be annual, mass vaccination campaigns shortly before each malaria transmission season in areas where malaria transmission is confined largely to a few months of the year.

  2. Towards seasonal forecasting of malaria in India.

    PubMed

    Lauderdale, Jonathan M; Caminade, Cyril; Heath, Andrew E; Jones, Anne E; MacLeod, David A; Gouda, Krushna C; Murty, Upadhyayula Suryanarayana; Goswami, Prashant; Mutheneni, Srinivasa R; Morse, Andrew P

    2014-08-10

    Malaria presents public health challenge despite extensive intervention campaigns. A 30-year hindcast of the climatic suitability for malaria transmission in India is presented, using meteorological variables from a state of the art seasonal forecast model to drive a process-based, dynamic disease model. The spatial distribution and seasonal cycles of temperature and precipitation from the forecast model are compared to three observationally-based meteorological datasets. These time series are then used to drive the disease model, producing a simulated forecast of malaria and three synthetic malaria time series that are qualitatively compared to contemporary and pre-intervention malaria estimates. The area under the Relative Operator Characteristic (ROC) curve is calculated as a quantitative metric of forecast skill, comparing the forecast to the meteorologically-driven synthetic malaria time series. The forecast shows probabilistic skill in predicting the spatial distribution of Plasmodium falciparum incidence when compared to the simulated meteorologically-driven malaria time series, particularly where modelled incidence shows high seasonal and interannual variability such as in Orissa, West Bengal, and Jharkhand (North-east India), and Gujarat, Rajastan, Madhya Pradesh and Maharashtra (North-west India). Focusing on these two regions, the malaria forecast is able to distinguish between years of "high", "above average" and "low" malaria incidence in the peak malaria transmission seasons, with more than 70% sensitivity and a statistically significant area under the ROC curve. These results are encouraging given that the three month forecast lead time used is well in excess of the target for early warning systems adopted by the World Health Organization. This approach could form the basis of an operational system to identify the probability of regional malaria epidemics, allowing advanced and targeted allocation of resources for combatting malaria in India.

  3. Seasonal associations of climatic drivers and malaria in the highlands of Ethiopia.

    PubMed

    Midekisa, Alemayehu; Beyene, Belay; Mihretie, Abere; Bayabil, Estifanos; Wimberly, Michael C

    2015-06-24

    The impacts of interannual climate fluctuations on vector-borne diseases, especially malaria, have received considerable attention in the scientific literature. These effects can be significant in semi-arid and high-elevation areas such as the highlands of East Africa because cooler temperature and seasonally dry conditions limit malaria transmission. Many previous studies have examined short-term lagged effects of climate on malaria (weeks to months), but fewer have explored the possibility of longer-term seasonal effects. This study assessed the interannual variability of malaria occurrence from 2001 to 2009 in the Amhara region of Ethiopia. We tested for associations of climate variables summarized during the dry (January-April), early transition (May-June), and wet (July-September) seasons with malaria incidence in the early peak (May-July) and late peak (September-December) epidemic seasons using generalized linear models. Climate variables included land surface temperature (LST), rainfall, actual evapotranspiration (ET), and the enhanced vegetation index (EVI). We found that both early and late peak malaria incidence had the strongest associations with meteorological conditions in the preceding dry and early transition seasons. Temperature had the strongest influence in the wetter western districts, whereas moisture variables had the strongest influence in the drier eastern districts. We also found a significant correlation between malaria incidence in the early and the subsquent late peak malaria seasons, and the addition of early peak malaria incidence as a predictor substantially improved models of late peak season malaria in both of the study sub-regions. These findings suggest that climatic effects on malaria prior to the main rainy season can carry over through the rainy season and affect the probability of malaria epidemics during the late malaria peak. The results also emphasize the value of combining environmental monitoring with epidemiological

  4. Epidemiology of malaria in an area of seasonal transmission in Niger and implications for the design of a seasonal malaria chemoprevention strategy.

    PubMed

    Guillebaud, Julia; Mahamadou, Aboubacar; Zamanka, Halima; Katzelma, Mariama; Arzika, Ibrahim; Ibrahim, Maman L; Eltahir, Elfatih Ab; Labbo, Rabiou; Druilhe, Pierre; Duchemin, Jean-Bernard; Fandeur, Thierry

    2013-10-30

    Few data are available about malaria epidemiological situation in Niger. However, implementation of new strategies such as vaccination or seasonal treatment of a target population requires the knowledge of baseline epidemiological features of malaria. A population-based study was conducted to provide better characterization of malaria seasonal variations and population groups the most at risk in this particular area. From July 2007 to December 2009, presumptive cases of malaria among a study population living in a typical Sahelian village of Niger were recorded, and confirmed by microscopic examination. In parallel, asymptomatic carriers were actively detected at the end of each dry season in 2007, 2008 and 2009. Among the 965 presumptive malaria cases recorded, 29% were confirmed by microscopic examination. The incidence of malaria was found to decrease significantly with age (p < 0.01). The mean annual incidence was 0.254. The results show that the risk of malaria was higher in children under ten years (p < 0.0001). The number of malaria episodes generally followed the temporal pattern of changes in precipitation levels, with a peak of transmission in August and September. One-thousand and ninety subjects were submitted to an active detection of asymptomatic carriage of whom 16% tested positive; asymptomatic carriage decreased with increasing age. A higher prevalence of gametocyte carriage among asymptomatic population was recorded in children aged two to ten years, though it did not reach significance. In Southern Niger, malaria transmission mostly occurs from July to October. Children aged two to ten years are the most at risk of malaria, and may also represent the main reservoir for gametocytes. Strategies such as intermittent preventive treatment in children (IPTc) could be of interest in this area, where malaria transmission is highly seasonal. Based on these preliminary data, a pilot study could be implemented in Zindarou using IPTc targeting children aged

  5. Visualizing the uncertainty in the relationship between seasonal average climate and malaria risk.

    PubMed

    MacLeod, D A; Morse, A P

    2014-12-02

    Around $1.6 billion per year is spent financing anti-malaria initiatives, and though malaria morbidity is falling, the impact of annual epidemics remains significant. Whilst malaria risk may increase with climate change, projections are highly uncertain and to sidestep this intractable uncertainty, adaptation efforts should improve societal ability to anticipate and mitigate individual events. Anticipation of climate-related events is made possible by seasonal climate forecasting, from which warnings of anomalous seasonal average temperature and rainfall, months in advance are possible. Seasonal climate hindcasts have been used to drive climate-based models for malaria, showing significant skill for observed malaria incidence. However, the relationship between seasonal average climate and malaria risk remains unquantified. Here we explore this relationship, using a dynamic weather-driven malaria model. We also quantify key uncertainty in the malaria model, by introducing variability in one of the first order uncertainties in model formulation. Results are visualized as location-specific impact surfaces: easily integrated with ensemble seasonal climate forecasts, and intuitively communicating quantified uncertainty. Methods are demonstrated for two epidemic regions, and are not limited to malaria modeling; the visualization method could be applied to any climate impact.

  6. Visualizing the uncertainty in the relationship between seasonal average climate and malaria risk

    NASA Astrophysics Data System (ADS)

    MacLeod, D. A.; Morse, A. P.

    2014-12-01

    Around $1.6 billion per year is spent financing anti-malaria initiatives, and though malaria morbidity is falling, the impact of annual epidemics remains significant. Whilst malaria risk may increase with climate change, projections are highly uncertain and to sidestep this intractable uncertainty, adaptation efforts should improve societal ability to anticipate and mitigate individual events. Anticipation of climate-related events is made possible by seasonal climate forecasting, from which warnings of anomalous seasonal average temperature and rainfall, months in advance are possible. Seasonal climate hindcasts have been used to drive climate-based models for malaria, showing significant skill for observed malaria incidence. However, the relationship between seasonal average climate and malaria risk remains unquantified. Here we explore this relationship, using a dynamic weather-driven malaria model. We also quantify key uncertainty in the malaria model, by introducing variability in one of the first order uncertainties in model formulation. Results are visualized as location-specific impact surfaces: easily integrated with ensemble seasonal climate forecasts, and intuitively communicating quantified uncertainty. Methods are demonstrated for two epidemic regions, and are not limited to malaria modeling; the visualization method could be applied to any climate impact.

  7. High seasonal variation in entomologic inoculation rates in Eritrea, a semi-arid region of unstable malaria in Africa.

    PubMed

    Shililu, Josephat; Ghebremeskel, Tewolde; Mengistu, Solomon; Fekadu, Helen; Zerom, Mehari; Mbogo, Charles; Githure, John; Novak, Robert; Brantly, Eugene; Beier, John C

    2003-12-01

    Entomologic studies were conducted in eight villages to investigate the patterns of malaria transmission in different ecologic zones in Eritrea. Mosquito collections were conducted for 24 months between September 1999 and January 2002. The biting rates of Anopheles arabiensis were highly seasonal, with activity concentrated in the wet season between June and October in the highlands and western lowlands, and between December and March in the coastal region. The biting rates in the western lowlands were twice as high as in the western escarpment and 20 times higher than in the coastal region. Sporozoite rates were not significantly different among villages. The risk of infection ranged from zero on the coast to 70.6 infective bites per year in the western lowlands. The number of days it would take for an individual to receive an infective bite from an infected An. arabiensis was variable among villages (range = 2.8-203.1 days). The data revealed the presence of only one main malaria transmission period between July and October for the highlands and western lowlands. Peak inoculation rates were recorded in August and September (range = 0.29-43.6 infective bits/person/month) at all sites over the two-year period. The annual entomologic inoculation rates (EIRs) varied greatly depending on year. The EIR profiles indicated that the risk of exposure to infected mosquitoes is highly heterogeneous and seasonal, with high inoculation rates during the rainy season, and with little or no transmission during the dry season. This study demonstrates the need to generate spatial and temporal data on transmission intensity on smaller scales to guide targeted control of malaria operations in semi-arid regions. Furthermore, EIR estimates derived in the present study provide a means of quantifying levels of exposure to infected mosquitoes in different regions of the country and could be important for evaluating the efficacy of vector control measures, since Eritrea has made

  8. Seasonal prevalence of malaria in West Sumba district, Indonesia

    PubMed Central

    Syafruddin, Din; Krisin; Asih, Puji; Sekartuti; Dewi, Rita M; Coutrier, Farah; Rozy, Ismail E; Susanti, Augustina I; Elyazar, Iqbal RF; Sutamihardja, Awalludin; Rahmat, Agus; Kinzer, Michael; Rogers, William O

    2009-01-01

    Background Accurate information about the burden of malaria infection at the district or provincial level is required both to plan and assess local malaria control efforts. Although many studies of malaria epidemiology, immunology, and drug resistance have been conducted at many sites in Indonesia, there is little published literature describing malaria prevalence at the district, provincial, or national level. Methods Two stage cluster sampling malaria prevalence surveys were conducted in the wet season and dry season across West Sumba, Nusa Tenggara Province, Indonesia. Results Eight thousand eight hundred seventy samples were collected from 45 sub-villages in the surveys. The overall prevalence of malaria infection in the West Sumba District was 6.83% (95% CI, 4.40, 9.26) in the wet season and 4.95% (95% CI, 3.01, 6.90) in the dry. In the wet season Plasmodium falciparum accounted for 70% of infections; in the dry season P. falciparum and Plasmodium vivax were present in equal proportion. Malaria prevalence varied substantially across the district; prevalences in individual sub-villages ranged from 0–34%. The greatest malaria prevalence was in children and teenagers; the geometric mean parasitaemia in infected individuals decreased with age. Malaria infection was clearly associated with decreased haemoglobin concentration in children under 10 years of age, but it is not clear whether this association is causal. Conclusion Malaria is hypoendemic to mesoendemic in West Sumba, Indonesia. The age distribution of parasitaemia suggests that transmission has been stable enough to induce some clinical immunity. These prevalence data will aid the design of future malaria control efforts and will serve as a baseline against which the results of current and future control efforts can be assessed. PMID:19134197

  9. Economic burden of malaria in rural Tanzania: variations by socioeconomic status and season.

    PubMed

    Somi, Masha F; Butler, James R G; Vahid, Farshid; Njau, Joseph D; Kachur, S Patrick; Abdulla, Salim

    2007-10-01

    To determine the economic burden of malaria in a rural Tanzanian setting and identify any differences by socioeconomic status and season. Interviews of 557 households in south eastern Tanzania between May and December 2004, on consumption and malaria-related costs. Malaria-related expenses were significantly higher in the dry, non-malarious season than in the rainy season. Households sought treatment more frequently and from more expensive service providers in the dry season, when they have more money. Malaria expenses did not vary significantly across socioeconomic status quintiles, but poorer households spent a higher proportion of their consumption in both seasons. Poorer households bear a greater economic burden from malaria relative to their consumption than better-off households. Households are particularly vulnerable to malaria in the rainy season, when malaria prevalence is highest but liquidity is lower. Alternative strategies to assist households to cope with seasonal liquidity issues, including insurance, should be investigated.

  10. The epidemiology of malaria among pregnant women attending antenatal clinics in an area with intense and highly seasonal malaria transmission in northern Ghana.

    PubMed

    Clerk, Christine Alexandra; Bruce, Jane; Greenwood, Brian; Chandramohan, Daniel

    2009-06-01

    To describe the factors associated with malaria infection and anaemia in pregnancy in northern Ghana. We studied 3642 pregnant women of all gravidities and gestational age of 18-32 weeks who attended an antenatal clinic in the Kassena-Nankana district of Ghana between June 2004 and July 2006. Blood samples were examined for haemoglobin concentrations and parasitaemia, and we obtained socio-demographic data, an obstetric history, information on their past and current state of health and bed net use. The overall prevalence of malaria parasitaemia during pregnancy was 47%. Older age [adjusted odds ratio (AOR) 0.65, 95% CI 0.54-0.78], multigravidity (AOR 0.51, 95% CI 0.42-0.61) and third trimester of pregnancy (AOR 0.85, 95% CI 0.73-0.99) were associated with a decreased risk of parasitaemia. Enrollment during the rainy or post-rainy season was associated with an increased risk of parasitaemia (AOR 2.59, 95% CI 2.20-3.04 and AOR 3.12, 95% CI, 2.60-3.74 respectively). Malaria infection was associated with an increased risk of anaemia among young women. The prevalences of anaemia (Hb<11.0 g/dl) and severe anaemia (Hb<7.0 g/dl) during pregnancy were 72% and 2% respectively. The risk of anaemia was lower in older women (AOR 0.79, 95% CI, 0.64-0.97), multigravidae (AOR 0.67, 95% CI 0.55-0.83) and in educated women (AOR 0.81, 0.68-0.98). The prevalence of malaria parasitaemia and anaemia among pregnant women in Kassena-Nankana district is high with marked seasonal variation. Targeting of interventions to the high transmission season and to paucigravidae may be appropriate in this setting.

  11. The Role of Rainfall Patterns in Seasonal Malaria Transmission

    NASA Astrophysics Data System (ADS)

    Bomblies, A.

    2010-12-01

    Seasonal total precipitation is well known to affect malaria transmission because Anopheles mosquitoes depend on standing water for breeding habitat. However, the within-season temporal pattern of the rainfall influences persistence of standing water and thus rainfall patterns also affect mosquito population dynamics. In this talk, I show that intraseasonal rainfall pattern describes 40% of the variance in simulated mosquito abundance in a Niger Sahel village where malaria is endemic but highly seasonal, demonstrating the necessity for detailed distributed hydrology modeling to explain the variance from this important effect. I apply a field validated, high spatial- and temporal-resolution hydrology model coupled with an entomology model. Using synthetic rainfall time series generated using a stationary first-order Markov Chain model, I hold all variables except hourly rainfall constant, thus isolating the contribution of rainfall pattern to variance in mosquito abundance. I further show the utility of hydrology modeling to assess precipitation effects by analyzing collected water. Time-integrated surface area of pools explains 70% of the variance in mosquito abundance, and time-integrated surface area of pools persisting longer than seven days explains 82% of the variance, showing an improved predictive ability when pool persistence is explicitly modeled at high spatio-temporal resolution. I extend this analysis to investigate the impacts of this effect on malaria vector mosquito populations under climate shift scenarios, holding all climate variables except precipitation constant. In these scenarios, rainfall mean and variance change with climatic change, and the modeling approach evaluates the impact of non-stationarity in rainfall and the associated rainfall patterns on expected mosquito activity.

  12. Spatio-temporal analysis of malaria within a transmission season in Bandiagara, Mali.

    PubMed

    Coulibaly, Drissa; Rebaudet, Stanislas; Travassos, Mark; Tolo, Youssouf; Laurens, Matthew; Kone, Abdoulaye K; Traore, Karim; Guindo, Ando; Diarra, Issa; Niangaly, Amadou; Daou, Modibo; Dembele, Ahmadou; Sissoko, Mody; Kouriba, Bourema; Dessay, Nadine; Gaudart, Jean; Piarroux, Renaud; Thera, Mahamadou A; Plowe, Christopher V; Doumbo, Ogobara K

    2013-03-01

    Heterogeneous patterns of malaria transmission are thought to be driven by factors including host genetics, distance to mosquito breeding sites, housing construction, and socio-behavioural characteristics. Evaluation of local transmission epidemiology to characterize malaria risk is essential for planning malaria control and elimination programmes. The use of geographical information systems (GIS) techniques has been a major asset to this approach. To assess time and space distribution of malaria disease in Bandiagara, Mali, within a transmission season, data were used from an ongoing malaria incidence study that enrolled 300 participants aged under six years old". Children's households were georeferenced using a handheld global position system. Clinical malaria was defined as a positive blood slide for Plasmodium falciparum asexual stages associated with at least one of the following signs: headache, body aches, fever, chills and weakness. Daily rainfall was measured at the local weather station.Landscape features of Bandiagara were obtained from satellite images and field survey. QGIS™ software was used to map malaria cases, affected and non-affected children, and the number of malaria episodes per child in each block of Bandiagara. Clusters of high or low risk were identified under SaTScan(®) software according to a Bernoulli model. From June 2009 to May 2010, 296 clinical malaria cases were recorded. Though clearly temporally related to the rains, Plasmodium falciparum occurrence persisted late in the dry season. Two "hot spots" of malaria transmission also found, notably along the Yamé River, characterized by higher than expected numbers of malaria cases, and high numbers of clinical episodes per child. Conversely, the north-eastern sector of the town had fewer cases despite its proximity to a large body of standing water which was mosquito habitat. These results confirm the existence of a marked spatial heterogeneity of malaria transmission in Bandiagara

  13. Rapid case-based mapping of seasonal malaria transmission risk for strategic elimination planning in Swaziland.

    PubMed

    Cohen, Justin M; Dlamini, Sabelo; Novotny, Joseph M; Kandula, Deepika; Kunene, Simon; Tatem, Andrew J

    2013-02-11

    As successful malaria control programmes move towards elimination, they must identify residual transmission foci, target vector control to high-risk areas, focus on both asymptomatic and symptomatic infections, and manage importation risk. High spatial and temporal resolution maps of malaria risk can support all of these activities, but commonly available malaria maps are based on parasite rate, a poor metric for measuring malaria at extremely low prevalence. New approaches are required to provide case-based risk maps to countries seeking to identify remaining hotspots of transmission while managing the risk of transmission from imported cases. Household locations and travel histories of confirmed malaria patients during 2011 were recorded through routine surveillance by the Swaziland National Malaria Control Programme for the higher transmission months of January to April and the lower transmission months of May to December. Household locations for patients with no travel history to endemic areas were compared against a random set of background points sampled proportionate to population density with respect to a set of variables related to environment, population density, vector control, and distance to the locations of identified imported cases. Comparisons were made separately for the high and low transmission seasons. The Random Forests regression tree classification approach was used to generate maps predicting the probability of a locally acquired case at 100 m resolution across Swaziland for each season. Results indicated that case households during the high transmission season tended to be located in areas of lower elevation, closer to bodies of water, in more sparsely populated areas, with lower rainfall and warmer temperatures, and closer to imported cases than random background points (all p < 0.001). Similar differences were evident during the low transmission season. Maps from the fit models suggested better predictive ability during the high

  14. Oceanic influence on seasonal malaria outbreaks over Senegal and Sahel

    NASA Astrophysics Data System (ADS)

    Diouf, Ibrahima; Rodríguez de Fonseca, Belen; Deme, Abdoulaye; Cisse Cisse, Moustapha; Ndione Ndione, Jaques-Andre; Gaye, Amadou T.; Suarez, Roberto

    2015-04-01

    Beyond assessment and analysis of observed and simulated malaria parameters, this study is furthermore undertaken in the framework of predictability of malaria outbreaks in Senegal and remote regions in Sahel, which are found to take place two months after the rainy season. The predictors are the sea surface temperature anomalous patterns at different ocean basins mainly over the Pacific and Atlantic as they are related to changes in air temperature, humidity, rainfall and wind. A relationship between El Niño and anomalous malaria parameters is found. The malaria parameters are calculated with the Liverpool Malaria Model (LMM) using meteorological datasets from different reanalysis products. A hindcast of these parameters is performed using the Sea Surface temperature based Statistical Seasonal ForeCAST (S4CAST) model developed at UCM in order to predict malaria parameters some months in advance. The results of this work will be useful for decision makers to better access to climate forecasts and application on malaria transmission risk.

  15. Demonstration of successful malaria forecasts for Botswana using an operational seasonal climate model

    NASA Astrophysics Data System (ADS)

    MacLeod, Dave A.; Jones, Anne; Di Giuseppe, Francesca; Caminade, Cyril; Morse, Andrew P.

    2015-04-01

    The severity and timing of seasonal malaria epidemics is strongly linked with temperature and rainfall. Advance warning of meteorological conditions from seasonal climate models can therefore potentially anticipate unusually strong epidemic events, building resilience and adapting to possible changes in the frequency of such events. Here we present validation of a process-based, dynamic malaria model driven by hindcasts from a state-of-the-art seasonal climate model from the European Centre for Medium-Range Weather Forecasts. We validate the climate and malaria models against observed meteorological and incidence data for Botswana over the period 1982-2006 the longest record of observed incidence data which has been used to validate a modeling system of this kind. We consider the impact of climate model biases, the relationship between climate and epidemiological predictability and the potential for skillful malaria forecasts. Forecast skill is demonstrated for upper tercile malaria incidence for the Botswana malaria season (January-May), using forecasts issued at the start of November; the forecast system anticipates six out of the seven upper tercile malaria seasons in the observational period. The length of the validation time series gives confidence in the conclusion that it is possible to make reliable forecasts of seasonal malaria risk, forming a key part of a health early warning system for Botswana and contributing to efforts to adapt to climate change.

  16. Temperature and population density determine reservoir regions of seasonal persistence in highland malaria.

    PubMed

    Siraj, Amir S; Bouma, Menno J; Santos-Vega, Mauricio; Yeshiwondim, Asnakew K; Rothman, Dale S; Yadeta, Damtew; Sutton, Paul C; Pascual, Mercedes

    2015-12-07

    A better understanding of malaria persistence in highly seasonal environments such as highlands and desert fringes requires identifying the factors behind the spatial reservoir of the pathogen in the low season. In these 'unstable' malaria regions, such reservoirs play a critical role by allowing persistence during the low transmission season and therefore, between seasonal outbreaks. In the highlands of East Africa, the most populated epidemic regions in Africa, temperature is expected to be intimately connected to where in space the disease is able to persist because of pronounced altitudinal gradients. Here, we explore other environmental and demographic factors that may contribute to malaria's highland reservoir. We use an extensive spatio-temporal dataset of confirmed monthly Plasmodium falciparum cases from 1995 to 2005 that finely resolves space in an Ethiopian highland. With a Bayesian approach for parameter estimation and a generalized linear mixed model that includes a spatially structured random effect, we demonstrate that population density is important to disease persistence during the low transmission season. This population effect is not accounted for in typical models for the transmission dynamics of the disease, but is consistent in part with a more complex functional form of the force of infection proposed by theory for vector-borne infections, only during the low season as we discuss. As malaria risk usually decreases in more urban environments with increased human densities, the opposite counterintuitive finding identifies novel control targets during the low transmission season in African highlands. © 2015 The Author(s).

  17. Temperature and population density determine reservoir regions of seasonal persistence in highland malaria

    PubMed Central

    Siraj, Amir S.; Bouma, Menno J.; Santos-Vega, Mauricio; Yeshiwondim, Asnakew K.; Rothman, Dale S.; Yadeta, Damtew; Sutton, Paul C.; Pascual, Mercedes

    2015-01-01

    A better understanding of malaria persistence in highly seasonal environments such as highlands and desert fringes requires identifying the factors behind the spatial reservoir of the pathogen in the low season. In these ‘unstable’ malaria regions, such reservoirs play a critical role by allowing persistence during the low transmission season and therefore, between seasonal outbreaks. In the highlands of East Africa, the most populated epidemic regions in Africa, temperature is expected to be intimately connected to where in space the disease is able to persist because of pronounced altitudinal gradients. Here, we explore other environmental and demographic factors that may contribute to malaria's highland reservoir. We use an extensive spatio-temporal dataset of confirmed monthly Plasmodium falciparum cases from 1995 to 2005 that finely resolves space in an Ethiopian highland. With a Bayesian approach for parameter estimation and a generalized linear mixed model that includes a spatially structured random effect, we demonstrate that population density is important to disease persistence during the low transmission season. This population effect is not accounted for in typical models for the transmission dynamics of the disease, but is consistent in part with a more complex functional form of the force of infection proposed by theory for vector-borne infections, only during the low season as we discuss. As malaria risk usually decreases in more urban environments with increased human densities, the opposite counterintuitive finding identifies novel control targets during the low transmission season in African highlands. PMID:26631558

  18. Annual Versus Biannual Mass Azithromycin Distribution and Malaria Parasitemia During the Peak Transmission Season Among Children in Niger.

    PubMed

    Oldenburg, Catherine E; Amza, Abdou; Kadri, Boubacar; Nassirou, Beido; Cotter, Sun Y; Stoller, Nicole E; West, Sheila K; Bailey, Robin L; Porco, Travis C; Keenan, Jeremy D; Lietman, Thomas M; Gaynor, Bruce D

    2018-06-01

    Azithromycin has modest efficacy against malaria, and previous cluster randomized trials have suggested that mass azithromycin distribution for trachoma control may play a role in malaria control. We evaluated the effect of annual versus biannual mass azithromycin distribution over a 3-year period on malaria prevalence during the peak transmission season in a region with seasonal malaria transmission in Niger. Twenty-four communities in Matameye, Niger, were randomized to annual mass azithromycin distribution (3 distributions to the entire community during the peak transmission season) or biannual-targeted azithromycin distribution (6 distributions to children <12 years of age, including 3 in the peak transmission season and 3 in the low transmission season). Malaria indices were evaluated at 36 months during the high transmission season. Parasitemia prevalence was 42.6% (95% confidence interval: 31.7%-53.6%) in the biannual distribution arm compared with 50.6% (95% confidence interval: 40.3%-60.8%) in the annual distribution arm (P = 0.29). There was no difference in parasite density or hemoglobin concentration in the 2 treatment arms. Additional rounds of mass azithromycin distribution during low transmission may not have a significant impact on malaria parasitemia measured during the peak transmission season.

  19. Exploring the relationship between malaria, rainfall intermittency, and spatial variation in rainfall seasonality

    NASA Astrophysics Data System (ADS)

    Merkord, C. L.; Wimberly, M. C.; Henebry, G. M.; Senay, G. B.

    2014-12-01

    Malaria is a major public health problem throughout tropical regions of the world. Successful prevention and treatment of malaria requires an understanding of the environmental factors that affect the life cycle of both the malaria pathogens, protozoan parasites, and its vectors, anopheline mosquitos. Because the egg, larval, and pupal stages of mosquito development occur in aquatic habitats, information about the spatial and temporal distribution of rainfall is critical for modeling malaria risk. Potential sources of hydrological data include satellite-derived rainfall estimates (TRMM and GPM), evapotranspiration derived from a simplified surface energy balance, and estimates of soil moisture and fractional water cover from passive microwave imagery. Previous studies have found links between malaria cases and total monthly or weekly rainfall in areas where both are highly seasonal. However it is far from clear that monthly or weekly summaries are the best metrics to use to explain malaria outbreaks. It is possible that particular temporal or spatial patterns of rainfall result in better mosquito habitat and thus higher malaria risk. We used malaria case data from the Amhara region of Ethiopia and satellite-derived rainfall estimates to explore the relationship between malaria outbreaks and rainfall with the goal of identifying the most useful rainfall metrics for modeling malaria occurrence. First, we explored spatial variation in the seasonal patterns of both rainfall and malaria cases in Amhara. Second, we assessed the relative importance of different metrics of rainfall intermittency, including alternation of wet and dry spells, the strength of intensity fluctuations, and spatial variability in these measures, in determining the length and severity of malaria outbreaks. We also explored the sensitivity of our results to the choice of method for describing rainfall intermittency and the spatial and temporal scale at which metrics were calculated. Results

  20. Rapid case-based mapping of seasonal malaria transmission risk for strategic elimination planning in Swaziland

    PubMed Central

    2013-01-01

    Background As successful malaria control programmes move towards elimination, they must identify residual transmission foci, target vector control to high-risk areas, focus on both asymptomatic and symptomatic infections, and manage importation risk. High spatial and temporal resolution maps of malaria risk can support all of these activities, but commonly available malaria maps are based on parasite rate, a poor metric for measuring malaria at extremely low prevalence. New approaches are required to provide case-based risk maps to countries seeking to identify remaining hotspots of transmission while managing the risk of transmission from imported cases. Methods Household locations and travel histories of confirmed malaria patients during 2011 were recorded through routine surveillance by the Swaziland National Malaria Control Programme for the higher transmission months of January to April and the lower transmission months of May to December. Household locations for patients with no travel history to endemic areas were compared against a random set of background points sampled proportionate to population density with respect to a set of variables related to environment, population density, vector control, and distance to the locations of identified imported cases. Comparisons were made separately for the high and low transmission seasons. The Random Forests regression tree classification approach was used to generate maps predicting the probability of a locally acquired case at 100 m resolution across Swaziland for each season. Results Results indicated that case households during the high transmission season tended to be located in areas of lower elevation, closer to bodies of water, in more sparsely populated areas, with lower rainfall and warmer temperatures, and closer to imported cases than random background points (all p < 0.001). Similar differences were evident during the low transmission season. Maps from the fit models suggested better predictive

  1. Seasonal performance of a malaria rapid diagnosis test at community health clinics in a malaria-hyperendemic region of Burkina Faso

    PubMed Central

    2012-01-01

    Backgound Treatment of confirmed malaria patients with Artemisinin-based Combination Therapy (ACT) at remote areas is the goal of many anti-malaria programs. Introduction of effective and affordable malaria Rapid Diagnosis Test (RDT) in remote areas could be an alternative tool for malaria case management. This study aimed to assess performance of the OptiMAL dipstick for rapid malaria diagnosis in children under five. Methods Malaria symptomatic and asymptomatic children were recruited in a passive manner in two community clinics (CCs). Malaria diagnosis by microscopy and RDT were performed. Performance of the tests was determined. Results RDT showed similar ability (61.2%) to accurately diagnose malaria as microscopy (61.1%). OptiMAL showed a high level of sensitivity and specificity, compared with microscopy, during both transmission seasons (high & low), with a sensitivity of 92.9% vs. 74.9% and a specificity of 77.2% vs. 87.5%. Conclusion By improving the performance of the test through accurate and continuous quality control of the device in the field, OptiMAL could be suitable for use at CCs for the management and control of malaria. PMID:22647557

  2. Seasonality in malaria transmission: implications for case-management with long-acting artemisinin combination therapy in sub-Saharan Africa.

    PubMed

    Cairns, Matthew E; Walker, Patrick G T; Okell, Lucy C; Griffin, Jamie T; Garske, Tini; Asante, Kwaku Poku; Owusu-Agyei, Seth; Diallo, Diadier; Dicko, Alassane; Cisse, Badara; Greenwood, Brian M; Chandramohan, Daniel; Ghani, Azra C; Milligan, Paul J

    2015-08-19

    Long-acting artemisinin-based combination therapy (LACT) offers the potential to prevent recurrent malaria attacks in highly exposed children. However, it is not clear where this advantage will be most important, and deployment of these drugs is not rationalized on this basis. To understand where post-treatment prophylaxis would be most beneficial, the relationship between seasonality, transmission intensity and the interval between malaria episodes was explored using data from six cohort studies in West Africa and an individual-based malaria transmission model. The total number of recurrent malaria cases per 1000 child-years at risk, and the fraction of the total annual burden that this represents were estimated for sub-Saharan Africa. In settings where prevalence is less than 10 %, repeat malaria episodes constitute a small fraction of the total burden, and few repeat episodes occur within the window of protection provided by currently available drugs. However, in higher transmission settings, and particularly in high transmission settings with highly seasonal transmission, repeat malaria becomes increasingly important, with up to 20 % of the total clinical burden in children estimated to be due to repeat episodes within 4 weeks of a prior attack. At a given level of transmission intensity and annual incidence, the concentration of repeat malaria episodes in time, and consequently the protection from LACT is highest in the most seasonal areas. As a result, the degree of seasonality, in addition to the overall intensity of transmission, should be considered by policy makers when deciding between ACT that differ in their duration of post-treatment prophylaxis.

  3. Seasonal malaria chemoprevention in an area of extended seasonal transmission in Ashanti, Ghana: an individually randomised clinical trial.

    PubMed

    Tagbor, Harry; Antwi, Gifty Dufie; Acheampong, Princess Ruhama; Bart Plange, Constance; Chandramohan, Daniel; Cairns, Matthew

    2016-02-01

    To investigate the effectiveness of seasonal malaria chemoprevention (SMC) and community case management with long-acting artemisinin-based combination therapies (ACTs) for the control of malaria in areas of extended seasonal malaria transmission. Individually randomised, placebo-controlled trial in the Ashanti Region of Ghana. A total of 2400 children aged 3-59 months received either: (i) a short-acting ACT for case management of malaria (artemether-lumefantrine, AL) plus placebo SMC, or (ii) a long-acting ACT (dihydroartemisinin-piperaquine, DP) for case management plus placebo SMC or (iii) AL for case management plus active SMC with sulphadoxine-pyrimethamine and amodiaquine. SMC or placebo was delivered on five occasions during the rainy season. Malaria cases were managed by community health workers, who used rapid diagnostic tests to confirm infection prior to treatment. The incidence of malaria was lower in children given SMC during the rainy season. Compared to those given placebo SMC and AL for case management, the adjusted hazard ratio (aHR) was 0.62 (95% CI: 0.41, 0.93), P = 0.020 by intention to treat and 0.53 (95% CI: 0.29, 0.95), P = 0.033 among children given five SMC courses. There were no major differences between groups given different ACTs for case management (aHR DP vs. AL 1.18 (95% CI 0.83, 1.67), P = 0.356). SMC may have an important public health impact in areas with a longer transmission season, but further optimisation of SMC schedules is needed to maximise its impact in such settings. © 2015 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.

  4. Potential for malaria seasonal forecasting in Africa

    NASA Astrophysics Data System (ADS)

    Tompkins, Adrian; Di Giuseppe, Francesca; Colon-Gonzalez, Felipe; Namanya, Didas; Friday, Agabe

    2014-05-01

    As monthly and seasonal dynamical prediction systems have improved their skill in the tropics over recent years, there is now the potential to use these forecasts to drive dynamical malaria modelling systems to provide early warnings in epidemic and meso-endemic regions. We outline a new pilot operational system that has been developed at ECMWF and ICTP. It uses a precipitation bias correction methodology to seamlessly join the monthly ensemble prediction system (EPS) and seasonal (system 4) forecast systems of ECMWF together. The resulting temperature and rainfall forecasts for Africa are then used to drive the recently developed ICTP malaria model known as VECTRI. The resulting coupled system of ECMWF climate forecasts and VECTRI thus produces predictions of malaria prevalence rates and transmission intensity across Africa. The forecasts are filtered to highlight the regions and months in which the system has particular value due to high year to year variability. In addition to epidemic areas, these also include meso and hyper-endemic regions which undergo considerable variability in the onset months. We demonstrate the limits of the forecast skill as a function of lead-time, showing that for many areas the dynamical system can add one to two months additional warning time to a system based on environmental monitoring. We then evaluate the past forecasts against district level case data in Uganda and show that when interventions can be discounted, the system can show significant skill at predicting interannual variability in transmission intensity up to 3 or 4 months ahead at the district scale. The prospects for a operational implementation will be briefly discussed.

  5. High mobility, low access thwarts interventions among seasonal workers in the Greater Mekong Sub-region: lessons from the malaria containment project.

    PubMed

    Canavati, Sara E; Quintero, Cesia E; Lawford, Harriet L S; Yok, Sovann; Lek, Dysoley; Richards, Jack S; Whittaker, Maxine Anne

    2016-08-26

    During the process of malaria elimination in the Greater Mekong Sub-region, mobile and migrant populations (MMPs) have been identified as the most at-risk demographic. An important sub-group of MMPs are seasonal workers, and this paper presents an evaluation of the reach and effectiveness of interventions tailored towards this group and was carried out as part of the Containment Project from 2009-11. A mixed-methods study was conducted in Pailin Province in Western Cambodia. Three-hundred-and-four seasonal workers were surveyed using a structured questionnaire. Qualitative data were gathered through a total of eight focus group discussions and 14 in-depth interviews. Data triangulation of the qualitative and quantitative data was used during analysis. High mobility and low access of the target population to the interventions, as well as lack of social and anthropological research that led to implementation oversights, resulted in under-exposure of seasonal workers to interventions. Consequently, their reach and impact were severely limited. Some services, particularly Mobile Malaria Workers, had the ability to significantly impact key factors, such as risky behaviours among those they did reach. Others, like Listening and Viewing Clubs and mass media campaigns, showed little impact. There is potential in two of the interventions assessed, but high mobility and inadequate exposure of seasonal workers to these interventions must be considered in the development and planning of future interventions to avoid investing in low-impact activities and ensure that all interventions perform according to their maximum potential. This will be critical in order for Cambodia to achieve its aim of malaria elimination. The lessons learned from this study can be extrapolated to other areas of health care in Cambodia and other countries in order to reduce the gap between healthcare provided to MMPs, especially seasonal workers, and to the general population.

  6. Seasonal variation of malaria cases in children aged less than 5 years old following weather change in Zomba district, Malawi.

    PubMed

    Hajison, Precious L; Mwakikunga, Bonex W; Mathanga, Don P; Feresu, Shingairai A

    2017-07-03

    Malaria is seasonal and this may influence the number of children being treated as outpatients in hospitals. The objective of this study was to investigate the degree of seasonality in malaria in lakeshore and highland areas of Zomba district Malawi, and influence of climatic factors on incidence of malaria. Secondary data on malaria surveillance numbers and dates of treatment of children <5 years of age (n = 374,246) were extracted from the Zomba health information system for the period 2012-2016, while data on climatic variables from 2012 to 2015 were obtained from meteorological department. STATA version 13 was used to analyse data using non-linear time series correlation test to suggest a predictor model of malaria epidemic over explanatory variable (rainfall, temperature and humidity). Malaria cases of children <5 years of age in Zomba district accounts for 45% of general morbidity. There was no difference in seasonality of malaria in highland compared to lakeshore in Zomba district. This study also found that an increase in average temperature and relative humidity was associated of malaria incidence in children <5 year of age in Zomba district. On the other hand, the difference of maximum and minimum temperature (diurnal temperature range), had a strong negative association (correlation coefficients of R 2  = 0.563 [All Zomba] β = -1295.57 95% CI -1683.38 to -907.75 p value <0.001, R 2  = 0.395 [Zomba Highlands] β = -137.74 95% CI -195.00 to -80.47 p value <0.001 and R 2  = 0.470 [Zomba Lakeshores] β = -263.05 95% CI -357.47 to -168.63 p value <0.001) with malaria incidence of children <5 year in Zomba district, Malawi. The diminishing of malaria seasonality, regardless of strong rainfall seasonality, and marginal drop of malaria incidence in Zomba can be explained by weather variation. Implementation of seasonal chemoprevention of malaria in Zomba could be questionable due to reduced seasonality of malaria. The lower diurnal

  7. Skill of ENSEMBLES seasonal re-forecasts for malaria prediction in West Africa

    NASA Astrophysics Data System (ADS)

    Jones, A. E.; Morse, A. P.

    2012-12-01

    This study examines the performance of malaria-relevant climate variables from the ENSEMBLES seasonal ensemble re-forecasts for sub-Saharan West Africa, using a dynamic malaria model to transform temperature and rainfall forecasts into simulated malaria incidence and verifying these forecasts against simulations obtained by driving the malaria model with General Circulation Model-derived reanalysis. Two subregions of forecast skill are identified: the highlands of Cameroon, where low temperatures limit simulated malaria during the forecast period and interannual variability in simulated malaria is closely linked to variability in temperature, and northern Nigeria/southern Niger, where simulated malaria variability is strongly associated with rainfall variability during the peak rain months.

  8. Distribution of Plasmodium spp. infection in asymptomatic carriers in perennial and low seasonal malaria transmission settings in West Africa.

    PubMed

    Gbalégba, Constant G N; Ba, Hampâté; Silué, Kigbafori D; Ba, Ousmane; Tia, Emmanuel; Chouaibou, Mouhamadou; Tian-Bi, Nathan T Y; Yapi, Grégoire Y; Koné, Brama; Utzinger, Jürg; Koudou, Benjamin G

    2018-04-25

    Since 2000, substantial progress has been made in reducing malaria worldwide. However, some countries in West Africa remain a hotspot for malaria with all age groups at risk. Asymptomatic carriers of Plasmodium spp. are important sources of infections for malaria vectors and thus contribute to the anchoring of the disease in favourable eco-epidemiological settings. The objective of this study was to assess the asymptomatic malaria case rates in Korhogo and Kaedi, two urban areas in northern Côte d'Ivoire and southern Mauritania, respectively. Cross-sectional surveys were carried out during the rainy season in 2014 and the dry season in 2015 in both settings. During each season, 728 households were randomly selected and a household-based questionnaire was implemented to collect demographic and epidemiological data, including of malaria preventive methods used in communities. Finger-prick blood samples were obtained for biological examination using microscopy and rapid diagnostic tests (RDTs). Overall, 2672 households and 15 858 consenting participants were surveyed. Plasmodium spp. infection was confirmed in 12.4% (n = 832) and 0.3% (n = 22) of the assessed individuals in Korhogo and Kaedi, respectively. In Korhogo, the prevalence of asymptomatic malaria was 10.5% (95% CI: 9.7-11.2) as determined by microscopy and 9.3% (95% CI: 8.6-10.0%) when assessed by RDT. In Kaedi, asymptomatic malaria prevalence was 0.2% (95% CI: 0.1-0.4%) according to microscopy, while all RDTs performed were negative (n = 8372). In Korhogo, asymptomatic malaria infection was significantly associated with age and season, with higher risk within the 5-14 years-old, and during the rainy season. In Kaedi, the risk of asymptomatic malaria infection was associated with season only (higher during the dry season; crude OR (cOR): 6.37, 95% CI: 1.87-21.63). P. falciparum was the predominant species identified in both study sites representing 99.2% (n = 825) in Korhogo and 59.1% (n

  9. The effect of dams and seasons on malaria incidence and anopheles abundance in Ethiopia

    PubMed Central

    2013-01-01

    Background Reservoirs created by damming rivers are often believed to increase malaria incidence risk and/or stretch the period of malaria transmission. In this paper, we report the effects of a mega hydropower dam on P. falciparum malaria incidence in Ethiopia. Methods A longitudinal cohort study was conducted over a period of 2 years to determine Plasmodium falciparum malaria incidence among children less than 10 years of age living near a mega hydropower dam in Ethiopia. A total of 2080 children from 16 villages located at different distances from a hydropower dam were followed up from 2008 to 2010 using active detection of cases based on weekly house to house visits. Of this cohort of children, 951 (48.09%) were females and 1059 (51.91%) were males, with a median age of 5 years. Malaria vectors were simultaneously surveyed in all the 16 study villages. Frailty models were used to explore associations between time-to-malaria and potential risk factors, whereas, mixed-effects Poisson regression models were used to assess the effect of different covariates on anopheline abundance. Results Overall, 548 (26.86%) children experienced at least one clinical malaria episode during the follow up period with mean incidence rate of 14.26 cases/1000 child-months at risk (95% CI: 12.16 - 16.36). P. falciparum malaria incidence showed no statistically significant association with distance from the dam reservoir (p = 0.32). However, P. falciparum incidence varied significantly between seasons (p < 0.01). The malaria vector, Anopheles arabiensis, was however more abundant in villages nearer to the dam reservoir. Conclusions P. falciparum malaria incidence dynamics were more influenced by seasonal drivers than by the dam reservoir itself. The findings could have implications in timing optimal malaria control interventions and in developing an early warning system in Ethiopia. PMID:23566411

  10. Spatio-Temporal Dynamics of Asymptomatic Malaria: Bridging the Gap Between Annual Malaria Resurgences in a Sahelian Environment.

    PubMed

    Coulibaly, Drissa; Travassos, Mark A; Tolo, Youssouf; Laurens, Matthew B; Kone, Abdoulaye K; Traore, Karim; Sissoko, Mody; Niangaly, Amadou; Diarra, Issa; Daou, Modibo; Guindo, Boureima; Rebaudet, Stanislas; Kouriba, Bourema; Dessay, Nadine; Piarroux, Renaud; Plowe, Christopher V; Doumbo, Ogobara K; Thera, Mahamadou A; Gaudart, Jean

    2017-12-01

    In areas of seasonal malaria transmission, the incidence rate of malaria infection is presumed to be near zero at the end of the dry season. Asymptomatic individuals may constitute a major parasite reservoir during this time. We conducted a longitudinal analysis of the spatio-temporal distribution of clinical malaria and asymptomatic parasitemia over time in a Malian town to highlight these malaria transmission dynamics. For a cohort of 300 rural children followed over 2009-2014, periodicity and phase shift between malaria and rainfall were determined by spectral analysis. Spatial risk clusters of clinical episodes or carriage were identified. A nested-case-control study was conducted to assess the parasite carriage factors. Malaria infection persisted over the entire year with seasonal peaks. High transmission periods began 2-3 months after the rains began. A cluster with a low risk of clinical malaria in the town center persisted in high and low transmission periods. Throughout 2009-2014, cluster locations did not vary from year to year. Asymptomatic and gametocyte carriage were persistent, even during low transmission periods. For high transmission periods, the ratio of asymptomatic to clinical cases was approximately 0.5, but was five times higher during low transmission periods. Clinical episodes at previous high transmission periods were a protective factor for asymptomatic carriage, but carrying parasites without symptoms at a previous high transmission period was a risk factor for asymptomatic carriage. Stable malaria transmission was associated with sustained asymptomatic carriage during dry seasons. Control strategies should target persistent low-level parasitemia clusters to interrupt transmission.

  11. Seasonal genetic partitioning in the neotropical malaria vector, Anopheles darlingi

    PubMed Central

    2014-01-01

    Background Anopheles darlingi is the main malaria mosquito vector in the Amazonia region. In spite of being considered a riverine, forest-dwelling species, this mosquito is becoming more abundant in peri-urban areas, increasing malaria risk. This has been associated with human-driven environmental changes such as deforestation. Methods Microsatellites were used to characterize A. darlingi from seven localities along the Madeira River, Rondônia (Brazil), collected in the early and late periods of the rainy season. Results Two genetically distinct subpopulations were detected: one (subpopulation A) was associated with the late rainfall period and seems to be ecologically closer to the typical forest A. darlingi; the other (subpopulation B) was associated with the early rainfall period and is probably more adapted to drier conditions by exploiting permanent anthropogenic breeding sites. Results suggest also a pattern of asymmetric introgression, with more subpopulation A alleles introgressed into subpopulation B. Both subpopulations (and admixed mosquitoes) presented similar malaria infection rates, highlighting the potential for perennial malaria transmission in the region. Conclusions The co-occurrence of two genetically distinct subpopulations of A. darlingi adapted to different periods of rainfall may promote a more perennial transmission of malaria throughout the year. These findings, in a context of strong environmental impact due to deforestation and dam construction, have serious implications for malaria epidemiology and control in the Amazonian region. PMID:24885508

  12. Malaria prevalence defined by microscopy, antigen detection, DNA amplification and total nucleic acid amplification in a malaria-endemic region during the peak malaria transmission season.

    PubMed

    Waitumbi, John N; Gerlach, Jay; Afonina, Irina; Anyona, Samuel B; Koros, Joseph N; Siangla, Joram; Ankoudinova, Irina; Singhal, Mitra; Watts, Kate; Polhemus, Mark E; Vermeulen, Nicolaas M; Mahoney, Walt; Steele, Matt; Domingo, Gonzalo J

    2011-07-01

    To determine the malaria prevalence by microscopy, antigen detection and nucleic acid detection in a defined subpopulation in a Plasmodium falciparum-endemic region during the peak transmission season. Blood specimens were collected in a cross-sectional study involving children aged 5-10 years (n = 195) presenting with acute fever to two clinics in Western Kenya. All specimens underwent microscopy, HRP2 and aldolase antigen detection by enzyme immunoassay (EIA), parasite-specific DNA and total nucleic acid (RNA and DNA) by real-time PCR (qPCR) and reverse-transcriptase PCR (qRT-PCR). Microscopy detected 65/195 cases of malaria infection [95% confidence interval (CI) 52-78]. HRP2 and aldolase EIA had similar sensitivity levels detecting antigen in 65/195 (95% CI, 52-78) and 57/195 (95% CI, 45-70) cases. Discordants in antigen detection vs. microscopy occurred at <470 parasites/μl and <4900 parasites/μl for HRP2 and aldolase, respectively. Detection of total nucleic acid allowed a 3 log lower limit of detection than just DNA detection by real-time PCR in vitro. In clinical specimens, 114/195 (95% CI, 100-127) were qPCR positive (DNA), and 187/195 (95% CI, 179-191) were qRT-PCR positive (DNA plus RNA). The prevalence of submicroscopic malaria infection was significantly higher when detecting total nucleic acid than just DNA in this outpatient population during the high transmission season. Defining standards for submicroscopic infection will be important for control programmes, diagnostics development efforts and molecular epidemiology studies. © 2011 Blackwell Publishing Ltd.

  13. Oceanic influence on seasonal malaria outbreaks over Senegal and Sahel. Predictability using S4CAST model

    NASA Astrophysics Data System (ADS)

    Diouf, Ibrahima; Deme, Abdoulaye; Rodriguez-Fonseca, Belen; Suárez-Moreno, Roberto; Cisse, Moustapha; Ndione, Jacques-André; Thierno Gaye, Amadou

    2014-05-01

    Senegal and, in general, West African regions are affected by important outbreaks of diseases with destructive consequences for human population, livestock and country's economy. The vector-borne diseases such as mainly malaria, Rift Valley Fever and dengue are affected by the interanual to decadal variability of climate. Analysis of the spatial and temporal variability of climate parameters and associated oceanic patterns is important in order to assess the climate impact on malaria transmission. In this study, the approach developed to study the malaria-climate link is predefined by the QWeCI project (Quantifying Weather and Climate Impacts on Health in Developing Countries). Preliminary observations and simulations results over Senegal Ferlo region, confirm that the risk of malaria transmission is mainly linked to climate parameters such as rainfall, temperature and relative humidity; and a lag of one to two months between the maximum of malaria and the maximum of climate parameters as rainfall is observed. As climate variables are able to be predicted from oceanic SST variability in remote regions, this study explores seasonal predictability of malaria incidence outbreaks from previous sea surface temperatures conditions in different ocean basins. We have found causal or coincident relationship between El Niño and malaria parameters by coupling LMM UNILIV malaria model and S4CAST statistiscal model with the aim of predicting the malaria parameters with more than 6 months in advance. In particular, El Niño is linked to an important decrease of the number of mosquitoes and the malaria incidence. Results from this research, after assessing the seasonal malaria parameters, are expected to be useful for decision makers to better access to climate forecasts and application on health in the framework of rolling back malaria transmission.

  14. Evaluation of direct and indirect effects of seasonal malaria chemoprevention in Mali.

    PubMed

    Druetz, Thomas

    2018-05-25

    Randomized controlled trials have established that seasonal malaria chemoprevention (SMC) in children is a promising strategy to reduce malaria transmission in Sahelian West Africa. This strategy was recently introduced in a dozen countries, and about 12 million children received SMC in 2016. However, evidence on SMC effectiveness under routine programme conditions is sparse. We aim to measure the effects of the nationwide SMC programme in Mali on the prevalence of malaria and anemia in children 6-59 months. We used data from the 2015 nationally representative malaria indicator survey. A post-test only with non-randomized control group study was designed. We fitted a generalized structural equation model that controlled for potential bias on observed and non-observed variables (endogenous treatment effect model). Having received SMC reduced by 44% (95% CI [0.39-0.49]) the risk of having a positive rapid diagnostic test for malaria. In addition, the programme indirectly reduced by 18% the risk of moderate-to-severe anemia (95% CI [0.15-0.21]). SMC in Mali has substantial protective effects under routine nationwide programme conditions. Endogenous treatment effects analyses can contribute to rigorously measuring the effectiveness of health programmes and to bridging a widening gap in evaluation methods to measure progress towards achieving malaria elimination.

  15. Generalized seasonal autoregressive integrated moving average models for count data with application to malaria time series with low case numbers.

    PubMed

    Briët, Olivier J T; Amerasinghe, Priyanie H; Vounatsou, Penelope

    2013-01-01

    With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions' impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during "consolidation" and "pre-elimination" phases. Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years. The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series. G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low.

  16. Accuracy of a Plasmodium falciparum specific histidine-rich protein 2 rapid diagnostic test in the context of the presence of non-malaria fevers, prior anti-malarial use and seasonal malaria transmission.

    PubMed

    Kiemde, Francois; Bonko, Massa Dit Achille; Tahita, Marc Christian; Lompo, Palpouguini; Rouamba, Toussaint; Tinto, Halidou; van Hensbroek, Michael Boele; Mens, Petra F; Schallig, Henk D F H

    2017-07-20

    It remains challenging to distinguish malaria from other fever causing infections, as a positive rapid diagnostic test does not always signify a true active malaria infection. This study was designed to determine the influence of other causes of fever, prior anti-malarial treatment, and a possible seasonality of the performance of a PfHRP2 RDT for the diagnosis of malaria in children under-5 years of age living in a malaria endemic area. A prospective etiology study was conducted in 2015 among febrile children under 5 years of age in Burkina Faso. In order to assess the influence of other febrile illnesses, prior treatment and seasonality on the performance of a PfHRP2 RDT in diagnosing malaria, the RDT results were compared with the gold standard (expert microscopic diagnosis of Plasmodium falciparum) and test results were analysed by assuming that prior anti-malarial use and bacterial/viral infection status would have been known prior to testing. To assess bacterial and viral infection status blood, urine and stool samples were analysed. In total 683 blood samples were analysed with microscopy and RDT-PfHRP2. Plasmodium falciparum malaria was diagnosed in 49.8% (340/683) by microscopy compared to 69.5% (475/683) by RDT-PfHRP2. The RDT-PfHRP2 reported 29.7% (141/475) false positive results and 1.8% (6/340) false negative cases. The RDT-PfHRP2 had a high sensitivity (98.2%) and negative predictive value (97.1%), but a low specificity (58.9%) and positive predictive value (70.3%). Almost 50% of the alternative cause of fever were diagnosed by laboratory testing in the RDT false positive malaria group. The use of a malaria RDT-PfHRP2 in a malaria endemic area may cause misdiagnosis of the actual cause of fever due to false positive test results. The development of a practical diagnostic tool to screen for other causes of fever in malaria endemic areas is required to save lives.

  17. Seasonal prevalence of malaria vectors and entomological inoculation rates in the rubber cultivated area of Niete, South Region of Cameroon

    PubMed Central

    2012-01-01

    Background Development of large scale agro-industries are subject to serious environmental modifications. In malaria endemic areas this would greatly impact on the transmission paradigm. Two cross-sectional entomological surveys to characterize the Anopheles fauna and their entomological inoculation rates were conducted during May 2010 (peak rainy season) and December 2010 (peak dry season) in the intense rubber cultivated area of Niete in southern forested Cameroon. Methods Mosquitoes were sampled by night collections on human volunteers, identified morphologically and members of the Anopheles gambiae complex further identified to species and molecular form. Parity status was determined following the dissection of the ovaries. Plasmodium falciparum circumsporozoite antigen indices were estimated after the identification of CS antigen by ELISA and the average entomological inoculation rates determined. Results A total of 1187 Anopheles was collected, 419 (35.3%) in the rainy season and 768 (64.7%) in the dry season. Species found were the M molecular form of An. gambiae s.s (66.8%), An. ziemanni (28.3%), An. paludis (4.7%), An. smithii (0.2%). An. gambiae M-form was the principal species in the dry (56.2%) and wet (86.2%) seasons. Average overall entomological inoculation rate for the malaria vectors varied between the dry season (1.09 ib/p/n) and the rainy season (2.30 ib/p/n). Conclusions Malaria transmission in Niete occurs both in the dry and rainy season with the intensities peaking in the dry season. This is unlike previous studies in other areas of southern forested Cameroon where transmission generally peaks in the rainy season. Environmental modifications due to agro-industrial activities might have influenced vector distribution and the dynamics of malaria transmission in this area. This necessitates the possible implementation of control strategies that are related to the eco-geography of the area. PMID:22963986

  18. Generalized Seasonal Autoregressive Integrated Moving Average Models for Count Data with Application to Malaria Time Series with Low Case Numbers

    PubMed Central

    Briët, Olivier J. T.; Amerasinghe, Priyanie H.; Vounatsou, Penelope

    2013-01-01

    Introduction With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions’ impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during “consolidation” and “pre-elimination” phases. Methods Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years. Results The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series. Conclusions G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low. PMID:23785448

  19. A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology.

    PubMed

    Tompkins, Adrian M; Ermert, Volker

    2013-02-18

    The relative roles of climate variability and population related effects in malaria transmission could be better understood if regional-scale dynamical malaria models could account for these factors. A new dynamical community malaria model is introduced that accounts for the temperature and rainfall influences on the parasite and vector life cycles which are finely resolved in order to correctly represent the delay between the rains and the malaria season. The rainfall drives a simple but physically based representation of the surface hydrology. The model accounts for the population density in the calculation of daily biting rates. Model simulations of entomological inoculation rate and circumsporozoite protein rate compare well to data from field studies from a wide range of locations in West Africa that encompass both seasonal endemic and epidemic fringe areas. A focus on Bobo-Dioulasso shows the ability of the model to represent the differences in transmission rates between rural and peri-urban areas in addition to the seasonality of malaria. Fine spatial resolution regional integrations for Eastern Africa reproduce the malaria atlas project (MAP) spatial distribution of the parasite ratio, and integrations for West and Eastern Africa show that the model grossly reproduces the reduction in parasite ratio as a function of population density observed in a large number of field surveys, although it underestimates malaria prevalence at high densities probably due to the neglect of population migration. A new dynamical community malaria model is publicly available that accounts for climate and population density to simulate malaria transmission on a regional scale. The model structure facilitates future development to incorporate migration, immunity and interventions.

  20. A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology

    PubMed Central

    2013-01-01

    Background The relative roles of climate variability and population related effects in malaria transmission could be better understood if regional-scale dynamical malaria models could account for these factors. Methods A new dynamical community malaria model is introduced that accounts for the temperature and rainfall influences on the parasite and vector life cycles which are finely resolved in order to correctly represent the delay between the rains and the malaria season. The rainfall drives a simple but physically based representation of the surface hydrology. The model accounts for the population density in the calculation of daily biting rates. Results Model simulations of entomological inoculation rate and circumsporozoite protein rate compare well to data from field studies from a wide range of locations in West Africa that encompass both seasonal endemic and epidemic fringe areas. A focus on Bobo-Dioulasso shows the ability of the model to represent the differences in transmission rates between rural and peri-urban areas in addition to the seasonality of malaria. Fine spatial resolution regional integrations for Eastern Africa reproduce the malaria atlas project (MAP) spatial distribution of the parasite ratio, and integrations for West and Eastern Africa show that the model grossly reproduces the reduction in parasite ratio as a function of population density observed in a large number of field surveys, although it underestimates malaria prevalence at high densities probably due to the neglect of population migration. Conclusions A new dynamical community malaria model is publicly available that accounts for climate and population density to simulate malaria transmission on a regional scale. The model structure facilitates future development to incorporate migration, immunity and interventions. PMID:23419192

  1. High prevalence of asymptomatic malaria in south-eastern Bangladesh

    PubMed Central

    2014-01-01

    Background The WHO has reported that RDT and microscopy-confirmed malaria cases have declined in recent years. However, it is still unclear if this reflects a real decrease in incidence in Bangladesh, as particularly the hilly and forested areas of the Chittagong Hill Tract (CHT) Districts report more than 80% of all cases and deaths. surveillance and epidemiological data on malaria from the CHT are limited; existing data report Plasmodium falciparum and Plasmodium vivax as the dominant species. Methods A cross-sectional survey was conducted in the District of Bandarban, the southernmost of the three Hill Tracts Districts, to collect district-wide malaria prevalence data from one of the regions with the highest malaria endemicity in Bangladesh. A multistage cluster sampling technique was used to collect blood samples from febrile and afebrile participants and malaria microscopy and standardized nested PCR for diagnosis were performed. Demographic data, vital signs and splenomegaly were recorded. Results Malaria prevalence across all subdistricts in the monsoon season was 30.7% (95% CI: 28.3-33.2) and 14.2% (95% CI: 12.5-16.2) by PCR and microscopy, respectively. Plasmodium falciparum mono-infections accounted for 58.9%, P. vivax mono-infections for 13.6%, Plasmodium malariae for 1.8%, and Plasmodium ovale for 1.4% of all positive cases. In 24.4% of all cases mixed infections were identified by PCR. The proportion of asymptomatic infections among PCR-confirmed cases was 77.0%, oligosymptomatic and symptomatic cases accounted for only 19.8 and 3.2%, respectively. Significantly (p < 0.01) more asymptomatic cases were recorded among participants older than 15 years as compared to younger participants, whereas prevalence and parasite density were significantly (p < 0.01) higher in patients younger than 15 years. Spleen rate and malaria prevalence in two to nine year olds were 18.6 and 34.6%, respectively. No significant difference in malaria prevalence and

  2. Species composition, seasonal occurrence, habitat preference and altitudinal distribution of malaria and other disease vectors in eastern Nepal.

    PubMed

    Dhimal, Meghnath; Ahrens, Bodo; Kuch, Ulrich

    2014-11-28

    It is increasingly recognized that climate change can alter the geographical distribution of vector-borne diseases (VBDs) with shifts of disease vectors to higher altitudes and latitudes. In particular, an increasing risk of malaria and dengue fever epidemics in tropical highlands and temperate regions has been predicted in different climate change scenarios. The aim of this paper is to expand the current knowledge on the seasonal occurrence and altitudinal distribution of malaria and other disease vectors in eastern Nepal. Adult mosquitoes resting indoors and outdoors were collected using CDC light trap and aspirators with the support of flash light. Mosquito larvae were collected using locally constructed dippers. We assessed the local residents' perceptions of the distribution and occurrence of mosquitoes using key informant interview techniques. Generalized linear models were fitted to assess the effect of season, resting site and topography on the abundance of malaria vectors. The known malaria vectors in Nepal, Anopheles fluviatilis, Anopheles annularis and Anopheles maculatus complex members were recorded from 70 to 1,820 m above sea level (asl). The vectors of chikungunya and dengue virus, Aedes aegypti and Aedes albopictus, the vector of lymphatic filariasis, Culex quinquefasciatus, and that of Japanese encephalitis, Culex tritaeniorhynchus, were found from 70 to 2,000 m asl in eastern Nepal. Larvae of Anopheles, Culex and Aedes species were recorded up to 2,310 m asl. Only season had a significant effect on the abundance of An. fluviatilis, season and resting site on the abundance of An. maculatus complex members, and season, resting site and topography on the abundance of An. annularis. The perceptions of people on mosquito occurrence are consistent with entomological findings. This study provides the first vertical distribution records of vector mosquitoes in eastern Nepal and suggests that the vectors of malaria and other diseases have already

  3. Analysis of the spatial and temporal distribution of malaria in an area of Northern Guatemala with seasonal malaria transmission.

    PubMed

    Malvisi, Lucio; Troisi, Catherine L; Selwyn, Beatrice J

    2018-06-23

    The risk of malaria infection displays spatial and temporal variability that is likely due to interaction between the physical environment and the human population. In this study, we performed a spatial analysis at three different time points, corresponding to three cross-sectional surveys conducted as part of an insecticide-treated bed nets efficacy study, to reveal patterns of malaria incidence distribution in an area of Northern Guatemala characterized by low malaria endemicity. A thorough understanding of the spatial and temporal patterns of malaria distribution is essential for targeted malaria control programs. Two methods, the local Moran's I and the Getis-Ord G * (d), were used for the analysis, providing two different statistical approaches and allowing for a comparison of results. A distance band of 3.5 km was considered to be the most appropriate distance for the analysis of data based on epidemiological and entomological factors. Incidence rates were higher at the first cross-sectional survey conducted prior to the intervention compared to the following two surveys. Clusters or hot spots of malaria incidence exhibited high spatial and temporal variations. Findings from the two statistics were similar, though the G * (d) detected cold spots using a higher distance band (5.5 km). The high spatial and temporal variability in the distribution of clusters of high malaria incidence seems to be consistent with an area of unstable malaria transmission. In such a context, a strong surveillance system and the use of spatial analysis may be crucial for targeted malaria control activities.

  4. P. falciparum malaria prevalence among blood donors in Bamako, Mali.

    PubMed

    Kouriba, B; Diarra, A B; Douyon, I; Diabaté, D T; Kamissoko, F; Guitteye, H; Baby, M; Guindo, M A; Doumbo, O K

    2017-06-01

    Malaria parasite is usually transmitted to humans by Anopheles mosquitoes but it can also be transmitted through blood transfusion. Usually malaria transmission is low in African urban settings. In West Africa where the P. falciparum is the most predominant malaria species, there are limited measures to reduce the risk of blood transfusion malaria. The aim of this study was to evaluate the prevalence of P. falciparum malaria carriage among blood donors in the National Blood Center of Bamako, capital city of Mali. The study was conducted using a random sample of 946 blood donors in Bamako, Mali, from January to December 2011. Screening for malaria was performed by thick smear and rapid diagnostic test (RDT). Blood group was typed by Beth-Vincent and Simonin techniques. The frequency of malaria infection was 1.4% by thick smear and 0.8% by the RDT. The pick prevalence of P. falciparum malaria was in rainy season, indicating a probable high seasonal risk of malaria by blood transfusion, in Mali. The prevalence of P. falciparum infection was 2% among donors of group O the majority being in this group. There is a seasonal prevalence of malaria among blood donors in Bamako. A prevention strategy of transfusion malaria based on the combination of selection of blood donors through the medical interview, promoting a voluntary low-risk blood donation and screening all blood bags intended to be transfused to children under 5, pregnant women and immune-compromised patients during transmission season using thick smear will reduce the risk of transfusion malaria in Mali. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Seasonal Abundance and Host-Feeding Patterns of Anopheline Vectors in Malaria Endemic Area of Iran

    PubMed Central

    Basseri, Hamidreza; Raeisi, Ahmad; Ranjbar Khakha, Mansoor; Pakarai, Abaas; Abdolghafar, Hassanzehi

    2010-01-01

    Seasonal abundance and tendency to feed on humans are important parameters to measure for effective control of malaria vectors. The objective of this study was to describe relation between feeding pattern, abundance, and resting behavior of four malaria vectors in southern Iran. This study was conducted in ten indicator villages (based on malaria incidence and entomological indices) in mountainous/hilly and plain regions situated south and southeastern Iran. Mosquito vectors were collected from indoor as well as outdoor shelters and the blood meals were examined by ELISA test. Over all 7654 female Anopheles spp. were captured, the most common species were Anopheles stephensi, An. culicifacies, An. fluviatilis, and An. d'thali. The overall human blood index was 37.50%, 19.83%, 16.4%, and 30.1% for An. fluviatilis, An. stephensi, An. culicifacies, and An. d'thali, respectively. In addition, An. fluviatilis fed on human blood during the entire year but the feeding behavior of An. stephensi and An. culicifacies varied according to seasons. Overall, the abundance of the female mosquito positive to human blood was 4.25% per human shelter versus 17.5% per animal shelter. This result indicates that the vectors had tendency to rest in animal shelters after feeding on human. Therefore, vector control measure should be planned based on such as feeding pattern, abundance, and resting behavior of these vectors in the area. PMID:21559055

  6. Mapping malaria incidence distribution that accounts for environmental factors in Maputo Province - Mozambique

    PubMed Central

    2010-01-01

    Background The objective was to study if an association exists between the incidence of malaria and some weather parameters in tropical Maputo province, Mozambique. Methods A Bayesian hierarchical model to malaria count data aggregated at district level over a two years period is formulated. This model made it possible to account for spatial area variations. The model was extended to include environmental covariates temperature and rainfall. Study period was then divided into two climate conditions: rainy and dry seasons. The incidences of malaria between the two seasons were compared. Parameter estimation and inference were carried out using MCMC simulation techniques based on Poisson variation. Model comparisons are made using DIC. Results For winter season, in 2001 the temperature covariate with estimated value of -8.88 shows no association to malaria incidence. In year 2002, the parameter estimation of the same covariate resulted in 5.498 of positive level of association. In both years rainfall covariate determines no dependency to malaria incidence. Malaria transmission is higher in wet season with both covariates positively related to malaria with posterior means 1.99 and 2.83 in year 2001. For 2002 only temperature is associated to malaria incidence with estimated value 2.23. Conclusions The incidence of malaria in year 2001, presents an independent spatial pattern for temperature in summer and for rainfall in winter seasons respectively. In year 2002 temperature determines the spatial pattern of malaria incidence in the region. Temperature influences the model in cases where both covariates are introduced in winter and summer season. Its influence is extended to the summer model with temperature covariate only. It is reasonable to state that with the occurrence of high temperatures, malaria incidence had certainly escalated in this year. PMID:20302674

  7. Climate drivers on malaria transmission in Arunachal Pradesh, India.

    PubMed

    Upadhyayula, Suryanaryana Murty; Mutheneni, Srinivasa Rao; Chenna, Sumana; Parasaram, Vaideesh; Kadiri, Madhusudhan Rao

    2015-01-01

    The present study was conducted during the years 2006 to 2012 and provides information on prevalence of malaria and its regulation with effect to various climatic factors in East Siang district of Arunachal Pradesh, India. Correlation analysis, Principal Component Analysis and Hotelling's T² statistics models are adopted to understand the effect of weather variables on malaria transmission. The epidemiological study shows that the prevalence of malaria is mostly caused by the parasite Plasmodium vivax followed by Plasmodium falciparum. It is noted that, the intensity of malaria cases declined gradually from the year 2006 to 2012. The transmission of malaria observed was more during the rainy season, as compared to summer and winter seasons. Further, the data analysis study with Principal Component Analysis and Hotelling's T² statistic has revealed that the climatic variables such as temperature and rainfall are the most influencing factors for the high rate of malaria transmission in East Siang district of Arunachal Pradesh.

  8. Malaria Prophylaxis: A Comprehensive Review

    PubMed Central

    Castelli, Francesco; Odolini, Silvia; Autino, Beatrice; Foca, Emanuele; Russo, Rosario

    2010-01-01

    The flow of international travellers to and from malaria-endemic areas, especially Africa, has increased in recent years. Apart from the very high morbidity and mortality burden imposed on malaria-endemic areas, imported malaria is the main cause of fever possibly causing severe disease and death in travellers coming from tropical and subtropical areas, particularly Sub-Saharan Africa. The importance of behavioural preventive measures (bed nets, repellents, etc.), adequate chemoprophylaxis and, in selected circumstances, stand-by emergency treatment may not be overemphasized. However, no prophylactic regimen may offer complete protection. Expert advice is needed to tailor prophylactic advice according to traveller (age, baseline clinical conditions, etc.) and travel (destination, season, etc.) characteristics in order to reduce malaria risk.

  9. Antibody responses to P. falciparum blood stage antigens and incidence of clinical malaria in children living in endemic area in Burkina Faso.

    PubMed

    Cherif, Mariama K; Ouédraogo, Oumarou; Sanou, Guillaume S; Diarra, Amidou; Ouédraogo, Alphonse; Tiono, Alfred; Cavanagh, David R; Michael, Theisen; Konaté, Amadou T; Watson, Nora L; Sanza, Megan; Dube, Tina J T; Sirima, Sodiomon B; Nebié, Issa

    2017-09-08

    High parasite-specific antibody levels are generally associated with low susceptibility to Plasmodium falciparum malaria. This has been supported by several studies in which clinical malaria cases of P. falciparum malaria were reported to be associated with low antibody avidities. This study was conducted to evaluate the role of age, malaria transmission intensity and incidence of clinical malaria in the induction of protective humoral immune response against P. falciparum malaria in children living in Burkina Faso. We combined levels of IgG and IgG subclasses responses to P. falciparum antigens: Merozoite Surface Protein 3 (MSP3), Merozoite Surface Protein 2a (MSP2a), Merozoite Surface Protein 2b (MSP2b), Glutamate Rich Protein R0 (GLURP R0) and Glutamate Rich Protein R2 (GLURP R2) in plasma samples from 325 children under five (05) years with age, malaria transmission season and malaria incidence. We notice higher prevalence of P. falciparum infection in low transmission season compared to high malaria transmission season. While, parasite density was lower in low transmission than high transmission season. IgG against all antigens investigated increased with age. High levels of IgG and IgG subclasses to all tested antigens except for GLURP R2 were associated with the intensity of malaria transmission. IgG to MSP3, MSP2b, GLURP R2 and GLURP R0 were associated with low incidence of malaria. All IgG subclasses were associated with low incidence of P. falciparum malaria, but these associations were stronger for cytophilic IgGs. On the basis of the data presented in this study, we conclude that the induction of humoral immune response to tested malaria antigens is related to age, transmission season level and incidence of clinical malaria.

  10. Application of GIS to predict malaria hotspots based on Anopheles arabiensis habitat suitability in Southern Africa

    NASA Astrophysics Data System (ADS)

    Gwitira, Isaiah; Murwira, Amon; Zengeya, Fadzai M.; Shekede, Munyaradzi Davis

    2018-02-01

    Malaria remains a major public health problem and a principal cause of morbidity and mortality in most developing countries. Although malaria still presents health problems, significant successes have been recorded in reducing deaths resulting from the disease. As malaria transmission continues to decline, control interventions will increasingly depend on the ability to define high-risk areas known as malaria hotspots. Therefore, there is urgent need to use geospatial tools such as geographic information system to detect spatial patterns of malaria and delineate disease hot spots for better planning and management. Thus, accurate mapping and prediction of seasonality of malaria hotspots is an important step towards developing strategies for effective malaria control. In this study, we modelled seasonal malaria hotspots as a function of habitat suitability of Anopheles arabiensis (A. Arabiensis) as a first step towards predicting likely seasonal malaria hotspots that could provide guidance in targeted malaria control. We used Geographical information system (GIS) and spatial statistic methods to identify seasonal hotspots of malaria cases at the country level. In order to achieve this, we first determined the spatial distribution of seasonal malaria hotspots using the Getis Ord Gi* statistic based on confirmed positive malaria cases recorded at health facilities in Zimbabwe over four years (1996-1999). We then used MAXENT technique to model habitat suitability of A. arabiensis from presence data collected from 1990 to 2002 based on bioclimatic variables and altitude. Finally, we used autologistic regression to test the extent to which malaria hotspots can be predicted using A. arabiensis habitat suitability. Our results show that A. arabiensis habitat suitability consistently and significantly (p < 0.05) predicts malaria hotspots from 1996 to 1999. Overall, our results show that malaria hotspots can be predicted using A. arabiensis habitat suitability, suggesting

  11. Malaria transmission in two localities in north-western Argentina

    PubMed Central

    Dantur Juri, María J; Zaidenberg, Mario; Claps, Guillermo L; Santana, Mirta; Almirón, Walter R

    2009-01-01

    Background Malaria is one of the most important tropical diseases that affects people globally. The influence of environmental conditions in the patterns of temporal distribution of malaria vectors and the disease has been studied in different countries. In the present study, ecological aspects of the malaria vector Anopheles (Anopheles) pseudopunctipennis and their relationship with climatic variables, as well as the seasonality of malaria cases, were studied in two localities, El Oculto and Aguas Blancas, in north-western Argentina. Methods The fluctuation of An. pseudopunctipennis and the malaria cases distribution was analysed with Random Effect Poisson Regression. This analysis takes into account the effect of each climatic variable on the abundance of both vector and malaria cases, giving as results predicted values named Incidence Rate Radio. Results The number of specimens collected in El Oculto and Aguas Blancas was 4224 (88.07%) and 572 (11.93%), respectively. In El Oculto no marked seasonality was found, different from Aguas Blancas, where high abundance was detected at the end of spring and the beginning of summer. The maximum mean temperature affected the An. pseudopunctipennis fluctuation in El Oculto and Aguas Blancas. When considering the relationship between the number of malaria cases and the climatic variables in El Oculto, maximum mean temperature and accumulated rainfall were significant, in contrast with Aguas Blancas, where mean temperature and humidity showed a closer relationship to the fluctuation in the disease. Conclusion The temporal distribution patterns of An. pseudopunctipennis vary in both localities, but spring appears as the season with better conditions for mosquito development. Maximum mean temperature was the most important variable in both localities. Malaria cases were influenced by the maximum mean temperature in El Oculto, while the mean temperature and humidity were significant in Aguas Blancas. In Aguas Blancas peaks of

  12. Absence of dry season Plasmodium parasitaemia, but high rates of reported acute respiratory infection and diarrhoea in preschool-aged children in Kaédi, southern Mauritania.

    PubMed

    Touray, Sunkaru; Bâ, Hampâté; Bâ, Ousmane; Koïta, Mohamedou; Salem, Cheikh B Ould Ahmed; Keïta, Moussa; Traoré, Doulo; Sy, Ibrahima; Winkler, Mirko S; Utzinger, Jürg; Cissé, Guéladio

    2012-09-07

    The epidemiology of malaria in the Senegal River Gorgol valley, southern Mauritania, requires particular attention in the face of ongoing and predicted environmental and climate changes. While "malaria cases" are reported in health facilities throughout the year, past and current climatic and ecological conditions do not favour transmission in the dry season (lack of rainfall and very high temperatures). Moreover, entomological investigations in neighbouring regions point to an absence of malaria transmission in mosquito vectors in the dry season. Because the clinical signs of malaria are non-specific and overlap with those of other diseases (e.g. acute respiratory infections and diarrhoea), new research is needed to better understand malaria transmission patterns in this region to improve adaptive, preventive and curative measures. We conducted a multipurpose cross-sectional survey in the city of Kaédi in April 2011 (dry season), assessing three major disease patterns, including malaria. Plasmodium spp. parasite rates were tested among children aged 6-59 months who were recruited from a random selection of households using a rapid diagnostic test and microscopic examination of Giemsa-stained thick and thin blood films. Acute respiratory infection and diarrhoea were the two other diseases investigated, administering a parental questionnaire to determine the reported prevalence among participating children. No Plasmodium infection was found in any of the 371 surveyed preschool-aged children using two different diagnostic methods. Acute respiratory infections and diarrhoea were reported in 43.4% and 35.0% of the participants, respectively. About two thirds of the children with acute respiratory infections and diarrhoea required medical follow-up by a health worker. Malaria was absent in the present dry season survey in the capital of the Gorgol valley of Mauritania, while acute respiratory infections and diarrhea were highly prevalent. Surveys should be repeated

  13. A qualitative study on caretakers' perceived need of bed-nets after reduced malaria transmission in Zanzibar, Tanzania

    PubMed Central

    2012-01-01

    Background The elimination of malaria in Zanzibar is highly dependent on sustained effective coverage of bed-nets to avoid malaria resurgence. The Health Belief Model (HBM) framework was used to explore the perceptions of malaria and bed-net use after a noticeable reduction in malaria incidence. Methods Nineteen in-depth interviews were conducted with female and male caretakers of children under five in North A district, Zanzibar. Deductive content analysis was used to identify meaning units that were condensed, coded and assigned to pre-determined elements of the HBM. Results Awareness of malaria among caretakers was high but the illness was now seen as easily curable and uncommon. In addition to the perceived advantage of providing protection against malaria, bed-nets were also thought to be useful for avoiding mosquito nuisance, especially during the rainy season when the malaria and mosquito burden is high. The discomfort of sleeping under a net during the hot season was the main barrier that interrupted consistent bed-net usage. The main cue to using a bed-net was high mosquito density, and children were prioritized when it came to bed-net usage. Caretakers had high perceived self-efficacy and did not find it difficult to use bed-nets. Indoor Residual Spraying (IRS), which was recognized as an additional means of mosquito prevention, was not identified as an alternative for bed-nets. A barrier to net ownership was the increasingly high cost of bed-nets. Conclusions Despite the reduction in malaria incidence and the resulting low malaria risk perceptions among caretakers, the benefit of bed-nets as the most proficient protection against mosquito bites upholds their use. This, in combination with the perceived high self-efficacy of caretakers, supports bed-net usage, while seasonality interrupts consistent use. High effective coverage of bed-nets could be further improved by reinforcing the benefits of bed-nets, addressing the seasonal heat barrier by using nets

  14. Use of prospective hospital surveillance data to define spatiotemporal heterogeneity of malaria risk in coastal Kenya.

    PubMed

    Bisanzio, Donal; Mutuku, Francis; LaBeaud, Angelle D; Mungai, Peter L; Muinde, Jackson; Busaidy, Hajara; Mukoko, Dunstan; King, Charles H; Kitron, Uriel

    2015-12-01

    Malaria in coastal Kenya shows spatial heterogeneity and seasonality, which are important factors to account for when planning an effective control system. Routinely collected data at health facilities can be used as a cost-effective method to acquire information on malaria risk for large areas. Here, data collected at one specific hospital in coastal Kenya were used to assess the ability of such passive surveillance to capture spatiotemporal heterogeneity of malaria and effectiveness of an augmented control system. Fever cases were tested for malaria at Msambweni sub-County Referral Hospital, Kwale County, Kenya, from October 2012 to March 2015. Remote sensing data were used to classify the development level of each monitored community and to identify the presence of rice fields nearby. An entomological study was performed to acquire data on the seasonality of malaria vectors in the study area. Rainfall data were obtained from a weather station located in proximity of the study area. Spatial analysis was applied to investigate spatial patterns of malarial and non-malarial fever cases. A space-time Bayesian model was performed to evaluate risk factors and identify locations at high malaria risk. Vector seasonality was analysed using a generalized additive mixed model (GAMM). Among the 25,779 tested febrile cases, 28.7 % were positive for Plasmodium infection. Malarial and non-malarial fever cases showed a marked spatial heterogeneity. High risk of malaria was linked to patient age, community development level and presence of rice fields. The peak of malaria prevalence was recorded close to rainy seasons, which correspond to periods of high vector abundance. Results from the Bayesian model identified areas with significantly high malaria risk. The model also showed that the low prevalence of malaria recorded during late 2012 and early 2013 was associated with a large-scale bed net distribution initiative in the study area during mid-2012. The results indicate that

  15. Placental malaria and the risk of malaria in infants in a high malaria transmission area in ghana: a prospective cohort study.

    PubMed

    Asante, Kwaku Poku; Owusu-Agyei, Seth; Cairns, Matthew; Dodoo, Daniel; Boamah, Ellen Abrafi; Gyasi, Richard; Adjei, George; Gyan, Ben; Agyeman-Budu, Akua; Dodoo, Theophilus; Mahama, Emmanuel; Amoako, Nicholas; Dosoo, David Kwame; Koram, Kwadwo; Greenwood, Brian; Chandramohan, Daniel

    2013-11-01

    Whether the risk of malaria is increased in infants born to mothers who experience malaria during pregnancy is uncertain.  We investigated malaria incidence among an infant cohort born to 355 primigravidae and 1500 multigravidae with or without placental malaria (PM) in a high malaria transmission area of Ghana. PM was assessed using placental histology. The incidence of all episodes of malaria parasitemia or clinical malaria was very similar among 3 groups of infants: those born to multigravidae without PM, multigravidae with PM, and primigravidae with PM. Infants born to primigravidae without PM experienced a lower incidence of malaria parasitemia or clinical malaria than the other 3 groups: adjusted hazard ratio, 0.64 (95% confidence interval [CI], .48-.86, P < .01) and 0.60 (95% CI, .43-.84, P < .01), respectively. The incidence of malaria parasitemia or clinical malaria was about 2 times higher in most poor infants compared to least poor infants. There was no suggestion that exposure to PM directly increased incidence of malaria among infants of multigravidae. In our study area, absence of placental malaria in primigravidae is a marker of low exposure, and this probably explains the lower incidence of malaria-related outcomes among infants of PM-negative primigravidae.

  16. Additional burden of asymptomatic and sub-patent malaria infections during low transmission season in forested tribal villages in Chhattisgarh, India.

    PubMed

    Chourasia, Mehul Kumar; Raghavendra, Kamaraju; Bhatt, Rajendra M; Swain, Dipak Kumar; Meshram, Hemraj M; Meshram, Jayant K; Suman, Shrity; Dubey, Vinita; Singh, Gyanendra; Prasad, Kona Madhavinadha; Kleinschmidt, Immo

    2017-08-08

    The burden of sub-patent malaria is difficult to recognize in low endemic areas due to limitation of diagnostic tools, and techniques. Polymerase chain reaction (PCR), a molecular based technique, is one of the key methods for detection of low parasite density infections. The study objective was to assess the additional burden of asymptomatic and sub-patent malaria infection among tribal populations inhabiting three endemic villages in Keshkal sub-district, Chhattisgarh, India. A cross-sectional survey was conducted in March-June 2016, during the low transmission season, to measure and compare prevalence of malaria infection using three diagnostics: rapid diagnostic test, microscopy and nested-PCR. Out of 437 individuals enrolled in the study, 103 (23.6%) were malaria positive by PCR and/or microscopy of whom 89.3% were Plasmodium falciparum cases, 77.7% were afebrile and 35.9% had sub-patent infections. A substantial number of asymptomatic and sub-patent malaria infections were identified in the survey. Hence, strategies for identifying and reducing the hidden burden of asymptomatic and sub-patent infections should focus on forest rural tribal areas using more sensitive molecular diagnostic methods to curtail malaria transmission.

  17. Association between climate variability and malaria epidemics in the East African highlands.

    PubMed

    Zhou, Guofa; Minakawa, Noboru; Githeko, Andrew K; Yan, Guiyun

    2004-02-24

    The causes of the recent reemergence of Plasmodium falciparum epidemic malaria in the East African highlands are controversial. Regional climate changes have been invoked as a major factor; however, assessing the impact of climate in malaria resurgence is difficult due to high spatial and temporal climate variability and the lack of long-term data series on malaria cases from different sites. Climate variability, defined as short-term fluctuations around the mean climate state, may be epidemiologically more relevant than mean temperature change, but its effects on malaria epidemics have not been rigorously examined. Here we used nonlinear mixed-regression model to investigate the association between autoregression (number of malaria outpatients during the previous time period), seasonality and climate variability, and the number of monthly malaria outpatients of the past 10-20 years in seven highland sites in East Africa. The model explained 65-81% of the variance in the number of monthly malaria outpatients. Nonlinear and synergistic effects of temperature and rainfall on the number of malaria outpatients were found in all seven sites. The net variance in the number of monthly malaria outpatients caused by autoregression and seasonality varied among sites and ranged from 18 to 63% (mean=38.6%), whereas 12-63% (mean=36.1%) of variance is attributed to climate variability. Our results suggest that there was a high spatial variation in the sensitivity of malaria outpatient number to climate fluctuations in the highlands, and that climate variability played an important role in initiating malaria epidemics in the East African highlands.

  18. Molecular markers of resistance to amodiaquine plus sulfadoxine-pyrimethamine in an area with seasonal malaria chemoprevention in south central Niger.

    PubMed

    Grais, Rebecca F; Laminou, Ibrahim M; Woi-Messe, Lynda; Makarimi, Rockyath; Bouriema, Seidou H; Langendorf, Celine; Amambua-Ngwa, Alfred; D'Alessandro, Umberto; Guérin, Philippe J; Fandeur, Thierry; Sibley, Carol H

    2018-02-27

    In Niger, malaria transmission is markedly seasonal with most of the disease burden occurring in children during the rainy season. Seasonal malaria chemoprevention (SMC) with amodiaquine plus sulfadoxine-pyrimethamine (AQ + SP) is recommended in the country to be administered monthly just before and during the rainy season. Moreover, clinical decisions on use of SP for intermittent preventive treatment in pregnancy (IPTp) now depend upon the validated molecular markers for SP resistance in Plasmodium falciparum observed in the local parasite population. However, little is known about molecular markers of resistance for either SP or AQ in the south of Niger. To address this question, clinical samples which met clinical and biological criteria, were collected in Gabi, Madarounfa district, Maradi region, Niger in 2011-2012 (before SMC implementation). Molecular markers of resistance to pyrimethamine (pfdhfr), sulfadoxine (pfdhps) and amodiaquine (pfmdr1) were assessed by DNA sequencing. Prior to SMC implementation, the samples showed a high proportion of clinical samples that carried the pfdhfr 51I/59R/108N haplotype associated with resistance to pyrimethamine and pfdhps 436A/F/H and 437G mutations associated with reduced susceptibility to sulfadoxine. In contrast mutations in codons 581G, and 613S in the pfdhps gene, and in pfmdr1, 86Y, 184Y, 1042D and 1246Y associated with resistance to amodiaquine, were less frequently observed. Importantly, pfdhfr I164L and pfdhps K540E mutations shown to be the most clinically relevant markers for high level clinical resistance to SP were not detected in Gabi. Although parasites with genotypes associated with the highest levels of resistance to AQ + SP are not yet common in this setting, their importance for deployment of SMC and IPTp dictates that monitoring of these markers of resistance should accompany these interventions. This study also highlights the parasite heterogeneity within a small spatial area and the need to

  19. Increased use of malaria rapid diagnostic tests improves targeting of anti-malarial treatment in rural Tanzania: implications for nationwide rollout of malaria rapid diagnostic tests

    PubMed Central

    2012-01-01

    Background The World Health Organization recommends parasitological confirmation of all malaria cases. Tanzania is implementing a phased rollout of malaria rapid diagnostic tests (RDTs) for routine use in all levels of care as one strategy to increase parasitological confirmation of malaria diagnosis. This study was carried out to evaluated artemisinin combination therapy (ACT) prescribing patterns in febrile patients with and without uncomplicated malaria in one pre-RDT implementation and one post-RDT implementation area. Methods A cross-sectional health facility surveys was conducted during high and low malaria transmission seasons in 2010 in both areas. Clinical information and a reference blood film on all patients presenting for an initial illness consultation were collected. Malaria was defined as a history of fever in the past 48 h and microscopically confirmed parasitaemia. Routine diagnostic testing was defined as RDT or microscopy ordered by the health worker and performed at the health facility as part of the health worker-patient consultation. Correct diagnostic testing was defined as febrile patient tested with RDT or microscopy. Over-testing was defined as a non-febrile patient tested with RDT or microscopy. Correct treatment was defined as patient with malaria prescribed ACT. Over-treatment was defined as patient without malaria prescribed ACT. Results A total of 1,247 febrile patients (627 from pre-implementation area and 620 from post-implementation area) were included in the analysis. In the post-RDT implementation area, 80.9% (95% CI, 68.2-89.3) of patients with malaria received recommended treatment with ACT compared to 70.3% (95% CI, 54.7-82.2) of patients in the pre-RDT implementation area. Correct treatment was significantly higher in the post-implementation area during high transmission season (85.9% (95%CI, 72.0-93.6) compared to 58.3% (95%CI, 39.4-75.1) in pre-implementation area (p = 0.01). Over-treatment with ACT of patients without

  20. Placental malaria among HIV-infected and uninfected women receiving anti-folates in a high transmission area of Uganda

    PubMed Central

    2009-01-01

    Background HIV infection increases the risk of placental malaria, which is associated with poor maternal and infant outcomes. Recommendations in Uganda are for HIV-infected pregnant women to receive daily trimethoprim-sulphamethoxazole (TS) and HIV-uninfected women to receive intermittent sulphadoxine-pyrimethamine (SP). TS decreases the risk of malaria in HIV-infected adults and children but has not been evaluated among pregnant women. Methods This was a cross sectional study comparing the prevalence of placental malaria between HIV-infected women prescribed TS and HIV-uninfected women prescribed intermittent preventive therapy with sulphadoxine-pyrimethamine (IPT-SP) in a high malaria transmission area in Uganda. Placental blood was evaluated for malaria using smear and PCR. Results Placentas were obtained from 150 HIV-infected women on TS and 336 HIV-uninfected women on IPT-SP. The proportion of HIV-infected and HIV-uninfected women with placental malaria was 19% vs. 26% for those positive by PCR and 6% vs. 9% for those positive by smear, respectively. Among all infants, smear+ placental malaria was most predictive of low birth weight (LBW). Primigravidae were at higher risk than multigravidae of having placental malaria among HIV-uninfected, but not HIV-infected, women. Adjusting for gravidity, age, and season at the time of delivery, HIV-infected women on TS were not at increased risk for placental malaria compared to HIV-uninfected women on IPT-SP, regardless of the definition used. Conclusion Prevalence of placental malaria was similar in HIV-infected women on TS and HIV-uninfected women on IPT-SP. Nonetheless, while nearly all of the women in this study were prescribed anti-folates, the overall risk of placental malaria and LBW was unacceptably high. The population attributable risk of placental malaria on LBW was substantial, suggesting that future interventions that further diminish the risk of placental malaria may have a considerable impact on the

  1. Population movement and malaria persistence in Rameswaram Island.

    PubMed

    Rajagopalan, P K; Jambulingam, P; Sabesan, S; Krishnamoorthy, K; Rajendran, S; Gunasekaran, K; Kumar, N P; Prothero, R M

    1986-01-01

    The role of population movement on the persistent transmission of malaria in Rameswaram Island was studied. Majority of the inhabitants of the island are fishermen, who engage in perennial fishing. They move from one coastal place to the other for fishing and stay in temporary camps depending on season and fish availability. Such seasonal fishing camps attract fishermen from the mainland coastal villages also. The parasitological and entomological studies carried out in these places reveal that some of the camps are highly vulnerable to the movement of individuals with malaria infection and highly receptive. Rameswaram being a holy place, receives pilgrims from all over India and Nepal. Plasmodium falciparum cases recorded from the pilgrims of North India indicate the danger of the possible introduction of chloroquine-resistant parasite in the island. Also, a large number of passengers in transit from various countries, many of which are at risk of malaria transmission, stay in the island before or after visiting Sri Lanka. Such population movements being a continuous and regular feature are significant and result in failures in the operational programmes.

  2. Serologic markers for detecting malaria in areas of low endemicity, Somalia, 2008.

    PubMed

    Bousema, Teun; Youssef, Randa M; Cook, Jackie; Cox, Jonathan; Alegana, Victor A; Amran, Jamal; Noor, Abdisalan M; Snow, Robert W; Drakeley, Chris

    2010-03-01

    Areas in which malaria is not highly endemic are suitable for malaria elimination, but assessing transmission is difficult because of lack of sensitivity of commonly used methods. We evaluated serologic markers for detecting variation in malaria exposure in Somalia. Plasmodium falciparum or P. vivax was not detected by microscopy in cross-sectional surveys of samples from persons during the dry (0/1,178) and wet (0/1,128) seasons. Antibody responses against P. falciparum or P. vivax were detected in 17.9% (179/1,001) and 19.3% (202/1,044) of persons tested. Reactivity against P. falciparum was significantly different between 3 villages (p<0.001); clusters of seroreactivity were present. Distance to the nearest seasonal river was negatively associated with P. falciparum (p = 0.028) and P. vivax seroreactivity (p = 0.016). Serologic markers are a promising tool for detecting spatial variation in malaria exposure and evaluating malaria control efforts in areas where transmission has decreased to levels below the detection limit of microscopy.

  3. A weather-driven model of malaria transmission.

    PubMed

    Hoshen, Moshe B; Morse, Andrew P

    2004-09-06

    Climate is a major driving force behind malaria transmission and climate data are often used to account for the spatial, seasonal and interannual variation in malaria transmission. This paper describes a mathematical-biological model of the parasite dynamics, comprising both the weather-dependent within-vector stages and the weather-independent within-host stages. Numerical evaluations of the model in both time and space show that it qualitatively reconstructs the prevalence of infection. A process-based modelling structure has been developed that may be suitable for the simulation of malaria forecasts based on seasonal weather forecasts.

  4. Parasite burden and severity of malaria in Tanzanian children.

    PubMed

    Gonçalves, Bronner P; Huang, Chiung-Yu; Morrison, Robert; Holte, Sarah; Kabyemela, Edward; Prevots, D Rebecca; Fried, Michal; Duffy, Patrick E

    2014-05-08

    Severe Plasmodium falciparum malaria is a major cause of death in children. The contribution of the parasite burden to the pathogenesis of severe malaria has been controversial. We documented P. falciparum infection and disease in Tanzanian children followed from birth for an average of 2 years and for as long as 4 years. Of the 882 children in our study, 102 had severe malaria, but only 3 had more than two episodes. More than half of first episodes of severe malaria occurred after a second infection. Although parasite levels were higher on average when children had severe rather than mild disease, most children (67 of 102) had high-density infection (>2500 parasites per 200 white cells) with only mild symptoms before severe malaria, after severe malaria, or both. The incidence of severe malaria decreased considerably after infancy, whereas the incidence of high-density infection was similar among all age groups. Infections before and after episodes of severe malaria were associated with similar parasite densities. Nonuse of bed nets, placental malaria at the time of a woman's second or subsequent delivery, high-transmission season, and absence of the sickle cell trait increased severe-malaria risk and parasite density during infections. Resistance to severe malaria was not acquired after one or two mild infections. Although the parasite burden was higher on average during episodes of severe malaria, a high parasite burden was often insufficient to cause severe malaria even in children who later were susceptible. The diverging rates of severe disease and high-density infection after infancy, as well as the similar parasite burdens before and after severe malaria, indicate that naturally acquired resistance to severe malaria is not explained by improved control of parasite density. (Funded by the National Institute of Allergy and Infectious Diseases and others.).

  5. Effect of climatic variability on malaria trends in Baringo County, Kenya.

    PubMed

    Kipruto, Edwin K; Ochieng, Alfred O; Anyona, Douglas N; Mbalanya, Macrae; Mutua, Edna N; Onguru, Daniel; Nyamongo, Isaac K; Estambale, Benson B A

    2017-05-25

    Malaria transmission in arid and semi-arid regions of Kenya such as Baringo County, is seasonal and often influenced by climatic factors. Unravelling the relationship between climate variables and malaria transmission dynamics is therefore instrumental in developing effective malaria control strategies. The main aim of this study was to describe the effects of variability of rainfall, maximum temperature and vegetation indices on seasonal trends of malaria in selected health facilities within Baringo County, Kenya. Climate variables sourced from the International Research Institute (IRI)/Lamont-Doherty Earth Observatory (LDEO) climate database and malaria cases reported in 10 health facilities spread across four ecological zones (riverine, lowland, mid-altitude and highland) between 2004 and 2014 were subjected to a time series analysis. A negative binomial regression model with lagged climate variables was used to model long-term monthly malaria cases. The seasonal Mann-Kendall trend test was then used to detect overall monotonic trends in malaria cases. Malaria cases increased significantly in the highland and midland zones over the study period. Changes in malaria prevalence corresponded to variations in rainfall and maximum temperature. Rainfall at a time lag of 2 months resulted in an increase in malaria transmission across the four zones while an increase in temperature at time lags of 0 and 1 month resulted in an increase in malaria cases in the riverine and highland zones, respectively. Given the existence of a time lag between climatic variables more so rainfall and peak malaria transmission, appropriate control measures can be initiated at the onset of short and after long rains seasons.

  6. Frequency of malaria and glucose-6-phosphate dehydrogenase deficiency in Tajikistan.

    PubMed

    Rebholz, Cornelia E; Michel, Anette J; Maselli, Daniel A; Saipphudin, Karimov; Wyss, Kaspar

    2006-06-16

    During the Soviet era, malaria was close to eradication in Tajikistan. Since the early 1990s, the disease has been on the rise and has become endemic in large areas of southern and western Tajikistan. The standard national treatment for Plasmodium vivax is based on primaquine. This entails the risk of severe haemolysis for patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Seasonal and geographical distribution patterns as well as G6PD deficiency frequency were analysed with a view to improve understanding of the current malaria situation in Tajikistan. Spatial and seasonal distribution was analysed, applying a risk model that included key environmental factors such as temperature and the availability of mosquito breeding sites. The frequency of G6PD deficiency was studied at the health service level, including a cross-sectional sample of 382 adult men. Analysis revealed high rates of malaria transmission in most districts of the southern province of Khatlon, as well as in some zones in the northern province of Sughd. Three categories of risk areas were identified: (i) zones at relatively high malaria risk with high current incidence rates, where malaria control and prevention measures should be taken at all stages of the transmission cycle; (ii) zones at relatively high malaria risk with low current incidence rates, where malaria prevention measures are recommended; and (iii) zones at intermediate or low malaria risk with low current incidence rates where no particular measures appear necessary. The average prevalence of G6PD deficiency was 2.1% with apparent differences between ethnic groups and geographical regions. The study clearly indicates that malaria is a serious health issue in specific regions of Tajikistan. Transmission is mainly determined by temperature. Consequently, locations at lower altitude are more malaria-prone. G6PD deficiency frequency is too moderate to require fundamental changes in standard national treatment of cases of P

  7. A refined estimate of the malaria burden in Niger.

    PubMed

    Doudou, Maimouna Halidou; Mahamadou, Aboubacar; Ouba, Ibrahim; Lazoumar, Ramatoulaye; Boubacar, Binta; Arzika, Ibrahim; Zamanka, Halima; Ibrahim, Maman L; Labbo, Rabiou; Maiguizo, Seydou; Girond, Florian; Guillebaud, Julia; Maazou, Abani; Fandeur, Thierry

    2012-03-27

    The health authorities of Niger have implemented several malaria prevention and control programmes in recent years. These interventions broadly follow WHO guidelines and international recommendations and are based on interventions that have proved successful in other parts of Africa. Most performance indicators are satisfactory but, paradoxically, despite the mobilization of considerable human and financial resources, the malaria-fighting programme in Niger seems to have stalled, as it has not yet yielded the expected significant decrease in malaria burden. Indeed, the number of malaria cases reported by the National Health Information System has actually increased by a factor of five over the last decade, from about 600,000 in 2000 to about 3,000,000 in 2010. One of the weaknesses of the national reporting system is that the recording of malaria cases is still based on a presumptive diagnosis approach, which overestimates malaria incidence. An extensive nationwide survey was carried out to determine by microscopy and RDT testing, the proportion of febrile patients consulting at health facilities for suspected malaria actually suffering from the disease, as a means of assessing the magnitude of this problem and obtaining a better estimate of malaria morbidity in Niger. In total, 12,576 febrile patients were included in this study; 57% of the slides analysed were positive for the malaria parasite during the rainy season, when transmission rates are high, and 9% of the slides analysed were positive during the dry season, when transmission rates are lower. The replacement of microscopy methods by rapid diagnostic tests resulted in an even lower rate of confirmation, with only 42% of cases testing positive during the rainy season, and 4% during the dry season. Fever alone has a low predictive value, with a low specificity and sensitivity. These data highlight the absolute necessity of confirming all reported malaria cases by biological diagnosis methods, to increase

  8. Early warnings of the potential for malaria transmission in Rural Africa using the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS)

    NASA Astrophysics Data System (ADS)

    Yamana, T. K.; Eltahir, E. A.

    2010-12-01

    Early warnings of malaria transmission allow health officials to better prepare for future epidemics. Monitoring rainfall is recognized as an important part of malaria early warning systems, as outlined by the Roll Back Malaria Initiative. The Hydrology, Entomology and Malaria Simulator (HYDREMATS) is a mechanistic model that relates rainfall to malaria transmission, and could be used to provide early warnings of malaria epidemics. HYDREMATS is used to make predictions of mosquito populations and vectorial capacity for 2005, 2006, and 2007 in Banizoumbou village in western Niger. HYDREMATS is forced by observed rainfall, followed by a rainfall prediction based on the seasonal mean rainfall for a period two or four weeks into the future. Predictions made using this method provided reasonable estimates of mosquito populations and vectorial capacity, two to four weeks in advance. The predictions were significantly improved compared to those made when HYDREMATS was forced with seasonal mean rainfall alone.

  9. A malaria risk map of Kinshasa, Democratic Republic of Congo.

    PubMed

    Ferrari, Giovanfrancesco; Ntuku, Henry M; Schmidlin, Sandro; Diboulo, Eric; Tshefu, Antoinette K; Lengeler, Christian

    2016-01-13

    In Kinshasa, malaria remains a major public health problem but its spatial epidemiology has not been assessed for decades now. The city's growth and transformation, as well as recent control measures, call for an update. To identify highly exposed communities and areas where control measures are less critically needed, detailed risk maps are required to target control and optimize resource allocation. In 2009 (end of the dry season) and 2011 (end of the rainy season), two cross-sectional surveys were conducted in Kinshasa to determine malaria prevalence, anaemia, history of fever, bed net ownership and use among children 6-59 months. Geo-referenced data for key parameters were mapped at the level of the health area (HA) by means of a geographic information system (GIS). Among 7517 children aged 6-59 months from 33 health zones (HZs), 6661 (3319 in 2009 and 3342 in 2011) were tested for both malaria (by Rapid Diagnostic Tests) and anaemia, and 856 (845 in 2009 and 11 in 2011) were tested for anaemia only. Fifteen HZs were sampled in 2009, 25 in 2011, with seven HZs sampled in both surveys. Mean prevalence for malaria and anaemia was 6.4% (5.6-7.4) and 65.1% (63.7-66.6) in 2009, and 17.0% (15.7-18.3) and 64.2% (62.6-65.9) in 2011. In two HZs sampled in both surveys, malaria prevalence was 14.1 % and 26.8% in Selembao (peri-urban), in the 2009 dry season and 2011 rainy season respectively, and it was 1.0 % and 0.8% in Ngiri Ngiri (urban). History of fever during the preceding two weeks was 13.2% (12.5-14.3) and 22.3% (20.8-23.4) in 2009 and 2011. Household ownership of at least one insecticide-treated net (ITN) was 78.7% (77.4-80.0) and 65.0% (63.7-66.3) at both time points, while use was 57.7% (56.0-59.9) and 45.0% (43.6-46.8), respectively. This study presents the first malaria risk map of Kinshasa, a mega city of roughly 10 million inhabitants and located in a highly endemic malaria zone. Prevalence of malaria, anaemia and reported fever was lower in urban areas

  10. Spatio-temporal Dynamics of Wetlands and Malaria in the Ethiopian Highlands Using Multi-sensor Satellite Observations

    NASA Astrophysics Data System (ADS)

    Midekisa, A. A.; Wimberly, M. C.; Senay, G. B.

    2013-12-01

    Tropical wetlands provide various beneficial ecosystem services; however, they can also facilitate the transmission of vector-borne diseases. Because wetlands serve as breeding habitats for Anopheles mosquitoes, particularly during the dry season, they are critical eco-hydrologic elements for malaria transmission. The overarching hypothesis of this study is that landscape and regional patterns of wetlands are associated with malaria risk in the Amhara region of Ethiopia. To test this hypothesis, we developed a random forest decision tree model to map seasonal and permanent wetlands in the Amhara region. Wetland training and validation data were acquired from high-resolution imagery in Google Earth and ground surveys. We evaluated the effectiveness of three random forest models using the following sets of predictor variables: (1) topographical indices from 30 m SRTM data, (2) individual reflectance bands and multispectral wetness indices from Landsat TM/ETM+ imagery, and (3) combined spectral and topographic data. The combined model produced the most accurate wetland maps, and we used it to map wetlands across the study area for 2000, 2005, and 2010. We found spatial associations between indicators of malaria risk from historical surveillance data and metrics of wetland cover at a district level. We also quantified seasonal moisture variability among three different land use land cover types (permanent wetland, seasonal wetland, and cropland) using Actual Evapotranspiration (ETa) over a ten year period (2001-2010) derived from MODIS imagery. We found that permanent and seasonal wetlands have peak moisture during the major malaria transmission season (September-November), whereas the permanent wetlands retain moisture and potentially sustain mosquito populations during the low transmission season (December-March). These findings about the spatial and temporal associations of malaria risk and wetlands can help to highlight areas that likely sustain transmission during

  11. Ecology and conservation biology of avian malaria

    USGS Publications Warehouse

    LaPointe, Dennis A.; Atkinson, Carter T.; Samuel, Michael D.

    2012-01-01

    Avian malaria is a worldwide mosquito-borne disease caused by Plasmodium parasites. These parasites occur in many avian species but primarily affect passerine birds that have not evolved with the parasite. Host pathogenicity, fitness, and population impacts are poorly understood. In contrast to continental species, introduced avian malaria poses a substantial threat to naive birds on Hawaii, the Galapagos, and other archipelagoes. In Hawaii, transmission is maintained by susceptible native birds, competence and abundance of mosquitoes, and a disease reservoir of chronically infected native birds. Although vector habitat and avian communities determine the geographic distribution of disease, climate drives transmission patterns ranging from continuous high infection in warm lowland forests, seasonal infection in midelevation forests, and disease-free refugia in cool high-elevation forests. Global warming is expected to increase the occurrence, distribution, and intensity of avian malaria across this elevational gradient and threaten high-elevation refugia, which is the key to survival of many susceptible Hawaiian birds. Increased temperatures may have already increased global avian malaria prevalence and contributed to an emergence of disease in New Zealand.

  12. A weather-driven model of malaria transmission

    PubMed Central

    Hoshen, Moshe B; Morse, Andrew P

    2004-01-01

    Background Climate is a major driving force behind malaria transmission and climate data are often used to account for the spatial, seasonal and interannual variation in malaria transmission. Methods This paper describes a mathematical-biological model of the parasite dynamics, comprising both the weather-dependent within-vector stages and the weather-independent within-host stages. Results Numerical evaluations of the model in both time and space show that it qualitatively reconstructs the prevalence of infection. Conclusion A process-based modelling structure has been developed that may be suitable for the simulation of malaria forecasts based on seasonal weather forecasts. PMID:15350206

  13. Forecasting paediatric malaria admissions on the Kenya Coast using rainfall.

    PubMed

    Karuri, Stella Wanjugu; Snow, Robert W

    2016-01-01

    Malaria is a vector-borne disease which, despite recent scaled-up efforts to achieve control in Africa, continues to pose a major threat to child survival. The disease is caused by the protozoan parasite Plasmodium and requires mosquitoes and humans for transmission. Rainfall is a major factor in seasonal and secular patterns of malaria transmission along the East African coast. The goal of the study was to develop a model to reliably forecast incidences of paediatric malaria admissions to Kilifi District Hospital (KDH). In this article, we apply several statistical models to look at the temporal association between monthly paediatric malaria hospital admissions, rainfall, and Indian Ocean sea surface temperatures. Trend and seasonally adjusted, marginal and multivariate, time-series models for hospital admissions were applied to a unique data set to examine the role of climate, seasonality, and long-term anomalies in predicting malaria hospital admission rates and whether these might become more or less predictable with increasing vector control. The proportion of paediatric admissions to KDH that have malaria as a cause of admission can be forecast by a model which depends on the proportion of malaria admissions in the previous 2 months. This model is improved by incorporating either the previous month's Indian Ocean Dipole information or the previous 2 months' rainfall. Surveillance data can help build time-series prediction models which can be used to anticipate seasonal variations in clinical burdens of malaria in stable transmission areas and aid the timing of malaria vector control.

  14. An ecohydrological model of malaria outbreaks

    NASA Astrophysics Data System (ADS)

    Montosi, E.; Manzoni, S.; Porporato, A.; Montanari, A.

    2012-08-01

    Malaria is a geographically widespread infectious disease that is well known to be affected by climate variability at both seasonal and interannual timescales. In an effort to identify climatic factors that impact malaria dynamics, there has been considerable research focused on the development of appropriate disease models for malaria transmission driven by climatic time series. These analyses have focused largely on variation in temperature and rainfall as direct climatic drivers of malaria dynamics. Here, we further these efforts by considering additionally the role that soil water content may play in driving malaria incidence. Specifically, we hypothesize that hydro-climatic variability should be an important factor in controlling the availability of mosquito habitats, thereby governing mosquito growth rates. To test this hypothesis, we reduce a nonlinear ecohydrological model to a simple linear model through a series of consecutive assumptions and apply this model to malaria incidence data from three South African provinces. Despite the assumptions made in the reduction of the model, we show that soil water content can account for a significant portion of malaria's case variability beyond its seasonal patterns, whereas neither temperature nor rainfall alone can do so. Future work should therefore consider soil water content as a simple and computable variable for incorporation into climate-driven disease models of malaria and other vector-borne infectious diseases.

  15. Serologic Markers for Detecting Malaria in Areas of Low Endemicity, Somalia, 2008

    PubMed Central

    Youssef, Randa M.; Cook, Jackie; Cox, Jonathan; Alegana, Victor A.; Amran, Jamal; Noor, Abdisalan M.; Snow, Robert W.; Drakeley, Chris

    2010-01-01

    Areas in which malaria is not highly endemic are suitable for malaria elimination, but assessing transmission is difficult because of lack of sensitivity of commonly used methods. We evaluated serologic markers for detecting variation in malaria exposure in Somalia. Plasmodium falciparum or P. vivax was not detected by microscopy in cross-sectional surveys of samples from persons during the dry (0/1,178) and wet (0/1,128) seasons. Antibody responses against P. falciparum or P. vivax were detected in 17.9% (179/1,001) and 19.3% (202/1,044) of persons tested. Reactivity against P. falciparum was significantly different between 3 villages (p<0.001); clusters of seroreactivity were present. Distance to the nearest seasonal river was negatively associated with P. falciparum (p = 0.028) and P. vivax seroreactivity (p = 0.016). Serologic markers are a promising tool for detecting spatial variation in malaria exposure and evaluating malaria control efforts in areas where transmission has decreased to levels below the detection limit of microscopy. PMID:20202412

  16. Low specificity of a malaria rapid diagnostic test during an integrated community case management trial.

    PubMed

    Tiono, Alfred B; Diarra, Amidou; Sanon, Souleymane; Nébié, Issa; Konaté, Amadou T; Pagnoni, Franco; Sirima, Sodiomon B

    2013-06-01

    Parasitological confirmation before administration of antimalarial treatment has been recommended by the World Health Organization in everyone presenting with symptoms suggestive of malaria at all levels of the health system. The authors assessed the performance of a histidine-rich protein 2-based malaria rapid diagnostic test used by community health workers in the context of an integrated approach to diagnosis and treatment for malaria and pneumonia. A total of 525 children below 5 years of age were recruited into the study. Children with fever/history of fever within the last 24 h were tested with the rapid diagnostic test (RDT) and a blood smear was obtained for delayed reading. Overall, the FirstSign™ Malaria Pf (Unimed International Inc, South San Francisco, USA) has shown a high sensitivity profile of 97.9% (95% CI 96.3-98.8), but a low specificity of 53.4% (95% CI 49.1-57.7). The specificity was significantly lower during the high transmission season at 25.4% (95% CI 20.5-31.0) compared to 63.7% (95% CI 57.6-69.4%) at the low transmission season. The negative predictive value (NPV) was 95.4% (95% CI 93.2-96.9) and positive predictive value was 71.7% (95% CI 67.7-75.4). The NPV was significantly higher during the low transmission season at 98.2% (95% CI 95.7-99.3) than compared to 80.0% (95% CI 74.7-84.4) at the high transmission season. With such a low specificity, caution should be exercised when using these RDTs for community case management of malaria.

  17. Treatment of Chronic Asymptomatic Plasmodium falciparum Infection Does Not Increase the Risk of Clinical Malaria Upon Reinfection.

    PubMed

    Portugal, Silvia; Tran, Tuan M; Ongoiba, Aissata; Bathily, Aboudramane; Li, Shanping; Doumbo, Safiatou; Skinner, Jeff; Doumtabe, Didier; Kone, Younoussou; Sangala, Jules; Jain, Aarti; Davies, D Huw; Hung, Christopher; Liang, Li; Ricklefs, Stacy; Homann, Manijeh Vafa; Felgner, Philip L; Porcella, Stephen F; Färnert, Anna; Doumbo, Ogobara K; Kayentao, Kassoum; Greenwood, Brian M; Traore, Boubacar; Crompton, Peter D

    2017-03-01

    Chronic asymptomatic Plasmodium falciparum infections are common in endemic areas and are thought to contribute to the maintenance of malaria immunity. Whether treatment of these infections increases the subsequent risk of clinical episodes of malaria is unclear. In a 3-year study in Mali, asymptomatic individuals with or without P. falciparum infection at the end of the 6-month dry season were identified by polymerase chain reaction (PCR), and clinical malaria risk was compared during the ensuing 6-month malaria transmission season. At the end of the second dry season, 3 groups of asymptomatic children were identified: (1) children infected with P. falciparum as detected by rapid diagnostic testing (RDT) who were treated with antimalarials (n = 104), (2) RDT-negative children whose untreated P. falciparum infections were detected retrospectively by PCR (n = 55), and (3) uninfected children (RDT/PCR negative) (n = 434). Clinical malaria risk during 2 subsequent malaria seasons was compared. Plasmodium falciparum-specific antibody kinetics during the dry season were compared in children who did or did not harbor asymptomatic P. falciparum infections. Chronic asymptomatic P. falciparum infection predicted decreased clinical malaria risk during the subsequent malaria season(s); treatment of these infections did not alter this reduced risk. Plasmodium falciparum-specific antibodies declined similarly in children who did or did not harbor chronic asymptomatic P. falciparum infection during the dry season. These findings challenge the notion that chronic asymptomatic P. falciparum infection maintains malaria immunity and suggest that mass drug administration during the dry season should not increase the subsequent risk of clinical malaria. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  18. Control of malaria: a successful experience from Viet Nam.

    PubMed Central

    Hung, Le Q.; Vries, Peter J. de; Giao, Phan T.; Nam, Nguyen V.; Binh, Tran Q.; Chong, M. T.; Quoc, N. T. T. A.; Thanh, T. N.; Hung, L. N.; Kager, P. A.

    2002-01-01

    OBJECTIVE: To follow malaria prospectively in an ethnic minority commune in the south of Viet Nam with high malaria transmission and seasonal fluctuation, during malaria control interventions using insecticide-treated bednets (ITBNs) and early diagnosis and treatment (EDT) of symptomatic patients. METHODS: From 1994 onwards the following interventions were used: distribution of ITBNs to all households with biannual reimpregnation; construction of a health post and appointment of staff trained in microscopic diagnosis and treatment of malaria; regular supply of materials and drugs; annual cross-sectional malaria surveys with treatment of all parasitaemic subjects, and a programme of community involvement and health education. Surveys were held yearly at the end of the rainy season. During the surveys, demographic data were updated. Diagnosis and treatment of malaria were free of charge. Plasmodium falciparum infection was treated with artesunate and P. vivax infection with chloroquine plus primaquine. FINDINGS: The baseline survey in 1994 recorded 716 inhabitants. Of the children under 2 years of age, 37% were parasitaemic; 56% of children aged 2-10 years, and 35% of the remaining population were parasitaemic. P. falciparum accounted for 73-79% of these infections. The respective splenomegaly rates for the above-mentioned age groups were 20%, 56%, and 32%. In 1999, the proportion of parasitaemic subjects was 4%, 7% and 1%, respectively, of which P.falciparum contributed 56%. The splenomegaly rate was 0%, 5% and 2%, respectively. CONCLUSIONS: A combination of ITBNs and EDT, provided free of charge, complemented by annual diagnosis and treatment during malaria surveys and community involvement with health education successfully brought malaria under control. This approach could be applied to other regions in the south of Viet Nam and provides a sound basis for further studies in other areas with different epidemiological patterns of malaria. PMID:12219158

  19. Estimating a mosquito repellent's potential to reduce malaria in communities.

    PubMed

    Kiszewski, A E; Darling, S T

    2010-12-01

    Probability models for assessing a mosquito repellent's potential to reduce malaria transmission are not readily available to public health researchers. To provide a means for estimating the epidemiological efficacy of mosquito repellents in communities, we developed a simple mathematical model. A static probability model is presented to simulate malaria infection in a community during a single transmission season. The model includes five parameters- sporozoite rate, human infection rate, biting pressure, repellent efficacy, and product-acceptance rate. The model assumes that a certain percentage of the population uses a personal mosquito repellent over the course of a seven-month transmission season and that this repellent maintains a constant rate of protective efficacy against the bites of malaria vectors. This model measures the probability of evading infection in circumstances where vector biting pressure, repellent efficacy, and product acceptance may vary. [corrected] Absolute protection using mosquito repellents alone requires high rates of repellent efficacy and product acceptance. [corrected] Using performance data from a highly effective repellent, the model estimates an 88.9% reduction of infections over a seven- month transmission season. A corresponding reduction in the incidence of super-infection in community members not completely evading infection can also be presumed. Thus, the model shows that mass distribution of a repellent with >98% efficacy and >98% product acceptance would suppress new malaria infections to levels lower than those achieved with insecticide treated nets (ITNs). A combination of both interventions could create synergies that result in reductions of disease burden significantly greater than with the use of ITNs alone.

  20. Malaria Hotspots Drive Hypoendemic Transmission in the Chittagong Hill Districts of Bangladesh

    PubMed Central

    Ahmed, Sabeena; Galagan, Sean; Scobie, Heather; Khyang, Jacob; Prue, Chai Shwai; Khan, Wasif Ali; Ram, Malathi; Alam, Mohammad Shafiul; Haq, M. Zahirul; Akter, Jasmin; Glass, Gregory; Norris, Douglas E.; Nyunt, Myaing Myaing; Shields, Timothy; Sullivan, David J.; Sack, David A.

    2013-01-01

    Background Malaria is endemic in 13 of 64 districts of Bangladesh, representing a population at risk of about 27 million people. The highest rates of malaria in Bangladesh occur in the Chittagong Hill Districts, and Plasmodium falciparum (predominately chloroquine resistant) is the most prevalent species. Methods The objective of this research was to describe the epidemiology of symptomatic P. falciparum malaria in an area of Bangladesh following the introduction of a national malaria control program. We carried out surveillance for symptomatic malaria due to P. falciparum in two demographically defined unions of the Chittagong Hill Districts in Bangladesh, bordering western Myanmar, between October 2009 and May 2012. The association between sociodemographics and temporal and climate factors with symptomatic P. falciparum infection over two years of surveillance data was assessed. Risk factors for infection were determined using a multivariate regression model. Results 472 cases of symptomatic P. falciparum malaria cases were identified among 23,372 residents during the study period. Greater than 85% of cases occurred during the rainy season from May to October, and cases were highly clustered geographically within these two unions with more than 80% of infections occurring in areas that contain approximately one-third of the total population. Risk factors statistically associated with infection in a multivariate logistic regression model were living in the areas of high incidence, young age, and having an occupation including jhum cultivation and/or daily labor. Use of long lasting insecticide-treated bed nets was high (89.3%), but its use was not associated with decreased incidence of infection. Conclusion Here we show that P. falciparum malaria continues to be hypoendemic in the Chittagong Hill Districts of Bangladesh, is highly seasonal, and is much more common in certain geographically limited hot spots and among certain occupations. PMID:23936345

  1. Ecology and conservation biology of avian malaria.

    PubMed

    Lapointe, Dennis A; Atkinson, Carter T; Samuel, Michael D

    2012-02-01

    Avian malaria is a worldwide mosquito-borne disease caused by Plasmodium parasites. These parasites occur in many avian species but primarily affect passerine birds that have not evolved with the parasite. Host pathogenicity, fitness, and population impacts are poorly understood. In contrast to continental species, introduced avian malaria poses a substantial threat to naive birds on Hawaii, the Galapagos, and other archipelagoes. In Hawaii, transmission is maintained by susceptible native birds, competence and abundance of mosquitoes, and a disease reservoir of chronically infected native birds. Although vector habitat and avian communities determine the geographic distribution of disease, climate drives transmission patterns ranging from continuous high infection in warm lowland forests, seasonal infection in midelevation forests, and disease-free refugia in cool high-elevation forests. Global warming is expected to increase the occurrence, distribution, and intensity of avian malaria across this elevational gradient and threaten high-elevation refugia, which is the key to survival of many susceptible Hawaiian birds. Increased temperatures may have already increased global avian malaria prevalence and contributed to an emergence of disease in New Zealand. © 2012 New York Academy of Sciences.

  2. Overlap in the Seasonal Infection Patterns of Avian Malaria Parasites and West Nile Virus in Vectors and Hosts

    PubMed Central

    Medeiros, Matthew C. I.; Ricklefs, Robert E.; Brawn, Jeffrey D.; Ruiz, Marilyn O.; Goldberg, Tony L.; Hamer, Gabriel L.

    2016-01-01

    Multiple vector-borne pathogens often circulate in the same vector and host communities, and seasonal infection dynamics influence the potential for pathogen interactions. Here, we explore the seasonal infection patterns of avian malaria (Haemosporida) parasites (Plasmodium and Haemoproteus) and West Nile virus (WNV) in birds and mosquitoes in suburban Chicago. We show that both pathogens vary seasonally in Culex mosquitoes and avian hosts, but that patterns of covariation are complex. Different putative Plasmodium species varied asynchronously across the season in mosquitoes and birds, suggesting that different forces may govern their transmission. Infections of Culex mosquitoes with Plasmodium parasites were positively associated with WNV infections in pools of individuals aggregated from the same time and site, suggesting that these pathogens respond to common environmental drivers and co-circulate among the same host and vector populations. Future research should focus on these common drivers, and whether these pathogens interact in vectors and hosts. PMID:27621305

  3. Models for short term malaria prediction in Sri Lanka

    PubMed Central

    Briët, Olivier JT; Vounatsou, Penelope; Gunawardena, Dissanayake M; Galappaththy, Gawrie NL; Amerasinghe, Priyanie H

    2008-01-01

    Background Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past history of resurgence of outbreaks despite effective control measures, the control programmes have to stay prepared. The availability of long time series of monitored/diagnosed malaria cases allows for the study of forecasting models, with an aim to developing a forecasting system which could assist in the efficient allocation of resources for malaria control. Methods Exponentially weighted moving average models, autoregressive integrated moving average (ARIMA) models with seasonal components, and seasonal multiplicative autoregressive integrated moving average (SARIMA) models were compared on monthly time series of district malaria cases for their ability to predict the number of malaria cases one to four months ahead. The addition of covariates such as the number of malaria cases in neighbouring districts or rainfall were assessed for their ability to improve prediction of selected (seasonal) ARIMA models. Results The best model for forecasting and the forecasting error varied strongly among the districts. The addition of rainfall as a covariate improved prediction of selected (seasonal) ARIMA models modestly in some districts but worsened prediction in other districts. Improvement by adding rainfall was more frequent at larger forecasting horizons. Conclusion Heterogeneity of patterns of malaria in Sri Lanka requires regionally specific prediction models. Prediction error was large at a minimum of 22% (for one of the districts) for one month ahead predictions. The modest improvement made in short term prediction by adding rainfall as a covariate to these prediction models may not be sufficient to merit investing in a forecasting system for which rainfall data are routinely processed. PMID:18460204

  4. Safety and Allele-Specific Immunogenicity of a Malaria Vaccine in Malian Adults: Results of a Phase I Randomized Trial

    PubMed Central

    Thera, Mahamadou A; Doumbo, Ogobara K; Coulibaly, Drissa; Diallo, Dapa A; Sagara, Issaka; Dicko, Alassane; Diemert, David J; Heppner, D. Gray; Stewart, V. Ann; Angov, Evelina; Soisson, Lorraine; Leach, Amanda; Tucker, Kathryn; Lyke, Kirsten E; Plowe, Christopher V

    2006-01-01

    Objectives: The objectives were to evaluate the safety, reactogenicity, and allele-specific immunogenicity of the blood-stage malaria vaccine FMP1/AS02A in adults exposed to seasonal malaria and the impact of natural infection on vaccine-induced antibody levels. Design: We conducted a randomized, double-blind, controlled phase I clinical trial. Setting: Bandiagara, Mali, West Africa, is a rural town with intense seasonal transmission of Plasmodium falciparum malaria. Participants: Forty healthy, malaria-experienced Malian adults aged 18–55 y were enrolled. Interventions: The FMP1/AS02A malaria vaccine is a 42-kDa recombinant protein based on the carboxy-terminal end of merozoite surface protein-1 (MSP-142) from the 3D7 clone of P. falciparum, adjuvanted with AS02A. The control vaccine was a killed rabies virus vaccine (Imovax). Participants were randomized to receive either FMP1/AS02A or rabies vaccine at 0, 1, and 2 mo and were followed for 1 y. Outcome Measures: Solicited and unsolicited adverse events and allele-specific antibody responses to recombinant MSP-142 and its subunits derived from P. falciparum strains homologous and heterologous to the 3D7 vaccine strain were measured. Results: Transient local pain and swelling were more common in the malaria vaccine group than in the control group (11/20 versus 3/20 and 10/20 versus 6/20, respectively). MSP-142 antibody levels rose during the malaria transmission season in the control group, but were significantly higher in malaria vaccine recipients after the second immunization and remained higher after the third immunization relative both to baseline and to the control group. Immunization with the malaria vaccine was followed by significant increases in antibodies recognizing three diverse MSP-142 alleles and their subunits. Conclusions: FMP1/AS02A was well tolerated and highly immunogenic in adults exposed to intense seasonal malaria transmission and elicited immune responses to genetically diverse parasite

  5. An eco-hydrologic model of malaria outbreaks

    NASA Astrophysics Data System (ADS)

    Montosi, E.; Manzoni, S.; Porporato, A.; Montanari, A.

    2012-03-01

    Malaria is a geographically widespread infectious disease that is well known to be affected by climate variability at both seasonal and interannual timescales. In an effort to identify climatic factors that impact malaria dynamics, there has been considerable research focused on the development of appropriate disease models for malaria transmission and their consideration alongside climatic datasets. These analyses have focused largely on variation in temperature and rainfall as direct climatic drivers of malaria dynamics. Here, we further these efforts by considering additionally the role that soil water content may play in driving malaria incidence. Specifically, we hypothesize that hydro-climatic variability should be an important factor in controlling the availability of mosquito habitats, thereby governing mosquito growth rates. To test this hypothesis, we reduce a nonlinear eco-hydrologic model to a simple linear model through a series of consecutive assumptions and apply this model to malaria incidence data from three South African provinces. Despite the assumptions made in the reduction of the model, we show that soil water content can account for a significant portion of malaria's case variability beyond its seasonal patterns, whereas neither temperature nor rainfall alone can do so. Future work should therefore consider soil water content as a simple and computable variable for incorporation into climate-driven disease models of malaria and other vector-borne infectious diseases.

  6. Clinical malaria case definition and malaria attributable fraction in the highlands of western Kenya.

    PubMed

    Afrane, Yaw A; Zhou, Guofa; Githeko, Andrew K; Yan, Guiyun

    2014-10-15

    In African highland areas where endemicity of malaria varies greatly according to altitude and topography, parasitaemia accompanied by fever may not be sufficient to define an episode of clinical malaria in endemic areas. To evaluate the effectiveness of malaria interventions, age-specific case definitions of clinical malaria needs to be determined. Cases of clinical malaria through active case surveillance were quantified in a highland area in Kenya and defined clinical malaria for different age groups. A cohort of over 1,800 participants from all age groups was selected randomly from over 350 houses in 10 villages stratified by topography and followed for two-and-a-half years. Participants were visited every two weeks and screened for clinical malaria, defined as an individual with malaria-related symptoms (fever [axillary temperature≥37.5°C], chills, severe malaise, headache or vomiting) at the time of examination or 1-2 days prior to the examination in the presence of a Plasmodium falciparum positive blood smear. Individuals in the same cohort were screened for asymptomatic malaria infection during the low and high malaria transmission seasons. Parasite densities and temperature were used to define clinical malaria by age in the population. The proportion of fevers attributable to malaria was calculated using logistic regression models. Incidence of clinical malaria was highest in valley bottom population (5.0% cases per 1,000 population per year) compared to mid-hill (2.2% cases per 1,000 population per year) and up-hill (1.1% cases per 1,000 population per year) populations. The optimum cut-off parasite densities through the determination of the sensitivity and specificity showed that in children less than five years of age, 500 parasites per μl of blood could be used to define the malaria attributable fever cases for this age group. In children between the ages of 5-14, a parasite density of 1,000 parasites per μl of blood could be used to define the

  7. Malaria in U.S. military forces: a description of deployment exposures from 2003 through 2005.

    PubMed

    Ciminera, Paul; Brundage, John

    2007-02-01

    U.S. service members are often deployed to regions endemic for malaria. Preventive measures play an important role in mitigating the risk of disease and adverse effects on mission performance. Currently, a large contingent of U.S. forces is deployed in malarious regions in southeast and southwest Asia. The purpose of this study was to describe malaria cases reported by the tri-service reportable medical events system in terms of exposure (deployment history) and latency of infection. We conducted a retrospective analysis of population health data routinely collected for disease surveillance. All malaria reports received into the Defense Medical Surveillance System by January 3, 2006 with a date of onset between January 1, 2000 and December 31, 2005 in which the individual diagnosed is a member of the active or reserve military components linked to personnel and deployment data were analyzed to determine assignment and deployment history. The main outcome measure was the ICD9-CM diagnosis of malaria (Plasmodium vivax, P. falciparum, P. ovale, P. malaria, and unspecified malaria) by date of onset and days from exposure. A total of 423 cases of malaria were reported during the study period. The Army (n = 325) and the Marine Corps (n = 46) had the highest number of reported cases. Plasmodium vivax (n = 242) and P. falciparum (n = 92) caused nearly four-fifths of all reported cases. During the period from 2003 through 2005, 34% of deployed cases were exposed to more than one malaria-endemic region. Seventy-four cases had been assigned in the Republic of Korea, and all were present in Korea during the high risk transmission period. Seventy-eight cases had documented service in Afghanistan; only 4 had off-season exposure and no other documented exposures. Sixty cases had documented exposure during Operation Iraqi Freedom (OIF). Only six seasonally exposed and six off seasonally exposed OIF cases had no other documented exposure. Fifty percent of Korean cases were

  8. Symptomatic malaria diagnosis overestimate malaria prevalence, but underestimate anaemia burdens in children: results of a follow up study in Kenya.

    PubMed

    Choge, Joseph K; Magak, Ng'wena G; Akhwale, Willis; Koech, Julius; Ngeiywa, Moses M; Oyoo-Okoth, Elijah; Esamai, Fabian; Osano, Odipo; Khayeka-Wandabwa, Christopher; Kweka, Eliningaya J

    2014-04-09

    The commonly accepted gold standard diagnostic method for detecting malaria is a microscopic reading of Giemsa-stained blood films. However, symptomatic diagnosis remains the basis of therapeutic care for the majority of febrile patients in malaria endemic areas. This study aims to compare the discrepancy in malaria and anaemia burdens between symptomatic diagnosed patients with those diagnosed through the laboratory. Data were collected from Western Kenya during a follow-up study of 887 children with suspected cases of malaria visiting the health facilities. In the laboratory, blood samples were analysed for malaria parasite and haemoglobin levels. Differences in malaria prevalence between symptomatic diagnosis and laboratory diagnosis were analysed by Chi-square test. Bayesian probabilities were used for the approximation of the malaria and anaemia burdens. Regression analysis was applied to: (1) determine the relationships between haemoglobin levels, and malaria parasite density and (2) relate the prevalence of anaemia and the prevalence of malaria. The prevalence of malaria and anaemia ranged from 10% to 34%, being highest during the rainy seasons. The predominant malaria parasite was P. falciparum (92.3%), which occurred in higher density in children aged 2‒5 years. Fever, high temperature, sweating, shivering, vomiting and severe headache symptoms were associated with malaria during presumptive diagnosis. After conducting laboratory diagnosis, lower malaria prevalence was reported among the presumptively diagnosed patients. Surprisingly, there were no attempts to detect anaemia in the same cohort. There was a significant negative correlation between Hb levels and parasite density. We also found a positive correlation between the prevalence of anaemia and the prevalence of malaria after laboratory diagnosis indicating possible co-occurrence of malaria and anaemia. Symptomatic diagnosis of malaria overestimates malaria prevalence, but underestimates the

  9. Should Malaria Treatment Be Guided by a Point of Care Rapid Test? A Threshold Approach to Malaria Management in Rural Burkina Faso

    PubMed Central

    Bisoffi, Zeno; Tinto, Halidou; Sirima, Bienvenu Sodiomon; Gobbi, Federico; Angheben, Andrea; Buonfrate, Dora; Van den Ende, Jef

    2013-01-01

    Background In Burkina Faso, rapid diagnostic tests for malaria have been made recently available. Previously, malaria was managed clinically. This study aims at assessing which is the best management option of a febrile patient in a hyperendemic setting. Three alternatives are: treating presumptively, testing, or refraining from both test and treatment. The test threshold is the tradeoff between refraining and testing, the test-treatment threshold is the tradeoff between testing and treating. Only if the disease probability lies between the two should the test be used. Methods and Findings Data for this analysis was obtained from previous studies on malaria rapid tests, involving 5220 patients. The thresholds were calculated, based on disease risk, treatment risk and cost, test accuracy and cost. The thresholds were then matched against the disease probability. For a febrile child under 5 in the dry season, the pre-test probability of clinical malaria (3.2%), was just above the test/treatment threshold. In the rainy season, that probability was 63%, largely above the test/treatment threshold. For febrile children >5 years and adults in the dry season, the probability was 1.7%, below the test threshold, while in the rainy season it was higher (25.1%), and situated between the two thresholds (3% and 60.9%), only if costs were not considered. If they were, neither testing nor treating with artemisinin combination treatments (ACT) would be recommended. Conclusions A febrile child under 5 should be treated presumptively. In the dry season, the probability of clinical malaria in adults is so low, that neither testing nor treating with any regimen should be recommended. In the rainy season, if costs are considered, a febrile adult should not be tested, nor treated with ACT, but a possible alternative would be a presumptive treatment with amodiaquine plus sulfadoxine-pyrimethamine. If costs were not considered, testing would be recommended. PMID:23472129

  10. Increasing incidence of malaria in children despite insecticide-treated bed nets and prompt anti-malarial therapy in Tororo, Uganda

    PubMed Central

    2012-01-01

    Background The burden of malaria has decreased in parts of Africa following the scaling up of control interventions. However, similar data are limited from high transmission settings. Methods A cohort of 100 children, aged six weeks to 10 months of age, were enrolled in an area of high malaria transmission intensity and followed through 48 months of age. Children were given a long-lasting insecticide-treated bed net (LLIN) at enrolment and received all care, including monthly blood smears and treatment with artemisinin-based combination therapy (ACT) for uncomplicated malaria, at a dedicated clinic. The incidence of malaria was estimated by passive surveillance and associations between malaria incidence and age, calendar time and season were measured using generalized estimating equations. Results Reported compliance with LLINs was 98% based on monthly routine evaluations. A total of 1,633 episodes of malaria were observed, with a median incidence of 5.3 per person-year (PPY). There were only six cases of complicated malaria, all single convulsions. Malaria incidence peaked at 6.5 PPY at 23 months of age before declining to 3.5 PPY at 48 months. After adjusting for age and season, the risk of malaria increased by 52% from 2008 to 2011 (RR 1.52, 95% CI 1.10-2.09). Asymptomatic parasitaemia was uncommon (monthly prevalence <10%) and rarely observed prior to 24 months of age. Conclusions In Tororo, despite provision of LLINs and prompt treatment with ACT, the incidence of malaria is very high and appears to be rising. Additional malaria control interventions in high transmission settings are likely needed. Trial registration Current Controlled Trials Identifier NCT00527800 PMID:23273022

  11. Strategies for Early Outbreak Detection of Malaria in the Amhara Region of Ethiopia

    NASA Astrophysics Data System (ADS)

    Nekorchuk, D.; Gebrehiwot, T.; Mihretie, A.; Awoke, W.; Wimberly, M. C.

    2017-12-01

    Traditional epidemiological approaches to early detection of disease outbreaks are based on relatively straightforward thresholds (e.g. 75th percentile, standard deviations) estimated from historical case data. For diseases with strong seasonality, these can be modified to create separate thresholds for each seasonal time step. However, for disease processes that are non-stationary, more sophisticated techniques are needed to more accurately estimate outbreak threshold values. Early detection for geohealth-related diseases that also have environmental drivers, such as vector-borne diseases, may also benefit from the integration of time-lagged environmental data and disease ecology models into the threshold calculations. The Epidemic Prognosis Incorporating Disease and Environmental Monitoring for Integrated Assessment (EPIDEMIA) project has been integrating malaria case surveillance with remotely-sensed environmental data for early detection, warning, and forecasting of malaria epidemics in the Amhara region of Ethiopia, and has five years of weekly time series data from 47 woredas (districts). Efforts to reduce the burden of malaria in Ethiopia has been met with some notable success in the past two decades with major reduction in cases and deaths. However, malaria remains a significant public health threat as 60% of the population live in malarious areas, and due to the seasonal and unstable transmission patterns with cyclic outbreaks, protective immunity is generally low which could cause high morbidity and mortality during the epidemics. This study compared several approaches for defining outbreak thresholds and for identifying a potential outbreak based on deviations from these thresholds. We found that model-based approaches that accounted for climate-driven seasonality in malaria transmission were most effective, and that incorporating a trend component improved outbreak detection in areas with active malaria elimination efforts. An advantage of these early

  12. Using remote sensing environmental data to forecast malaria incidence at a rural district hospital in Western Kenya.

    PubMed

    Sewe, Maquins Odhiambo; Tozan, Yesim; Ahlm, Clas; Rocklöv, Joacim

    2017-06-01

    Malaria surveillance data provide opportunity to develop forecasting models. Seasonal variability in environmental factors correlate with malaria transmission, thus the identification of transmission patterns is useful in developing prediction models. However, with changing seasonal transmission patterns, either due to interventions or shifting weather seasons, traditional modelling approaches may not yield adequate predictive skill. Two statistical models,a general additive model (GAM) and GAMBOOST model with boosted regression were contrasted by assessing their predictive accuracy in forecasting malaria admissions at lead times of one to three months. Monthly admission data for children under five years with confirmed malaria at the Siaya district hospital in Western Kenya for the period 2003 to 2013 were used together with satellite derived data on rainfall, average temperature and evapotranspiration(ET). There was a total of 8,476 confirmed malaria admissions. The peak of malaria season changed and malaria admissions reduced overtime. The GAMBOOST model at 1-month lead time had the highest predictive skill during both the training and test periods and thus can be utilized in a malaria early warning system.

  13. Malaria prevention reduces in-hospital mortality among severely ill tuberculosis patients: a three-step intervention in Bissau, Guinea-Bissau

    PubMed Central

    2011-01-01

    Background Malaria and Tuberculosis (TB) are important causes of morbidity and mortality in Africa. Malaria prevention reduces mortality among HIV patients, pregnant women and children, but its role in TB patients is not clear. In the TB National Reference Center in Guinea-Bissau, admitted patients are in severe clinical conditions and mortality during the rainy season is high. We performed a three-step malaria prevention program to reduce mortality in TB patients during the rainy season. Methods Since 2005 Permethrin treated bed nets were given to every patient. Since 2006 environmental prevention with permethrin derivates was performed both indoor and outdoor during the rainy season. In 2007 cotrimoxazole prophylaxis was added during the rainy season. Care was without charge; health education on malaria prevention was performed weekly. Primary outcomes were death, discharge, drop-out. Results 427, 346, 549 patients were admitted in 2005, 2006, 2007, respectively. Mortality dropped from 26.46% in 2005 to 18.76% in 2007 (p-value 0.003), due to the significant reduction in rainy season mortality (death/discharge ratio: 0.79, 0.55 and 0.26 in 2005, 2006 and 2007 respectively; p-value 0.001) while dry season mortality remained constant (0.39, 0.37 and 0.32; p-value 0.647). Costs of malaria prevention were limited: 2€/person. No drop-outs were observed. Health education attendance was 96-99%. Conclusions Malaria prevention in African tertiary care hospitals seems feasible with limited costs. Vector control, personal protection and cotrimoxazole prophylaxis seem to reduce mortality in severely ill TB patients. Prospective randomized trials are needed to confirm our findings in similar settings. Trial registration number Current Controlled Trials: ISRCTN83944306 PMID:21366907

  14. Risk assessment of malaria in land border regions of China in the context of malaria elimination.

    PubMed

    Zhang, Qian; Sun, Junling; Zhang, Zike; Geng, Qibin; Lai, Shengjie; Hu, Wenbiao; Clements, Archie C A; Li, Zhongjie

    2016-11-08

    Cross-border malaria transmission poses a challenge for countries to achieve and maintain malaria elimination. Because of a dramatic increase of cross-border population movement between China and 14 neighbouring countries, the malaria epidemic risk in China's land border regions needs to be understood. In this study, individual case-based epidemiological data on malaria in the 136 counties of China with international land borders, from 2011 to 2014, were extracted from the National Infectious Disease Information System. The Plasmodium species, seasonality, spatiotemporal distribution and changing features of imported and indigenous cases were analysed using descriptive spatial and temporal methods. A total of 1948 malaria cases were reported, with 1406 (72.2%) imported cases and 542 (27.8%) indigenous cases. Plasmodium vivax is the predominant species, with 1536 malaria cases occurrence (78.9%), following by Plasmodium falciparum (361 cases, 18.5%), and the others (51 cases, 2.6%). The magnitude and geographic distribution of malaria in land border counties shrunk sharply during the elimination period. Imported malaria cases were with a peak of 546 cases in 2011, decreasing yearly in the following years. The number of counties with imported cases decreased from 28 counties in 2011 to 26 counties in 2014. Indigenous malaria cases presented a markedly decreasing trend, with 319 indigenous cases in 2011 reducing to only 33 indigenous cases in 2014. The number of counties with indigenous cases reduced from 26 counties in 2011 to 10 counties in 2014. However, several bordering counties of Yunnan province adjacent to Myanmar reported indigenous malaria cases in the four consecutive years from 2011 to 2014. The scale and extent of malaria occurrence in the international land border counties of China decreased dramatically during the elimination period. However, several high-risk counties, especially along the China-Myanmar border, still face a persistent risk of malaria

  15. Malaria transmission in Tripura: Disease distribution & determinants.

    PubMed

    Dev, Vas; Adak, Tridibes; Singh, Om P; Nanda, Nutan; Baidya, Bimal K

    2015-12-01

    Malaria is a major public health problem in Tripura and focal disease outbreaks are of frequent occurrence. The state is co-endemic for both Plasmodium falciparum and P. vivax and transmission is perennial and persistent. The present study was aimed to review data on disease distribution to prioritize high-risk districts, and to study seasonal prevalence of disease vectors and their bionomical characteristics to help formulate vector species-specific interventions for malaria control. Data on malaria morbidity in the State were reviewed retrospectively (2008-2012) for understanding disease distribution and transmission dynamics. Cross-sectional mass blood surveys were conducted in malaria endemic villages of South Tripura district to ascertain the prevalence of malaria and proportions of parasite species. Mosquito collections were made in human dwellings of malaria endemic villages aiming at vector incrimination and to study relative abundance, resting and feeding preferences, and their present susceptibility status to DDT. The study showed that malaria was widely prevalent and P. falciparum was the predominant infection (>90%), the remaining were P. vivax cases. The disease distribution, however, was uneven with large concentration of cases in districts of South Tripura and Dhalai coinciding with vast forest cover and tribal populations. Both Anopheles minimus s.s. and An. baimaii were recorded to be prevalent and observed to be highly anthropophagic and susceptible to DDT. Of these, An. minimus was incriminated (sporozoite infection rate 4.92%), and its bionomical characteristics revealed this species to be largely indoor resting and endophagic. For effective control of malaria in the state, it is recommended that diseases surveillance should be robust, and vector control interventions including DDT spray coverage, mass distribution of insecticide-treated nets/ long-lasting insecticidal nets should be intensified prioritizing population groups most at risk to

  16. Assessment of climate-driven variations in malaria incidence in Swaziland: toward malaria elimination.

    PubMed

    Chuang, Ting-Wu; Soble, Adam; Ntshalintshali, Nyasatu; Mkhonta, Nomcebo; Seyama, Eric; Mthethwa, Steven; Pindolia, Deepa; Kunene, Simon

    2017-06-01

    Swaziland aims to eliminate malaria by 2020. However, imported cases from neighbouring endemic countries continue to sustain local parasite reservoirs and initiate transmission. As certain weather and climatic conditions may trigger or intensify malaria outbreaks, identification of areas prone to these conditions may aid decision-makers in deploying targeted malaria interventions more effectively. Malaria case-surveillance data for Swaziland were provided by Swaziland's National Malaria Control Programme. Climate data were derived from local weather stations and remote sensing images. Climate parameters and malaria cases between 2001 and 2015 were then analysed using seasonal autoregressive integrated moving average models and distributed lag non-linear models (DLNM). The incidence of malaria in Swaziland increased between 2005 and 2010, especially in the Lubombo and Hhohho regions. A time-series analysis indicated that warmer temperatures and higher precipitation in the Lubombo and Hhohho administrative regions are conducive to malaria transmission. DLNM showed that the risk of malaria increased in Lubombo when the maximum temperature was above 30 °C or monthly precipitation was above 5 in. In Hhohho, the minimum temperature remaining above 15 °C or precipitation being greater than 10 in. might be associated with malaria transmission. This study provides a preliminary assessment of the impact of short-term climate variations on malaria transmission in Swaziland. The geographic separation of imported and locally acquired malaria, as well as population behaviour, highlight the varying modes of transmission, part of which may be relevant to climate conditions. Thus, the impact of changing climate conditions should be noted as Swaziland moves toward malaria elimination.

  17. Mapping the Risks of Malaria, Dengue and Influenza Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Kiang, R. K.; Soebiyanto, R. P.

    2012-07-01

    It has long been recognized that environment and climate may affect the transmission of infectious diseases. The effects are most obvious for vector-borne infectious diseases, such as malaria and dengue, but less so for airborne and contact diseases, such as seasonal influenza. In this paper, we examined the meteorological and environmental parameters that influence the transmission of malaria, dengue and seasonal influenza. Remotely sensed parameters that provide such parameters were discussed. Both statistical and biologically inspired, processed based models can be used to model the transmission of these diseases utilizing the remotely sensed parameters as input. Examples were given for modelling malaria in Thailand, dengue in Indonesia, and seasonal influenza in Hong Kong.

  18. Challenges of DHS and MIS to capture the entire pattern of malaria parasite risk and intervention effects in countries with different ecological zones: the case of Cameroon.

    PubMed

    Massoda Tonye, Salomon G; Kouambeng, Celestin; Wounang, Romain; Vounatsou, Penelope

    2018-04-06

    In 2011, the demographic and health survey (DHS) in Cameroon was combined with the multiple indicator cluster survey. Malaria parasitological data were collected, but the survey period did not overlap with the high malaria transmission season. A malaria indicator survey (MIS) was also conducted during the same year, within the malaria peak transmission season. This study compares estimates of the geographical distribution of malaria parasite risk and of the effects of interventions obtained from the DHS and MIS survey data. Bayesian geostatistical models were applied on DHS and MIS data to obtain georeferenced estimates of the malaria parasite prevalence and to assess the effects of interventions. Climatic predictors were retrieved from satellite sources. Geostatistical variable selection was used to identify the most important climatic predictors and indicators of malaria interventions. The overall observed malaria parasite risk among children was 33 and 30% in the DHS and MIS data, respectively. Both datasets identified the Normalized Difference Vegetation Index and the altitude as important predictors of the geographical distribution of the disease. However, MIS selected additional climatic factors as important disease predictors. The magnitude of the estimated malaria parasite risk at national level was similar in both surveys. Nevertheless, DHS estimates lower risk in the North and Coastal areas. MIS did not find any important intervention effects, although DHS revealed that the proportion of population with an insecticide-treated nets access in their household was statistically important. An important negative relationship between malaria parasitaemia and socioeconomic factors, such as the level of mother's education, place of residence and the household welfare were captured by both surveys. Timing of the malaria survey influences estimates of the geographical distribution of disease risk, especially in settings with seasonal transmission. In countries with

  19. Malaria on isolated Melanesian islands prior to the initiation of malaria elimination activities.

    PubMed

    2010-07-26

    The Australian Government's Pacific Malaria Initiative (PacMI) is supporting the National Malaria Program in both Solomon Islands and Vanuatu, complementing assistance from the Global Fund for AIDS, Tuberculosis and Malaria (GFATM). Two remote island groups - Tafea Province, Vanuatu and Temotu Province, Solomon Islands have been selected by the governments of both countries as possible malaria elimination areas. To provide information on the prevalence and distribution of the disease within these island groups, malariometric surveys were conducted during the wet seasons of 2008. In Tafea Province, a school-based survey was conducted which included the 2-12 y age group, while in Temotu a village based all-ages survey was conducted. An effort was made to sample villages or schools from a wide an area as possible on all islands. Diagnosis was initially based on Giemsa stained blood slides followed by molecular analysis using polymerase chain reaction (PCR). In Tafea Province, 73% (5238/7150) of children (2-12 y) were surveyed and in Temotu Province, in the all-ages survey, 50.2% (8742/17410) of the provincial population participated in the survey. In both Vanuatu and Solomon Islands malariometric surveys of their southern-most islands in 2008 showed relatively low over-all malaria parasite prevalence (2 to 3%). Other features of malaria in these island groups were low parasitaemia, low gametocyte carriage rates, low spleen rates, low malaria associated morbidity, a high incidence of asymptomatic infections, and a predominance of Plasmodium vivax over Plasmodium falciparum. For various reasons malaria rates are declining in these provinces providing a favourable situation for local malaria elimination. This will be advanced using mass distribution of bed nets and selective indoor residual spraying, the introduction of rapid diagnostic tests and artemisinin combination therapy, and intensive case detection and surveillance. It is as yet uncertain whether malaria

  20. Urban malaria in the Brazilian Western Amazon Region I: high prevalence of asymptomatic carriers in an urban riverside district is associated with a high level of clinical malaria.

    PubMed

    Tada, Mauro Shugiro; Marques, Russimeire Paula; Mesquita, Elieth; Dalla Martha, Rosimeire Cristina; Rodrigues, Juan Abel; Costa, Joana D'Arc Neves; Pepelascov, Rosario Rocha; Katsuragawa, Tony Hiroshi; Pereira-da-Silva, Luiz Hildebrando

    2007-06-01

    Cross sectional studies on malaria prevalence was performed in 2001, 2002, and 2004 in Vila Candelária, an urban riverside area of Porto Velho, Rondônia, in the Brazilian Western Amazon, followed by longitudinal surveys on malaria incidence. Vila Candelária is a working class district, provided with electricity, water supply, and basic sanitation. Previous preliminary surveys indicated high malaria incidence in this community. At the end of year 2000 regular diagnostic and treatment measures for malaria were introduced, with active search of febrile cases among residents. Despite of both rapid treatment of cases and relative good sanitary and housing conditions, the malaria incidence persisted at high levels during the following years with an annual parasite index of 150 to 300/1000 inhabitants. Parasite surveys in 2001, 2002, and 2004 achieved through microscopy and polymerase chain reaction to diagnose malaria showed a constant high prevalence of asymptomatic carriers for both Plasmodium falciparum and P. vivax parasites. It was concluded that asymptomatic carriers represent an important reservoirs of parasites and that the carriers might contribute to maintaining the high level of transmission. Comparing our findings to similar geo-demographic situations found in other important urban communities of the Brazilian Amazon, we propose that asymptomatic carriers could explain malaria's outbreaks like the one recently observed in Manaus.

  1. Clinical signs and symptoms cannot reliably predict Plasmodium falciparum malaria infection in pregnant women living in an area of high seasonal transmission.

    PubMed

    Tahita, Marc C; Tinto, Halidou; Menten, Joris; Ouedraogo, Jean-Bosco; Guiguemde, Robert T; van Geertruyden, Jean Pierre; Erhart, Annette; D'Alessandro, Umberto

    2013-12-27

    Malaria in pregnancy is a major public health problem in endemic countries. Though the signs and symptoms of malaria among pregnant women have been already described, clinical presentation may vary according to intensity of transmission and local perceptions. Therefore, determining common signs and symptoms among pregnant women with a malaria infection may be extremely useful to identify those in need of further investigation by rapid diagnostic test or microscopy. Six hundred pregnant women attending the maternity clinic of Nanoro District Hospital, Burkina Faso were recruited, 200 with suspected clinical malaria and 400 as controls. Cases were matched with controls by gestational age and parity. Signs and symptoms were collected and a blood sample taken for rapid diagnostic test, microscopy and haemoglobin measurement. A multivariate model was used to assess the predictive value of signs and symptoms for malaria infection. The overall prevalence of malaria was 42.6% (256/600) while anaemia was found in 60.8% (365/600) of the women. Nearly half (49%) of the cases and 39.5% of the controls had a malaria infection (p = 0.03). The most common signs and symptoms among the cases were fever (36%,72/200), history of fever (29%,58/200) and headache (52%,104/200). The positive predictive value for fever was 53% (95% CI:41-64), history of fever 58% (95% CI:37-63) and headache 51% (95% CI:41-61). Signs and symptoms suggestive of malaria are frequent among pregnant women living in areas of intense transmission. Common malaria symptoms are not strong predictors of infection. For a better management of malaria in pregnancy, active screening to detect and treat malaria infection early should be performed on all pregnant women attending a health facility.

  2. Radar Monitoring of Wetlands for Malaria Control

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.

    1997-01-01

    Malaria is the most important vector-borne tropical disease (Collins and Paskewitz, 1995) and there is no simple and universally applicable form of vector control. While new methods such as malaria vaccine or genetic manipulation of mosquitoes are being explored in the laboratories, the need for more field research on malaria transmission remains very strong. For the foreseeable future many malaria programs must focus on controlling the vector, the anopheline mosquito, often under the specter of shrinking budgets. Therefore information on which human populations are at the greatest risk is especially valuable when allocating scarce resources. The goal of the Radar Monitoring of Wetlands for Malaria Control Project is to demonstrate the feasibility of using Radarsat or other comparable satellite radar imaging systems to determine where and when human populations are at greatest risk for contracting malaria. The study area is northern Belize, a region with abundant wetlands and a potentially serious malaria problem. A key aspect of this study is the analysis of multi-temporal satellite imagery to track seasonal flooding of anopheline mosquito breeding sites. Radarsat images of the test site in Belize have been acquired one to three times a month over the last year, however,, to date only one processed image has been received from the Alaska SAR Facility for analysis. Therefore analysis at this stage is focussed on determining the radar backscatter characteristics of known anopheline breeding sites, with future work to be dedicated toward seasonal changes.

  3. Extended Safety, Immunogenicity and Efficacy of a Blood-Stage Malaria Vaccine in Malian Children: 24-Month Follow-Up of a Randomized, Double-Blinded Phase 2 Trial

    PubMed Central

    Laurens, Matthew B.; Thera, Mahamadou A.; Coulibaly, Drissa; Ouattara, Amed; Kone, Abdoulaye K.; Guindo, Ando B.; Traore, Karim; Traore, Idrissa; Kouriba, Bourema; Diallo, Dapa A.; Diarra, Issa; Daou, Modibo; Dolo, Amagana; Tolo, Youssouf; Sissoko, Mahamadou S.; Niangaly, Amadou; Sissoko, Mady; Takala-Harrison, Shannon; Lyke, Kirsten E.; Wu, Yukun; Blackwelder, William C.; Godeaux, Olivier; Vekemans, Johan; Dubois, Marie-Claude; Ballou, W. Ripley; Cohen, Joe; Dube, Tina; Soisson, Lorraine; Diggs, Carter L.; House, Brent; Bennett, Jason W.; Lanar, David E.; Dutta, Sheetij; Heppner, D. Gray; Plowe, Christopher V.; Doumbo, Ogobara K.

    2013-01-01

    Background The FMP2.1/AS02A candidate malaria vaccine was tested in a Phase 2 study in Mali. Based on results from the first eight months of follow-up, the vaccine appeared well-tolerated and immunogenic. It had no significant efficacy based on the primary endpoint, clinical malaria, but marginal efficacy against clinical malaria in secondary analyses, and high allele-specific efficacy. Extended follow-up was conducted to evaluate extended safety, immunogenicity and efficacy. Methods A randomized, double-blinded trial of safety, immunogenicity and efficacy of the candidate Plasmodium falciparum apical membrane antigen 1 (AMA1) vaccine FMP2.1/AS02A was conducted in Bandiagara, Mali. Children aged 1–6 years were randomized in a 1∶1 ratio to receive FMP2.1/AS02A or control rabies vaccine on days 0, 30 and 60. Using active and passive surveillance, clinical malaria and adverse events as well as antibodies against P. falciparum AMA1 were monitored for 24 months after the first vaccination, spanning two malaria seasons. Findings 400 children were enrolled. Serious adverse events occurred in nine participants in the FMP2.1/AS02A group and three in the control group; none was considered related to study vaccination. After two years, anti-AMA1 immune responses remained significantly higher in the FMP2.1/AS02A group than in the control group. For the entire 24-month follow-up period, vaccine efficacy was 7.6% (p = 0.51) against first clinical malaria episodes and 9.9% (p = 0.19) against all malaria episodes. For the final 16-month follow-up period, vaccine efficacy was 0.9% (p = 0.98) against all malaria episodes. Allele-specific efficacy seen in the first malaria season did not extend into the second season of follow-up. Interpretation Allele-specific vaccine efficacy was not sustained in the second malaria season, despite continued high levels of anti-AMA1 antibodies. This study presents an opportunity to evaluate correlates of partial protection against

  4. Impact of malaria interventions on child mortality in endemic African settings: comparison and alignment between LiST and Spectrum-Malaria model.

    PubMed

    Korenromp, Eline; Hamilton, Matthew; Sanders, Rachel; Mahiané, Guy; Briët, Olivier J T; Smith, Thomas; Winfrey, William; Walker, Neff; Stover, John

    2017-11-07

    In malaria-endemic countries, malaria prevention and treatment are critical for child health. In the context of intervention scale-up and rapid changes in endemicity, projections of intervention impact and optimized program scale-up strategies need to take into account the consequent dynamics of transmission and immunity. The new Spectrum-Malaria program planning tool was used to project health impacts of Insecticide-Treated mosquito Nets (ITNs) and effective management of uncomplicated malaria cases (CMU), among other interventions, on malaria infection prevalence, case incidence and mortality in children 0-4 years, 5-14 years of age and adults. Spectrum-Malaria uses statistical models fitted to simulations of the dynamic effects of increasing intervention coverage on these burdens as a function of baseline malaria endemicity, seasonality in transmission and malaria intervention coverage levels (estimated for years 2000 to 2015 by the World Health Organization and Malaria Atlas Project). Spectrum-Malaria projections of proportional reductions in under-five malaria mortality were compared with those of the Lives Saved Tool (LiST) for the Democratic Republic of the Congo and Zambia, for given (standardized) scenarios of ITN and/or CMU scale-up over 2016-2030. Proportional mortality reductions over the first two years following scale-up of ITNs from near-zero baselines to moderately higher coverages align well between LiST and Spectrum-Malaria -as expected since both models were fitted to cluster-randomized ITN trials in moderate-to-high-endemic settings with 2-year durations. For further scale-up from moderately high ITN coverage to near-universal coverage (as currently relevant for strategic planning for many countries), Spectrum-Malaria predicts smaller additional ITN impacts than LiST, reflecting progressive saturation. For CMU, especially in the longer term (over 2022-2030) and for lower-endemic settings (like Zambia), Spectrum-Malaria projects larger

  5. Effect of artesunate-mefloquine fixed-dose combination in malaria transmission in amazon basin communities

    PubMed Central

    2012-01-01

    Background Studies in South-East Asia have suggested that early diagnosis and treatment with artesunate (AS) and mefloquine (MQ) combination therapy may reduce the transmission of Plasmodium falciparum malaria and the progression of MQ resistance. Methods The effectiveness of a fixed-dose combination of AS and MQ (ASMQ) in reducing malaria transmission was tested in isolated communities of the Juruá valley in the Amazon region. Priority municipalities within the Brazilian Legal Amazon area were selected according to pre-specified criteria. Routine national malaria control programmatic procedures were followed. Existing health structures were reinforced and health care workers were trained to treat with ASMQ all confirmed falciparum malaria cases that match inclusion criteria. A local pharmacovigilance structure was implemented. Incidence of malaria and hospitalizations were recorded two years before, during, and after the fixed-dose ASMQ intervention. In total, between July 2006 and December 2008, 23,845 patients received ASMQ. Two statistical modelling approaches were applied to monthly time series of P. falciparum malaria incidence rates, P. falciparum/Plasmodium vivax infection ratio, and malaria hospital admissions rates. All the time series ranged from January 2004 to December 2008, whilst the intervention period span from July 2006 to December 2008. Results The ASMQ intervention had a highly significant impact on the mean level of each time series, adjusted for trend and season, of 0.34 (95%CI 0.20 – 0.58) for the P. falciparum malaria incidence rates, 0.67 (95%CI 0.50 – 0.89) for the P. falciparum/P. vivax infection ratio, and 0.53 (95%CI 0.41 – 0.69) for the hospital admission rates. There was also a significant change in the seasonal (or monthly) pattern of the time series before and after intervention, with the elimination of the malaria seasonal peak in the rainy months of the years following the introduction of ASMQ. No serious adverse events

  6. Reduction in symptomatic malaria prevalence through proactive community treatment in rural Senegal.

    PubMed

    Linn, Annē M; Ndiaye, Youssoupha; Hennessee, Ian; Gaye, Seynabou; Linn, Patrick; Nordstrom, Karin; McLaughlin, Matt

    2015-11-01

    We piloted a community-based proactive malaria case detection model in rural Senegal to evaluate whether this model can increase testing and treatment and reduce prevalence of symptomatic malaria in target communities. Home care providers conducted weekly sweeps of every household in their village throughout the transmission season to identify patients with symptoms of malaria, perform rapid diagnostic tests (RDT) on symptomatic patients and provide treatment for positive cases. The model was implemented in 15 villages from July to November 2013, the high transmission season. Fifteen comparison villages were chosen from those implementing Senegal's original, passive model of community case management of malaria. Three sweeps were conducted in the comparison villages to compare prevalence of symptomatic malaria using difference in differences analysis. At baseline, prevalence of symptomatic malaria confirmed by RDT for all symptomatic individuals found during sweeps was similar in both sets of villages (P = 0.79). At end line, prevalence was 16 times higher in the comparison villages than in the intervention villages (P = 0.003). Adjusting for potential confounders, the intervention was associated with a 30-fold reduction in odds of symptomatic malaria in the intervention villages (AOR = 0.033; 95% CI: 0.017, 0.065). Treatment seeking also increased in the intervention villages, with 57% of consultations by home care providers conducted between sweeps through routine community case management. This pilot study suggests that community-based proactive case detection reduces symptomatic malaria prevalence, likely through more timely case management and improved care seeking behaviour. A randomised controlled trial is needed to further evaluate the impact of this model. © 2015 John Wiley & Sons Ltd.

  7. [Current malaria situation in the Republic of Uzbekistan].

    PubMed

    Razakov, Sh A; Shakhgunova, G Sh

    2001-01-01

    Malaria was once one of the most common diseases in Uzbekistan. There were massive epidemics with high mortality rates, wherein 140,000 to 700,000 cases of malaria were recorded. Following large-scale malaria control measures, the disease was eradicated in Uzbekistan in 1961 and the epidemiological situation is still favorable. The natural and climatic conditions that prevail in the Republic of Uzbekistan mean that the country is very susceptible to malaria. There are large water areas varying in type and origin, which provide a habitat for a number of epidemiologically dangerous species of malaria-transmitting mosquitoes in a single area. These are Anopheles maculipennis, An. pulcherrimus and An. superpictus. The prevailing temperatures promote rapid growth of vector mosquitoes and parasites and the malaria transmission season is over 5 months long. Seven malaria-transmitting mosquito species have been recently recorded in the Republic. DDT resistance has been so far noted in Anopheles maculipennis, An. hyrcanus and An. bifurcatus. An. superpictus is sensitive to all insecticides used in clinical practice (organophosphorus and organochlorine compounds, HOS, carbamates, pyrethroids). The most dangerous areas for transmitting malaria by importation are the flood plains of the country's main rivers, such as Syrdarya, Amudarya, Chirchik, Surkhana, etc., and rice-growing areas (an area of about 150,000 ha was under rice cultivation in 1999). The Republic is still very subjected to large-scale importations of malaria particularly in the towns and areas along the border with Tajikistan. There has been recently an increase in the incidence of infections imported into the Republic: 27 cases in 1995, 51 in 1996, 52 in 1997, 74 in 1998, and 78 in 1999. Eight regions of Uzbekistan border Tajikistan, their population is over 5.6 million people. In addition, close family ties between the populations of the frontier towns and regions further increase the risk for malaria to be

  8. Forecasting Malaria in the Western Amazon

    NASA Astrophysics Data System (ADS)

    Pan, W. K.; Zaitchik, B. F.; Pizzitutti, F.; Berky, A.; Feingold, B.; Mena, C.; Janko, M.

    2017-12-01

    Reported cases of malaria in the western Amazon regions of Peru, Colombia and Ecuador have more than tripled since 2011. Responding to this epidemic has been challenging given large-scale environmental impacts and demographic changes combined with changing financial and political priorities. In Peru alone, malaria cases increased 5-fold since 2011. Reasons include changes in the Global Malaria Fund, massive flooding in 2012, the "mega" El Nino in 2016, and continued natural resource extraction via logging and mining. These challenges prompted the recent creation of the Malaria Cero program in 2017 with the goal to eradicate malaria by 2021. To assist in malaria eradiation, a team of investigators supported by NASA have been developing an Early Warning System for Malaria. The system leverages demographic, epidemiological, meteorological and land use/cover data to develop a four-component system that will improve detection of malaria across the western Amazon Basin. System components include a land data assimilation system (LDAS) to estimate past and future hydrological states and flux, a seasonal human population model to estimate population at risk and spatial connectivity to high risk transmission areas, a sub-regional statistical model to identify when and where observed malaria cases have exceeded those expected, and an Agent Based Model (ABM) to integrate human, environmental, and entomological transmission dynamics with potential strategies for control. Data include: daily case detection reports between 2000 and 2017 from all health posts in the region of Loreto in the northern Peruvian Amazon; LDAS outputs (precipitation, temperature, humidity, solar radiation) at a 1km and weekly scale; satellite-derived estimates of land cover; and human population size from census and health data. This presentation will provide an overview of components, focusing on how the system identifies an outbreak and plans for technology transfer.

  9. Infections in infants during the first 12 months of life: role of placental malaria and environmental factors.

    PubMed

    Le Port, Agnès; Watier, Laurence; Cottrell, Gilles; Ouédraogo, Smaila; Dechavanne, Célia; Pierrat, Charlotte; Rachas, Antoine; Bouscaillou, Julie; Bouraima, Aziz; Massougbodji, Achille; Fayomi, Benjamin; Thiébaut, Anne; Chandre, Fabrice; Migot-Nabias, Florence; Martin-Prevel, Yves; Garcia, André; Cot, Michel

    2011-01-01

    The association between placental malaria (PM) and first peripheral parasitaemias in early infancy was assessed in Tori Bossito, a rural area of Benin with a careful attention on transmission factors at an individual level. Statistical analysis was performed on 550 infants followed weekly from birth to 12 months. Malaria transmission was assessed by anopheles human landing catches every 6 weeks in 36 sampling houses and season defined by rainfall. Each child was located by GPS and assigned to the closest anopheles sampling house. Data were analysed by survival Cox models, stratified on the possession of insecticide-treated mosquito nets (ITNs) at enrolment. Among infants sleeping in a house with an ITN, PM was found to be highly associated to first malaria infections, after adjusting on season, number of anopheles, antenatal care (ANC) visits and maternal severe anaemia. Infants born from a malaria infected placenta had a 2.13 fold increased risk to present a first malaria infection than those born from a non infected placenta ([1.24-3.67], p<0.01) when sleeping in a house with an ITN. The risk to present a first malaria infection was increased by 3.2 to 6.5, according to the level of anopheles exposure (moderate or high levels, compared to the absence of anopheles). First malaria infections in early childhood can be attributed simultaneously to both PM and high levels of exposure to infected anopheles. Protective measures as Intermittent Preventive Treatment during pregnancy (IPTp) and ITNs, targeted on both mothers and infants should be reinforced, as well as the research on new drugs and insecticides. In parallel, investigations on placental malaria have to be strengthened to better understand the mechanisms involved, and thus to protect adequately the infants high risk group.

  10. Infections in Infants during the First 12 Months of Life: Role of Placental Malaria and Environmental Factors

    PubMed Central

    Le Port, Agnès; Watier, Laurence; Cottrell, Gilles; Ouédraogo, Smaila; Dechavanne, Célia; Pierrat, Charlotte; Rachas, Antoine; Bouscaillou, Julie; Bouraima, Aziz; Massougbodji, Achille; Fayomi, Benjamin; Thiébaut, Anne; Chandre, Fabrice; Migot-Nabias, Florence; Martin-Prevel, Yves; Garcia, André; Cot, Michel

    2011-01-01

    Background The association between placental malaria (PM) and first peripheral parasitaemias in early infancy was assessed in Tori Bossito, a rural area of Benin with a careful attention on transmission factors at an individual level. Methodology Statistical analysis was performed on 550 infants followed weekly from birth to 12 months. Malaria transmission was assessed by anopheles human landing catches every 6 weeks in 36 sampling houses and season defined by rainfall. Each child was located by GPS and assigned to the closest anopheles sampling house. Data were analysed by survival Cox models, stratified on the possession of insecticide-treated mosquito nets (ITNs) at enrolment. Principal Findings Among infants sleeping in a house with an ITN, PM was found to be highly associated to first malaria infections, after adjusting on season, number of anopheles, antenatal care (ANC) visits and maternal severe anaemia. Infants born from a malaria infected placenta had a 2.13 fold increased risk to present a first malaria infection than those born from a non infected placenta ([1.24–3.67], p<0.01) when sleeping in a house with an ITN. The risk to present a first malaria infection was increased by 3.2 to 6.5, according to the level of anopheles exposure (moderate or high levels, compared to the absence of anopheles). Conclusions First malaria infections in early childhood can be attributed simultaneously to both PM and high levels of exposure to infected anopheles. Protective measures as Intermittent Preventive Treatment during pregnancy (IPTp) and ITNs, targeted on both mothers and infants should be reinforced, as well as the research on new drugs and insecticides. In parallel, investigations on placental malaria have to be strengthened to better understand the mechanisms involved, and thus to protect adequately the infants high risk group. PMID:22096588

  11. Radar Monitoring of Wetlands for Malaria Control

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.

    1997-01-01

    Malaria is perhaps the most serious human disease problem. It inflicts millions worldwide and is on the rise in many countries where it was once under control. This rise is in part due to the high costs, both economic and environmental, of current control programs. The search for more cost-effective means to combat malaria has focussed attention on new technologies, one of which is remote sensing. Remote sensing has become an important tool in the effort to control a variety of diseases worldwide and malaria is perhaps one of the most promising. This study is part of the malaria control effort in the Central American country of Belize, which has experienced a resurgence of malaria in the last two decades. The proposed project is a feasibility study of the use of Radarsat (and other similar radar systems) to monitor seasonal changes in the breeding sites of the anopheline mosquito, which is responsible for malaria transmission. We propose that spatial and temporal changes in anopheline mosquito production can be predicted by sensing where and when their breeding sites are flooded. Timely knowledge of anopheline mosquito production is a key factor in control efforts. Such knowledge can be used by local control agencies to direct their limited resources to selected areas and time periods when the human population is at greatest risk. Radar is a key sensor in this application because frequent cloud cover during the peak periods of malaria transmission precludes the use of optical sensors.

  12. Changes in malaria morbidity and mortality in Mpumalanga Province, South Africa (2001- 2009): a retrospective study

    PubMed Central

    2012-01-01

    Background Malaria remains a serious epidemic threat in Mpumalanga Province. In order to appropriately target interventions to achieve substantial reduction in the burden of malaria and ultimately eliminate the disease, there is a need to track progress of malaria control efforts by assessing the time trends and evaluating the impact of current control interventions. This study aimed to assess the changes in the burden of malaria in Mpumalanga Province during the past eight malaria seasons (2001/02 to 2008/09) and whether indoor residual spraying (IRS) and climate variability had an effect on these changes. Methods This is a descriptive retrospective study based on the analysis of secondary malaria surveillance data (cases and deaths) in Mpumalanga Province. Data were extracted from the Integrated Malaria Information System. Time series model (Autoregressive Integrated Moving Average) was used to assess the association between climate and malaria. Results Within the study period, a total of 35,191 cases and 164 deaths due to malaria were notified in Mpumalanga Province. There was a significant decrease in the incidence of malaria from 385 in 2001/02 to 50 cases per 100,000 population in 2008/09 (P < 0.005). The incidence and case fatality (CFR) rates for the study period were 134 cases per 100,000 and 0.54%, respectively. Mortality due to malaria was lower in infants and children (CFR < 0.5%) and higher in those >65 years, with the mean CFR of 2.1% as compared to the national target of 0.5%. A distinct seasonal transmission pattern was found to be significantly related to changes in rainfall patterns (P = 0.007). A notable decline in malaria case notification was observed following apparent scale-up of IRS coverage from 2006/07 to 2008/09 malaria seasons. Conclusions Mpumalanga Province has achieved the goal of reducing malaria morbidity and mortality by over 70%, partly as a result of scale-up of IRS intervention in combination with other control strategies. These

  13. Association between malaria incidence and meteorological factors: a multi-location study in China, 2005-2012.

    PubMed

    Xiang, J; Hansen, A; Liu, Q; Tong, M X; Liu, X; Sun, Y; Cameron, S; Hanson-Easey, S; Han, G S; Williams, C; Weinstein, P; Bi, P

    2018-01-01

    This study aims to investigate the climate-malaria associations in nine cities selected from malaria high-risk areas in China. Daily reports of malaria cases in Anhui, Henan, and Yunnan Provinces for 2005-2012 were obtained from the Chinese Center for Disease Control and Prevention. Generalized estimating equation models were used to quantify the city-specific climate-malaria associations. Multivariate random-effects meta-regression analyses were used to pool the city-specific effects. An inverted-U-shaped curve relationship was observed between temperatures, average relative humidity, and malaria. A 1 °C increase of maximum temperature (T max) resulted in 6·7% (95% CI 4·6-8·8%) to 15·8% (95% CI 14·1-17·4%) increase of malaria, with corresponding lags ranging from 7 to 45 days. For minimum temperature (T min), the effect estimates peaked at lag 0 to 40 days, ranging from 5·3% (95% CI 4·4-6·2%) to 17·9% (95% CI 15·6-20·1%). Malaria is more sensitive to T min in cool climates and T max in warm climates. The duration of lag effect in a cool climate zone is longer than that in a warm climate zone. Lagged effects did not vanish after an epidemic season but waned gradually in the following 2-3 warm seasons. A warming climate may potentially increase the risk of malaria resurgence in China.

  14. Spatio-Temporal Analysis to Predict Environmental Influence on Malaria

    NASA Astrophysics Data System (ADS)

    Baig, S.; Sarfraz, M. S.

    2018-05-01

    Malaria is a vector borne disease which is a major cause of morbidity and mortality. It is one of the major diseases in the category of infectious diseases. The survival and bionomics of malaria is affected by environmental factors such as climatic, demographic and land-use/land-cover etc. Currently, a very few under developing countries are using Geo-informatics approaches to control this disease. Gujrat a district of Pakistan, is still under threat of malaria disease. Current research is carried on malaria incidents obtained from District Executive Officer of Health Gujrat. The objective of this study was to explore the spatio-temporal patterns of malaria in district Gujrat and to identify the areas being affected by Malaria. Furthermore, it has been also analyzed the relationship between malaria incident and environmental factors in highly favorable zones. Data is analyzed based on spatial and temporal patterns using (Moran's I). Moreover cluster and hot spots analysis were performed on the incident data. This study shows positive correlation with rainfall, vegetation index, population density and water bodies; while it shows positive and negative correlation with temperature in different seasons. However, variation between amount of vegetation and water bodies were observed. Finding of this research can help the decision makers to take preventive measures and reduce the morbidity and mortality related with malaria in Gujrat, Pakistan.

  15. [A method for forecasting the seasonal dynamic of malaria in the municipalities of Colombia].

    PubMed

    Velásquez, Javier Oswaldo Rodríguez

    2010-03-01

    To develop a methodology for forecasting the seasonal dynamic of malaria outbreaks in the municipalities of Colombia. Epidemiologic ranges were defined by multiples of 50 cases for the six municipalities with the highest incidence, 25 cases for the municipalities that ranked 10th and 11th by incidence, 10 for the municipality that ranked 193rd, and 5 for the municipality that ranked 402nd. The specific probability values for each epidemiologic range appearing in each municipality, as well as the S/k value--the ratio between entropy (S) and the Boltzmann constant (k)--were calculated for each three-week set, along with the differences in this ratio divided by the consecutive sets of weeks. These mathematical ratios were used to determine the values for forecasting the case dynamic, which were compared with the actual epidemiologic data from the period 2003-2007. The probability of the epidemiologic ranges appearing ranged from 0.019 and 1.00, while the differences in the S/k ratio between the sets of consecutive weeks ranged from 0.23 to 0.29. Three ratios were established to determine whether the dynamic corresponded to an outbreak. These ratios were corroborated with real epidemiological data from 810 Colombian municipalities. This methodology allows us to forecast the malaria case dynamic and outbreaks in the municipalities of Colombia and can be used in planning interventions and public health policies.

  16. The usefulness of school-based syndromic surveillance for detecting malaria epidemics: experiences from a pilot project in Ethiopia.

    PubMed

    Ashton, Ruth A; Kefyalew, Takele; Batisso, Esey; Awano, Tessema; Kebede, Zelalem; Tesfaye, Gezahegn; Mesele, Tamiru; Chibsa, Sheleme; Reithinger, Richard; Brooker, Simon J

    2016-01-09

    Syndromic surveillance is a supplementary approach to routine surveillance, using pre-diagnostic and non-clinical surrogate data to identify possible infectious disease outbreaks. To date, syndromic surveillance has primarily been used in high-income countries for diseases such as influenza--however, the approach may also be relevant to resource-poor settings. This study investigated the potential for monitoring school absenteeism and febrile illness, as part of a school-based surveillance system to identify localised malaria epidemics in Ethiopia. Repeated cross-sectional school- and community-based surveys were conducted in six epidemic-prone districts in southern Ethiopia during the 2012 minor malaria transmission season to characterise prospective surrogate and syndromic indicators of malaria burden. Changes in these indicators over the transmission season were compared to standard indicators of malaria (clinical and confirmed cases) at proximal health facilities. Subsequently, two pilot surveillance systems were implemented, each at ten sites throughout the peak transmission season. Indicators piloted were school attendance recorded by teachers, or child-reported recent absenteeism from school and reported febrile illness. Lack of seasonal increase in malaria burden limited the ability to evaluate sensitivity of the piloted syndromic surveillance systems compared to existing surveillance at health facilities. Weekly absenteeism was easily calculated by school staff using existing attendance registers, while syndromic indicators were more challenging to collect weekly from schoolchildren. In this setting, enrolment of school-aged children was found to be low, at 54%. Non-enrolment was associated with low household wealth, lack of parental education, household size, and distance from school. School absenteeism is a plausible simple indicator of unusual health events within a community, such as malaria epidemics, but the sensitivity of an absenteeism

  17. Additional Screening and Treatment of Malaria During Pregnancy Provides Further Protection Against Malaria and Nonmalarial Fevers During the First Year of Life.

    PubMed

    Natama, Hamtandi Magloire; Rovira-Vallbona, Eduard; Sorgho, Hermann; Somé, M Athanase; Traoré-Coulibaly, Maminata; Scott, Susana; Zango, Serge Henri; Sawadogo, Ousséni; Zongo, Sibiri Claude; Valéa, Innocent; Mens, Petra F; Schallig, Henk D F H; Kestens, Luc; Tinto, Halidou; Rosanas-Urgell, Anna

    2018-05-25

    Although consensus exists that malaria in pregnancy (MiP) increases the risk of malaria in infancy, and eventually nonmalarial fevers (NMFs), there is a lack of conclusive evidence of benefits of MiP preventive strategies in infants. In Burkina Faso, a birth cohort study was nested to a clinical trial assessing the effectiveness of a community-based scheduled screening and treatment of malaria in combination with intermittent preventive treatment with sulfadoxine-pyrimethamine (CSST/IPTp-SP) to prevent placental malaria. Clinical episodes and asymptomatic infections were monitored over 1 year of follow-up to compare the effect of CSST/IPTp-SP and standard IPTp-SP on malaria and NMFs. Infants born during low-transmission season from mothers receiving CSST/IPTp-SP had a 26% decreased risk of experiencing a first clinical episode (hazard ratio, 0.74 [95% confidence interval, .55-0.99]; P = .047). CSST/IPTp-SP interacted with birth season and gravidity to reduce the incidence of NMFs. No significant effects of CSST/IPTp-SP on the incidence of clinical episodes, parasite density, and Plasmodium falciparum infections were observed. Our findings indicate that CSST/IPTp-SP strategy may provide additional protection against both malaria and NMFs in infants during the first year of life, and suggest that malaria control interventions during pregnancy could have long-term benefits in infants.

  18. Remote Sensing as a Landscape Epidemiologic Tool to Identify Villages at High Risk for Malaria Transmission

    NASA Technical Reports Server (NTRS)

    Beck, Louisa R.; Rodriquez, Mario H.; Dister, Sheri W.; Rodriquez, Americo D.; Rejmankova, Eliska; Ulloa, Armando; Meza, Rosa A.; Roberts, Donald R.; Paris, Jack F.; Spanner, Michael A.; hide

    1994-01-01

    A landscape approach using remote sensing and Geographic Information System (GIS) technologies was developed to discriminate between villages at high and low risk for malaria transmission, as defined by adult Anopheles albimanus abundance. Satellite data for an area in southern Chiapas, Mexico were digitally processed to generate a map of landscape elements. The GIS processes were used to determine the proportion of mapped landscape elements surrounding 40 villages where An. albimanus data had been collected. The relationships between vector abundance and landscape element proportions were investigated using stepwise discriminant analysis and stepwise linear regression. Both analyses indicated that the most important landscape elements in terms of explaining vector abundance were transitional swamp and unmanaged pasture. Discriminant functions generated for these two elements were able to correctly distinguish between villages with high ind low vector abundance, with an overall accuracy of 90%. Regression results found both transitional swamp and unmanaged pasture proportions to be predictive of vector abundance during the mid-to-late wet season. This approach, which integrates remotely sensed data and GIS capabilities to identify villages with high vector-human contact risk, provides a promising tool for malaria surveillance programs that depend on labor-intensive field techniques. This is particularly relevant in areas where the lack of accurate surveillance capabilities may result in no malaria control action when, in fact, directed action is necessary. In general, this landscape approach could be applied to other vector-borne diseases in areas where: 1. the landscape elements critical to vector survival are known and 2. these elements can be detected at remote sensing scales.

  19. Malaria burden in human population of Quetta, Pakistan

    PubMed Central

    Tareen, A. M.; Rafique, M.; Wadood, A.; Qasim, M.; Rahman, H.; Shah, S. H.; Khan, K.; Pirkani, G. S.

    2012-01-01

    Malaria is a serious global health challenge, which is responsible for more than one million deaths a year. Malarial infection is more prevalent in developing countries including Pakistan. Significant efforts have been made to control malaria; however, due to socio-environmental factors, it remains a frequent problem in Quetta. The present study was undertaken to determine the malarial incidence, species prevalence, and its demographic evaluation in human population of Quetta, Pakistan. A total of 1831 subjects, comprising 1072 male and 759 female presenting symptoms of malaria, were included in this study. Blood samples from clinically suspected individuals were subjected to the standard immunochromatographic and malaria parasite smear analysis for malaria diagnosis. Out of 1831 subjects, 338 (18.45%) patients were positive for malarial parasite while the species prevalence was found as 276 (81.66%) and 62 (18.34%) for Plasmodium vivax, and Plasmodium falciparum, respectively. Furthermore, seasonal variations gradual increase in the prevalence rate. The age group of 21–30 years (30.47%) was found more prone to malaria. The suspected malaria cases were found more frequent in rural (72.1%) as compared to urban (27.9%). In addition, the malaria burden was high in urban area (22.89%) population as compared to the rural area (16.74%) population. It was observed that the highest disease occurrence was caused by P. vivax, which reflects a serious threat for public health. The current findings will be helpful to plan effective strategies to prevent and control malaria in this area. PMID:24688766

  20. Prevention measures and socio-economic development result in a decrease in malaria in Hainan, China.

    PubMed

    Wang, Shan-Qing; Li, Yu-Chun; Zhang, Zhi-Ming; Wang, Guang-Ze; Hu, Xi-Min; Qualls, Whitney A; Xue, Rui-De

    2014-09-15

    Historically, the incidence of malaria in the Hainan Province, China has been high. However, since 2001 the malaria incidence in Hainan has decreased due to large-scale, public educational, promotional campaigns and the adoption of preventative measures against malaria following the fast growth of socio-economic development. The present study analysed the correlation between prevention measures and social economic development on the incidence of malaria in Hainan from 2001 to 2013. The data of malaria preventative measures and socio-economic development were collected from various cities and counties in Hainan Province from 2001 to 2013 and analysed by the grey correlation analysis system. Seasonal preventive medication and local fiscal revenue increases are significantly related to the reduction of malaria incidence from 2001 to 2013 (R1 = 0.751677; R5 = 0.764795). Malaria prevention and control measures and local economic development in Hainan decreased malaria incidence from 2001 to 2013.

  1. Predicting factors for malaria re-introduction: an applied model in an elimination setting to prevent malaria outbreaks.

    PubMed

    Ranjbar, Mansour; Shoghli, Alireza; Kolifarhood, Goodarz; Tabatabaei, Seyed Mehdi; Amlashi, Morteza; Mohammadi, Mahdi

    2016-03-02

    Malaria re-introduction is a challenge in elimination settings. To prevent re-introduction, receptivity, vulnerability, and health system capacity of foci should be monitored using appropriate tools. This study aimed to design an applicable model to monitor predicting factors of re-introduction of malaria in highly prone areas. This exploratory, descriptive study was conducted in a pre-elimination setting with a high-risk of malaria transmission re-introduction. By using nominal group technique and literature review, a list of predicting indicators for malaria re-introduction and outbreak was defined. Accordingly, a checklist was developed and completed in the field for foci affected by re-introduction and for cleared-up foci as a control group, for a period of 12 weeks before re-introduction and for the same period in the previous year. Using field data and analytic hierarchical process (AHP), each variable and its sub-categories were weighted, and by calculating geometric means for each sub-category, score of corresponding cells of interaction matrices, lower and upper threshold of different risks strata, including low and mild risk of re-introduction and moderate and high risk of malaria outbreaks, were determined. The developed predictive model was calibrated through resampling with different sets of explanatory variables using R software. Sensitivity and specificity of the model were calculated based on new samples. Twenty explanatory predictive variables of malaria re-introduction were identified and a predictive model was developed. Unpermitted immigrants from endemic neighbouring countries were determined as a pivotal factor (AHP score: 0.181). Moreover, quality of population movement (0.114), following malaria transmission season (0.088), average daily minimum temperature in the previous 8 weeks (0.062), an outdoor resting shelter for vectors (0.045), and rainfall (0.042) were determined. Positive and negative predictive values of the model were 81.8 and

  2. Is there a correlation between malaria incidence and IRS coverage in western Zambezi region, Namibia?

    PubMed Central

    Sturrock, H.; Hsiang, M.; Roberts, K.; Kleinschmidt, I.; Nghipumbwa, M.; Uusiku, P.; Smith, J.; Bennet, A.; Kizito, W.; Takarinda, K.; Ade, S.; Gosling, R.

    2018-01-01

    Setting: A comparison of routine Namibia National Malaria Programme data (reported) vs. household survey data (administrative) on indoor residual spraying (IRS) in western Zambezi region, Namibia, for the 2014–2015 malaria season. Objectives: To determine 1) IRS coverage (administrative and reported), 2) its effect on malaria incidence, and 3) reasons for non-uptake of IRS in western Zambezi region, Namibia, for the 2014–2015 malaria season. Design: This was a descriptive study. Results: IRS coverage in western Zambezi region was low, ranging from 42.3% to 52.2% for administrative coverage vs. 45.9–66.7% for reported coverage. There was no significant correlation between IRS coverage and malaria incidence for this region (r = −0.45, P = 0.22). The main reasons for households not being sprayed were that residents were not at home during spraying times or that spray operators did not visit the households. Conclusions: IRS coverage in western Zambezi region, Namibia, was low during the 2014–2015 malaria season because of poor community engagement and awareness of times for spray operations within communities. Higher IRS coverage could be achieved through improved community engagement. Better targeting of the highest risk areas by the use of malaria surveillance will be required to mitigate malaria transmission. PMID:29713594

  3. Is there a correlation between malaria incidence and IRS coverage in western Zambezi region, Namibia?

    PubMed

    Mumbengegwi, D R; Sturrock, H; Hsiang, M; Roberts, K; Kleinschmidt, I; Nghipumbwa, M; Uusiku, P; Smith, J; Bennet, A; Kizito, W; Takarinda, K; Ade, S; Gosling, R

    2018-04-25

    Setting: A comparison of routine Namibia National Malaria Programme data (reported) vs. household survey data (administrative) on indoor residual spraying (IRS) in western Zambezi region, Namibia, for the 2014-2015 malaria season. Objectives: To determine 1) IRS coverage (administrative and reported), 2) its effect on malaria incidence, and 3) reasons for non-uptake of IRS in western Zambezi region, Namibia, for the 2014-2015 malaria season. Design: This was a descriptive study. Results: IRS coverage in western Zambezi region was low, ranging from 42.3% to 52.2% for administrative coverage vs. 45.9-66.7% for reported coverage. There was no significant correlation between IRS coverage and malaria incidence for this region ( r = -0.45, P = 0.22). The main reasons for households not being sprayed were that residents were not at home during spraying times or that spray operators did not visit the households. Conclusions: IRS coverage in western Zambezi region, Namibia, was low during the 2014-2015 malaria season because of poor community engagement and awareness of times for spray operations within communities. Higher IRS coverage could be achieved through improved community engagement. Better targeting of the highest risk areas by the use of malaria surveillance will be required to mitigate malaria transmission.

  4. Haematological parameters, natural regulatory CD4 + CD25 + FOXP3+ T cells and γδ T cells among two sympatric ethnic groups having different susceptibility to malaria in Burkina Faso

    PubMed Central

    2012-01-01

    Background Fulani ethnic group individuals are less susceptible than sympatric Mossi ethnic group, in term of malaria infection severity, and differ in antibody production against malaria antigens. The differences in susceptibility to malaria between Fulani and Mossi ethnic groups are thought to be regulated by different genetic backgrounds and offer the opportunity to compare haematological parameters, Tregs and γδT cell profiles in seasonal and stable malaria transmission settings in Burkina Faso. The study was conducted at two different time points i.e. during the high and low malaria transmission period. Results Two cross-sectional surveys were undertaken in adults above 20 years belonging either to the Fulani or the Mossi ethnic groups 1) at the peak of the malaria transmission season and 2) during the middle of the low malaria transmission season. Full blood counts, proportions of Tregs and γδ T cells were measured at both time-points. As previously shown the Fulani and Mossi ethnic groups showed a consistent difference in P. falciparum infection rates and parasite load. Differential white blood cell counts showed that the absolute lymphocyte counts were higher in the Mossi than in the Fulani ethnic group at both time points. While the proportion of CD4+CD25high was higher in the Fulani ethnic group at the peak of malaria transmission season (p = 0.03), no clear pattern emerged for T regulatory cells expressing FoxP3+ and CD127low. However CD3+γδ+ subpopulations were found to be higher in the Fulani compared to the Mossi ethnic group, and this difference was statistically significant at both time-points (p = 0.004 at low transmission season and p = 0.04 at peak of transmission). Conclusion Our findings on regulatory T cell phenotypes suggest an interesting role for immune regulatory mechanisms in response to malaria. The study also suggests that TCRγδ + cells might contribute to the protection against malaria in the Fulani ethnic group involving their

  5. How well are malaria maps used to design and finance malaria control in Africa?

    PubMed

    Omumbo, Judy A; Noor, Abdisalan M; Fall, Ibrahima S; Snow, Robert W

    2013-01-01

    Rational decision making on malaria control depends on an understanding of the epidemiological risks and control measures. National Malaria Control Programmes across Africa have access to a range of state-of-the-art malaria risk mapping products that might serve their decision-making needs. The use of cartography in planning malaria control has never been methodically reviewed. An audit of the risk maps used by NMCPs in 47 malaria endemic countries in Africa was undertaken by examining the most recent national malaria strategies, monitoring and evaluation plans, malaria programme reviews and applications submitted to the Global Fund. The types of maps presented and how they have been used to define priorities for investment and control was investigated. 91% of endemic countries in Africa have defined malaria risk at sub-national levels using at least one risk map. The range of risk maps varies from maps based on suitability of climate for transmission; predicted malaria seasons and temperature/altitude limitations, to representations of clinical data and modelled parasite prevalence. The choice of maps is influenced by the source of the information. Maps developed using national data through in-country research partnerships have greater utility than more readily accessible web-based options developed without inputs from national control programmes. Although almost all countries have stratification maps, only a few use them to guide decisions on the selection of interventions allocation of resources for malaria control. The way information on the epidemiology of malaria is presented and used needs to be addressed to ensure evidence-based added value in planning control. The science on modelled impact of interventions must be integrated into new mapping products to allow a translation of risk into rational decision making for malaria control. As overseas and domestic funding diminishes, strategic planning will be necessary to guide appropriate financing for malaria

  6. Mapping Malaria Transmission Risk in Northern Morocco Using Entomological and Environmental Data

    PubMed Central

    Adlaoui, E.; Faraj, C.; El Bouhmi, M.; El Aboudi, A.; Ouahabi, S.; Tran, A.; Fontenille, D.; El Aouad, R.

    2011-01-01

    Malaria resurgence risk in Morocco depends, among other factors, on environmental changes as well as the introduction of parasite carriers. The aim of this paper is to analyze the receptivity of the Loukkos area, large wetlands in Northern Morocco, to quantify and to map malaria transmission risk in this region using biological and environmental data. This risk was assessed on entomological risk basis and was mapped using environmental markers derived from satellite imagery. Maps showing spatial and temporal variations of entomological risk for Plasmodium vivax and P. falciparum were produced. Results showed this risk to be highly seasonal and much higher in rice fields than in swamps. This risk is lower for Afrotropical P. falciparum strains because of the low infectivity of Anopheles labranchiae, principal malaria vector in Morocco. However, it is very high for P. vivax mainly during summer corresponding to the rice cultivation period. Although the entomological risk is high in Loukkos region, malaria resurgence risk remains very low, because of the low vulnerability of the area. PMID:22312566

  7. Epidemiology and clinical features of imported malaria in East London.

    PubMed

    Francis, Benjamin C; Gonzalo, Ximena; Duggineni, Sirisha; Thomas, Janice M; NicFhogartaigh, Caoimhe; Babiker, Zahir Osman Eltahir

    2016-06-01

    Malaria is the most common imported tropical disease in the United Kingdom (UK). The overall mortality is low but inter-regional differences have been observed. We conducted a 2-year retrospective review of clinical and laboratory records of patients with malaria attending three acute hospitals in East London from 1 April 2013 through 31 March 2015. Epidemiological and clinical characteristics of imported malaria were described and risk factors associated with severe falciparum malaria were explored. In total, 133 patients with laboratory-confirmed malaria were identified including three requiring critical care admission but no deaths. The median age at presentation was 41 years (IQR 30-50). The majority of patients were males (64.7%, 86/133) and had Black or Black British ethnicity (67.5%, 79/117). West Africa was the most frequent region of travel (70.4%, 76/108). Chemoprophylaxis use was poor (25.3%, 20/79). The interval between arriving in the UK and presenting to hospital was short (median 10 days; IQR 5-15.5, n = 84). July-September was the peak season of presentation (34.6%, 46/133). Plasmodium falciparum was the commonest species (76.7%, 102/133) and 31.4% (32/102) of these patients had parasitaemia >2%. Severe falciparum malaria was documented in 36.3% (37/102) of patients and the October-March season presentation was associated with an increased risk of severity (OR 3.00; 95% CI 1.30-6.93). Black patients appeared to have reduced risk of severe falciparum malaria (OR 0.46; 95% CI 0.16-1.35) but this was not statistically significant. HIV sero-status was determined in only 27.1% (36/133) of cases. Only 8.5% (10/117) of all malaria patients were treated as outpatients. Clinicians need to raise awareness on malaria prevention strategies, improve rates of HIV testing in tropical travellers, and familiarise themselves with ambulatory management of malaria. The relationship between season of presentation, ethnicity and severity of falciparum malaria

  8. The potential effects of climate change on malaria in tropical Africa using regionalised climate projections

    NASA Astrophysics Data System (ADS)

    Ermert, V.; Fink, A. H.; Paeth, H.; Morse, A. P.

    2012-04-01

    The projected climate change will probably alter the range and transmission potential of malaria in Africa. The potential impacts of climate change on the malaria distribution is assessed for tropical Africa. Bias-corrected regional climate projections with a horizontal resolution of 0.5° are used from the Regional Model (REMO), which include land use and land cover changes. The malaria models employed are the 2010 version of the Liverpool Malaria Model (LMM2010), the Garki model, the Plasmodium falciparum infection model from Smith et al. (2005) (S2005), and the Malaria Seasonality Model (MSM) from the Mapping Malaria Risk in Africa project. The results of the models are compared with data from the Malaria Atlas Project (MAP) and novel validation procedures for the LMM2010 and MSM lend more credence to their results. For climate scenarios A1B and B1 and for 2001-2050, REMO projects an overall drying and warming trend in the African malaria belt, that is largely imposed by the man-made degradation of vegetation. As a result, the malaria projections show a decreased malaria spread in West Africa. The northern Sahel is no more suitable for malaria in the projections. More unstable malaria transmission and shorter malaria seasons are expected for various areas farther south. An increase in the malaria epidemic risk is found for more densely populated areas in the southern part of the Sahel. In East Africa, higher temperatures and nearly unchanged precipitation patterns lead to longer transmission seasons and an increase in the area of highland malaria. For altitudes up to 2000 m the malaria transmission stabilises and the epidemic risk is reduced but for higher altitudes the risk of malaria epidemics is increased. The results of the more complex and simple malaria models are similar to each other. However, a different response to the warming of highlands is found for the LMM2010 and MSM. This shows the requirement of a multi model uncertainty analysis for the

  9. Association between Climatic Variables and Malaria Incidence: A Study in Kokrajhar District of Assam, India

    PubMed Central

    Nath, Dilip C.; Mwchahary, Dimacha Dwibrang

    2013-01-01

    A favorable climatic condition for transmission of malaria prevails in Kokrajhar district throughout the year. A sizeable part of the district is covered by forest due to which dissimilar dynamics of malaria transmission emerge in forest and non-forest areas. Observed malaria incidence rates of forest area, non-forest area and the whole district over the period 2001-2010 were considered for analyzing temporal correlation between malaria incidence and climatic variables. Associations between the two were examined by Pearson correlation analysis. Cross-correlation tests were performed between pre-whitened series of climatic variable and malaria series. Linear regressions were used to obtain linear relationships between climatic factors and malaria incidence, while weighted least squares regression was used to construct models for explaining and estimating malaria incidence rates. Annual concentration of malaria incidence was analyzed by Markham technique by obtaining seasonal index. Forest area and non-forest area have distinguishable malaria seasons. Relative humidity was positively correlated with z malaria incidence, while temperature series were negatively correlated with non-forest malaria incidence. There was higher seasonality of concentration of malaria in the forest area than non-forest area. Significant correlation between annual changes in malaria cases in forest area and temperature was observed (coeff=0.689, p=0.040). Separate reliable models constructed for forecasting malaria incidence rates based on the combined influence of climatic variables on malaria incidence in different areas of the district were able to explain substantial percentage of observed variability in the incidence rates (R2adj=45.4%, 50.6%, 47.2%; p< .001 for all). There is an intricate association between climatic variables and malaria incidence of the district. Climatic variables influence malaria incidence in forest area and non-forest area in different ways. Rainfall plays a

  10. Association between climatic variables and malaria incidence: a study in Kokrajhar district of Assam, India.

    PubMed

    Nath, Dilip C; Mwchahary, Dimacha Dwibrang

    2012-11-11

    A favorable climatic condition for transmission of malaria prevails in Kokrajhar district throughout the year. A sizeable part of the district is covered by forest due to which dissimilar dynamics of malaria transmission emerge in forest and non-forest areas. Observed malaria incidence rates of forest area, non-forest area and the whole district over the period 2001-2010 were considered for analyzing temporal correlation between malaria incidence and climatic variables. Associations between the two were examined by Pearson correlation analysis. Cross-correlation tests were performed between pre-whitened series of climatic variable and malaria series. Linear regressions were used to obtain linear relationships between climatic factors and malaria incidence, while weighted least squares regression was used to construct models for explaining and estimating malaria incidence rates. Annual concentration of malaria incidence was analyzed by Markham technique by obtaining seasonal index. Forest area and non-forest area have distinguishable malaria seasons. Relative humidity was positively correlated with forest malaria incidence, while temperature series were negatively correlated with non-forest malaria incidence. There was higher seasonality of concentration of malaria in the forest area than non-forest area. Significant correlation between annual changes in malaria cases in forest area and temperature was observed (coeff=0.689, p=0.040). Separate reliable models constructed for forecasting malaria incidence rates based on the combined influence of climatic variables on malaria incidence in different areas of the district were able to explain substantial percentage of observed variability in the incidence rates (R2adj=45.4%, 50.6%, 47.2%; p< .001 for all). There is an intricate association between climatic variables and malaria incidence of the district. Climatic variables influence malaria incidence in forest area and non-forest area in different ways. Rainfall

  11. Epidemic Distribution and Variation of Plasmodium falciparum and Plasmodium vivax Malaria in Hainan, China during 1995–2008

    PubMed Central

    Xiao, Dan; Long, Yong; Wang, Shanqing; Wu, Kejian; Xu, Dezhong; Li, Haitao; Wang, Guangze; Yan, Yongping

    2012-01-01

    Hainan Province is the main area threatened by malaria in China. However, the epidemiologic patterns of malaria in this region are not yet defined. In this study, we determined the spatio-temporal distribution and variation of Plasmodium falciparum and Plasmodium vivax malaria in Hainan during 1995–2008 by using wavelet and cluster quantitative approaches. The results indicated a decreasing secular trend and obvious seasonal fluctuation of malaria in Hainan. In addition, the characteristic annual peak of malaria could not be detected after 2005. The southcentral region of Hainan has remained an area of relatively high malaria risk, but the incidence of P. falciparum malaria increased significantly in the southeast and southwest regions during 2002–2008. These findings identify epidemic patterns of malaria in Hainan, and are applicable for designing an effective and dynamic public health campaign to combat malaria in this region. PMID:22869636

  12. Dynamic denominators: the impact of seasonally varying population numbers on disease incidence estimates.

    PubMed

    Zu Erbach-Schoenberg, Elisabeth; Alegana, Victor A; Sorichetta, Alessandro; Linard, Catherine; Lourenço, Christoper; Ruktanonchai, Nick W; Graupe, Bonita; Bird, Tomas J; Pezzulo, Carla; Wesolowski, Amy; Tatem, Andrew J

    2016-01-01

    Reliable health metrics are crucial for accurately assessing disease burden and planning interventions. Many health indicators are measured through passive surveillance systems and are reliant on accurate estimates of denominators to transform case counts into incidence measures. These denominator estimates generally come from national censuses and use large area growth rates to estimate annual changes. Typically, they do not account for any seasonal fluctuations and thus assume a static denominator population. Many recent studies have highlighted the dynamic nature of human populations through quantitative analyses of mobile phone call data records and a range of other sources, emphasizing seasonal changes. In this study, we use mobile phone data to capture patterns of short-term human population movement and to map dynamism in population densities. We show how mobile phone data can be used to measure seasonal changes in health district population numbers, which are used as denominators for calculating district-level disease incidence. Using the example of malaria case reporting in Namibia we use 3.5 years of phone data to investigate the spatial and temporal effects of fluctuations in denominators caused by seasonal mobility on malaria incidence estimates. We show that even in a sparsely populated country with large distances between population centers, such as Namibia, populations are highly dynamic throughout the year. We highlight how seasonal mobility affects malaria incidence estimates, leading to differences of up to 30 % compared to estimates created using static population maps. These differences exhibit clear spatial patterns, with likely overestimation of incidence in the high-prevalence zones in the north of Namibia and underestimation in lower-risk areas when compared to using static populations. The results here highlight how health metrics that rely on static estimates of denominators from censuses may differ substantially once mobility and

  13. Field evaluation of a PfHRP-2/pLDH rapid diagnostic test and light microscopy for diagnosis and screening of falciparum malaria during the peak seasonal transmission in an endemic area in Yemen.

    PubMed

    Alareqi, Lina M Q; Mahdy, Mohammed A K; Lau, Yee-Ling; Fong, Mun-Yik; Abdul-Ghani, Rashad; Ali, Arwa A; Cheong, Fei-Wen; Tawfek, Rehab; Mahmud, Rohela

    2016-01-28

    Malaria is a public health threat in Yemen, with 149,451 cases being reported in 2013. Of these, Plasmodium falciparum represents 99%. Prompt diagnosis by light microscopy (LM) and rapid diagnostic tests (RTDs) is a key element in the national strategy of malaria control. The heterogeneous epidemiology of malaria in the country necessitates the field evaluation of the current diagnostic strategies, especially RDTs. Thus, the present study aimed to evaluate LM and an RDT, combining both P. falciparum histidine-rich protein-2 (PfHRP-2) and Plasmodium lactate dehydrogenase (pLDH), for falciparum malaria diagnosis and survey in a malaria-endemic area during the transmission season against nested polymerase chain reaction (PCR) as the reference method. A household-based, cross-sectional malaria survey was conducted in Mawza District, a malaria-endemic area in Taiz governorate. A total of 488 participants were screened using LM and PfHRP-2/pLDH RDT. Positive samples (160) and randomly selected negative samples (52) by both RDT and LM were further analysed using 18S rRNA-based nested PCR. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the RDT were 96.0% (95% confidence interval (CI): 90.9-98.3), 56.0% (95% CI: 44.7-66.8), 76.3% (95% CI: 69.0-82.3), and 90.4% (95% CI: 78.8-96.8), respectively. On the other hand, LM showed sensitivity of 37.6% (95% CI: 29.6-46.3), specificity of 97.6% (95% CI: 91.7-99.7), PPV of 95.9% (95% CI: 86.3-98.9), and NPV of 51.3% (95% CI: 43.2-59.2). The sensitivity of LM dropped to 8.5% for detecting asymptomatic malaria. Malaria prevalence was 32.8% (32.1 and 37.5% for ≥10 and <10 years, respectively) with the RDT compared with 10.7% (10.8 and 9.4% for age groups of ≥10 and <10 years, respectively) with LM. Among asymptomatic malaria individuals, LM and RDT-based prevalence rates were 1.6 and 25.6%, respectively. However, rates of 88.2 and 94.1% of infection with P. falciparum were found

  14. Malaria incidence trends and their association with climatic variables in rural Gwanda, Zimbabwe, 2005-2015.

    PubMed

    Gunda, Resign; Chimbari, Moses John; Shamu, Shepherd; Sartorius, Benn; Mukaratirwa, Samson

    2017-09-30

    Malaria is a public health problem in Zimbabwe. Although many studies have indicated that climate change may influence the distribution of malaria, there is paucity of information on its trends and association with climatic variables in Zimbabwe. To address this shortfall, the trends of malaria incidence and its interaction with climatic variables in rural Gwanda, Zimbabwe for the period January 2005 to April 2015 was assessed. Retrospective data analysis of reported cases of malaria in three selected Gwanda district rural wards (Buvuma, Ntalale and Selonga) was carried out. Data on malaria cases was collected from the district health information system and ward clinics while data on precipitation and temperature were obtained from the climate hazards group infrared precipitation with station data (CHIRPS) database and the moderate resolution imaging spectro-radiometer (MODIS) satellite data, respectively. Distributed lag non-linear models (DLNLM) were used to determine the temporal lagged association between monthly malaria incidence and monthly climatic variables. There were 246 confirmed malaria cases in the three wards with a mean incidence of 0.16/1000 population/month. The majority of malaria cases (95%) occurred in the > 5 years age category. The results showed no correlation between trends of clinical malaria (unconfirmed) and confirmed malaria cases in all the three study wards. There was a significant association between malaria incidence and the climatic variables in Buvuma and Selonga wards at specific lag periods. In Ntalale ward, only precipitation (1- and 3-month lag) and mean temperature (1- and 2-month lag) were significantly associated with incidence at specific lag periods (p < 0.05). DLNM results suggest a key risk period in current month, based on key climatic conditions in the 1-4 month period prior. As the period of high malaria risk is associated with precipitation and temperature at 1-4 month prior in a seasonal cycle, intensifying

  15. Malariometric survey of ibeshe community in ikorodu, lagos state: dry season.

    PubMed

    Aina, Oluwagbemiga O; Agomo, Chimere O; Olukosi, Yetunde A; Okoh, Hilary I; Iwalokun, Bamidele A; Egbuna, Kathleen N; Orok, Akwaowo B; Ajibaye, Olusola; Enya, Veronica N V; Akindele, Samuel K; Akinyele, Margaret O; Agomo, Philip U

    2013-01-01

    Malariometric surveys generate data on malaria epidemiology and dynamics of transmission necessary for planning and monitoring of control activities. This study determined the prevalence of malaria and the knowledge, attitude, and practice (KAP) towards malaria infection in Ibeshe, a coastal community. The study took place during the dry season in 10 villages of Ibeshe. All the participants were screened for malaria. A semistructured questionnaire was used to capture sociodemographic data and KAP towards malaria. A total of 1489 participants with a mean age of 26.7 ± 20.0 years took part in the study. Malaria prevalence was 14.7% (95% CI 13.0-16.6%) with geometric mean density of 285 parasites/μL. Over 97% of participants were asymptomatic. Only 40 (2.7%) of the participants were febrile, while 227 (18.1%) were anemic. Almost all the participants (95.8%) identified mosquito bite as a cause of malaria, although multiple agents were associated with the cause of malaria. The commonest symptoms associated with malaria were hot body (89.9%) and headache (84.9%). Window nets (77.0%) were preferred to LLIN (29.6%). Malaria is mesoendemic in Ibeshe during the dry season. The participants had good knowledge of symptoms of malaria; however, there were a lot of misconceptions on the cause of malaria.

  16. Impact of Pregnancy-Associated Malaria on Infant Malaria Infection in Southern Benin

    PubMed Central

    Borgella, Sophie; Fievet, Nadine; Huynh, Bich-Tram; Ibitokou, Samad; Hounguevou, Gbetognon; Affedjou, Jacqueline; Sagbo, Jean-Claude; Houngbegnon, Parfait; Guezo-Mévo, Blaise; Massougbodji, Achille; Luty, Adrian J. F.

    2013-01-01

    Background Infants of mothers with placental Plasmodium falciparum infections at delivery are themselves more susceptible to malaria attacks or to infection in early life. Methodology/ Principal Findings To assess the impact of either the timing or the number of pregnancy-associated malaria (PAM) infections on the incidence of parasitemia or malaria attacks in infancy, we followed 218 mothers through pregnancy (monthly visits) up to delivery and their infants from birth to 12 months of age (fortnightly visits), collecting detailed clinical and parasitological data. After adjustment on location, mother’s age, birth season, bed net use, and placental malaria, infants born to a mother with PAM during the third trimester of pregnancy had a significantly increased risk of infection (OR [95% CI]: 4.2 [1.6; 10.5], p = 0.003) or of malaria attack (4.6 [1.7; 12.5], p = 0.003). PAM during the first and second trimesters had no such impact. Similarly significant results were found for the effect of the overall number of PAM episodes on the time to first parasitemia and first malaria attack (HR [95% CI]: 2.95 [1.58; 5.50], p = 0.001 and 3.19 [1.59; 6.38], p = 0.001) respectively. Conclusions/ Significance This study highlights the importance of protecting newborns by preventing repeated episodes of PAM in their mothers. PMID:24236190

  17. Impact of climate change on global malaria distribution.

    PubMed

    Caminade, Cyril; Kovats, Sari; Rocklov, Joacim; Tompkins, Adrian M; Morse, Andrew P; Colón-González, Felipe J; Stenlund, Hans; Martens, Pim; Lloyd, Simon J

    2014-03-04

    Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution.

  18. Impact of climate change on global malaria distribution

    PubMed Central

    Caminade, Cyril; Kovats, Sari; Rocklov, Joacim; Tompkins, Adrian M.; Morse, Andrew P.; Colón-González, Felipe J.; Stenlund, Hans; Martens, Pim; Lloyd, Simon J.

    2014-01-01

    Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution. PMID:24596427

  19. Contrasting benefits of different artemisinin combination therapies as first-line malaria treatments using model-based cost-effectiveness analysis

    PubMed Central

    Okell, Lucy C.; Cairns, Matthew; Griffin, Jamie T.; Ferguson, Neil M.; Tarning, Joel; Jagoe, George; Hugo, Pierre; Baker, Mark; D’Alessandro, Umberto; Bousema, Teun; Ubben, David; Ghani, Azra C.

    2014-01-01

    There are currently several recommended drug regimens for uncomplicated falciparum malaria in Africa. Each has different properties that determine its impact on disease burden. Two major antimalarial policy options are artemether–lumefantrine (AL) and dihydroartemisinin–piperaquine (DHA–PQP). Clinical trial data show that DHA–PQP provides longer protection against reinfection, while AL is better at reducing patient infectiousness. Here we incorporate pharmacokinetic-pharmacodynamic factors, transmission-reducing effects and cost into a mathematical model and simulate malaria transmission and treatment in Africa, using geographically explicit data on transmission intensity and seasonality, population density, treatment access and outpatient costs. DHA–PQP has a modestly higher estimated impact than AL in 64% of the population at risk. Given current higher cost estimates for DHA–PQP, there is a slightly greater cost per case averted, except in areas with high, seasonally varying transmission where the impact is particularly large. We find that a locally optimized treatment policy can be highly cost effective for reducing clinical malaria burden. PMID:25425081

  20. School-based surveys of malaria in Oromia Regional State, Ethiopia: a rapid survey method for malaria in low transmission settings

    PubMed Central

    2011-01-01

    Background In Ethiopia, malaria transmission is seasonal and unstable, with both Plasmodium falciparum and Plasmodium vivax endemic. Such spatial and temporal clustering of malaria only serves to underscore the importance of regularly collecting up-to-date malaria surveillance data to inform decision-making in malaria control. Cross-sectional school-based malaria surveys were conducted across Oromia Regional State to generate up-to-date data for planning malaria control interventions, as well as monitoring and evaluation of operational programme implementation. Methods Two hundred primary schools were randomly selected using a stratified and weighted sampling frame; 100 children aged five to 18 years were then randomly chosen within each school. Surveys were carried out in May 2009 and from October to December 2009, to coincide with the peak of malaria transmission in different parts of Oromia. Each child was tested for malaria by expert microscopy, their haemoglobin measured and a simple questionnaire completed. Satellite-derived environmental data were used to assess ecological correlates of Plasmodium infection; Bayesian geostatistical methods and Kulldorff's spatial scan statistic were employed to investigate spatial heterogeneity. Results A total 20,899 children from 197 schools provided blood samples, two selected schools were inaccessible and one school refused to participate. The overall prevalence of Plasmodium infection was found to be 0.56% (95% CI: 0.46-0.67%), with 53% of infections due to P. falciparum and 47% due to P. vivax. Of children surveyed, 17.6% (95% CI: 17.0-18.1%) were anaemic, while 46% reported sleeping under a mosquito net the previous night. Malaria was found at 30 (15%) schools to a maximum elevation of 2,187 metres, with school-level Plasmodium prevalence ranging between 0% and 14.5%. Although environmental variables were only weakly associated with P. falciparum and P. vivax infection, clusters of infection were identified within

  1. A cross-sectional analysis of traditional medicine use for malaria alongside free antimalarial drugs treatment amongst adults in high-risk malaria endemic provinces of Indonesia.

    PubMed

    Suswardany, Dwi Linna; Sibbritt, David W; Supardi, Sudibyo; Pardosi, Jerico F; Chang, Sungwon; Adams, Jon

    2017-01-01

    The level of traditional medicine use, particularly Jamu use, in Indonesia is substantial. Indonesians do not always seek timely treatment for malaria and may seek self-medication via traditional medicine. This paper reports findings from the first focused analyses of traditional medicine use for malaria in Indonesia and the first such analyses worldwide to draw upon a large sample of respondents across high-risk malaria endemic areas. A sub-study of the Indonesia Basic Health Research/Riskesdas Study 2010 focused on 12,226 adults aged 15 years and above residing in high-risk malaria-endemic provinces. Logistic regression was undertaken to determine the significant associations for traditional medicine use for malaria symptoms. Approximately one in five respondents use traditional medicine for malaria symptoms and the vast majority experiencing multiple episodes of malaria use traditional medicine alongside free antimalarial drug treatments. Respondents consuming traditional medicine for general health/common illness purposes every day (odds ratio: 3.75, 95% Confidence Interval: 2.93 4.79), those without a hospital in local vicinity (odds ratio: 1.31, 95% Confidence Interval: 1.10 1.57), and those living in poorer quality housing, were more likely to use traditional medicine for malaria symptoms. A substantial percentage of those with malaria symptoms utilize traditional medicine for treating their malaria symptoms. In order to promote safe and effective malaria treatment, all providing malaria care in Indonesia need to enquire with their patients about possible traditional medicine use.

  2. A cross-sectional analysis of traditional medicine use for malaria alongside free antimalarial drugs treatment amongst adults in high-risk malaria endemic provinces of Indonesia

    PubMed Central

    Suswardany, Dwi Linna; Sibbritt, David W.; Supardi, Sudibyo; Pardosi, Jerico F.; Chang, Sungwon; Adams, Jon

    2017-01-01

    Background The level of traditional medicine use, particularly Jamu use, in Indonesia is substantial. Indonesians do not always seek timely treatment for malaria and may seek self-medication via traditional medicine. This paper reports findings from the first focused analyses of traditional medicine use for malaria in Indonesia and the first such analyses worldwide to draw upon a large sample of respondents across high-risk malaria endemic areas. Methods A sub-study of the Indonesia Basic Health Research/Riskesdas Study 2010 focused on 12,226 adults aged 15 years and above residing in high-risk malaria-endemic provinces. Logistic regression was undertaken to determine the significant associations for traditional medicine use for malaria symptoms. Findings Approximately one in five respondents use traditional medicine for malaria symptoms and the vast majority experiencing multiple episodes of malaria use traditional medicine alongside free antimalarial drug treatments. Respondents consuming traditional medicine for general health/common illness purposes every day (odds ratio: 3.75, 95% Confidence Interval: 2.93 4.79), those without a hospital in local vicinity (odds ratio: 1.31, 95% Confidence Interval: 1.10 1.57), and those living in poorer quality housing, were more likely to use traditional medicine for malaria symptoms. Conclusion A substantial percentage of those with malaria symptoms utilize traditional medicine for treating their malaria symptoms. In order to promote safe and effective malaria treatment, all providing malaria care in Indonesia need to enquire with their patients about possible traditional medicine use. PMID:28329019

  3. Dynamical malaria models reveal how immunity buffers effect of climate variability

    PubMed Central

    Laneri, Karina; Paul, Richard E.; Tall, Adama; Faye, Joseph; Diene-Sarr, Fatoumata; Sokhna, Cheikh; Trape, Jean-François; Rodó, Xavier

    2015-01-01

    Assessing the influence of climate on the incidence of Plasmodium falciparum malaria worldwide and how it might impact local malaria dynamics is complex and extrapolation to other settings or future times is controversial. This is especially true in the light of the particularities of the short- and long-term immune responses to infection. In sites of epidemic malaria transmission, it is widely accepted that climate plays an important role in driving malaria outbreaks. However, little is known about the role of climate in endemic settings where clinical immunity develops early in life. To disentangle these differences among high- and low-transmission settings we applied a dynamical model to two unique adjacent cohorts of mesoendemic seasonal and holoendemic perennial malaria transmission in Senegal followed for two decades, recording daily P. falciparum cases. As both cohorts are subject to similar meteorological conditions, we were able to analyze the relevance of different immunological mechanisms compared with climatic forcing in malaria transmission. Transmission was first modeled by using similarly unique datasets of entomological inoculation rate. A stochastic nonlinear human–mosquito model that includes rainfall and temperature covariates, drug treatment periods, and population variability is capable of simulating the complete dynamics of reported malaria cases for both villages. We found that under moderate transmission intensity climate is crucial; however, under high endemicity the development of clinical immunity buffers any effect of climate. Our models open the possibility of forecasting malaria from climate in endemic regions but only after accounting for the interaction between climate and immunity. PMID:26124134

  4. Dynamical malaria models reveal how immunity buffers effect of climate variability.

    PubMed

    Laneri, Karina; Paul, Richard E; Tall, Adama; Faye, Joseph; Diene-Sarr, Fatoumata; Sokhna, Cheikh; Trape, Jean-François; Rodó, Xavier

    2015-07-14

    Assessing the influence of climate on the incidence of Plasmodium falciparum malaria worldwide and how it might impact local malaria dynamics is complex and extrapolation to other settings or future times is controversial. This is especially true in the light of the particularities of the short- and long-term immune responses to infection. In sites of epidemic malaria transmission, it is widely accepted that climate plays an important role in driving malaria outbreaks. However, little is known about the role of climate in endemic settings where clinical immunity develops early in life. To disentangle these differences among high- and low-transmission settings we applied a dynamical model to two unique adjacent cohorts of mesoendemic seasonal and holoendemic perennial malaria transmission in Senegal followed for two decades, recording daily P. falciparum cases. As both cohorts are subject to similar meteorological conditions, we were able to analyze the relevance of different immunological mechanisms compared with climatic forcing in malaria transmission. Transmission was first modeled by using similarly unique datasets of entomological inoculation rate. A stochastic nonlinear human-mosquito model that includes rainfall and temperature covariates, drug treatment periods, and population variability is capable of simulating the complete dynamics of reported malaria cases for both villages. We found that under moderate transmission intensity climate is crucial; however, under high endemicity the development of clinical immunity buffers any effect of climate. Our models open the possibility of forecasting malaria from climate in endemic regions but only after accounting for the interaction between climate and immunity.

  5. The epidemiology of malaria in the Papua New Guinea highlands: 5. Aseki, Menyamya and Wau-Bulolo, Morobe Province.

    PubMed

    Mueller, Ivo; Sie, Albert; Ousari, Moses; Iga, Jonah; Yala, Simon; Ivivi, Rex; Reeder, John C

    2007-01-01

    Although not strictly a highlands province, Morobe encompasses large highlands areas, the most important being Aseki, Menyamya and Wau-Bulolo. A series of rapid malaria surveys conducted in both the wet and dry seasons found malaria to be clearly endemic in areas below 1400 m in Menyamya and Wau-Bulolo, with overall prevalence rates in the wet season (25.5%, range: 9.1%-39.2%) greatly exceeding those in the dry season (8.3%, range: 2.4%-22.8%; p < 0.001). In the wet season surveys Plasmodium falciparum was the clearly predominant species, accounting for 63% of all infections. P. vivax increased in frequency in the dry season (from 27% to 46%, p < 0.001), while P. falciparum and P. malariae decreased. In line with past surveys a low prevalence of malaria was found in the Aseki area. Malaria was found to be the main source of febrile illness in the wet season with at least 60% of measured or reported fever associated with parasitaemia. Other causes of febrile illness dominated in the dry. In villages with parasite prevalence rates < 20% mean haemoglobin levels and prevalence of severe anaemia were strongly correlated with overall parasite prevalence. In addition concurrent malarial infections were associated with a strong reduction of individual haemoglobin levels (-1.2 g/dl) and there was increased risk of moderate-to-severe anaemia with concurrent malaria. Malarial infections are thus the most significant cause of febrile illness and anaemia in the highlands fringe populations in Morobe. As a consequence all villages below 1500-1600 m in Morobe Province should be included in malaria control activities.

  6. Incorporating Hydroepidemiology into the Epidemia Malaria Early Warning System

    NASA Astrophysics Data System (ADS)

    Wimberly, M. C.; Merkord, C. L.; Henebry, G. M.; Senay, G. B.

    2014-12-01

    Early warning of the timing and locations of malaria epidemics can facilitate the targeting of resources for prevention and emergency response. In response to this need, we are developing the Epidemic Prognosis Incorporating Disease and Environmental Monitoring for Integrated Assessment (EPIDEMIA) computer system. EPIDEMIA incorporates software for capturing, processing, and integrating environmental and epidemiological data from multiple sources; data assimilation techniques that continually update models and forecasts; and a web-based interface that makes the resulting information available to public health decision makers. The system will enable forecasts that incorporate lagged responses to environmental risk factors as well as information about recent trends in malaria cases. Because the egg, larval, and pupal stages of mosquito development occur in aquatic habitats, information about the spatial and temporal distributions of stagnant water bodies is critical for modeling malaria risk. Potential sources of hydrological data include satellite-derived rainfall estimates, evapotranspiration (ET) calculated using a simplified surface energy balance model, and estimates of soil moisture and fractional water cover from passive microwave radiometry. We used partial least squares regression to analyze and visualize seasonal patterns of these variables in relation to malaria cases using data from 49 districts in the Amhara region of Ethiopia. Seasonal patterns of rainfall were strongly associated with the incidence and seasonality of malaria across the region, and model fit was improved by the addition of remotely-sensed ET and soil moisture variables. The results highlight the importance of remotely-sensed hydrological data for modeling malaria risk in this region and emphasize the value of an ensemble approach that utilizes multiple sources of information about precipitation and land surface wetness. These variables will be incorporated into the forecasting models at

  7. Bionomics of Anopheles fluviatilis and Anopheles culicifacies (Diptera: Culicidae) in Relation to Malaria Transmission in East-Central India

    PubMed Central

    Gunasekaran, K.; Krishnamoorthy, N.; Vanamail, P.; Mathivanan, A; Manonmani, A.; Jambulingam, P.

    2017-01-01

    Abstract The southern districts of Odisha State in east-central India have been highly endemic for falciparum malaria for many decades. However, there is no adequate information on the abundance of the vector species or their bionomics in relation to space and time in these districts. Therefore, a study was carried out on the entomological aspects of malaria transmission to generate such information. Collections of mosquitoes were made once during each of the three seasons in 128 villages selected from eight districts. Villages within the foot-hill ecotype had a significantly greater abundance of Anopheles fluviatilis James s. l., whereas the abundance of Anopheles culicifacies Giles s. l. was significantly greater in the plain ecotype. The abundance of An. fluviatilis was maximum during the cold season, whereas An. culicifacies abundance was highest during summer and rainy seasons. The maximum likelihood estimation of the malaria infection rate in An. fluviatilis was 1.78%, 6.05%, and 2.6% in Ganjam, Kalahandi, and Rayagada districts, respectively. The infection rate of An. culicifacies was 1.39% only in Kandhamal district; infected females were not detected elsewhere. Concurrently, the annual malaria parasite incidence (MPI) was significantly higher in hill-top (17.6) and foot-hill (14.4) villages compared to plain villages (4.1). The districts with more villages in hill-top and foot-hill ecotypes also had a greater abundance of An. fluviatilis, the major malaria vector, and exhibited a higher incidence of malaria than villages within the plain ecotype, where An. culicifacies was the most abundant vector. PMID:28399290

  8. Estimating the malaria risk of African mosquito movement by air travel

    PubMed Central

    Tatem, Andrew J; Rogers, David J; Hay, Simon I

    2006-01-01

    Background The expansion of global travel has resulted in the importation of African Anopheles mosquitoes, giving rise to cases of local malaria transmission. Here, cases of 'airport malaria' are used to quantify, using a combination of global climate and air traffic volume, where and when are the greatest risks of a Plasmodium falciparum-carrying mosquito being importated by air. This prioritises areas at risk of further airport malaria and possible importation or reemergence of the disease. Methods Monthly data on climate at the World's major airports were combined with air traffic information and African malaria seasonality maps to identify, month-by-month, those existing and future air routes at greatest risk of African malaria-carrying mosquito importation and temporary establishment. Results The location and timing of recorded airport malaria cases proved predictable using a combination of climate and air traffic data. Extending the analysis beyond the current air network architecture enabled identification of the airports and months with greatest climatic similarity to P. falciparum endemic regions of Africa within their principal transmission seasons, and therefore at risk should new aviation routes become operational. Conclusion With the growth of long haul air travel from Africa, the identification of the seasonality and routes of mosquito importation is important in guiding effective aircraft disinsection and vector control. The recent and continued addition of air routes from Africa to more climatically similar regions than Europe will increase movement risks. The approach outlined here is capable of identifying when and where these risks are greatest. PMID:16842613

  9. High proportion of knowlesi malaria in recent malaria cases in Malaysia

    PubMed Central

    2014-01-01

    Background Plasmodium knowlesi is a simian parasite that has been recognized as the fifth species causing human malaria. Naturally-acquired P. knowlesi infection is widespread among human populations in Southeast Asia. The aim of this epidemiological study was to determine the incidence and distribution of malaria parasites, with a particular focus on human P. knowlesi infection in Malaysia. Methods A total of 457 microscopically confirmed, malaria-positive blood samples were collected from 22 state and main district hospitals in Malaysia between September 2012 and December 2013. Nested PCR assay targeting the 18S rRNA gene was used to determine the infecting Plasmodium species. Results A total of 453 samples were positive for Plasmodium species by using nested PCR assay. Plasmodium knowlesi was identified in 256 (56.5%) samples, followed by 133 (29.4%) cases of Plasmodium vivax, 49 (10.8%) cases of Plasmodium falciparum, two (0.4%) cases of Plasmodium ovale and one (0.2%) case of Plasmodium malariae. Twelve mixed infections were detected, including P. knowlesi/P. vivax (n = 10), P. knowlesi/P. falciparum (n = 1), and P. falciparum/P. vivax (n = 1). Notably, P. knowlesi (Included mixed infections involving P. knowlesi (P. knowlesi/P. vivax and P. knowlesi /P. falciparum)) showed the highest proportion in Sabah (84/115 cases, prevalence of 73.0%), Sarawak (83/120, 69.2%), Kelantan (42/56, 75.0%), Pahang (24/25, 96.0%), Johor (7/9, 77.8%), and Terengganu (4/5, 80.0%,). In contrast, the rates of P. knowlesi infection in Selangor and Negeri Sembilan were found to be 16.2% (18/111 cases) and 50.0% (5/10 cases), respectively. Sample of P. knowlesi was not obtained from Kuala Lumpur, Melaka, Perak, Pulau Pinang, and Perlis during the study period, while a microscopically-positive sample from Kedah was negative by PCR. Conclusion In addition to Sabah and Sarawak, which have been known for high prevalence of P. knowlesi infection, the findings from this study

  10. Translating the Immunogenicity of Prime-boost Immunization With ChAd63 and MVA ME-TRAP From Malaria Naive to Malaria-endemic Populations

    PubMed Central

    Kimani, Domtila; Jagne, Ya Jankey; Cox, Momodou; Kimani, Eva; Bliss, Carly M; Gitau, Evelyn; Ogwang, Caroline; Afolabi, Muhammed O; Bowyer, Georgina; Collins, Katharine A; Edwards, Nick; Hodgson, Susanne H; Duncan, Christopher J A; Spencer, Alexandra J; Knight, Miguel G; Drammeh, Abdoulie; Anagnostou, Nicholas A; Berrie, Eleanor; Moyle, Sarah; Gilbert, Sarah C; Soipei, Peninah; Okebe, Joseph; Colloca, Stefano; Cortese, Riccardo; Viebig, Nicola K; Roberts, Rachel; Lawrie, Alison M; Nicosia, Alfredo; Imoukhuede, Egeruan B; Bejon, Philip; Chilengi, Roma; Bojang, Kalifa; Flanagan, Katie L; Hill, Adrian V S; Urban, Britta C; Ewer, Katie J

    2014-01-01

    To induce a deployable level of efficacy, a successful malaria vaccine would likely benefit from both potent cellular and humoral immunity. These requirements are met by a heterologous prime-boost immunization strategy employing a chimpanzee adenovirus vector followed by modified vaccinia Ankara (MVA), both encoding the pre-erythrocytic malaria antigen ME-thrombospondin-related adhesive protein (TRAP), with high immunogenicity and significant efficacy in UK adults. We undertook two phase 1b open-label studies in adults in Kenya and The Gambia in areas of similar seasonal malaria transmission dynamics and have previously reported safety and basic immunogenicity data. We now report flow cytometry and additional interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) data characterizing pre-existing and induced cellular immunity as well as anti-TRAP IgG responses. T-cell responses induced by vaccination averaged 1,254 spot-forming cells (SFC) per million peripheral blood mononuclear cells (PBMC) across both trials and flow cytometry revealed cytokine production from both CD4+ and CD8+ T cells with the frequency of CD8+ IFN-γ-secreting monofunctional T cells (previously shown to associate with vaccine efficacy) particularly high in Kenyan adults. Immunization with ChAd63 and MVA ME-TRAP induced strong cellular and humoral immune responses in adults living in two malaria-endemic regions of Africa. This prime-boost approach targeting the pre-erythrocytic stage of the malaria life-cycle is now being assessed for efficacy in a target population. PMID:24930599

  11. EFFECT OF RICE CULTIVATION PATTERNS ON MALARIA VECTOR ABUNDANCE IN RICE-GROWING VILLAGES IN MALI

    PubMed Central

    DIUK-WASSER, MARIA A.; TOURÉ, MAHAMOUDOU B.; DOLO, GUIMOGO; BAGAYOKO, MAGARAN; SOGOBA, NAFOMAN; SISSOKO, IBRAHIM; TRAORÉ, SÉKOU F.; TAYLOR, CHARLES E.

    2007-01-01

    Irrigation for rice cultivation increases the production of Anopheles gambiae, the main vector of malaria in Mali. Mosquito abundance is highly variable across villages and seasons. We examined whether rice cultivation patterns mapped using remotely sensed imagery can account for some of this variance. We collected entomologic data and mapped land use around 18 villages in the two cropping seasons during two years. Land use classification accuracy ranged between 70% and 86%. The area of young rice explained 86% of the inter-village variability in An. gambiae abundance in August before the peak in malaria transmission. Estimating rice in a 900-meter buffer area around the villages resulted in the best correlation with mosquito abundance, larger buffer areas were optimum in the October and dry season models. The quantification of the relationship between An. gambiae abundance and rice cultivation could have management applications that merit further study. PMID:17488907

  12. Maximizing the impact of malaria funding through allocative efficiency: using the right interventions in the right locations.

    PubMed

    Scott, Nick; Hussain, S Azfar; Martin-Hughes, Rowan; Fowkes, Freya J I; Kerr, Cliff C; Pearson, Ruth; Kedziora, David J; Killedar, Madhura; Stuart, Robyn M; Wilson, David P

    2017-09-12

    The high burden of malaria and limited funding means there is a necessity to maximize the allocative efficiency of malaria control programmes. Quantitative tools are urgently needed to guide budget allocation decisions. A geospatial epidemic model was coupled with costing data and an optimization algorithm to estimate the optimal allocation of budgeted and projected funds across all malaria intervention approaches. Interventions included long-lasting insecticide-treated nets (LLINs), indoor residual spraying (IRS), intermittent presumptive treatment during pregnancy (IPTp), seasonal mass chemoprevention in children (SMC), larval source management (LSM), mass drug administration (MDA), and behavioural change communication (BCC). The model was applied to six geopolitical regions of Nigeria in isolation and also the nation as a whole to minimize incidence and malaria-attributable mortality. Allocative efficiency gains could avert approximately 84,000 deaths or 15.7 million cases of malaria in Nigeria over 5 years. With an additional US$300 million available, approximately 134,000 deaths or 37.3 million cases of malaria could be prevented over 5 years. Priority funding should go to LLINs, IPTp and BCC programmes, and SMC should be expanded in seasonal areas. To minimize mortality, treatment expansion is critical and prioritized over some LLIN funding, while to minimize incidence, LLIN funding remained a priority. For areas with lower rainfall, LSM is prioritized over IRS but MDA is not recommended unless all other programmes are established. Substantial reductions in malaria morbidity and mortality can be made by optimal targeting of investments to the right malaria interventions in the right areas.

  13. Low perception of malaria risk among the Ra-glai ethnic minority in south-central Vietnam: implications for forest malaria control.

    PubMed

    Peeters Grietens, Koen; Xuan, Xa Nguyen; Van Bortel, Wim; Duc, Thang Ngo; Ribera, Joan Muela; Ba Nhat, Truong; Van, Ky Pham; Le Xuan, Hung; D'Alessandro, Umberto; Erhart, Annette

    2010-01-20

    Despite Vietnam's success in reducing malaria mortality and morbidity over the last decade, malaria persists in the forested and mountainous areas of the central and southern provinces, where more than 50% of the clinical cases and 90% of severe cases and malaria deaths occur. Between July 2005 and September 2006, a multi-method study, triangulating a malariometric cross-sectional survey and qualitative data from focused ethnography, was carried out among the Ra-glai ethnic minority in the hilly forested areas of south-central Vietnam. Despite the relatively high malaria burden among the Ra-glai and their general awareness that mosquitoes can transmit an unspecific kind of fever (84.2%), the use of bed nets, distributed free of charge by the national malaria control programme, remains low at the farmers' forest fields where the malaria risk is the highest. However, to meet work requirements during the labour intensive malaria transmission and rainy season, Ra-glai farmers combine living in government supported villages along the road with a second home or shelter at their slash and burn fields located in the forest. Bed net use was 84.6% in the villages but only 52.9% at the forest fields; 20.6% of the respondents slept unprotected in both places. Such low use may be explained by the low perception of the risk for malaria, decreasing the perceived need to sleep protected. Several reasons may account for this: (1) only 15.6% acknowledged the higher risk of contracting malaria in the forest than in the village; (2) perceived mosquito biting times only partially coincided with Anopheles dirus ss and Anopheles minimus A true biting times; (3) the disease locally identified as 'malaria' was hardly perceived as having an impact on forest farmers' daily lives as they were unaware of the specific kind of fevers from which they had suffered even after being diagnosed with malaria at the health centre (20.9%). The progressive confinement of malaria to minority groups and

  14. Low perception of malaria risk among the Ra-glai ethnic minority in south-central Vietnam: implications for forest malaria control

    PubMed Central

    2010-01-01

    Background Despite Vietnam's success in reducing malaria mortality and morbidity over the last decade, malaria persists in the forested and mountainous areas of the central and southern provinces, where more than 50% of the clinical cases and 90% of severe cases and malaria deaths occur. Methods Between July 2005 and September 2006, a multi-method study, triangulating a malariometric cross-sectional survey and qualitative data from focused ethnography, was carried out among the Ra-glai ethnic minority in the hilly forested areas of south-central Vietnam. Results Despite the relatively high malaria burden among the Ra-glai and their general awareness that mosquitoes can transmit an unspecific kind of fever (84.2%), the use of bed nets, distributed free of charge by the national malaria control programme, remains low at the farmers' forest fields where the malaria risk is the highest. However, to meet work requirements during the labour intensive malaria transmission and rainy season, Ra-glai farmers combine living in government supported villages along the road with a second home or shelter at their slash and burn fields located in the forest. Bed net use was 84.6% in the villages but only 52.9% at the forest fields; 20.6% of the respondents slept unprotected in both places. Such low use may be explained by the low perception of the risk for malaria, decreasing the perceived need to sleep protected. Several reasons may account for this: (1) only 15.6% acknowledged the higher risk of contracting malaria in the forest than in the village; (2) perceived mosquito biting times only partially coincided with Anopheles dirus ss and Anopheles minimus A true biting times; (3) the disease locally identified as 'malaria' was hardly perceived as having an impact on forest farmers' daily lives as they were unaware of the specific kind of fevers from which they had suffered even after being diagnosed with malaria at the health centre (20.9%). Conclusions The progressive

  15. Remotely-sensed, nocturnal, dew point correlates with malaria transmission in Southern Province, Zambia: a time-series study.

    PubMed

    Nygren, David; Stoyanov, Cristina; Lewold, Clemens; Månsson, Fredrik; Miller, John; Kamanga, Aniset; Shiff, Clive J

    2014-06-13

    Plasmodium falciparum transmission has decreased significantly in Zambia in the last decade. The malaria transmission is influenced by environmental variables. Incorporation of environmental variables in models of malaria transmission likely improves model fit and predicts probable trends in malaria disease. This work is based on the hypothesis that remotely-sensed environmental factors, including nocturnal dew point, are associated with malaria transmission and sustain foci of transmission during the low transmission season in the Southern Province of Zambia. Thirty-eight rural health centres in Southern Province, Zambia were divided into three zones based on transmission patterns. Correlations between weekly malaria cases and remotely-sensed nocturnal dew point, nocturnal land surface temperature as well as vegetation indices and rainfall were evaluated in time-series analyses from 2012 week 19 to 2013 week 36. Zonal as well as clinic-based, multivariate, autoregressive, integrated, moving average (ARIMAX) models implementing environmental variables were developed to model transmission in 2011 week 19 to 2012 week 18 and forecast transmission in 2013 week 37 to week 41. During the dry, low transmission season significantly higher vegetation indices, nocturnal land surface temperature and nocturnal dew point were associated with the areas of higher transmission. Environmental variables improved ARIMAX models. Dew point and normalized differentiated vegetation index were significant predictors and improved all zonal transmission models. In the high-transmission zone, this was also seen for land surface temperature. Clinic models were improved by adding dew point and land surface temperature as well as normalized differentiated vegetation index. The mean average error of prediction for ARIMAX models ranged from 0.7 to 33.5%. Forecasts of malaria incidence were valid for three out of five rural health centres; however, with poor results at the zonal level. In this

  16. Using a new high resolution regional model for malaria that accounts for population density and surface hydrology to determine sensitivity of malaria risk to climate drivers

    NASA Astrophysics Data System (ADS)

    Tompkins, Adrian; Ermert, Volker; Di Giuseppe, Francesca

    2013-04-01

    In order to better address the role of population dynamics and surface hydrology in the assessment of malaria risk, a new dynamical disease model been developed at ICTP, known as VECTRI: VECtor borne disease community model of ICTP, TRIeste (VECTRI). The model accounts for the temperature impact on the larvae, parasite and adult vector populations. Local host population density affects the transmission intensity, and the model thus reproduces the differences between peri-urban and rural transmission noted in Africa. A new simple pond model framework represents surface hydrology. The model can be used on with spatial resolutions finer than 10km to resolve individual health districts and thus can be used as a planning tool. Results of the models representation of interannual variability and longer term projections of malaria transmission will be shown for Africa. These will show that the model represents the seasonality and spatial variations of malaria transmission well matching a wide range of survey data of parasite rate and entomological inoculation rate (EIR) from across West and East Africa taken in the period prior to large-scale interventions. The model is used to determine the sensitivity of malaria risk to climate variations, both in rainfall and temperature, and then its use in a prototype forecasting system coupled with ECMWF forecasts will be demonstrated.

  17. Bionomics of Anopheles fluviatilis and Anopheles culicifacies (Diptera: Culicidae) in Relation to Malaria Transmission in East-Central India.

    PubMed

    Sahu, S S; Gunasekaran, K; Krishnamoorthy, N; Vanamail, P; Mathivanan, A; Manonmani, A; Jambulingam, P

    2017-07-01

    The southern districts of Odisha State in east-central India have been highly endemic for falciparum malaria for many decades. However, there is no adequate information on the abundance of the vector species or their bionomics in relation to space and time in these districts. Therefore, a study was carried out on the entomological aspects of malaria transmission to generate such information. Collections of mosquitoes were made once during each of the three seasons in 128 villages selected from eight districts. Villages within the foot-hill ecotype had a significantly greater abundance of Anopheles fluviatilis James s. l., whereas the abundance of Anopheles culicifacies Giles s. l. was significantly greater in the plain ecotype. The abundance of An. fluviatilis was maximum during the cold season, whereas An. culicifacies abundance was highest during summer and rainy seasons. The maximum likelihood estimation of the malaria infection rate in An. fluviatilis was 1.78%, 6.05%, and 2.6% in Ganjam, Kalahandi, and Rayagada districts, respectively. The infection rate of An. culicifacies was 1.39% only in Kandhamal district; infected females were not detected elsewhere. Concurrently, the annual malaria parasite incidence (MPI) was significantly higher in hill-top (17.6) and foot-hill (14.4) villages compared to plain villages (4.1). The districts with more villages in hill-top and foot-hill ecotypes also had a greater abundance of An. fluviatilis, the major malaria vector, and exhibited a higher incidence of malaria than villages within the plain ecotype, where An. culicifacies was the most abundant vector. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  18. Prevalence of human malaria infection in Pakistani areas bordering with Iran.

    PubMed

    Yasinzai, Mohammad Iqbal; Kakarsulemankhel, Juma Khan

    2013-03-01

    To study the prevalence of malarial infections in human population of district Panjgur in south-western Pakistan. The cross-sectional study identified malarial parasites in the blood slides of 6119 suspected malaria patients from July 2006 to June 2008 through passive and active case detection methods. SPSS 11 was used for statistical analysis. Out of 6119 suspected cases of malaria, 2346 (38.3%) were found to be positive for malarial parasite on blood smear slides. Of these, 1868 (79.6%) cases were due to Plasmodium vivax infection, and 478 (20.3%) had P. falciparum. However, seasonal variation was also noted: P. vivax infection was the highest (n = 131/144, 90.9%) in November and the lowest (n=83/176, 47.1%) in October. The prevalence was higher (n=1831, 78%) in males. Age-wise, the prevalence of the disease was 81.2% (n=334) and 80% (n=860) for age groups 1-10 years and 11-20 years. No case of P. malariae and P. ovale was detected in the study period. No association was found between types of infection and age groups. Human malaria infection was quite frequent in the study region, which is one of the hottest areas of Balochistan, Pakistan. In clinically-suspected cases of malaria, there was a high slide positivity rate. The high prevalence rate of P. vivax poses a significant health hazard but R falciparum also may lead to serious complications, including cerebral malaria.

  19. Malaria control under unstable dynamics: reactive vs. climate-based strategies.

    PubMed

    Baeza, Andres; Bouma, Menno J; Dhiman, Ramesh; Pascual, Mercedes

    2014-01-01

    In areas of the world where malaria prevails under unstable conditions, attacking the adult vector population through insecticide-based Indoor Residual Spraying (IRS) is the most common method for controlling epidemics. Defined in policy guidance, the use of Annual Parasitic Incidence (API) is an important tool for assessing the effectiveness of control and for planning new interventions. To investigate the consequences that a policy based on API in previous seasons might have on the population dynamics of the disease and on control itself in regions of low and seasonal transmission, we formulate a mathematical malaria model that couples epidemiologic and vector dynamics with IRS intervention. This model is parameterized for a low transmission and semi-arid region in northwest India, where epidemics are driven by high rainfall variability. We show that this type of feedback mechanism in control strategies can generate transient cycles in malaria even in the absence of environmental variability, and that this tendency to cycle can in turn limit the effectiveness of control in the presence of such variability. Specifically, for realistic rainfall conditions and over a range of control intensities, the effectiveness of such 'reactive' intervention is compared to that of an alternative strategy based on rainfall and therefore vector variability. Results show that the efficacy of intervention is strongly influenced by rainfall variability and the type of policy implemented. In particular, under an API 'reactive' policy, high vector populations can coincide more frequently with low control coverage, and in so doing generate large unexpected epidemics and decrease the likelihood of elimination. These results highlight the importance of incorporating information on climate variability, rather than previous incidence, in planning IRS interventions in regions of unstable malaria. These findings are discussed in the more general context of elimination and other low

  20. Seasonality of childhood infectious diseases in Niono, Mali.

    PubMed

    Findley, S E; Medina, D C; Sogoba, N; Guindo, B; Doumbia, S

    2010-01-01

    Common childhood diseases vary seasonally in Mali, much of the Sahel, and other parts of the world, yet patterns for multiple diseases have rarely been simultaneously described for extended periods at single locations. In this retrospective longitudinal (1996-2004) investigation, we studied the seasonality of malaria, acute respiratory infection and diarrhoea time-series in the district of Niono, Sahelian Mali. We extracted and analysed seasonal patterns from each time-series with the Multiplicative Holt-Winters and Wavelet Transform methods. Subsequently, we considered hypothetical scenarios where successful prevention and intervention measures reduced disease seasonality by 25 or 50% to assess the impact of health programmes on annual childhood morbidity. The results showed that all three disease time-series displayed remarkable seasonal stability. Malaria, acute respiratory infection and diarrhoea peaked in December, March (and September) and August, respectively. Finally, the annual childhood morbidity stemming from each disease diminished 7-26% in the considered hypothetical scenarios. We concluded that seasonality may assist with guiding the development of integrated seasonal disease calendars for programmatic child health promotion activities.

  1. Community perceptions on malaria and care-seeking practices in endemic Indian settings: policy implications for the malaria control programme.

    PubMed

    Das, Ashis; Das Gupta, R K; Friedman, Jed; Pradhan, Madan M; Mohapatra, Charu C; Sandhibigraha, Debakanta

    2013-01-29

    The focus of India's National Malaria Programme witnessed a paradigm shift recently from health facility to community-based approaches. The current thrust is on diagnosing and treating malaria by community health workers and prevention through free provision of long-lasting insecticidal nets. However, appropriate community awareness and practice are inevitable for the effectiveness of such efforts. In this context, the study assessed community perceptions and practice on malaria and similar febrile illnesses. This evidence base is intended to direct the roll-out of the new strategies and improve community acceptance and utilization of services. A qualitative study involving 26 focus group discussions and 40 key informant interviews was conducted in two districts of Odisha State in India. The key points of discussion were centred on community perceptions and practice regarding malaria prevention and treatment. Thematic analysis of data was performed. The 272 respondents consisted of 50% females, three-quarter scheduled tribe community and 30% students. A half of them were literates. Malaria was reported to be the most common disease in their settings with multiple modes of transmission by the FGD participants. Adoption of prevention methods was seasonal with perceived mosquito density. The reported use of bed nets was low and the utilization was determined by seasonality, affordability, intoxication and alternate uses of nets. Although respondents were aware of malaria-related symptoms, care-seeking from traditional healers and unqualified providers was prevalent. The respondents expressed lack of trust in the community health workers due to frequent drug stock-outs. The major determinants of health care seeking were socio-cultural beliefs, age, gender, faith in the service provider, proximity, poverty, and perceived effectiveness of available services. Apart from the socio-cultural and behavioural factors, the availability of acceptable care can modulate the

  2. The dynamics, transmission, and population impacts of avian malaria in native hawaiian birds: A modeling approach

    USGS Publications Warehouse

    Samuel, M.D.; Hobbelen, P.H.F.; Decastro, F.; Ahumada, J.A.; Lapointe, D.A.; Atkinson, C.T.; Woodworth, B.L.; Hart, P.J.; Duffy, D.C.

    2011-01-01

    We developed an epidemiological model of avian malaria (Plasmodium relictum) across an altitudinal gradient on the island of Hawaii that includes the dynamics of the host, vector, and parasite. This introduced mosquito-borne disease is hypothesized to have contributed to extinctions and major shifts in the altitudinal distribution of highly susceptible native forest birds. Our goal was to better understand how biotic and abiotic factors influence the intensity of malaria transmission and impact on susceptible populations of native Hawaiian forest birds. Our model illustrates key patterns in the malaria-forest bird system: high malaria transmission in low-elevation forests with minor seasonal or annual variation in infection;episodic transmission in mid-elevation forests with site-to-site, seasonal, and annual variation depending on mosquito dynamics;and disease refugia in high-elevation forests with only slight risk of infection during summer. These infection patterns are driven by temperature and rainfall effects on parasite incubation period and mosquito dynamics across an elevational gradient and the availability of larval habitat, especially in mid-elevation forests. The results from our model suggest that disease is likely a key factor in causing population decline or restricting the distribution of many susceptible Hawaiian species and preventing the recovery of other vulnerable species. The model also provides a framework for the evaluation of factors influencing disease transmission and alternative disease control programs, and to evaluate the impact of climate change on disease cycles and bird populations. ??2011 by the Ecological Society of America.

  3. Individual and household characteristics of persons with Plasmodium falciparum malaria in sites with varying endemicities in Kinshasa Province, Democratic Republic of the Congo.

    PubMed

    Mwandagalirwa, Melchior Kashamuka; Levitz, Lauren; Thwai, Kyaw L; Parr, Jonathan B; Goel, Varun; Janko, Mark; Tshefu, Antoinette; Emch, Michael; Meshnick, Steven R; Carrel, Margaret

    2017-11-09

    The Democratic Republic of the Congo (DRC) bears a large share of global malaria burden despite efforts to control and eliminate the disease. More detailed understanding of individual and household level characteristics associated with malaria are needed, as is an understanding of how these characteristics vary spatiotemporally and across different community-level malaria endemicities. An ongoing study in Kinshasa Province is designed to address gaps in prior malaria surveillance in the DRC by monitoring malaria across seasons, age groups and in high and low malaria sites. Across seven sites, 242 households and 1591 individuals are participating in the study. Results of the enrollment questionnaire, rapid diagnostic tests and PCR testing of dried blood spots are presented. Overall malaria prevalence in the study cohort is high, 27% by rapid diagnostic test and 31% by polymerase chain reaction, and malaria prevalence is highly varied across very small geographic distances. Malaria prevalence is highest in children aged 6-15. While the majority of households own bed nets, bed net usage is less than 50%. The study cohort will provide an understanding of how malaria persists in populations that have varying environmental exposures, varying community-level malaria, and varying access to malaria control efforts.

  4. The economic costs of malaria in four Kenyan districts: do household costs differ by disease endemicity?

    PubMed

    Chuma, Jane; Okungu, Vincent; Molyneux, Catherine

    2010-06-02

    Malaria inflicts significant costs on households and on the economy of malaria endemic countries. There is also evidence that the economic burden is higher among the poorest in a population, and that cost burdens differ significantly between wet and dry seasons. What is not clear is whether, and how, the economic burden of malaria differs by disease endemicity. The need to account for geographical and epidemiological differences in the estimation of the social and economic burden of malaria is well recognized, but there is limited data, if any, to support this argument. This study sought to contribute towards filling this gap by comparing malaria cost burdens in four Kenyan districts of different endemicity. A cross-sectional household survey was conducted during the peak malaria transmission season in the poorest areas in four Kenyan districts with differing malaria transmission patterns (n = 179 households in Bondo; 205 Gucha; 184 Kwale; 141 Makueni). There were significant differences in duration of fever, perception of fever severity and cost burdens. Fever episodes among adults and children over five years in Gucha and Makueni districts (highland endemic and low acute transmission districts respectively) lasted significantly longer than episodes reported in Bondo and Kwale districts (high perennial transmission and seasonal, intense transmission, respectively). Perceptions of illness severity also differed between districts: fevers reported among older children and adults in Gucha and Makueni districts were reported as severe compared to those reported in the other districts. Indirect and total costs differed significantly between districts but differences in direct costs were not significant. Total household costs were highest in Makueni (US$ 19.6 per month) and lowest in Bondo (US$ 9.2 per month). Cost burdens are the product of complex relationships between social, economic and epidemiological factors. The cost data presented in this study reflect

  5. Men Traveling Away from Home Are More Likely to Bring Malaria into High Altitude Villages, Northwest Ethiopia

    PubMed Central

    Alemu, Kassahun; Worku, Alemayehu; Berhane, Yemane; Kumie, Abera

    2014-01-01

    Background Information about malaria risk factors at high altitudes is scanty. Understanding the risk factors that determine the risk of malaria transmission at high altitude villages is important to facilitate implementing sustainable malaria control and prevention programs. Methods An unmatched case control study was conducted among patients seeking treatment at health centers in high altitude areas. Either microscopy or rapid diagnostic tests were used to confirm the presence of plasmodium species. A generalized linear model was used to identify the predictors of malaria transmission in high altitude villages. Results Males (AOR = 3.11, 95%CI: 2.28, 4.23), and those who traveled away from the home in the previous month (AOR = 2.01, 95% CI: 1.56, 2.58) were strongly associated with presence of malaria in high altitude villages. Other significant factors, including agriculture in occupation (AOR = 1.41, 95% CI: 1.05, 1.93), plants used for fencing (AOR = 1.70, 95% CI: 1.18, 2.52) and forests near the house (AOR = 1.60, 95% CI: 1.15, 2.47), were found predictors for malaria in high altitude villages. Conclusion Travel outside of their home was an important risk of malaria infections acquisition. Targeting males who frequently travel to malarious areas can reduce malaria transmission risks in high altitude areas. PMID:24748159

  6. Asymptomatic Malaria and its Challenges in the Malaria Elimination Program in Iran: a Systematic Review.

    PubMed

    Hassanpour, Gholmreza; Mohebali, Mehdi; Zeraati, Hojjat; Raeisi, Ahmad; Keshavarz, Hossein

    2017-06-01

    The objective of this study was to find an appropriate approach to asymptomatic malaria in elimination setting through a systematic review. A broad search was conducted to find articles with the words 'malaria' in their titles and 'asymptomatic' or 'submicroscopic' in their texts, irrespective of the type of study conducted. The Cochrane, Medline/Pub Med, and Scopus databases, as well as Google Scholar were systematically searched for English articles and reports and Iran's databases-Iran Medex, SID and Magiran were searched for Persian reports and articles, with no time limitation. The study was qualitatively summarized if it contained precise information on the role of asymptomatic malaria in the elimination phase. Six articles were selected from the initial 2645 articles. The results all re-emphasize the significance of asymptomatic malaria in the elimination phase, and emphasize the significance of diagnostic tests of higher sensitivity to locate these patients and perform interventions to reduce the asymptomatic parasitic reservoirs particularly in regions of low transmission. However, we may infer from the results that the current evidence cannot yet specify an accurate strategy on the role of asymptomatic malaria in the elimination phase. To eliminate malaria, alongside vector control, and treatment of symptomatic and asymptomatic patients, active and inactive methods of case detection need to be employed. The precise monitoring of asymptomatic individuals and submicroscopic cases of malaria through molecular assays and valid serological methods, especially in regions where seasonal and low transmission exists can be very helpful at this phase.

  7. Large-scale delivery of seasonal malaria chemoprevention to children under 10 in Senegal: an economic analysis

    PubMed Central

    Pitt, Catherine; Ndiaye, Mouhamed; Conteh, Lesong; Sy, Ousmane; Hadj Ba, El; Cissé, Badara; Gomis, Jules F; Gaye, Oumar; Ndiaye, Jean-Louis

    2017-01-01

    Abstract Seasonal Malaria Chemoprevention (SMC) is recommended for children under 5 in the Sahel and sub-Sahel. The burden in older children may justify extending the age range, as has been done effectively in Senegal. We examine costs of door-to-door SMC delivery to children up to 10 years by community health workers (CHWs). We analysed incremental financial and economic costs at district level and below from a health service perspective. We examined project accounts and prospectively collected data from 405 CHWs, 46 health posts, and 4 district headquarters by introducing questionnaires in advance and completing them after each monthly implementation round. Affordability was explored by comparing financial costs of SMC to relevant existing health expenditure levels. Costs were disaggregated by administration month and by health service level. We used linear regression models to identify factors associated with cost variation between health posts. The financial cost to administer SMC to 180 000 children over one malaria season, reaching ∼93% of children with all three intended courses of SMC was $234 549 (constant 2010 USD) or $0.50 per monthly course administered. Excluding research–participation incentives, the financial cost was $0.32 per resident (all ages) in the catchment area, which is 1.2% of Senegal’s general government expenditure on health per capita. Economic costs were 18.7% higher than financial costs at $278 922 or $0.59 per course administered and varied widely between health posts, from $0.38 to $2.74 per course administered. Substantial economies of scale across health posts were found, with the smallest health posts incurring highest average costs per monthly course administered. SMC for children up to 10 is likely to be affordable, particularly where it averts substantial curative care costs. Estimates of likely costs and cost-effectiveness of SMC in other contexts must account for variation in average costs across delivery months

  8. Mapping intra-urban malaria risk using high resolution satellite imagery: a case study of Dar es Salaam.

    PubMed

    Kabaria, Caroline W; Molteni, Fabrizio; Mandike, Renata; Chacky, Frank; Noor, Abdisalan M; Snow, Robert W; Linard, Catherine

    2016-07-30

    With more than half of Africa's population expected to live in urban settlements by 2030, the burden of malaria among urban populations in Africa continues to rise with an increasing number of people at risk of infection. However, malaria intervention across Africa remains focused on rural, highly endemic communities with far fewer strategic policy directions for the control of malaria in rapidly growing African urban settlements. The complex and heterogeneous nature of urban malaria requires a better understanding of the spatial and temporal patterns of urban malaria risk in order to design effective urban malaria control programs. In this study, we use remotely sensed variables and other environmental covariates to examine the predictability of intra-urban variations of malaria infection risk across the rapidly growing city of Dar es Salaam, Tanzania between 2006 and 2014. High resolution SPOT satellite imagery was used to identify urban environmental factors associated malaria prevalence in Dar es Salaam. Supervised classification with a random forest classifier was used to develop high resolution land cover classes that were combined with malaria parasite prevalence data to identify environmental factors that influence localized heterogeneity of malaria transmission and develop a high resolution predictive malaria risk map of Dar es Salaam. Results indicate that the risk of malaria infection varied across the city. The risk of infection increased away from the city centre with lower parasite prevalence predicted in administrative units in the city centre compared to administrative units in the peri-urban suburbs. The variation in malaria risk within Dar es Salaam was shown to be influenced by varying environmental factors. Higher malaria risks were associated with proximity to dense vegetation, inland water and wet/swampy areas while lower risk of infection was predicted in densely built-up areas. The predictive maps produced can serve as valuable resources for

  9. [Current malaria situation in the Republic of Kazakhstan].

    PubMed

    Bismil'din, F B; Shapieva, Zh Zh; Anpilova, E N

    2001-01-01

    . messeae, is found throughout the country: in a few areas An. hyrcanus and An. claviger are found and, in the south, An. pulcherrimus. Data from recent years show the presence of An. superpictus, An. plumbeus and An. algeriensis. In 1999, from data collected during systematic observations of the phenology and seasonal variations in the number of Anopheles at 114 observation posts, the average seasonal numerical indicators for the mosquito imago reached a maximum of between 21 and 46.5 adult mosquitoes per cattle shed, up to 2.7-3.3 adult mosquitoes per residential building and 30-67.3 larvae per square metre of surface water. According to the results of large scale trapping programmes (486 communities were screened in 1999), the maximum value of the numerical indicator was 16.8-74.1 adult mosquitoes per cattle shed and 4.1-3.8 adult mosquitoes per residential building. In 1999, compared with 1998, the number of malarial mosquitoes detected throughout the country declined encouragingly, or stayed at the same level, which is one of the factors responsible for the country's favourable epidemiological situation with regard to malaria. According to data going back many years, there has been a significant increase in the number of mosquitoes at some observation posts in Almaty, East Kazakhstan and Kyzlorda oblasts. There is a tendency everywhere for the numbers of imagos detected in residential buildings to increase, which presents a definite epidemiological risk that indigenous malaria will re-emerge if the disease is imported into Kazakhstan from countries which suffer from it. If we consider the species of mosquito present in the country and the temperature factor (the number of days in the year when the average daily temperature is over 16 degrees C), the country can be divided, on the basis of incomplete 1999 data, into zones at very high risk of re-emergence of malaria (Almaty, Zhambyl and South Kazakhstan oblasts), high risk (Karaganda oblasts and Almaty city), medium

  10. Association of Temperature and Historical Dynamics of Malaria in the Republic of Korea, Including Reemergence in 1993

    NASA Technical Reports Server (NTRS)

    Linthicum, Kenneth J.; Anyamba, Assaf; Killenbeck, Bradley; Lee, Won-Ja; Lee, Hee Choon S.; Klein, Terry A.; Kim, Heung-Chul; Pavlin, Julie A.; Britch, Seth C.; Small, Jennifer; hide

    2014-01-01

    Plasmodium vivax malaria reemerged in the Republic of Korea in 1993 after it had been declared malaria free in 1979. Malaria rapidly increased and peaked in 2000 with 4,142 cases with lower but variable numbers of cases reported through 2011. We examined the association of regional climate trends over the Korean Peninsula relative to malaria cases in U.S. military and Republic of Korea soldiers, veterans, and civilians from 1950 to 2011. Temperatures and anomaly trends in air temperature associated with satellite remotely sensed outgoing long-wave radiation were used to observe temporal changes. These changes, particularly increasing air temperatures, in combination with moderate rains throughout the malaria season, and distribution of malaria vectors, likely supported the 1993 reemergence and peaks in malaria incidence that occurred through 2011 by accelerating the rate of parasite development in mosquitoes and increased numbers as a result of an expansion of larval habitat, thereby increasing the vectorial capacity of Anopheles vectors. High malaria rates associated with a favorable climate were similarly observed during the Korean War. These findings support the need for increased investigations into malaria predictive models using climate-related variables.

  11. Changing pattern of malaria in Bissau, Guinea Bissau.

    PubMed

    Rodrigues, Amabelia; Schellenberg, Joanna Armstrong; Kofoed, Poul-Erik; Aaby, Peter; Greenwood, Brian

    2008-03-01

    To describe the epidemiology of malaria in Guinea-Bissau, in view of the fact that more funds are available now for malaria control in the country. From May 2003 to May 2004, surveillance for malaria was conducted among children less than 5 years of age at three health centres covering the study area of the Bandim Health Project (BHP) and at the outpatient clinic of the national hospital in Bissau. Cross-sectional surveys were conducted in the community in different malaria seasons. Malaria was overdiagnosed in both health centres and hospital. Sixty-four per cent of the children who presented at a health centre were clinically diagnosed with malaria, but only 13% of outpatient children who tested for malaria had malaria parasitaemia. Only 44% (963/2193) of children admitted to hospital with a diagnosis of malaria had parasitaemia. The proportion of positive cases increased with age. Among hospitalized children with malaria parasitaemia, those less than 2 years old were more likely to have moderate anaemia (RR = 1.27; 95% CI: 1.02-1.56) (P = 0.03) or severe anaemia (RR = 1.67; 95% CI: 1.25-2.24) (P = 0.0005) than older children. The prevalence of malaria parasitaemia in the community was low (3%, 53/1926). In Bissau, the prevalence of malaria parasitaemia in the community is now low and malaria is over-diagnosed in health facilities. Laboratory support will be essential to avoid unnecessary use of the artemisinin combination therapy which is now being introduced as first-line treatment in Bissau with support from the Global Fund.

  12. Molecular Evidence of Malaria and Zoonotic Diseases Among Rapid Diagnostic Test-Negative Febrile Patients in Low-Transmission Season, Mali.

    PubMed

    Touré, Mahamoudou; Petersen, Pelle T; Bathily, Sidy N'd; Sanogo, Daouda; Wang, Christian W; Schiøler, Karin L; Konradsen, Flemming; Doumbia, Seydou; Alifrangis, Michael

    2017-02-08

    From November to December 2012 in Sélingué-Mali, blood samples from 88 febrile patients who tested negative by malaria Paracheck ® rapid diagnostic tests (RDTs) were used to assess the presence of sub-RDT Plasmodium falciparum as well as Borrelia , Coxiella burnetii , and Babesia applying molecular tools. Plasmodium sp. was present among 57 (60.2%) of the 88 malaria RDT-negative patients, whereas the prevalence of Borrelia , C. burnetii , and Babesia were 3.4% ( N = 3), 1.1% ( N = 1), and 0.0%, respectively. The additional diagnostic use of polymerase chain reaction (PCR) identified a high proportion of Plasmodium sp.-positive samples and although this may be a concern for malaria control, the respective PCR-identified malaria infections were less likely responsible for the observed fevers given the low parasite density. Also, the low infection levels of Borrelia and C. burnetii and lack of Babesia among the febrile patients call for further studies to assess the causes of fever among malaria RDT-negative patients in Sélingué. © The American Society of Tropical Medicine and Hygiene.

  13. Challenges for modelling spatio-temporal variations of malaria risk in Malawi

    NASA Astrophysics Data System (ADS)

    Lowe, R.; Chirombo, J.; Tompkins, A. M.

    2012-04-01

    the unobserved confounding factors that influence malaria, which are not accounted for using measured covariates, a negative binomial generalised linear mixed model (GLMM) is adopted, which includes structured and unstructured spatial and temporal random effects. The parameters in this spatio-temporal Bayesian hierarchical model are estimated using Markov Chain Monte Carlo (MCMC). This allows posterior predictive distributions for disease risk to be derived for each spatial location and time period. A novel visualisation technique is then used to display seasonal probabilistic forecasts of malaria risk, derived from the developed model using pre-defined risk category thresholds, on a map. This technique allows decision makers to identify areas where the model predicts with certainty a particular malaria risk category (high, medium or low); in order to effectively target limited resources to those districts most at risk for a given season.

  14. Could Malaria Control Programmes be Timed to Coincide with Onset of Rainfall?

    PubMed

    Komen, Kibii

    2017-06-01

    Malaria cases in South Africa's Northern Province of Limpopo have surpassed known endemic KwaZulu Natal and Mpumalanga Provinces. This paper applies statistical methods: regression analysis and impulse response function to understand the timing of impact and the length that such impacts last. Climate data (rainfall and temperature) are obtained from South African Weather Services (SAWs); global data from the European Centre for Medium-Range Weather Forecasts (ECMWF), while clinical malaria data came from Malaria Control Centre in Tzaneen (Limpopo Province). Data collected span from January 1998 to July 2007. Signs of the coefficients are positive for rainfall and temperature and negative for their exponents. Three out of five independent variables consistently maintain a very high statistical level of significance. The coefficients for climate variables describe an inverted u-shape: parameters for the exponents of rainfall (-0.02, -0.01, -0.02, -0.00) and temperature (-46.61, -47.46, -48.14, -36.04) are both negative. A one standard deviation rise in rainfall (rainfall onset) increases malaria cases, and the effects become sustained for at least 3 months and conclude that onset of rainfall therefore triggers a 'malaria season'. Malaria control programme and early warning system should be intensified in the first 3 months following the onset of rainfall.

  15. The Hydrology of Malaria: Model Development and Application to a Sahelian Village

    NASA Astrophysics Data System (ADS)

    Bomblies, A.; Duchemin, J.; Eltahir, E. A.

    2008-12-01

    We present a coupled hydrology and entomology model for the mechanistic simulation of local-scale response of malaria transmission to hydrological and climatological determinants in semi-arid, desert fringe environments. The model is applied to the Sahel village of Banizoumbou, Niger, to predict interannual variability in malaria vector mosquito populations which lead to variations in malaria transmission. Using a high-resolution, small-scale distributed hydrology model that incorporates remotely-sensed data for land cover and topography, we simulate the formation and persistence of the pools constituting the primary breeding habitat of Anopheles gambiae s.l. mosquitoes, the principal regional malaria vector mosquitoes. An agent-based mosquito population model is coupled to the distributed hydrology model, with aquatic stage and adult stage components. For each individual adult mosquito, the model tracks attributes relevant to population dynamics and malaria transmission, which are updated as mosquitoes interact with their environment, humans, and animals. Weekly field observations were made in 2005 and 2006. The model reproduces mosquito population variability at seasonal and interannual time scales, and highlights individual pool persistence as a dominant control. Future developments to the presented model can be used in the evaluation of impacts of climate change on malaria, as well as the a priori evaluation of environmental management-based interventions.

  16. Elevated dry-season malaria prevalence associated with fine-scale spatial patterns of environmental risk: a case-control study of children in rural Malawi.

    PubMed

    Townes, Lindsay R; Mwandama, Dyson; Mathanga, Don P; Wilson, Mark L

    2013-11-11

    Understanding the role of local environmental risk factors for malaria in holo-endemic, poverty-stricken settings will be critical to more effectively implement- interventions aimed at eventual elimination. Household-level environmental drivers of malaria risk during the dry season were investigated in rural southern Malawi among children < five years old in two neighbouring rural Traditional Authority (TA) regions dominated by small-scale agriculture. Ten villages were randomly selected from TA Sitola (n = 6) and Nsamala (n = 4). Within each village, during June to August 2011, a census was conducted of all households with children under-five and recorded their locations with a geographic position system (GPS) device. At each participating house, a nurse administered a malaria rapid diagnostic test (RDT) to children under five years of age, and a questionnaire to parents. Environmental data were collected for each house, including land cover within 50-m radius. Variables found to be significantly associated with P. falciparum infection status in bivariate analysis were included in generalized linear models, including multivariate logistic regression (MLR) and multi-level multivariate logistic regression (MLLR). Spatial clustering of RDT status, environmental factors, and Pearson residuals from MLR and MLLR were analysed using the Getis-Ord Gi* statistic. Of 390 children enrolled from six villages in Sitola (n = 162) and four villages in Nsamala (n = 228), 45.6% tested positive (n = 178) for Plasmodium infection by RDT. The MLLR modelled the statistical relationship of Plasmodium positives and household proximity to agriculture (<25-m radius), controlling for the child sex and age (in months), bed net ownership, elevation, and random effects intercepts for village and TA-level unmeasured factors. After controlling for area affects in MLLR, proximity to active agriculture remained a significant predictor of positive RDT result (OR 2.80, 95% CI 1.41-5.55). Mapping of

  17. [Malaria situation and evaluation on the control effect in Henan Province during 1990-2005].

    PubMed

    Liu, Xue-zhou; Xu, Bian-li

    2006-06-01

    To analyze malaria situation and evaluate the effect of control program in Henan Province during 1990-2005. Data were collected and analyzed on the measures and effects of malaria control, vector surveillance, blood examination for cases with fever and serological surveillance in the province during 1990-2005. In the 16 years, a total of 802,700 people were given pre-transmission season treatment with chloroquine and primaquine for a radical cure of vivax malaria, chemoprophylaxis was given to 764,300 people at high risk during the transmission season, treatment or presumptive treatment was given to 43,891 cases. 11,216,100 cases with fever were tested and 11,213 (0.10%) were found positive accounting for 29.01% (11 213/338 654) of all malaria cases. A total of 1 332 800 bed nets were treated with insecticide and 1,999 300 people were protected in 1990-1992 and 1996-1999. 34,846 residents including pupils were tested with IFAT in 1990-2000 and 1149 (3.30%) were positive. The parasite rate amongst 71,234 local residents including pupils was 0.40% (286/71,234). The principal transmitting vectors were Anopheles sinensis and An. anthropophagus. The man-biting habit for An. sinensis and An. anthropophagus was 0.0608 and 0.3143 respectively, and the vectorial capacity of An. anthropophagus was 22.4 times higher than that of An. sinensis. In this period, 38,654 malaria cases were reported in the province and the annual malaria incidence was 2.62 per hundred thousand, the lowest annual incidence was in 1992 (0.37 per hundred thousand). 70.05% (27,076/38,654) of these malaria cases were from areas where An. anthropophagus was present. In general, the malaria control activities have been effective and the epidemiological situation kept stable in Henan Province, although in some areas the situation is unstable and outbreak spots or focal epidemics occur.

  18. Malaria Vector Surveillance in Ganghwa-do, a Malaria-Endemic Area in the Republic of Korea

    PubMed Central

    Oh, Sung Suck; Hur, Myung Je; Joo, Gwang Sig; Kim, Sung Tae; Go, Jong Myoung; Kim, Yong Hee; Lee, Wook Gyo

    2010-01-01

    We investigated the seasonality of Anopheles mosquitoes, including its species composition, density, parity, and population densities of mosquitoes infected with the parasite in Ganghwa-do (Island), a vivax malaria endemic area in the Republic of Korea. Mosquitoes were collected periodically with a dry-ice-tent trap and a blacklight trap during the mosquito season (April-October) in 2008. Anopheles sinensis (94.9%) was the most abundant species collected, followed by Anopheles belenrae (3.8%), Anopheles pullus (1.2%), and Anopheles lesteri (0.1%). Hibernating Anopheles mosquitoes were also collected from December 2007 to March 2008. An. pullus (72.1%) was the most frequently collected, followed by An. sinensis (18.4%) and An. belenrae (9.5%). The composition of Anopheles species differed between the mosquito season and hibernation seasons. The parous rate fluctuated from 0% to 92.9%, and the highest rate was recorded on 10 September 2008. Sporozoite infections were detected by PCR in the head and thorax of female Anopheles mosquitoes. The annual sporozoite rate of mosquitoes was 0.11% (2 of 1,845 mosquitoes). The 2 mosquitoes that tested positive for sporozoites were An. sinensis. Malarial infections in anopheline mosquitoes from a population pool were also tried irrespective of the mosquito species. Nine of 2,331 pools of Anopheles mosquitoes were positive. From our study, it can be concluded that An. sinensis, which was the predominant vector species and confirmed as sporozoite-infected, plays an important role in malaria transmission in Ganghwa-do. PMID:20333283

  19. Remotely-sensed, nocturnal, dew point correlates with malaria transmission in Southern Province, Zambia: a time-series study

    PubMed Central

    2014-01-01

    Background Plasmodium falciparum transmission has decreased significantly in Zambia in the last decade. The malaria transmission is influenced by environmental variables. Incorporation of environmental variables in models of malaria transmission likely improves model fit and predicts probable trends in malaria disease. This work is based on the hypothesis that remotely-sensed environmental factors, including nocturnal dew point, are associated with malaria transmission and sustain foci of transmission during the low transmission season in the Southern Province of Zambia. Methods Thirty-eight rural health centres in Southern Province, Zambia were divided into three zones based on transmission patterns. Correlations between weekly malaria cases and remotely-sensed nocturnal dew point, nocturnal land surface temperature as well as vegetation indices and rainfall were evaluated in time-series analyses from 2012 week 19 to 2013 week 36. Zonal as well as clinic-based, multivariate, autoregressive, integrated, moving average (ARIMAX) models implementing environmental variables were developed to model transmission in 2011 week 19 to 2012 week 18 and forecast transmission in 2013 week 37 to week 41. Results During the dry, low transmission season significantly higher vegetation indices, nocturnal land surface temperature and nocturnal dew point were associated with the areas of higher transmission. Environmental variables improved ARIMAX models. Dew point and normalized differentiated vegetation index were significant predictors and improved all zonal transmission models. In the high-transmission zone, this was also seen for land surface temperature. Clinic models were improved by adding dew point and land surface temperature as well as normalized differentiated vegetation index. The mean average error of prediction for ARIMAX models ranged from 0.7 to 33.5%. Forecasts of malaria incidence were valid for three out of five rural health centres; however, with poor

  20. Mapping hotspots of malaria transmission from pre-existing hydrology, geology and geomorphology data in the pre-elimination context of Zanzibar, United Republic of Tanzania.

    PubMed

    Hardy, Andrew; Mageni, Zawadi; Dongus, Stefan; Killeen, Gerry; Macklin, Mark G; Majambare, Silas; Ali, Abdullah; Msellem, Mwinyi; Al-Mafazy, Abdul-Wahiyd; Smith, Mark; Thomas, Chris

    2015-01-22

    Larval source management strategies can play an important role in malaria elimination programmes, especially for tackling outdoor biting species and for eliminating parasite and vector populations when they are most vulnerable during the dry season. Effective larval source management requires tools for identifying geographic foci of vector proliferation and malaria transmission where these efforts may be concentrated. Previous studies have relied on surface topographic wetness to indicate hydrological potential for vector breeding sites, but this is unsuitable for karst (limestone) landscapes such as Zanzibar where water flow, especially in the dry season, is subterranean and not controlled by surface topography. We examine the relationship between dry and wet season spatial patterns of diagnostic positivity rates of malaria infection amongst patients reporting to health facilities on Unguja, Zanzibar, with the physical geography of the island, including land cover, elevation, slope angle, hydrology, geology and geomorphology in order to identify transmission hot spots using Boosted Regression Trees (BRT) analysis. The distribution of both wet and dry season malaria infection rates can be predicted using freely available static data, such as elevation and geology. Specifically, high infection rates in the central and southeast regions of the island coincide with outcrops of hard dense limestone which cause locally elevated water tables and the location of dolines (shallow depressions plugged with fine-grained material promoting the persistence of shallow water bodies). This analysis provides a tractable tool for the identification of malaria hotspots which incorporates subterranean hydrology, which can be used to target larval source management strategies.

  1. Understanding malaria treatment-seeking preferences within the public sector amongst mobile/migrant workers in a malaria elimination scenario: a mixed-methods study.

    PubMed

    Win, Aung Ye Naung; Maung, Thae Maung; Wai, Khin Thet; Oo, Tin; Thi, Aung; Tipmontree, Rungrawee; Soonthornworasiri, Ngamphol; Kengganpanich, Mondha; Kaewkungwal, Jaranit

    2017-11-13

    Migration flows and the emerging resistance to artemisinin-based combination therapy in the Greater Mekong Sub-region (GMS) create programmatic challenges to meeting the AD 2030 malaria elimination target in Myanmar. The National Malaria Control Programme (NMCP) targeted migrant workers based mainly on the stability of their worksites (categories 1: permanent work-setting; categories 2 and 3: less stable work-settings). This study aims to assess the migration patterns, malaria treatment-seeking preferences, and challenges encountered by mobile/migrant workers at remote sites in a malaria-elimination setting. A mixed-methods explanatory sequential study retrospectively analysed the secondary data acquired through migrant mapping surveys (2013-2015) in six endemic regions (n = 9603). A multivariate logistic regression model was used to ascertain the contributing factors. A qualitative strand (2016-2017) was added by conducting five focus-group discussions (n = 50) and five in-depth interviews with migrant workers from less stable worksites in Shwegyin Township, Bago Region. The contiguous approach was used to integrate quantitative and qualitative findings. Among others, migrant workers from Bago Region were significantly more likely to report the duration of stay ≥ 12 months (63% vs. 49%) and high seasonal mobility (40% vs. 35%). Particularly in less stable settings, a very low proportion of migrant workers (17%) preferred to seek malaria treatment from the public sector and was significantly influenced by the worksite stability (adjusted OR = 1.4 and 2.3, respectively for categories 2 and 1); longer duration of stay (adjusted OR = 3.5); and adjusted OR < 2 for received malaria messages, knowledge of malaria symptoms and awareness of means of malaria diagnosis. Qualitative data further elucidated their preference for the informal healthcare sector, due to convenience, trust and good relations, and put migrant workers at risk of substandard care

  2. Rapid Urban Malaria Appraisal (RUMA) III: epidemiology of urban malaria in the municipality of Yopougon (Abidjan)

    PubMed Central

    Wang, Shr-Jie; Lengeler, Christian; Smith, Thomas A; Vounatsou, Penelope; Cissé, Guéladio; Tanner, Marcel

    2006-01-01

    Background Currently, there is a significant lack of knowledge concerning urban malaria patterns in general and in Abidjan in particular. The prevalence of malaria, its distribution in the city and the fractions of fevers attributable to malaria in the health facilities have not been previously investigated. Methods A health facility-based survey and health care system evaluation was carried out in a peripheral municipality of Abidjan (Yopougon) during the rainy season of 2002, applying a standardized Rapid Urban Malaria Appraisal (RUMA) methodology. Results According to national statistics, approximately 240,000 malaria cases (both clinical cases and laboratory confirmed cases) were reported by health facilities in the whole of Abidjan in 2001. They accounted for 40% of all consultations. In the health facilities of the Yopougon municipality, the malaria infection rates in fever cases for different age groups were 22.1% (under one year-olds), 42.8% (one to five years-olds), 42.0% (> five to 15 years-olds) and 26.8% (over 15 years-olds), while those in the control group were 13.0%. 26.7%, 21.8% and 14.6%, respectively. The fractions of malaria-attributable fever were 0.12, 0.22, 0.27 and 0.13 in the same age groups. Parasitaemia was homogenously detected in different areas of Yopougon. Among all children, 10.1% used a mosquito net (treated or not) the night before the survey and this was protective (OR = 0.52, 95% CI 0.29–0.97). Travel to rural areas within the last three months was frequent (31% of all respondents) and associated with a malaria infection (OR = 1.75, 95% CI 1.25–2.45). Conclusion Rapid urbanization has changed malaria epidemiology in Abidjan and endemicity was found to be moderate in Yopougon. Routine health statistics are not fully reliable to assess the burden of disease, and the low level of the fractions of malaria-attributable fevers indicated substantial over-treatment of malaria. PMID:16584575

  3. Vaccines Against Malaria

    PubMed Central

    Ouattara, Amed; Laurens, Matthew B.

    2015-01-01

    Despite global efforts to control malaria, the illness remains a significant public health threat. Currently, there is no licensed vaccine against malaria, but an efficacious vaccine would represent an important public health tool for successful malaria elimination. Malaria vaccine development continues to be hindered by a poor understanding of antimalarial immunity, a lack of an immune correlate of protection, and the genetic diversity of malaria parasites. Current vaccine development efforts largely target Plasmodium falciparum parasites in the pre-erythrocytic and erythrocytic stages, with some research on transmission-blocking vaccines against asexual stages and vaccines against pregnancy-associated malaria. The leading pre-erythrocytic vaccine candidate is RTS,S, and early results of ongoing Phase 3 testing show overall efficacy of 46% against clinical malaria. The next steps for malaria vaccine development will focus on the design of a product that is efficacious against the highly diverse strains of malaria and the identification of a correlate of protection against disease. PMID:25452593

  4. Patterns of Plasmodium vivax and Plasmodium falciparum malaria underscore importance of data collection from private health care facilities in India.

    PubMed

    Gupta, Sangeeta; Gunter, James T; Novak, Robert J; Regens, James L

    2009-10-12

    This study describes patterns of falciparum and vivax malaria in a private comprehensive-care, multi-specialty hospital in New Delhi from July 2006 to July 2008. Malarial morbidity by Plasmodium species (Plasmodium falciparum, Plasmodium vivax, or Plasmodium sp.) was confirmed using microscopy and antigen tests. The influence of seasonal factors and selected patient demographics on morbidity was evaluated. The proportions of malaria cases caused by P. falciparum at the private facility were compared to data from India's National Vector Borne Disease Control Programme (NVBDCP) during the same period for the Delhi region. In New Delhi, P. faciparum was the dominant cause of cases requiring treatment in the private hospital during the period examined. The national data reported a smaller proportion of malaria cases caused by P. falciparum in the national capital region than was observed in a private facility within the region. Plasmodium vivax also caused a large proportion of the cases presenting clinically at the private hospital during the summer and monsoon seasons. The proportion of P. falciparum malaria cases tends to be greatest during the post-monsoon season while the proportion of P. vivax malaria cases tends to be greatest in the monsoon season. Private hospital data demonstrate an under-reporting of malaria case incidences in the data from India's national surveillance programme during the same period for the national capital region.

  5. Changing Transmission Pattern of Plasmodium vivax Malaria in the Republic of Korea: Relationship with Climate Change.

    PubMed

    Park, Jae-Won

    2011-01-01

    Plasmodium vivax malaria has occurred annually in the Republic of Korea (ROK) since its re-emergence in 1993. P. vivax malaria in ROK has been strongly influenced by infected mosquitoes originating from the Democratic People's Republic of Korea. Korean P. vivax malaria has shown typical characteristics of unstable malaria transmitted only during the summer season, and displays short and long incubation periods. The changing pattern of the transmission period can be predicted by analyzing the seasonal characteristics of early primary attack cases with a short incubation period. Such cases began to gradually occur earlier in the 1990s after the re-emergence. Most of the malaria cases after mid-August are presumed to be early primary attack, short incubation period cases. Only primary transmission was possible until the early 2000s, whereas up to fourth or fifth transmission occurred in the mid-2000s. The results indicate that the length of transmission period has been gradually extending, which may be ascribed to a climate change-mediated temperature rise. Malaria and climate data should be integrated to analyze and predict the influence of climate change on malaria occurrence in ROK.

  6. Climatic Variables and Malaria Morbidity in Mutale Local Municipality, South Africa: A 19-Year Data Analysis

    PubMed Central

    Botai, Joel O.; Rautenbach, Hannes; Ncongwane, Katlego P.; Botai, Christina M.

    2017-01-01

    The north-eastern parts of South Africa, comprising the Limpopo Province, have recorded a sudden rise in the rate of malaria morbidity and mortality in the 2017 malaria season. The epidemiological profiles of malaria, as well as other vector-borne diseases, are strongly associated with climate and environmental conditions. A retrospective understanding of the relationship between climate and the occurrence of malaria may provide insight into the dynamics of the disease’s transmission and its persistence in the north-eastern region. In this paper, the association between climatic variables and the occurrence of malaria was studied in the Mutale local municipality in South Africa over a period of 19-year. Time series analysis was conducted on monthly climatic variables and monthly malaria cases in the Mutale municipality for the period of 1998–2017. Spearman correlation analysis was performed and the Seasonal Autoregressive Integrated Moving Average (SARIMA) model was developed. Microsoft Excel was used for data cleaning, and statistical software R was used to analyse the data and develop the model. Results show that both climatic variables’ and malaria cases’ time series exhibited seasonal patterns, showing a number of peaks and fluctuations. Spearman correlation analysis indicated that monthly total rainfall, mean minimum temperature, mean maximum temperature, mean average temperature, and mean relative humidity were significantly and positively correlated with monthly malaria cases in the study area. Regression analysis showed that monthly total rainfall and monthly mean minimum temperature (R2 = 0.65), at a two-month lagged effect, are the most significant climatic predictors of malaria transmission in Mutale local municipality. A SARIMA (2,1,2) (1,1,1) model fitted with only malaria cases has a prediction performance of about 51%, and the SARIMAX (2,1,2) (1,1,1) model with climatic variables as exogenous factors has a prediction performance of about 72

  7. Climatic Variables and Malaria Morbidity in Mutale Local Municipality, South Africa: A 19-Year Data Analysis.

    PubMed

    Adeola, Abiodun M; Botai, Joel O; Rautenbach, Hannes; Adisa, Omolola M; Ncongwane, Katlego P; Botai, Christina M; Adebayo-Ojo, Temitope C

    2017-11-08

    The north-eastern parts of South Africa, comprising the Limpopo Province, have recorded a sudden rise in the rate of malaria morbidity and mortality in the 2017 malaria season. The epidemiological profiles of malaria, as well as other vector-borne diseases, are strongly associated with climate and environmental conditions. A retrospective understanding of the relationship between climate and the occurrence of malaria may provide insight into the dynamics of the disease's transmission and its persistence in the north-eastern region. In this paper, the association between climatic variables and the occurrence of malaria was studied in the Mutale local municipality in South Africa over a period of 19-year. Time series analysis was conducted on monthly climatic variables and monthly malaria cases in the Mutale municipality for the period of 1998-2017. Spearman correlation analysis was performed and the Seasonal Autoregressive Integrated Moving Average (SARIMA) model was developed. Microsoft Excel was used for data cleaning, and statistical software R was used to analyse the data and develop the model. Results show that both climatic variables' and malaria cases' time series exhibited seasonal patterns, showing a number of peaks and fluctuations. Spearman correlation analysis indicated that monthly total rainfall, mean minimum temperature, mean maximum temperature, mean average temperature, and mean relative humidity were significantly and positively correlated with monthly malaria cases in the study area. Regression analysis showed that monthly total rainfall and monthly mean minimum temperature ( R ² = 0.65), at a two-month lagged effect, are the most significant climatic predictors of malaria transmission in Mutale local municipality. A SARIMA (2,1,2) (1,1,1) model fitted with only malaria cases has a prediction performance of about 51%, and the SARIMAX (2,1,2) (1,1,1) model with climatic variables as exogenous factors has a prediction performance of about 72% in

  8. Season of death and birth predict patterns of mortality in Burkina Faso.

    PubMed

    Kynast-Wolf, Gisela; Hammer, Gaël P; Müller, Olaf; Kouyaté, Bocar; Becher, Heiko

    2006-04-01

    Mortality in developing countries has multiple causes. Some of these causes are linked to climatic conditions that differ over the year. Data on season-specific mortality are sparse. We analysed longitudinal data from a population of approximately 35,000 individuals in Burkina Faso. During the observation period 1993-2001, a total number of 4,098 deaths were recorded. The effect of season on mortality was investigated separately by age group as (i) date of death and (ii) date of birth. For (i), age-specific death rates by month of death were calculated. The relative effect of each month was assessed using the floating relative risk method and modelled continuously. For (ii), age-specific death rates by month of birth were calculated and the mean date of birth among deaths and survivors was compared. Overall mortality was found to be consistently higher during the dry season (November to May). The pattern was seen in all age groups except in infants where a peak was seen around the end of the rainy season. In infants we found a strong association between high mortality and being born during the time period September to February. No effect was seen for the other age groups. The observed excess mortality in young children at or around the end of the rainy season can be explained by the effects of infectious diseases and, in particular, malaria during this time period. In contrast, the excess mortality seen in older children and adults during the early dry season remains largely unexplained although specific infectious diseases such as meningitis and pneumonia are possible main causes. The association between high infant mortality and being born at around the end of the rainy season is probably explained by most of the malaria deaths in areas of high transmission intensity occurring in the second half of infancy.

  9. Exploiting the behaviour of wild malaria vectors to achieve high infection with fungal biocontrol agents

    PubMed Central

    2012-01-01

    Background Control of mosquitoes that transmit malaria has been the mainstay in the fight against the disease, but alternative methods are required in view of emerging insecticide resistance. Entomopathogenic fungi are candidate alternatives, but to date, few trials have translated the use of these agents to field-based evaluations of their actual impact on mosquito survival and malaria risk. Mineral oil-formulations of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were applied using five different techniques that each exploited the behaviour of malaria mosquitoes when entering, host-seeking or resting in experimental huts in a malaria endemic area of rural Tanzania. Results Survival of mosquitoes was reduced by 39-57% relative to controls after forcing upward house-entry of mosquitoes through fungus treated baffles attached to the eaves or after application of fungus-treated surfaces around an occupied bed net (bed net strip design). Moreover, 68 to 76% of the treatment mosquitoes showed fungal growth and thus had sufficient contact with fungus treated surfaces. A population dynamic model of malaria-mosquito interactions shows that these infection rates reduce malaria transmission by 75-80% due to the effect of fungal infection on adult mortality alone. The model also demonstrated that even if a high proportion of the mosquitoes exhibits outdoor biting behaviour, malaria transmission was still significantly reduced. Conclusions Entomopathogenic fungi strongly affect mosquito survival and have a high predicted impact on malaria transmission. These entomopathogens represent a viable alternative for malaria control, especially if they are used as part of an integrated vector management strategy. PMID:22449130

  10. Optimal temperature for malaria transmission is dramaticallylower than previously predicted

    USGS Publications Warehouse

    Mordecai, Eerin A.; Paaijmans, Krijin P.; Johnson, Leah R.; Balzer, Christian; Ben-Horin, Tal; de Moor, Emily; McNally, Amy; Pawar, Samraat; Ryan, Sadie J.; Smith, Thomas C.; Lafferty, Kevin D.

    2013-01-01

    The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life-history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal-response models will aid in understanding the effects of current and future temperature regimes on disease transmission.

  11. Effects of Reservoir Characteristics on Malaria and its vector Abundance: A Case Study of the Bongo District of Ghana

    NASA Astrophysics Data System (ADS)

    Ofosu, E.; Awuah, E.; Annor, F. O.

    2009-04-01

    In the seven (7) administrative zones of the Bongo District of the Upper East Region of Ghana, the occurrences of malaria and relative abundance of the principal malaria vector, Anopheles species, were studied as a function of the presence and characteristics of reservoirs during the rainy season. Case studies in the sub-Sahara Africa indicate that malaria transmission may increase decrease or remain largely unchanged as a consequence of reservoir presence. Analysis made, shows that the distance from reservoir to settlement and surface area of reservoirs significantly affected adult Anopheles mosquito abundance. Percentage of inhabitants using insecticide treated nets, livestock population density, human population density and Anopheles mosquito abundance significantly affected the occurrence of malaria. The results suggest that vector control targeted at reservoir characteristics and larval control, and supplemented by high patronage of insecticide treated nets may be an effective approach for epidemic malaria control in the Bongo District. Key Words: Bongo District, Reservoir, Anopheles species, Malaria, Vector abundance.

  12. Malaria and World War II: German malaria experiments 1939-45.

    PubMed

    Eckart, W U; Vondra, H

    2000-06-01

    The epidemiological and pharmacological fight against malaria and German malaria research during the Nazi dictatorship were completely under the spell of war. The Oberkommando des Heeres (German supreme command of the army) suffered the bitter experience of unexpected high losses caused by malaria especially at the Greek front (Metaxes line) but also in southern Russia and in the Ukraine. Hastily raised anti-malaria units tried to teach soldiers how to use the synthetic malaria drugs (Plasmochine, Atebrine) properly. Overdoses of these drugs were numerous during the first half of the war whereas in the second half it soon became clear that it would not be possible to support the army due to insufficient quantities of plasmochine and atebrine. During both running fights and troop withdrawals at all southern and southeastern fronts there was hardly any malaria prophylaxis or treatment. After war and captivity many soldiers returned home to endure heavy malaria attacks. In German industrial (Bayer, IG-Farben) and military malaria laboratories of the Heeres-Sanitäts-Akademie (Army Medical Academy) the situation was characterised by a hasty search for proper dosages of anti-malaria drugs, adequate mechanical and chemical prophylaxis (Petroleum, DDT, and other insecticides) as well as an anti-malaria vaccine. Most importantly, large scale research for proper atebrine and plasmochine dosages was conducted in German concentration camps and mental homes. In Dachau Professor Claus Schilling tested synthetic malaria drugs and injected helpless prisoners with high and sometimes lethal doses. Since the 1920s he had been furiously looking for an anti-malaria vaccine in Italian mental homes and from 1939 he continued his experiments in Dachau. Similar experiments were also performed in Buchenwald and in a psychiatric clinic in Thuringia, where Professor Gerhard Rose tested malaria drugs with mentally ill Russian prisoners of war. Schilling was put to death for his criminal

  13. Association of temperature and historical dynamics of malaria in the Republic of Korea, including reemergence in 1993.

    PubMed

    Linthicum, Kenneth J; Anyamba, Assaf; Killenbeck, Bradley; Lee, Won-Ja; Lee, Hee Choon S; Klein, Terry A; Kim, Heung-Chul; Pavlin, Julie A; Britch, Seth C; Small, Jennifer; Tucker, Compton J; Gaydos, Joel C

    2014-07-01

    Plasmodium vivax malaria reemerged in the Republic of Korea in 1993 after it had been declared malaria free in 1979. Malaria rapidly increased and peaked in 2000 with 4,142 cases with lower but variable numbers of cases reported through 2011. We examined the association of regional climate trends over the Korean Peninsula relative to malaria cases in U.S. military and Republic of Korea soldiers, veterans, and civilians from 1950 to 2011. Temperatures and anomaly trends in air temperature associated with satellite remotely sensed outgoing long-wave radiation were used to observe temporal changes. These changes, particularly increasing air temperatures, in combination with moderate rains throughout the malaria season, and distribution of malaria vectors, likely supported the 1993 reemergence and peaks in malaria incidence that occurred through 2011 by accelerating the rate of parasite development in mosquitoes and increased numbers as a result of an expansion of larval habitat, thereby increasing the vectorial capacity of Anopheles vectors. High malaria rates associated with a favorable climate were similarly observed during the Korean War. These findings support the need for increased investigations into malaria predictive models using climate-related variables. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  14. Microdam Impoundments Provide Suitable Habitat for Larvae of Malaria Vectors: An Observational Study in Western Kenya.

    PubMed

    McCann, Robert S; Gimnig, John E; Bayoh, M Nabie; Ombok, Maurice; Walker, Edward D

    2018-05-04

    Impoundments formed by microdams in rural areas of Africa are important sources of water for people, but they provide potential larval habitats for Anopheles (Diptera: Culicidae) mosquitoes that are vectors of malaria. To study this association, the perimeters of 31 microdam impoundments in western Kenya were sampled for Anopheles larvae in three zones (patches of floating and emergent vegetation, shorelines of open water, and aggregations of cattle hoofprints) across dry and rainy seasons. Of 3,169 larvae collected, most (86.8%) were collected in the rainy season. Of 2,403 larvae successfully reared to fourth instar or adult, nine species were identified; most (80.2%) were Anopheles arabiensis Patton, sampled from hoofprint zones in the rainy season. Other species collected were Anopheles coustani Laveran, Anopheles gambiae s.s. Giles, Anopheles funestus Giles, and Anopheles rivulorum Leeson, Anopheles pharoensis Theobald, Anopheles squamosus Theobald, Anopheles rufipes (Gough), and Anopheles ardensis (Theobald). Larvae of An. funestus were uncommon (1.5%) in both dry and rainy seasons and were confined to vegetated zones, suggesting that microdam impoundments are not primary habitats for this important vector species, although microdams may provide a dry season refuge habitat for malaria vectors, contributing to population persistence through the dry season. In this study, microdam impoundments clearly provided habitat for the malaria vector An. arabiensis in the rainy season, most of which was within the shallow apron side of the impoundments where people brought cattle for watering, resulting in compacted soil with aggregations of water-filled hoofprints. This observation suggests a potential conflict between public health concerns about malaria and people's need for stable and reliable sources of water.

  15. Can water-level management reduce malaria mosquito abundance around large dams in sub-Saharan Africa?

    PubMed Central

    Wilson, G. Glenn; Ryder, Darren; Tekie, Habte; Petros, Beyene

    2018-01-01

    Background Water level management has been suggested as a potential tool to reduce malaria around large reservoirs. However, no field-based test has been conducted to assess the effect of water level management on mosquito larval abundance in African settings. The objective of the present study is to evaluate the effects of water level drawdown rates on mosquito larval abundance. Methods Twelve experimental dams were constructed on the foreshore of the Koka Dam in Ethiopia. These were grouped into four daily water drawdown treatments, each with three replicates: no water-level drawdown (Group 1; Control), 10 mm.d-1 (Group 2), 15 mm.d-1 (Group 3) and 20 mm.d-1 (Group 4). Larval sampling was conducted weekly for a period of 6 weeks each in the main malaria transmission season (October to November 2013) and subsequent dry season (February to March 2014). Larval densities were compared among treatments over time using repeated measures Analysis of Variance (ANOVA). Results A total of 284 Anopheles mosquito larvae were collected from the experimental dams during the study period. Most (63.4%; n = 180) were collected during the main malaria transmission season while the remaining (36.6%; n = 104) were collected during the dry season. Larvae comprised four Anopheles species, dominated by Anopheles arabiensis (48.1% of total larval samples; n = 136) and An. pharoensis (33.2%; n = 94). Mean larval density was highest in control treatment dams with stable water levels throughout the study, and decreased significantly (P < 0.05) with increasing water drawdown rates in both seasons. During the main transmission season, anopheline larval density was generally lower by 30%, 70% and 84% in Groups 2, Group 3 and Group 4, respectively, compared with the control dams (Group 1). In the dry season, larval density was reduced by 45%, 70% and 84% in Groups 2, Group 3 and Group 4, respectively, when compared to the control dams. Conclusion Increased water drawdown rates were associated

  16. Invasive Salmonella Infections in Areas of High and Low Malaria Transmission Intensity in Tanzania

    PubMed Central

    Biggs, Holly M.; Lester, Rebecca; Nadjm, Behzad; Mtove, George; Todd, Jim E.; Kinabo, Grace D.; Philemon, Rune; Amos, Ben; Morrissey, Anne B.; Reyburn, Hugh; Crump, John A.

    2014-01-01

    Background. The epidemiology of Salmonella Typhi and invasive nontyphoidal Salmonella (NTS) differs, and prevalence of these pathogens among children in sub-Saharan Africa may vary in relation to malaria transmission intensity. Methods. We compared the prevalence of bacteremia among febrile pediatric inpatients aged 2 months to 13 years recruited at sites of high and low malaria endemicity in Tanzania. Enrollment at Teule Hospital, the high malaria transmission site, was from June 2006 through May 2007, and at Kilimanjaro Christian Medical Centre (KCMC), the low malaria transmission site, from September 2007 through August 2008. Automated blood culture, malaria microscopy with Giemsa-stained blood films, and human immunodeficiency virus testing were performed. Results. At Teule, 3639 children were enrolled compared to 467 at KCMC. Smear-positive malaria was detected in 2195 of 3639 (60.3%) children at Teule and 11 of 460 (2.4%) at KCMC (P < .001). Bacteremia was present in 336 of 3639 (9.2%) children at Teule and 20 of 463 (4.3%) at KCMC (P < .001). NTS was isolated in 162 of 3639 (4.5%) children at Teule and 1 of 463 (0.2%) at KCMC (P < .001). Salmonella Typhi was isolated from 11 (0.3%) children at Teule and 6 (1.3%) at KCMC (P = .008). With NTS excluded, the prevalence of bacteremia at Teule was 5.0% and at KCMC 4.1% (P = .391). Conclusions. Where malaria transmission was intense, invasive NTS was common and Salmonella Typhi was uncommon, whereas the inverse was observed at a low malaria transmission site. The relationship between these pathogens, the environment, and the host is a compelling area for further research. PMID:24336909

  17. High risk of Plasmodium vivax malaria following splenectomy in Papua, Indonesia.

    PubMed

    Kho, Steven; Andries, Benediktus; Poespoprodjo, Jeanne R; Commons, Robert J; Shanti, Putu A I; Kenangalem, Enny; Douglas, Nicholas M; Simpson, Julie A; Sugiarto, Paulus; Anstey, Nicholas M; Price, Ric N

    2018-05-16

    Splenectomy increase the risk of severe and fatal infections, however the risk of Plasmodium vivax malaria is unknown. We quantified the Plasmodium species-specific risks of malaria and other outcomes following splenectomy in patients attending a hospital in Papua, Indonesia. Records of all patients attending Mitra-Masyarakat Hospital 2004-2013 were reviewed, identifying those who underwent splenectomy. Subsequent risks of specific clinical outcomes within 12 months for splenectomized patients were compared to non-splenectomized patients from their first recorded hospital admission. In addition, patients splenectomized for trauma between 2015-2016 were followed prospectively for 14 months. Of the 10,774 non-pregnant patients aged 12-60 years hospitalized during 2004-2013, 67 underwent splenectomy. Compared to non-splenectomized inpatients, patients undergoing splenectomy had a 5-fold higher rate of malaria presentation within 12 months (Adjusted Hazard Ratio (AHR)=5.0 [95%CI:3.4-7.3], p<0.001). The rate was greater for P. vivax (AHR=7.8 [95%CI:5.0-12.3], p<0.001) compared to P. falciparum (AHR=3.0 [95%CI:1.7-5.4], p<0.001). Splenectomized patients had greater risk of being hospitalized for any cause (AHR=1.8 [95%CI:1.0-3.0], p=0.037) and, diarrheal illness (AHR=3.5 [95%CI:1.3-9.6], p=0.016). In the prospective cohort, 8 of 11 splenectomized patients had 18 episodes of malaria over 14 months, 12 episodes of P. vivax in 8 patients and 6 episodes of P. falciparum in 6 patients. Splenectomy is associated with a high risk of malaria, greater for P. vivax than P. falciparum. Eradication of P. vivax hypnozoites using primaquine (radical cure) and subsequent malaria prophylaxis is warranted in patients following splenectomy in malaria-endemic areas, particularly in the early post-operative period.

  18. Predictability of malaria parameters in Sahel under the S4CAST Model.

    NASA Astrophysics Data System (ADS)

    Diouf, Ibrahima; Rodríguez-Fonseca, Belen; Deme, Abdoulaye; Cisse, Moustapha; Ndione, Jaques-Andre; Gaye, Amadou; Suárez-Moreno, Roberto

    2016-04-01

    An extensive literature exists documenting the ENSO impacts on infectious diseases, including malaria. Other studies, however, have already focused on cholera, dengue and Rift Valley Fever. This study explores the seasonal predictability of malaria outbreaks over Sahel from previous SSTs of Pacific and Atlantic basins. The SST may be considered as a source of predictability due to its direct influence on rainfall and temperature, thus also other related variables like malaria parameters. In this work, the model has been applied to the study of predictability of the Sahelian malaria parameters from the leading MCA covariability mode in the framework of climate and health issue. The results of this work will be useful for decision makers to better access to climate forecasts and application on malaria transmission risk.

  19. [Analysis of highly cited papers related to malaria in Chinese journals from 2006 to 2013].

    PubMed

    Yao, Deng; Jin-Yu, Mo; Jian, Li

    2016-01-25

    To analyze the highly cited malaria papers published in Chinese journals from 2006 to 2013, so as to provide the evidence for formulating the plan of selecting topics to the journal editors. The published articles related to malaria included in CNKI and Wanfang medical network from 2006 to 2013 were collected, and the highly cited papers were selected according to the citation frequency calculated by Price's formula. Then the characteristics of the highly cited papers were analyzed. From 2006 to 2013, a total of 1 976 published papers related to malaria were searched in Chinese journals and 98 papers of them were selected as highly cited papers. In the highly cited papers, 18 papers were published in China Tropical Medicine , and 16 and 15 papers were published in Chinese Journal of Parasitology and Parasitic Diseases and Chinese Journal of Schistosomiasis Control , respectively; and original articles accounted for 42.86%; the first authors of these papers were from 44 institutions, and 40.91% of them were from centers for disease control and prevention (CDCs); a percentage of 22.45% of the highly cited papers received fund programs, and most of them were national or provincial funds. The research hotspots were focused on the epidemiology and control, and epidemic situation of malaria. The highly cited papers related to malaria are mainly from CDCs and research institutions, and the related journals could use this information to chose topics and solicit contributions to improve their influence.

  20. Asymptomatic Malaria and its Challenges in the Malaria Elimination Program in Iran: a Systematic Review

    PubMed Central

    Hassanpour, Gholmreza; Mohebali, Mehdi; Zeraati, Hojjat; Raeisi, Ahmad; Keshavarz, Hossein

    2017-01-01

    Background: The objective of this study was to find an appropriate approach to asymptomatic malaria in elimination setting through a systematic review. Methods: A broad search was conducted to find articles with the words ‘malaria’ in their titles and ‘asymptomatic’ or ‘submicroscopic’ in their texts, irrespective of the type of study conducted. The Cochrane, Medline/Pub Med, and Scopus databases, as well as Google Scholar were systematically searched for English articles and reports and Iran’s databases-Iran Medex, SID and Magiran were searched for Persian reports and articles, with no time limitation. The study was qualitatively summarized if it contained precise information on the role of asymptomatic malaria in the elimination phase. Results: Six articles were selected from the initial 2645 articles. The results all re-emphasize the significance of asymptomatic malaria in the elimination phase, and emphasize the significance of diagnostic tests of higher sensitivity to locate these patients and perform interventions to reduce the asymptomatic parasitic reservoirs particularly in regions of low transmission. However, we may infer from the results that the current evidence cannot yet specify an accurate strategy on the role of asymptomatic malaria in the elimination phase. Conclusion: To eliminate malaria, alongside vector control, and treatment of symptomatic and asymptomatic patients, active and inactive methods of case detection need to be employed. The precise monitoring of asymptomatic individuals and submicroscopic cases of malaria through molecular assays and valid serological methods, especially in regions where seasonal and low transmission exists can be very helpful at this phase. PMID:29062842

  1. Implementation of Malaria Dynamic Models in Municipality Level Early Warning Systems in Colombia. Part I: Description of Study Sites

    PubMed Central

    Ruiz, Daniel; Cerón, Viviana; Molina, Adriana M.; Quiñónes, Martha L.; Jiménez, Mónica M.; Ahumada, Martha; Gutiérrez, Patricia; Osorio, Salua; Mantilla, Gilma; Connor, Stephen J.; Thomson, Madeleine C.

    2014-01-01

    As part of the Integrated National Adaptation Pilot project and the Integrated Surveillance and Control System, the Colombian National Institute of Health is working on the design and implementation of a Malaria Early Warning System framework, supported by seasonal climate forecasting capabilities, weather and environmental monitoring, and malaria statistical and dynamic models. In this report, we provide an overview of the local ecoepidemiologic settings where four malaria process-based mathematical models are currently being implemented at a municipal level. The description includes general characteristics, malaria situation (predominant type of infection, malaria-positive cases data, malaria incidence, and seasonality), entomologic conditions (primary and secondary vectors, mosquito densities, and feeding frequencies), climatic conditions (climatology and long-term trends), key drivers of epidemic outbreaks, and non-climatic factors (populations at risk, control campaigns, and socioeconomic conditions). Selected pilot sites exhibit different ecoepidemiologic settings that must be taken into account in the development of the integrated surveillance and control system. PMID:24891460

  2. Implementation of malaria dynamic models in municipality level early warning systems in Colombia. Part I: description of study sites.

    PubMed

    Ruiz, Daniel; Cerón, Viviana; Molina, Adriana M; Quiñónes, Martha L; Jiménez, Mónica M; Ahumada, Martha; Gutiérrez, Patricia; Osorio, Salua; Mantilla, Gilma; Connor, Stephen J; Thomson, Madeleine C

    2014-07-01

    As part of the Integrated National Adaptation Pilot project and the Integrated Surveillance and Control System, the Colombian National Institute of Health is working on the design and implementation of a Malaria Early Warning System framework, supported by seasonal climate forecasting capabilities, weather and environmental monitoring, and malaria statistical and dynamic models. In this report, we provide an overview of the local ecoepidemiologic settings where four malaria process-based mathematical models are currently being implemented at a municipal level. The description includes general characteristics, malaria situation (predominant type of infection, malaria-positive cases data, malaria incidence, and seasonality), entomologic conditions (primary and secondary vectors, mosquito densities, and feeding frequencies), climatic conditions (climatology and long-term trends), key drivers of epidemic outbreaks, and non-climatic factors (populations at risk, control campaigns, and socioeconomic conditions). Selected pilot sites exhibit different ecoepidemiologic settings that must be taken into account in the development of the integrated surveillance and control system. © The American Society of Tropical Medicine and Hygiene.

  3. Receptivity to malaria in the China-Myanmar border in Yingjiang County, Yunnan Province, China.

    PubMed

    Chen, Tianmu; Zhang, Shaosen; Zhou, Shui-Sen; Wang, Xuezhong; Luo, Chunhai; Zeng, Xucan; Guo, Xiangrui; Lin, Zurui; Tu, Hong; Sun, Xiaodong; Zhou, Hongning

    2017-11-21

    The re-establishment of malaria has become an important public health issue in and out of China, and receptivity to this disease is key to its re-emergence. Yingjiang is one of the few counties with locally acquired malaria cases in the China-Myanmar border in China. This study aimed to understand receptivity to malaria in Yingjiang County, China, from June to October 2016. Light-traps were employed to capture the mosquitoes in 17 villages in eight towns which were categorized into four elevation levels: level 1, 0-599 m; level 2, 600-1199 m; level 3, 1200-1799 m; and level 4, > 1800 m. Species richness, diversity, dominance and evenness were used to picture the community structure. Similarity in species composition was compared between different elevation levels. Data of seasonal abundance of mosquitoes, human biting rate, density of light-trap-captured adult mosquitoes and larvae, parous rate, and height distribution (density) of Anopheles minimus and Anopheles sinensis were collected in two towns (Na Bang and Ping Yuan) each month from June to October, 2016. Over the study period, 10,053 Anopheles mosquitoes were collected from the eight towns, and 15 Anopheles species were identified, the most-common of which were An. sinensis (75.4%), Anopheles kunmingensis (15.6%), and An. minimus (3.5%). Anopheles minimus was the major malaria vector in low-elevation areas (< 600 m, i.e., Na Bang town), and An. sinensis in medium-elevation areas (600-1200 m, i.e., Ping Yuan town). In Na Bang, the peak human-biting rate of An. minimus at the inner and outer sites of the village occurred in June and August 2016, with 5/bait/night and 15/bait/night, respectively. In Ping Yuan, the peak human-biting rate of An. sinensis was in August, with 9/bait/night at the inner site and 21/bait/night at the outer site. The two towns exhibited seasonal abundance with high density of the two adult vectors: The peak density of An. minimus was in June and that of An. sinensis was in

  4. Novel strategies lead to pre-elimination of malaria in previously high-risk areas in Suriname, South America.

    PubMed

    Hiwat, Hélène; Hardjopawiro, Loretta S; Takken, Willem; Villegas, Leopoldo

    2012-01-09

    Suriname was a high malaria risk country before the introduction of a new five-year malaria control program in 2005, the Medical Mission Malaria Programme (MM-MP). Malaria was endemic in the forested interior, where especially the stabile village communities were affected. The interventions of the MM-MP included new strategies for prevention, vector control, case management, behavioral change communication (BCC)/information, education and communication (IEC), and strengthening of the health system (surveillance, monitoring and evaluation and epidemic detection system). After a slow first year with non-satisfying scores for the performance indicators, the MM-MP truly engaged in its intervention activities in 2006 and kept its performance up until the end of 2009. A total of 69,994 long-lasting insecticide-treated nets were distributed and more than 15,000 nets re-impregnated. In high-risk areas, this was complemented with residual spraying of insecticides. Over 10,000 people were screened with active case detection in outbreak and high-risk areas. Additional notification points were established and the national health system was strengthened. In the current paper, the MM-MP is evaluated both on account of the targets established within the programme and on account of its impact on the malaria situation in Suriname. Malaria vector populations, monitored in sentinel sites, collapsed after 2006 and concurrently the number of national malaria cases decreased from 8,618 in 2005 to 1,509 in 2009. Malaria transmission risk shifted from the stabile village communities to the mobile gold mining communities, especially those along the French Guiana border. The novel strategies for malaria control introduced in Suriname within the MM-MP have led to a significant decrease in the national malaria burden. The challenge is to further reduce malaria using the available strategies as appropriate in the affected areas and populations. Elimination of malaria in the country will

  5. The complexities of malaria disease manifestations with a focus on asymptomatic malaria

    PubMed Central

    2012-01-01

    Malaria is a serious parasitic disease in the developing world, causing high morbidity and mortality. The pathogenesis of malaria is complex, and the clinical presentation of disease ranges from severe and complicated, to mild and uncomplicated, to asymptomatic malaria. Despite a wealth of studies on the clinical severity of disease, asymptomatic malaria infections are still poorly understood. Asymptomatic malaria remains a challenge for malaria control programs as it significantly influences transmission dynamics. A thorough understanding of the interaction between hosts and parasites in the development of different clinical outcomes is required. In this review, the problems and obstacles to the study and control of asymptomatic malaria are discussed. The human and parasite factors associated with differential clinical outcomes are described and the management and treatment strategies for the control of the disease are outlined. Further, the crucial gaps in the knowledge of asymptomatic malaria that should be the focus of future research towards development of more effective malaria control strategies are highlighted. PMID:22289302

  6. Strain-specific Plasmodium falciparum growth inhibition among Malian children immunized with a blood-stage malaria vaccine.

    PubMed

    Laurens, Matthew B; Kouriba, Bourema; Bergmann-Leitner, Elke; Angov, Evelina; Coulibaly, Drissa; Diarra, Issa; Daou, Modibo; Niangaly, Amadou; Blackwelder, William C; Wu, Yukun; Cohen, Joe; Ballou, W Ripley; Vekemans, Johan; Lanar, David E; Dutta, Sheetij; Diggs, Carter; Soisson, Lorraine; Heppner, D Gray; Doumbo, Ogobara K; Plowe, Christopher V; Thera, Mahamadou A

    2017-01-01

    The blood-stage malaria vaccine FMP2.1/AS02A, comprised of recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1) and the adjuvant system AS02A, had strain-specific efficacy against clinical malaria caused by P. falciparum with the vaccine strain 3D7 AMA1 sequence. To evaluate a potential correlate of protection, we measured the ability of participant sera to inhibit growth of 3D7 and FVO strains in vitro using high-throughput growth inhibition assay (GIA) testing. Sera from 400 children randomized to receive either malaria vaccine or a control rabies vaccine were assessed at baseline and over two annual malaria transmission seasons after immunization. Baseline GIA against vaccine strain 3D7 and FVO strain was similar in both groups, but more children in the malaria vaccine group than in the control group had 3D7 and FVO GIA activity ≥15% 30 days after the last vaccination (day 90) (49% vs. 16%, p<0.0001; and 71.8% vs. 60.4%, p = 0.02). From baseline to day 90, 3D7 GIA in the vaccine group was 7.4 times the mean increase in the control group (p<0.0001). In AMA1 vaccinees, 3D7 GIA activity subsequently returned to baseline one year after vaccination (day 364) and did not correlate with efficacy in the extended efficacy time period to day 730. In Cox proportional hazards regression models with time-varying covariates, there was a slight suggestion of an association between 3D7 GIA activity and increased risk of clinical malaria between day 90 and day 240. We conclude that vaccination with this AMA1-based malaria vaccine increased inhibition of parasite growth, but this increase was not associated with allele-specific efficacy in the first malaria season. These results provide a framework for testing functional immune correlates of protection against clinical malaria in field trials, and will help to guide similar analyses for next-generation malaria vaccines. Clinical trials registry: This clinical trial was registered on clinicaltrials.gov, registry

  7. Strain-specific Plasmodium falciparum growth inhibition among Malian children immunized with a blood-stage malaria vaccine

    PubMed Central

    Kouriba, Bourema; Bergmann-Leitner, Elke; Angov, Evelina; Coulibaly, Drissa; Diarra, Issa; Daou, Modibo; Niangaly, Amadou; Blackwelder, William C.; Wu, Yukun; Cohen, Joe; Ballou, W. Ripley; Vekemans, Johan; Lanar, David E.; Dutta, Sheetij; Diggs, Carter; Soisson, Lorraine; Heppner, D. Gray; Doumbo, Ogobara K.; Plowe, Christopher V.; Thera, Mahamadou A.

    2017-01-01

    The blood-stage malaria vaccine FMP2.1/AS02A, comprised of recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1) and the adjuvant system AS02A, had strain-specific efficacy against clinical malaria caused by P. falciparum with the vaccine strain 3D7 AMA1 sequence. To evaluate a potential correlate of protection, we measured the ability of participant sera to inhibit growth of 3D7 and FVO strains in vitro using high-throughput growth inhibition assay (GIA) testing. Sera from 400 children randomized to receive either malaria vaccine or a control rabies vaccine were assessed at baseline and over two annual malaria transmission seasons after immunization. Baseline GIA against vaccine strain 3D7 and FVO strain was similar in both groups, but more children in the malaria vaccine group than in the control group had 3D7 and FVO GIA activity ≥15% 30 days after the last vaccination (day 90) (49% vs. 16%, p<0.0001; and 71.8% vs. 60.4%, p = 0.02). From baseline to day 90, 3D7 GIA in the vaccine group was 7.4 times the mean increase in the control group (p<0.0001). In AMA1 vaccinees, 3D7 GIA activity subsequently returned to baseline one year after vaccination (day 364) and did not correlate with efficacy in the extended efficacy time period to day 730. In Cox proportional hazards regression models with time-varying covariates, there was a slight suggestion of an association between 3D7 GIA activity and increased risk of clinical malaria between day 90 and day 240. We conclude that vaccination with this AMA1-based malaria vaccine increased inhibition of parasite growth, but this increase was not associated with allele-specific efficacy in the first malaria season. These results provide a framework for testing functional immune correlates of protection against clinical malaria in field trials, and will help to guide similar analyses for next-generation malaria vaccines. Clinical trials registry: This clinical trial was registered on clinicaltrials.gov, registry

  8. Optimal temperature for malaria transmission is dramatically lower than previously predicted

    USGS Publications Warehouse

    Mordecai, Erin A.; Paaijmans, Krijn P.; Johnson, Leah R.; Balzer, Christian; Ben-Horin, Tal; de Moor, Emily; McNally, Amy; Pawar, Samraat; Ryan, Sadie J.; Smith, Thomas C.; Lafferty, Kevin D.

    2013-01-01

    The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life-history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal-response models will aid in understanding the effects of current and future temperature regimes on disease transmission.

  9. Review of Malaria Epidemics in Ethiopia using Enhanced Climate Services (ENACTS)

    NASA Astrophysics Data System (ADS)

    Muhammad, A.

    2015-12-01

    Malaria is a disease directly linked to temperature and rainfall. In Ethiopia, the influence of climate variables on malaria transmission and the subsequent role of ENSO in the rise of malaria incidence are becoming more recognized. Numerous publications attest to the extreme sensitivity of malaria to climate in Ethiopia. The majority of large-scale epidemics in the past were associated with climatic factors such as temperature and rainfall. However, there is limited information on climate variability and ENSO at the district level to aid in public health decision-making. Since 2008, the National Meteorogy Agency (NMA) and the International Research Institute for Climate and Society (IRI) have been collaborating on improving climate services in Ethiopia. This collaboration spurred the implementation of the Enhancing National Climate Services (ENACTS) initiative and the creation of the IRI Data Library (DL) NMA Ethiopia Maproom. ENACTS provides reliable and readily accessible climate data at high resolutions and the Maproom uses ENACTS to build a collection of maps and other figures that monitor climate and societal conditions at present and in the recent past (1981-2010). A recent analysis exploring the relationship of rainfall and temperature ENACTS products to malaria epidemics in proceeding rainy seasons within 12 woredas found above normal temperature anomalies to be more readily associated with epidemics when compared to above normal rainfall anomalies, regardless of the ENSO phase (Figure 1-2).

  10. Vaccines against malaria.

    PubMed

    Ouattara, Amed; Laurens, Matthew B

    2015-03-15

    Despite global efforts to control malaria, the illness remains a significant public health threat. Currently, there is no licensed vaccine against malaria, but an efficacious vaccine would represent an important public health tool for successful malaria elimination. Malaria vaccine development continues to be hindered by a poor understanding of antimalarial immunity, a lack of an immune correlate of protection, and the genetic diversity of malaria parasites. Current vaccine development efforts largely target Plasmodium falciparum parasites in the pre-erythrocytic and erythrocytic stages, with some research on transmission-blocking vaccines against asexual stages and vaccines against pregnancy-associated malaria. The leading pre-erythrocytic vaccine candidate is RTS,S, and early results of ongoing Phase 3 testing show overall efficacy of 46% against clinical malaria. The next steps for malaria vaccine development will focus on the design of a product that is efficacious against the highly diverse strains of malaria and the identification of a correlate of protection against disease. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Malaria.

    PubMed

    Ashley, Elizabeth A; Pyae Phyo, Aung; Woodrow, Charles J

    2018-04-21

    Following unsuccessful eradication attempts there was a resurgence of malaria towards the end of the 20th century. Renewed control efforts using a range of improved tools, such as long-lasting insecticide-treated bednets and artemisinin-based combination therapies, have more than halved the global burden of disease, but it remains high with 445 000 deaths and more than 200 million cases in 2016. Pitfalls in individual patient management are delayed diagnosis and overzealous fluid resuscitation in severe malaria. Even in the absence of drug resistance, parasite recurrence can occur, owing to high parasite densities, low host immunity, or suboptimal drug concentrations. Malaria elimination is firmly back as a mainstream policy but resistance to the artemisinin derivatives, their partner drugs, and insecticides present major challenges. Vaccine development continues on several fronts but none of the candidates developed to date have been shown to provide long-lasting benefits at a population level. Increased resources and unprecedented levels of regional cooperation and societal commitment will be needed if further substantial inroads into the malaria burden are to be made. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Climate impact on malaria in northern Burkina Faso.

    PubMed

    Tourre, Yves M; Vignolles, Cécile; Viel, Christian; Mounier, Flore

    2017-11-27

    The Paluclim project managed by the French Centre National d'Etudes Spatiales (CNES) found that total rainfall for a 3-month period is a confounding factor for the density of malaria vectors in the region of Nouna in the Sahel administrative territory of northern Burkina Faso. Following the models introduced in 1999 by Craig et al. and in 2003 by Tanser et al., a climate impact model for malaria risk (using different climate indices) was created. Several predictions of this risk at different temporal scales (i.e. seasonal, inter-annual and low-frequency) were assessed using this climate model. The main result of this investigation was the discovery of a significant link between malaria risk and low-frequency rainfall variability related to the Atlantic Multi-decadal Oscillation (AMO). This result is critical for the health information systems in this region. Knowledge of the AMO phases would help local authorities to organise preparedness and prevention of malaria, which is of particular importance in the climate change context.

  13. Role of Anopheles culicifacies s.l. and An. pulcherrimus in malaria transmission in Ghassreghand (Baluchistan), Iran.

    PubMed

    Zaim, M; Subbarao, S K; Manouchehri, A V; Cochrane, A H

    1993-03-01

    A 2-site immunoradiometric assay (IRMA) was performed on the head and thorax of Anopheles culicifacies s.l. and An. pulcherrimus females, the 2 most common anopheline species in the District of Ghassreghand (Baluchistan, Iran), collected during the 2 peak malaria transmission seasons (May and September-October 1991). Positive IRMA results revealed the 2 species as potential vectors of malaria in this highly endemic district. This finding serves as the first report on natural infection of An. pulcherrimus in Iran and is the second on natural infection of An. culicifacies since the previous report of 1959.

  14. Temporal dynamic of malaria in a suburban area along the Niger River.

    PubMed

    Sissoko, Mahamadou Soumana; Sissoko, Kourane; Kamate, Bourama; Samake, Yacouba; Goita, Siaka; Dabo, Abdoulaye; Yena, Mama; Dessay, Nadine; Piarroux, Renaud; Doumbo, Ogobara K; Gaudart, Jean

    2017-10-23

    Even if rainfall and temperature are factors classically associated to malaria, little is known about other meteorological factors, their variability and combinations related to malaria, in association with river height variations. Furthermore, in suburban area, urbanization and growing population density should be assessed in relation to these environmental factors. The aim of this study was to assess the impact of combined environmental, meteorological and hydrological factors on malaria incidence through time in the context of urbanization. Population observational data were prospectively collected. Clinical malaria was defined as the presence of parasites in addition to clinical symptoms. Meteorological and hydrological factors were measured daily. For each factors variation indices were estimated. Urbanization was yearly estimated assessing satellite imaging and field investigations. Principal component analysis was used for dimension reduction and factors combination. Lags between malaria incidences and the main components were assessed by cross-correlation functions. Generalized additive model was used to assess relative impact of different environmental components, taking into account lags, and modelling non-linear relationships. Change-point analysis was used to determine transmission periods within years. Malaria incidences were dominated by annual periodicity and varied through time without modification of the dynamic, with no impact of the urbanization. The main meteorological factor associated with malaria was a combination of evaporation, humidity and rainfall, with a lag of 3 months. The relationship between combined temperature factors showed a linear impact until reaching high temperatures limiting malaria incidence, with a lag 3.25 months. Height and variation of the river were related to malaria incidence (respectively 6 week lag and no lag). The study emphasizes no decreasing trend of malaria incidence despite accurate access to care and

  15. The importance of temperature fluctuations in understanding mosquito population dynamics and malaria risk.

    PubMed

    Beck-Johnson, Lindsay M; Nelson, William A; Paaijmans, Krijn P; Read, Andrew F; Thomas, Matthew B; Bjørnstad, Ottar N

    2017-03-01

    Temperature is a key environmental driver of Anopheles mosquito population dynamics; understanding its central role is important for these malaria vectors. Mosquito population responses to temperature fluctuations, though important across the life history, are poorly understood at a population level. We used stage-structured, temperature-dependent delay-differential equations to conduct a detailed exploration of the impacts of diurnal and annual temperature fluctuations on mosquito population dynamics. The model allows exploration of temperature-driven temporal changes in adult age structure, giving insights into the population's capacity to vector malaria parasites. Because of temperature-dependent shifts in age structure, the abundance of potentially infectious mosquitoes varies temporally, and does not necessarily mirror the dynamics of the total adult population. In addition to conducting the first comprehensive theoretical exploration of fluctuating temperatures on mosquito population dynamics, we analysed observed temperatures at four locations in Africa covering a range of environmental conditions. We found both temperature and precipitation are needed to explain the observed malaria season in these locations, enhancing our understanding of the drivers of malaria seasonality and how temporal disease risk may shift in response to temperature changes. This approach, tracking both mosquito abundance and age structure, may be a powerful tool for understanding current and future malaria risk.

  16. Reactive community-based self-administered treatment against residual malaria transmission: study protocol for a randomized controlled trial.

    PubMed

    Okebe, Joseph; Ribera, Joan Muela; Balen, Julie; Jaiteh, Fatou; Masunaga, Yoriko; Nwakanma, Davis; Bradley, John; Yeung, Shunmay; Peeters Grietens, Koen; D'Alessandro, Umberto

    2018-02-20

    Systematic treatment of all individuals living in the same compound of a clinical malaria case may clear asymptomatic infections and possibly reduce malaria transmission, where this is focal. High and sustained coverage is extremely important and requires active community engagement. This study explores a community-based approach to treating malaria case contacts. This is a cluster-randomized trial to determine whether, in low-transmission areas, treating individuals living in the same compound of a clinical malaria case with dihydroartemisinin-piperaquine can reduce parasite carriage and thus residual malaria transmission. Treatment will be administered through the local health system with the approach of encouraging community participation designed and monitored through formative research. The trial goal is to show that this approach can reduce in intervention villages the prevalence of Plasmodium falciparum infection toward the end of the malaria transmission season. Adherence and cooperation of the local communities are critical for the success of mass treatment campaigns aimed at reducing malaria transmission. By exploring community perceptions of the changing trends in malaria burden, existing health systems, and reaction to self-administered treatment, this study will develop and adapt a model for community engagement toward malaria elimination that is cost-effective and fits within the existing health system. Clinical trials.gov, NCT02878200 . Registered on 25 August 2016.

  17. High Levels of Plasmodium falciparum Rosetting in All Clinical Forms of Severe Malaria in African Children

    PubMed Central

    Doumbo, Ogobara K.; Thera, Mahamadou A.; Koné, Abdoulaye K.; Raza, Ahmed; Tempest, Louisa J.; Lyke, Kirsten E.; Plowe, Christopher V.; Rowe, J. Alexandra

    2010-01-01

    Plasmodium falciparum rosetting (the spontaneous binding of infected erythrocytes to uninfected erythrocytes) is a well-recognized parasite virulence factor. However, it is currently unclear whether rosetting is associated with all clinical forms of severe malaria, or only with specific syndromes such as cerebral malaria. We investigated the relationship between rosetting and clinical malaria in 209 Malian children enrolled in a case-control study of severe malaria. Rosetting was significantly higher in parasite isolates from severe malaria cases compared with non-severe hyperparasitemia and uncomplicated malaria controls (F2,117 = 8.15, P < 0.001). Analysis of sub-categories of severe malaria (unrousable coma, severe anemia, non-comatose neurological impairment, repeated seizures or a small heterogeneous group with signs of renal failure or jaundice) showed high levels of rosetting in all sub-categories, and no statistically significant differences in rosetting between sub-categories (F4,67 = 1.28, P = 0.28). Thus rosetting may contribute to the pathogenesis of all severe malaria syndromes in African children, and interventions to disrupt rosetting could be potential adjunctive therapies for all forms of severe malaria in Africa. PMID:19996426

  18. Relative importance of climatic, geographic and socio-economic determinants of malaria in Malawi

    PubMed Central

    2013-01-01

    , precipitation and temperature in the months prior to the malaria season of interest are found to significantly determine spatial and temporal variations of malaria incidence. Climate information was found to improve the estimation of malaria relative risk in 41% of the districts in Malawi, particularly at higher altitudes where transmission is irregular. This highlights the potential value of climate-driven seasonal malaria forecasts. PMID:24228784

  19. Utilizing Satellite Precipitation Products to Understand the Link Between Climate Variability and Malaria

    NASA Astrophysics Data System (ADS)

    Maggioni, V.; Mousam, A.; Delamater, P. L.; Cash, B. A.; Quispe, A.

    2015-12-01

    Malaria is a public health threat to people globally leading to 198 million cases and 584,000 deaths annually. Outbreaks of vector borne diseases such as malaria can be significantly impacted by climate variables such as precipitation. For example, an increase in rainfall has the potential to create pools of water that can serve as breeding locations for mosquitos. Peru is a country that is currently controlling malaria, but has not been able to completely eliminate the disease. Despite the various initiatives in order to control malaria - including regional efforts to improve surveillance, early detection, prompt treatment, and vector management - malaria cases in Peru have risen between 2011 and 2014. The purpose of this study is to test the hypothesis that climate variability plays a fundamental role in malaria occurrence over a 12-year period (2003-2014) in Peru. When analyzing climate variability, it is important to obtain high-quality, high-resolution data for a time series long enough to draw conclusion about how climate variables have been and are changing. Remote sensing is a powerful tool for measuring and monitoring climate variables continuously in time and space. A widely used satellite-based precipitation product, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), available globally since 1998, was used to obtain 3-hourly data with a spatial resolution of 0.25° x 0.25°. The precipitation data was linked to weekly (2003-2014) malaria cases collected by health centers and available at a district level all over Peru to investigate the relationship between precipitation and the seasonal and annual variations in malaria incidence. Further studies will incorporate additional climate variables such as temperature, humidity, soil moisture, and surface pressure from remote sensing data products and climate models. Ultimately, this research will help us to understand if climate variability impacts malaria incidence

  20. Seasonal variation in wing size and shape between geographic populations of the malaria vector, Anopheles coluzzii in Burkina Faso (West Africa).

    PubMed

    Hidalgo, Kevin; Dujardin, Jean-Pierre; Mouline, Karine; Dabiré, Roch K; Renault, David; Simard, Frederic

    2015-03-01

    The mosquito, Anopheles coluzzii is a major vector of human malaria in Africa with widespread distribution throughout the continent. The species hence populates a wide range of environments in contrasted ecological settings often exposed to strong seasonal fluctuations. In the dry savannahs of West Africa, this mosquito population dynamics closely follows the pace of surface water availability: the species pullulates during the rainy season and is able to reproduce throughout the dry season in areas where permanent water bodies are available for breeding. The impact of such environmental fluctuation on mosquito development and the phenotypic quality of emerging adults has however not been addressed in details. Here, we examined and compared phenotypic changes in the duration of pre-imaginal development, body dry mass at emergence and wing size, shape and surface area in young adult females An. coluzzii originated from five distinct geographic locations when they are reared in two contrasting conditions mimicking those experienced by mosquitoes during the rainy season (RS) and at the onset of the dry season (ODS) in Burkina Faso (West Africa). Our results demonstrated strong phenotypic plasticity in all traits, with differences in the magnitude and direction of changes between RS and ODS depending upon the geographic origin, hence the genetic background of the mosquito populations. Highest heterogeneity within population was observed in Bama, where large irrigation schemes allow year-round mosquito breeding. Further studies are needed to explore the adaptive value of such phenotypic plasticity and its relevance for local adaptation in An. coluzzii. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effectiveness of intermittent preventive treatment with sulfadoxine-pyrimethamine during pregnancy on placental malaria, maternal anaemia and birthweight in areas with high and low malaria transmission intensity in Tanzania.

    PubMed

    Mosha, Dominic; Chilongola, Jaffu; Ndeserua, Rabi; Mwingira, Felista; Genton, Blaise

    2014-09-01

    To assess the effectiveness of IPTp in two areas with different malaria transmission intensities. Prospective observational study recruiting pregnant women in two health facilities in areas with high and low malaria transmission intensities. A structured questionnaire was used for interview. Maternal clinic cards and medical logs were assessed to determine drug intake. Placental parasitaemia was screened using both light microscopy and real-time quantitative PCR. Of 350 pregnant women were recruited and screened for placental parasitaemia, 175 from each area. Prevalence of placental parasitaemia was 16.6% (CI 11.4-22.9) in the high transmission area and 2.3% (CI 0.6-5.7) in the low transmission area. Being primigravida and residing in a high transmission area were significant risk factors for placental malaria (OR 2.4; CI 1.1-5.0; P = 0.025) and (OR 9.4; CI 3.2-27.7; P < 0.001), respectively. IPTp was associated with a lower risk of placental malaria (OR 0.3; CI 0.1-1.0; P = 0.044); the effect was more pronounced in the high transmission area (OR 0.2; CI 0.06-0.7; P = 0.015) than in the low transmission area (OR 0.4; CI 0.04-4.5; P = 0.478). IPTp use was not associated with reduced risk of maternal anaemia or low birthweight, regardless of transmission intensity. The number needed to treat (NNT) was four (CI 2-6) women in the high transmission area and 33 (20-50) in the low transmission area to prevent one case of placental malaria. IPTp may have an effect on lowering the risk of placental malaria in areas of high transmission, but this effect did not translate into a benefit on risks of maternal anaemia or low birthweight. The NNT needs to be considered, and weighted against that of other protective measures, eventually targeting areas which are above a certain threshold of malaria transmission to maximise the benefit. © 2014 John Wiley & Sons Ltd.

  2. Potential distribution of mosquito vector species in a primary malaria endemic region of Colombia

    PubMed Central

    Altamiranda-Saavedra, Mariano; Arboleda, Sair; Parra, Juan L.; Peterson, A. Townsend

    2017-01-01

    Rapid transformation of natural ecosystems changes ecological conditions for important human disease vector species; therefore, an essential task is to identify and understand the variables that shape distributions of these species to optimize efforts toward control and mitigation. Ecological niche modeling was used to estimate the potential distribution and to assess hypotheses of niche similarity among the three main malaria vector species in northern Colombia: Anopheles nuneztovari, An. albimanus, and An. darlingi. Georeferenced point collection data and remotely sensed, fine-resolution satellite imagery were integrated across the Urabá –Bajo Cauca–Alto Sinú malaria endemic area using a maximum entropy algorithm. Results showed that An. nuneztovari has the widest geographic distribution, occupying almost the entire study region; this niche breadth is probably related to the ability of this species to colonize both, natural and disturbed environments. The model for An. darlingi showed that most suitable localities for this species in Bajo Cauca were along the Cauca and Nechí river. The riparian ecosystems in this region and the potential for rapid adaptation by this species to novel environments, may favor the establishment of populations of this species. Apparently, the three main Colombian Anopheles vector species in this endemic area do not occupy environments either with high seasonality, or with low seasonality and high NDVI values. Estimated overlap in geographic space between An. nuneztovari and An. albimanus indicated broad spatial and environmental similarity between these species. An. nuneztovari has a broader niche and potential distribution. Dispersal ability of these species and their ability to occupy diverse environmental situations may facilitate sympatry across many environmental and geographic contexts. These model results may be useful for the design and implementation of malaria species-specific vector control interventions optimized

  3. Arboviral diseases and malaria in Australia, 2007/08: annual report of the National Arbovirus and Malaria Advisory Committee.

    PubMed

    Fitzsimmons, Gerard J; Wright, Phil; Johansen, Cheryl A; Whelan, Peter I

    2009-06-01

    The National Notifiable Diseases Surveillance System (NNDSS) received 8,671 notifications of diseases transmitted by mosquitoes in Australia for the season 1 July 2007 to 30 June 2008. This represented a 39% increase from the annual average of 6,259 notifications for the previous 5 years. The alphaviruses, Barmah Forest and Ross River, accounted for 7,760 (89%) of these notifications during the 2007/08 season and represents an increase when compared with the mean of the past 5 seasons. Detection of flavivirus seroconversions in sentinel chicken flocks across Australia provides an early warning of increased levels of Murray Valley encephalitis virus (MVEV) and Kunjin virus activity. Unusual MVEV activity in mosquitoes and sentinel chicken flocks was reported in southeast Australia during the 2007/08 season. Two cases of MVEV were reported, one each from New South Wales and Western Australia. There were 365 notifications of dengue virus infection that were acquired overseas compared with an average of 164 overseas-acquired dengue cases per annum reported to NNDSS over the 5 seasons from 2002/03 to 2006/07. There were no reports of locally-acquired malaria notified in Australia and 505 notified cases of overseas-acquired malaria during the season 2007/08. The exotic dengue vector Aedes aegypti was first detected on Groote Eylandt, Northern Territory in October 2006 and led to a 2-year Ae. aegypti eradication project. The successful eradication of Ae. aegypti from Groote Eylandt was officially announced in May 2008. The success of the program was due to the selection of appropriate chemicals that were successful in treating mosquito adults, larvae and egg infested receptacles. This annual report presents information on diseases transmitted by mosquitoes in Australia and notified to NNDSS.

  4. Hydrology of malaria: Model development and application to a Sahelian village

    NASA Astrophysics Data System (ADS)

    Bomblies, Arne; Duchemin, Jean-Bernard; Eltahir, Elfatih A. B.

    2008-12-01

    We present a coupled hydrology and entomology model for the mechanistic simulation of local-scale response of malaria transmission to hydrological and climatological determinants in semiarid, desert fringe environments. The model is applied to the Sahel village of Banizoumbou, Niger, to predict interannual variability in malaria vector mosquito populations that lead to variations in malaria transmission. Using a high-resolution, small-scale distributed hydrology model that incorporates remotely sensed data for land cover and topography, we simulate the formation and persistence of the pools constituting the primary breeding habitat of Anopheles gambiae s.l. mosquitoes, the principal regional malaria vector mosquitoes. An agent-based mosquito population model is coupled to the distributed hydrology model, with aquatic-stage and adult-stage components. Through a dependence of aquatic-stage mosquito development and adult emergence on pool persistence, we model small-scale hydrology as a dominant control of mosquito abundance. For each individual adult mosquito, the model tracks attributes relevant to population dynamics and malaria transmission, which are updated as mosquitoes interact with their environment, humans, and animals. Weekly field observations were made in 2005 and 2006. A 16% increase in rainfall between the two years was accompanied by a 132% increase in mosquito abundance between 2005 and 2006. The model reproduces mosquito population variability at seasonal and interannual timescales and highlights individual pool persistence as a dominant control. Future developments of the presented model can be used in the evaluation of impacts of climate change on malaria, as well as the a priori evaluation of environmental management-based interventions.

  5. Modeling the effects of weather and climate change on malaria transmission.

    PubMed

    Parham, Paul Edward; Michael, Edwin

    2010-05-01

    In recent years, the impact of climate change on human health has attracted considerable attention; the effects on malaria have been of particular interest because of its disease burden and its transmission sensitivity to environmental conditions. We investigated and illustrated the role that dynamic process-based mathematical models can play in providing strategic insights into the effects of climate change on malaria transmission. We evaluated a relatively simple model that permitted valuable and novel insights into the simultaneous effects of rainfall and temperature on mosquito population dynamics, malaria invasion, persistence and local seasonal extinction, and the impact of seasonality on transmission. We illustrated how large-scale climate simulations and infectious disease systems may be modeled and analyzed and how these methods may be applied to predicting changes in the basic reproduction number of malaria across Tanzania. We found extinction to be more strongly dependent on rainfall than on temperature and identified a temperature window of around 32-33 degrees C where endemic transmission and the rate of spread in disease-free regions is optimized. This window was the same for Plasmodium falciparum and P. vivax, but mosquito density played a stronger role in driving the rate of malaria spread than did the Plasmodium species. The results improved our understanding of how temperature shifts affect the global distribution of at-risk regions, as well as how rapidly malaria outbreaks take off within vulnerable populations. Disease emergence, extinction, and transmission all depend strongly on climate. Mathematical models offer powerful tools for understanding geographic shifts in incidence as climate changes. Nonlinear dependences of transmission on climate necessitates consideration of both changing climate trends and variability across time scales of interest.

  6. Preventive malaria treatment for contacts of patients with Ebola virus disease in the context of the west Africa 2014-15 Ebola virus disease response: an economic analysis.

    PubMed

    Carias, Cristina; Greening, Bradford; Campbell, Caresse G; Meltzer, Martin I; Hamel, Mary J

    2016-04-01

    contacts of all age groups in areas with malaria parasite prevalence in children aged 2-10 years as low as 10%. In Liberia during the wet season, malaria preventive treatment was cost saving even when average daily bed-stay costs were as low as US$5 for children younger than 5 years, $9 for those aged 5-14 years, and $22 for those aged 15 years or older. Administration of preventive malaria treatment to contacts of patients with Ebola virus disease should be considered by public health officials when addressing Ebola virus disease outbreaks in countries and seasons where malaria reaches high levels of transmission. Centers for Disease Control and Prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The dynamics of transmission and spatial distribution of malaria in riverside areas of Porto Velho, Rondônia, in the Amazon region of Brazil.

    PubMed

    Katsuragawa, Tony Hiroshi; Gil, Luiz Herman Soares; Tada, Mauro Shugiro; de Almeida e Silva, Alexandre; Costa, Joana D'Arc Neves; Araújo, Maisa da Silva; Escobar, Ana Lúcia; da Silva, Luiz Hildebrando Pereira

    2010-02-16

    The study area in Rondônia was the site of extensive malaria epidemic outbreaks in the 19(th) and 20(th) centuries related to environmental impacts, with large immigration flows. The present work analyzes the transmission dynamics of malaria in these areas to propose measures for avoiding epidemic outbreaks due to the construction of two Hydroelectric Power Plants. A population based baseline demographic census and a malaria prevalence follow up were performed in two river side localities in the suburbs of Porto Velho city and in its rural vicinity. The quantification and nature of malaria parasites in clinical patients and asymptomatic parasite carriers were performed using microscopic and Real Time PCR methodologies. Anopheles densities and their seasonal variation were done by monthly captures for defining HBR (hourly biting rate) values. (i) malaria among residents show the riverside profile, with population at risk represented by children and young adults; (ii) asymptomatic vivax and falciparum malaria parasite carriers correspond to around 15% of adults living in the area; (iii) vivax malaria relapses were responsible for 30% of clinical cases; (iv) malaria risk for the residents was evaluated as 20-25% for vivax and 5-7% for falciparum malaria; (v) anopheline densities shown outdoors HBR values 5 to 10 fold higher than indoors and reach 10.000 bites/person/year; (vi) very high incidence observed in one of the surveyed localities was explained by a micro epidemic outbreak affecting visitors and temporary residents. Temporary residents living in tents or shacks are accessible to outdoors transmission. Seasonal fishermen were the main group at risk in the study and were responsible for a 2.6 fold increase in the malaria incidence in the locality. This situation illustrates the danger of extensive epidemic outbreaks when thousands of workers and secondary immigrant population will arrive attracted by opportunities opened by the Hydroelectric Power Plants

  8. Ranking malaria risk factors to guide malaria control efforts in African highlands.

    PubMed

    Protopopoff, Natacha; Van Bortel, Wim; Speybroeck, Niko; Van Geertruyden, Jean-Pierre; Baza, Dismas; D'Alessandro, Umberto; Coosemans, Marc

    2009-11-25

    Malaria is re-emerging in most of the African highlands exposing the non immune population to deadly epidemics. A better understanding of the factors impacting transmission in the highlands is crucial to improve well targeted malaria control strategies. A conceptual model of potential malaria risk factors in the highlands was built based on the available literature. Furthermore, the relative importance of these factors on malaria can be estimated through "classification and regression trees", an unexploited statistical method in the malaria field. This CART method was used to analyse the malaria risk factors in the Burundi highlands. The results showed that Anopheles density was the best predictor for high malaria prevalence. Then lower rainfall, no vector control, higher minimum temperature and houses near breeding sites were associated by order of importance to higher Anopheles density. In Burundi highlands monitoring Anopheles densities when rainfall is low may be able to predict epidemics. The conceptual model combined with the CART analysis is a decision support tool that could provide an important contribution toward the prevention and control of malaria by identifying major risk factors.

  9. [The progress of malaria in sahelian eastern Niger. An ecological disaster zone].

    PubMed

    Julvez, J; Mouchet, J; Michault, A; Fouta, A; Hamidine, M

    1997-01-01

    The south eastern part of the Republic of Niger was ecologically damaged by the dryness since 1971. Rainfall decreased by 30 to 40% as compared to 1961-70 and lake Chad retreated 100 km to the south. Now it does not reach any more the Republic of Niger. Malaria studies have been carried out in urban and suburban places in Zinder and in the Diffa area at the extreme east. In Zinder parasitic indexes (PI) after the rainy season were around 30% to 10% according to the situation of the corner in respect with surface waters during the rains. In dry season the index fell to 3%. In Diffa in a part of the city at high risk because lining the Komadougou river, PI was only 6.7% in October after the rains. Before 1970 PI recorded in Niamey were up to 50%. In Diffa area they were of 49% in N'Guigmi and 32% in Bosso, ecologically similar to Diffa. Obviously there was a sharp decrease of malaria which could be due to the disappearance of An. funestus after 1970. It was one of the main malaria vectors. Its larvae were developing in pools remaining after the rains with heavy standing vegetation. These breeding sites have been destroyed by both dryness and human activities. Now the area has became hypoendemic and is suitable for epidemic because population has not much immunity. A surveillance system for epidemic control should be settle.

  10. Rapid immunochromatographic diagnosis and Rolling Back Malaria--experiences from an African control program.

    PubMed

    Durrheim, D N; Govere, J; la Grange, J J; Mabuza, A

    2001-01-01

    Malaria is a re-emerging disease in much of Africa. In response, the World Health Organization launched the Roll Back Malaria (RBM) initiative. One of six key principles adopted is the early detection of malaria cases. However, the importance of definitive diagnosis and potential value of field deployment of rapid malaria tests in RBM has been largely ignored. The Lowveld Region of Mpumalanga Province, South Africa, is home to a predominantly non-immune population, of approximately 850000 inhabitants, who are at risk of seasonal Plasmodium falciparum malaria. Malaria treatment in this area is usually only initiated on detection of malaria parasites in the peripheral bloodstream, as many other rickettsial and viral febrile illness mimic malaria. The malaria control programme traditionally relied on light microscopy of Giemsa-stained thick blood films for malaria diagnosis. This review summarizes operational research findings that led to the introduction of rapid malaria card tests for primary diagnosis of malaria throughout the Mpumalanga malaria area. Subsequent operational research and extensive experience over a four-year period since introducing the ICT Malaria Pf test appears to confirm the local appropriateness of this diagnostic modality. A laboratory is not required and clinic staff are empowered to make a prompt definitive diagnosis, limiting delays in initiating correct therapy. The simple, accurate and rapid non-microscopic means now available for diagnosing malaria could play an important role in Rolling Back Malaria in selected areas.

  11. [Burden of hospitalizations attributable to malaria in Spain during 1999-2002].

    PubMed

    Anegón Blanco, María; Esteban, Jesús; Valcárcel Rivera, Yolanda; Bastero Gil, Rafael; Gil de Miguel, Angel

    2006-07-01

    To calculate the incidence rates and direct costs, and to describe hospital admissions for malaria in Spain between 1999 and 2002. Retrospective study of hospital admissions whose fundamental discharge diagnosis was malaria (codes CIE-9 from 084.0 to 084.9), using the national surveillance system for hospital data (CMBD) between 1999 and 2002. 2,044 hospitalizations for malaria were recorded in Spain (incidence rate 1.3 cases per 100,000 inhabitants/year). 20.6% were children under the age of 15. We found an increasing linear trend in the incidence rate of malaria in the 0-4 age group (p < 0.001). 57.3% of malaria cases were due to Plasmodium falciparum, 11.5% to P. vivax, 2.4% to P. malariae and 3.3% to P. ovale. On the other hand, 64% of admissions occurred between summer and autumn, a seasonal pattern attributable to P. falciparum. The annual cost of the hospitalizations was euro 1.2 million. There is an increasing number of hospitalizations in Spain due to malaria, which might be higher in coming years. This fact mainly owes to the population movements we are currently experiencing.

  12. New Italian guidelines for malaria prophylaxis in travellers to endemic areas.

    PubMed

    Calleri, G; Castelli, F; El Hamad, I; Gobbi, F; Matteelli, A; Napoletano, G; Romi, R; Rossanese, A; Italian Society of Tropical Medicine

    2014-02-01

    As a consequence of the rapid evolution of malaria prophylaxis recommendations throughout the world, the Italian Society of Tropical Medicine (SIMET-Società Italiana di Medicina Tropicale) has set up a working group in charge of preparing a new national guideline. Other scientific societies interested in the topic were also involved in the project. The group stated that awareness about malaria risk and characteristics, as well as protection from mosquito bites, are recommended for all travellers visiting malaria-endemic countries. The risk and benefit of malaria chemoprophylaxis must be carefully balanced before prescribing drugs: the disease-related risk must outweigh the possibility of drugs' side effects. As a general rule, malaria pills are the first choice for travellers to high-risk areas, such as sub-Saharan Africa, Eastern India, Myanmar, Eastern Indonesia, Papua New Guinea and, with some limitations, South-East Asia, and the Amazon part of Venezuela, Guyana and French Guyana. However, several other factors, such as itinerary, season, duration of trip, availability of insect bite protection, pre-existing conditions and compliance, must be taken into account. In low-risk areas, stand-by emergency treatment is the first option. In minimal-risk areas and in Plasmodium vivax areas, a prompt diagnosis only is advised (Central America, South America outside the Amazon basin, Middle East, China, Thailand, Nepal). Recommendations may be modified when particular groups of travellers are concerned, such as long-term residents, visiting friends and relatives, patients with pre-existing conditions, pregnant women and children.

  13. Low uptake of preventive interventions among malaria cases in Swaziland: towards malaria elimination

    PubMed Central

    Dlamini, N.; Zulu, Z.; Dlamini, S.; Kunene, S.; Sikhondze, W.; Owiti, P.; Geoffroy, E.; Zachariah, R.; Mengestu, T. K.

    2018-01-01

    Settings: Swaziland is striving to achieve sustainable malaria elimination. Three preventive interventions are vital for reaching this goal: 1) effective household utilisation of long-lasting insecticide nets (LLINs), 2) indoor residual spraying (IRS), and 3) provision of chemoprophylaxis for those travelling to malaria-endemic areas. Objectives: To assess the uptake of preventive intervention among confirmed malaria cases. Design: A longitudinal study using nation-wide programme data from 2010 to 2015. Data on malaria cases from health facilities were sourced from the Malaria Surveillance Database System. Results: Of a total 2568 confirmed malaria cases in Swaziland, 2034 (79%) had complete data on case investigations and were included in the analysis. Of 341 (17%) individuals who owned LLINs, 169 (8%) used them; 338 (17%) had IRS and 314 (15%) slept in sprayed structures. Of 1403 travellers to areas at high malaria risk, 59 (4%) used any form of malaria prevention, including chemoprophylaxis. Conclusion: The uptake of all three key malaria prevention interventions is low, and could threaten the progress made thus far toward malaria elimination. Efforts to improve this situation, including qualitative research to understand the reasons for low uptake, are urgently needed. PMID:29713591

  14. Time trend of malaria in relation to climate variability in Papua New Guinea.

    PubMed

    Park, Jae-Won; Cheong, Hae-Kwan; Honda, Yasushi; Ha, Mina; Kim, Ho; Kolam, Joel; Inape, Kasis; Mueller, Ivo

    2016-01-01

    This study was conducted to describe the regional malaria incidence in relation to the geographic and climatic conditions and describe the effect of altitude on the expansion of malaria over the last decade in Papua New Guinea. Malaria incidence was estimated in five provinces from 1996 to 2008 using national health surveillance data. Time trend of malaria incidence was compared with rainfall and minimum/maximum temperature. In the Eastern Highland Province, time trend of malaria incidence over the study period was stratified by altitude. Spatio-temporal pattern of malaria was analyzed. Nationwide, malaria incidence was stationary. Regionally, the incidence increased markedly in the highland region (292.0/100000/yr, p =0.021), and remained stationary in the other regions. Seasonality of the malaria incidence was related with rainfall. Decreasing incidence of malaria was associated with decreasing rainfall in the southern coastal region, whereas it was not evident in the northern coastal region. In the Eastern Highland Province, malaria incidence increased in areas below 1700 m, with the rate of increase being steeper at higher altitudes. Increasing trend of malaria incidence was prominent in the highland region of Papua New Guinea, while long-term trend was dependent upon baseline level of rainfall in coastal regions.

  15. The role of asymptomatic P. falciparum parasitaemia in the evolution of antimalarial drug resistance in areas of seasonal transmission.

    PubMed

    Babiker, Hamza A; Gadalla, Amal A H; Ranford-Cartwright, Lisa C

    2013-01-01

    In areas with seasonal transmission, proper management of acute malaria cases that arise in the transmission season can markedly reduce the disease burden. However, asymptomatic carriage of Plasmodium falciparum sustains a long-lasting reservoir in the transmission-free dry season that seeds cyclical malaria outbreaks. Clinical trials targeting asymptomatic parasitaemia in the dry season failed to interrupt the malaria epidemics that follow annual rains. These asymptomatic infections tend to carry multiple-clones, capable of producing gametocytes and infecting Anopheles mosquitoes. Different clones within an infection fluctuate consistently, indicative of interaction between clones during the long course of asymptomatic carriage. However, the therapy-free environment that prevails in the dry season dis-advantages the drug resistant lineages and favors the wild-type parasites. This review highlights some biological and epidemiological characteristics of asymptomatic parasitaemia and calls for consideration of policies to diminish parasite exposure to drugs "therapy-free" and allow natural selection to curb drug resistance in the above setting. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Mapping Physiological Suitability Limits for Malaria in Africa Under Climate Change.

    PubMed

    Ryan, Sadie J; McNally, Amy; Johnson, Leah R; Mordecai, Erin A; Ben-Horin, Tal; Paaijmans, Krijn; Lafferty, Kevin D

    2015-12-01

    We mapped current and future temperature suitability for malaria transmission in Africa using a published model that incorporates nonlinear physiological responses to temperature of the mosquito vector Anopheles gambiae and the malaria parasite Plasmodium falciparum. We found that a larger area of Africa currently experiences the ideal temperature for transmission than previously supposed. Under future climate projections, we predicted a modest increase in the overall area suitable for malaria transmission, but a net decrease in the most suitable area. Combined with human population density projections, our maps suggest that areas with temperatures suitable for year-round, highest-risk transmission will shift from coastal West Africa to the Albertine Rift between the Democratic Republic of Congo and Uganda, whereas areas with seasonal transmission suitability will shift toward sub-Saharan coastal areas. Mapping temperature suitability places important bounds on malaria transmissibility and, along with local level demographic, socioeconomic, and ecological factors, can indicate where resources may be best spent on malaria control.

  17. Mapping physiological suitability limits for malaria in Africa under climate change

    USGS Publications Warehouse

    Ryan, Sadie J.; McNally, Amy; Johnson, Leah R.; Mordecai, Erin A.; Ben-Horin, Tal; Paaijmans, Krijn P.; Lafferty, Kevin D.

    2015-01-01

    We mapped current and future temperature suitability for malaria transmission in Africa using a published model that incorporates nonlinear physiological responses to temperature of the mosquito vector Anopheles gambiae and the malaria parasite Plasmodium falciparum. We found that a larger area of Africa currently experiences the ideal temperature for transmission than previously supposed. Under future climate projections, we predicted a modest increase in the overall area suitable for malaria transmission, but a net decrease in the most suitable area. Combined with human population density projections, our maps suggest that areas with temperatures suitable for year-round, highest-risk transmission will shift from coastal West Africa to the Albertine Rift between the Democratic Republic of Congo and Uganda, whereas areas with seasonal transmission suitability will shift toward sub-Saharan coastal areas. Mapping temperature suitability places important bounds on malaria transmissibility and, along with local level demographic, socioeconomic, and ecological factors, can indicate where resources may be best spent on malaria control.

  18. Potential for reduction of burden and local elimination of malaria by reducing Plasmodium falciparum malaria transmission: a mathematical modelling study

    PubMed Central

    Griffin, Jamie T; Bhatt, Samir; Sinka, Marianne E; Gething, Peter W; Lynch, Michael; Patouillard, Edith; Shutes, Erin; Newman, Robert D; Alonso, Pedro; Cibulskis, Richard E; Ghani, Azra C

    2016-01-01

    Summary Background Rapid declines in malaria prevalence, cases, and deaths have been achieved globally during the past 15 years because of improved access to first-line treatment and vector control. We aimed to assess the intervention coverage needed to achieve further gains over the next 15 years. Methods We used a mathematical model of the transmission of Plasmodium falciparum malaria to explore the potential effect on case incidence and malaria mortality rates from 2015 to 2030 of five different intervention scenarios: remaining at the intervention coverage levels of 2011–13 (Sustain), for which coverage comprises vector control and access to treatment; two scenarios of increased coverage to 80% (Accelerate 1) and 90% (Accelerate 2), with a switch from quinine to injectable artesunate for management of severe disease and seasonal malaria chemoprevention where recommended for both Accelerate scenarios, and rectal artesunate for pre-referral treatment at the community level added to Accelerate 2; a near-term innovation scenario (Innovate), which included longer-lasting insecticidal nets and expansion of seasonal malaria chemoprevention; and a reduction in coverage to 2006–08 levels (Reverse). We did the model simulations at the first administrative level (ie, state or province) for the 80 countries with sustained stable malaria transmission in 2010, accounting for variations in baseline endemicity, seasonality in transmission, vector species, and existing intervention coverage. To calculate the cases and deaths averted, we compared the total number of each under the five scenarios between 2015 and 2030 with the predicted number in 2015, accounting for population growth. Findings With an increase to 80% coverage, we predicted a reduction in case incidence of 21% (95% credible intervals [CrI] 19–29) and a reduction in mortality rates of 40% (27–61) by 2030 compared with 2015 levels. Acceleration to 90% coverage and expansion of treatment at the community

  19. Identifying malaria hotspots in Keur Soce health and demographic surveillance site in context of low transmission.

    PubMed

    Ndiath, Mansour; Faye, Babacar; Cisse, Badara; Ndiaye, Jean Louis; Gomis, Jules François; Dia, Anta Tal; Gaye, Oumar

    2014-11-24

    Malaria is major public health problem in Senegal. In some parts of the country, it occurs almost permanently with a seasonal increase during the rainy season. There is evidence to suggest that the prevalence of malaria in Senegal has decreased considerably during the past few years. Recent data from the Senegalese National Malaria Control Programme (NMCP) indicates that the number of malaria cases decrease from 1,500,000 in 2006 to 174,339 in 2010. With the decline of malaria morbidity in Senegal, the characterization of the new epidemiological profile of this disease is crucial for public health decision makers. SaTScan™ software using the Kulldorf method of retrospective space-time permutation and the Bernoulli purely spatial model was used to identify malaria clusters using confirmed malaria cases in 74 villages. ArcMAp was used to map malaria hotspots. Logistic regression was used to investigate risk factors for malaria hotspots in Keur Soce health and demographic surveillance site. A total of 1,614 individuals in 440 randomly selected households were enrolled. The overall malaria prevalence was 12%. The malaria prevalence during the study period varied from less than 2% to more than 25% from one village to another. The results showed also that rooms located between 50 m to 100 m away from livestock holding place [adjusted O.R = 0.7, P = 0.044, 95% C.I (1.02 - 7.42)], bed net use [adjusted O.R = 1.2, P = 0.024, 95% C.I (1.02 -1.48)], are good predictors for malaria hotspots in the Keur Soce health and demographic surveillance site. The socio economic status of the household also predicted on hotspots patterns. The less poor household are 30% less likely to be classified as malaria hotspots area compared to the poorest household [adjusted O.R = 0.7, P = 0.014, 95% C.I (0.47 - 0.91)]. The study investigated risk factors for malaria hotspots in small communities in the Keur Soce site. The result showed considerable variation of malaria

  20. A global model of malaria climate sensitivity: comparing malaria response to historic climate data based on simulation and officially reported malaria incidence.

    PubMed

    Edlund, Stefan; Davis, Matthew; Douglas, Judith V; Kershenbaum, Arik; Waraporn, Narongrit; Lessler, Justin; Kaufman, James H

    2012-09-18

    The role of the Anopheles vector in malaria transmission and the effect of climate on Anopheles populations are well established. Models of the impact of climate change on the global malaria burden now have access to high-resolution climate data, but malaria surveillance data tends to be less precise, making model calibration problematic. Measurement of malaria response to fluctuations in climate variables offers a way to address these difficulties. Given the demonstrated sensitivity of malaria transmission to vector capacity, this work tests response functions to fluctuations in land surface temperature and precipitation. This study of regional sensitivity of malaria incidence to year-to-year climate variations used an extended Macdonald Ross compartmental disease model (to compute malaria incidence) built on top of a global Anopheles vector capacity model (based on 10 years of satellite climate data). The predicted incidence was compared with estimates from the World Health Organization and the Malaria Atlas. The models and denominator data used are freely available through the Eclipse Foundation's Spatiotemporal Epidemiological Modeller (STEM). Although the absolute scale factor relating reported malaria to absolute incidence is uncertain, there is a positive correlation between predicted and reported year-to-year variation in malaria burden with an averaged root mean square (RMS) error of 25% comparing normalized incidence across 86 countries. Based on this, the proposed measure of sensitivity of malaria to variations in climate variables indicates locations where malaria is most likely to increase or decrease in response to specific climate factors. Bootstrapping measures the increased uncertainty in predicting malaria sensitivity when reporting is restricted to national level and an annual basis. Results indicate a potential 20x improvement in accuracy if data were available at the level ISO 3166-2 national subdivisions and with monthly time sampling. The

  1. Malaria

    MedlinePlus

    Quartan malaria; Falciparum malaria; Biduoterian fever; Blackwater fever; Tertian malaria; Plasmodium ... Malaria is caused by a parasite that is passed to humans by the bite of infected anopheles ...

  2. The Development of Plasmodium falciparum-Specific IL10 CD4 T Cells and Protection from Malaria in Children in an Area of High Malaria Transmission.

    PubMed

    Boyle, Michelle J; Jagannathan, Prasanna; Bowen, Katherine; McIntyre, Tara I; Vance, Hilary M; Farrington, Lila A; Schwartz, Alanna; Nankya, Felistas; Naluwu, Kate; Wamala, Samuel; Sikyomu, Esther; Rek, John; Greenhouse, Bryan; Arinaitwe, Emmanuel; Dorsey, Grant; Kamya, Moses R; Feeney, Margaret E

    2017-01-01

    Cytokine-producing CD4 T cells have important roles in immunity against Plasmodium falciparum (Pf) malaria. However, the factors influencing functional differentiation of Pf- specific CD4 T cells in naturally exposed children are not well understood. Moreover, it is not known which CD4 T-cell cytokine-producing subsets are most critical for protection. We measured Pf- specific IFNγ-, IL10-, and TNFα-producing CD4 T-cell responses by multi-parametric flow cytometry in 265 children aged 6 months to 10 years enrolled in a longitudinal observational cohort in a high malaria transmission site in Uganda. We found that both age and parasite burden were independently associated with cytokine production by CD4 T cells. IL10 production by IFNγ + CD4 T cells was higher in younger children and in those with high-parasite burden during recent infection. To investigate the role of CD4 T cells in immunity to malaria, we measured associations of Pf -specific CD4 cytokine-producing cells with the prospective risk of Pf infection and clinical malaria, adjusting for household exposure to Pf -infected mosquitos. Overall, the prospective risk of infection was not associated with the total frequency of Pf- specific CD4 T cells, nor of any cytokine-producing CD4 subset. However, the frequency of CD4 cells producing IL10 but not inflammatory cytokines (IFNγ and TNFα) was associated with a decreased risk of clinical malaria once infected. These data suggest that functional polarization of the CD4 T-cell response may modulate the clinical manifestations of malaria and play a role in naturally acquired immunity.

  3. Out of the net: An agent-based model to study human movements influence on local-scale malaria transmission.

    PubMed

    Pizzitutti, Francesco; Pan, William; Feingold, Beth; Zaitchik, Ben; Álvarez, Carlos A; Mena, Carlos F

    2018-01-01

    Though malaria control initiatives have markedly reduced malaria prevalence in recent decades, global eradication is far from actuality. Recent studies show that environmental and social heterogeneities in low-transmission settings have an increased weight in shaping malaria micro-epidemiology. New integrated and more localized control strategies should be developed and tested. Here we present a set of agent-based models designed to study the influence of local scale human movements on local scale malaria transmission in a typical Amazon environment, where malaria is transmission is low and strongly connected with seasonal riverine flooding. The agent-based simulations show that the overall malaria incidence is essentially not influenced by local scale human movements. In contrast, the locations of malaria high risk spatial hotspots heavily depend on human movements because simulated malaria hotspots are mainly centered on farms, were laborers work during the day. The agent-based models are then used to test the effectiveness of two different malaria control strategies both designed to reduce local scale malaria incidence by targeting hotspots. The first control scenario consists in treat against mosquito bites people that, during the simulation, enter at least once inside hotspots revealed considering the actual sites where human individuals were infected. The second scenario involves the treatment of people entering in hotspots calculated assuming that the infection sites of every infected individual is located in the household where the individual lives. Simulations show that both considered scenarios perform better in controlling malaria than a randomized treatment, although targeting household hotspots shows slightly better performance.

  4. Factors associated with high heterogeneity of malaria at fine spatial scale in the Western Kenyan highlands.

    PubMed

    Baidjoe, Amrish Y; Stevenson, Jennifer; Knight, Philip; Stone, William; Stresman, Gillian; Osoti, Victor; Makori, Euniah; Owaga, Chrispin; Odongo, Wycliffe; China, Pauline; Shagari, Shehu; Kariuki, Simon; Drakeley, Chris; Cox, Jonathan; Bousema, Teun

    2016-06-04

    The East African highlands are fringe regions between stable and unstable malaria transmission. What factors contribute to the heterogeneity of malaria exposure on different spatial scales within larger foci has not been extensively studied. In a comprehensive, community-based cross-sectional survey an attempt was made to identify factors that drive the macro- and micro epidemiology of malaria in a fringe region using parasitological and serological outcomes. A large cross-sectional survey including 17,503 individuals was conducted across all age groups in a 100 km(2) area in the Western Kenyan highlands of Rachuonyo South district. Households were geo-located and prevalence of malaria parasites and malaria-specific antibodies were determined by PCR and ELISA. Household and individual risk-factors were recorded. Geographical characteristics of the study area were digitally derived using high-resolution satellite images. Malaria antibody prevalence strongly related to altitude (1350-1600 m, p < 0.001). A strong negative association with increasing altitude and PCR parasite prevalence was found. Parasite carriage was detected at all altitudes and in all age groups; 93.2 % (2481/2663) of malaria infections were apparently asymptomatic. Malaria parasite prevalence was associated with age, bed net use, house construction features, altitude and topographical wetness index. Antibody prevalence was associated with all these factors and distance to the nearest water body. Altitude was a major driver of malaria transmission in this study area, even across narrow altitude bands. The large proportion of asymptomatic parasite carriers at all altitudes and the age-dependent acquisition of malaria antibodies indicate stable malaria transmission; the strong correlation between current parasite carriage and serological markers of malaria exposure indicate temporal stability of spatially heterogeneous transmission.

  5. A Venue-Based Survey of Malaria, Anemia and Mobility Patterns among Migrant Farm Workers in Amhara Region, Ethiopia

    PubMed Central

    Schicker, Rebekah Stewart; Hiruy, Neway; Melak, Berhanu; Gelaye, Woyneshet; Bezabih, Belay; Stephenson, Rob; Patterson, Amy E.; Tadesse, Zerihun; Emerson, Paul M.; Richards, Frank O.; Noland, Gregory S.

    2015-01-01

    Background Mobile populations present unique challenges to malaria control and elimination efforts. Each year, a large number of individuals travel to northwest Amhara Region, Ethiopia to seek seasonal employment on large-scale farms. Agricultural areas typically report the heaviest malaria burden within Amhara thereby placing migrants at high risk of infection. Yet little is known about these seasonal migrants and their malaria-related risk factors. Methods and Findings In July 2013, a venue-based survey of 605 migrant laborers 18 years or older was conducted in two districts of North Gondar zone, Amhara. The study population was predominantly male (97.7%) and young (mean age 22.8 years). Plasmodium prevalence by rapid diagnostic test (RDT) was 12.0%; One quarter (28.3%) of individuals were anemic (hemoglobin <13 g/dl). Nearly all participants (95.6%) originated from within Amhara Region, with half (51.6%) coming from within North Gondar zone. Around half (51.2%) slept in temporary shelters, while 20.5% regularly slept outside. Only 11.9% of participants had access to a long lasting insecticidal net (LLIN). Reported net use the previous night was 8.8% overall but 74.6% among those with LLIN access. Nearly one-third (30.1%) reported having fever within the past two weeks, of whom 31.3% sought care. Cost and distance were the main reported barriers to seeking care. LLIN access (odds ratio [OR] = 0.30, P = 0.04) and malaria knowledge (OR = 0.50, P = 0.02) were significantly associated with reduced Plasmodium infection among migrants, with a similar but non-significant trend observed for reported net use the previous night (OR = 0.16, P = 0.14). Conclusions High prevalence of malaria and anemia were observed among a young population that originated from relatively proximate areas. Low access to care and low IRS and LLIN coverage likely place migrant workers at significant risk of malaria in this area and their return home may facilitate parasite transport to other

  6. Laboratory diagnostics of malaria

    NASA Astrophysics Data System (ADS)

    Siahaan, L.

    2018-03-01

    Even now, malaria treatment should only be administered after laboratory confirmation. There are several principal methods for diagnosing malaria. All these methods have their disadvantages.Presumptive treatment of malaria is widely practiced where laboratory tests are not readily available. Microscopy of Giemsa-stained thick and thin blood films remains the gold standard for the diagnosis of malaria infection. The technique of slide preparation, staining and reading are well known and standardized, and so is the estimate of the parasite density and parasite stages. Microscopy is not always available or feasible at primary health services in limited resource settings due to cost, lack of skilled manpower, accessories and reagents required. Rapid diagnostic tests (RDTs) are potential tools for parasite-based diagnosis since the tests are accurate in detecting malaria infections and are easy to use. The test is based on the capture of parasite antigen that released from parasitized red blood cells using monoclonal antibodies prepared against malaria antigen target. Polymerase Chain Reaction (PCR), depend on DNA amplification approaches and have higher sensitivity than microscopy. PCR it is not widely used due to the lack of a standardized methodology, high costs, and the need for highly-trained staff.

  7. Performance evaluation of rapid diagnostic test for malaria in high malarious districts of Amhara region, Ethiopia.

    PubMed

    Beyene, Belay Bezabih; Yalew, Woyneshet Gelaye; Demilew, Ermias; Abie, Getent; Tewabe, Tsehaye; Abera, Bayeh

    2016-03-01

    Malaria is one of the leading public health challenges in Ethiopia. To address this, the Federal Ministry of Ethiopia launched a laboratory diagnosis programme for promoting use of either rapid diagnostic tests (RDTs) or Giemsa microscopy to all suspected malaria cases. This study was conducted to assess the performance of RDT and influencing factors for Giemsa microscopic diagnosis in Amhara region. A cross-sectional study was conducted in 10 high burden malaria districts of Amhara region from 15 May to 15 June 2014. Data were collected using structured questionnaire. Blood samples were collected from 1000 malaria suspected cases in 10 health centers. RDT (SD BIOLINE) and Giemsa microscopy were performed as per standard procedures. Kappa value, logistic regression and chi-square test were used for statistical analysis. The overall positivity rate (PR) of malaria parasites by RDT and Giemsa microscopy was 17.1 and 16.5% respectively. Compared to Giemsa microscopy as "gold standard", RDT showed 83.9% sensitivity and 96% specificity. The level of agreement between first reader and second reader for blood film microscopy was moderate (Kappa value = 0.74). Logistic regression showed that male, under five year of age and having fever more than 24 h prior to malaria diagnosis had statistically significant association with malaria positivity rate for malaria parasites. The overall specificity and negative predictive values of RDT for malaria diagnosis were excellent. However, the sensitivity and positive predictive values of RDT were low. Therefore, in-service training, quality monitoring of RDTs, and adequate laboratory supplies for diagnostic services of malaria would be crucial for effective intervention measures.

  8. Accessing, Utilizing and Visualizing NASA Remote Sensing Data for Malaria Modeling and Surveillance

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.; Adimi, Farida; Kempler, Steven

    2007-01-01

    This poster presentation reviews the use of NASA remote sensing data that can be used to extract environmental information for modeling malaria transmission. The authors discuss the remote sensing data from Landsat, Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), Tropical Rainfall Measuring Mission (TRMM), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Earth Observing One (EO-1), Advanced Land Imager (ALI) and Seasonal to Interannual Earth Science Information Partner (SIESIP) dataset.

  9. Targeting imported malaria through social networks: a potential strategy for malaria elimination in Swaziland.

    PubMed

    Koita, Kadiatou; Novotny, Joseph; Kunene, Simon; Zulu, Zulizile; Ntshalintshali, Nyasatu; Gandhi, Monica; Gosling, Roland

    2013-06-27

    Swaziland has made great progress towards its goal of malaria elimination by 2015. However, malaria importation from neighbouring high-endemic Mozambique through Swaziland's eastern border remains a major factor that could prevent elimination from being achieved. In order to reach elimination, Swaziland must rapidly identify and treat imported malaria cases before onward transmission occurs. A nationwide formative assessment was conducted over eight weeks to determine if the imported cases of malaria identified by the Swaziland National Malaria Control Programme could be linked to broader social networks and to explore methods to access these networks. Using a structured format, interviews were carried out with malaria surveillance agents (6), health providers (10), previously identified imported malaria cases (19) and people belonging to the networks identified through these interviews (25). Most imported malaria cases were Mozambicans (63%, 12/19) making a living in Swaziland and sustaining their families in Mozambique. The majority of imported cases (73%, 14/19) were labourers and self-employed contractors who travelled frequently to Mozambique to visit their families and conduct business. Social networks of imported cases with similar travel patterns were identified through these interviews. Nearly all imported cases (89%, 17/19) were willing to share contact information to enable network members to be interviewed. Interviews of network members and key informants revealed common congregation points, such as the urban market places in Manzini and Malkerns, as well as certain bus stations, where people with similar travel patterns and malaria risk behaviours could be located and tested for malaria. This study demonstrated that imported cases of malaria belonged to networks of people with similar travel patterns. This study may provide novel methods for screening high-risk groups of travellers using both snowball sampling and time-location sampling of networks to

  10. Development of a High-Throughput Magnetic Separation Device for Malaria-infected Erythrocytes

    PubMed Central

    Martin, A. Blue; Wu, Wei-Tao; Kameneva, Marina V.; Antaki, James F.

    2017-01-01

    This study describes a non-dilutive high-gradient magnetic separation (HGMS) device intended to continuously remove malaria-infected red blood cells (iRBCs) from the circulation. A mesoscale prototype device with disposable photo-etched ferromagnetic grid and reusable permanent magnet was designed with a computationally-optimized magnetic force. The prototype device was evaluated in-vitro using a non-pathogenic analog for malaria-infected blood, comprised of 24% healthy RBCs, 6% human methemoglobin RBCs (metRBCs), and 70% phosphate buffer solution (PBS). The device provided a 27.0 ± 2.2% reduction of metRBCs in a single pass at a flow rate of 77 μL min−1. This represents a clearance rate over 380 times greater throughput than microfluidic devices reported previously. These positive results encourage development of a clinical scale system that would economize time and donor blood for treating severe malaria. PMID:28924724

  11. Development of a High-Throughput Magnetic Separation Device for Malaria-Infected Erythrocytes.

    PubMed

    Blue Martin, A; Wu, Wei-Tao; Kameneva, Marina V; Antaki, James F

    2017-12-01

    This study describes a non-dilutive high-gradient magnetic separation (HGMS) device intended to continuously remove malaria-infected red blood cells (iRBCs) from the circulation. A mesoscale prototype device with disposable photo-etched ferromagnetic grid and reusable permanent magnet was designed with a computationally-optimized magnetic force. The prototype device was evaluated in vitro using a non-pathogenic analog for malaria-infected blood, comprised of 24% healthy RBCs, 6% human methemoglobin RBCs (metRBCs), and 70% phosphate buffer solution (PBS). The device provided a 27.0 ± 2.2% reduction of metRBCs in a single pass at a flow rate of 77 μL min -1 . This represents a clearance rate over 380 times greater throughput than microfluidic devices reported previously. These positive results encourage development of a clinical scale system that would economize time and donor blood for treating severe malaria.

  12. High Plasmodium malariae Prevalence in an Endemic Area of the Colombian Amazon Region.

    PubMed

    Camargo-Ayala, Paola Andrea; Cubides, Juan Ricardo; Niño, Carlos Hernando; Camargo, Milena; Rodríguez-Celis, Carlos Arturo; Quiñones, Teódulo; Sánchez-Suárez, Lizeth; Patarroyo, Manuel Elkin; Patarroyo, Manuel Alfonso

    2016-01-01

    Malaria is a worldwide public health problem; parasites from the genus Plasmodium are the aetiological agent for this disease. The parasites are mostly diagnosed by conventional microscopy-based techniques; however, their limitations have led to under-registering the reported prevalence of Plasmodium species. This study has thus been aimed at evaluating the infection and coinfection prevalence of 3 species of Plasmodium spp., in an area of the Colombian Amazon region. Blood samples were taken from 671 symptomatic patients by skin puncture; a nested PCR amplifying the 18S ssRNA region was used on all samples to determine the presence of P. vivax, P. malariae and P. falciparum. Statistical analysis determined infection and coinfection frequency; the association between infection and different factors was established. The results showed that P. vivax was the species having the greatest frequency in the study population (61.4%), followed by P. malariae (43.8%) and P. falciparum (11.8%). The study revealed that 35.8% of the population had coinfection, the P. vivax/P. malariae combination occurring most frequently (28.3%); factors such as age, geographical origin and clinical manifestations were found to be associated with triple-infection. The prevalence reported in this study differed from previous studies in Colombia; the results suggest that diagnosis using conventional techniques could be giving rise to underestimating some Plasmodium spp. species having high circulation rates in Colombia (particularly in the Colombian Amazon region). The present study's results revealed a high prevalence of P. malariae and mixed infections in the population being studied. The results provide relevant information which should facilitate updating the epidemiological panorama and species' distribution so as to include control, prevention and follow-up measures.

  13. Low prevalence of Plasmodium and absence of malaria transmission in Conakry, Guinea: prospects for elimination.

    PubMed

    Kouassi, Bernard L; de Souza, Dziedzom K; Goepogui, Andre; Balde, Siradiou M; Diakité, Lamia; Sagno, Arsène; Djameh, Georgina I; Chammartin, Frédérique; Vounatsou, Penelope; Bockarie, Moses J; Utzinger, Jürg; Koudou, Benjamin G

    2016-03-18

    Over the past 15 years, mortality and morbidity due to malaria have been reduced substantially in sub-Saharan Africa and local elimination has been achieved in some settings. This study addresses the bio-ecology of larval and adult stages of malaria vectors, Plasmodium infection in Anopheles gambiae s.l. in the city of Conakry, Guinea, and discusses the prospect for malaria elimination. Water bodies were prospected to identify potential mosquito breeding sites for 6 days each in the dry season (January 2013) and in the rainy season (August 2013), using the dipping method. Adult mosquitoes were collected in 15 communities in the five districts of Conakry using exit traps and indoor spraying catches over a 1-year period (November 2012 to October 2013). Molecular approaches were employed for identification of Anopheles species, including An. coluzzii and An. gambiae s.s. Individual An. gambiae mosquitoes were tested for Plasmodium falciparum and P. vivax sporozoites using the VecTest™ malaria panel assay and an enzyme-linked immunosorbent assay. A systematic research of Ministry of Health statistical yearbooks was performed to determine malaria prevalence in children below the age of 5 years. Culex larval breeding sites were observed in large numbers throughout Conakry in both seasons. While Anopheles larval breeding sites were less frequent than Culex breeding sites, there was a high odds of finding An. gambiae mosquito larvae in agricultural sites during the rainy season. Over the 1-year study period, a total of 14,334 adult mosquitoes were collected; 14,135 Culex (98.6%) and 161 (1.1%) from the An. gambiae complex. One-hundred and twelve Anopheles mosquitoes, mainly collected from rice fields and gardens, were subjected to molecular analysis. Most of the mosquitoes were An. gambiae s.s. (n = 102; 91.1%) while the remaining 10 (8.9%) were An. melas. The molecular M form of An. gambiae s.s. was predominant (n = 89; 79.5%). The proportions of kdr genotype in the An

  14. Burden of asymptomatic malaria among a tribal population in a forested village of central India: a hidden challenge for malaria control in India.

    PubMed

    Chourasia, M K; Raghavendra, K; Bhatt, R M; Swain, D K; Valecha, N; Kleinschmidt, I

    2017-06-01

    Chhattisgarh in India is a malaria-endemic state with seven southern districts that contributes approximately 50-60% of the reported malaria cases in the state every year. The problem is further complicated due to asymptomatic malaria cases which are largely responsible for persistent transmission. This study was undertaken in one of the forested villages of the Keshkal subdistrict in Kondagaon district to ascertain the proportion of the population harbouring subclinical malarial infections. Community-based cross-sectional study. Mass blood surveys were undertaken of the entire population of the village in the post-monsoon seasons of 2013 and 2014. Fingerprick blood smears were prepared from individuals of all ages to detect malaria infections in their blood. Individuals with fever at the time of the survey were tested with rapid diagnostic tests, and parasitaemia in thick blood smears was confirmed by microscopy. Malaria-positive cases were treated with anti-malarials in accordance with the national drug policy. Peripheral blood smears of 134 and 159 individuals, including children, were screened for malaria infection in 2013 and 2014, respectively. Overall, the malaria slide positivity rates were 27.6% and 27.7% in 2013 and 2014, respectively, and the prevalence rates of asymptomatic malaria were 20% and 22.8%. This study showed that, for two consecutive years, the prevalence of asymptomatic malaria infection was significantly higher among children aged ≤14 years (34.4% and 34.1% for 2013 and 2014, respectively) compared with adults (15.2% and 18.2% for 2013 and 2014, respectively; P = 0.023 and 0.04, respectively). The number of asymptomatic malaria cases, especially Plasmodium falciparum, is significant, reinforcing the underlying challenge facing the malaria elimination programme in India. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. The Treatment of Plasmodium knowlesi Malaria.

    PubMed

    Barber, Bridget E; Grigg, Matthew J; William, Timothy; Yeo, Tsin W; Anstey, Nicholas M

    2017-03-01

    Plasmodium knowlesi occurs across Southeast Asia and is the most common cause of malaria in Malaysia. High parasitaemias can develop rapidly, and the risk of severe disease in adults is at least as high as in falciparum malaria. Prompt initiation of effective treatment is therefore essential. Intravenous artesunate is highly effective in severe knowlesi malaria and in those with moderately high parasitaemia but otherwise uncomplicated disease. Both chloroquine and artemisinin-combination therapy (ACT) are highly effective for uncomplicated knowlesi malaria, with faster parasite clearance times and lower anaemia rates with ACT. Given the difficulties with microscope diagnosis of P. knowlesi, a unified treatment strategy of ACT for all Plasmodium species is recommended in coendemic regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Indian Ocean dipole and rainfall drive a Moran effect in East Africa malaria transmission.

    PubMed

    Chaves, Luis Fernando; Satake, Akiko; Hashizume, Masahiro; Minakawa, Noboru

    2012-06-15

    Patterns of concerted fluctuation in populations-synchrony-can reveal impacts of climatic variability on disease dynamics. We examined whether malaria transmission has been synchronous in an area with a common rainfall regime and sensitive to the Indian Ocean Dipole (IOD), a global climatic phenomenon affecting weather patterns in East Africa. We studied malaria synchrony in 5 15-year long (1984-1999) monthly time series that encompass an altitudinal gradient, approximately 1000 m to 2000 m, along Lake Victoria basin. We quantified the association patterns between rainfall and malaria time series at different altitudes and across the altitudinal gradient encompassed by the study locations. We found a positive seasonal association of rainfall with malaria, which decreased with altitude. By contrast, IOD and interannual rainfall impacts on interannual disease cycles increased with altitude. Our analysis revealed a nondecaying synchrony of similar magnitude in both malaria and rainfall, as expected under a Moran effect, supporting a role for climatic variability on malaria epidemic frequency, which might reflect rainfall-mediated changes in mosquito abundance. Synchronous malaria epidemics call for the integration of knowledge on the forcing of malaria transmission by environmental variability to develop robust malaria control and elimination programs.

  17. Challenges for malaria elimination in Brazil.

    PubMed

    Ferreira, Marcelo U; Castro, Marcia C

    2016-05-20

    Brazil currently contributes 42 % of all malaria cases reported in the Latin America and the Caribbean, a region where major progress towards malaria elimination has been achieved in recent years. In 2014, malaria burden in Brazil (143,910 microscopically confirmed cases and 41 malaria-related deaths) has reached its lowest levels in 35 years, Plasmodium falciparum is highly focal, and the geographic boundary of transmission has considerably shrunk. Transmission in Brazil remains entrenched in the Amazon Basin, which accounts for 99.5 % of the country's malaria burden. This paper reviews major lessons learned from past and current malaria control policies in Brazil. A comprehensive discussion of the scientific and logistic challenges that may impact malaria elimination efforts in the country is presented in light of the launching of the Plan for Elimination of Malaria in Brazil in November 2015. Challenges for malaria elimination addressed include the high prevalence of symptomless and submicroscopic infections, emerging anti-malarial drug resistance in P. falciparum and Plasmodium vivax and the lack of safe anti-relapse drugs, the largely neglected burden of malaria in pregnancy, the need for better vector control strategies where Anopheles mosquitoes present a highly variable biting behaviour, human movement, the need for effective surveillance and tools to identify foci of infection in areas with low transmission, and the effects of environmental changes and climatic variability in transmission. Control actions launched in Brazil and results to come are likely to influence control programs in other countries in the Americas.

  18. Impact of climate variability on Plasmodium vivax and Plasmodium falciparum malaria in Yunnan Province, China.

    PubMed

    Bi, Yan; Yu, Weiwei; Hu, Wenbiao; Lin, Hualiang; Guo, Yuming; Zhou, Xiao-Nong; Tong, Shilu

    2013-12-17

    Malaria remains a public health problem in the remote and poor area of Yunnan Province, China. Yunnan faces an increasing risk of imported malaria infections from Mekong river neighboring countries. This study aimed to identify the high risk area of malaria transmission in Yunnan Province, and to estimate the effects of climatic variability on the transmission of Plasmodium vivax and Plasmodium falciparum in the identified area. We identified spatial clusters of malaria cases using spatial cluster analysis at a county level in Yunnan Province, 2005-2010, and estimated the weekly effects of climatic factors on P. vivax and P. falciparum based on a dataset of daily malaria cases and climatic variables. A distributed lag nonlinear model was used to estimate the impact of temperature, relative humidity and rainfall up to 10-week lags on both types of malaria parasite after adjusting for seasonal and long-term effects. The primary cluster area was identified along the China-Myanmar border in western Yunnan. A 1°C increase in minimum temperature was associated with a lag 4 to 9 weeks relative risk (RR), with the highest effect at lag 7 weeks for P. vivax (RR = 1.03; 95% CI, 1.01, 1.05) and 6 weeks for P. falciparum (RR = 1.07; 95% CI, 1.04, 1.11); a 10-mm increment in rainfall was associated with RRs of lags 2-4 weeks and 9-10 weeks, with the highest effect at 3 weeks for both P. vivax (RR = 1.03; 95% CI, 1.01, 1.04) and P. falciparum (RR = 1.04; 95% CI, 1.01, 1.06); and the RRs with a 10% rise in relative humidity were significant from lag 3 to 8 weeks with the highest RR of 1.24 (95% CI, 1.10, 1.41) for P. vivax at 5-week lag. Our findings suggest that the China-Myanmar border is a high risk area for malaria transmission. Climatic factors appeared to be among major determinants of malaria transmission in this area. The estimated lag effects for the association between temperature and malaria are consistent with the life cycles of both mosquito vector and malaria

  19. A comparison of compliance rates with anti-vectorial protective measures during travel to regions with dengue or chikungunya activity, and regions endemic for Plasmodium falciparum malaria.

    PubMed

    Lalani, Tahaniyat; Yun, Heather; Tribble, David; Ganesan, Anuradha; Kunz, Anjali; Fairchok, Mary; Schnaubelt, Elizabeth; Fraser, Jamie; Mitra, Indrani; Kronmann, Karl C; Burgess, Timothy; Deiss, Robert G; Riddle, Mark S; Johnson, Mark D

    2016-05-01

    There is limited information on compliance rates with anti-vectorial protective measures (AVPMs) during travel to countries with risk of dengue and chikungunya. We evaluated differences in mosquito exposures, and factors associated with AVPM compliance in travellers going to countries where the principal mosquito-borne infectious disease threat is falciparum malaria and those where risk of dengue or chikungunya predominates. Department of Defence beneficiaries with planned travel to regions where the predominant mosquito-borne infection is falciparum malaria, and those with predominantly dengue or chikungunya risk, were included. Regions were divided into three groups: 'high-risk falciparum malaria', 'low-risk falciparum malaria' and 'chikungunya/dengue risk'. Demographics, trip characteristics, arthropod exposure and AVPM compliance were captured using pre- and post-travel surveys. Skin repellent compliance was defined as self-reported use, categorized as 'often/every day'. A logistic regression model was used to estimate factors associated with AVPM compliance. 183 (9%), 185 (9%) and 149 (7%) travelled to high and low falciparum malaria risk regions, and chikungunya/dengue risk regions, respectively. Overall, 53% (95% CI: 48-57%) and 16% (95% CI: 12-19%) were compliant with repellent use on skin and clothing, respectively. Daytime bites were reported more frequently in chikungunya/dengue risk regions than high malaria risk regions (37% vs. 10%), while night time bites were frequently in high malaria risk regions (53% vs 20%; P < 0.001). Compliance with skin repellents was associated with female gender [RR: 1.54 (95% CI: 1.05-2.28)], observing mosquitoes during travel [RR: 2.77 (95% CI: 1.76-4.36)] and travel during the rainy season [RR: 2.45 (95% CI: 1.66-3.71)]). Poor AVPM compliance was observed in the overall cohort. Compliance with skin repellent use was associated with female gender, observing mosquitoes and travelling during the rainy season, and was not

  20. Safety and Immunogenicity of an AMA-1 Malaria Vaccine in Malian Adults: Results of a Phase 1 Randomized Controlled Trial

    PubMed Central

    Thera, Mahamadou A.; Doumbo, Ogobara K.; Coulibaly, Drissa; Diallo, Dapa A.; Kone, Abdoulaye K.; Guindo, Ando B.; Traore, Karim; Dicko, Alassane; Sagara, Issaka; Sissoko, Mahamadou S.; Baby, Mounirou; Sissoko, Mady; Diarra, Issa; Niangaly, Amadou; Dolo, Amagana; Daou, Modibo; Diawara, Sory I.; Heppner, D. Gray; Stewart, V. Ann; Angov, Evelina; Bergmann-Leitner, Elke S.; Lanar, David E.; Dutta, Sheetij; Soisson, Lorraine; Diggs, Carter L.; Leach, Amanda; Owusu, Alex; Dubois, Marie-Claude; Cohen, Joe; Nixon, Jason N.; Gregson, Aric; Takala, Shannon L.; Lyke, Kirsten E.; Plowe, Christopher V.

    2008-01-01

    Background The objective was to evaluate the safety, reactogenicity and immunogenicity of the AMA-1-based blood-stage malaria vaccine FMP2.1/AS02A in adults exposed to seasonal malaria. Methodology/Principal Findings A phase 1 double blind randomized controlled dose escalation trial was conducted in Bandiagara, Mali, West Africa, a rural town with intense seasonal transmission of Plasmodium falciparum malaria. The malaria vaccine FMP2.1/AS02A is a recombinant protein (FMP2.1) based on apical membrane antigen-1 (AMA-1) from the 3D7 clone of P. falciparum, adjuvanted with AS02A. The comparator vaccine was a cell-culture rabies virus vaccine (RabAvert). Sixty healthy, malaria-experienced adults aged 18–55 y were recruited into 2 cohorts and randomized to receive either a half dose or full dose of the malaria vaccine (FMP2.1 25 µg/AS02A 0.25 mL or FMP2.1 50 µg/AS02A 0.5 mL) or rabies vaccine given in 3 doses at 0, 1 and 2 mo, and were followed for 1 y. Solicited symptoms were assessed for 7 d and unsolicited symptoms for 30 d after each vaccination. Serious adverse events were assessed throughout the study. Titers of anti-AMA-1 antibodies were measured by ELISA and P. falciparum growth inhibition assays were performed on sera collected at pre- and post-vaccination time points. Transient local pain and swelling were common and more frequent in both malaria vaccine dosage groups than in the comparator group. Anti-AMA-1 antibodies increased significantly in both malaria vaccine groups, peaking at nearly 5-fold and more than 6-fold higher than baseline in the half-dose and full-dose groups, respectively. Conclusion/Significance The FMP2.1/AS02A vaccine had a good safety profile, was well-tolerated, and was highly immunogenic in malaria-exposed adults. This malaria vaccine is being evaluated in Phase 1 and 2 trials in children at this site. Trial Registration ClinicalTrials.gov NCT00308061 PMID:18213374

  1. Impact of a malaria intervention package in schools on Plasmodium infection, anaemia and cognitive function in schoolchildren in Mali: a pragmatic cluster-randomised trial

    PubMed Central

    Rouhani, Saba; Diarra, Seybou; Saye, Renion; Bamadio, Modibo; Jones, Rebecca; Traore, Diahara; Traore, Klenon; Jukes, Matthew CH; Thuilliez, Josselin; Brooker, Simon; Roschnik, Natalie; Sacko, Moussa

    2017-01-01

    attention of school children in areas of highly seasonal transmission. These findings highlight the impact of asymptomatic malaria infection on cognitive performance in schoolchildren and the benefit of IPCs in reducing this burden. Additionally, malaria control in schools can help diminish the infectious reservoir that sustains Plasmodium transmission. PMID:29081992

  2. Highly focused anopheline breeding sites and malaria transmission in Dakar

    PubMed Central

    Machault, Vanessa; Gadiaga, Libasse; Vignolles, Cécile; Jarjaval, Fanny; Bouzid, Samia; Sokhna, Cheikh; Lacaux, Jean-Pierre; Trape, Jean-François; Rogier, Christophe; Pagès, Frédéric

    2009-01-01

    densities was found in six of the ten study areas. Conclusion The results provide evidence of malaria transmission in downtown Dakar and its surrounding suburbs. Spatial heterogeneity of human biting rates was very marked and malaria transmission was highly focal. In Dakar, mean figures for transmission would not provide a comprehensive picture of the entomological situation; risk evaluation should therefore be undertaken on a small scale. PMID:19552809

  3. Characterizing Types of Human Mobility to Inform Differential and Targeted Malaria Elimination Strategies in Northeast Cambodia

    PubMed Central

    Peeters Grietens, Koen; Gryseels, Charlotte; Dierickx, Susan; Bannister-Tyrrell, Melanie; Trienekens, Suzan; Uk, Sambunny; Phoeuk, Pisen; Suon, Sokha; Set, Srun; Gerrets, René; Hoibak, Sarah; Muela Ribera, Joan; Hausmann-Muela, Susanna; Tho, Sochantha; Durnez, Lies; Sluydts, Vincent; d’Alessandro, Umberto; Coosemans, Marc; Erhart, Annette

    2015-01-01

    Human population movements currently challenge malaria elimination in low transmission foci in the Greater Mekong Subregion. Using a mixed-methods design, combining ethnography (n = 410 interviews), malariometric data (n = 4996) and population surveys (n = 824 indigenous populations; n = 704 Khmer migrants) malaria vulnerability among different types of mobile populations was researched in the remote province of Ratanakiri, Cambodia. Different structural types of human mobility were identified, showing differential risk and vulnerability. Among local indigenous populations, access to malaria testing and treatment through the VMW-system and LLIN coverage was high but control strategies failed to account for forest farmers’ prolonged stays at forest farms/fields (61% during rainy season), increasing their exposure (p = 0.002). The Khmer migrants, with low acquired immunity, active on plantations and mines, represented a fundamentally different group not reached by LLIN-distribution campaigns since they were largely unregistered (79%) and unaware of the local VMW-system (95%) due to poor social integration. Khmer migrants therefore require control strategies including active detection, registration and immediate access to malaria prevention and control tools from which they are currently excluded. In conclusion, different types of mobility require different malaria elimination strategies. Targeting mobility without an in-depth understanding of malaria risk in each group challenges further progress towards elimination. PMID:26593245

  4. Variations in household microclimate affect outdoor-biting behaviour of malaria vectors

    PubMed Central

    Ngowo, Halfan S.; Kaindoa, Emmanuel Wilson; Matthiopoulos, Jason; Ferguson, Heather M.; Okumu, Fredros O.

    2017-01-01

    Background: Mosquito behaviours including the degree to which they bite inside houses or outside is a crucial determinant of human exposure to malaria. Whilst seasonality in mosquito vector abundance is well documented, much less is known about the impact of climate on mosquito behaviour. We investigated how variations in household microclimate affect outdoor-biting by malaria vectors, Anopheles arabiensis and Anopheles funestus. Methods: Mosquitoes were sampled indoors and outdoors weekly using human landing catches at eight households in four villages in south-eastern Tanzania, resulting in 616 trap-nights over 12 months. Daily temperature, relative humidity and rainfall were recorded. Generalized additive mixed models (GAMMs) were used to test associations between mosquito abundance and the microclimatic conditions. Generalized linear mixed models (GLMMs) were used to investigate the influence of microclimatic conditions on the tendency of vectors to bite outdoors (proportion of outdoor biting). Results:  An. arabiensis abundance peaked during high rainfall months (February-May), whilst An. funestus density remained stable into the dry season (May-August) . Across the range of observed household temperatures, a rise of 1 ºC marginally increased nightly An. arabiensis abundance (~11%), but more prominently increased An. funestus abundance (~66%). The abundance of An. arabiensis and An. funestus showed strong positive associations with time-lagged rainfall (2-3 and 3-4 weeks before sampling). The degree of outdoor biting in An. arabiensis was significantly associated with the relative temperature difference between indoor and outdoor environments, with exophily increasing as temperature inside houses became relatively warmer. The exophily of An. funestus did not vary with temperature differences.   Conclusions: This study demonstrates that malaria vector An. arabiensis shifts the location of its biting from indoors to outdoors in association with relative

  5. Spatiotemporal Analysis of Malaria in Urban Ahmedabad (Gujarat), India: Identification of Hot Spots and Risk Factors for Targeted Intervention

    PubMed Central

    Parizo, Justin; Sturrock, Hugh J. W.; Dhiman, Ramesh C.; Greenhouse, Bryan

    2016-01-01

    The world population, especially in developing countries, has experienced a rapid progression of urbanization over the last half century. Urbanization has been accompanied by a rise in cases of urban infectious diseases, such as malaria. The complexity and heterogeneity of the urban environment has made study of specific urban centers vital for urban malaria control programs, whereas more generalizable risk factor identification also remains essential. Ahmedabad city, India, is a large urban center located in the state of Gujarat, which has experienced a significant Plasmodium vivax and Plasmodium falciparum disease burden. Therefore, a targeted analysis of malaria in Ahmedabad city was undertaken to identify spatiotemporal patterns of malaria, risk factors, and methods of predicting future malaria cases. Malaria incidence in Ahmedabad city was found to be spatially heterogeneous, but temporally stable, with high spatial correlation between species. Because of this stability, a prediction method utilizing historic cases from prior years and seasons was used successfully to predict which areas of Ahmedabad city would experience the highest malaria burden and could be used to prospectively target interventions. Finally, spatial analysis showed that normalized difference vegetation index, proximity to water sources, and location within Ahmedabad city relative to the dense urban core were the best predictors of malaria incidence. Because of the heterogeneity of urban environments and urban malaria itself, the study of specific large urban centers is vital to assist in allocating resources and informing future urban planning. PMID:27382081

  6. Knowledge, perceptions and practices of farming communities on linkages between malaria and agriculture in Mvomero District, Tanzania.

    PubMed

    Mboera, Leonard E G; Shayo, Elizabeth H; Senkoro, Kesheni P; Rumisha, Susan F; Mlozi, Malongo R S; Mayala, Benjamin K

    2010-02-01

    This study was carried out to determine knowledge, perceptions and practices of farming communities on linkages between agriculture and malaria in Mvomero District in Tanzania. A total of 661 adult males and females were interviewed using a structured questionnaire. Most respondents (85.6%) were engaged in crop production. Significantly, a larger proportion (55.2%) of the respondents had primary school education (P<0.001). Majority (88.2%) respondents described malaria as the most important public health problem. However, only 48.2% of the respondents had high knowledge of malaria. The level of knowledge on malaria was associated with level of education of the respondent. Those who had attended at least primary school education were more knowledgeable that those without formal education. A significantly larger proportion (67%) of the respondents experienced most malaria episodes during the rainy season (P<0.001). Respondents with low knowledge on malaria experienced 2.3 times more malaria cases in their households than those with higher knowledge. Respondents with low knowledge preferred to seek care from health facilities (OR: 7.28) than those with high knowledge (OR: 0.15). Rice farming was significantly associated with malaria transmission compared to either maize or sugarcane farming (P<0.001). Cattle, sheep and goats were the domestic animals most frequently incriminated to create aquatic habitats for mosquito breeding. Householders with formal education (OR: 4.6, CI: 1.33-15.89, P-value=0.016) and higher knowledge (OR: 1.7, CI: 1.15-2.55, P-value=0.008) reported to incur large losses when having a malaria case than those without education/low knowledge. Majority (60.2%) of the respondent owned at least an insecticide treated mosquito net (ITN). Respondents with higher knowledge of malaria were likely to own at least an ITN than those with low knowledge (P<0.001). In conclusion, the knowledge on malaria and its linkage with agriculture among farming

  7. The use of insecticide-treated nets for reducing malaria morbidity among children aged 6-59 months, in an area of high malaria transmission in central Côte d'Ivoire

    PubMed Central

    2010-01-01

    Background Long-lasting insecticidal nets (LLINs) are an important tool for controlling malaria. Much attention has been devoted to determine both the effect of LLINs on the reduction of Plasmodium infection rate and on clinically-confirmed malaria cases in sub-Saharan Africa. We carried out an epidemiological study to investigate whether LLINs impact on Plasmodium prevalence rate and the proportion of clinically-confirmed malaria cases, in five villages in the district of Toumodi, central Côte d'Ivoire. Methods From April 2007 to November 2008, a community-based malaria control programme was implemented in the study villages, which involved large-scale distribution of LLINs, and training and sensitization activities within the community. We determined the effect of this programme on Plasmodium prevalence rate, clinically-confirmed malaria cases and proportion of high parasitaemia rates in children aged 6-59 months through a series of cross-sectional surveys starting in April 2007 and repeated once every 6 months. Results We observed a significant decrease in the mean P. falciparum prevalence rate from April 2007 to April 2008 (p = 0.029). An opposite trend was observed from November 2007 to November 2008 when P. falciparum prevalence rate increased significantly (p = 0.003). Highly significant decreases in the proportions of clinical malaria cases were observed between April 2007 and April 2008 (p < 0.001), and between November 2007 and November 2008 (p = 0.001). Conclusions Large-scale distribution of LLINs, accompanied by training and sensitization activities, significantly reduced Plasmodium prevalence rates among young children in the first year of the project, whereas overall clinical malaria rates dropped over the entire 18-month project period. A decrease in community motivation to sleep under bed nets, perhaps along with changing patterns of malaria transmission, might explain the observed increase in the Plasmodium prevalence rate between November 2007

  8. Congenital Malaria in China

    PubMed Central

    Liu, Xue; Culleton, Richard; Tao, Li; Xia, Hui; Gao, Qi

    2014-01-01

    Abstract Background Congenital malaria, in which infants are directly infected with malaria parasites from their mother prior to or during birth, is a potentially life-threatening condition that occurs at relatively low rates in malaria-endemic regions. It is recognized as a serious problem in Plasmodium falciparum–endemic sub-Saharan Africa, where recent data suggests that it is more common than previously believed. In such regions where malaria transmission is high, neonates may be protected from disease caused by congenital malaria through the transfer of maternal antibodies against the parasite. However, in low P. vivax–endemic regions, immunity to vivax malaria is low; thus, there is the likelihood that congenital vivax malaria poses a more significant threat to newborn health. Malaria had previously been a major parasitic disease in China, and congenital malaria case reports in Chinese offer valuable information for understanding the risks posed by congenital malaria to neonatal health. As most of the literature documenting congenital malaria cases in China are written in Chinese and therefore are not easily accessible to the global malaria research community, we have undertaken an extensive review of the Chinese literature on this subject. Methods/Principal Findings Here, we reviewed congenital malaria cases from three major searchable Chinese journal databases, concentrating on data from 1915 through 2011. Following extensive screening, a total of 104 cases of congenital malaria were identified. These cases were distributed mainly in the eastern, central, and southern regions of China, as well as in the low-lying region of southwest China. The dominant species was P. vivax (92.50%), reflecting the malaria parasite species distribution in China. The leading clinical presentation was fever, and other clinical presentations were anaemia, jaundice, paleness, diarrhoea, vomiting, and general weakness. With the exception of two cases, all patients were cured

  9. Doxycycline for Malaria Chemoprophylaxis and Treatment: Report from the CDC Expert Meeting on Malaria Chemoprophylaxis

    PubMed Central

    Tan, Kathrine R.; Magill, Alan J.; Parise, Monica E.; Arguin, Paul M.

    2011-01-01

    Doxycycline, a synthetically derived tetracycline, is a partially efficacious causal prophylactic (liver stage of Plasmodium) drug and a slow acting blood schizontocidal agent highly effective for the prevention of malaria. When used in conjunction with a fast acting schizontocidal agent, it is also highly effective for malaria treatment. Doxycycline is especially useful as a prophylaxis in areas with chloroquine and multidrug-resistant Plasmodium falciparum malaria. Although not recommended for pregnant women and children < 8 years of age, severe adverse events are rarely reported for doxycycline. This report examines the evidence behind current recommendations for the use of doxycycline for malaria and summarizes the available literature on its safety and tolerability. PMID:21460003

  10. Review: Malaria Chemoprophylaxis for Travelers to Latin America

    PubMed Central

    Steinhardt, Laura C.; Magill, Alan J.; Arguin, Paul M.

    2011-01-01

    Because of recent declining malaria transmission in Latin America, some authorities have recommended against chemoprophylaxis for most travelers to this region. However, the predominant parasite species in Latin America, Plasmodium vivax, can form hypnozoites sequestered in the liver, causing malaria relapses. Additionally, new evidence shows the potential severity of vivax infections, warranting continued consideration of prophylaxis for travel to Latin America. Individualized travel risk assessments are recommended and should consider travel locations, type, length, and season, as well as probability of itinerary changes. Travel recommendations might include no precautions, mosquito avoidance only, or mosquito avoidance and chemoprophylaxis. There are a range of good options for chemoprophylaxis in Latin America, including atovaquone-proguanil, doxycycline, mefloquine, and—in selected areas—chloroquine. Primaquine should be strongly considered for nonpregnant, G6PD-nondeficient patients traveling to vivax-endemic areas of Latin America, and it has the added benefit of being the only drug to protect against malaria relapses. PMID:22144437

  11. Spatiotemporal clusters of malaria cases at village level, northwest Ethiopia.

    PubMed

    Alemu, Kassahun; Worku, Alemayehu; Berhane, Yemane; Kumie, Abera

    2014-06-06

    Malaria attacks are not evenly distributed in space and time. In highland areas with low endemicity, malaria transmission is highly variable and malaria acquisition risk for individuals is unevenly distributed even within a neighbourhood. Characterizing the spatiotemporal distribution of malaria cases in high-altitude villages is necessary to prioritize the risk areas and facilitate interventions. Spatial scan statistics using the Bernoulli method were employed to identify spatial and temporal clusters of malaria in high-altitude villages. Daily malaria data were collected, using a passive surveillance system, from patients visiting local health facilities. Georeference data were collected at villages using hand-held global positioning system devices and linked to patient data. Bernoulli model using Bayesian approaches and Marcov Chain Monte Carlo (MCMC) methods were used to identify the effects of factors on spatial clusters of malaria cases. The deviance information criterion (DIC) was used to assess the goodness-of-fit of the different models. The smaller the DIC, the better the model fit. Malaria cases were clustered in both space and time in high-altitude villages. Spatial scan statistics identified a total of 56 spatial clusters of malaria in high-altitude villages. Of these, 39 were the most likely clusters (LLR = 15.62, p < 0.00001) and 17 were secondary clusters (LLR = 7.05, p < 0.03). The significant most likely temporal malaria clusters were detected between August and December (LLR = 17.87, p < 0.001). Travel away home, males and age above 15 years had statistically significant effect on malaria clusters at high-altitude villages. The study identified spatial clusters of malaria cases occurring at high elevation villages within the district. A patient who travelled away from home to a malaria-endemic area might be the most probable source of malaria infection in a high-altitude village. Malaria interventions in high altitude villages should

  12. Malaria in India: The Center for the Study of Complex Malaria in India

    PubMed Central

    Das, Aparup; Anvikar, Anupkumar R.; Cator, Lauren J.; Dhiman, Ramesh C.; Eapen, Alex; Mishra, Neelima; Nagpal, Bhupinder N.; Nanda, Nutan; Raghavendra, Kamaraju; Read, Andrew F.; Sharma, Surya K.; Singh, Om P.; Singh, Vineeta; Sinnis, Photini; Srivastava, Harish C.; Sullivan, Steven A.; Sutton, Patrick L.; Thomas, Matthew B.; Carlton, Jane M.; Valecha, Neena

    2012-01-01

    Malaria is a major public health problem in India and one which contributes significantly to the overall malaria burden in Southeast Asia. The National Vector Borne Disease Control Program of India reported ~1.6 million cases and ~1100 malaria deaths in 2009. Some experts argue that this is a serious underestimation and that the actual number of malaria cases per year is likely between 9 and 50 times greater, with an approximate 13-fold underestimation of malaria-related mortality. The difficulty in making these estimations is further exacerbated by (i) highly variable malaria eco-epidemiological profiles, (ii) the transmission and overlap of multiple Plasmodium species and Anopheles vectors, (iii) increasing antimalarial drug resistance and insecticide resistance, and (iv) the impact of climate change on each of these variables. Simply stated, the burden of malaria in India is complex. Here we describe plans for a Center for the Study of Complex Malaria in India (CSCMi), one of ten International Centers of Excellence in Malaria Research (ICEMRs) located in malarious regions of the world recently funded by the National Institute of Allergy and Infectious Diseases, National Institutes of Health. The CSCMi is a close partnership between Indian and United States scientists, and aims to address major gaps in our understanding of the complexity of malaria in India, including changing patterns of epidemiology, vector biology and control, drug resistance, and parasite genomics. We hope that such a multidisciplinary approach that integrates clinical and field studies with laboratory, molecular, and genomic methods will provide a powerful combination for malaria control and prevention in India. PMID:22142788

  13. Malaria in the WHO Southeast Asia region.

    PubMed

    Kondrashin, A V

    1992-09-01

    Malaria endemic countries in the southeast Asia region include Bangladesh, Bhutan, India, Indonesia, Maldives, Myanmar, Nepal, Sri Lanka, and Thailand. Population movement and rapid urbanization, both largely caused by unemployment, and environmental deterioration change the malaria pattern. They also increase the incidence of drug-resistant malaria, especially resistance to 4-aminoquinolines. In India, Plasmodium falciparum is linked to the density and distribution of tribals, and, in southern Thailand, rubber tappers have the highest malaria incidence rate (46.29%). Since the population is young and the young are highly sensitive to malaria infection, the region has low community immunity. High malaria priority areas are forests, forested hills, forest fringe areas, developmental project sites, and border areas. High risk groups include infants, young children, pregnant women, and mobile population groups. Malaria incidence is between 2.5-2.8 million cases, and the slide positivity rate is about 3%. P. falciparum constitutes 40% for all malaria cases. In 1988 in India, there were 222 malaria deaths. Malaria is the 7th most common cause of death in Thailand. 3 of the 19 Anopheline species are resistant to at least 1 insecticide, particularly DDT. Posteradication epidemics surfaced in the mid-1970s. Malaria control programs tend to use the primary health care and integration approach to malaria control. Antiparasite measures range from a single-dose of an antimalarial to mass drug administration. Residual spraying continues to be the main strategy of vector control. Some other vector control measures are fish feeding on mosquito larvae, insecticide impregnated mosquito nets, and repellents. Control programs also have health education activities. India allocates the highest percentage of its total health budget to malaria control (21.54%). Few malariology training programs exist in the region. Slowly processed surveillance data limit the countries' ability to

  14. The economic burden of malaria.

    PubMed

    Gallup, J L; Sachs, J D

    2001-01-01

    Malaria and poverty are intimately connected. Controlling for factors such as tropical location, colonial history, and geographical isolation, countries with intensive malaria had income levels in 1995 of only 33% that of countries without malaria, whether or not the countries were in Africa. The high levels of malaria in poor countries are not mainly a consequence of poverty. Malaria is geographically specific. The ecological conditions that support the more efficient malaria mosquito vectors primarily determine the distribution and intensity of the disease. Intensive efforts to eliminate malaria in the most severely affected tropical countries have been largely ineffective. Countries that have eliminated malaria in the past half century have all been either subtropical or islands. These countries' economic growth in the 5 years after eliminating malaria has usually been substantially higher than growth in the neighboring countries. Cross-country regressions for the 1965-1990 period confirm the relationship between malaria and economic growth. Taking into account initial poverty, economic policy, tropical location, and life expectancy, among other factors, countries with intensive malaria grew 1.3% less per person per year, and a 10% reduction in malaria was associated with 0.3% higher growth. Controlling for many other tropical diseases does not change the correlation of malaria with economic growth, and these diseases are not themselves significantly negatively correlated with economic growth. A second independent measure of malaria has a slightly higher correlation with economic growth in the 1980-1996 period. We speculate about the mechanisms that could cause malaria to have such a large impact on the economy, such as foreign investment and economic networks within the country.

  15. Knowledge, perception and practices about malaria, climate change, livelihoods and food security among rural communities of central Tanzania.

    PubMed

    Mayala, Benjamin K; Fahey, Carolyn A; Wei, Dorothy; Zinga, Maria M; Bwana, Veneranda M; Mlacha, Tabitha; Rumisha, Susan F; Stanley, Grades; Shayo, Elizabeth H; Mboera, Leonard Eg

    2015-01-01

    Understanding the interactions between malaria and agriculture in Tanzania is of particular significance when considering that they are the major sources of illness and livelihoods. The objective of this study was to determine knowledge, perceptions and practices as regards to malaria, climate change, livelihoods and food insecurity in a rural farming community in central Tanzania. Using a cross-sectional design, heads of households were interviewed on their knowledge and perceptions on malaria transmission, symptoms and prevention and knowledge and practices as regards to climate change and food security. A total of 399 individuals (mean age = 39.8 ± 15.5 years) were interviewed. Most (62.41%) of them had attained primary school education and majority (91.23%) were involved in crop farming activities. Nearly all (94.7%) knew that malaria is acquired through a mosquito bite. Three quarters (73%) reported that most people get sick from malaria during the rainy season. About 50% of the respondents felt that malaria had decreased during the last 10 years. The household coverage of insecticide treated mosquito nets (ITN) was high (95.5%). Ninety-six percent reported to have slept under a mosquito net the previous night. Only one in four understood the official Kiswahili term (Mabadiliko ya Tabia Nchi) for climate change. However, there was a general understanding that the rain patterns have changed in the past 10 years. Sixty-two percent believed that the temperature has increased during the same period. Three quarters of the respondents reported that they had no sufficient production from their own farms to guarantee food security in their household for the year. Three quarters (73.0%) reported to having food shortages in the past five years. About half said they most often experienced severe food shortage during the rainy season. Farming communities in Kilosa District have little knowledge on climate change and its impact on malaria burden. Food

  16. Rapid diagnostic tests for the home-based management of malaria, in a high-transmission area.

    PubMed

    Willcox, M L; Sanogo, F; Graz, B; Forster, M; Dakouo, F; Sidibe, O; Falquet, J; Giani, S; Diakite, C; Diallo, D

    2009-01-01

    Rapid diagnostic tests (RDT) are sometimes recommended to improve the home-based management of malaria. The accuracy of an RDT for the detection of clinical malaria and the presence of malarial parasites has recently been evaluated in a high-transmission area of southern Mali. During the same study, the cost-effectiveness of a 'test-and-treat' strategy for the home-based management of malaria (based on an artemisinin-combination therapy) was compared with that of a 'treat-all' strategy. Overall, 301 patients, of all ages, each of whom had been considered a presumptive case of uncomplicated malaria by a village healthworker, were checked with a commercial RDT (Paracheck-Pf). The sensitivity, specificity, and positive and negative predictive values of this test, compared with the results of microscopy and two different definitions of clinical malaria, were then determined. The RDT was found to be 82.9% sensitive (with a 95% confidence interval of 78.0%-87.1%) and 78.9% (63.9%-89.7%) specific compared with the detection of parasites by microscopy. In the detection of clinical malaria, it was 95.2% (91.3%-97.6%) sensitive and 57.4% (48.2%-66.2%) specific compared with a general practitioner's diagnosis of the disease, and 100.0% (94.5%-100.0%) sensitive but only 30.2% (24.8%-36.2%) specific when compared against the fulfillment of the World Health Organization's (2003) research criteria for uncomplicated malaria. Among children aged 0-5 years, the cost of the 'test-and-treat' strategy, per episode, was about twice that of the 'treat-all' (U.S.$1.0. v. U.S.$0.5). In older subjects, however, the two strategies were equally costly (approximately U.S.$2/episode). In conclusion, for children aged 0-5 years in a high-transmission area of sub-Saharan Africa, use of the RDT was not cost-effective compared with the presumptive treatment of malaria with an ACT. In older patients, use of the RDT did not reduce costs. The question remains whether either of the strategies

  17. Development of temporal modelling for forecasting and prediction of malaria infections using time-series and ARIMAX analyses: A case study in endemic districts of Bhutan

    PubMed Central

    2010-01-01

    Background Malaria still remains a public health problem in some districts of Bhutan despite marked reduction of cases in last few years. To strengthen the country's prevention and control measures, this study was carried out to develop forecasting and prediction models of malaria incidence in the endemic districts of Bhutan using time series and ARIMAX. Methods This study was carried out retrospectively using the monthly reported malaria cases from the health centres to Vector-borne Disease Control Programme (VDCP) and the meteorological data from Meteorological Unit, Department of Energy, Ministry of Economic Affairs. Time series analysis was performed on monthly malaria cases, from 1994 to 2008, in seven malaria endemic districts. The time series models derived from a multiplicative seasonal autoregressive integrated moving average (ARIMA) was deployed to identify the best model using data from 1994 to 2006. The best-fit model was selected for each individual district and for the overall endemic area was developed and the monthly cases from January to December 2009 and 2010 were forecasted. In developing the prediction model, the monthly reported malaria cases and the meteorological factors from 1996 to 2008 of the seven districts were analysed. The method of ARIMAX modelling was employed to determine predictors of malaria of the subsequent month. Results It was found that the ARIMA (p, d, q) (P, D, Q)s model (p and P representing the auto regressive and seasonal autoregressive; d and D representing the non-seasonal differences and seasonal differencing; and q and Q the moving average parameters and seasonal moving average parameters, respectively and s representing the length of the seasonal period) for the overall endemic districts was (2,1,1)(0,1,1)12; the modelling data from each district revealed two most common ARIMA models including (2,1,1)(0,1,1)12 and (1,1,1)(0,1,1)12. The forecasted monthly malaria cases from January to December 2009 and 2010 varied

  18. Development of temporal modelling for forecasting and prediction of malaria infections using time-series and ARIMAX analyses: a case study in endemic districts of Bhutan.

    PubMed

    Wangdi, Kinley; Singhasivanon, Pratap; Silawan, Tassanee; Lawpoolsri, Saranath; White, Nicholas J; Kaewkungwal, Jaranit

    2010-09-03

    Malaria still remains a public health problem in some districts of Bhutan despite marked reduction of cases in last few years. To strengthen the country's prevention and control measures, this study was carried out to develop forecasting and prediction models of malaria incidence in the endemic districts of Bhutan using time series and ARIMAX. This study was carried out retrospectively using the monthly reported malaria cases from the health centres to Vector-borne Disease Control Programme (VDCP) and the meteorological data from Meteorological Unit, Department of Energy, Ministry of Economic Affairs. Time series analysis was performed on monthly malaria cases, from 1994 to 2008, in seven malaria endemic districts. The time series models derived from a multiplicative seasonal autoregressive integrated moving average (ARIMA) was deployed to identify the best model using data from 1994 to 2006. The best-fit model was selected for each individual district and for the overall endemic area was developed and the monthly cases from January to December 2009 and 2010 were forecasted. In developing the prediction model, the monthly reported malaria cases and the meteorological factors from 1996 to 2008 of the seven districts were analysed. The method of ARIMAX modelling was employed to determine predictors of malaria of the subsequent month. It was found that the ARIMA (p, d, q) (P, D, Q)s model (p and P representing the auto regressive and seasonal autoregressive; d and D representing the non-seasonal differences and seasonal differencing; and q and Q the moving average parameters and seasonal moving average parameters, respectively and s representing the length of the seasonal period) for the overall endemic districts was (2,1,1)(0,1,1)12; the modelling data from each district revealed two most common ARIMA models including (2,1,1)(0,1,1)12 and (1,1,1)(0,1,1)12. The forecasted monthly malaria cases from January to December 2009 and 2010 varied from 15 to 82 cases in 2009

  19. Impact of combining intermittent preventive treatment with home management of malaria in children less than 10 years in a rural area of Senegal: a cluster randomized trial.

    PubMed

    Tine, Roger C K; Faye, Babacar; Ndour, Cheikh T; Ndiaye, Jean L; Ndiaye, Magatte; Bassene, Charlemagne; Magnussen, Pascal; Bygbjerg, Ib C; Sylla, Khadim; Ndour, Jacques D; Gaye, Oumar

    2011-12-13

    Current malaria control strategies recommend (i) early case detection using rapid diagnostic tests (RDT) and treatment with artemisinin combination therapy (ACT), (ii) pre-referral rectal artesunate, (iii) intermittent preventive treatment and (iv) impregnated bed nets. However, these individual malaria control interventions provide only partial protection in most epidemiological situations. Therefore, there is a need to investigate the potential benefits of integrating several malaria interventions to reduce malaria prevalence and morbidity. A randomized controlled trial was carried out to assess the impact of combining seasonal intermittent preventive treatment in children (IPTc) with home-based management of malaria (HMM) by community health workers (CHWs) in Senegal. Eight CHWs in eight villages covered by the Bonconto health post, (South Eastern part of Senegal) were trained to diagnose malaria using RDT, provide prompt treatment with artemether-lumefantrine for uncomplicated malaria cases and pre-referral rectal artesunate for complicated malaria occurring in children under 10 years. Four CHWs were randomized to also administer monthly IPTc as single dose of sulphadoxine-pyrimethamine (SP) plus three doses of amodiaquine (AQ) in the malaria transmission season, October and November 2010. Primary end point was incidence of single episode of malaria attacks over 8 weeks of follow up. Secondary end points included prevalence of malaria parasitaemia, and prevalence of anaemia at the end of the transmission season. Primary analysis was by intention to treat. The study protocol was approved by the Senegalese National Ethical Committee (approval 0027/MSP/DS/CNRS, 18/03/2010). A total of 1,000 children were enrolled. The incidence of malaria episodes was 7.1/100 child months at risk [95% CI (3.7-13.7)] in communities with IPTc + HMM compared to 35.6/100 child months at risk [95% CI (26.7-47.4)] in communities with only HMM (aOR = 0.20; 95% CI 0.09-0.41; p = 0.04). At

  20. The effect of household heads training about the use of treated bed nets on the burden of malaria and anaemia in under-five children: a cluster randomized trial in Ethiopia.

    PubMed

    Deribew, Amare; Birhanu, Zewdie; Sena, Lelisa; Dejene, Tariku; Reda, Ayalu A; Sudhakar, Morankar; Alemseged, Fessehaye; Tessema, Fasil; Zeynudin, Ahmed; Biadgilign, Sibhatu; Deribe, Kebede

    2012-01-06

    Long-lasting insecticide-treated bed nets (LLITN) have demonstrated a significant effect in reducing malaria-related morbidity and mortality. However, barriers on the utilization of LLITN have hampered the desired outcomes. The aim of this study was to assess the effect of community empowerment on the burden of malaria and anaemia in under-five children in Ethiopia. A cluster randomized trial was done in 22 (11 intervention and 11 control) villages in south-west Ethiopia. The intervention consisted of tailored training of household heads about the proper use of LLITN and community network system. The burden of malaria and anaemia in under-five children was determined through mass blood investigation at baseline, six and 12 months of the project period. Cases of malaria and anaemia were treated based on the national protocol. The burden of malaria and anaemia between the intervention and control villages was compared using the complex logistic regression model by taking into account the clustering effect. Eight Focus group discussions were conducted to complement the quantitative findings. A total of 2,105 household heads received the intervention and the prevalence of malaria and anaemia was assessed among 2410, 2037 and 2612 under-five children at baseline, six and 12 months of the project period respectively. During the high transmission/epidemic season, children in the intervention arm were less likely to have malaria as compared to children in the control arm (OR = 0.42; 95%CI: 0.32, 0.57). Symptomatic malaria also steadily declined in the intervention villages compared to the control villages in the follow up periods. Children in the intervention arm were less likely to be anaemic compared to those in the control arm both at the high (OR = 0.84; 95%CI: 0.71, 0.99)) and low (OR = 0.73; 95%CI: 0.60, 0.89) transmission seasons. Training of household heads on the utilization of LLITN significantly reduces the burden of malaria in under-five children. The Ministry

  1. Forecasting malaria cases using climatic factors in delhi, India: a time series analysis.

    PubMed

    Kumar, Varun; Mangal, Abha; Panesar, Sanjeet; Yadav, Geeta; Talwar, Richa; Raut, Deepak; Singh, Saudan

    2014-01-01

    Background. Malaria still remains a public health problem in developing countries and changing environmental and climatic factors pose the biggest challenge in fighting against the scourge of malaria. Therefore, the study was designed to forecast malaria cases using climatic factors as predictors in Delhi, India. Methods. The total number of monthly cases of malaria slide positives occurring from January 2006 to December 2013 was taken from the register maintained at the malaria clinic at Rural Health Training Centre (RHTC), Najafgarh, Delhi. Climatic data of monthly mean rainfall, relative humidity, and mean maximum temperature were taken from Regional Meteorological Centre, Delhi. Expert modeler of SPSS ver. 21 was used for analyzing the time series data. Results. Autoregressive integrated moving average, ARIMA (0,1,1) (0,1,0)(12), was the best fit model and it could explain 72.5% variability in the time series data. Rainfall (P value = 0.004) and relative humidity (P value = 0.001) were found to be significant predictors for malaria transmission in the study area. Seasonal adjusted factor (SAF) for malaria cases shows peak during the months of August and September. Conclusion. ARIMA models of time series analysis is a simple and reliable tool for producing reliable forecasts for malaria in Delhi, India.

  2. Malaria chemotherapy.

    PubMed

    Winstanley, Peter; Ward, Stephen

    2006-01-01

    Most malaria control strategies today depend on safe and effective drugs, as they have done for decades. But sensitivity to chloroquine, hitherto the workhorse of malaria chemotherapy, has rapidly declined throughout the tropics since the 1980s, and this drug is now useless in many high-transmission areas. New options for resource-constrained governments are few, and there is growing evidence that the burden from malaria has been increasing, as has malaria mortality in Africa. In this chapter, we have tried to outline the main pharmacological properties of current drugs, and their therapeutic uses and limitations. We have summarised the ways in which these drugs are employed, both in the formal health sector and in self-medication. We have briefly touched on the limitations of current drug development, but have tried to pick out a few promising drugs that are under development. Given that Plasmodium falciparum is the organism that kills, and that has developed multi-drug resistance, we have tended to focus upon it. Similarly, given that around 90% of global mortality from malaria occurs in Africa, there is the tendency to dwell on this continent. We give no apology for placing our emphasis upon the use of antimalarial drugs in endemic populations rather than their use for prophylaxis in travellers.

  3. El Niño-based malaria epidemic warning for Oromia, Ethiopia, from August 2016 to July 2017.

    PubMed

    Bouma, M J; Siraj, A S; Rodo, X; Pascual, M

    2016-11-01

    Tropical highland malaria intensifies and shifts to higher altitudes during exceptionally warm years. Above-normal temperatures associated with El Niño during boreal winter months (December-March) may intensify malaria in East African highlands. We assessed the malaria risk for Oromia, the largest region of Ethiopia with around 30 million inhabitants. Simple linear regression and spatial analyses were used to associate sea surface temperatures (SST) in the Pacific and surface temperatures in Ethiopia with annual malaria risk in Oromia, based on confirmed cases of malaria between 1982 and 2005. A strong association (R 2 = 0.6, P < 0.001) was identified between malaria and sea surface temperatures in the Pacific, anticipating a 70% increase in malaria risk for the period from August 2016 to July 2017. This forecast was quantitatively supported by elevated land surface temperatures (+1.6 °C) in December 2015. When more station data become available and mean March 2016 temperatures from meteorological stations can be taken into account, a more robust prediction can be issued. An epidemic warning is issued for Oromia, Ethiopia, between August 2016 and July 2017 and may include the pre-July short malaria season. Similar relationships reported for Madagascar point to an epidemic risk for all East African highlands with around 150 million people. Preparedness for this high risk period would include pre-emptive intradomestic spraying with insecticides, adequate stocking of antimalarials, and spatial extension of diagnostic capacity and more frequent reporting to enable a rapid public health response when and where required. © 2016 John Wiley & Sons Ltd.

  4. Redefining cerebral malaria by including malaria retinopathy.

    PubMed

    Beare, Nicholas A V; Lewallen, Susan; Taylor, Terrie E; Molyneux, Malcolm E

    2011-03-01

    Accurate diagnosis of cerebral malaria (CM) is important for patient management, epidemiological and end point surveillance, and enrolling patients with CM in studies of pathogenesis or therapeutic trials. In malaria-endemic areas, where asymptomatic Plasmodium falciparum parasitemia is common, a positive blood film in a comatose individual does not prove that the coma is due to malaria. A retinopathy consisting of two unique features - patchy retinal whitening and focal changes of vessel color - is highly specific for encephalopathy of malarial etiology. White-centered retinal hemorrhages are a common but less specific feature. Either indirect or direct ophthalmoscopy can be used to identify the changes, and both procedures can be learned and practiced by nonspecialist clinicians. In view of its important contributions to both clinical care and research, examination of the retina should become a routine component of the assessment of a comatose child or adult when CM is a possible diagnosis.

  5. A comparison of compliance rates with anti-vectorial protective measures during travel to regions with dengue or chikungunya activity, and regions endemic for Plasmodium falciparum malaria

    PubMed Central

    Lalani, Tahaniyat; Yun, Heather; Tribble, David; Ganesan, Anuradha; Kunz, Anjali; Fairchok, Mary; Schnaubelt, Elizabeth; Fraser, Jamie; Mitra, Indrani; Kronmann, Karl C.; Burgess, Timothy; Deiss, Robert G.; Riddle, Mark S.; Johnson, Mark D.

    2016-01-01

    Background. There is limited information on compliance rates with anti-vectorial protective measures (AVPMs) during travel to countries with risk of dengue and chikungunya. We evaluated differences in mosquito exposures, and factors associated with AVPM compliance in travellers going to countries where the principal mosquito-borne infectious disease threat is falciparum malaria and those where risk of dengue or chikungunya predominates. Methods. Department of Defence beneficiaries with planned travel to regions where the predominant mosquito-borne infection is falciparum malaria, and those with predominantly dengue or chikungunya risk, were included. Regions were divided into three groups: ‘high-risk falciparum malaria’, ‘low-risk falciparum malaria’ and ‘chikungunya/dengue risk’. Demographics, trip characteristics, arthropod exposure and AVPM compliance were captured using pre- and post-travel surveys. Skin repellent compliance was defined as self-reported use, categorized as ‘often/every day’. A logistic regression model was used to estimate factors associated with AVPM compliance. Results. 183 (9%), 185 (9%) and 149 (7%) travelled to high and low falciparum malaria risk regions, and chikungunya/dengue risk regions, respectively. Overall, 53% (95% CI: 48–57%) and 16% (95% CI: 12–19%) were compliant with repellent use on skin and clothing, respectively. Daytime bites were reported more frequently in chikungunya/dengue risk regions than high malaria risk regions (37% vs. 10%), while night time bites were frequently in high malaria risk regions (53% vs 20%; P < 0.001). Compliance with skin repellents was associated with female gender [RR: 1.54 (95% CI: 1.05–2.28)], observing mosquitoes during travel [RR: 2.77 (95% CI: 1.76–4.36)] and travel during the rainy season [RR: 2.45 (95% CI: 1.66–3.71)]). Conclusions. Poor AVPM compliance was observed in the overall cohort. Compliance with skin repellent use was associated with female gender

  6. Malaria in Kakuma refugee camp, Turkana, Kenya: facilitation of Anopheles arabiensis vector populations by installed water distribution and catchment systems

    PubMed Central

    2011-01-01

    Background Malaria is a major health concern for displaced persons occupying refugee camps in sub-Saharan Africa, yet there is little information on the incidence of infection and nature of transmission in these settings. Kakuma Refugee Camp, located in a dry area of north-western Kenya, has hosted ca. 60,000 to 90,000 refugees since 1992, primarily from Sudan and Somalia. The purpose of this study was to investigate malaria prevalence and attack rate and sources of Anopheles vectors in Kakuma refugee camp, in 2005-2006, after a malaria epidemic was observed by staff at camp clinics. Methods Malaria prevalence and attack rate was estimated from cases of fever presenting to camp clinics and the hospital in August 2005, using rapid diagnostic tests and microscopy of blood smears. Larval habitats of vectors were sampled and mapped. Houses were sampled for adult vectors using the pyrethrum knockdown spray method, and mapped. Vectors were identified to species level and their infection with Plasmodium falciparum determined. Results Prevalence of febrile illness with P. falciparum was highest among the 5 to 17 year olds (62.4%) while malaria attack rate was highest among the two to 4 year olds (5.2/1,000/day). Infected individuals were spatially concentrated in three of the 11 residential zones of the camp. The indoor densities of Anopheles arabiensis, the sole malaria vector, were similar during the wet and dry seasons, but were distributed in an aggregated fashion and predominantly in the same zones where malaria attack rates were high. Larval habitats and larval populations were also concentrated in these zones. Larval habitats were man-made pits of water associated with tap-stands installed as the water delivery system to residents with year round availability in the camp. Three percent of A. arabiensis adult females were infected with P. falciparum sporozoites in the rainy season. Conclusions Malaria in Kakuma refugee camp was due mainly to infection with P

  7. Changes in the burden of malaria following scale up of malaria control interventions in Mutasa District, Zimbabwe.

    PubMed

    Mharakurwa, Sungano; Mutambu, Susan L; Mberikunashe, Joseph; Thuma, Philip E; Moss, William J; Mason, Peter R

    2013-07-01

    To better understand trends in the burden of malaria and their temporal relationship to control activities, a survey was conducted to assess reported cases of malaria and malaria control activities in Mutasa District, Zimbabwe. Data on reported malaria cases were abstracted from available records at all three district hospitals, three rural hospitals and 25 rural health clinics in Mutasa District from 2003 to 2011. Malaria control interventions were scaled up through the support of the Roll Back Malaria Partnership, the Global Fund to Fight AIDS, Tuberculosis and Malaria, and The President's Malaria Initiative. The recommended first-line treatment regimen changed from chloroquine or a combination of chloroquine plus sulphadoxine/pyrimethamine to artemisinin-based combination therapy, the latter adopted by 70%, 95% and 100% of health clinics by 2008, 2009 and 2010, respectively. Diagnostic capacity improved, with rapid diagnostic tests (RDTs) available in all health clinics by 2008. Vector control consisted of indoor residual spraying and distribution of long-lasting insecticidal nets. The number of reported malaria cases initially increased from levels in 2003 to a peak in 2008 but then declined 39% from 2008 to 2010. The proportion of suspected cases of malaria in older children and adults remained high, ranging from 75% to 80%. From 2008 to 2010, the number of RDT positive cases of malaria decreased 35% but the decrease was greater for children younger than five years of age (60%) compared to older children and adults (26%). The burden of malaria in Mutasa District decreased following the scale up of malaria control interventions. However, the persistent high number of cases in older children and adults highlights the need for strategies to identify locally effective control measures that target all age groups.

  8. Simulation of the Impact of Climate Variability on Malaria Transmission in the Sahel

    NASA Astrophysics Data System (ADS)

    Bomblies, A.; Eltahir, E.; Duchemin, J.

    2007-12-01

    A coupled hydrology and entomology model for simulation of malaria transmission and malaria transmitting mosquito population dynamics is presented. Model development and validation is done using field data and observations collected at Banizoumbou and Zindarou, Niger spanning three wet seasons, from 2005 through 2007. The primary model objective is the accurate determination of climate variability effects on village scale malaria transmission. Malaria transmission dependence on climate variables is highly nonlinear and complex. Temperature and humidity affect mosquito longevity, temperature controls parasite development rates in the mosquito as well as subadult mosquito development rates, and precipitation determines the formation and persistence of adequate breeding pools. Moreover, unsaturated zone hydrology influences overland flow, and climate controlled evapotranspiration rates and root zone uptake therefore also influence breeding pool formation. High resolution distributed hydrologic simulation allows representation of the small-scale ephemeral pools that constitute the primary habitat of Anopheles gambiae mosquitoes, the dominant malaria vectors in the Niger Sahel. Remotely sensed soil type, vegetation type, and microtopography rasters are used to assign the distributed parameter fields for simulation of the land surface hydrologic response to precipitation and runoff generation. Predicted runoff from each cell flows overland and into topographic depressions, with explicit representation of infiltration and evapotranspiration. The model's entomology component interacts with simulated pools. Subadult (aquatic stage) mosquito breeding is simulated in the pools, and water temperature dependent stage advancement rates regulate adult mosquito emergence into the model domain. Once emerged, adult mosquitoes are tracked as independent individual agents that interact with their immediate environment. Attributes relevant to malaria transmission such as gonotrophic

  9. [Malaria in the Americas].

    PubMed

    Carme, B; Venturin, C

    1999-01-01

    In 1996, malaria involving Plasmodium vivax, Plasmodium falciparum, and, to a lesser extent, Plasmodium malariae was endemic in 21 countries in the Americas. The Amazon river basin and bordering areas including the Guyanas were the most affected zones. Until the mid 1970s, endemic malaria appeared to be under control. However in the ensuing 15 year period, the situation deteriorated drastically. Although trends varied depending on location, aggregate indexes indicated a twofold increase with recrudescence in previously settled areas and emergence in newly populated zones. Since 1990, the situation has worsened further in some areas where increased incidences have been associated with a high levels of drug-resistant Plasmodium falciparum. However this species remains in minority except in the Guyanas where the highest annual incidences (100 to 500 cases per 1000) and the most drug-resistant Plasmodium have been reported. The causes underlying this deterioration are numerous and complex. In regions naturally prone to transmission of the disease, outbreaks have been intensified by unrestrained settlement. The resulting deforestation has created new breeding areas for Anopheles darlingi, the main vector of malaria in the Americas. Migration of poor populations to newly opened farming and mining areas has created highly exposed areas for malaria infection. Implementation of adequate medical care and prevention measures has been hindered by a lack of money and sociopolitical unrest. Climatic phenomenon related the El Nino have also been favorable to the return of malaria to the region. Except with regard to financial resources and political unrest, the same risk factors for malaria are present in French Guiana.

  10. Habitat Hydrology and Geomorphology Control the Distribution of Malaria Vector Larvae in Rural Africa

    PubMed Central

    Hardy, Andrew J.; Gamarra, Javier G. P.; Cross, Dónall E.; Macklin, Mark G.; Smith, Mark W.; Kihonda, Japhet; Killeen, Gerry F.; Ling’ala, George N.; Thomas, Chris J.

    2013-01-01

    Background Larval source management is a promising component of integrated malaria control and elimination. This requires development of a framework to target productive locations through process-based understanding of habitat hydrology and geomorphology. Methods We conducted the first catchment scale study of fine resolution spatial and temporal variation in Anopheles habitat and productivity in relation to rainfall, hydrology and geomorphology for a high malaria transmission area of Tanzania. Results Monthly aggregates of rainfall, river stage and water table were not significantly related to the abundance of vector larvae. However, these metrics showed strong explanatory power to predict mosquito larval abundances after stratification by water body type, with a clear seasonal trend for each, defined on the basis of its geomorphological setting and origin. Conclusion Hydrological and geomorphological processes governing the availability and productivity of Anopheles breeding habitat need to be understood at the local scale for which larval source management is implemented in order to effectively target larval source interventions. Mapping and monitoring these processes is a well-established practice providing a tractable way forward for developing important malaria management tools. PMID:24312606

  11. Habitat hydrology and geomorphology control the distribution of malaria vector larvae in rural Africa.

    PubMed

    Hardy, Andrew J; Gamarra, Javier G P; Cross, Dónall E; Macklin, Mark G; Smith, Mark W; Kihonda, Japhet; Killeen, Gerry F; Ling'ala, George N; Thomas, Chris J

    2013-01-01

    Larval source management is a promising component of integrated malaria control and elimination. This requires development of a framework to target productive locations through process-based understanding of habitat hydrology and geomorphology. We conducted the first catchment scale study of fine resolution spatial and temporal variation in Anopheles habitat and productivity in relation to rainfall, hydrology and geomorphology for a high malaria transmission area of Tanzania. Monthly aggregates of rainfall, river stage and water table were not significantly related to the abundance of vector larvae. However, these metrics showed strong explanatory power to predict mosquito larval abundances after stratification by water body type, with a clear seasonal trend for each, defined on the basis of its geomorphological setting and origin. Hydrological and geomorphological processes governing the availability and productivity of Anopheles breeding habitat need to be understood at the local scale for which larval source management is implemented in order to effectively target larval source interventions. Mapping and monitoring these processes is a well-established practice providing a tractable way forward for developing important malaria management tools.

  12. Malaria overdiagnosis and subsequent overconsumption of antimalarial drugs in Angola: Consequences and effects on human health.

    PubMed

    Manguin, Sylvie; Foumane, Vincent; Besnard, Patrick; Fortes, Filomeno; Carnevale, Pierre

    2017-07-01

    Microscopic blood smear examinations done in health centers of Angola demonstrated a large overdiagnosis of malaria cases with an average rate of errors as high as 85%. Overall 83% of patients who received Coartem ® had an inappropriate treatment. Overestimated malaria diagnosis was noticed even when specific symptoms were part of the clinical observation, antimalarial treatments being subsequently given. Then, malaria overdiagnosis has three main consequences, (i) the lack of data reliability is of great concern, impeding epidemiological records and evaluation of the actual influence of operations as scheduled by the National Malaria Control Programme; (ii) the large misuse of antimalarial drug can increase the selective pressure for resistant strain and can make a false consideration of drug resistant P. falciparum crisis; and (iii) the need of strengthening national health centers in term of human, with training in microscopy, and equipment resources to improve malaria diagnosis with a large scale use of rapid diagnostic tests associated with thick blood smears, backed up by a "quality control" developed by the national health authorities. Monitoring of malaria cases was done in three Angolan health centers of Alto Liro (Lobito town) and neighbor villages of Cambambi and Asseque (Benguéla Province) to evaluate the real burden of malaria. Carriers of Plasmodium among patients of newly-borne to 14 years old, with or without fever, were analyzed and compared to presumptive malaria cases diagnosed in these health centers. Presumptive malaria cases were diagnosed six times more than the positive thick blood smears done on the same children. In Alto Liro health center, the percentage of diagnosis error reached 98%, while in Cambambi and Asseque it was of 79% and 78% respectively. The percentage of confirmed malaria cases was significantly higher during the dry (20.2%) than the rainy (13.2%) season. These observations in three peripheral health centers confirmed what

  13. Malaria in India: the center for the study of complex malaria in India.

    PubMed

    Das, Aparup; Anvikar, Anupkumar R; Cator, Lauren J; Dhiman, Ramesh C; Eapen, Alex; Mishra, Neelima; Nagpal, Bhupinder N; Nanda, Nutan; Raghavendra, Kamaraju; Read, Andrew F; Sharma, Surya K; Singh, Om P; Singh, Vineeta; Sinnis, Photini; Srivastava, Harish C; Sullivan, Steven A; Sutton, Patrick L; Thomas, Matthew B; Carlton, Jane M; Valecha, Neena

    2012-03-01

    Malaria is a major public health problem in India and one which contributes significantly to the overall malaria burden in Southeast Asia. The National Vector Borne Disease Control Program of India reported ∼1.6 million cases and ∼1100 malaria deaths in 2009. Some experts argue that this is a serious underestimation and that the actual number of malaria cases per year is likely between 9 and 50 times greater, with an approximate 13-fold underestimation of malaria-related mortality. The difficulty in making these estimations is further exacerbated by (i) highly variable malaria eco-epidemiological profiles, (ii) the transmission and overlap of multiple Plasmodium species and Anopheles vectors, (iii) increasing antimalarial drug resistance and insecticide resistance, and (iv) the impact of climate change on each of these variables. Simply stated, the burden of malaria in India is complex. Here we describe plans for a Center for the Study of Complex Malaria in India (CSCMi), one of ten International Centers of Excellence in Malaria Research (ICEMRs) located in malarious regions of the world recently funded by the National Institute of Allergy and Infectious Diseases, National Institutes of Health. The CSCMi is a close partnership between Indian and United States scientists, and aims to address major gaps in our understanding of the complexity of malaria in India, including changing patterns of epidemiology, vector biology and control, drug resistance, and parasite genomics. We hope that such a multidisciplinary approach that integrates clinical and field studies with laboratory, molecular, and genomic methods will provide a powerful combination for malaria control and prevention in India. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Genetic Surveillance Detects Both Clonal and Epidemic Transmission of Malaria following Enhanced Intervention in Senegal

    PubMed Central

    Séne, Papa Diogoye; Park, Danny C.; Neafsey, Daniel E.; Schaffner, Stephen F.; Hamilton, Elizabeth J.; Lukens, Amanda K.; Van Tyne, Daria; Mboup, Souleymane; Sabeti, Pardis C.; Ndiaye, Daouda; Wirth, Dyann F.

    2013-01-01

    Using parasite genotyping tools, we screened patients with mild uncomplicated malaria seeking treatment at a clinic in Thiès, Senegal, from 2006 to 2011. We identified a growing frequency of infections caused by genetically identical parasite strains, coincident with increased deployment of malaria control interventions and decreased malaria deaths. Parasite genotypes in some cases persisted clonally across dry seasons. The increase in frequency of genetically identical parasite strains corresponded with decrease in the probability of multiple infections. Further, these observations support evidence of both clonal and epidemic population structures. These data provide the first evidence of a temporal correlation between the appearance of identical parasite types and increased malaria control efforts in Africa, which here included distribution of insecticide treated nets (ITNs), use of rapid diagnostic tests (RDTs) for malaria detection, and deployment of artemisinin combination therapy (ACT). Our results imply that genetic surveillance can be used to evaluate the effectiveness of disease control strategies and assist a rational global malaria eradication campaign. PMID:23593309

  15. Climate and health: observation and modeling of malaria in the Ferlo (Senegal).

    PubMed

    Diouf, Ibrahima; Deme, Abdoulaye; Ndione, Jacques-André; Gaye, Amadou Thierno; Rodríguez-Fonseca, Belén; Cissé, Moustapha

    2013-01-01

    The aim of this work, undertaken in the framework of QWeCI (Quantifying Weather and Climate Impacts on health in the developing countries) project, is to study how climate variability could influence malaria seasonal incidence. It will also assess the evolution of vector-borne diseases such as malaria by simulation analysis of climate models according to various climate scenarios for the next years. Climate variability seems to be determinant for the risk of malaria development (Freeman and Bradley, 1996 [1], Lindsay and Birley, 1996 [2], Kuhn et al., 2005 [3]). Climate can impact on the epidemiology of malaria by several mechanisms, directly, via the development rates and survival of both pathogens and vectors, and indirectly, through changes in vegetation and land surface characteristics such as the variability of breeding sites like ponds. Copyright © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  16. Devising a method towards development of early warning tool for detection of malaria outbreak.

    PubMed

    Verma, Preeti; Sarkar, Soma; Singh, Poonam; Dhiman, Ramesh C

    2017-11-01

    Uncertainty often arises in differentiating seasonal variation from outbreaks of malaria. The present study was aimed to generalize the theoretical structure of sine curve for detecting an outbreak so that a tool for early warning of malaria may be developed. A 'case/mean-ratio scale' system was devised for labelling the outbreak in respect of two diverse districts of Assam and Rajasthan. A curve-based method of analysis was developed for determining outbreak and using the properties of sine curve. It could be used as an early warning tool for Plasmodium falciparum malaria outbreaks. In the present method of analysis, the critical C max (peak value of sine curve) value of seasonally adjusted curve for P. falciparum malaria outbreak was 2.3 for Karbi Anglong and 2.2 for Jaisalmer districts. On case/mean-ratio scale, the C max value of malaria curve between C max and 3.5, the outbreak could be labelled as minor while >3.5 may be labelled as major. In epidemic years, with mean of case/mean ratio of ≥1.00 and root mean square (RMS) ≥1.504 of case/mean ratio, outbreaks can be predicted 1-2 months in advance. The present study showed that in P. falciparum cases in Karbi Anglong (Assam) and Jaisalmer (Rajasthan) districts, the rise in C max value of curve was always followed by rise in average/RMS or both and hence could be used as an early warning tool. The present method provides better detection of outbreaks than the conventional method of mean plus two standard deviation (mean+2 SD). The identified tools are simple and may be adopted for preparedness of malaria outbreaks.

  17. Meteorological, environmental remote sensing and neural network analysis of the epidemiology of malaria transmission in Thailand.

    PubMed

    Kiang, Richard; Adimi, Farida; Soika, Valerii; Nigro, Joseph; Singhasivanon, Pratap; Sirichaisinthop, Jeeraphat; Leemingsawat, Somjai; Apiwathnasorn, Chamnarn; Looareesuwan, Sornchai

    2006-11-01

    In many malarious regions malaria transmission roughly coincides with rainy seasons, which provide for more abundant larval habitats. In addition to precipitation, other meteorological and environmental factors may also influence malaria transmission. These factors can be remotely sensed using earth observing environmental satellites and estimated with seasonal climate forecasts. The use of remote sensing usage as an early warning tool for malaria epidemics have been broadly studied in recent years, especially for Africa, where the majority of the world's malaria occurs. Although the Greater Mekong Subregion (GMS), which includes Thailand and the surrounding countries, is an epicenter of multidrug resistant falciparum malaria, the meteorological and environmental factors affecting malaria transmissions in the GMS have not been examined in detail. In this study, the parasitological data used consisted of the monthly malaria epidemiology data at the provincial level compiled by the Thai Ministry of Public Health. Precipitation, temperature, relative humidity, and vegetation index obtained from both climate time series and satellite measurements were used as independent variables to model malaria. We used neural network methods, an artificial-intelligence technique, to model the dependency of malaria transmission on these variables. The average training accuracy of the neural network analysis for three provinces (Kanchanaburi, Mae Hong Son, and Tak) which are among the provinces most endemic for malaria, is 72.8% and the average testing accuracy is 62.9% based on the 1994-1999 data. A more complex neural network architecture resulted in higher training accuracy but also lower testing accuracy. Taking into account of the uncertainty regarding reported malaria cases, we divided the malaria cases into bands (classes) to compute training accuracy. Using the same neural network architecture on the 19 most endemic provinces for years 1994 to 2000, the mean training accuracy

  18. Dynamics of malaria transmission and susceptibility to clinical malaria episodes following treatment of Plasmodium falciparum asymptomatic carriers: results of a cluster-randomized study of community-wide screening and treatment, and a parallel entomology study.

    PubMed

    Tiono, Alfred B; Guelbeogo, Moussa W; Sagnon, N Falé; Nébié, Issa; Sirima, Sodiomon B; Mukhopadhyay, Amitava; Hamed, Kamal

    2013-11-12

    In malaria-endemic countries, large proportions of individuals infected with Plasmodium falciparum are asymptomatic and constitute a reservoir of parasites for infection of newly hatched mosquitoes. Two studies were run in parallel in Burkina Faso to evaluate the impact of systematic identification and treatment of asymptomatic carriers of P. falciparum, detected by rapid diagnostic test, on disease transmission and susceptibility to clinical malaria episodes. A clinical study assessed the incidence of symptomatic malaria episodes with a parasite density >5,000/μL after three screening and treatment campaigns ~1 month apart before the rainy season; and an entomological study determined the effect of these campaigns on malaria transmission as measured by entomological inoculation rate. The intervention arm had lower prevalence of asymptomatic carriers of asexual parasites and lower prevalence of gametocyte carriers during campaigns 2 and 3 as compared to the control arm. During the entire follow-up period, out of 13,767 at-risk subjects, 2,516 subjects (intervention arm 1,332; control arm 1,184) had symptomatic malaria. Kaplan-Meier analysis of the incidence of first symptomatic malaria episode with a parasite density >5,000/μL showed that, in the total population, the two treatment arms were similar until Week 11-12 after campaign 3, corresponding with the beginning of the malaria transmission season, after which the probability of being free of symptomatic malaria was lower in the intervention arm (logrank p < 0.0001). Similar trends were observed in infants and children <5 years and in individuals ≥5 years of age. In infants and children <5 years old who experienced symptomatic malaria episodes, the geometric mean P. falciparum density was lower in the intervention arm than the control arm. This trend was not seen in those individuals aged ≥5 years. Over the year, monthly variation in mosquito density and entomological inoculation rate was

  19. Modelling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions: contributions to a National Malaria Early Warning System

    PubMed Central

    Ruiz, Daniel; Poveda, Germán; Vélez, Iván D; Quiñones, Martha L; Rúa, Guillermo L; Velásquez, Luz E; Zuluaga, Juan S

    2006-01-01

    Background Malaria has recently re-emerged as a public health burden in Colombia. Although the problem seems to be climate-driven, there remain significant gaps of knowledge in the understanding of the complexity of malaria transmission, which have motivated attempts to develop a comprehensive model. Methods The mathematical tool was applied to represent Plasmodium falciparum malaria transmission in two endemic-areas. Entomological exogenous variables were estimated through field campaigns and laboratory experiments. Availability of breeding places was included towards representing fluctuations in vector densities. Diverse scenarios, sensitivity analyses and instabilities cases were considered during experimentation-validation process. Results Correlation coefficients and mean square errors between observed and modelled incidences reached 0.897–0.668 (P > 0.95) and 0.0002–0.0005, respectively. Temperature became the most relevant climatic parameter driving the final incidence. Accordingly, malaria outbreaks are possible during the favourable epochs following the onset of El Niño warm events. Sporogonic and gonotrophic cycles showed to be the entomological key-variables controlling the transmission potential of mosquitoes' population. Simulation results also showed that seasonality of vector density becomes an important factor towards understanding disease transmission. Conclusion The model constitutes a promising tool to deepen the understanding of the multiple interactions related to malaria transmission conducive to outbreaks. In the foreseeable future it could be implemented as a tool to diagnose possible dynamical patterns of malaria incidence under several scenarios, as well as a decision-making tool for the early detection and control of outbreaks. The model will be also able to be merged with forecasts of El Niño events to provide a National Malaria Early Warning System. PMID:16882349

  20. Modelling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions: contributions to a National Malaria Early Warning System.

    PubMed

    Ruiz, Daniel; Poveda, Germán; Vélez, Iván D; Quiñones, Martha L; Rúa, Guillermo L; Velásquez, Luz E; Zuluaga, Juan S

    2006-08-01

    Malaria has recently re-emerged as a public health burden in Colombia. Although the problem seems to be climate-driven, there remain significant gaps of knowledge in the understanding of the complexity of malaria transmission, which have motivated attempts to develop a comprehensive model. The mathematical tool was applied to represent Plasmodium falciparum malaria transmission in two endemic-areas. Entomological exogenous variables were estimated through field campaigns and laboratory experiments. Availability of breeding places was included towards representing fluctuations in vector densities. Diverse scenarios, sensitivity analyses and instabilities cases were considered during experimentation-validation process. Correlation coefficients and mean square errors between observed and modelled incidences reached 0.897-0.668 (P > 0.95) and 0.0002-0.0005, respectively. Temperature became the most relevant climatic parameter driving the final incidence. Accordingly, malaria outbreaks are possible during the favourable epochs following the onset of El Niño warm events. Sporogonic and gonotrophic cycles showed to be the entomological key-variables controlling the transmission potential of mosquitoes' population. Simulation results also showed that seasonality of vector density becomes an important factor towards understanding disease transmission. The model constitutes a promising tool to deepen the understanding of the multiple interactions related to malaria transmission conducive to outbreaks. In the foreseeable future it could be implemented as a tool to diagnose possible dynamical patterns of malaria incidence under several scenarios, as well as a decision-making tool for the early detection and control of outbreaks. The model will be also able to be merged with forecasts of El Niño events to provide a National Malaria Early Warning System.

  1. Community-randomized trial of lambdacyhalothrin-treated hammock nets for malaria control in Yanomami communities in the Amazon region of Venezuela.

    PubMed

    Magris, M; Rubio-Palis, Y; Alexander, N; Ruiz, B; Galván, N; Frias, D; Blanco, M; Lines, J

    2007-03-01

    We conducted a community-randomized controlled trial in an area of moderate malaria transmission in the Amazon region, southern Venezuela, home of the Yanomami indigenous ethnic group. The aim was to compare the malaria incidence rate in villages with lambdacyhalothrin-treated hammock nets (ITHN) or with placebo-treated hammock nets (PTHN). In both arms of the study, intensive surveillance for early case detection was maintained and prompt malaria treatment was administered. Baseline data were collected before the intervention and a population of around 924 Yanomami was followed for 2 years. Despite the recent introduction of nets in the Yanomami villages and the adverse natural conditions in the area, the nets were accepted enthusiastically by the study population, used conscientiously and looked after carefully. The malaria incidence rate per thousand person-years at risk was 114.6 in the IHTN group and 186.8 in the PTHN group. The adjusted rate ratios indicated that ITHN prevent 56% [IRR: 0.44, 95% confidence interval (CI): 52-59%] of new malaria cases. ITHN reduced the prevalence of parasitaemia by 83% [relative risks (RR): 0.17, 95% CI: 47-100%], according to a cross-sectional survey carried out during the high transmission season. The prevalence of splenomegaly and anaemia was too low to detect any possible reduction as a result of ITHN. The main conclusion of the present study is that ITHN can reduce malaria incidence in the area and it is the most feasible method for malaria control in a forested area where indigenous villages are scattered over a large territory. This is the first community-level epidemiological trial to show that ITHN are highly effective against malaria transmitted by Anopheles darlingi.

  2. Estimating malaria transmission from humans to mosquitoes in a noisy landscape.

    PubMed

    Reiner, Robert C; Guerra, Carlos; Donnelly, Martin J; Bousema, Teun; Drakeley, Chris; Smith, David L

    2015-10-06

    A basic quantitative understanding of malaria transmission requires measuring the probability a mosquito becomes infected after feeding on a human. Parasite prevalence in mosquitoes is highly age-dependent, and the unknown age-structure of fluctuating mosquito populations impedes estimation. Here, we simulate mosquito infection dynamics, where mosquito recruitment is modelled seasonally with fractional Brownian noise, and we develop methods for estimating mosquito infection rates. We find that noise introduces bias, but the magnitude of the bias depends on the 'colour' of the noise. Some of these problems can be overcome by increasing the sampling frequency, but estimates of transmission rates (and estimated reductions in transmission) are most accurate and precise if they combine parity, oocyst rates and sporozoite rates. These studies provide a basis for evaluating the adequacy of various entomological sampling procedures for measuring malaria parasite transmission from humans to mosquitoes and for evaluating the direct transmission-blocking effects of a vaccine. © 2015 The Authors.

  3. Estimating malaria transmission from humans to mosquitoes in a noisy landscape

    PubMed Central

    Reiner, Robert C.; Guerra, Carlos; Donnelly, Martin J.; Bousema, Teun; Drakeley, Chris; Smith, David L.

    2015-01-01

    A basic quantitative understanding of malaria transmission requires measuring the probability a mosquito becomes infected after feeding on a human. Parasite prevalence in mosquitoes is highly age-dependent, and the unknown age-structure of fluctuating mosquito populations impedes estimation. Here, we simulate mosquito infection dynamics, where mosquito recruitment is modelled seasonally with fractional Brownian noise, and we develop methods for estimating mosquito infection rates. We find that noise introduces bias, but the magnitude of the bias depends on the ‘colour' of the noise. Some of these problems can be overcome by increasing the sampling frequency, but estimates of transmission rates (and estimated reductions in transmission) are most accurate and precise if they combine parity, oocyst rates and sporozoite rates. These studies provide a basis for evaluating the adequacy of various entomological sampling procedures for measuring malaria parasite transmission from humans to mosquitoes and for evaluating the direct transmission-blocking effects of a vaccine. PMID:26400195

  4. Malaria Theranostics using Hemozoin-Generated Vapor Nanobubbles

    PubMed Central

    Hleb, Ekaterina Y. Lukianova-; Lapotko, Dmitri O.

    2014-01-01

    Malaria remains a widespread and deadly infectious human disease, with increasing diagnostic and therapeutic challenges due to the drug resistance and aggressiveness of malaria infection. Early detection and innovative approaches for parasite destruction are needed. The high optical absorbance and nano-size of hemozoin crystals have been exploited to detect and mechanically destroy the malaria parasite in a single theranostic procedure. Transient vapor nanobubbles are generated around hemozoin crystals in malaria parasites in infected erythrocytes in response to a single short laser pulse. Optical scattering signals of the nanobubble report the presence of the malaria parasite. The mechanical impact of the same nanobubble physically destroys the parasite in nanoseconds in a drug-free manner. Laser-induced nanobubble treatment of human blood in vitro results in destruction of up to 95% of parasites after a single procedure, and delivers an 8-fold better parasiticidal efficacy compared to standard chloroquine drug treatment. The mechanism of destruction is highly selective for malaria infected red cells and does not harm neighboring, uninfected erythrocytes. Thus, laser pulse-induced vapor nanobubble generation around hemozoin supports both rapid and highly specific detection and destruction of malaria parasites in one theranostic procedure. PMID:24883125

  5. Malaria theranostics using hemozoin-generated vapor nanobubbles.

    PubMed

    Lukianova-Hleb, Ekaterina Y; Lapotko, Dmitri O

    2014-01-01

    Malaria remains a widespread and deadly infectious human disease, with increasing diagnostic and therapeutic challenges due to the drug resistance and aggressiveness of malaria infection. Early detection and innovative approaches for parasite destruction are needed. The high optical absorbance and nano-size of hemozoin crystals have been exploited to detect and mechanically destroy the malaria parasite in a single theranostic procedure. Transient vapor nanobubbles are generated around hemozoin crystals in malaria parasites in infected erythrocytes in response to a single short laser pulse. Optical scattering signals of the nanobubble report the presence of the malaria parasite. The mechanical impact of the same nanobubble physically destroys the parasite in nanoseconds in a drug-free manner. Laser-induced nanobubble treatment of human blood in vitro results in destruction of up to 95% of parasites after a single procedure, and delivers an 8-fold better parasiticidal efficacy compared to standard chloroquine drug treatment. The mechanism of destruction is highly selective for malaria infected red cells and does not harm neighboring, uninfected erythrocytes. Thus, laser pulse-induced vapor nanobubble generation around hemozoin supports both rapid and highly specific detection and destruction of malaria parasites in one theranostic procedure.

  6. Comparison of Malaria Simulations Driven by Meteorological Observations and Reanalysis Products in Senegal

    PubMed Central

    Diouf, Ibrahima; Rodriguez-Fonseca, Belen; Deme, Abdoulaye; Caminade, Cyril; Morse, Andrew P.; Cisse, Moustapha; Sy, Ibrahima; Dia, Ibrahima; Ermert, Volker; Ndione, Jacques-André; Gaye, Amadou Thierno

    2017-01-01

    The analysis of the spatial and temporal variability of climate parameters is crucial to study the impact of climate-sensitive vector-borne diseases such as malaria. The use of malaria models is an alternative way of producing potential malaria historical data for Senegal due to the lack of reliable observations for malaria outbreaks over a long time period. Consequently, here we use the Liverpool Malaria Model (LMM), driven by different climatic datasets, in order to study and validate simulated malaria parameters over Senegal. The findings confirm that the risk of malaria transmission is mainly linked to climate variables such as rainfall and temperature as well as specific landscape characteristics. For the whole of Senegal, a lag of two months is generally observed between the peak of rainfall in August and the maximum number of reported malaria cases in October. The malaria transmission season usually takes place from September to November, corresponding to the second peak of temperature occurring in October. Observed malaria data from the Programme National de Lutte contre le Paludisme (PNLP, National Malaria control Programme in Senegal) and outputs from the meteorological data used in this study were compared. The malaria model outputs present some consistencies with observed malaria dynamics over Senegal, and further allow the exploration of simulations performed with reanalysis data sets over a longer time period. The simulated malaria risk significantly decreased during the 1970s and 1980s over Senegal. This result is consistent with the observed decrease of malaria vectors and malaria cases reported by field entomologists and clinicians in the literature. The main differences between model outputs and observations regard amplitude, but can be related not only to reanalysis deficiencies but also to other environmental and socio-economic factors that are not included in this mechanistic malaria model framework. The present study can be considered as a

  7. Comparison of Malaria Simulations Driven by Meteorological Observations and Reanalysis Products in Senegal.

    PubMed

    Diouf, Ibrahima; Rodriguez-Fonseca, Belen; Deme, Abdoulaye; Caminade, Cyril; Morse, Andrew P; Cisse, Moustapha; Sy, Ibrahima; Dia, Ibrahima; Ermert, Volker; Ndione, Jacques-André; Gaye, Amadou Thierno

    2017-09-25

    The analysis of the spatial and temporal variability of climate parameters is crucial to study the impact of climate-sensitive vector-borne diseases such as malaria. The use of malaria models is an alternative way of producing potential malaria historical data for Senegal due to the lack of reliable observations for malaria outbreaks over a long time period. Consequently, here we use the Liverpool Malaria Model (LMM), driven by different climatic datasets, in order to study and validate simulated malaria parameters over Senegal. The findings confirm that the risk of malaria transmission is mainly linked to climate variables such as rainfall and temperature as well as specific landscape characteristics. For the whole of Senegal, a lag of two months is generally observed between the peak of rainfall in August and the maximum number of reported malaria cases in October. The malaria transmission season usually takes place from September to November, corresponding to the second peak of temperature occurring in October. Observed malaria data from the Programme National de Lutte contre le Paludisme (PNLP, National Malaria control Programme in Senegal) and outputs from the meteorological data used in this study were compared. The malaria model outputs present some consistencies with observed malaria dynamics over Senegal, and further allow the exploration of simulations performed with reanalysis data sets over a longer time period. The simulated malaria risk significantly decreased during the 1970s and 1980s over Senegal. This result is consistent with the observed decrease of malaria vectors and malaria cases reported by field entomologists and clinicians in the literature. The main differences between model outputs and observations regard amplitude, but can be related not only to reanalysis deficiencies but also to other environmental and socio-economic factors that are not included in this mechanistic malaria model framework. The present study can be considered as a

  8. Educating the security forces, a high risk group in malaria elimination efforts: an example from Sri Lanka.

    PubMed

    Fernando, Sumadhya Deepika; Rodrigo, Chaturaka; de Silva, Nipun; Semege, Saveen; Rajapakse, Senaka; Samaranayake, Nilakashi; Senenayake, Sanath; Premaratne, Risintha Gayan

    2014-09-01

    The security forces are a high risk group for malaria transmission in Sri Lanka. Interrupting transmission and maintaining surveillance in this group is an important component of elimination efforts. The objective of the study was to develop a prototype educational programme on malaria for security forces serving in endemic areas. An interactive seminar was designed to deliver the required knowledge. The content was on current status, transmission, signs and symptoms and the role of security personnel in identification and prevention of malaria. Each seminar was preceded by a pre-test and followed by a post test to assess the improvement of knowledge. Fifty seminars were held in eight districts over 2 months with 2301 security forces personnel participating. Pre seminar knowledge on malaria was significantly better in the medical corps, those who had completed secondary education and in the Army compared to other security forces (p<0.001). Participation in the seminar resulted in an improvement in all domains tested as shown by test scores in post seminar assessment (p<0.001). Conducting a formal educational programme is an effective strategy to improve awareness on malaria amongst security forces personnel who are a high risk group for re-introduction of malaria into the country. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. The burden of malaria infection on pregnant women and birth weight of infants in south western Nigeria.

    PubMed

    Akanbi, O M; Odaibo, A B; Ademowo, O G

    2009-04-01

    To determine the effect of malaria infection on pregnant women and the birth weight of the infants in the south western Nigeria. 262 pregnant women who came for antenatal clinic at Ade-Oyo maternity hospital. 128 were primigravidae while 134 were multigravidae. 2ml of blood was withdrawn from 262 pregnant women who came for antenatal clinic at Ade Oyo maternity hospital. Thick blood smears were prepared for parasite identification and quantification. Anaemia was detected by measuring Hb levels using Drabkin's solution. Age, gravidity and history of treatment with antimalaria drugs were obtained from the subjects using questionnaire. The overall prevalence of infection was 41.8%. Primigravidae were more infected (35%) than multigravidae (22%). The prevalence was significantly higher (p<0.05) in wet season than dry season. Teenagers and primigravidae were more infected than the adults and multigravidae. The severity of the anaemia was significantly higher (p<0.05) among malaria positive teenagers and primigravidae than adults and multigravidae. The mean birth weight of infants born to malaria positive was significantly lower (p<0.05) than those born to malaria negative mothers. Malaria positive teenagers and primigravidae had infants with lowest birth weight as compared with adult and multigravidae. The birth weights of the infants were positively correlated with the Hb levels. This study suggests that malaria infection, anaemia, and gravidity affect the birth weight of infants born in Ibadan, southwestern Nigeria.

  10. Redefining cerebral malaria by including malaria retinopathy

    PubMed Central

    Beare, Nicholas AV; Lewallen, Susan; Taylor, Terrie E; Molyneux, Malcolm E

    2011-01-01

    Accurate diagnosis of cerebral malaria (CM) is important for patient management, epidemiological and end point surveillance, and enrolling patients with CM in studies of pathogenesis or therapeutic trials. In malaria-endemic areas, where asymptomatic Plasmodium falciparum parasitemia is common, a positive blood film in a comatose individual does not prove that the coma is due to malaria. A retinopathy consisting of two unique features – patchy retinal whitening and focal changes of vessel color – is highly specific for encephalopathy of malarial etiology. White-centered retinal hemorrhages are a common but less specific feature. Either indirect or direct ophthalmoscopy can be used to identify the changes, and both procedures can be learned and practiced by nonspecialist clinicians. In view of its important contributions to both clinical care and research, examination of the retina should become a routine component of the assessment of a comatose child or adult when CM is a possible diagnosis. PMID:21449844

  11. Malaria risk factors and care-seeking behaviour within the private sector among high-risk populations in Vietnam: a qualitative study.

    PubMed

    Chen, Ingrid; Thanh, Huong Ngo Thi; Lover, Andrew; Thao, Phung Thi; Luu, Tang Viet; Thang, Hoang Nghia; Thang, Ngo Duc; Neukom, Josselyn; Bennett, Adam

    2017-10-16

    Vietnam has successfully reduced malaria incidence by more than 90% over the past 10 years, and is now preparing for malaria elimination. However, the remaining malaria burden resides in individuals that are hardest to reach, in highly remote areas, where many malaria cases are treated through the informal private sector and are not reported to public health systems. This qualitative study aimed to contextualize and characterize the role of private providers, care-seeking behaviour of individuals at high risk of malaria, as well as risk factors that should be addressed through malaria elimination programmes in Vietnam. Semi-structured qualitative interviews were conducted with 11 key informants in Hanoi, 30 providers, 9 potential patients, and 11 individuals at risk of malaria in Binh Phuoc and Kon Tum provinces. Audio recorded interviews were transcribed and uploaded to Atlas TI™, themes were identified, from which programmatic implications and recommendations were synthesized. Qualitative interviews revealed that efforts for malaria elimination in Vietnam should concentrate on reaching highest-risk populations in remote areas as well their care providers, in particular private pharmacies, private clinics, and grocery stores. Among these private providers, diagnosis is currently based on symptoms, leaving unconfirmed cases that are not reported to public health surveillance systems. Among at-risk individuals, knowledge of malaria was limited, and individuals reported not taking full courses of treatment, a practice that threatens selection for drug resistance. Access to insecticide-treated hammock nets, a potentially important preventive measure for settings with outdoor biting Anopheles vectors, was also limited. Malaria elimination efforts in Vietnam can be accelerated by targeting improved treatment, diagnosis, and reporting practices to private pharmacies, private clinics, and grocery stores. Programmes should also seek to increase awareness and

  12. Malaria early warning tool: linking inter-annual climate and malaria variability in northern Guadalcanal, Solomon Islands.

    PubMed

    Smith, Jason; Tahani, Lloyd; Bobogare, Albino; Bugoro, Hugo; Otto, Francis; Fafale, George; Hiriasa, David; Kazazic, Adna; Beard, Grant; Amjadali, Amanda; Jeanne, Isabelle

    2017-11-21

    Malaria control remains a significant challenge in the Solomon Islands. Despite progress made by local malaria control agencies over the past decade, case rates remain high in some areas of the country. Studies from around the world have confirmed important links between climate and malaria transmission. This study focuses on understanding the links between malaria and climate in Guadalcanal, Solomon Islands, with a view towards developing a climate-based monitoring and early warning for periods of enhanced malaria transmission. Climate records were sourced from the Solomon Islands meteorological service (SIMS) and historical malaria case records were sourced from the National Vector-Borne Disease Control Programme (NVBDCP). A declining trend in malaria cases over the last decade associated with improved malaria control was adjusted for. A stepwise regression was performed between climate variables and climate-associated malaria transmission (CMT) at different lag intervals to determine where significant relationships existed. The suitability of these results for use in a three-tiered categorical warning system was then assessed using a Mann-Whitney U test. Of the climate variables considered, only rainfall had a consistently significant relationship with malaria in North Guadalcanal. Optimal lag intervals were determined for prediction using R 2 skill scores. A highly significant negative correlation (R = - 0.86, R 2  = 0.74, p < 0.05, n = 14) was found between October and December rainfall at Honiara and CMT in northern Guadalcanal for the subsequent January-June. This indicates that drier October-December periods are followed by higher malaria transmission periods in January-June. Cross-validation emphasized the suitability of this relationship for forecasting purposes [Formula: see text]  as did Mann-Whitney U test results showing that rainfall below or above specific thresholds was significantly associated with above or below normal malaria

  13. Satellite imagery in the fight against Malaria, the case for Genetic Programming

    NASA Astrophysics Data System (ADS)

    Ssentongo, J. S.; Hines, E. L.

    The analysis of multi-temporal data is a critical issue in the field of remote sensing and presents a constant challenge The approach used here relies primarily on utilising a method commonly used in statistics and signal processing Empirical Orthogonal Function EOF analysis Normalized Difference Vegetation Index NDVI and Rainfall Estimate RFE satellite images pertaining to the Sub-Saharan Africa region were obtained The images are derived from the Advanced Very High Resolution Radiometer AVHRR on the United States National Oceanic and Atmospheric Administration NOAA polar orbiting satellites spanning from January 2000 to December 2002 The region of interest was narrowed down to the Limpopo Province Northern Province of South Africa EOF analyses of the space-time-intensity series of dekadal mean NDVI values was been performed They reveal that NDVI can be accurately approximated by its principal component time series and contains a near sinusoidal oscillation pattern Peak greenness essentially what NDVI measures seasons last approximately 8 weeks This oscillation period is very similar to that of Malaria cases reported in the same period but lags behind by 4 dekads about 40 days Singular Value Decomposition SVD of Coupled Fields is performed on the spacetime-intensity series of dekadal mean NDVI and RFE values Correlation analyses indicate that both Malaria and greenness appear to be dependant on rainfall the onset of their seasonal highs always following an arrival of rain There is a greater

  14. Health systems readiness and management of febrile outpatients under low malaria transmission in Vanuatu.

    PubMed

    Zurovac, Dejan; Guintran, Jean-Olivier; Donald, Wesley; Naket, Esau; Malinga, Josephine; Taleo, George

    2015-12-02

    Vanuatu, an archipelago country in Western Pacific harbouring low Plasmodium falciparum and Plasmodium vivax malaria transmission, has been implementing a malaria case management policy, recommending parasitological testing of patients with fever and anti-malarial treatment for test-positive only patients. A health facility survey to evaluate the health systems readiness to implement the policy and the quality of outpatient management for patients with fever was undertaken. A cross-sectional, cluster sample survey, using a range of quality-of-care methods, included all health centres and hospitals in Vanuatu. The main outcome measures were coverage of health facilities and health workers with commodities and support interventions, adherence to test and treatment recommendations, and factors influencing malaria testing. The survey was undertaken in 2014 during the low malaria season and included 41 health facilities, 67 health workers and 226 outpatient consultations for patients with fever. All facilities had capacity for parasitological diagnosis, 95.1 % stocked artemether-lumefantrine and 63.6 % primaquine. The coverage of health workers with support interventions ranged from 50 to 70 %. Health workers' knowledge was high only regarding treatment policy for uncomplicated P. falciparum malaria (83.4 %). History taking and clinical examination practices were sub-optimal. Some 35.0 % (95 % CI 23.4-48.6) of patients with fever were tested for malaria, of which all results were negative and only one patient received anti-malarial treatment. Testing was significantly higher for patients age 5 years and older (OR = 2.33; 95 % CI 1.48-5.02), seen by less qualified health workers (OR = 2.73; 95 % CI 1.48-5.02), health workers who received malaria case management training (OR = 2.39; 95 % CI 1.28-4.47) and patients with increased temperature (OR = 2.56; 95 % CI 1.17-5.57), main complaint of fever (OR = 5.82; 95 % CI 1.26-26.87) and without runny nose (OR = 3.75; 95 % CI 1

  15. Cost of malaria control in Sri Lanka.

    PubMed

    Konradsen, F; Steele, P; Perera, D; van der Hoek, W; Amerasinghe, P H; Amerasinghe, F P

    1999-01-01

    The study provides estimates of the cost of various malaria control measures in an area of North-Central Province of Sri Lanka where the disease is endemic. We assumed that each measure was equally effective. In these terms, impregnating privately purchased bednets with insecticide was estimated to cost Rs 48 (US(40.87) per individual protected per year, less than half the cost of spraying houses with residual insecticides. Larviciding of vector breeding sites and especially the elimination of breeding habitats by flushing streams through seasonal release of water from upstream reservoirs was estimated to be cheaper than other preventive measures (Rs 27 (US$ 0.49) and Rs 13 (US$ 0.24) per individual protected, respectively). Inclusion of both operational and capital costs of treatment indicates that the most cost-effective intervention for the government was a centrally located hospital with a relatively large catchment area (Rs 71 (US$ 1.29) per malaria case treated). Mobile clinics (Rs 153 (US$ 2.78) per malaria case treated) and a village treatment centre (Rs 112 (US$ 2.04)) per malaria case treated) were more expensive options for the government, but were considerably cheaper for households than the traditional hospital facilities. This information can guide health planners and government decision-makers in choosing the most appropriate combination of curative and preventive measures to control malaria. However, the option that is cheapest for the government may not be so for the householders, and further studies are needed to estimate the effectiveness of the various preventive measures.

  16. Cost of malaria control in Sri Lanka.

    PubMed Central

    Konradsen, F.; Steele, P.; Perera, D.; van der Hoek, W.; Amerasinghe, P. H.; Amerasinghe, F. P.

    1999-01-01

    The study provides estimates of the cost of various malaria control measures in an area of North-Central Province of Sri Lanka where the disease is endemic. We assumed that each measure was equally effective. In these terms, impregnating privately purchased bednets with insecticide was estimated to cost Rs 48 (US(40.87) per individual protected per year, less than half the cost of spraying houses with residual insecticides. Larviciding of vector breeding sites and especially the elimination of breeding habitats by flushing streams through seasonal release of water from upstream reservoirs was estimated to be cheaper than other preventive measures (Rs 27 (US$ 0.49) and Rs 13 (US$ 0.24) per individual protected, respectively). Inclusion of both operational and capital costs of treatment indicates that the most cost-effective intervention for the government was a centrally located hospital with a relatively large catchment area (Rs 71 (US$ 1.29) per malaria case treated). Mobile clinics (Rs 153 (US$ 2.78) per malaria case treated) and a village treatment centre (Rs 112 (US$ 2.04)) per malaria case treated) were more expensive options for the government, but were considerably cheaper for households than the traditional hospital facilities. This information can guide health planners and government decision-makers in choosing the most appropriate combination of curative and preventive measures to control malaria. However, the option that is cheapest for the government may not be so for the householders, and further studies are needed to estimate the effectiveness of the various preventive measures. PMID:10327708

  17. Molecular characterization of avian malaria in the spotless starling (Sturnus unicolor).

    PubMed

    Muriel, Jaime; Graves, Jeff A; Gil, Diego; Magallanes, S; Salaberria, Concepción; Casal-López, Miriam; Marzal, Alfonso

    2018-03-01

    We studied the prevalence and genetic diversity of malaria parasites in the poorly investigated spotless starling (Sturnus unicolor) breeding in central Spain, aiming to describe the phylogenetic relationships among them and with other haemosporidians infecting the genus Sturnus. A total of 180 nestlings and 180 adult individuals from four different breeding seasons were screened for haemosporidian parasites using a nested PCR approach for the genera Plasmodium and Haemoproteus. Although the malaria prevalence ranged between years, the overall prevalence was 6.94%. Adults had a higher prevalence than chicks: 12.77 vs. 1.11%, respectively. We molecularly characterized avian malaria isolated in peripheral blood samples taken from malaria-infected individuals. Sequence analyses revealed four unique Plasmodium lineages of avian malaria (STURUNI01, STURUNI02, SYAT05, SGS1) in our spotless starling population. The phylogenetic analysis showed a well-supported clade comprised by STURUNI01, STURUNI02, and SYAT05. The most common lineage (SYAT05) has been previously found in 26 other avian host species, including populations of spotless starling in Portugal. Because this sedentary species is widely distributed throughout the Iberian Peninsula, we suggest that the local transmission of these lineages might place migratory birds at infection risk.

  18. Impact of lambdacyhalothrin capsule suspension treated bed nets on malaria in tribal villages of Malkangiri district, Orissa, India.

    PubMed

    Sahu, S S; Vijayakumar, T; Kalyanasundaram, M; Subramanian, S; Jambulingam, P

    2008-09-01

    Insecticide treated mosquito nets are increasingly being used in malaria control programmes. One of the problems with the treatment of bed nets with conventional formulations of insecticides was that regular washing of treated nets diminish insecticidal effect. Lambdacyhalothrin 2.5 capsule suspension (CS) (2.5% a.i., w/v), a new water-based microencapsulated formulation is reported to have wash-resistant property and longer persistence on the netting material than other formulations. We evaluated the impact of the use of nylon bed nets treated with lambdacyhalothrin 2.5 CS at 10 mg (a.i.)/m(2) in comparison to untreated nets and no nets on malaria in tribal villages in Orissa. Nine foothill villages, highly endemic for falciparum malaria, from the Primary Health Centre (PHC) areas of Khairput and Kudumulugumma of Malkangiri district, Orissa, were divided into three groups, each with a population of about 500 and allocated randomly for treated (TN) and untreated nets (UN) and no nets (NN). Bed nets were distributed in September 2001 and retreatment was done in June 2002. The impact was assessed based on the changes in vector density, parous rate, malaria incidence and parasite rates. Indoor-resting collections of Anopheles fluviatilis and An. culicifacies were made at fortnightly intervals from fixed human dwellings. Mass blood surveys before and after distribution of nets and fortnightly active surveillance were carried out to assess the change in parasite rates and malaria incidence. Bioassays were conducted at fortnightly intervals on the bed nets supplied to the villagers. The reductions in indoor resting catches of An. fluviatilis and An. culicifacies were 96 and 38 per cent in villages with treated nets and 2.6 and 23 per cent in villages with untreated nets respectively compared to no net villages. For six months following treatment, 100 per cent mortality of An. fluviatilis was observed on the unwashed nets and on the nets washed once or twice. After re

  19. Should chemoprophylaxis be a main strategy for preventing re-introduction of malaria in highly receptive areas? Sri Lanka a case in point.

    PubMed

    Wickremasinghe, A Rajitha; Wickremasinghe, Renu; Herath, Hemantha D B; Fernando, S Deepika

    2017-03-04

    Imported malaria cases continue to be reported in Sri Lanka, which was declared 'malaria-free' by the World Health Organization in September 2016. Chemoprophylaxis, a recommended strategy for malaria prevention for visitors travelling to malaria-endemic countries from Sri Lanka is available free of charge. The strategy of providing chemoprophylaxis to visitors to a neighbouring malaria-endemic country within the perspective of a country that has successfully eliminated malaria but is highly receptive was assessed, taking Sri Lanka as a case in point. The risk of a Sri Lankan national acquiring malaria during a visit to India, a malaria-endemic country, was calculated for the period 2008-2013. The cost of providing prophylaxis for Sri Lankan nationals travelling to India for 1, 2 and 4 weeks was estimated for that same period. The risk of a Sri Lankan traveller to India acquiring malaria ranged from 5.25 per 100,000 travellers in 2012 to 13.45 per 100,000 travellers in 2010. If 50% of cases were missed by the Sri Lankan healthcare system, then the risk of acquiring malaria in India among returning Sri Lankans would double. The 95% confidence intervals for both risks are small. As chloroquine is the chemoprophylactic drug recommended for travellers to India by the Anti Malaria Campaign of Sri Lanka, the costs of chemoprophylaxis for travellers for a 1-, 2- and 4-weeks stay in India on average are US$ 41,604, 48,538 and 62,407, respectively. If all Sri Lankan travellers to India are provided with chemoprophylaxis for four weeks, it will comprise 0.65% of the national malaria control programme budget. Based on the low risk of acquiring malaria among Sri Lankan travellers returning from India and the high receptivity in previously malarious areas of the country, chemoprophylaxis should not be considered a major strategy in the prevention of re-introduction. In areas with high receptivity, universal access to quality-assured diagnosis and treatment cannot be

  20. [Analysis of overseas imported malaria situation and implication for control in Jiangsu Province, PR China].

    PubMed

    Liu, Yao-Bao; Cao, Jun; Zhou, Hua-Yun; Wang, Wei-Ming; Cao, Yuan-Yuan; Gao, Qi

    2013-02-01

    To analyze the epidemiological characteristics of overseas imported malaria in Jiangsu Province and explore the strategies and priorities in prevention and control, so as to provide the evidence for improving the diagnosis, treatment and management of imported malaria. The data of overseas imported malaria as well as the case epidemiological investigation in Jiangsu Province from July 18, 2011 to June 30, 2012 were collected and analyzed descriptively for the species composition, original countries, population distribution, regional distribution, onset time, diagnosis and treatment, channels to go abroad, and counterparts returned together with the patients. A total of 233 overseas imported malaria cases were reported, and 226 cases (97.0%) were imported from African countries. A total of 208 cases (89.3%) were falciparum malaria, and 224 cases (96.1%) were laboratory-confirmed. The imported malaria cases were young adults who were mainly migrant farmer and skilled male workers. There was no significant seasonal variation for onset time. Totally 145 cases (62.2%) got malaria onset in 20 days after returning home. The median time from onset to seeing doctor was two days and the median time from seeing doctor to being diagnosed was one day. The first visit health facilities by the patients were relatively scattered and the diagnostic health facilities were mainly medical institutions and CDC at the county level and above (220 cases, accounting for 94.4%). The ratio of standard treatment after malaria diagnosis was 100%. A total of 205 cases (88.0%) were workers dispatched to abroad as labor export by the company, and 142 cases (60.9%) cases had counterparts returned together. The situation of overseas imported malaria in Jiangsu Province is severe. It is necessary to further strengthen the professional training and multi-sectoral cooperation, establish the collaborative investigation mechanism for high-risk groups, and take effective prevention and control measures

  1. Malaria programme personnel's experiences, perceived barriers and facilitators to implementing malaria elimination strategy in South Africa.

    PubMed

    Hlongwana, Khumbulani Welcome; Sartorius, Benn; Tsoka-Gwegweni, Joyce

    2018-01-10

    South Africa has set an ambitious goal targeting to eliminate malaria by 2018, which is consistent with the United Nations Sustainable Development Goals' call to end the epidemic of malaria by 2030 across the globe. There are conflicting views regarding the feasibility of malaria elimination, and furthermore studies investigating malaria programme personnel's perspectives on strategy implementation are lacking. The study was a cross-sectional survey conducted in 2014 through a face-to-face investigator-administered semi-structured questionnaire to all eligible and consenting malaria programme personnel (team leader to senior manager levels) in three malaria endemic provinces (KwaZulu-Natal, Mpumalanga, and Limpopo) of South Africa. The overall response rate was 88.6% (148/167) among all eligible malaria personnel. The mean age of participants was 47 years (SD 9.7, range 27-70), and the mean work experience of 19.4 years (SD 11.1, range 0-42). The majority were male (78.4%), and 66.9% had secondary level education. Awareness of the malaria elimination policy was high (99.3%), but 89% contended that they were never consulted when the policy was formulated and few had either seen (29.9%) or read (23%) the policy, either in full or in part. Having read the policy was positively associated with professional job designations (managers, EHPs and entomologists) (p = 0.010) and tertiary level education (p = 0.042). There was a sentiment that the policy was neither sufficiently disseminated to all key healthcare workers (76.4%) nor properly adapted (68.9%) for the local operational context in the elimination strategy. Most (89.1%) participants were not optimistic about eliminating malaria by 2018, as they viewed the elimination strategy in South Africa as too theoretical with unrealistic targets. Other identified barriers included inadequate resources (53.5%) and high cross-border movements (19.8%). Most participants were not positive that South Africa could achieve

  2. Agriculture and the promotion of insect pests: rice cultivation in river floodplains and malaria vectors in The Gambia.

    PubMed

    Jarju, Lamin B S; Fillinger, Ulrike; Green, Clare; Louca, Vasilis; Majambere, Silas; Lindsay, Steven W

    2009-07-27

    Anthropogenic modification of natural habitats can create conditions in which pest species associated with humans can thrive. In order to mitigate for these changes, it is necessary to determine which aspects of human management are associated with the promotion of those pests. Anopheles gambiae, the main Africa malaria vector, often breeds in rice fields. Here the impact of the ancient practice of 'swamp rice' cultivation, on the floodplains of the Gambia River, on the production of anopheline mosquitoes was investigated. Routine surveys were carried out along 500 m transects crossing rice fields from the landward edge of the floodplains to the river during the 2006 rainy season. Aquatic invertebrates were sampled using area samplers and emergence traps and fish sampled using nets. Semi-field experiments were used to investigate whether nutrients used for swamp rice cultivation affected mosquito larval abundance. At the beginning of the rainy season rice is grown on the landward edge of the floodplain; the first area to flood with fresh water and one rich in cattle dung. Later, rice plants are transplanted close to the river, the last area to dry out on the floodplain. Nearly all larval and adult stages of malaria vectors were collected 0-100 m from the landward edge of the floodplains, where immature rice plants were grown. These paddies contained stagnant freshwater with high quantities of cattle faeces. Semi-field studies demonstrated that cattle faeces nearly doubled the number of anopheline larvae compared with untreated water. Swamp rice cultivation creates ideal breeding sites for malaria vectors. However, only those close to the landward edge harboured vectors. These sites were productive since they were large areas of standing freshwater, rich in nutrients, protected from fish, and situated close to human habitation, where egg-laying mosquitoes from the villages had short distances to fly. The traditional practice of 'swamp rice' cultivation uses

  3. Hidden burden of malaria in Indian women.

    PubMed

    Sharma, Vinod P

    2009-12-08

    Malaria is endemic in India with an estimated 70-100 million cases each year (1.6-1.8 million reported by NVBDCP); of this 50-55% are Plasmodium vivax and 45-50% Plasmodium falciparum. A recent study on malaria in pregnancy reported from undivided Madhya Pradesh state (includes Chhattisgarh state), that an estimated over 220,000 pregnant women contract malaria infection each year. Malaria in pregnancy caused- abortions 34.5%; stillbirths 9%; and maternal deaths 0.45%. Bulk of this tragic outcome can be averted by following the Roll Back Malaria/WHO recommendations of the use of malaria prevention i.e. indoor residual spraying (IRS)/insecticide-treated bed nets (ITN) preferably long-lasting treated bed nets (LLIN); intermittent preventive therapy (IPT); early diagnosis, prompt and complete treatment using microscopic/malaria rapid diagnostics test (RDT) and case management. High incidence in pregnancy has arisen because of malaria surveillance lacking coverage, lack of age and sex wise data, staff shortages, and intermittent preventive treatment (IPT) applicable in high transmission states/pockets is not included in the national drug policy- an essential component of fighting malaria in pregnancy in African settings. Inadequate surveillance and gross under-reporting has been highlighted time and again for over three decades. As a result the huge problem of malaria in pregnancy reported occasionally by researchers has remained hidden. Malaria in pregnancy may quicken severity in patients with drug resistant parasites, anaemia, endemic poverty, and malnutrition. There is, therefore, urgent need to streamline malaria control strategies to make a difference in tackling this grim scenario in human health.

  4. Accuracy of rapid tests for malaria and treatment outcomes for malaria and non-malaria cases among under-five children in rural Ghana.

    PubMed

    Baiden, Frank; Webster, Jayne; Tivura, Mathilda; Delimini, Rupert; Berko, Yvonne; Amenga-Etego, Seeba; Agyeman-Budu, Akua; Karikari, Akosua B; Bruce, Jane; Owusu-Agyei, Seth; Chandramohan, Daniel

    2012-01-01

    WHO now recommends test-based management of malaria across all transmission settings. The accuracy of rapid diagnostic test (RDT) and the outcome of treatment based on the result of tests will influence acceptability of and adherence to the new guidelines. We conducted a study at the Kintampo hospital in rural Ghana to evaluate the performance of CareStart, a HRP-2 based RDT, using microscopy as reference. We applied IMCI treatment guidelines, restricted ACT to RDT-positive children and followed-up both RDT-positive (malaria) and RDT-negative (non-malaria) cases over 28 days. 436 children were enrolled in the RDT evaluation and 391 (children with haemoglobin >8.0 gm/dl) were followed-up to assess treatment outcomes. Mean age was 25.4 months (s.d. 14.6). Sensitivity and specificity of the RDT were 100.0% and 73.0% respectively. Over the follow-up period, 32 (18.5%) RDT-negative children converted to positive, with 7 (4.0%) of them presenting with fever. More children in the non-malaria group made unscheduled visits than children in the malaria group (13.3% versus 7.7%) On all scheduled follow-up visits, proportion of children having a temperature higher than that recorded on day 0 was higher in the non-malaria group compared to the malaria group. Reports of unfavourable treatment outcomes by caregivers were higher among the non-malaria group than the malaria group. The RDT had good sensitivity and specificity. However a minority of children who will not receive ACT based on RDT results may develop clinical malaria within a short period in high transmission settings. This could undermine caregivers' and health workers' confidence in the new guidelines. Improving the quality of management of non-malarial febrile illnesses should be a priority in the era of test-based management of malaria. ClinicalTrials.gov NCT00832754.

  5. Potential for reduction of burden and local elimination of malaria by reducing Plasmodium falciparum malaria transmission: a mathematical modelling study.

    PubMed

    Griffin, Jamie T; Bhatt, Samir; Sinka, Marianne E; Gething, Peter W; Lynch, Michael; Patouillard, Edith; Shutes, Erin; Newman, Robert D; Alonso, Pedro; Cibulskis, Richard E; Ghani, Azra C

    2016-04-01

    Rapid declines in malaria prevalence, cases, and deaths have been achieved globally during the past 15 years because of improved access to first-line treatment and vector control. We aimed to assess the intervention coverage needed to achieve further gains over the next 15 years. We used a mathematical model of the transmission of Plasmodium falciparum malaria to explore the potential effect on case incidence and malaria mortality rates from 2015 to 2030 of five different intervention scenarios: remaining at the intervention coverage levels of 2011-13 (Sustain), for which coverage comprises vector control and access to treatment; two scenarios of increased coverage to 80% (Accelerate 1) and 90% (Accelerate 2), with a switch from quinine to injectable artesunate for management of severe disease and seasonal malaria chemoprevention where recommended for both Accelerate scenarios, and rectal artesunate for pre-referral treatment at the community level added to Accelerate 2; a near-term innovation scenario (Innovate), which included longer-lasting insecticidal nets and expansion of seasonal malaria chemoprevention; and a reduction in coverage to 2006-08 levels (Reverse). We did the model simulations at the first administrative level (ie, state or province) for the 80 countries with sustained stable malaria transmission in 2010, accounting for variations in baseline endemicity, seasonality in transmission, vector species, and existing intervention coverage. To calculate the cases and deaths averted, we compared the total number of each under the five scenarios between 2015 and 2030 with the predicted number in 2015, accounting for population growth. With an increase to 80% coverage, we predicted a reduction in case incidence of 21% (95% credible intervals [CrI] 19-29) and a reduction in mortality rates of 40% (27-61) by 2030 compared with 2015 levels. Acceleration to 90% coverage and expansion of treatment at the community level was predicted to reduce case incidence by

  6. Influence of urbanisation on asymptomatic malaria in school children in Molyko, South West Cameroon.

    PubMed

    Kimbi, H K; Nformi, D; Patchong, A M; Ndamukong, K J N

    2006-11-01

    To determine the impact of urbanisation on the prevalence of asymptomatic malaria in Molyko, a rapidly urbanising area of South West Cameroon. A cross-sectional study. Molyko, South West Province Cameroon. One hundred and sixty six and two hundred and forty four randomly selected children in Molyko in the rainy seasons of 2000 and 2004 respectively. Prevalence and geometric mean parasite density of asymptomatic malaria, measurement of axillary temperatures and haematocrit (PCV) values in 2000 and 2004. There was a significant association between axillary temperature and malaria parasitaemia in both years (p<0.05). Overall, the prevalence of asymptomatic malaria and parasite density values in all age groups in 2004 were lower than in 2000 while the reverse was the case with PCV values. Urbanisation in Molyko has likely reduced the level of malaria endemicity in the area. It is advisable to repeat this study over a period of time in order to assess the long-term effects of urbanisation in the study area.

  7. Arboviral diseases and malaria in Australia, 2012-13: Annual report of the National Arbovirus and Malaria Advisory Committee.

    PubMed

    Knope, Katrina E; Kurucz, Nina; Doggett, Stephen L; Muller, Mike; Johansen, Cheryl A; Feldman, Rebecca; Hobby, Michaela; Bennett, Sonya; Sly, Angus; Lynch, Stacey; Currie, Bart J; Nicholson, Jay

    2016-03-31

    This report describes the epidemiology of mosquito-borne diseases of public health importance in Australia during the 2012-13 season (1 July 2012 to 30 June 2013) and includes data from human notifications, sentinel chicken, vector and virus surveillance programs. The National Notifiable Diseases Surveillance System received notifications for 9,726 cases of disease transmitted by mosquitoes during the 2012-13 season. The Australasian alphaviruses Barmah Forest virus and Ross River virus accounted for 7,776 (80%) of total notifications. However, over-diagnosis and possible false positive diagnostic test results for these 2 infections mean that the true burden of infection is likely overestimated, and as a consequence, the case definitions were revised, effective from 1 January 2016. There were 96 notifications of imported chikungunya virus infection. There were 212 notifications of dengue virus infection acquired in Australia and 1,202 cases acquired overseas, with an additional 16 cases for which the place of acquisition was unknown. Imported cases of dengue were most frequently acquired in Indonesia. No locally-acquired malaria was notified during the 2012-13 season, though there were 415 notifications of overseas-acquired malaria. There were no cases of Murray Valley encephalitis virus infection in 2012-13. In 2012-13, arbovirus and mosquito surveillance programs were conducted in most jurisdictions with a risk of vectorborne disease transmission. Surveillance for exotic mosquitoes at the border continues to be a vital part of preventing the spread of mosquito-borne diseases such as dengue to new areas of Australia, and in 2012-13, there were 7 detections of exotic mosquitoes at the border.

  8. Arboviral diseases and malaria in Australia, 2013-14: Annual report of the National Arbovirus and Malaria Advisory Committee.

    PubMed

    Knope, Katrina E; Muller, Mike; Kurucz, Nina; Doggett, Stephen L; Feldman, Rebecca; Johansen, Cheryl A; Hobby, Michaela; Bennett, Sonya; Lynch, Stacey; Sly, Angus; Currie, Bart J

    2016-09-30

    This report describes the epidemiology of mosquito-borne diseases of public health importance in Australia during the 2013-14 season (1 July 2013 to 30 June 2014) and includes data from human notifications, sentinel chicken, vector and virus surveillance programs. The National Notifiable Diseases Surveillance System received notifications for 8,898 cases of disease transmitted by mosquitoes during the 2013-14 season. The Australasian alphaviruses Barmah Forest virus and Ross River virus accounted for 6,372 (72%) total notifications. However, over-diagnosis and possible false positive diagnostic test results for these 2 infections mean that the true burden of infection is likely overestimated, and as a consequence, the case definitions have been amended. There were 94 notifications of imported chikungunya virus infection and 13 cases of imported Zika virus infection. There were 212 notifications of dengue virus infection acquired in Australia and 1,795 cases acquired overseas, with an additional 14 cases for which the place of acquisition was unknown. Imported cases of dengue were most frequently acquired in Indonesia (51%). No cases of locally-acquired malaria were notified during the 2013-14 season, though there were 373 notifications of overseas-acquired malaria. In 2013-14, arbovirus and mosquito surveillance programs were conducted in most jurisdictions. Surveillance for exotic mosquitoes at international ports of entry continues to be a vital part of preventing the spread of vectors of mosquito-borne diseases such as dengue to new areas of Australia, with 13 detections of exotic mosquitoes at the ports of entry in 2013-14.

  9. High burden of malaria and anemia among tribal pregnant women in a chronic conflict corridor in India.

    PubMed

    Corrêa, Gustavo; Das, Mrinalini; Kovelamudi, Rama; Jaladi, Nagendra; Pignon, Charlotte; Vysyaraju, Kalyan; Yedla, Usha; Laxmi, Vijya; Vemula, Pavani; Gowthami, Vijaya; Sharma, Hemant; Remartinez, Daniel; Kalon, Stobdan; de Polnay, Kirrily; De Smet, Martin; Isaakidis, Petros

    2017-01-01

    With more than 200 million cases a year, malaria is an important global health concern, especially among pregnant women. The forested tribal areas of Andhra Pradesh, Telangana and Chhattisgarh in India are affected by malaria and by an on-going chronic conflict which seriously limits access to health care. The burden of malaria and anemia among pregnant women in these areas is unknown; moreover there are no specific recommendations for pregnant women in the Indian national malaria policy. The aim of this study is to measure the burden of malaria and anemia among pregnant women presenting in mobile clinics for antenatal care in a conflict-affected corridor in India. This is a descriptive study of routine programme data of women presenting at first visit for antenatal care in Médecins sans Frontières mobile clinics during 1 year (2015). Burden of malaria and anemia were estimated using rapid diagnostic tests (SD BIOLINE® and HemoCue® respectively). Among 575 pregnant women (median age: 26 years, interquartile range: 25-30) 29% and 22% were in their first and second pregnancies respectively. Mid-Upper Arm Circumference (MUAC) was below 230 mm in 74% of them. The prevalence of anemia was 92.4% (95% Confidence Intervals (CI): 89.9-94.3), while severe anemia was identified in 6.9% of the patients. The prevalence of malaria was 29.3% (95%CI: 25.7-33.2) with 64% caused by isolated P. falciparum , 35% by either P. falciparum or mixed malaria and 1% by either P. vivax , or P.malariae or P. ovale . Malaria test was positive in 20.8% of asymptomatic cases. Malaria was associated with severe anemia (prevalence ratio: 2.56, 95%CI: 1.40-4.66, p  < 0.01). Systematic screening for malaria and anemia should be integrated into maternal and child health services for conflict affected populations in highly endemic tribal areas. Interventions should include the use of rapid diagnostic test for all pregnant women at every visit, regardless of symptoms. Further studies should

  10. Reduction in malaria prevalence and increase in malaria awareness in endemic districts of Bangladesh.

    PubMed

    Alam, Mohammad Shafiul; Kabir, Mohammad Moktadir; Hossain, Mohammad Sharif; Naher, Shamsun; Ferdous, Nur E Naznin; Khan, Wasif Ali; Mondal, Dinesh; Karim, Jahirul; Shamsuzzaman, A K M; Ahmed, Be-Nazir; Islam, Akramul; Haque, Rashidul

    2016-11-11

    Malaria is endemic in 13 districts of Bangladesh. A baseline malaria prevalence survey across the endemic districts of Bangladesh was conducted in 2007, when the prevalence was reported around 39.7 per 1000 population. After two rounds of Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM)-funded intervention by the National Malaria Control Programme (NMCP) and a BRAC-led NGO consortium, a follow-up survey was conducted across the malaria-endemic districts of Bangladesh to measure the change in prevalence rate and in people's knowledge of malaria. The survey was carried out from August to November 2013 in 70 upazilas (sub-districts) of 13 malaria-endemic districts of Bangladesh, following the same multi-stage cluster sampling design and the same number of households enrolled during the baseline prevalence survey in 2007, to collect 9750 randomly selected blood samples. For on-the-spot diagnosis of malaria, a rapid diagnostic test was used. The household head or eldest person available was interviewed using a pre-coded structured questionnaire to collect data on the knowledge and awareness of malaria in the household. Based on a weighted calculation, the overall malaria prevalence was found to be 1.41 per 1000 population. The proportion of Plasmodium falciparum mono-infection was 77.78% while both Plasmodium vivax mono-infection and mixed infection of the two species were found to be 11.11%. Bandarban had the highest prevalence (6.67 per 1000 population). Knowledge of malaria signs, symptoms and mode of transmission were higher in the follow-up survey (97.26%) than the baseline survey. Use of bed nets for prevention of malaria was found to be high (90.15%) at respondent level. People's knowledge of selected parameters increased significantly during the follow-up survey compared to the baseline survey conducted in 2007. A reduced prevalence rate of malaria and increased level of knowledge were observed in the present malaria prevalence survey in Bangladesh.

  11. A validated agent-based model to study the spatial and temporal heterogeneities of malaria incidence in the rainforest environment.

    PubMed

    Pizzitutti, Francesco; Pan, William; Barbieri, Alisson; Miranda, J Jaime; Feingold, Beth; Guedes, Gilvan R; Alarcon-Valenzuela, Javiera; Mena, Carlos F

    2015-12-22

    The Amazon environment has been exposed in the last decades to radical changes that have been accompanied by a remarkable rise of both Plasmodium falciparum and Plasmodium vivax malaria. The malaria transmission process is highly influenced by factors such as spatial and temporal heterogeneities of the environment and individual-based characteristics of mosquitoes and humans populations. All these determinant factors can be simulated effectively trough agent-based models. This paper presents a validated agent-based model of local-scale malaria transmission. The model reproduces the environment of a typical riverine village in the northern Peruvian Amazon, where the malaria transmission is highly seasonal and apparently associated with flooding of large areas caused by the neighbouring river. Agents representing humans, mosquitoes and the two species of Plasmodium (P. falciparum and P. vivax) are simulated in a spatially explicit representation of the environment around the village. The model environment includes: climate, people houses positions and elevation. A representation of changes in the mosquito breeding areas extension caused by the river flooding is also included in the simulation environment. A calibration process was carried out to reproduce the variations of the malaria monthly incidence over a period of 3 years. The calibrated model is also able to reproduce the spatial heterogeneities of local scale malaria transmission. A "what if" eradication strategy scenario is proposed: if the mosquito breeding sites are eliminated through mosquito larva habitat management in a buffer area extended at least 200 m around the village, the malaria transmission is eradicated from the village. The use of agent-based models can reproduce effectively the spatiotemporal variations of the malaria transmission in a low endemicity environment dominated by river floodings like in the Amazon.

  12. Spatiotemporal Clustering Analysis of Malaria Infection in Pakistan.

    PubMed

    Umer, Muhammad Farooq; Zofeen, Shumaila; Majeed, Abdul; Hu, Wenbiao; Qi, Xin; Zhuang, Guihua

    2018-06-07

    Despite tremendous progress, malaria remains a serious public health problem in Pakistan. Very few studies have been done on spatiotemporal evaluation of malaria infection in Pakistan. The study aimed to detect the spatiotemporal pattern of malaria infection at the district level in Pakistan, and to identify the clusters of high-risk disease areas in the country. Annual data on malaria for two dominant species ( Plasmodium falciparum , Plasmodium vivax ) and mixed infections from 2011 to 2016 were obtained from the Directorate of Malaria Control Program, Pakistan. Population data were collected from the Pakistan Bureau of Statistics. A geographical information system was used to display the spatial distribution of malaria at the district level throughout Pakistan. Purely spatiotemporal clustering analysis was performed to identify the high-risk areas of malaria infection in Pakistan. A total of 1,593,409 positive cases were included in this study over a period of 6 years (2011⁻2016). The maximum number of P . vivax cases (474,478) were reported in Khyber Pakhtunkhwa (KPK). The highest burden of P . falciparum (145,445) was in Balochistan, while the highest counts of mixed Plasmodium cases were reported in Sindh (22,421) and Balochistan (22,229), respectively. In Balochistan, incidence of all three types of malaria was very high. Cluster analysis showed that primary clusters of P . vivax malaria were in the same districts in 2014, 2015 and 2016 (total 24 districts, 12 in Federally Administered Tribal Areas (FATA), 9 in KPK, 2 in Punjab and 1 in Balochistan); those of P . falciparum malaria were unchanged in 2012 and 2013 (total 18 districts, all in Balochistan), and mixed infections remained the same in 2014 and 2015 (total 7 districts, 6 in Balochistan and 1 in FATA). This study indicated that the transmission cycles of malaria infection vary in different spatiotemporal settings in Pakistan. Efforts in controlling P . vivax malaria in particular need to be

  13. Modeling malaria control intervention effect in KwaZulu-Natal, South Africa using intervention time series analysis.

    PubMed

    Ebhuoma, Osadolor; Gebreslasie, Michael; Magubane, Lethumusa

    The change of the malaria control intervention policy in South Africa (SA), re-introduction of dichlorodiphenyltrichloroethane (DDT), may be responsible for the low and sustained malaria transmission in KwaZulu-Natal (KZN). We evaluated the effect of the re-introduction of DDT on malaria in KZN and suggested practical ways the province can strengthen her already existing malaria control and elimination efforts, to achieve zero malaria transmission. We obtained confirmed monthly malaria cases in KZN from the malaria control program of KZN from 1998 to 2014. The seasonal autoregressive integrated moving average (SARIMA) intervention time series analysis (ITSA) was employed to model the effect of the re-introduction of DDT on confirmed monthly malaria cases. The result is an abrupt and permanent decline of monthly malaria cases (w 0 =-1174.781, p-value=0.003) following the implementation of the intervention policy. The sustained low malaria cases observed over a long period suggests that the continued usage of DDT did not result in insecticide resistance as earlier anticipated. It may be due to exophagic malaria vectors, which renders the indoor residual spraying not totally effective. Therefore, the feasibility of reducing malaria transmission to zero in KZN requires other reliable and complementary intervention resources to optimize the existing ones. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Malaria in the Greater Mekong Subregion: Heterogeneity and Complexity

    PubMed Central

    Cui, Liwang; Yan, Guiyun; Sattabongkot, Jetsumon; Cao, Yaming; Chen, Bin; Chen, Xiaoguang; Fan, Qi; Fang, Qiang; Jongwutiwes, Somchai; Parker, Daniel; Sirichaisinthop, Jeeraphat; Kyaw, Myat Phone; Su, Xin-zhuan; Yang, Henglin; Yang, Zhaoqing; Wang, Baomin; Xu, Jianwei; Zheng, Bin; Zhong, Daibin; Zhou, Guofa

    2011-01-01

    The Greater Mekong Subregion (GMS), comprised of six countries including Cambodia, China's Yunnan Province, Lao PDR, Myanmar (Burma), Thailand and Vietnam, is one of the most threatening foci of malaria. Since the initiation of the WHO's Mekong Malaria Program a decade ago, malaria situation in the GMS has greatly improved, reflected in the continuous decline in annual malaria incidence and deaths. However, as many nations are moving towards malaria elimination, the GMS nations still face great challenges. Malaria epidemiology in this region exhibits enormous geographical heterogeneity with Myanmar and Cambodia remaining high-burden countries. Within each country, malaria distribution is also patchy, exemplified by ‘border malaria’ and ‘forest malaria’ with high transmission occurring along international borders and in forests or forest fringes, respectively. ‘Border malaria’ is extremely difficult to monitor, and frequent malaria introductions by migratory human populations constitute a major threat to neighboring, malaria-eliminating countries. Therefore, coordination between neighboring countries is essential for malaria elimination from the entire region. In addition to these operational difficulties, malaria control in the GMS also encounters several technological challenges. Contemporary malaria control measures rely heavily on effective chemotherapy and insecticide control of vector mosquitoes. However, the spread of multidrug resistance and potential emergence of artemisinin resistance in Plasmodium falciparum make resistance management a high priority in the GMS. This situation is further worsened by the circulation of counterfeit and substandard artemisinin-related drugs. In most endemic areas of the GMS, P. falciparum and P. vivax coexist, and in recent malaria control history, P. vivax has demonstrated remarkable resilience to control measures. Deployment of the only registered drug (primaquine) for the radical cure of vivax malaria is

  15. [Malaria is still a leading cause of fever and death among children and pregnant women in Africa in 2015].

    PubMed

    Doumbo, Ogobara; Fall, Ibrahima Socé; Niaré, Doumbo

    2016-03-01

    The prevalence and morbidity of P. vivax, P. ovale (curisi et wallikeri) and P. malariae remain underestimated. However important progress has been made. According to the WHO World Malaria report between 2000 and 2015 the malaria incidence has decreased by 42% while the incidence of malaria deaths has decreased by 66%. This is the result of the important progress made in scaling up the main interventions such the rapid diagnosis test, Artemisinin-based combination therapies, long lasting insecticide treated nets, indoor residual house spraying, intermittent preventive treatment during pregnancy (IPTp-SP), Seasonal Malaria Chemoprophylaxis with combined antimalarial (SMClAQ-SP). In the Sahel region with a highly seasonal transmission, the use of SMC resulted in a reduction of malaria morbidity for 80% and a reduce mortality for 58%. Malaria elimination efforts are going on in many countries in Swaziland, South Africa, Namibia, Zanzibar (United Republic of Tanzania), Bioko Island (Equatorial Guinea), Sao Tome and Principe, Cape Verde, and maybe Senegal. For the time being only countries in Northern Africa and few in East Africa (Mauritius) have reached the elimination of local transmission. Despite the progress made near 500,000 malaria deaths occur annually in the African Region with 10-15% leading to disabling sequels and low school performance in children. Reaching the target of 80% for preventive and treatment interventions remain a challenge in many countries in Africa. It's important to keep in mind that the Abuja targets and MGDs were not reached by most African countries. In addition, among 12 million children eligible for SMC only 35% were covered despite the availability of resources in 2014. A huge global stock out of ACT. AQ-SP is possible. The development of an effective vaccine has been disappointing with a limited effectiveness of the RTS,S. The emerging resistance to Artemisinin derivate in South-East Asia and its possible expansion to Africa is of

  16. The epidemiology of malaria in Rondonia (Western Amazon region, Brazil): study of a riverine population.

    PubMed

    Camargo, L M; Noronha, E; Salcedo, J M; Dutra, A P; Krieger, H; Pereira da Silva, L H; Camargo, E P

    1999-01-15

    We report on a longitudinal study concerning the incidence of malaria in a riverine population (Portuchuelo) settled on the riverbanks of Rio Madeira, in the State of Rondonia, Brazil. We found the incidence of malaria to be seasonal, prevailing in the dry months of June and July. The Annual Parasite Index (API) was 292/1000 inhabitants, almost three times that of the state of Rondonia for the same period. In contrast with other studied Rondonian populations, malaria in Portuchuelo was more prevalent in youngsters < 16 years old, particularly in the 0-1 year age group. Adults were relatively spared, particularly those over 50 years. Besides being indicative of indoor transmission, these facts may suggest the existence of a certain degree of acquired resistance to infection and/or of lessened symptoms in older people. Riverine populations are spread over the entire Amazon region where most of its members were born. Due to the permanent presence of malaria among riverine populations, we are proposing that they may act as perennial reserves of malaria and, therefore, as sources of infection for migrants or eventual settlers at their vicinity. To date, the opposite view has been generally held. Anopheles darlingi, the main vector species in the area, is essentially sylvatic, which contributes to make the control of malaria highly problematic. The only hopes for control rest on permanent surveillance and the prompt treatment of patients, which are also problematic considering the vastness of the Amazon region and the remoteness of some of its riverine settlements.

  17. Identifying malaria vector breeding habitats with remote sensing data and terrain-based landscape indices in Zambia.

    PubMed

    Clennon, Julie A; Kamanga, Aniset; Musapa, Mulenga; Shiff, Clive; Glass, Gregory E

    2010-11-05

    Malaria, caused by the parasite Plasmodium falciparum, is a significant source of morbidity and mortality in southern Zambia. In the Mapanza Chiefdom, where transmission is seasonal, Anopheles arabiensis is the dominant malaria vector. The ability to predict larval habitats can help focus control measures. A survey was conducted in March-April 2007, at the end of the rainy season, to identify and map locations of water pooling and the occurrence anopheline larval habitats; this was repeated in October 2007 at the end of the dry season and in March-April 2008 during the next rainy season. Logistic regression and generalized linear mixed modeling were applied to assess the predictive value of terrain-based landscape indices along with LandSat imagery to identify aquatic habitats and, especially, those with anopheline mosquito larvae. Approximately two hundred aquatic habitat sites were identified with 69 percent positive for anopheline mosquitoes. Nine species of anopheline mosquitoes were identified, of which, 19% were An. arabiensis. Terrain-based landscape indices combined with LandSat predicted sites with water, sites with anopheline mosquitoes and sites specifically with An. arabiensis. These models were especially successful at ruling out potential locations, but had limited ability in predicting which anopheline species inhabited aquatic sites. Terrain indices derived from 90 meter Shuttle Radar Topography Mission (SRTM) digital elevation data (DEM) were better at predicting water drainage patterns and characterizing the landscape than those derived from 30 m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEM. The low number of aquatic habitats available and the ability to locate the limited number of aquatic habitat locations for surveillance, especially those containing anopheline larvae, suggest that larval control maybe a cost-effective control measure in the fight against malaria in Zambia and other regions with seasonal

  18. The Malaria Transition on the Arabian Peninsula: Progress toward a Malaria-Free Region between 1960–2010

    PubMed Central

    Snow, Robert W.; Amratia, Punam; Zamani, Ghasem; Mundia, Clara W.; Noor, Abdisalan M.; Memish, Ziad A.; Al Zahrani, Mohammad H.; Al Jasari, Adel; Fikri, Mahmoud; Atta, Hoda

    2014-01-01

    The transmission of malaria across the Arabian Peninsula is governed by the diversity of dominant vectors and extreme aridity. It is likely that where malaria transmission was historically possible it was intense and led to a high disease burden. Here, we review the speed of elimination, approaches taken, define the shrinking map of risk since 1960 and discuss the threats posed to a malaria-free Arabian Peninsula using the archive material, case data and published works. From as early as the 1940s, attempts were made to eliminate malaria on the peninsula but were met with varying degrees of success through to the 1970s; however, these did result in a shrinking of the margins of malaria transmission across the peninsula. Epidemics in the 1990s galvanised national malaria control programmes to reinvigorate control efforts. Before the launch of the recent global ambition for malaria eradication, countries on the Arabian Peninsula launched a collaborative malaria-free initiative in 2005. This initiative led a further shrinking of the malaria risk map and today locally acquired clinical cases of malaria are reported only in Saudi Arabia and Yemen, with the latter contributing to over 98% of the clinical burden. PMID:23548086

  19. Factors influencing the use of topical repellents: implications for the effectiveness of malaria elimination strategies

    PubMed Central

    Gryseels, Charlotte; Uk, Sambunny; Sluydts, Vincent; Durnez, Lies; Phoeuk, Pisen; Suon, Sokha; Set, Srun; Heng, Somony; Siv, Sovannaroth; Gerrets, René; Tho, Sochantha; Coosemans, Marc; Peeters Grietens, Koen

    2015-01-01

    In Cambodia, despite an impressive decline in prevalence over the last 10 years, malaria is still a public health problem in some parts of the country. This is partly due to vectors that bite early and outdoors reducing the effectiveness of measures such as Long-Lasting Insecticidal Nets. Repellents have been suggested as an additional control measure in such settings. As part of a cluster-randomized trial on the effectiveness of topical repellents in controlling malaria infections at community level, a mixed-methods study assessed user rates and determinants of use. Repellents were made widely available and Picaridin repellent reduced 97% of mosquito bites. However, despite high acceptability, daily use was observed to be low (8%) and did not correspond to the reported use in surveys (around 70%). The levels of use aimed for by the trial were never reached as the population used it variably across place (forest, farms and villages) and time (seasons), or in alternative applications (spraying on insects, on bed nets, etc.). These findings show the key role of human behavior in the effectiveness of malaria preventive measures, questioning whether malaria in low endemic settings can be reduced substantially by introducing measures without researching and optimizing community involvement strategies. PMID:26574048

  20. Communicable Diseases Network Australia National Arbovirus and Malaria Advisory Committee annual report, 2005-06.

    PubMed

    Liu, Conan; Johansen, Cheryl; Kurucz, Nina; Whelan, Peter

    2006-01-01

    This report describes the epidemiology of mosquito-borne disease in Australia for the mosquito-borne disease season 1 July 2005 to 30 June 2006, in which the second largest number of notifications since 1995-96 was reported. Ross River virus (RRV) infections (66%), Barmah Forest virus (BFV) infections (23%) and malaria (9%) were the most common mosquito-borne diseases reported in 2005-06. National RRV notifications were the fifth largest on record. The Northern Territory had the highest rate of RRV notifications and the peak notification rate (in January 2006) was the third highest since 2000. National BFV notification rates were the highest on record. The Northern Territory also reported the highest BFV notification rate this season, peaking in February-March 2006, which was the highest reported BFV notification rate on record. BFV notification rates were significantly higher in teenagers compared to previous seasons. There were 731 notifications of malaria in 2005-06 of which none was reported as locally acquired. This was the third highest reporting period for malaria notifications since 2000. In contrast to previous years in which Plasmodium vivax was the predominant species, Plasmodium falciparum was reported as the infecting species in 45 per cent of the malaria notifications and Plasmodium vivax for 42 per cent of cases. Young adults in the 20-24 year age group had the highest number of cases and children in the 5-9 year age group accounted for 22 per cent of notifications. There were two cases of Kunjin virus (KUNV) infection and one case of Murray Valley encephalitis virus (MVEV) infection reported in 2005-06, all from Western Australia. Sentinel chicken surveillance data for flaviviruses and sentinel pig surveillance data for Japanese encephalitis virus are reported. There were 200 notifications of dengue virus (DENV) infection in 2005-06, of which 46 per cent (n = 92) was reported as having been acquired overseas. Dengue serotypes 2 and 3 were detected

  1. Direct detection of falciparum and non-falciparum malaria DNA from a drop of blood with high sensitivity by the dried-LAMP system.

    PubMed

    Hayashida, Kyoko; Kajino, Kiichi; Simukoko, Humphrey; Simuunza, Martin; Ndebe, Joseph; Chota, Amos; Namangala, Boniface; Sugimoto, Chihiro

    2017-01-13

    Because of the low sensitivity of conventional rapid diagnostic tests (RDTs) for malaria infections, the actual prevalence of the diseases, especially those caused by non-Plasmodium falciparum (non-Pf) species, in asymptomatic populations remain less defined in countries lacking in well-equipped facilities for accurate diagnoses. Our direct blood dry LAMP system (CZC-LAMP) was applied to the diagnosis of malaria as simple, rapid and highly sensitive method as an alternative for conventional RDTs in malaria endemic areas where laboratory resources are limited. LAMP primer sets for mitochondria DNAs of Plasmodium falciparum (Pf) and human-infective species other than Pf (non-Pf; P. vivax, P. ovale, P. malariae) were designed and tested by using human blood DNA samples from 74 residents from a malaria endemic area in eastern Zambia. These malaria dry-LAMPs were optimized for field or point-of-care operations, and evaluated in the field at a malaria endemic area in Zambia with 96 human blood samples. To determine the sensitivities and specificities, results obtained by the on-site LAMP diagnosis were compared with those by the nested PCR and nucleotide sequencing of its product. The dry LAMPs showed the sensitivities of 89.7% for Pf and 85.7% for non-Pf, and the specificities of 97.2% for Pf and 100% for non-Pf, with purified blood DNA samples. The direct blood LAMP diagnostic methods, in which 1 μl of anticoagulated blood were used as the template, showed the sensitivities of 98.1% for Pf, 92.1% for non-Pf, and the specificities of 98.1% for Pf, 100% for non-Pf. The prevalences of P. falciparum, P. malariae and P. ovale in the surveyed area were 52.4, 25.3 and 10.6%, respectively, indicating high prevalence of asymptomatic carriers in endemic areas in Zambia. We have developed new field-applicable malaria diagnostic tests. The malaria CZC-LAMPs showed high sensitivity and specificity to both P. falciparum and non-P. falciparum. These malaria CZC-LAMPs provide new

  2. Malaria outbreak in a non endemic tribal block of Balasore district, Orissa, India during summer season.

    PubMed

    Mahapatra, N; Marai, N; Dhal, K; Nayak, R N; Panigrahi, B K; Mallick, G; Ranjit, M; Kar, S K; Kerketta, A S

    2012-06-01

    A focal outbreak of malaria at Sialimal sub-centre of Balasore district of Orissa was reported during the month of March, 2010. Three villages of the above block were affected. Regional Medical Research Centre, Bhubaneswar has conducted an entomological survey and a central clinic simultaneously, with door to door household survey to identify the fever cases. Within a span of 18 days around 172 fever cases were reported with Slide Positivity Rate (SPR) of 24.4% and Pf % of 81%. The malaria epidemiological data of the sub-centre area for last three years indicates that the area is non endemic for malaria (API was 0.81). Entomological survey revealed the presence of three known vectors of malaria i.e. Anopheles culicifacies, Anopheles annularis and Anopheles subpictus (local vector). Per Man Hour Density (PMHD) of these three species were 4.2, 2.8 and 10.8 respectively. Plasmodium falciparum sporozoites were detected in two An. culicifacies, in one An. annularis and in one An. subpictus. Larval density of Anopheline mosquitoes per dip ranged between 12 to 20. The vectors were found to be resistant to DDT but susceptible to synthetic pyrethroid. With this finding necessary remedial measures were taken by the government to curtail the transmission.

  3. Towards eliminating malaria in high endemic countries: the roles of community health workers and related cadres and their challenges in integrated community case management for malaria: a systematic review.

    PubMed

    Sunguya, Bruno F; Mlunde, Linda B; Ayer, Rakesh; Jimba, Masamine

    2017-01-03

    Human resource for health crisis has impaired global efforts against malaria in highly endemic countries. To address this, the World Health Organization (WHO) recommended scaling-up of community health workers (CHWs) and related cadres owing to their documented success in malaria and other disease prevention and management. Evidence is inconsistent on the roles and challenges they encounter in malaria interventions. This systematic review aims to summarize evidence on roles and challenges of CHWs and related cadres in integrated community case management for malaria (iCCM). This systematic review retrieved evidence from PubMed, CINAHL, ISI Web of Knowledge, and WHO regional databases. Terms extracted from the Boolean phrase used for PubMed were also used in other databases. The review included studies with Randomized Control Trial, Quasi-experimental, Pre-post interventional, Longitudinal and cohort, Cross-sectional, Case study, and Secondary data analysis. Because of heterogeneity, only narrative synthesis was conducted for this review. A total of 66 articles were eligible for analysis out of 1380 studies retrieved. CHWs and related cadre roles in malaria interventions included: malaria case management, prevention including health surveillance and health promotion specific to malaria. Despite their documented success, CHWs and related cadres succumb to health system challenges. These are poor and unsustainable finance for iCCM, workforce related challenges, lack of and unsustainable supply of medicines and diagnostics, lack of information and research, service delivery and leadership challenges. Community health workers and related cadres had important preventive, case management and promotive roles in malaria interventions. To enable their effective integration into the health systems, the identified challenges should be addressed. They include: introducing sustainable financing on iCCM programmes, tailoring their training to address the identified gaps

  4. Malaria

    MedlinePlus

    Malaria is a serious disease caused by a parasite. You get it when an infected mosquito bites you. Malaria is a major cause of death worldwide, but ... at risk. There are four different types of malaria caused by four related parasites. The most deadly ...

  5. Habitat stability and occurrences of malaria vector larvae in western Kenya highlands.

    PubMed

    Himeidan, Yousif E; Zhou, Guofa; Yakob, Laith; Afrane, Yaw; Munga, Stephen; Atieli, Harrysone; El-Rayah, El-Amin; Githeko, Andrew K; Yan, Guiyun

    2009-10-21

    Although the occurrence of malaria vector larvae in the valleys of western Kenya highlands is well documented, knowledge of larval habitats in the uphill sites is lacking. Given that most inhabitants of the highlands actually dwell in the uphill regions, it is important to develop understanding of mosquito breeding habitat stability in these sites in order to determine their potential for larval control. A total of 128 potential larval habitats were identified in hilltops and along the seasonal streams in the Sigalagala area of Kakamega district, western Kenya. Water availability in the habitats was followed up daily from August 3, 2006 to February 23, 2007. A habitat is defined as stable when it remains aquatic continuously for at least 12 d. Mosquito larvae were observed weekly. Frequencies of aquatic, stable and larvae positive habitats were compared between the hilltop and seasonal stream area using chi2-test. Factors affecting the presence/absence of Anopheles gambiae larvae in the highlands were determined using multiple logistic regression analysis. Topography significantly affected habitat availability and stability. The occurrence of aquatic habitats in the hilltop was more sporadic than in the stream area. The percentage of habitat occurrences that were classified as stable during the rainy season is 48.76% and 80.79% respectively for the hilltop and stream area. Corresponding frequencies of larvae positive habitats were 0% in the hilltop and 5.91% in the stream area. After the rainy season, only 23.42% of habitat occurrences were stable and 0.01% larvae positive habitats were found in the hilltops, whereas 89.75% of occurrences remained stable in the stream area resulting in a frequency of 12.21% larvae positive habitats. The logistic regression analysis confirmed the association between habitat stability and larval occurrence and indicated that habitat surface area was negatively affecting the occurrence of An. gambiae larvae. While An. gambiae and An

  6. Modelling climate change and malaria transmission.

    PubMed

    Parham, Paul E; Michael, Edwin

    2010-01-01

    The impact of climate change on human health has received increasing attention in recent years, with potential impacts due to vector-borne diseases only now beginning to be understood. As the most severe vector-borne disease, with one million deaths globally in 2006, malaria is thought most likely to be affected by changes in climate variables due to the sensitivity of its transmission dynamics to environmental conditions. While considerable research has been carried out using statistical models to better assess the relationship between changes in environmental variables and malaria incidence, less progress has been made on developing process-based climate-driven mathematical models with greater explanatory power. Here, we develop a simple model of malaria transmission linked to climate which permits useful insights into the sensitivity of disease transmission to changes in rainfall and temperature variables. Both the impact of changes in the mean values of these key external variables and importantly temporal variation in these values are explored. We show that the development and analysis of such dynamic climate-driven transmission models will be crucial to understanding the rate at which P. falciparum and P. vivax may either infect, expand into or go extinct in populations as local environmental conditions change. Malaria becomes endemic in a population when the basic reproduction number R0 is greater than unity and we identify an optimum climate-driven transmission window for the disease, thus providing a useful indicator for determing how transmission risk may change as climate changes. Overall, our results indicate that considerable work is required to better understand ways in which global malaria incidence and distribution may alter with climate change. In particular, we show that the roles of seasonality, stochasticity and variability in environmental variables, as well as ultimately anthropogenic effects, require further study. The work presented here

  7. Forecasting malaria in a highly endemic country using environmental and clinical predictors.

    PubMed

    Zinszer, Kate; Kigozi, Ruth; Charland, Katia; Dorsey, Grant; Brewer, Timothy F; Brownstein, John S; Kamya, Moses R; Buckeridge, David L

    2015-06-18

    Malaria thrives in poor tropical and subtropical countries where local resources are limited. Accurate disease forecasts can provide public and clinical health services with the information needed to implement targeted approaches for malaria control that make effective use of limited resources. The objective of this study was to determine the relevance of environmental and clinical predictors of malaria across different settings in Uganda. Forecasting models were based on health facility data collected by the Uganda Malaria Surveillance Project and satellite-derived rainfall, temperature, and vegetation estimates from 2006 to 2013. Facility-specific forecasting models of confirmed malaria were developed using multivariate autoregressive integrated moving average models and produced weekly forecast horizons over a 52-week forecasting period. The model with the most accurate forecasts varied by site and by forecast horizon. Clinical predictors were retained in the models with the highest predictive power for all facility sites. The average error over the 52 forecasting horizons ranged from 26 to 128% whereas the cumulative burden forecast error ranged from 2 to 22%. Clinical data, such as drug treatment, could be used to improve the accuracy of malaria predictions in endemic settings when coupled with environmental predictors. Further exploration of malaria forecasting is necessary to improve its accuracy and value in practice, including examining other environmental and intervention predictors, including insecticide-treated nets.

  8. Malaria in East African highlands during the past 30 years: impact of environmental changes

    PubMed Central

    Himeidan, Yousif E.; Kweka, Eliningaya J.

    2012-01-01

    East African highlands are one of the most populated regions in Africa. The population densities in the highlands ranged between 158 persons/km2 in Ethiopia and 410 persons/km2 in Rwanda. According to the United Nations Population Fund, the region has the world's highest population growth rate. These factors are likely behind the high rates of poverty among the populations. As there were no employment opportunities other than agricultural, this demographic pressure of poor populations have included in an extensive unprecedented land use and land cover changes such as modification of bushland, woodland, and grassland on hillsides to farmland and transformation of papyrus swamps in valley bottoms to dairy pastures and cropland and changing of fallows on hillsides from short or seasonal to longer or perennial. Areas harvested for food crops were therefore increased by more than 100% in most of the highlands. The lost of forest areas, mainly due to subsistence agriculture, between 1990 and 2010 ranged between 8000 ha in Rwanda and 2,838,000 ha in Ethiopia. These unmitigated environmental changes in the highlands led to rise temperature and optimizing the spread and survival of malaria vectors and development of malaria parasites. Malaria in highlands was initially governed by low ambient temperature, trend of malaria transmission was therefore increased and several epidemics were observed in late 1980s and early 2000s. Although, malaria is decreasing through intensified interventions since mid 2000s onwards, these environmental changes might expose population in the highlands of east Africa to an increase risk of malaria and its epidemic particularly if the current interventions are not sustained. PMID:22934065

  9. An Integrated Atmospheric and Hydrological Based Malaria Epidemic Alert System

    NASA Astrophysics Data System (ADS)

    Asefi Najafabady, S.; Li, J.; Nair, U. S.; Welch, R. M.; Srivastava, A.; Nagpal, B. N.; Saxena, R.; Benedict, M. E.

    2005-05-01

    Malaria is a growing global threat, with increasing morbidity and mortality. In India there have been >40 epidemics in the last five years, in part due to abnormal meteorological conditions as well as the buildup of an immunologically naïve population. In most parts of India, periodic epidemics of malaria occur every five to seven years. Malaria epidemics are serious national/regional health emergencies, occurring with little or no warning where the public health system is unprepared to respond to the emerging problem. However, epidemic conditions develop over several weeks, theoretically allowing time for preventative action. The study area for the proposed research is located in Mewat, south of Delhi. It is estimated that 90% of the malaria burden is influenced by environmental factors, so that successful malaria intervention approaches must be adapted to local environmental conditions. Of particular importance are air and water temperature, relative humidity, soil moisture, and precipitation. Extreme climatic conditions prevail in Mewat, with uneven topography, 450mm average annual rainfall in 25 to 35 days, high temperature variability in different seasons, low relative humidity. Automated surface measurements are obtained for temperature, relative humidity, water temperature, precipitation and soil moisture. The Regional Atmospheric Modeling System (RAMS) is used to predict these variables over the spatial domain which are used in dynamic hydrological models to yield the parameters important to malaria transmission, including surface wetness, mean water table depth, percent surface saturation and total surface runoff. The locations of saturated surface regions associated with mosquito breeding sites near populated regions, along with water temperature, and then are used to determine larvae development and mosquito abundance. ASTER, LANDSAT and MODIS imagery are used to retrieve soil moisture, vegetation indices and land cover types. Pan-sharpened 1m spatial

  10. Non-falciparum malaria infections in pregnant women in West Africa.

    PubMed

    Williams, John; Njie, Fanta; Cairns, Matthew; Bojang, Kalifa; Coulibaly, Sheick Oumar; Kayentao, Kassoum; Abubakar, Ismaela; Akor, Francis; Mohammed, Khalifa; Bationo, Richard; Dabira, Edgar; Soulama, Alamissa; Djimdé, Moussa; Guirou, Etienne; Awine, Timothy; Quaye, Stephen L; Ordi, Jaume; Doumbo, Ogobara; Hodgson, Abraham; Oduro, Abraham; Magnussen, Pascal; Ter Kuile, Feiko O; Woukeu, Arouna; Milligan, Paul; Tagbor, Harry; Greenwood, Brian; Chandramohan, Daniel

    2016-01-29

    Non-Plasmodium falciparum malaria infections are found in many parts of sub-Saharan Africa but little is known about their importance in pregnancy. Blood samples were collected at first antenatal clinic attendance from 2526 women enrolled in a trial of intermittent screening and treatment of malaria in pregnancy (ISTp) versus intermittent preventive treatment (IPTp) conducted in Burkina Faso, The Gambia, Ghana and Mali. DNA was extracted from blood spots and tested for P. falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale using a nested PCR test. Risk factors for a non-falciparum malaria infection were investigated and the influence of these infections on the outcome of pregnancy was determined. P. falciparum infection was detected frequently (overall prevalence by PCR: 38.8 %, [95 % CI 37.0, 40.8]), with a prevalence ranging from 10.8 % in The Gambia to 56.1 % in Ghana. Non-falciparum malaria infections were found only rarely (overall prevalence 1.39 % [95 % CI 1.00, 1.92]), ranging from 0.17 % in the Gambia to 3.81 % in Mali. Ten non-falciparum mono-infections and 25 mixed falciparum and non-falciparum infections were found. P. malariae was the most frequent non-falciparum infection identified; P. vivax was detected only in Mali. Only four of the non-falciparum mono-infections were detected by microscopy or rapid diagnostic test. Recruitment during the late rainy season and low socio-economic status were associated with an increased risk of non-falciparum malaria as well as falciparum malaria. The outcome of pregnancy did not differ between women with a non-falciparum malaria infection and those who were not infected with malaria at first ANC attendance. Non-falciparum infections were infrequent in the populations studied, rarely detected when present as a mono-infection and unlikely to have had an important impact on the outcome of pregnancy in the communities studied due to the small number of women infected with non-falciparum parasites.

  11. Imported Plasmodium falciparum and locally transmitted Plasmodium vivax: cross-border malaria transmission scenario in northwestern Thailand.

    PubMed

    Sriwichai, Patchara; Karl, Stephan; Samung, Yudthana; Kiattibutr, Kirakorn; Sirichaisinthop, Jeeraphat; Mueller, Ivo; Cui, Liwang; Sattabongkot, Jetsumon

    2017-06-21

    Cross-border malaria transmission is an important problem for national malaria control programmes. The epidemiology of cross-border malaria is further complicated in areas where Plasmodium falciparum and Plasmodium vivax are both endemic. By combining passive case detection data with entomological data, a transmission scenario on the northwestern Thai-Myanmar border where P. falciparum is likely driven by importation was described, whereas P. vivax is also locally transmitted. This study highlights the differences in the level of control required to eliminate P. falciparum and P. vivax from the same region. Malaria case data were collected from malaria clinics in Suan Oi village, Tak Province, Thailand between 2011 and 2014. Infections were diagnosed by light microscopy. Demographic data, including migrant status, were correlated with concomitantly collected entomology data from 1330 mosquito trap nights using logistic regression. Malaria infection in the captured mosquitoes was detected by ELISA. Recent migrants were almost four times more likely to be infected with P. falciparum compared with Thai patients (OR 3.84, p < 0.001) and cases were significantly associated with seasonal migration. However, P. falciparum infection was not associated with the Anopheles mosquito capture rates, suggesting predominantly imported infections. In contrast, recent migrants were equally likely to present with P. vivax as mid-term migrants. Both migrant groups were twice as likely to be infected with P. vivax in comparison to the resident Thai population (OR 1.96, p < 0.001 and OR 1.94, p < 0.001, respectively). Plasmodium vivax cases were strongly correlated with age and local capture rates of two major vector species Anopheles minimus and Anopheles maculatus (OR 1.23, p = 0.020 and OR 1.33, p = 0.046, respectively), suggesting that a high level of local transmission might be causing these infections. On the Thai-Myanmar border, P. falciparum infections occur mostly in

  12. Accuracy of Rapid Tests for Malaria and Treatment Outcomes for Malaria and Non-Malaria Cases among Under-Five Children in Rural Ghana

    PubMed Central

    Baiden, Frank; Webster, Jayne; Tivura, Mathilda; Delimini, Rupert; Berko, Yvonne; Amenga-Etego, Seeba; Agyeman-Budu, Akua; Karikari, Akosua B.; Bruce, Jane; Owusu-Agyei, Seth; Chandramohan, Daniel

    2012-01-01

    Background WHO now recommends test-based management of malaria across all transmission settings. The accuracy of rapid diagnostic test (RDT) and the outcome of treatment based on the result of tests will influence acceptability of and adherence to the new guidelines. Method We conducted a study at the Kintampo hospital in rural Ghana to evaluate the performance of CareStart, a HRP-2 based RDT, using microscopy as reference. We applied IMCI treatment guidelines, restricted ACT to RDT-positive children and followed-up both RDT-positive (malaria) and RDT-negative (non-malaria) cases over 28 days. Results 436 children were enrolled in the RDT evaluation and 391 (children with haemoglobin >8.0 gm/dl) were followed-up to assess treatment outcomes. Mean age was 25.4 months (s.d. 14.6). Sensitivity and specificity of the RDT were 100.0% and 73.0% respectively. Over the follow-up period, 32 (18.5%) RDT-negative children converted to positive, with 7 (4.0%) of them presenting with fever. More children in the non-malaria group made unscheduled visits than children in the malaria group (13.3% versus 7.7%) On all scheduled follow-up visits, proportion of children having a temperature higher than that recorded on day 0 was higher in the non-malaria group compared to the malaria group. Reports of unfavourable treatment outcomes by caregivers were higher among the non-malaria group than the malaria group. Conclusions The RDT had good sensitivity and specificity. However a minority of children who will not receive ACT based on RDT results may develop clinical malaria within a short period in high transmission settings. This could undermine caregivers' and health workers' confidence in the new guidelines. Improving the quality of management of non-malarial febrile illnesses should be a priority in the era of test-based management of malaria. Trial Registration ClinicalTrials.gov NCT00832754 PMID:22514617

  13. Multisensor earth observations to characterize wetlands and malaria epidemiology in Ethiopia

    PubMed Central

    Midekisa, Alemayehu; Senay, Gabriel B; Wimberly, Michael C

    2014-01-01

    Malaria is a major global public health problem, particularly in Sub-Saharan Africa. The spatial heterogeneity of malaria can be affected by factors such as hydrological processes, physiography, and land cover patterns. Tropical wetlands, for example, are important hydrological features that can serve as mosquito breeding habitats. Mapping and monitoring of wetlands using satellite remote sensing can thus help to target interventions aimed at reducing malaria transmission. The objective of this study was to map wetlands and other major land cover types in the Amhara region of Ethiopia and to analyze district-level associations of malaria and wetlands across the region. We evaluated three random forests classification models using remotely sensed topographic and spectral data based on Shuttle Radar Topographic Mission (SRTM) and Landsat TM/ETM+ imagery, respectively. The model that integrated data from both sensors yielded more accurate land cover classification than single-sensor models. The resulting map of wetlands and other major land cover classes had an overall accuracy of 93.5%. Topographic indices and subpixel level fractional cover indices contributed most strongly to the land cover classification. Further, we found strong spatial associations of percent area of wetlands with malaria cases at the district level across the dry, wet, and fall seasons. Overall, our study provided the most extensive map of wetlands for the Amhara region and documented spatiotemporal associations of wetlands and malaria risk at a broad regional level. These findings can assist public health personnel in developing strategies to effectively control and eliminate malaria in the region. Key Points Remote sensing produced an accurate wetland map for the Ethiopian highlands Wetlands were associated with spatial variability in malaria risk Mapping and monitoring wetlands can improve malaria spatial decision support PMID:25653462

  14. Evaluation of Students' Conceptual Understanding of Malaria

    NASA Astrophysics Data System (ADS)

    Poh-Ai Cheong, Irene; Treagust, David; Kyeleve, Iorhemen J.; Oh, Peck-Yoke

    2010-12-01

    In this study, a two-tier diagnostic test for understanding malaria was developed and administered to 314 Bruneian students in Year 12 and in a nursing diploma course. The validity, reliability, difficulty level, discriminant indices, and reading ability of the test were examined and found to be acceptable in terms of measuring students' understanding and identifying alternative conceptions with respect to malaria. Results showed that students' understanding of malaria was high for content, low for reasons, and limited and superficial for both content and reasons. The instrument revealed several common alternative conceptual understandings students' hold about malaria. The MalariaTT2 instrument developed could be used in classroom lessons for challenging alternative conceptions and enhancing conceptions of malaria.

  15. Relation between Plasmodium falciparum asymptomatic infection and malaria attacks in a cohort of Senegalese children

    PubMed Central

    Le Port, Agnès; Cot, Michel; Etard, Jean-François; Gaye, Oumar; Migot-Nabias, Florence; Garcia, André

    2008-01-01

    Background It is important to establish whether or not the presence of malaria parasites in peripheral blood of asymptomatic individuals is a predictor of future clinical mild malaria attacks (MMA). The aim of this study was to determine how an asymptomatic positive thick blood smear could be related to the occurrence of a MMA during the nine following days. Methods The study was conducted in a cohort of 569 Senegalese children, who were investigated for Plasmodium falciparum asymptomatic carriage at two different times of the transmission season, the beginning (September) and the end (November). The occurrence of MMA was investigated in asymptomatic carriers and non-carriers, every three days for nine consecutive days. Survival analysis was performed and risk estimates were calculated by Cox proportional hazards model. Results At the beginning of the transmission season, 27.8% (147/529) of the children were asymptomatic carriers (ACs) and 5.4% (8/147) of MMA occurred among these, versus 1% (4/382) among non-carriers (RR = 5.32; IC = [1.56–18.15], p = 0.008). At the end of the transmission season, the frequency of asymptomatic carriers was similar to that observed at the beginning of the season (31.9%, p = 0.15), but no MMA was detected during this period. Conclusion A significant association between P. falciparum asymptomatic carriage and the occurrence of MMA at the beginning of the transmission season was demonstrated, with a five-fold increase in the risk of developing a MMA in ACs. In the context of a possible distribution of IPTc in the future, drug strategies may have dramatic consequences due to the existence of ACs (both long term and short term), as they seem to play an important role in the individual protection to malaria, in the most exposed age groups. PMID:18823542

  16. Multicenter Pivotal Clinical Trial of Urine Malaria Test for Rapid Diagnosis of Plasmodium falciparum Malaria

    PubMed Central

    Ezeigwe, Nnenna; Ntadom, Godwin; Oladosu, Oladipo O.; Rainwater-Loveth, Kaitlin; O'Meara, Wendy; Okpokoro, Evaezi; Brieger, William

    2016-01-01

    ABSTRACT The need to expand malaria diagnosis capabilities alongside policy requirements for mandatory testing before treatment motivates exploration of noninvasive rapid diagnostic tests (RDTs). We report the outcome of the first cross-sectional, single-blind clinical performance evaluation of a urine malaria test (UMT) for diagnosis of Plasmodium falciparum malaria in febrile patients. Matched urine and finger-prick blood samples from participants ≥2 years of age with fever (axillary temperature of ≥37.5°C) or with a history of fever in the preceding 48 h were tested with UMT and microscopy (as the gold standard). BinaxNOW (Pf and Pan versions) blood RDTs were done to assess relative performance. Urinalysis and rheumatoid factor (RF) tests were conducted to evaluate possible interference. Diagnostic performance characteristics were computed at 95% confidence intervals (CIs). Of 1,800 participants screened, 1,691 were enrolled; of these 566 (34%) were febrile, and 1,125 (66%) were afebrile. Among enrolled participants, 341 (20%) tested positive by microscopy, 419 (25%) were positive by UMT, 676 (40%) were positive by BinaxNOW Pf, and 368 (22%) were positive by BinaxNow Pan. UMT sensitivity among febrile patients (for whom the test was indicated) was 85%, and specificity was 84%. Among febrile children ≤5 years of age, UMT sensitivity was 93%, and specificity was 83%. The area under the receiver-operator characteristic curve (AUC) of UMT (0.84) was not significantly different from that of BinaxNOW Pf (0.86) or of BinaxNOW Pan (0.87), indicating that the tests do not differ in overall performance. Gender, seasons, and RF did not impact UMT performance. Leukocytes, hematuria, and urobilinogen concentrations in urine were associated with lower UMT specificities. UMT performance was comparable to that of the BinaxNOW Pf/Pan tests, making UMT a promising tool to expand malaria testing in public and private health care settings where there are challenges to blood

  17. Dynamic linear models using the Kalman filter for early detection and early warning of malaria outbreaks

    NASA Astrophysics Data System (ADS)

    Merkord, C. L.; Liu, Y.; DeVos, M.; Wimberly, M. C.

    2015-12-01

    Malaria early detection and early warning systems are important tools for public health decision makers in regions where malaria transmission is seasonal and varies from year to year with fluctuations in rainfall and temperature. Here we present a new data-driven dynamic linear model based on the Kalman filter with time-varying coefficients that are used to identify malaria outbreaks as they occur (early detection) and predict the location and timing of future outbreaks (early warning). We fit linear models of malaria incidence with trend and Fourier form seasonal components using three years of weekly malaria case data from 30 districts in the Amhara Region of Ethiopia. We identified past outbreaks by comparing the modeled prediction envelopes with observed case data. Preliminary results demonstrated the potential for improved accuracy and timeliness over commonly-used methods in which thresholds are based on simpler summary statistics of historical data. Other benefits of the dynamic linear modeling approach include robustness to missing data and the ability to fit models with relatively few years of training data. To predict future outbreaks, we started with the early detection model for each district and added a regression component based on satellite-derived environmental predictor variables including precipitation data from the Tropical Rainfall Measuring Mission (TRMM) and land surface temperature (LST) and spectral indices from the Moderate Resolution Imaging Spectroradiometer (MODIS). We included lagged environmental predictors in the regression component of the model, with lags chosen based on cross-correlation of the one-step-ahead forecast errors from the first model. Our results suggest that predictions of future malaria outbreaks can be improved by incorporating lagged environmental predictors.

  18. [Current malaria situation in Turkey].

    PubMed

    Gockchinar, T; Kalipsi, S

    2001-01-01

    are important in transmitting the diseases. The districts where malaria cases occur are the places where population moves are rapid, agriculture is the main occupation, the increase in the population is high and the education/cultural level is low. Within years, the districts with high malaria cases also differ. Before 1990 Cucurova and Amikova were the places that showed the highest incidence of malaria. Since 1990, the number of cases from south-eastern Anatolia has started to rise. The main reasons for this change are a comprehensive malaria prevention programme, regional development, developed agricultural systems, and lower population movements. The 1999 statistical data indicate that 83 and 17% of all malaria cases are observed in the GAP and other districts, respectively. The distribution of malaria cases in Turkey differs by months and climatic conditions. The incidence of malaria starts to rise in March, reaching its peak in July, August and September, begins to fall in October. In other words, the number of malaria cases is lowest in winter and reaches its peak in summer and autumn. This is not due to the parasite itself, but a climatic change is a main reason. In the past years the comprehensive malaria prevention programme has started bearing its fruits. Within the WHO Roll Back Malaria strategies, Turkey has started to implement its national malaria control projects, the meeting held on March 22, 2000, coordinated the country's international cooperation for this purpose. The meeting considered the aim of the project to be introduced into other organizations. In this regards, the target for 2002 is to halve the incidence of malaria as compared to 1999. The middle--and long-term incidence of malaria will be lowered to even smaller figures. The objectives of this project are as follows: to integrate malaria services with primary health care services to prove more effective studies; to develop early diagnosis and treatment systems, to provide better

  19. UK malaria treatment guidelines 2016.

    PubMed

    Lalloo, David G; Shingadia, Delane; Bell, David J; Beeching, Nicholas J; Whitty, Christopher J M; Chiodini, Peter L

    2016-06-01

    1.Malaria is the tropical disease most commonly imported into the UK, with 1300-1800 cases reported each year, and 2-11 deaths. 2. Approximately three quarters of reported malaria cases in the UK are caused by Plasmodium falciparum, which is capable of invading a high proportion of red blood cells and rapidly leading to severe or life-threatening multi-organ disease. 3. Most non-falciparum malaria cases are caused by Plasmodium vivax; a few cases are caused by the other species of plasmodium: Plasmodium ovale, Plasmodium malariae or Plasmodium knowlesi. 4. Mixed infections with more than one species of parasite can occur; they commonly involve P. falciparum with the attendant risks of severe malaria. 5. There are no typical clinical features of malaria; even fever is not invariably present. Malaria in children (and sometimes in adults) may present with misleading symptoms such as gastrointestinal features, sore throat or lower respiratory complaints. 6. A diagnosis of malaria must always be sought in a feverish or sick child or adult who has visited malaria-endemic areas. Specific country information on malaria can be found at http://travelhealthpro.org.uk/. P. falciparum infection rarely presents more than six months after exposure but presentation of other species can occur more than a year after exposure. 7. Management of malaria depends on awareness of the diagnosis and on performing the correct diagnostic tests: the diagnosis cannot be excluded until more than one blood specimen has been examined. Other travel related infections, especially viral haemorrhagic fevers, should also be considered. 8. The optimum diagnostic procedure is examination of thick and thin blood films by an expert to detect and speciate the malarial parasites. P. falciparum and P. vivax (depending upon the product) malaria can be diagnosed almost as accurately using rapid diagnostic tests (RDTs) which detect plasmodial antigens. RDTs for other Plasmodium species are not as reliable. 9

  20. The epidemiology of Plasmodium vivax and Plasmodium falciparum malaria in China, 2004-2012: from intensified control to elimination.

    PubMed

    Zhang, Qian; Lai, Shengjie; Zheng, Canjun; Zhang, Honglong; Zhou, Sheng; Hu, Wenbiao; Clements, Archie C A; Zhou, Xiao-Nong; Yang, Weizhong; Hay, Simon I; Yu, Hongjie; Li, Zhongjie

    2014-11-03

    In China, the national malaria elimination programme has been operating since 2010. This study aimed to explore the epidemiological changes in patterns of malaria in China from intensified control to elimination stages. Data on nationwide malaria cases from 2004 to 2012 were extracted from the Chinese national malaria surveillance system. The secular trend, gender and age features, seasonality, and spatial distribution by Plasmodium species were analysed. In total, 238,443 malaria cases were reported, and the proportion of Plasmodium falciparum increased drastically from <10% before 2010 to 55.2% in 2012. From 2004 to 2006, malaria showed a significantly increasing trend and with the highest incidence peak in 2006 (4.6/100,000), while from 2007 onwards, malaria decreased sharply to only 0.18/100,000 in 2012. Males and young age groups became the predominantly affected population. The areas affected by Plasmodium vivax malaria shrunk, while areas affected by P. falciparum malaria expanded from 294 counties in 2004 to 600 counties in 2012. This study demonstrated that malaria has decreased dramatically in the last five years, especially since the Chinese government launched a malaria elimination programme in 2010, and areas with reported falciparum malaria cases have expanded over recent years. These findings suggest that elimination efforts should be improved to meet these changes, so as to achieve the nationwide malaria elimination goal in China in 2020.

  1. [Analysis of malaria epidemiological characteristics in Henan Province from 2005 to 2013].

    PubMed

    Liu, Ying; Zhou, Rui-min; Qian, Dan; Yang, Cheng-yun; Zhang, Hong-wei

    2014-12-01

    To analyze the epidemiological characteristics of malaria in Henan Province, and provide the basis for adjusting and formulating measures of malaria elimination timely. The data of malaria cases during 2005 and 2013 in Henan Province was collected and analyzed using Microsoft Office Excel 2003 and SPSS14.0. Henan Province reported 17,803 malaria cases in 2005-2013, annual incidence was 0.2/100,000 to 5.2/100,000 with an average of 2.0/100,000. The cases were mainly distributed in Shangqiu (9079), Nanyang (4923), Xinyang (1449), Zhumadian (653), and Zhoukou (564), with more young male adults. The highest-risk population was farmers. More cases concentrated in August and September before 2010, but no obvious seasonal peak were seen after 2011. Vivax malaria occupied 95.4% (16,331/17,126) before 2010, but falciparum malaria was the major one after 2011. The laboratory confirmed cases during 2005-2013 took 54.6%. The median interval from symptom appearance to diagnosis was 4 d, and there was a significant difference among the years (χ2=437.2, P<0.01). The number of imported cases increased year by year, 26 cases in 2008 increased 146 cases in 2011. The reported malaria cases were imported cases during 2012 to 2013, of which 79.6% returned from the Africa, and 10.0% were from the Southeast Asia. Malaria is still an important part of public health in Henan Province, and appropriate control measures and effective tools should be strengthened for eliminating the disease.

  2. Platelet-mediated clumping of Plasmodium falciparum infected erythrocytes is associated with high parasitemia but not severe clinical manifestations of malaria in African children

    PubMed Central

    Arman, Mònica; Raza, Ahmed; Tempest, Louisa J.; Lyke, Kirsten E.; Thera, Mahamadou A.; Koné, Abdoulaye; Plowe, Christopher V.; Doumbo, Ogobara K.; Rowe, J. Alexandra

    2009-01-01

    Platelet-mediated clumping of Plasmodium falciparum infected erythrocytes is an adhesive phenotype commonly found in field isolates that has previously been associated with severe malaria. Here, clumping was assessed in 131 isolates from Malian children. The clumping phenotype was seen in 6% (n=51) of uncomplicated malaria, 24% (n=51) of severe malaria, and 45% (n=29) of high parasitemia non-severe malaria isolates. Multivariate analysis indicated that clumping was strongly positively associated with parasitemia (F1,122=24.1, p<0.001) but not with disease category (F2,122=1.8, p=0.17). Therefore platelet-mediated clumping in Malian P. falciparum isolates is primarily associated with high parasitemia and not with severe clinical manifestations of malaria. PMID:17984358

  3. Arboviral diseases and malaria in Australia, 2009-10: annual report of the National Arbovirus and Malaria Advisory Committee.

    PubMed

    Wright, Phil; Fitzsimmons, Gerard J; Johansen, Cheryl A; Whelan, Peter I

    2012-03-31

    The National Notifiable Diseases Surveillance System received 7,609 notified cases of disease transmitted by mosquitoes for the season 1 July 2009 to 30 June 2010. The alphaviruses Barmah Forest virus and Ross River virus, accounted for 6,546 (79%) of these notifications during the 2009-10 season. There were 37 notifications of dengue virus infection locally-acquired from North Queensland and 581 notified cases in Australia that resulted from overseas travel. This number of overseas acquired cases continues to rise each year due to increasing disease activity in the Asia-Pacific region and increased air travel. Detection of flavivirus seroconversions in sentinel chicken flocks across Australia provides an early warning of increased levels of Murray Valley encephalitis virus and Kunjin virus activity. Flavivirus activity was detected in western and northern Australia in 2009-10, which prompted public health action. No human cases of Murray Valley encephalitis virus infection were notified, while there were 2 cases of Kunjin virus infection notified. There were no notifications of locally-acquired malaria in Australia and 429 notifications of overseas-acquired malaria during the 2009-10 season. This annual report presents information of diseases transmitted by mosquitoes in Australia and notified to the National Notifiable Diseases Surveillance System. This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth. Requests and inquiries concerning reproduction and rights should be addressed to the Commonwealth Copyright Administration, Attorney General's Department, Robert Garran Offices, National Circuit, Barton ACT 2600 or posted at http://www.ag.gov.au/cca.

  4. Effect of chemotherapy on malaria transmission among Yanomami Amerindians: simulated consequences of placebo treatment.

    PubMed

    Freeman, J; Laserson, K F; Petralanda, I; Spielman, A

    1999-05-01

    To determine whether chemotherapy effectively reduces Plasmodium falciparum malaria transmission in isolated human populations, we followed two abrupt sequential outbreaks of malaria infection among Yanomami Amerindians and modeled the effect of chemotherapy and the consequences if no drug was available. A Macdonald-type mathematical model demonstrated that both outbreaks comprised a single epidemic event linked by an invisible outbreak in vector mosquitoes. The basic reproductive number, R0, from fitted values based on the treated epidemic was 2 during the initial phase of the epidemic, and waned as vector density decreased with the onset of the dry season. In the observed epidemic, 60 (45%) of 132 village residents were affected, and the treated outbreak ended after two months. Although the initial chemotherapy regimen was only marginally effective, the duration of human infectivity was reduced from an expected nine months to two weeks. In the absence of this intervention, the initial R0 value would have been 40, more than 60% of the population would have been infected, and more than 30% would have remained parasitemic until the next rainy season (about six months later). Another outbreak would then have ensued, and malaria probably would have remained endemic in this village. Our simulated placebo treatment permits us to conclude that even partially effective chemotherapeutic interventions, such as those in our study, interrupt serial transmission of P. falciparum among isolated human populations that are exposed to infection seasonally.

  5. Potential effect of climate change on malaria transmission in Africa.

    PubMed

    Tanser, Frank C; Sharp, Brian; le Sueur, David

    2003-11-29

    Climate change is likely to affect transmission of vector-borne diseases such as malaria. We quantitatively estimated current malaria exposure and assessed the potential effect of projected climate scenarios on malaria transmission. We produced a spatiotemporally validated (against 3791 parasite surveys) model of Plasmodium falciparum malaria transmission in Africa. Using different climate scenarios from the Hadley Centre global climate model (HAD CM3) climate experiments, we projected the potential effect of climate change on transmission patterns. Our model showed sensitivity and specificity of 63% and 96%, respectively (within 1 month temporal accuracy), when compared with the parasite surveys. We estimate that on average there are 3.1 billion person-months of exposure (445 million people exposed) in Africa per year. The projected scenarios would estimate a 5-7% potential increase (mainly altitudinal) in malaria distribution with surprisingly little increase in the latitudinal extents of the disease by 2100. Of the overall potential increase (although transmission will decrease in some countries) of 16-28% in person-months of exposure (assuming a constant population), a large proportion will be seen in areas of existing transmission. The effect of projected climate change indicates that a prolonged transmission season is as important as geographical expansion in correct assessment of the effect of changes in transmission patterns. Our model constitutes a valid baseline against which climate scenarios can be assessed and interventions planned.

  6. Multisensor earth observations to characterize wetlands and malaria epidemiology in Ethiopia

    NASA Astrophysics Data System (ADS)

    Midekisa, Alemayehu; Senay, Gabriel B.; Wimberly, Michael C.

    2014-11-01

    Malaria is a major global public health problem, particularly in Sub-Saharan Africa. The spatial heterogeneity of malaria can be affected by factors such as hydrological processes, physiography, and land cover patterns. Tropical wetlands, for example, are important hydrological features that can serve as mosquito breeding habitats. Mapping and monitoring of wetlands using satellite remote sensing can thus help to target interventions aimed at reducing malaria transmission. The objective of this study was to map wetlands and other major land cover types in the Amhara region of Ethiopia and to analyze district-level associations of malaria and wetlands across the region. We evaluated three random forests classification models using remotely sensed topographic and spectral data based on Shuttle Radar Topographic Mission (SRTM) and Landsat TM/ETM+ imagery, respectively. The model that integrated data from both sensors yielded more accurate land cover classification than single-sensor models. The resulting map of wetlands and other major land cover classes had an overall accuracy of 93.5%. Topographic indices and subpixel level fractional cover indices contributed most strongly to the land cover classification. Further, we found strong spatial associations of percent area of wetlands with malaria cases at the district level across the dry, wet, and fall seasons. Overall, our study provided the most extensive map of wetlands for the Amhara region and documented spatiotemporal associations of wetlands and malaria risk at a broad regional level. These findings can assist public health personnel in developing strategies to effectively control and eliminate malaria in the region.

  7. Multisensor earth observations to characterize wetlands and malaria epidemiology in Ethiopia

    USGS Publications Warehouse

    Midekisa, Alemayehu; Senay, Gabriel; Wimberly, Michael C.

    2014-01-01

    Malaria is a major global public health problem, particularly in Sub-Saharan Africa. The spatial heterogeneity of malaria can be affected by factors such as hydrological processes, physiography, and land cover patterns. Tropical wetlands, for example, are important hydrological features that can serve as mosquito breeding habitats. Mapping and monitoring of wetlands using satellite remote sensing can thus help to target interventions aimed at reducing malaria transmission. The objective of this study was to map wetlands and other major land cover types in the Amhara region of Ethiopia and to analyze district-level associations of malaria and wetlands across the region. We evaluated three random forests classification models using remotely sensed topographic and spectral data based on Shuttle Radar Topographic Mission (SRTM) and Landsat TM/ETM+ imagery, respectively. The model that integrated data from both sensors yielded more accurate land cover classification than single-sensor models. The resulting map of wetlands and other major land cover classes had an overall accuracy of 93.5%. Topographic indices and subpixel level fractional cover indices contributed most strongly to the land cover classification. Further, we found strong spatial associations of percent area of wetlands with malaria cases at the district level across the dry, wet, and fall seasons. Overall, our study provided the most extensive map of wetlands for the Amhara region and documented spatiotemporal associations of wetlands and malaria risk at a broad regional level. These findings can assist public health personnel in developing strategies to effectively control and eliminate malaria in the region.

  8. Hysteresis in simulations of malaria transmission

    NASA Astrophysics Data System (ADS)

    Yamana, Teresa K.; Qiu, Xin; Eltahir, Elfatih A. B.

    2017-10-01

    Malaria transmission is a complex system and in many parts of the world is closely related to climate conditions. However, studies on environmental determinants of malaria generally consider only concurrent climate conditions and ignore the historical or initial conditions of the system. Here, we demonstrate the concept of hysteresis in malaria transmission, defined as non-uniqueness of the relationship between malaria prevalence and concurrent climate conditions. We show the dependence of simulated malaria transmission on initial prevalence and the initial level of human immunity in the population. Using realistic time series of environmental variables, we quantify the effect of hysteresis in a modeled population. In a set of numerical experiments using HYDREMATS, a field-tested mechanistic model of malaria transmission, the simulated maximum malaria prevalence depends on both the initial prevalence and the initial level of human immunity in the population. We found the effects of initial conditions to be of comparable magnitude to the effects of interannual variability in environmental conditions in determining malaria prevalence. The memory associated with this hysteresis effect is longer in high transmission settings than in low transmission settings. Our results show that efforts to simulate and forecast malaria transmission must consider the exposure history of a location as well as the concurrent environmental drivers.

  9. Advances and challenges in malaria vaccine development.

    PubMed

    Crompton, Peter D; Pierce, Susan K; Miller, Louis H

    2010-12-01

    Malaria caused by Plasmodium falciparum remains a major public health threat, especially among children and pregnant women in Africa. An effective malaria vaccine would be a valuable tool to reduce the disease burden and could contribute to elimination of malaria in some regions of the world. Current malaria vaccine candidates are directed against human and mosquito stages of the parasite life cycle, but thus far, relatively few proteins have been studied for potential vaccine development. The most advanced vaccine candidate, RTS,S, conferred partial protection against malaria in phase II clinical trials and is currently being evaluated in a phase III trial in Africa. New vaccine targets need to be identified to improve the chances of developing a highly effective malaria vaccine. A better understanding of the mechanisms of naturally acquired immunity to malaria may lead to insights for vaccine development.

  10. Surveillance and response for high-risk populations: what can malaria elimination programmes learn from the experience of HIV?

    PubMed

    Jacobson, Jerry O; Cueto, Carmen; Smith, Jennifer L; Hwang, Jimee; Gosling, Roly; Bennett, Adam

    2017-01-18

    To eliminate malaria, malaria programmes need to develop new strategies for surveillance and response appropriate for the changing epidemiology that accompanies transmission decline, in which transmission is increasingly driven by population subgroups whose behaviours place them at increased exposure. Conventional tools of malaria surveillance and response are likely not sufficient in many elimination settings for accessing high-risk population subgroups, such as mobile and migrant populations (MMPs), given their greater likelihood of asymptomatic infections, illegal risk behaviours, limited access to public health facilities, and high mobility including extended periods travelling away from home. More adaptive, targeted strategies are needed to monitor transmission and intervention coverage effectively in these groups. Much can be learned from HIV programmes' experience with "second generation surveillance", including how to rapidly adapt surveillance and response strategies to changing transmission patterns, biological and behavioural surveys that utilize targeted sampling methods for specific behavioural subgroups, and methods for population size estimation. This paper reviews the strategies employed effectively for HIV programmes and offers considerations and recommendations for adapting them to the malaria elimination context.

  11. Epidemiology of malaria in pregnancy in central India.

    PubMed Central

    Singh, N.; Shukla, M. M.; Sharma, V. P.

    1999-01-01

    Analysis of three years of data from a malaria clinic operated by the Indian Council of Medical Research (ICMR) in the Government Medical College Hospital in Jabalpur, central India, showed a high malaria prevalence among pregnant women, which was statistically highly significant (P < 0.0001) compared with the situation among nonpregnant women. Cerebral malaria was a common complication of severe Plasmodium falciparum infection, with a high mortality during pregnancy, requiring immediate attention. The study also showed that malaria infection was more frequent in primigravidae, falling progressively with increasing parity. Mean parasite densities were significantly higher in pregnant women compared with nonpregnant women for both P. falciparum (P < 0.001; df = 137) and P. vivax (P < 0.05; df = 72) infection. Pregnant women with falciparum or vivax malaria were significantly more anaemic than noninfected pregnant women or infected nonpregnant women. The average weight of 155 neonates from infected mothers was 350 g less than that of 175 neonates from noninfected mothers. This difference in birth weight was statistically significant for both P. falciparum (P < 0.0001; df = 278) and P. vivax (P < 0.0001; df = 223) infection. Congenital malaria was not recorded. We conclude that pregnant women from this geographical area require systematic intervention owing to their high susceptibility to malaria during pregnancy and the puerperium. PMID:10444880

  12. Construction site workers' malaria knowledge and treatment-seeking pattern in a highly endemic urban area of India.

    PubMed

    Shivalli, Siddharudha; Pai, Sudarshan; Akshaya, Kibballi Madhukeshwar; D'Souza, Neevan

    2016-03-16

    Construction sites are potential breeding places for some species of mosquitoes. Construction workers usually stay at the construction sites, thus being extremely susceptible to malaria. For malaria control, a special focus on them is warranted as they often seek treatment from unregulated, private vendors, increasing their risk of exposure to substandard drugs. To elicit the socio-demographic factors associated with comprehensive malaria knowledge (symptoms, mode of spread, and preventive measures) and treatment-seeking pattern (preferred source and type of treatment) among the construction workers in Mangaluru, India; and, to study the association among their comprehensive malaria knowledge, past suffering from malaria (within 1 year) and treatment-seeking pattern. A community based cross-sectional study was conducted in nine randomly selected construction sites of Mangaluru, a high-risk city for malaria with an annual parasite incidence of >2/1000/year, from June-September 2012. A sample size of 132 was estimated assuming at least 30% of them have satisfactory malaria knowledge, 10% absolute precision, 95% confidence level, design effect of 1.5 and 10% non-responses. A semi-structured interview schedule was used, and knowledge scores were computed. Multivariate linear (for knowledge score) and logistic regressions (for preferred source and type of treatment) were applied. One hundred and nineteen workers participated in the study (total approached-138). 85% (n = 101) of them were males. Mean knowledge score was 9.95 ± 3.19 (maximum possible score-16). The majority of them were aware of the symptoms and the mode of malaria transmission. However, <12% could explain the malaria preventive measures. Females workers (β = -0.281, p = 0.001), self stated malaria within 1 year (β = 0.276, p < 0.001) and who preferred allopathic treatment (β = 0.283, P = 0.001) displayed better knowledge scores. Male workers (AdjOR 7.21, 95% CI 2.3-22.9) and those with self stated

  13. High folate levels are not associated with increased malaria risk but with reduced anaemia rates in the context of high-dosed folate supplements and intermittent preventive treatment against malaria in pregnancy with sulphadoxine-pyrimethamine in Benin.

    PubMed

    Moya-Alvarez, Violeta; Ouédraogo, Smaila; Accrombessi, Manfred; Cot, Michel

    2018-04-23

    To investigate whether high-dosed folate supplements might diminish the efficacy of malaria intermittent preventive treatment in pregnancy (IPTp) with sulphadoxine-pyrimethamine (SP) in a cohort of pregnant women in Benin, where malaria is holoendemic. We followed 318 women during the entire pregnancy and analysed haematological and Plasmodium falciparum indicators in the context of an intermittent preventive treatment trial in Benin. During the follow-up, women received two-dose IPTp (1500/75 mg of SP per dose) at the maternity clinic and 600 mg of albendazole, 200 mg ferrous sulphate and 5 mg folic acid per day for home treatment. High folate levels were not associated with increased malaria risk (adjusted OR (aOR) = 0.51 (95% CI: 0.17; 1.56, P-value = 0.24)), nor with increased P. falciparum density (beta coefficient = -0.26 (95% CI: -0.53; 0.02), P-value = 0.07) in a randomised trial of IPTp in Benin. On the contrary, higher iron levels were statistically associated with increased odds of a positive blood smear (aOR = 1.7 95% CI (1.2; 2.3), P-value < 0.001) and P. falciparum parasite density (beta coefficient = 0.2 95% CI (0.1; 0.3), P-value < 0.001). High folate levels were statistically associated with decreased odds of anaemia (aOR = -0.30 95% CI (0.10; 0.88), P-value = 0.03). High folate levels are not associated with increased malarial risk in a prospective longitudinal cohort in the context of both iron and high-dosed folate supplements and IPTp. They are associated with reduced risk of anaemia, which is particularly important because iron, also given to treat anaemia, might be associated with increased malaria risk. © 2018 John Wiley & Sons Ltd.

  14. Malaria.

    ERIC Educational Resources Information Center

    Dupasquier, Isabelle

    1989-01-01

    Malaria, the greatest pandemia in the world, claims an estimated one million lives each year in Africa alone. While it may still be said that for the most part malaria is found in what is known as the world's poverty belt, cases are now frequently diagnosed in western countries. Due to resistant strains of malaria which have developed because of…

  15. Identification of risk factors for malaria control by focused interventions in Ranchi district, Jharkhand, India.

    PubMed

    Saxena, Rekha; Das, M K; Nagpal, B N; Srivastava, Aruna; Gupta, Sanjeev Kumar; Kumar, Anil; Tomar, Arvind Singh; Sinha, A T S; Vidyotma, Rajkumari; Jeyaseelan, A T; Baraik, Vijay Kumar; Singh, V P

    2014-12-01

    Ranchi, the capital of Jharkhand state is endemic for malaria, particularly the Bundu Primary Health Centre (PHC) is the worst affected. Therefore, a study was initiated during 2009 using remote sensing (RS) and geographical information system (GIS) to identify risk factors responsible for high endemicity in this PHC. Bundu and Angara in Ranchi district were identified as high and low malaria endemic PHCs based on epidemiological data of three years (2007-09). The habitation, streams, other water body, landform, PHC and village boundary thematic maps were prepared using IRS-P6/LISS III-IV imageries and macro level breeding sites were identified. Digital elevation model (DEM) of the PHCs was generated using Cartosat Stereo Pair images and from DEM, slope map was derived to calculate flat area. From slope, aspect map was derived to indicate direction of water flow. Length of perennial streams, area under rocky terrain and buffer zones of 250, 500 and 750 m were constructed around streams. High resolution remote sensing imageries were used to identify micro level breeding sites. Based on macro-micro breeding sites, six villages from each PHC were selected randomly having combination of different parameters representing all ecotypes. Entomological data were collected during 2010-11 in pre- and post-monsoon seasons following standard techniques and analyzed statistically. Differential analysis was attempted to comprehend socioeconomic and other determinants associated with malaria transmission. The study identified eight risk factors responsible for higher malaria endemicity in Bundu in comparison to Angara PHC based on ecological, entomological, socioeconomic and other local parameters. Focused interventions in integrated vector management (IVM) mode are required to be carried out in the district for better management and control of disease.

  16. Comparison of a mobile phone-based malaria reporting system with source participant register data for capturing spatial and temporal trends in epidemiological indicators of malaria transmission collected by community health workers in rural Zambia.

    PubMed

    Hamainza, Busiku; Killeen, Gerry F; Kamuliwo, Mulakwa; Bennett, Adam; Yukich, Joshua O

    2014-12-12

    Timeliness, completeness, and accuracy are key requirements for any surveillance system to reliably monitor disease burden and guide efficient resource prioritization. Evidence that electronic reporting of malaria cases by community health workers (CHWs) meet these requirements remains limited. Residents of two adjacent rural districts in Zambia were provided with both passive and active malaria testing and treatment services with malaria rapid diagnostic tests (RDTs) and artemisinin-based combination therapy by 42 CHWs serving 14 population clusters centred around public sector health facilities. Reference data describing total numbers of RDT-detected infections and diagnostic positivity (DP) were extracted from detailed participant register books kept by CHWs. These were compared with equivalent weekly summaries relayed directly by the CHWs themselves through a mobile phone short messaging system (SMS) reporting platform. Slightly more RDT-detected malaria infections were recorded in extracted participant registers than were reported in weekly mobile phone summaries but the difference was equivalent to only 19.2% (31,665 versus 25,583, respectively). The majority (81%) of weekly SMS reports were received within one week and the remainder within one month. Overall mean [95% confidence limits] difference between the numbers of register-recorded and SMS-reported RDT-detected malaria infections per CHW per week, as estimated by the Bland Altman method, was only -2.3 [-21.9, 17.2]. The mean [range] for both the number of RDT-detected malaria infections (86 [0, 463] versus 73.6 [0, 519], respectively)) and DP (22.8% [0.0 to 96.3%] versus 23.2% [0.4 to 75.8%], respectively) reported by SMS were generally very consistent with those recorded in the reference paper-based register data and exhibited similar seasonality patterns across all study clusters. Overall, mean relative differences in the SMS reports and reference register data were more consistent with each other

  17. Impact of climate variability on the transmission risk of malaria in northern Côte d'Ivoire.

    PubMed

    M'Bra, Richard K; Kone, Brama; Soro, Dramane P; N'krumah, Raymond T A S; Soro, Nagnin; Ndione, Jacques A; Sy, Ibrahima; Ceccato, Pietro; Ebi, Kristie L; Utzinger, Jürg; Schindler, Christian; Cissé, Guéladio

    2018-01-01

    Since the 1970s, the northern part of Côte d'Ivoire has experienced considerable fluctuation in its meteorology including a general decrease of rainfall and increase of temperature from 1970 to 2000, a slight increase of rainfall since 2000, a severe drought in 2004-2005 and flooding in 2006-2007. Such changing climate patterns might affect the transmission of malaria. The purpose of this study was to analyze climate and environmental parameters associated with malaria transmission in Korhogo, a city in northern Côte d'Ivoire. All data were collected over a 10-year period (2004-2013). Rainfall, temperature and Normalized Difference Vegetation Index (NDVI) were the climate and environmental variables considered. Association between these variables and clinical malaria data was determined, using negative binomial regression models. From 2004 to 2013, there was an increase in the annual average precipitation (1100.3-1376.5 mm) and the average temperature (27.2°C-27.5°C). The NDVI decreased from 0.42 to 0.40. We observed a strong seasonality in these climatic variables, which resembled the seasonality in clinical malaria. An incremental increase of 10 mm of monthly precipitation was, on average, associated with a 1% (95% Confidence interval (CI): 0.7 to 1.2%) and a 1.2% (95% CI: 0.9 to 1.5%) increase in the number of clinical malaria episodes one and two months later respectively. A 1°C increase in average monthly temperature was, on average, associated with a decline of a 3.5% (95% CI: 0.1 to 6.7%) in clinical malaria episodes. A 0.1 unit increase in monthly NDVI was associated with a 7.3% (95% CI: 0.8 to 14.1%) increase in the monthly malaria count. There was a similar increase for the preceding-month lag (6.7% (95% CI: 2.3% to 11.2%)). The study results can be used to establish a malaria early warning system in Korhogo to prepare for outbreaks of malaria, which would increase community resilience no matter the magnitude and pattern of climate change.

  18. Battling malaria iceberg incorporating strategic reforms in achieving Millennium Development Goals & malaria elimination in India

    PubMed Central

    Sharma, V. P.

    2012-01-01

    Malaria control in India has occupied high priority in health sector consuming major resources of the Central and State governments. Several new initiatives were launched from time to time supported by foreign aids but malaria situation has remained static and worsened in years of good rainfall. At times malaria relented temporarily but returned with vengeance at the local, regional and national level, becoming more resilient by acquiring resistance in the vectors and the parasites. National developments to improve the economy, without health impact assessment, have had adverse consequences by providing enormous breeding grounds for the vectors that have become refractory to interventions. As a result, malaria prospers and its control is in dilemma, as finding additional resources is becoming difficult with the ongoing financial crisis. Endemic countries must contribute to make up the needed resources, if malaria is to be contained. Malaria control requires long term planning, one that will reduce receptivity and vulnerability, and uninterrupted financial support for sustained interventions. While this seems to be a far cry, the environment is becoming more receptive for vectors, and epidemics visit the country diverting major resources in their containment, e.g. malaria, dengue and dengue haemorrhagic fevers, and Chikungunya virus infection. In the last six decades malaria has taken deep roots and diversified into various ecotypes, the control of these ecotypes requires local knowledge about the vectors and the parasites. In this review we outline the historical account of malaria and methods of control that have lifted the national economy in many countries. While battles against malaria should continue at the local level, there is a need for large scale environmental improvement. Global Fund for AIDS, Tuberculosis and Malaria has provided huge funds for malaria control worldwide touching US$ 2 billion in 2011. Unfortunately it is likely to decline to US$ 1

  19. Battling malaria iceberg incorporating strategic reforms in achieving Millennium Development Goals & malaria elimination in India.

    PubMed

    Sharma, V P

    2012-12-01

    Malaria control in India has occupied high priority in health sector consuming major resources of the Central and State governments. Several new initiatives were launched from time to time supported by foreign aids but malaria situation has remained static and worsened in years of good rainfall. At times malaria relented temporarily but returned with vengeance at the local, regional and national level, becoming more resilient by acquiring resistance in the vectors and the parasites. National developments to improve the economy, without health impact assessment, have had adverse consequences by providing enormous breeding grounds for the vectors that have become refractory to interventions. As a result, malaria prospers and its control is in dilemma, as finding additional resources is becoming difficult with the ongoing financial crisis. Endemic countries must contribute to make up the needed resources, if malaria is to be contained. Malaria control requires long term planning, one that will reduce receptivity and vulnerability, and uninterrupted financial support for sustained interventions. While this seems to be a far cry, the environment is becoming more receptive for vectors, and epidemics visit the country diverting major resources in their containment, e.g. malaria, dengue and dengue haemorrhagic fevers, and Chikungunya virus infection. In the last six decades malaria has taken deep roots and diversified into various ecotypes, the control of these ecotypes requires local knowledge about the vectors and the parasites. In this review we outline the historical account of malaria and methods of control that have lifted the national economy in many countries. While battles against malaria should continue at the local level, there is a need for large scale environmental improvement. Global Fund for AIDS, Tuberculosis and Malaria has provided huge funds for malaria control worldwide touching US$ 2 billion in 2011. Unfortunately it is likely to decline to US$ 1

  20. Modelling the incidence of Plasmodium vivax and Plasmodium falciparum malaria in Afghanistan 2006-2009.

    PubMed

    Alegana, Victor A; Wright, Jim A; Nahzat, Sami M; Butt, Waqar; Sediqi, Amad W; Habib, Naeem; Snow, Robert W; Atkinson, Peter M; Noor, Abdisalan M

    2014-01-01

    Identifying areas that support high malaria risks and where populations lack access to health care is central to reducing the burden in Afghanistan. This study investigated the incidence of Plasmodium vivax and Plasmodium falciparum using routine data to help focus malaria interventions. To estimate incidence, the study modelled utilisation of the public health sector using fever treatment data from the 2012 national Malaria Indicator Survey. A probabilistic measure of attendance was applied to population density metrics to define the proportion of the population within catchment of a public health facility. Malaria data were used in a Bayesian spatio-temporal conditional-autoregressive model with ecological or environmental covariates, to examine the spatial and temporal variation of incidence. From the analysis of healthcare utilisation, over 80% of the population was within 2 hours' travel of the nearest public health facility, while 64.4% were within 30 minutes' travel. The mean incidence of P. vivax in 2009 was 5.4 (95% Crl 3.2-9.2) cases per 1000 population compared to 1.2 (95% Crl 0.4-2.9) cases per 1000 population for P. falciparum. P. vivax peaked in August while P. falciparum peaked in November. 32% of the estimated 30.5 million people lived in regions where annual incidence was at least 1 case per 1,000 population of P. vivax; 23.7% of the population lived in areas where annual P. falciparum case incidence was at least 1 per 1000. This study showed how routine data can be combined with household survey data to model malaria incidence. The incidence of both P. vivax and P. falciparum in Afghanistan remain low but the co-distribution of both parasites and the lag in their peak season provides challenges to malaria control in Afghanistan. Future improved case definition to determine levels of imported risks may be useful for the elimination ambitions in Afghanistan.

  1. Visual outcomes in children in Malawi following retinopathy of severe malaria.

    PubMed

    Beare, N A V; Southern, C; Kayira, K; Taylor, T E; Harding, S P

    2004-03-01

    To investigate whether retinal changes in children with severe malaria affect visual acuity 1 month after systemic recovery. All children with severe malaria admitted to a research ward in Malawi during one malaria season were examined by direct and indirect ophthalmoscopy. Visual acuity was tested in those attending follow up by Cardiff cards, Sheridan-Gardiner single letters, or Snellen chart. 96 (68%) children attended follow up, of whom 83 (86%) had visual acuity measured. Cardiff cards were used in 47 (57%) children, and Sheridan-Gardiner letters or Snellen chart in 29 (35%). There was no significant difference in the mean logMAR visual acuity between groups with or without macular whitening (0.14 versus 0.16, p = 0.55). There was no trend for worse visual acuity with increasing severity of macular whitening (p = 0.52) including patients in whom the fovea was involved (p = 0.32). Six (4.2%) children had cortical blindness after cerebral malaria, and all six had other neurological sequelae. Ophthalmoscopy during the acute illness revealed no abnormalities in four of these children. Retinal changes in severe malaria, in particular macular whitening, do not appear to affect visual acuity at 1 month. This supports the hypothesis that retinal whitening is due to reversible intracellular oedema in response to relative hypoxia, caused by sequestered erythrocytes infected by Plasmodium falciparum. Impaired visual functioning after cerebral malaria is not attributable to retinal changes and appears to be a cortical phenomenon.

  2. Spatio-temporal heterogeneity of malaria morbidity in Ghana: Analysis of routine health facility data

    PubMed Central

    Malm, Keziah; Peprah, Nana Yaw; Silal, Sheetal P.

    2018-01-01

    Background Malaria incidence is largely influenced by vector abundance. Among the many interconnected factors relating to malaria transmission, weather conditions such as rainfall and temperature are known to create suitable environmental conditions that sustain reproduction and propagation of anopheles mosquitoes and malaria parasites. In Ghana, climatic conditions vary across the country. Understanding the heterogeneity of malaria morbidity using data sourced from a recently setup data repository for routine health facility data could support planning. Methods Monthly aggregated confirmed uncomplicated malaria cases from the District Health Information Management System and average monthly rainfall and temperature records obtained from the Ghana Meteorological Agency from 2008 to 2016 were analysed. Univariate time series models were fitted to the malaria, rainfall and temperature data series. After pre-whitening the morbidity data, cross correlation analyses were performed. Subsequently, transfer function models were developed for the relationship between malaria morbidity and rainfall and temperature. Results Malaria morbidity patterns vary across zones. In the Guinea savannah, morbidity peaks once in the year and twice in both the Transitional forest and Coastal savannah, following similar patterns of rainfall at the zonal level. While the effects of rainfall on malaria morbidity are delayed by a month in the Guinea savannah and Transitional Forest zones those of temperature are delayed by two months in the Transitional forest zone. In the Coastal savannah however, incidence of malaria is significantly associated with two months lead in rainfall and temperature. Conclusion Data captured on the District Health Information Management System has been used to demonstrate heterogeneity in the dynamics of malaria morbidity across the country. Timing of these variations could guide the deployment of interventions such as indoor residual spraying, Seasonal Malaria

  3. Spatio-temporal heterogeneity of malaria morbidity in Ghana: Analysis of routine health facility data.

    PubMed

    Awine, Timothy; Malm, Keziah; Peprah, Nana Yaw; Silal, Sheetal P

    2018-01-01

    Malaria incidence is largely influenced by vector abundance. Among the many interconnected factors relating to malaria transmission, weather conditions such as rainfall and temperature are known to create suitable environmental conditions that sustain reproduction and propagation of anopheles mosquitoes and malaria parasites. In Ghana, climatic conditions vary across the country. Understanding the heterogeneity of malaria morbidity using data sourced from a recently setup data repository for routine health facility data could support planning. Monthly aggregated confirmed uncomplicated malaria cases from the District Health Information Management System and average monthly rainfall and temperature records obtained from the Ghana Meteorological Agency from 2008 to 2016 were analysed. Univariate time series models were fitted to the malaria, rainfall and temperature data series. After pre-whitening the morbidity data, cross correlation analyses were performed. Subsequently, transfer function models were developed for the relationship between malaria morbidity and rainfall and temperature. Malaria morbidity patterns vary across zones. In the Guinea savannah, morbidity peaks once in the year and twice in both the Transitional forest and Coastal savannah, following similar patterns of rainfall at the zonal level. While the effects of rainfall on malaria morbidity are delayed by a month in the Guinea savannah and Transitional Forest zones those of temperature are delayed by two months in the Transitional forest zone. In the Coastal savannah however, incidence of malaria is significantly associated with two months lead in rainfall and temperature. Data captured on the District Health Information Management System has been used to demonstrate heterogeneity in the dynamics of malaria morbidity across the country. Timing of these variations could guide the deployment of interventions such as indoor residual spraying, Seasonal Malaria Chemoprevention or vaccines to optimise

  4. Spatial targeting of interventions against malaria.

    PubMed Central

    Carter, R.; Mendis, K. N.; Roberts, D.

    2000-01-01

    Malaria transmission is strongly associated with location. This association has two main features. First, the disease is focused around specific mosquito breeding sites and can normally be transmitted only within certain distances from them: in Africa these are typically between a few hundred metres and a kilometre and rarely exceed 2-3 kilometres. Second, there is a marked clustering of persons with malaria parasites and clinical symptoms at particular sites, usually households. In localities of low endemicity the level of malaria risk or case incidence may vary widely between households because the specific characteristics of houses and their locations affect contact between humans and vectors. Where endemicity is high, differences in human/vector contact rates between different households may have less effect on malaria case incidences. This is because superinfection and exposure-acquired immunity blur the proportional relationship between inoculation rates and case incidences. Accurate information on the distribution of malaria on the ground permits interventions to be targeted towards the foci of transmission and the locations and households of high malaria risk within them. Such targeting greatly increases the effectiveness of control measures. On the other hand, the inadvertent exclusion of these locations causes potentially effective control measures to fail. The computerized mapping and management of location data in geographical information systems should greatly assist the targeting of interventions against malaria at the focal and household levels, leading to improved effectiveness and cost-effectiveness of control. PMID:11196487

  5. Spatial targeting of interventions against malaria.

    PubMed

    Carter, R; Mendis, K N; Roberts, D

    2000-01-01

    Malaria transmission is strongly associated with location. This association has two main features. First, the disease is focused around specific mosquito breeding sites and can normally be transmitted only within certain distances from them: in Africa these are typically between a few hundred metres and a kilometre and rarely exceed 2-3 kilometres. Second, there is a marked clustering of persons with malaria parasites and clinical symptoms at particular sites, usually households. In localities of low endemicity the level of malaria risk or case incidence may vary widely between households because the specific characteristics of houses and their locations affect contact between humans and vectors. Where endemicity is high, differences in human/vector contact rates between different households may have less effect on malaria case incidences. This is because superinfection and exposure-acquired immunity blur the proportional relationship between inoculation rates and case incidences. Accurate information on the distribution of malaria on the ground permits interventions to be targeted towards the foci of transmission and the locations and households of high malaria risk within them. Such targeting greatly increases the effectiveness of control measures. On the other hand, the inadvertent exclusion of these locations causes potentially effective control measures to fail. The computerized mapping and management of location data in geographical information systems should greatly assist the targeting of interventions against malaria at the focal and household levels, leading to improved effectiveness and cost-effectiveness of control.

  6. Avian malaria in a boreal resident species: long-term temporal variability, and increased prevalence in birds with avian keratin disorder

    USGS Publications Warehouse

    Wilkinson, Laura C.; Handel, Colleen M.; Van Hemert, Caroline R.; Loiseau, Claire; Sehgal, Ravinder N. M.

    2016-01-01

    The prevalence of vector-borne parasitic diseases is widely influenced by biological and ecological factors. Environmental conditions such as temperature and precipitation can have a marked effect on haemosporidian parasites (Plasmodium spp.) that cause malaria and those that cause other malaria-like diseases in birds. However, there have been few long-term studies monitoring haemosporidian infections in birds in northern latitudes, where weather conditions can be highly variable and the effects of climate change are becoming more pronounced. We used molecular methods to screen more than 2,000 blood samples collected from black-capped chickadees (Poecile atricapillus), a resident passerine bird. Samples were collected over a 10 year period, mostly during the non-breeding season, at seven sites in Alaska, USA. We tested for associations between Plasmodium prevalence and local environmental conditions including temperature, precipitation, site, year and season. We also evaluated the relationship between parasite prevalence and individual host factors of age, sex and presence or absence of avian keratin disorder. This disease, which causes accelerated keratin growth in the beak, provided a natural study system in which to test the interaction between disease state and malaria prevalence. Prevalence of Plasmodium infection varied by year, site, age and individual disease status but there was no support for an effect of sex or seasonal period. Significantly, birds with avian keratin disorder were 2.6 times more likely to be infected by Plasmodium than birds without the disorder. Interannual variation in the prevalence of Plasmodium infection at different sites was positively correlated with summer temperatures at the local but not statewide scale. Sequence analysis of the parasite cytochrome b gene revealed a single Plasmodiumspp. lineage, P43. Our results demonstrate associations between prevalence of avian malaria and a variety of biological and

  7. Adherence to national guidelines for the diagnosis and management of severe malaria: a nationwide, cross-sectional survey in Malawi, 2012.

    PubMed

    Shah, Monica P; Briggs-Hagen, Melissa; Chinkhumba, Jobiba; Bauleni, Andy; Chalira, Alfred; Moyo, Dubulao; Dodoli, Wilfred; Luhanga, Misheck; Sande, John; Ali, Doreen; Gutman, Julie; Mathanga, Don P; Lindblade, Kim A

    2016-07-19

    Severe malaria has a case fatality rate of 10-20 %; however, few studies have addressed the quality of severe malaria case management. This study evaluated the diagnostic and treatment practices of malaria patients admitted to inpatient health facilities (HF) in Malawi. In July-August 2012, a nationwide, cross-sectional survey of severe malaria management was conducted in 36 HFs selected with equal probability from all eligible public sector HFs in Malawi. Patient records from all admissions during October 2011 and April 2012 (low and high season, respectively) were screened for an admission diagnosis of malaria or prescription of any anti-malarial. Eligible records were stratified by age (< 5 or ≥ 5 years). A maximum of eight records was randomly selected within each age and month stratum. Severe malaria was defined by admission diagnosis or documentation of at least one sign or symptom of severe malaria. Treatment with intravenous (IV) quinine or artesunate was considered correct. Patients without documentation of severe malaria were analysed as uncomplicated malaria patients; treatment with an artemisinin-based combination therapy (ACT) or oral quinine based on malaria test results was considered correct. All analyses accounted for HF level clustering and sampling weights. The analysis included 906 records from 35 HFs. Among these, 42 % (95 % confidence interval [CI] 35-49) had a severe malaria admission diagnosis and 50 % (95 % CI 44-57) had at least one severe malaria sign or symptom documented. Severe malaria patients defined by admission diagnosis (93, 95 % CI 86-99) were more likely to be treated correctly compared to patients defined by a severe sign (82, 95 % CI 75-89) (p < 0.0001). Among uncomplicated malaria patients, 26 % (95 % CI 18-35) were correctly treated and 53 % (95 % CI 42-64) were adequately treated with IV quinine alone or in combination with an ACT or oral quinine. A majority of patients diagnosed with severe malaria

  8. Malaria, helminths, co-infection and anaemia in a cohort of children from Mutengene, south western Cameroon.

    PubMed

    Njua-Yafi, Clarisse; Achidi, Eric A; Anchang-Kimbi, Judith K; Apinjoh, Tobias O; Mugri, Regina N; Chi, Hanesh F; Tata, Rolland B; Njumkeng, Charles; Nkock, Emmanuel N; Nkuo-Akenji, Theresa

    2016-02-06

    Malaria and helminthiases frequently co-infect the same individuals in endemic zones. Plasmodium falciparum and helminth infections have long been recognized as major contributors to anaemia in endemic countries. Several studies have explored the influence of helminth infections on the course of malaria in humans but how these parasites interact within co-infected individuals remains controversial. In a community-based longitudinal study from March 2011 to February 2012, the clinical and malaria parasitaemia status of a cohort of 357 children aged 6 months to 10 years living in Mutengene, south-western region of Cameroon, was monitored. Following the determination of baseline malaria/helminths status and haemoglobin levels, the incidence of malaria and anaemia status was determined in a 12 months longitudinal study by both active and passive case detection. Among all the children who completed the study, 32.5 % (116/357) of them had at least one malaria episode. The mean (±SEM) number of malaria attacks per year was 1.44 ± 0.062 (range: 1-4 episodes) with the highest incidence of episodes occuring during the rainy season months of March-October. Children <5 years old were exposed to more malaria attacks [OR = 2.34, 95 % CI (1.15-4.75), p = 0.019] and were also more susceptible to anaemia [OR = 2.24, 95 % CI (1.85-4.23), p = 0.013] compared to older children (5-10 years old). Likewise children with malaria episodes [OR = 4.45, 95 % CI (1.66-11.94), p = 0.003] as well as those with asymptomatic parasitaemia [OR = 2.41, 95 % CI (1.58-3.69) p < 0.001] were susceptible to anaemia compared to their malaria parasitaemia negative counterparts. Considering children infected with Plasmodium alone as the reference, children infected with helminths alone were associated with protection from anaemia [OR = 0.357, 95 % CI (0.141-0.901), p = 0.029]. The mean haemoglobin level (g/dl) of participants co-infected with Plasmodium and helminths was higher (p = 0.006) compared to

  9. Vaccines for Malaria: How Close Are We?

    PubMed Central

    Thera, Mahamadou A.; Plowe, Christopher V.

    2012-01-01

    Vaccines are the most powerful public health tools mankind has created, but malaria parasites are bigger, more complicated, and wilier than the viruses and bacteria that have been conquered or controlled with vaccines. Despite decades of research toward a vaccine for malaria, this goal has remained elusive. Nevertheless, recent advances justify optimism that a licensed malaria vaccine is within reach. A subunit recombinant protein vaccine that affords in the neighborhood of 50% protective efficacy against clinical malaria is in the late stages of clinical evaluation in Africa. Incremental improvements on this successful vaccine are possible and worth pursuing, but the best hope for a highly efficacious malaria vaccine that would improve prospects for malaria eradication may lie with the use of attenuated whole parasites and powerful immune-boosting adjuvants. PMID:22077719

  10. Vaccines for malaria: how close are we?

    PubMed

    Thera, Mahamadou A; Plowe, Christopher V

    2012-01-01

    Vaccines are the most powerful public health tools mankind has created, but malaria parasites are bigger, more complicated, and wilier than the viruses and bacteria that have been conquered or controlled with vaccines. Despite decades of research toward a vaccine for malaria, this goal has remained elusive. Nevertheless, recent advances justify optimism that a licensed malaria vaccine is within reach. A subunit recombinant protein vaccine that affords in the neighborhood of 50% protective efficacy against clinical malaria is in the late stages of clinical evaluation in Africa. Incremental improvements on this successful vaccine are possible and worth pursuing, but the best hope for a highly efficacious malaria vaccine that would improve prospects for malaria eradication may lie with the use of attenuated whole parasites and powerful immune-boosting adjuvants.

  11. Modelling homogeneous regions of social vulnerability to malaria in Rwanda.

    PubMed

    Bizimana, Jean Pierre; Kienberger, Stefan; Hagenlocher, Michael; Twarabamenye, Emmanuel

    2016-03-31

    Despite the decline in malaria incidence due to intense interventions, potentials for malaria transmission persist in Rwanda. To eradicate malaria in Rwanda, strategies need to expand beyond approaches that focus solely on malaria epidemiology and also consider the socioeconomic, demographic and biological/disease-related factors that determine the vulnerability of potentially exposed populations. This paper analyses current levels of social vulnerability to malaria in Rwanda by integrating a set of weighted vulnerability indicators. The paper uses regionalisation techniques as a spatially explicit approach for delineating homogeneous regions of social vulnerability to malaria. This overcomes the limitations of administrative boundaries for modelling the trans-boundary social vulnerability to malaria. The utilised approach revealed high levels of social vulnerability to malaria in the highland areas of Rwanda, as well as in remote areas where populations are more susceptible. Susceptibility may be due to the populations' lacking the capacity to anticipate mosquito bites, or lacking resilience to cope with or recover from malaria infection. By highlighting the most influential indicators of social vulnerability to malaria, the applied approach indicates which vulnerability domains need to be addressed, and where appropriate interventions are most required. Interventions to improve the socioeconomic development in highly vulnerable areas could prove highly effective, and provide sustainable outcomes against malaria in Rwanda. This would ultimately increase the resilience of the population and their capacity to better anticipate, cope with, and recover from possible infection.

  12. Recombinant modified vaccinia virus Ankara-based malaria vaccines.

    PubMed

    Sebastian, Sarah; Gilbert, Sarah C

    2016-01-01

    A safe and effective malaria vaccine is a crucial part of the roadmap to malaria elimination/eradication by the year 2050. Viral-vectored vaccines based on adenoviruses and modified vaccinia virus Ankara (MVA) expressing malaria immunogens are currently being used in heterologous prime-boost regimes in clinical trials for induction of strong antigen-specific T-cell responses and high-titer antibodies. Recombinant MVA is a safe and well-tolerated attenuated vector that has consistently shown significant boosting potential. Advances have been made in large-scale MVA manufacture as high-yield producer cell lines and high-throughput purification processes have recently been developed. This review describes the use of MVA as malaria vaccine vector in both preclinical and clinical studies in the past 5 years.

  13. Model variations in predicting incidence of Plasmodium falciparum malaria using 1998-2007 morbidity and meteorological data from south Ethiopia.

    PubMed

    Loha, Eskindir; Lindtjørn, Bernt

    2010-06-16

    Malaria transmission is complex and is believed to be associated with local climate changes. However, simple attempts to extrapolate malaria incidence rates from averaged regional meteorological conditions have proven unsuccessful. Therefore, the objective of this study was to determine if variations in specific meteorological factors are able to consistently predict P. falciparum malaria incidence at different locations in south Ethiopia. Retrospective data from 42 locations were collected including P. falciparum malaria incidence for the period of 1998-2007 and meteorological variables such as monthly rainfall (all locations), temperature (17 locations), and relative humidity (three locations). Thirty-five data sets qualified for the analysis. Ljung-Box Q statistics was used for model diagnosis, and R squared or stationary R squared was taken as goodness of fit measure. Time series modelling was carried out using Transfer Function (TF) models and univariate auto-regressive integrated moving average (ARIMA) when there was no significant predictor meteorological variable. Of 35 models, five were discarded because of the significant value of Ljung-Box Q statistics. Past P. falciparum malaria incidence alone (17 locations) or when coupled with meteorological variables (four locations) was able to predict P. falciparum malaria incidence within statistical significance. All seasonal AIRMA orders were from locations at altitudes above 1742 m. Monthly rainfall, minimum and maximum temperature was able to predict incidence at four, five and two locations, respectively. In contrast, relative humidity was not able to predict P. falciparum malaria incidence. The R squared values for the models ranged from 16% to 97%, with the exception of one model which had a negative value. Models with seasonal ARIMA orders were found to perform better. However, the models for predicting P. falciparum malaria incidence varied from location to location, and among lagged effects, data

  14. Model variations in predicting incidence of Plasmodium falciparum malaria using 1998-2007 morbidity and meteorological data from south Ethiopia

    PubMed Central

    2010-01-01

    Background Malaria transmission is complex and is believed to be associated with local climate changes. However, simple attempts to extrapolate malaria incidence rates from averaged regional meteorological conditions have proven unsuccessful. Therefore, the objective of this study was to determine if variations in specific meteorological factors are able to consistently predict P. falciparum malaria incidence at different locations in south Ethiopia. Methods Retrospective data from 42 locations were collected including P. falciparum malaria incidence for the period of 1998-2007 and meteorological variables such as monthly rainfall (all locations), temperature (17 locations), and relative humidity (three locations). Thirty-five data sets qualified for the analysis. Ljung-Box Q statistics was used for model diagnosis, and R squared or stationary R squared was taken as goodness of fit measure. Time series modelling was carried out using Transfer Function (TF) models and univariate auto-regressive integrated moving average (ARIMA) when there was no significant predictor meteorological variable. Results Of 35 models, five were discarded because of the significant value of Ljung-Box Q statistics. Past P. falciparum malaria incidence alone (17 locations) or when coupled with meteorological variables (four locations) was able to predict P. falciparum malaria incidence within statistical significance. All seasonal AIRMA orders were from locations at altitudes above 1742 m. Monthly rainfall, minimum and maximum temperature was able to predict incidence at four, five and two locations, respectively. In contrast, relative humidity was not able to predict P. falciparum malaria incidence. The R squared values for the models ranged from 16% to 97%, with the exception of one model which had a negative value. Models with seasonal ARIMA orders were found to perform better. However, the models for predicting P. falciparum malaria incidence varied from location to location, and among

  15. Use of remote sensing to identify spatial risk factors for malaria in a region of declining transmission: a cross-sectional and longitudinal community survey.

    PubMed

    Moss, William J; Hamapumbu, Harry; Kobayashi, Tamaki; Shields, Timothy; Kamanga, Aniset; Clennon, Julie; Mharakurwa, Sungano; Thuma, Philip E; Glass, Gregory

    2011-06-10

    The burden of malaria has decreased dramatically within the past several years in parts of sub-Saharan Africa. Further malaria control will require targeted control strategies based on evidence of risk. The objective of this study was to identify environmental risk factors for malaria transmission using remote sensing technologies to guide malaria control interventions in a region of declining burden of malaria. Satellite images were used to construct a sampling frame for the random selection of households enrolled in prospective longitudinal and cross-sectional surveys of malaria parasitaemia in Southern Province, Zambia. A digital elevation model (DEM) was derived from the Shuttle Radar Topography Mission version 3 DEM and used for landscape characterization, including landforms, elevation, aspect, slope, topographic wetness, topographic position index and hydrological models of stream networks. A total of 768 individuals from 128 randomly selected households were enrolled over 21 months, from the end of the rainy season in April 2007 through December 2008. Of the 768 individuals tested, 117 (15.2%) were positive by malaria rapid diagnostic test (RDT). Individuals residing within 3.75 km of a third order stream were at increased risk of malaria. Households at elevations above the baseline elevation for the region were at decreasing risk of having RDT-positive residents. Households where new infections occurred were overlaid on a risk map of RDT positive households and incident infections were more likely to be located in high-risk areas derived from prevalence data. Based on the spatial risk map, targeting households in the top 80th percentile of malaria risk would require malaria control interventions directed to only 24% of the households. Remote sensing technologies can be used to target malaria control interventions in a region of declining malaria transmission in southern Zambia, enabling a more efficient use of resources for malaria elimination.

  16. [Establishment of malaria early warning system in Jiangsu Province II application of digital earth system in malaria epidemic management and surveillance].

    PubMed

    Wang, Wei-Ming; Zhou, Hua-Yun; Liu, Yao-Bao; Li, Ju-Lin; Cao, Yuan-Yuan; Cao, Jun

    2013-04-01

    To explore a new mode of malaria elimination through the application of digital earth system in malaria epidemic management and surveillance. While we investigated the malaria cases and deal with the epidemic areas in Jiangsu Province in 2011, we used JISIBAO UniStrong G330 GIS data acquisition unit (GPS) to collect the latitude and longitude of the cases located, and then established a landmark library about early-warning areas and an image management system by using Google Earth Free 6.2 and its image processing software. A total of 374 malaria cases were reported in Jiangsu Province in 2011. Among them, there were 13 local vivax malaria cases, 11 imported vivax malaria cases from other provinces, 20 abroad imported vivax malaria cases, 309 abroad imported falciparum malaria cases, 7 abroad imported quartan malaria cases (Plasmodium malaria infection), and 14 abroad imported ovale malaria cases (P. ovale infection). Through the analysis of Google Earth Mapping system, these malaria cases showed a certain degree of aggregation except the abroad imported quartan malaria cases which were highly sporadic. The local vivax malaria cases mainly concentrated in Sihong County, the imported vivax malaria cases from other provinces mainly concentrated in Suzhou City and Wuxi City, the abroad imported vivax malaria cases concentrated in Nanjing City, the abroad imported falciparum malaria cases clustered in the middle parts of Jiangsu Province, and the abroad imported ovale malaria cases clustered in Liyang City. The operation of Google Earth Free 6.2 is simple, convenient and quick, which could help the public health authority to make the decision of malaria prevention and control, including the use of funds and other health resources.

  17. Spectrum-Malaria: a user-friendly projection tool for health impact assessment and strategic planning by malaria control programmes in sub-Saharan Africa.

    PubMed

    Hamilton, Matthew; Mahiane, Guy; Werst, Elric; Sanders, Rachel; Briët, Olivier; Smith, Thomas; Cibulskis, Richard; Cameron, Ewan; Bhatt, Samir; Weiss, Daniel J; Gething, Peter W; Pretorius, Carel; Korenromp, Eline L

    2017-02-10

    Scale-up of malaria prevention and treatment needs to continue but national strategies and budget allocations are not always evidence-based. This article presents a new modelling tool projecting malaria infection, cases and deaths to support impact evaluation, target setting and strategic planning. Nested in the Spectrum suite of programme planning tools, the model includes historic estimates of case incidence and deaths in groups aged up to 4, 5-14, and 15+ years, and prevalence of Plasmodium falciparum infection (PfPR) among children 2-9 years, for 43 sub-Saharan African countries and their 602 provinces, from the WHO and malaria atlas project. Impacts over 2016-2030 are projected for insecticide-treated nets (ITNs), indoor residual spraying (IRS), seasonal malaria chemoprevention (SMC), and effective management of uncomplicated cases (CMU) and severe cases (CMS), using statistical functions fitted to proportional burden reductions simulated in the P. falciparum dynamic transmission model OpenMalaria. In projections for Nigeria, ITNs, IRS, CMU, and CMS scale-up reduced health burdens in all age groups, with largest proportional and especially absolute reductions in children up to 4 years old. Impacts increased from 8 to 10 years following scale-up, reflecting dynamic effects. For scale-up of each intervention to 80% effective coverage, CMU had the largest impacts across all health outcomes, followed by ITNs and IRS; CMS and SMC conferred additional small but rapid mortality impacts. Spectrum-Malaria's user-friendly interface and intuitive display of baseline data and scenario projections holds promise to facilitate capacity building and policy dialogue in malaria programme prioritization. The module's linking to the OneHealth Tool for costing will support use of the software for strategic budget allocation. In settings with moderately low coverage levels, such as Nigeria, improving case management and achieving universal coverage with ITNs could achieve

  18. Genetic structure and evolved malaria resistance in Hawaiian honeycreepers

    USGS Publications Warehouse

    Foster, J.T.; Woodworth, B.L.; Eggert, L.E.; Hart, P.J.; Palmer, D.; Duffy, D.C.; Fleischer, R.C.

    2007-01-01

    Infectious diseases now threaten wildlife populations worldwide but population recovery following local extinction has rarely been observed. In such a case, do resistant individuals recolonize from a central remnant population, or do they spread from small, perhaps overlooked, populations of resistant individuals? Introduced avian malaria (Plasmodium relictum) has devastated low-elevation populations of native birds in Hawaii, but at least one species (Hawaii amakihi, Hemignathus virens) that was greatly reduced at elevations below about 1000 m tolerates malaria and has initiated a remarkable and rapid recovery. We assessed mitochondrial and nuclear DNA markers from amakihi and two other Hawaiian honeycreepers, apapane (Himatione sanguinea) and iiwi (Vestiaria coccinea), at nine primary study sites from 2001 to 2003 to determine the source of re-establishing birds. In addition, we obtained sequences from tissue from amakihi museum study skins (1898 and 1948-49) to assess temporal changes in allele distributions. We found that amakihi in lowland areas are, and have historically been, differentiated from birds at high elevations and had unique alleles retained through time; that is, their genetic signature was not a subset of the genetic variation at higher elevations. We suggest that high disease pressure rapidly selected for resistance to malaria at low elevation, leaving small pockets of resistant birds, and this resistance spread outward from the scattered remnant populations. Low-elevation amakihi are currently isolated from higher elevations (> 1000 m) where disease emergence and transmission rates appear to vary seasonally and annually. In contrast to results from amakihi, no genetic differentiation between elevations was found in apapane and iiwi, indicating that slight variation in genetic or life-history attributes can determine disease resistance and population recovery. Determining the conditions that allow for the development of resistance to disease is

  19. Maternal Malaria and Perinatal HIV Transmission, Western Kenya1,2

    PubMed Central

    Ayisi, John G.; van Eijk, Anna M.; ter Kuile, Feiko O.; Shi, Ya Ping; Yang, Chunfu; Kolczak, Margarette S.; Otieno, Juliana A.; Misore, Ambrose O.; Kager, Piet A.; Lal, Renu B.; Steketee, Richard W.; Nahlen, Bernard L.

    2004-01-01

    To determine whether maternal placental malaria is associated with an increased risk for perinatal mother-to-child HIV transmission (MTCT), we studied HIV-positive women in western Kenya. We enrolled 512 mother-infant pairs; 128 (25.0%) women had malaria, and 102 (19.9%) infants acquired HIV perinatally. Log10 HIV viral load and episiotomy or perineal tear were associated with increased perinatal HIV transmission, whereas low-density malaria (<10,000 parasites/μL) was associated with reduced risk (adjusted relative risk [ARR] 0.4). Among women dually infected with malaria and HIV, high-density malaria (>10,000 parasites/μL) was associated with increased risk for perinatal MTCT (ARR 2.0), compared to low-density malaria. The interaction between placental malaria and MTCT appears to be variable and complex: placental malaria that is controlled at low density may cause an increase in broad-based immune responses that protect against MTCT; uncontrolled, high-density malaria may simultaneously disrupt placental architecture and generate substantial antigen stimulus to HIV replication and increase risk for MTCT. PMID:15200854

  20. Development and clinical performance of high throughput loop-mediated isothermal amplification for detection of malaria

    PubMed Central

    Perera, Rushini S.; Ding, Xavier C.; Tully, Frank; Oliver, James; Bright, Nigel; Bell, David; Chiodini, Peter L.; Gonzalez, Iveth J.; Polley, Spencer D.

    2017-01-01

    Background Accurate and efficient detection of sub-microscopic malaria infections is crucial for enabling rapid treatment and interruption of transmission. Commercially available malaria LAMP kits have excellent diagnostic performance, though throughput is limited by the need to prepare samples individually. Here, we evaluate the clinical performance of a newly developed high throughput (HTP) sample processing system for use in conjunction with the Eiken malaria LAMP kit. Methods The HTP system utilised dried blood spots (DBS) and liquid whole blood (WB), with parallel sample processing of 94 samples per run. The system was evaluated using 699 samples of known infection status pre-determined by gold standard nested PCR. Results The sensitivity and specificity of WB-HTP-LAMP was 98.6% (95% CI, 95.7–100), and 99.7% (95% CI, 99.2–100); sensitivity of DBS-HTP-LAMP was 97.1% (95% CI, 93.1–100), and specificity 100% against PCR. At parasite densities greater or equal to 2 parasites/μL, WB and DBS HTP-LAMP showed 100% sensitivity and specificity against PCR. At densities less than 2 p/μL, WB-HTP-LAMP sensitivity was 88.9% (95% CI, 77.1–100) and specificity was 99.7% (95% CI, 99.2–100); sensitivity and specificity of DBS-HTP-LAMP was 77.8% (95% CI, 54.3–99.5) and 100% respectively. Conclusions The HTP-LAMP system is a highly sensitive diagnostic test, with the potential to allow large scale population screening in malaria elimination campaigns. PMID:28166235

  1. A qualitative study on the acceptability and preference of three types of long-lasting insecticide-treated bed nets in Solomon Islands: implications for malaria elimination

    PubMed Central

    Atkinson, Jo-An; Bobogare, Albino; Fitzgerald, Lisa; Boaz, Leonard; Appleyard, Bridget; Toaliu, Hilson; Vallely, Andrew

    2009-01-01

    Background In March 2008, the Solomon Islands and Vanuatu governments raised the goal of their National Malaria Programmes from control to elimination. Vector control measures, such as indoor residual spraying (IRS) and long-lasting insecticidal bed nets (LLINs) are key integral components of this programme. Compliance with these interventions is dependent on their acceptability and on the socio-cultural context of the local population. These factors need to be investigated locally prior to programme implementation. Method Twelve focus group discussions (FGDs) were carried out in Malaita and Temotu Provinces, Solomon Islands in 2008. These discussions explored user perceptions of acceptability and preference for three brands of long-lasting insecticide-treated bed nets (LLINs) and identified a number of barriers to their proper and consistent use. Results Mosquito nuisance and perceived threat of malaria were the main determinants of bed net use. Knowledge of malaria and the means to prevent it were not sufficient to guarantee compliance with LLIN use. Factors such as climate, work and evening social activities impact on the use of bed nets, particularly in men. LLIN acceptability plays a varying role in compliance with their use in villages involved in this study. Participants in areas of reported high and year round mosquito nuisance and perceived threat of malaria reported LLIN use regardless of any reported unfavourable characteristics. Those in areas of low or seasonal mosquito nuisance were more likely to describe the unfavourable characteristics of LLINs as reasons for their intermittent or non-compliance. The main criterion for LLIN brand acceptability was effectiveness in preventing mosquito bites and malaria. Discussions highlighted considerable confusion around LLIN care and washing which may be impacting on their effectiveness and reducing their acceptability in Solomon Islands. Conclusion Providing LLINs that are acceptable will be more important for

  2. Appropriate targeting of artemisinin-based combination therapy by community health workers using malaria rapid diagnostic tests: findings from randomized trials in two contrasting areas of high and low malaria transmission in south-western Uganda.

    PubMed

    Ndyomugyenyi, Richard; Magnussen, Pascal; Lal, Sham; Hansen, Kristian; Clarke, Siân E

    2016-09-01

    To compare the impact of malaria rapid diagnostic tests (mRDTs), used by community health workers (CHWs), on the proportion of children <5 years of age receiving appropriately targeted treatment with artemisinin-based combination therapy (ACT), vs. presumptive treatment. Cluster-randomized trials were conducted in two contrasting areas of moderate-to-high and low malaria transmission in rural Uganda. Each trial examined the effectiveness of mRDTs in the management of malaria and targeting of ACTs by CHWs comparing two diagnostic approaches: (i) presumptive clinical diagnosis of malaria [control arm] and (ii) confirmatory diagnosis with mRDTs followed by ACT treatment for positive patients [intervention arm], with village as the unit of randomisation. Treatment decisions by CHWs were validated by microscopy on a reference blood slide collected at the time of consultation, to compare the proportion of children <5 years receiving appropriately targeted ACT treatment, defined as patients with microscopically-confirmed presence of parasites in a peripheral blood smear receiving artemether-lumefantrine or rectal artesunate, and patients with no malaria parasites not given ACT. In the moderate-to-high transmission area, ACT treatment was appropriately targeted in 79.3% (520/656) of children seen by CHWs using mRDTs to diagnose malaria, vs. 30.8% (215/699) of children seen by CHWs using presumptive diagnosis (P < 0.001). In the low transmission area, 90.1% (363/403) children seen by CHWs using mRDTs received appropriately targeted ACT treatment vs. 7.8% (64/817) seen by CHWs using presumptive diagnosis (P < 0.001). Low mRDT sensitivity in children with low-density parasitaemia (<200 parasites/μl) was identified as a potential concern. When equipped with mRDTs, ACT treatments delivered by CHWs are more accurately targeted to children with malaria parasites. mRDT use could play an important role in reducing overdiagnosis of malaria and improving fever case management within

  3. Population Genetics of Plasmodium vivax in Four High Malaria Endemic Areas in Thailand.

    PubMed

    Congpuong, Kanungnit; Ubalee, Ratawan

    2017-10-01

    Recent trends of malaria in Thailand illustrate an increasing proportion of Plasmodium vivax, indicating the importance of P. vivax as a major causative agent of malaria. P. vivax malaria is usually considered a benign disease so the knowledge of this parasite has been limited, especially the genetic diversity and genetic structure of isolates from different endemic areas. The aim of this study was to examine the population genetics and structure of P. vivax isolates from 4 provinces with different malaria endemic settings in Thailand using 6 microsatellite markers. Total 234 blood samples from P. vivax mono-infected patients were collected. Strong genetic diversity was observed across all study sites; the expected heterozygosity values ranged from 0.5871 to 0.9033. Genetic variability in this study divided P. vivax population into 3 clusters; first was P. vivax isolates from Mae Hong Son and Kanchanaburi Provinces located on the western part of Thailand; second, Yala isolates from the south; and third, Chanthaburi isolates from the east. P. vivax isolates from patients having parasite clearance time (PCT) longer than 24 hr after the first dose of chloroquine treatment had higher diversity when compared with those having PCT within 24 hr. This study revealed a clear evidence of different population structure of P. vivax from different malaria endemic areas of Thailand. The findings provide beneficial information to malaria control programme as it is a useful tool to track the source of infections and current malaria control efforts.

  4. [Vectors of malaria: biology, diversity, prevention, and individual protection].

    PubMed

    Pages, F; Orlandi-Pradines, E; Corbel, V

    2007-03-01

    Only the Anopheles mosquitoes are implicated in the transmission of malaria. Among the numerous species of anopheles, around fifty are currently involved in the transmission. 20 are responsible for most of the transmission in the world. The diversity of behavior between species and in a single species of anopheles as well as climatic and geographical conditions along with the action of man on the environment condition the man vector contact level and the various epidemiological aspects of malaria. The anopheles are primarily rural mosquitoes and are less likely to be found in city surroundings in theory. But actually, the adaptation of some species to urban surroundings and the common habit of market gardening in big cities or in the suburbs is responsible for the de persistence of Anopheles populations in town. Except for South-East Asia, urban malaria has become a reality. The transmission risk of malaria is heterogeneous and varies with time. There is a great variation of risk within a same country, a same zone, and even within a few kilometers. The transmission varies in time according to seasons but also according to years and to the level of climatic events. For the traveler, prevention at any time relies on the strict application of individual protection, as well in rural than in urban surroundings.

  5. Status of insecticide resistance in high-risk malaria provinces in Afghanistan.

    PubMed

    Ahmad, Mushtaq; Buhler, Cyril; Pignatelli, Patricia; Ranson, Hilary; Nahzat, Sami Mohammad; Naseem, Mohammad; Sabawoon, Muhammad Farooq; Siddiqi, Abdul Majeed; Vink, Martijn

    2016-02-18

    Insecticide resistance seriously threatens the efficacy of vector control interventions in malaria endemic countries. In Afghanistan, the status of insecticide resistance is largely unknown while distribution of long-lasting insecticidal nets has intensified in recent years. The main objective of this study was thus to measure the level of resistance to four classes of insecticides in provinces with medium to high risk of malaria transmission. Adult female mosquitoes were reared from larvae successively collected in the provinces of Nangarhar, Kunar, Badakhshan, Ghazni and Laghman from August to October 2014. WHO insecticide susceptibility tests were performed with DDT (4 %), malathion (5 %), bendiocarb (0.1 %), permethrin (0.75 %) and deltamethrin (0.05 %). In addition, the presence of kdr mutations was investigated in deltamethrin resistant and susceptible Anopheles stephensi mosquitoes collected in the eastern provinces of Nangarhar and Kunar. Analyses of mortality rates revealed emerging resistance against all four classes of insecticides in the provinces located east and south of the Hindu Kush mountain range. Resistance is observed in both An. stephensi and Anopheles culicifacies, the two dominant malaria vectors in these provinces. Anopheles superpictus in the northern province of Badakhshan shows a different pattern of susceptibility with suspected resistance observed only for deltamethrin and bendiocarb. Genotype analysis of knock down resistance (kdr) mutations at the voltage-gated channel gene from An. stephensi mosquitoes shows the presence of the known resistant alleles L1014S and L1014F. However, a significant fraction of deltamethrin-resistant mosquitoes were homozygous for the 1014L wild type allele indicating that other mechanisms must be considered to account for the observed pyrethroid resistance. This study confirms the importance of monitoring insecticide resistance for the development of an integrated vector management in Afghanistan. The

  6. Predicting and mapping malaria under climate change scenarios: the potential redistribution of malaria vectors in Africa.

    PubMed

    Tonnang, Henri E Z; Kangalawe, Richard Y M; Yanda, Pius Z

    2010-04-23

    Malaria is rampant in Africa and causes untold mortality and morbidity. Vector-borne diseases are climate sensitive and this has raised considerable concern over the implications of climate change on future disease risk. The problem of malaria vectors (Anopheles mosquitoes) shifting from their traditional locations to invade new zones is an important concern. The vision of this study was to exploit the sets of information previously generated by entomologists, e.g. on geographical range of vectors and malaria distribution, to build models that will enable prediction and mapping the potential redistribution of Anopheles mosquitoes in Africa. The development of the modelling tool was carried out through calibration of CLIMEX parameters. The model helped estimate the potential geographical distribution and seasonal abundance of the species in relation to climatic factors. These included temperature, rainfall and relative humidity, which characterized the living environment for Anopheles mosquitoes. The same parameters were used in determining the ecoclimatic index (EI). The EI values were exported to a GIS package for special analysis and proper mapping of the potential future distribution of Anopheles gambiae and Anophles arabiensis within the African continent under three climate change scenarios. These results have shown that shifts in these species boundaries southward and eastward of Africa may occur rather than jumps into quite different climatic environments. In the absence of adequate control, these predictions are crucial in understanding the possible future geographical range of the vectors and the disease, which could facilitate planning for various adaptation options. Thus, the outputs from this study will be helpful at various levels of decision making, for example, in setting up of an early warning and sustainable strategies for climate change and climate change adaptation for malaria vectors control programmes in Africa.

  7. Importance of adequate local spatiotemporal transmission measures in malaria cohort studies: application to the relation between placental malaria and first malaria infection in infants.

    PubMed

    Le Port, Agnès; Cottrell, Gilles; Chandre, Fabrice; Cot, Michel; Massougbodji, Achille; Garcia, André

    2013-07-01

    According to several studies, infants whose mothers had a malaria-infected placenta (MIP) at delivery are at increased risk of a first malaria infection. Immune tolerance caused by intrauterine contact with the parasite could explain this phenomenon, but it is also known that infants who are highly exposed to Anopheles mosquitoes infected with Plasmodium are at greater risk of contracting malaria. Consequently, local malaria transmission must be taken into account to demonstrate the immune tolerance hypothesis. From data collected between 2007 and 2010 on 545 infants followed from birth to age 18 months in southern Benin, we compared estimates of the effect of MIP on time to first malaria infection obtained through different Cox models. In these models, MIP was adjusted for either 1) "village-like" time-independent exposure variables or 2) spatiotemporal exposure prediction derived from local climatic, environmental, and behavioral factors. Only the use of exposure prediction improved the model's goodness of fit (Bayesian Information Criterion) and led to clear conclusions regarding the effect of placental infection, whereas the models using the village-like variables were less successful than the univariate model. This demonstrated clearly the benefit of adequately taking transmission into account in cohort studies of malaria.

  8. High Antibody Responses against Plasmodium falciparum in Immigrants after Extended Periods of Interrupted Exposure to Malaria

    PubMed Central

    Jiménez, Alfons; Nhabomba, Augusto; Casas-Vila, Núria; Puyol, Laura; Campo, Joseph J.; Manaca, Maria Nelia; Aguilar, Ruth; Pinazo, María-Jesús; Almirall, Mercè; Soler, Cristina; Muñoz, José; Bardají, Azucena; Angov, Evelina; Dutta, Sheetij; Chitnis, Chetan E.; Alonso, Pedro L.; Gascón, Joaquim; Dobaño, Carlota

    2013-01-01

    Background Malaria immunity is commonly believed to wane in the absence of Plasmodium falciparum exposure, based on limited epidemiological data and short-lived antibody responses in some longitudinal studies in endemic areas. Methods A cross-sectional study was conducted among sub-Saharan African adults residing in Spain for 1 up to 38 years (immigrants) with clinical malaria (n=55) or without malaria (n=37), naïve adults (travelers) with a first clinical malaria episode (n=20) and life-long malaria exposed adults from Mozambique (semi-immune adults) without malaria (n=27) or with clinical malaria (n=50). Blood samples were collected and IgG levels against the erythrocytic antigens AMA-1 and MSP-142 (3D7 and FVO strains), EBA-175 and DBL-α were determined by Luminex. IgG levels against antigens on the surface of infected erythrocytes (IEs) were measured by flow cytometry. Results Immigrants without malaria had lower IgG levels than healthy semi-immune adults regardless of the antigen tested (P≤0.026), but no correlation was found between IgG levels and time since migration. Upon reinfection, immigrants with malaria had higher levels of IgG against all antigens than immigrants without malaria. However, the magnitude of the response compared to semi-immune adults with malaria depended on the antigen tested. Thus, immigrants had higher IgG levels against AMA-1 and MSP-142 (P≤0.015), similar levels against EBA-175 and DBL-α, and lower levels against IEs (P≤0.016). Immigrants had higher IgG levels against all antigens tested compared to travelers (P≤0.001), both with malaria. Conclusions Upon cessation of malaria exposure, IgG responses to malaria-specific antigens were maintained to a large extent, although the conservation and the magnitude of the recall response depended on the nature of the antigen. Studies on immigrant populations can shed light on the factors that determine the duration of malaria specific antibody responses and its effect on

  9. Visual outcomes in children in Malawi following retinopathy of severe malaria

    PubMed Central

    Beare, N A V; Southern, C; Kayira, K; Taylor, T E; Harding, S P

    2004-01-01

    Aim: To investigate whether retinal changes in children with severe malaria affect visual acuity 1 month after systemic recovery. Methods: All children with severe malaria admitted to a research ward in Malawi during one malaria season were examined by direct and indirect ophthalmoscopy. Visual acuity was tested in those attending follow up by Cardiff cards, Sheridan-Gardiner single letters, or Snellen chart. Results: 96 (68%) children attended follow up, of whom 83 (86%) had visual acuity measured. Cardiff cards were used in 47 (57%) children, and Sheridan-Gardiner letters or Snellen chart in 29 (35%). There was no significant difference in the mean logMAR visual acuity between groups with or without macular whitening (0.14 versus 0.16, p = 0.55). There was no trend for worse visual acuity with increasing severity of macular whitening (p = 0.52) including patients in whom the fovea was involved (p = 0.32). Six (4.2%) children had cortical blindness after cerebral malaria, and all six had other neurological sequelae. Ophthalmoscopy during the acute illness revealed no abnormalities in four of these children. Conclusion: Retinal changes in severe malaria, in particular macular whitening, do not appear to affect visual acuity at 1 month. This supports the hypothesis that retinal whitening is due to reversible intracellular oedema in response to relative hypoxia, caused by sequestered erythrocytes infected by Plasmodium falciparum. Impaired visual functioning after cerebral malaria is not attributable to retinal changes and appears to be a cortical phenomenon. PMID:14977760

  10. Linking Deforestation to Malaria in the Amazon: Characterization of the Breeding Habitat of the Principal Malaria Vector, Anopheles darlingi

    PubMed Central

    Vittor, Amy Y.; Pan, William; Gilman, Robert H.; Tielsch, James; Glass, Gregory; Shields, Tim; Sánchez-Lozano, Wagner; Pinedo, Viviana V.; Salas-Cobos, Erit; Flores, Silvia; Patz, Jonathan A.

    2009-01-01

    This study examined the larval breeding habitat of a major South American malaria vector, Anopheles darlingi, in areas with varying degrees of ecologic alteration in the Peruvian Amazon. Water bodies were repeatedly sampled across 112 km of transects along the Iquitos-Nauta road in ecologically varied areas. Field data and satellite imagery were used to determine the landscape composition surrounding each site. Seventeen species of Anopheles larvae were collected. Anopheles darlingi larvae were present in 87 of 844 sites (10.3%). Sites with A. darlingi larvae had an average of 24.1% forest cover, compared with 41.0% for sites without A. darlingi (P < 0.0001). Multivariate analysis identified seasonality, algae, water body size, presence of human populations, and the amount of forest and secondary growth as significant determinants of A. darlingi presence. We conclude that deforestation and associated ecologic alterations are conducive to A. darlingi larval presence, and thereby increase malaria risk. PMID:19556558

  11. Targeting indoor residual spraying for malaria using epidemiological data: a case study of the Zambia experience.

    PubMed

    Pinchoff, Jessie; Larsen, David A; Renn, Silvia; Pollard, Derek; Fornadel, Christen; Maire, Mark; Sikaala, Chadwick; Sinyangwe, Chomba; Winters, Benjamin; Bridges, Daniel J; Winters, Anna M

    2016-01-06

    In Zambia and other sub-Saharan African countries affected by ongoing malaria transmission, indoor residual spraying (IRS) for malaria prevention has typically been implemented over large areas, e.g., district-wide, and targeted to peri-urban areas. However, there is a recent shift in some countries, including Zambia, towards the adoption of a more strategic and targeted IRS approach, in coordination with increased emphasis on universal coverage of long-lasting insecticidal nets (LLINs) and effective insecticide resistance management. A true targeted approach would deliver IRS to sub-district areas identified as high-risk, with the goal of maximizing the prevention of malaria cases and deaths. Together with the Government of the Republic of Zambia, a new methodology was developed applying geographic information systems and satellite imagery to support a targeted IRS campaign during the 2014 spray season using health management information system data. This case study focuses on the developed methodology while also highlighting the significant research gaps which must be filled to guide countries on the most effective strategy for IRS targeting in the context of universal LLIN coverage and evolving insecticide resistance.

  12. Malaria prevalence, prevention and treatment seeking practices among nomadic pastoralists in northern Senegal.

    PubMed

    Seck, Mame Cheikh; Thwing, Julie; Fall, Fatou Ba; Gomis, Jules Francois; Deme, Awa; Ndiaye, Yaye Die; Daniels, Rachel; Volkman, Sarah K; Ndiop, Medoune; Ba, Mady; Ndiaye, Daouda

    2017-10-13

    Malaria transmission in Senegal is highly stratified, from low in the dry north to moderately high in the moist south. In northern Senegal, along the Senegal River Valley and in the Ferlo semi-desert region, annual incidence is less than five cases per 1000 inhabitants. Many nomadic pastoralists have permanent dwellings in the Ferlo Desert and Senegal River Valley, but spend dry season in the south with their herds, returning north when the rains start, leading to a concern that this population could contribute to ongoing transmission in the north. A modified snowball sampling survey was conducted at six sites in northern Senegal to determine the malaria prevention and treatment seeking practices and parasite prevalence among nomadic pastoralists in the Senegal River Valley and the Ferlo Desert. Nomadic pastoralists aged 6 months and older were surveyed during September and October 2014, and data regarding demographics, access to care and preventive measures were collected. Parasite infection was detected using rapid diagnostic tests (RDTs), microscopy (thin and thick smears) and polymerase chain reaction (PCR). Molecular barcodes were determined by high resolution melting (HRM). Of 1800 participants, 61% were male. Sixty-four percent had at least one bed net in the household, and 53% reported using a net the night before. Only 29% had received a net from a mass distribution campaign. Of the 8% (142) who reported having had fever in the last month, 55% sought care, 20% of whom received a diagnostic test, one-third of which (n = 5) were reported to be positive. Parasite prevalence was 0.44% by thick smear and 0.50% by PCR. None of the molecular barcodes identified among the nomadic pastoralists had been previously identified in Senegal. While access to and utilization of malaria control interventions among nomadic pastoralists was lower than the general population, parasite prevalence was lower than expected and sheds doubt on the perception that they are a

  13. Reducing empiricism in malaria vaccine design.

    PubMed

    Moorthy, Vasee S; Kieny, Marie Paule

    2010-03-01

    Gains in the control of malaria and the promising progress of a malaria vaccine that is partly efficacious do not reduce the need for a high-efficacy vaccine in the longer term. Evidence supports the feasibility of developing a highly efficacious malaria vaccine. However, design of candidate malaria vaccines remains empirical and is necessarily based on many unproven assumptions because much of the knowledge needed to design vaccines and to predict efficacy is not available. Data to inform key questions of vaccine science might allow the design of vaccines to progress to a less empirical stage, for example through availability of assay results associated with vaccine efficacy. We discuss six strategic gaps in knowledge that contribute to empiricism in the design of vaccines. Comparative evaluation, assay and model standardisation, greater sharing of information, collaboration and coordination between groups, and rigorous evaluation of existing datasets are steps that can be taken to enable reductions in empiricism over time. 2010 Elsevier Ltd. All rights reserved.

  14. Intermittent preventive treatment for the prevention of malaria during pregnancy in high transmission areas

    PubMed Central

    Briand, Valérie; Cottrell, Gilles; Massougbodji, Achille; Cot, Michel

    2007-01-01

    Malaria in pregnancy is one of the major causes of maternal morbidity and adverse birth outcomes. In high transmission areas, its prevention has recently changed, moving from a weekly or bimonthly chemoprophylaxis to intermittent preventive treatment (IPTp). IPTp consists in the administration of a single curative dose of an efficacious anti-malarial drug at least twice during pregnancy – regardless of whether the woman is infected or not. The drug is administered under supervision during antenatal care visits. Sulphadoxine-pyrimethamine (SP) is the drug currently recommended by the WHO. While SP-IPTp seems an adequate strategy, there are many issues still to be explored to optimize it. This paper reviewed data on IPTp efficacy and discussed how to improve it. In particular, the determination of both the optimal number of doses and time of administration of the drug is essential, and this has not yet been done. As both foetal growth and deleterious effects of malaria are maximum in late pregnancy women should particularly be protected during this period. Monitoring of IPTp efficacy should be applied to all women, and not only to primi- and secondigravidae, as it has not been definitively established that multigravidae are not at risk for malaria morbidity and mortality. In HIV-positive women, there is an urgent need for specific information on drug administration patterns (need for higher doses, possible interference with sulpha-based prophylaxis of opportunistic infections). Because of the growing level of resistance of parasites to SP, alternative drugs for IPTp are urgently needed. Mefloquine is presently one of the most attractive options because of its long half life, high efficacy in sub-Saharan Africa and safety during pregnancy. Also, efforts should be made to increase IPTp coverage by improving the practices of health care workers, the motivation of women and their perception of malaria complications in pregnancy. Because IPTp is not applicable in early

  15. Towards a Predictive Theory of Malaria: Connections to Spatio-temporal Variability of Climate and Hydrology

    NASA Astrophysics Data System (ADS)

    Endo, N.; Eltahir, E. A. B.

    2015-12-01

    Malaria transmission is closely linked to climatology, hydrology, environment, and the biology of local vectors. These factors interact with each other and non-linearly influence malaria transmission dynamics, making prediction and prevention challenging. Our work attempts to find a universality in the multi-dimensional system of malaria transmission and to develop a theory to predict emergence of malaria given a limited set of environmental and biological inputs.A credible malaria transmission dynamics model, HYDREMATS (Bomblies et al., 2008), was used under hypothetical settings to investigate the role of spatial and temporal distribution of vector breeding pools. HYDREMATS is a mechanistic model and capable of simulating the basic reproduction rate (Ro) without bold assumptions even under dynamic conditions. The spatial distribution of pools is mainly governed by hydrological factors; the impact of pool persistence and rainy season length on malaria transmission were investigated. Also analyzed was the impact of the temporal distribution of pools relative to human houses. We developed non-dimensional variables combining the hydrological and biological parameters. Simulated values of Ro from HYDREMATS are presented in a newly-introduced non-dimensional plane, which leads to a some-what universal theory describing the condition for sustainable malaria transmission. The findings were tested against observations both from the West Africa and the Ethiopian Highland, representing diverse hydroclimatological conditions. Predicated Ro values from the theory over the two regions are in good agreement with the observed malaria transmission data.

  16. Predicting the potential distribution of main malaria vectors Anopheles stephensi, An. culicifacies s.l. and An. fluviatilis s.l. in Iran based on maximum entropy model.

    PubMed

    Pakdad, Kamran; Hanafi-Bojd, Ahmad Ali; Vatandoost, Hassan; Sedaghat, Mohammad Mehdi; Raeisi, Ahmad; Moghaddam, Abdolreza Salahi; Foroushani, Abbas Rahimi

    2017-05-01

    Malaria is considered as a major public health problem in southern areas of Iran. The goal of this study was to predict best ecological niches of three main malaria vectors of Iran: Anopheles stephensi, Anopheles culicifacies s.l. and Anopheles fluviatilis s.l. A databank was created which included all published data about Anopheles species of Iran from 1961 to 2015. The suitable environmental niches for the three above mentioned Anopheles species were predicted using maximum entropy model (MaxEnt). AUC (area under Roc curve) values were 0.943, 0.974 and 0.956 for An. stephensi, An. culicifacies s.l. and An. fluviatilis s.l respectively, which are considered as high potential power of model in the prediction of species niches. The biggest bioclimatic contributor for An. stephensi and An. fluviatilis s.l. was bio 15 (precipitation seasonality), 25.5% and 36.1% respectively, followed by bio 1 (annual mean temperature), 20.8% for An. stephensi and bio 4 (temperature seasonality) with 49.4% contribution for An. culicifacies s.l. This is the first step in the mapping of the country's malaria vectors. Hence, future weather situation can change the dispersal maps of Anopheles. Iran is under elimination phase of malaria, so that such spatio-temporal studies are essential and could provide guideline for decision makers for IVM strategies in problematic areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Plasmodium vivax Hospitalizations in a Monoendemic Malaria Region: Severe Vivax Malaria?

    PubMed Central

    Quispe, Antonio M.; Pozo, Edwar; Guerrero, Edith; Durand, Salomón; Baldeviano, G. Christian; Edgel, Kimberly A.; Graf, Paul C. F.; Lescano, Andres G.

    2014-01-01

    Severe malaria caused by Plasmodium vivax is no longer considered rare. To describe its clinical features, we performed a retrospective case control study in the subregion of Luciano Castillo Colonna, Piura, Peru, an area with nearly exclusive vivax malaria transmission. Severe cases and the subset of critically ill cases were compared with a random set of uncomplicated malaria cases (1:4). Between 2008 and 2009, 6,502 malaria cases were reported, including 106 hospitalized cases, 81 of which fit the World Health Organization definition for severe malaria. Of these 81 individuals, 28 individuals were critically ill (0.4%, 95% confidence interval = 0.2–0.6%) with severe anemia (57%), shock (25%), lung injury (21%), acute renal failure (14%), or cerebral malaria (11%). Two potentially malaria-related deaths occurred. Compared with uncomplicated cases, individuals critically ill were older (38 versus 26 years old, P < 0.001), but similar in other regards. Severe vivax malaria monoinfection with critical illness is more common than previously thought. PMID:24752683

  18. Acceptance of a malaria vaccine by caregivers of sick children in Kenya

    PubMed Central

    2014-01-01

    Background Several malaria vaccines are currently in clinical trials and are expected to provide an improved strategy for malaria control. Prior to introduction of a new vaccine, policymakers must consider the socio cultural environment of the region to ensure widespread community approval. This study investigated the acceptance of a malaria vaccine by child caregivers and analysed factors that influence these. Methods Interviews from a standard questionnaire were conducted with 2,003 caregivers at 695 randomly selected health facilities across Kenya during the Kenya Service Provision Assessment Survey 2010. Multinomial regression of quantitative data was conducted using STATA to analyse determinants of caregivers accepting malaria vaccination of their child. Results Mothers represented 90% of caregivers interviewed who brought their child to the health facility, and 77% of caregivers were 20-34 years old. Overall, 88% of respondents indicated that they would accept a malaria vaccine, both for a child in their community and their own child. Approval for a vaccine was highest in malaria-endemic Nyanza Province at 98.9%, and lowest in the seasonal transmission area of North Eastern Province at 23%. Although 94% of respondents who had attended at least some school reported they would accept the vaccine for a child, only 56% of those who had never attended school would do so. The likelihood of accepting one’s own child to be immunized was correlated with province, satisfaction with health care services in the facility attended, age of the caregiver, and level of education. Conclusions Results from this study indicate a need for targeted messages and education on a malaria vaccine, particularly for residents of regions where acceptance is low, older caregivers, and those with low literacy and school-attendance levels. This study provides critical evidence to inform policy for a new malaria vaccine that will support its timely and comprehensive uptake in Kenya. PMID

  19. Major Reduction in Anti-Malarial Drug Consumption in Senegal after Nation-Wide Introduction of Malaria Rapid Diagnostic Tests

    PubMed Central

    Thiam, Sylla; Thior, Moussa; Faye, Babacar; Ndiop, Médoune; Diouf, Mamadou Lamine; Diouf, Mame Birame; Diallo, Ibrahima; Fall, Fatou Ba; Ndiaye, Jean Louis; Albertini, Audrey; Lee, Evan; Jorgensen, Pernille; Gaye, Oumar; Bell, David

    2011-01-01

    Background While WHO recently recommended universal parasitological confirmation of suspected malaria prior to treatment, debate has continued as to whether wide-scale use of rapid diagnostic tests (RDTs) can achieve this goal. Adherence of health service personnel to RDT results has been poor in some settings, with little impact on anti-malarial drug consumption. The Senegal national malaria control programme introduced universal parasite-based diagnosis using malaria RDTs from late 2007 in all public health facilities. This paper assesses the impact of this programme on anti-malarial drug consumption and disease reporting. Methods and Findings Nationally-collated programme data from 2007 to 2009 including malaria diagnostic outcomes, prescription of artemisinin-based combination therapy (ACT) and consumption of RDTs in public health facilities, were reviewed and compared. Against a marked seasonal variation in all-cause out-patient visits, non-malarial fever and confirmed malaria, parasite-based diagnosis increased nationally from 3.9% of reported malaria-like febrile illness to 86.0% over a 3 year period. The prescription of ACT dropped throughout this period from 72.9% of malaria-like febrile illness to 31.5%, reaching close equivalence to confirmed malaria (29.9% of 584873 suspect fever cases). An estimated 516576 courses of inappropriate ACT prescription were averted. Conclusions The data indicate high adherence of anti-malarial prescribing practice to RDT results after an initial run-in period. The large reduction in ACT consumption enabled by the move from symptom-based to parasite-based diagnosis demonstrates that effective roll-out and use of malaria RDTs is achievable on a national scale through well planned and structured implementation. While more detailed information on management of parasite-negative cases is required at point of care level to assess overall cost-benefits to the health sector, considerable cost-savings were achieved in ACT

  20. High resolution FTIR imaging provides automated discrimination and detection of single malaria parasite infected erythrocytes on glass.

    PubMed

    Perez-Guaita, David; Andrew, Dean; Heraud, Philip; Beeson, James; Anderson, David; Richards, Jack; Wood, Bayden R

    2016-06-23

    New highly sensitive tools for malaria diagnostics are urgently needed to enable the detection of infection in asymptomatic carriers and patients with low parasitemia. In pursuit of a highly sensitive diagnostic tool that can identify parasite infections at the single cell level, we have been exploring Fourier transform infrared (FTIR) microscopy using a Focal Plane Array (FPA) imaging detector. Here we report for the first time the application of a new optic configuration developed by Agilent that incorporates 25× condenser and objective Cassegrain optics with a high numerical aperture (NA = 0.81) along with additional high magnification optics within the microscope to provide 0.66 micron pixel resolution (total IR system magnification of 61×) to diagnose malaria parasites at the single cell level on a conventional glass microscope slide. The high quality images clearly resolve the parasite's digestive vacuole demonstrating sub-cellular resolution using this approach. Moreover, we have developed an algorithm that first detects the cells in the infrared image, and secondly extracts the average spectrum. The average spectrum is then run through a model based on Partial Least Squares-Discriminant Analysis (PLS-DA), which diagnoses unequivocally the infected from normal cells. The high quality images, and the fact this measurement can be achieved without a synchrotron source on a conventional glass slide, shows promise as a potential gold standard for malaria detection at the single cell level.

  1. Analysis of forecasting malaria case with climatic factors as predictor in Mandailing Natal Regency: a time series study

    NASA Astrophysics Data System (ADS)

    Aulia, D.; Ayu, S. F.; Matondang, A.

    2018-01-01

    Malaria is the most contagious global concern. As a public health problem with outbreaks, affect the quality of life and economy, also could lead to death. Therefore, this research is to forecast malaria cases with climatic factors as predictors in Mandailing Natal Regency. The total number of positive malaria cases on January 2008 to December 2016 were taken from health department of Mandailing Natal Regency. Climates data such as rainfall, humidity, and temperature were taken from Center of Statistic Department of Mandailing Natal Regency. E-views ver. 9 is used to analyze this study. Autoregressive integrated average, ARIMA (0,1,1) (1,0,0)12 is the best model to explain the 67,2% variability data in time series study. Rainfall (P value = 0.0005), temperature (P value = 0,0029) and humidity (P value = 0.0001) are significant predictors for malaria transmission. Seasonal adjusted factor (SAF) in November and March shows peak for malaria cases.

  2. The potential impact of integrated malaria transmission control on entomologic inoculation rate in highly endemic areas.

    PubMed

    Killeen, G F; McKenzie, F E; Foy, B D; Schieffelin, C; Billingsley, P F; Beier, J C

    2000-05-01

    We have used a relatively simple but accurate model for predicting the impact of integrated transmission control on the malaria entomologic inoculation rate (EIR) at four endemic sites from across sub-Saharan Africa and the southwest Pacific. The simulated campaign incorporated modestly effective vaccine coverage, bed net use, and larval control. The results indicate that such campaigns would reduce EIRs at all four sites by 30- to 50-fold. Even without the vaccine, 15- to 25-fold reductions of EIR were predicted, implying that integrated control with a few modestly effective tools can meaningfully reduce malaria transmission in a range of endemic settings. The model accurately predicts the effects of bed nets and indoor spraying and demonstrates that they are the most effective tools available for reducing EIR. However, the impact of domestic adult vector control is amplified by measures for reducing the rate of emergence of vectors or the level of infectiousness of the human reservoir. We conclude that available tools, including currently neglected methods for larval control, can reduce malaria transmission intensity enough to alleviate mortality. Integrated control programs should be implemented to the fullest extent possible, even in areas of intense transmission, using simple models as decision-making tools. However, we also conclude that to eliminate malaria in many areas of intense transmission is beyond the scope of methods which developing nations can currently afford. New, cost-effective, practical tools are needed if malaria is ever to be eliminated from highly endemic areas.

  3. Clinical and parasitological studies on malaria in Liberian adults living under intense malaria transmission.

    PubMed

    Petersen, E; Hogh, B; Marbiah, N T; Dolopaie, E; Gottschau, A; Hanson, A P; Bjorkman, A

    1991-12-01

    Occurrence of fevers and chills, headaches and body and joint pains, and body temperature and malaria parasitaemias were recorded monthly for a year for 121 Liberian adults. There was no apparent correlation between any of the symptoms and the presence or density of blood parasites; it was therefore not possible to define a case of clinical malaria in the study population, which was probably highly immune to infection. Only a few people with patent blood infections had elevated blood temperatures and these were below 37.5 degrees C. Malaria prevalence and levels of parasitaemia declined with age and indicated that immunity continues to develop well into adult age. The data did not support the view that adults experience symptoms at lower parasitaemias than children. Pregnant and non-pregnant women had similar levels of symptoms, but high levels of parasitaemia were found more frequently in the pregnant group.

  4. Towards a strategy for malaria in pregnancy in Afghanistan: analysis of clinical realities and women's perceptions of malaria and anaemia.

    PubMed

    Howard, Natasha; Enayatullah, Sayed; Mohammad, Nader; Mayan, Ismail; Shamszai, Zohra; Rowland, Mark; Leslie, Toby

    2015-11-04

    Afghanistan has some of the worst maternal and infant mortality indicators in the world and malaria is a significant public health concern. Study objectives were to assess prevalence of malaria and anaemia, related knowledge and practices, and malaria prevention barriers among pregnant women in eastern Afghanistan. Three studies were conducted: (1) a clinical survey of maternal malaria, maternal anaemia, and neonatal birthweight in a rural district hospital delivery-ward; (2) a case-control study of malaria risk among reproductive-age women attending primary-level clinics; and (3) community surveys of malaria and anaemia prevalence, socioeconomic status, malaria knowledge and reported behaviour among pregnant women. Among 517 delivery-ward participants (1), one malaria case (prevalence 1.9/1000), 179 anaemia cases (prevalence 346/1000), and 59 low-birthweight deliveries (prevalence 107/1000) were detected. Anaemia was not associated with age, gravidity, intestinal parasite prevalence, or low-birthweight at delivery. Among 141 malaria cases and 1010 controls (2), no association was found between malaria infection and pregnancy (AOR 0.89; 95 % CI 0.57-1.39), parity (AOR 0.95; 95 % CI 0.85-1.05), age (AOR 1.02; 95 % CI 1.00-1.04), or anaemia (AOR 1.00; 95 % CI 0.65-1.54). Those reporting insecticide-treated net usage had 40 % reduced odds of malaria infection (AOR 0.60; 95 % CI 0.40-0.91). Among 530 community survey participants (3), malaria and anaemia prevalence were 3.9/1000 and 277/1000 respectively, with 34/1000 experiencing severe anaemia. Despite most women having no formal education, malaria knowledge was high. Most expressed reluctance to take malaria preventive medication during pregnancy, deeming it potentially unsafe. Given the low malaria risk and reported avoidance of medication during pregnancy, intermittent preventive treatment is hard to justify or implement. Preventive strategy should instead focus on long-lasting insecticidal nets for all pregnant

  5. First malaria infections in a cohort of infants in Benin: biological, environmental and genetic determinants. Description of the study site, population methods and preliminary results

    PubMed Central

    Cottrell, Gilles; Martin-Prevel, Yves; Migot-Nabias, Florence; Cot, Michel; Garcia, André

    2012-01-01

    Objectives Malaria infection of the placenta during pregnancy was found to be associated with infant susceptibility to malaria. Other factors such as the intensity of malaria transmission and the nutritional status of the child might also play a role, which has not been adequately taken into account in previous studies. The aim of this study was to assess precisely the parts played by environmental, nutritional and biological determinants in first malaria infections, with a special interest in the role of placental infection. The objective of this paper is not to present final results but to outline the rationale of the study, to describe the methods used and to report baseline data. Design A cohort of infants followed with a parasitological (symptomatic and asymptomatic parasitaemia) and nutritional follow-up from birth to 18 months. Ecological, entomological and behavioural data were collected along the duration of the study. Setting A rural area in Benin with two seasonal peaks in malaria transmission. Participants 656 infants of women willing to participate in the study, giving birth in one of the three maternity clinics and living in one of the nine villages of the study area. Primary Outcome Measures The time and frequency of first malaria parasitaemias in infants, according to Plasmodium falciparum infection of the placenta. Results 11% of mothers had a malaria-infected placenta at delivery. Mosquito catches made every 6 weeks in the area showed an average annual P falciparum entomological inoculation rate of 15.5, with important time and space variations depending on villages. Similarly, the distribution of rainfalls, maximal during the two rainy seasons, was heterogeneous over the area. Conclusions Considering the multidisciplinary approach of all factors potentially influencing the malaria status of newborn babies, this study should bring evidence on the implication of placental malaria in the occurrence of first malaria infections in infants. PMID

  6. Coexistence of Malaria and Thalassemia in Malaria Endemic Areas of Thailand

    PubMed Central

    Kuesap, Jiraporn; Chaijaroenkul, W.; Rungsihirunrat, K.; Pongjantharasatien, K.; Na-Bangchang, Kesara

    2015-01-01

    Hemoglobinopathy and malaria are commonly found worldwide particularly in malaria endemic areas. Thalassemia, the alteration of globin chain synthesis, has been reported to confer resistance against malaria. The prevalence of thalassemia was investigated in 101 malaria patients with Plasmodium falciparum and Plasmodium vivax along the Thai-Myanmar border to examine protective effect of thalassemia against severe malaria. Hemoglobin typing was performed using low pressure liquid chromatography (LPLC) and α-thalassemia was confirmed by multiplex PCR. Five types of thalassemia were observed in malaria patients. The 2 major types of thalassemia were Hb E (18.8%) and α-thalassemia-2 (11.9%). There was no association between thalassemia hemoglobinopathy and malaria parasitemia, an indicator of malaria disease severity. Thalassemia had no significant association with P. vivax infection, but the parasitemia in patients with coexistence of P. vivax and thalassemia was about 2-3 times lower than those with coexistence of P. falciparum and thalassemia and malaria without thalassemia. Furthermore, the parasitemia of P. vivax in patients with coexistence of Hb E showed lower value than coexistence with other types of thalassemia and malaria without coexistence. Parasitemia, hemoglobin, and hematocrit values in patients with coexistence of thalassemia other than Hb E were significantly lower than those without coexistence of thalassemia. Furthermore, parasitemia with coexistence of Hb E were 2 times lower than those with coexistence of thalassemia other than Hb E. In conclusion, the results may, at least in part, support the protective effect of thalassemia on the development of hyperparasitemia and severe anemia in malaria patients. PMID:26174819

  7. Designing malaria vaccines to circumvent antigen variability.

    PubMed

    Ouattara, Amed; Barry, Alyssa E; Dutta, Sheetij; Remarque, Edmond J; Beeson, James G; Plowe, Christopher V

    2015-12-22

    Prospects for malaria eradication will be greatly enhanced by an effective vaccine, but parasite genetic diversity poses a major impediment to malaria vaccine efficacy. In recent pre-clinical and field trials, vaccines based on polymorphic Plasmodium falciparum antigens have shown efficacy only against homologous strains, raising the specter of allele-specific immunity such as that which plagues vaccines against influenza and HIV. The most advanced malaria vaccine, RTS,S, targets relatively conserved epitopes on the P. falciparum circumsporozoite protein. After more than 40 years of development and testing, RTS,S, has shown significant but modest efficacy against clinical malaria in phase 2 and 3 trials. Ongoing phase 2 studies of an irradiated sporozoite vaccine will ascertain whether the full protection against homologous experimental malaria challenge conferred by high doses of a whole organism vaccine can provide protection against diverse strains in the field. Here we review and evaluate approaches being taken to design broadly cross-protective malaria vaccines. Copyright © 2015. Published by Elsevier Ltd.

  8. Designing malaria vaccines to circumvent antigen variability✩

    PubMed Central

    Ouattara, Amed; Barry, Alyssa E.; Dutta, Sheetij; Remarque, Edmond J.; Beeson, James G.; Plowe, Christopher V.

    2016-01-01

    Prospects for malaria eradication will be greatly enhanced by an effective vaccine, but parasite genetic diversity poses a major impediment to malaria vaccine efficacy. In recent pre-clinical and field trials, vaccines based on polymorphic Plasmodium falciparum antigens have shown efficacy only against homologous strains, raising the specter of allele-specific immunity such as that which plagues vaccines against influenza and HIV. The most advanced malaria vaccine, RTS,S, targets relatively conserved epitopes on the P. falciparum circumsporozoite protein. After more than 40 years of development and testing, RTS,S, has shown significant but modest efficacy against clinical malaria in phase 2 and 3 trials. Ongoing phase 2 studies of an irradiated sporozoite vaccine will ascertain whether the full protection against homologous experimental malaria challenge conferred by high doses of a whole organism vaccine can provide protection against diverse strains in the field. Here we review and evaluate approaches being taken to design broadly cross-protective malaria vaccines. PMID:26475447

  9. Plasmodium vivax hospitalizations in a monoendemic malaria region: severe vivax malaria?

    PubMed

    Quispe, Antonio M; Pozo, Edwar; Guerrero, Edith; Durand, Salomón; Baldeviano, G Christian; Edgel, Kimberly A; Graf, Paul C F; Lescano, Andres G

    2014-07-01

    Severe malaria caused by Plasmodium vivax is no longer considered rare. To describe its clinical features, we performed a retrospective case control study in the subregion of Luciano Castillo Colonna, Piura, Peru, an area with nearly exclusive vivax malaria transmission. Severe cases and the subset of critically ill cases were compared with a random set of uncomplicated malaria cases (1:4). Between 2008 and 2009, 6,502 malaria cases were reported, including 106 hospitalized cases, 81 of which fit the World Health Organization definition for severe malaria. Of these 81 individuals, 28 individuals were critically ill (0.4%, 95% confidence interval = 0.2-0.6%) with severe anemia (57%), shock (25%), lung injury (21%), acute renal failure (14%), or cerebral malaria (11%). Two potentially malaria-related deaths occurred. Compared with uncomplicated cases, individuals critically ill were older (38 versus 26 years old, P < 0.001), but similar in other regards. Severe vivax malaria monoinfection with critical illness is more common than previously thought. © The American Society of Tropical Medicine and Hygiene.

  10. [Splenomegaly in an Eritrean refugee: the hyper-reactive malaria splenomegaly syndrome.

    PubMed

    Cruijsen, M M; Reuling, I J; Keuter, M; Sauerwein, R W; van der Ven, A J; de Mast, Q

    2016-01-01

    Hyper-reactive malaria splenomegaly (HMS) is a rare and potentially severe complication of malaria. It is likely that the incidence of patients with HMS will rise in the Netherlands due to the recent increase in asylum-seekers from Sub-Saharan Africa. It can be difficult to diagnose this disease, as this case shows. A 31-year-old male from Eritrea was admitted with fever and dyspnea, caused by an influenza A-infection. The patient also presented with cachexia, pronounced hepatosplenomegaly and pancytopenia. Microscopic diagnostic analysis for malaria was negative. HMS was eventually diagnosed through high-sensitivity qPCR for malaria, which showed the presence of a very low level of Plasmodium falciparum parasitemia; furthermore, IgM levels were high and malaria serology was strongly positive. HMS should be considered in patients from malaria-endemic areas presenting with splenomegaly and pancytopenia. Because standard diagnostics for malaria are often negative in this population, malaria serology and sensitive qPCR play an important diagnostic role.

  11. Vaccines to Accelerate Malaria Elimination and Eventual Eradication.

    PubMed

    Healer, Julie; Cowman, Alan F; Kaslow, David C; Birkett, Ashley J

    2017-09-01

    Remarkable progress has been made in coordinated malaria control efforts with substantial reductions in malaria-associated deaths and morbidity achieved through mass administration of drugs and vector control measures including distribution of long-lasting insecticide-impregnated bednets and indoor residual spraying. However, emerging resistance poses a significant threat to the sustainability of these interventions. In this light, the malaria research community has been charged with the development of a highly efficacious vaccine to complement existing malaria elimination measures. As the past 40 years of investment in this goal attests, this is no small feat. The malaria parasite is a highly complex organism, exquisitely adapted for survival under hostile conditions within human and mosquito hosts. Here we review current vaccine strategies to accelerate elimination and the potential for novel and innovative approaches to vaccine design through a better understanding of the host-parasite interaction. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  12. Estimating high mosquito-producing rice fields using spectral and spatial data

    NASA Technical Reports Server (NTRS)

    Wood, B. L.; Beck, L. R.; Washino, R. K.; Hibbard, K. A.; Salute, J. S.

    1992-01-01

    The cultivation of irrigated rice provides ideal larval habitat for a number of anopheline vectors of malaria throughout the world. Anopheles freeborni, a potential vector of human malaria, is associated with the nearly 240,000 hectares of irrigated rice grown annually in Northern and Central California; therefore, this species can serve as a model for the study of rice field anopheline population dynamics. Analysis of field data revealed that rice fields with early season canopy development, that are located near bloodmeal sources (i.e., pastures with livestock) were more likely to produce anopheline larvae than fields with less developed canopies located further from pastures. Remote sensing reflectance measurements of early-season canopy development and geographic information system (GIS) measurements of distanes between rice fields and pastures with livestock were combined to distinguish between high and low mosquito-producing rice fields. Using spectral and distance measures in either a discriminant or Bayesian analysis, the identification of high mosquito-producing fields was made with 85 percent accuracy nearly two months before anopheline larval populations peaked. Since omission errors were also minimized by these approaches, they could provide a new basis for directing abatement techniques for the control of malaria vectors.

  13. Malaria vaccines: high-throughput tools for antigens discovery with potential for their development

    PubMed Central

    Céspedes, Nora; Vallejo, Andrés; Arévalo-Herrera, Myriam

    2013-01-01

    Malaria is a disease induced by parasites of the Plasmodium genus, which are transmitted by Anopheles mosquitoes and represents a great socio-economic burden Worldwide. Plasmodium vivax is the second species of malaria Worldwide, but it is the most prevalent in Latin America and other regions of the planet. It is currently considered that vaccines represent a cost-effective strategy for controlling transmissible diseases and could complement other malaria control measures; however, the chemical and immunological complexity of the parasite has hindered development of effective vaccines. Recent availability of several genomes of Plasmodium species, as well as bioinformatic tools are allowing the selection of large numbers of proteins and analysis of their immune potential. Herein, we review recently developed strategies for discovery of novel antigens with potential for malaria vaccine development. PMID:24892459

  14. Malaria in Brazil, Colombia, Peru and Venezuela: current challenges in malaria control and elimination.

    PubMed

    Recht, Judith; Siqueira, André M; Monteiro, Wuelton M; Herrera, Sonia M; Herrera, Sócrates; Lacerda, Marcus V G

    2017-07-04

    In spite of significant progress towards malaria control and elimination achieved in South America in the 2000s, this mosquito-transmitted tropical disease remains an important public health concern in the region. Most malaria cases in South America come from Amazon rain forest areas in northern countries, where more than half of malaria is caused by Plasmodium vivax, while Plasmodium falciparum malaria incidence has decreased in recent years. This review discusses current malaria data, policies and challenges in four South American Amazon countries: Brazil, Colombia, Peru and the Bolivarian Republic of Venezuela. Challenges to continuing efforts to further decrease malaria incidence in this region include: a significant increase in malaria cases in recent years in Venezuela, evidence of submicroscopic and asymptomatic infections, peri-urban malaria, gold mining-related malaria, malaria in pregnancy, glucose-6-phosphate dehydrogenase (G6PD) deficiency and primaquine use, and possible under-detection of Plasmodium malariae. Some of these challenges underscore the need to implement appropriate tools and procedures in specific regions, such as a field-compatible molecular malaria test, a P. malariae-specific test, malaria diagnosis and appropriate treatment as part of regular antenatal care visits, G6PD test before primaquine administration for P. vivax cases (with weekly primaquine regimen for G6PD deficient individuals), single low dose of primaquine for P. falciparum malaria in Colombia, and national and regional efforts to contain malaria spread in Venezuela urgently needed especially in mining areas. Joint efforts and commitment towards malaria control and elimination should be strategized based on examples of successful regional malaria fighting initiatives, such as PAMAFRO and RAVREDA/AMI.

  15. International Air Travel to Ohio, USA, and the Impact on Malaria, Influenza, and Hepatitis A

    PubMed Central

    Brannen, Donald E.; Alhammad, Ali; Branum, Melissa; Schmitt, Amy

    2016-01-01

    The State of Ohio led the United States in measles in 2014, ostensibly related to international air travel (IAT), and ranked lower than 43 other states in infectious disease outbreak preparedness. We conducted a retrospective cohort study using surveillance data of the total Ohio population of 11 million from 2010 through 2014 with a nested case control of air travelers to determine the risk of malaria, seasonal influenza hospitalizations (IH), and hepatitis A (HA) disease related to international travel and to estimate the association with domestic enplanement. IAT appeared protective for HA and IH with a risk of 0.031 (.02–.04) but for malaria was 2.7 (2.07–3.62). Enplanement increased the risk for nonendemic M 3.5 (2.5–4.9) and for HA and IH 1.39 (1.34–1.44). IAT's ratio of relative risk (RRR) of malaria to HA and IH was 87.1 (55.8–136) greater than 219 times versus domestic enplanement which was protective for malaria at 0.397 (0.282–0.559). Malaria is correlated with IAT with cases increasing by 6.9 for every 10,000 passports issued. PMID:27123365

  16. Quantifying the impact of human mobility on malaria

    PubMed Central

    Wesolowski, Amy; Eagle, Nathan; Tatem, Andrew J.; Smith, David L.; Noor, Abdisalan M.; Snow, Robert W.; Buckee, Caroline O.

    2013-01-01

    Human movements contribute to the transmission of malaria on spatial scales that exceed the limits of mosquito dispersal. Identifying the sources and sinks of imported infections due to human travel and locating high-risk sites of parasite importation could greatly improve malaria control programs. Here we use spatially explicit mobile phone data and malaria prevalence information from Kenya to identify the dynamics of human carriers that drive parasite importation between regions. Our analysis identifies specific importation routes that contribute to malaria epidemiology on regional spatial scales. PMID:23066082

  17. Placental Plasmodium falciparum malaria infection: Operational accuracy of HRP2 rapid diagnostic tests in a malaria endemic setting

    PubMed Central

    2011-01-01

    Background Malaria has a negative effect on the outcome of pregnancy. Pregnant women are at high risk of severe malaria and severe haemolytic anaemia, which contribute 60-70% of foetal and perinatal losses. Peripheral blood smear microscopy under-estimates sequestered placental infections, therefore malaria rapid diagnostic tests (RDTs) detecting histidine rich protein-2 antigen (HRP-2) in peripheral blood are a potential alternative. Methods HRP-2 RDTs accuracy in detecting malaria in pregnancy (MIP >28 weeks gestation) and placental Plasmodium falciparum malaria (after childbirth) were conducted using Giemsa microscopy and placental histopathology respectively as the reference standard. The study was conducted in Mbale Hospital, using the midwives to perform and interpret the RDT results. Discordant results samples were spot checked using PCR techniques. Results Among 433 febrile women tested, RDTs had a sensitivity of 96.8% (95% CI 92-98.8), specificity of 73.5% (95% CI 67.8-78.6), a positive predictive value (PPV) of 68.0% (95% CI 61.4-73.9), and negative predictive value (NPV) of 97.5% (95% CI 94.0-99.0) in detecting peripheral P. falciparum malaria during pregnancy. At delivery, in non-symptomatic women, RDTs had a 80.9% sensitivity (95% CI 57.4-93.7) and a 87.5% specificity (95%CI 80.9-92.1), PPV of 47.2% (95% CI 30.7-64.2) and NPV of 97.1% (95% CI 92.2-99.1) in detecting placental P. falciparum infections among 173 samples. At delivery, 41% of peripheral infections were detected by microscopy without concurrent placental infection. The combination of RDTs and microscopy improved the sensitivity to 90.5% and the specificity to 98.4% for detecting placental malaria infection (McNemar's X 2> 3.84). RDTs were not superior to microscopy in detecting placental infection (McNemar's X 2< 3.84). Presence of malaria in pregnancy and active placental malaria infection were 38% and 12% respectively. Placental infections were associated with poor pregnancy outcome [pre

  18. High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission

    PubMed Central

    Plouffe, David M.; Wree, Melanie; Du, Alan Y.; Meister, Stephan; Li, Fengwu; Patra, Kailash; Lubar, Aristea; Okitsu, Shinji L.; Flannery, Erika L.; Kato, Nobutaka; Tanaseichuk, Olga; Comer, Eamon; Zhou, Bin; Kuhen, Kelli; Zhou, Yingyao; Leroy, Didier; Schreiber, Stuart L.; Scherer, Christina A.; Vinetz, Joseph; Winzeler, Elizabeth A.

    2016-01-01

    Summary Preventing transmission is an important element of malaria control. However, most of the current available methods to assay for malaria transmission blocking are relatively low throughput and cannot be applied to large chemical libraries. We have developed a high-throughput and cost-effective assay, the Saponin-lysis Sexual Stage Assay (SaLSSA), for identifying small molecules with transmission-blocking capacity. SaLSSA analysis of 13,983 unique compounds uncovered that >90% of well-characterized antimalarials, including endoperoxides and 4-aminoquinolines, as well as compounds active against asexual blood stages, lost most of their killing activity when parasites developed into metabolically quiescent stage V gametocytes. On the other hand, we identified compounds with consistent low nanomolar transmission-blocking activity, some of which showed cross-reactivity against asexual blood and liver stages. The data clearly emphasize substantial physiological differences between sexual and asexual parasites and provide a tool and starting points for the discovery and development of transmission-blocking drugs. PMID:26749441

  19. Steady progress toward a malaria vaccine.

    PubMed

    Lyke, Kirsten E

    2017-10-01

    Great progress has been made in reducing malaria morbidity and mortality, yet the parasite continues to cause a startling 200 million infections and 500 000 deaths annually. Malaria vaccine development is pushing new boundaries by steady advancement toward a licensed product. Despite 50 years of research, the complexity of Plasmoidum falciparum confounds all attempts to eradicate the organism. This very complexity has pushed the boundaries of vaccine development to new heights, yet it remains to be seen if an affordable vaccine can provide durable and high-level protection. Novel vaccines such as RTS,S/AS01E are on the edge of licensure, but old techniques have resurged with the ability to deliver vialed, whole organism vaccines. Novel adjuvants, multistage/multiantigen approaches and transmission blocking vaccines all contribute to a multipronged battle plan to conquer malaria. Vaccines are the most cost-effective tools to control infectious diseases, yet the complexity of malaria has frustrated all attempts to develop an effective product. This review concentrates on recent advances in malaria vaccine development that lend hope that a vaccine can be produced and malaria eradicated.

  20. Pyruvate Kinase Deficiency in Sub-Saharan Africa: Identification of a Highly Frequent Missense Mutation (G829A;Glu277Lys) and Association with Malaria

    PubMed Central

    Machado, Patrícia; Manco, Licínio; Gomes, Cláudia; Mendes, Cristina; Fernandes, Natércia; Salomé, Graça; Sitoe, Luis; Chibute, Sérgio; Langa, José; Ribeiro, Letícia; Miranda, Juliana; Cano, Jorge; Pinto, João; Amorim, António; do Rosário, Virgílio E.; Arez, Ana Paula

    2012-01-01

    Background Pyruvate kinase (PK) deficiency, causing hemolytic anemia, has been associated to malaria protection and its prevalence in sub-Saharan Africa is not known so far. This work shows the results of a study undertaken to determine PK deficiency occurrence in some sub-Saharan African countries, as well as finding a prevalent PK variant underlying this deficiency. Materials and Methods Blood samples of individuals from four malaria endemic countries (Mozambique, Angola, Equatorial Guinea and Sao Tome and Principe) were analyzed in order to determine PK deficiency occurrence and detect any possible high frequent PK variant mutation. The association between this mutation and malaria was ascertained through association studies involving sample groups from individuals showing different malaria infection and outcome status. Results The percentage of individuals showing a reduced PK activity in Maputo was 4.1% and the missense mutation G829A (Glu277Lys) in the PKLR gene (only identified in three individuals worldwide to date) was identified in a high frequency. Heterozygous carrier frequency was between 6.7% and 2.6%. A significant association was not detected between either PK reduced activity or allele 829A frequency and malaria infection and outcome, although the variant was more frequent among individuals with uncomplicated malaria. Conclusions This was the first study on the occurrence of PK deficiency in several areas of Africa. A common PKLR mutation G829A (Glu277Lys) was identified. A global geographical co-distribution between malaria and high frequency of PK deficiency seems to occur suggesting that malaria may be a selective force raising the frequency of this 277Lys variant. PMID:23082140

  1. A malaria model tested in the African savannah*

    PubMed Central

    Dietz, K.; Molineaux, L.; Thomas, A.

    1974-01-01

    A new mathematical model of malaria has been developed for comparing the effects of alternative control measures. It describes both the temporal changes of the P. falciparum infection rate and the immunity level of the population as a function of the dynamics and characteristics of the vector populations, which are summarized in the concept of vectorial capacity. A critical vectorial capacity is specified, below which malaria cannot maintain itself at an endemic level. The model has been tested with epidemiological data collected in a WHO research project in the African Savannah, Kano State, Northern Nigeria, since October 1970. The estimates of the model parameters were obtained by minimizing the χ2 function that measures the discrepancy between the observed and expected age-specific parasite rates in the two villages with the highest and the lowest vectorial capacity, respectively, at five surveys during one year of baseline data collection and between the observed and expected infant inoculation rates, in the main transmission seasons, in the same two villages. The model describes three aspects of immunity: loss of infectivity, loss of detectability, and increase of recovery rate. It is assumed that loss of infectivity precedes loss of detectability and increase of recovery rate. Superinfections are slowing down the recovery for high inoculation rates but do not reduce them to zero. They do not increase infectivity. PMID:4613512

  2. A malaria vaccine for travelers and military personnel: Requirements and top candidates.

    PubMed

    Teneza-Mora, Nimfa; Lumsden, Joanne; Villasante, Eileen

    2015-12-22

    Malaria remains an important health threat to non-immune travelers with the explosive growth of global travel. Populations at high risk of acquiring malaria infections include once semi-immune travelers who visit friends and relatives, military forces, business travelers and international tourists with destinations to sub-Saharan Africa, where malaria transmission intensity is high. Most malaria cases have been associated with poor compliance with existing preventive measures, including chemoprophylaxis. High risk groups would benefit immensely from an efficacious vaccine to protect them against malaria infection and together make up a sizable market for such a vaccine. The attributes of an ideal malaria vaccine for non-immune travelers and military personnel include a protective efficacy of 80% or greater, durability for at least 6 months, an acceptable safety profile and compatibility with existing preventive measures. It is very likely that a malaria vaccine designed to effectively prevent infection and clinical disease in the non-immune traveler and military personnel will also protect semi-immune residents of malaria-endemic areas and contribute to malaria elimination by reducing or blocking malaria transmission. The RTS,S vaccine (GlaxoSmithKline) and the PfSPZ Vaccine (Sanaria Inc) are the leading products that would make excellent vaccine candidates for these vulnerable populations. Published by Elsevier Ltd.

  3. A successful therapy for severe malaria accompanied by malaria-related acute kidney injury (MAKI) complications: a case report

    NASA Astrophysics Data System (ADS)

    Syahputra, A.; Siregar, M. L.; Jamil, K. F.

    2018-03-01

    Indonesia is an endemic malaria country with high levels of morbidity and mortality. In Aceh, by the end of 2016, based on the data from Annual Parasite Incidence, the incidence rate was 0.1 per 1.000 population at risk of malaria. One of severe malaria complications is malaria-related acute kidney injury(MAKI). The death increasesthreefold by the presence of MAKI. A 56 years old male farmer was a resident in Buketmeuh village, Meukek, South Aceh, Indonesia, which was an endemic malaria area. He hadfever for seven days, chills, sweating, joint pain, headache, nausea, vomit, yellow eyes and raved. Concentrated tea-colored urineduring four days before hospital admission with a small amount of urine of 200 cc in 24 hours. The diagnosis established based on the Plasmodium vivax trophozoite finding in the blood smear examination, and the severe malaria clinical descriptions such as black water fever (BWF)with MAKI complications. Artemether injection therapy followed by oral primaquine, dihydroartemisinin and piperaquine phosphate (DHP) and hemodialysis provide a good outcome.

  4. [A history of malaria in modern Korea 1876-1945].

    PubMed

    Yeo, Insok

    2011-06-30

    Although it is not certain when malaria began to appear in Korea, malaria is believed to have been an endemic disease from ancient times. It was Dr. H. N. Allen (1858-1932) who made the first description and diagnosis of malaria in terms of Western medicine. In his first year report (1885) of Korean Government Hospital he mentioned malaria as the most prevalent disease. Very effective anti-malarial drug quinine was imported and it made great contribution in treating malaria. After Japan had annexed Korea in 1910, policies for public health system were fundamentally revised. Japan assumed control of Korean medical institutions and built high-quality Western hospitals for the health care of Japanese residents. The infectious diseases which were under special surveillance were cholera, typhoid fever, dysentery, typhus, scarlet fever, smallpox, and paratyphoid fever. Among chronic infectious diseases tuberculosis and leprosy were those under special control. Malaria, however, was not one of these specially controlled infectious diseases although it was widely spread throughout the peninsula. But serious studies on malaria were carried out by Japanese medical scientists. In particular, a Japanese parasitologist Kobayasi Harujiro(1884-1969) carried out extensive studies on human parasites, including malaria, in Korea. According to his study, most of the malaria in Korea turned out to be tertian fever. In spite of its high prevalence, malaria did not draw much attention from the colonial authorities and no serious measure was taken since tertian fever is a mild form of malaria caused by Plasmodium vivax and is not so much fatal as tropical malaria caused by P. falciparum. And tertian malaria was easily controlled by taking quinine. Although the majority of malaria in Korea was tertian fever, other types were not absent. Quartan fever was not rarely reported in 1930s. The attitude of colonial authorities toward malaria in Korea was contrasted with that in Taiwan. After

  5. Human behavior and malaria.

    PubMed

    Hongvivatana, T

    1986-09-01

    Human behavior in malaria is often narrowly referred to behavior of the target populations in transmission and control of malaria. In this presentation it was discussed that such view is too narrow. A broader framework incorporating illness behavior and human behavior in malaria control bureaucracies is needed for the success of national malaria control programme. Literature under the three broad categories of human behavior in malaria is reviewed to justify future directions in human behavior research and their significance for successful malaria control.

  6. From malaria control to eradication: The WHO perspective.

    PubMed

    Mendis, Kamini; Rietveld, Aafje; Warsame, Marian; Bosman, Andrea; Greenwood, Brian; Wernsdorfer, Walther H

    2009-07-01

    Efforts to control malaria have been boosted in the past few years with increased international funding and greater political commitment. Consequently, the reported malaria burden is being reduced in a number of countries throughout the world, including in some countries in tropical Africa where the burden of malaria is greatest. These achievements have raised new hopes of eradicating malaria. This paper summarizes the outcomes of a World Health Organization's expert meeting on the feasibility of such a goal. Given the hindsight and experience of the Global Malaria Eradication Programme of the 1950s and 1960s, and current knowledge of the effectiveness of antimalarial tools and interventions, it would be feasible to effectively control malaria in all parts of the world and greatly reduce the enormous morbidity and mortality of malaria. It would also be entirely feasible to eliminate malaria from countries and regions where the intensity of transmission is low to moderate, and where health systems are strong. Elimination of malaria requires a re-orientation of control activity, moving away from a population-based coverage of interventions, to one based on a programme of effective surveillance and response. Sustained efforts will be required to prevent the resurgence of malaria from where it is eliminated. Eliminating malaria from countries where the intensity of transmission is high and stable such as in tropical Africa will require more potent tools and stronger health systems than are available today. When such countries have effectively reduced the burden of malaria, the achievements will need to be consolidated before a programme re-orientation towards malaria elimination is contemplated. Malaria control and elimination are under the constant threat of the parasite and vector mosquito developing resistance to medicines and insecticides, which are the cornerstones of current antimalarial interventions. The prospects of malaria eradication, therefore, rest heavily

  7. THE POTENTIAL IMPACT OF INTEGRATED MALARIA TRANSMISSION CONTROL ON ENTOMOLOGIC INOCULATION RATE IN HIGHLY ENDEMIC AREAS

    PubMed Central

    KILLEEN, GERRY F.; McKENZIE, F. ELLIS; FOY, BRIAN D.; SCHIEFFELIN, CATHERINE; BILLINGSLEY, PETER F.; BEIER, JOHN C.

    2008-01-01

    We have used a relatively simple but accurate model for predicting the impact of integrated transmission control on the malaria entomologic inoculation rate (EIR) at four endemic sites from across sub-Saharan Africa and the southwest Pacific. The simulated campaign incorporated modestly effective vaccine coverage, bed net use, and larval control. The results indicate that such campaigns would reduce EIRs at all four sites by 30- to 50-fold. Even without the vaccine, 15- to 25-fold reductions of EIR were predicted, implying that integrated control with a few modestly effective tools can meaningfully reduce malaria transmission in a range of endemic settings. The model accurately predicts the effects of bed nets and indoor spraying and demonstrates that they are the most effective tools available for reducing EIR. However, the impact of domestic adult vector control is amplified by measures for reducing the rate of emergence of vectors or the level of infectiousness of the human reservoir. We conclude that available tools, including currently neglected methods for larval control, can reduce malaria transmission intensity enough to alleviate mortality. Integrated control programs should be implemented to the fullest extent possible, even in areas of intense transmission, using simple models as decision-making tools. However, we also conclude that to eliminate malaria in many areas of intense transmission is beyond the scope of methods which developing nations can currently afford. New, cost-effective, practical tools are needed if malaria is ever to be eliminated from highly endemic areas. PMID:11289662

  8. [Malaria in Moscow (2006-2007): monitoring of the situation and assessment of antimalaria measures].

    PubMed

    Ivanova, T M; Timoshenko, N I; Baranova, A M

    2009-01-01

    The malaria situation in Moscow in 2007 versus 2006 improved--the cases of malaria reduced by 16.3%. A total of 30 new cases of malaria were notified (46 cases in 2006), of them there were 34 imported cases and 4 secondary cases to imported ones. In 2007, the proportion of tertian malaria cases reduced to 55.3% versus 60.9% in 2006. As compared with 2005, in 2007 the cases of locally transmitted malaria decreased by 5 times--from 20 to 4, only 1 case of infection occurred in Moscow (Central Administrative District) and 3 cases took place in the Moscow Region (Ramensky, Stupinsky, and Dmitrovsky districts). Cases of malaria were notified in all administrative districts, with their largest number in the South-Western Administrative District of Moscow due to the detection of ill students from the Russian University of People's Friendship who had come to study from African countries. In accordance to the performed certification of water reservoirs in 2007, a total of 722 Moscow water reservoirs of an area of 1569 ha were registered at the Administration of the Russian Agency for Consumer Surveillance. The examination frequency of all water reservoirs was about 13 per season, including 20 anopheles-containing ones. The larvae of bloodsucking mosquitoes inhabited 541 (75%) water reservoirs, including 461 (63%) water reservoirs occupied by the malaria vector. As compared with 2006, the area of treatments increased by 351 ha. In the summer, a total of 2133.3 ha ofwater reservoirs were treated, including 2009.5 ha against larvae of malaria mosquitoes. The bulk of water reservoirs were exposed to triple-quadruple treatments.

  9. Vector bionomics and malaria transmission along the Thailand-Myanmar border: a baseline entomological survey.

    PubMed

    Kwansomboon, N; Chaumeau, V; Kittiphanakun, P; Cerqueira, D; Corbel, V; Chareonviriyaphap, T

    2017-06-01

    Baseline entomological surveys were conducted in four sentinel sites along the Thailand-Myanmar border to address vector bionomics and malaria transmission in the context of a study on malaria elimination. Adult Anopheles mosquitoes were collected using human-landing catch and cow-bait collection in four villages during the rainy season from May-June, 2013. Mosquitoes were identified to species level by morphological characters and by AS-PCR. Sporozoite indexes were determined on head/thoraces of primary and secondary malaria vectors using real-time PCR. A total of 4,301 anopheles belonging to 12 anopheline taxa were identified. Anopheles minimus represented >98% of the Minimus Complex members (n=1,683), whereas the An. maculatus group was composed of two dominant species, An. sawadwongporni and An. maculatus. Overall, 25 Plasmodium-positive mosquitoes (of 2,323) were found, representing a sporozoite index of 1.1% [95%CI 0.66-1.50]. The transmission intensity as measured by the EIR strongly varied according to the village (ANOVA, F=17.67, df=3, P<0.0001). Our findings highlight the diversity and complexity of the biting pattern of malaria vectors along the Thailand-Myanmar border that represent a formidable challenge for malaria control and elimination. © 2017 The Society for Vector Ecology.

  10. Prevalence of malaria parasitaemia and malaria related anaemia among pregnant women in Abakaliki, South East Nigeria.

    PubMed

    Nwonwu, E U; Ibekwe, P C; Ugwu, J I; Obarezi, H C; Nwagbara, O C

    2009-06-01

    Malaria currently is regarded as the most common and potentially the most serious infection occurring in pregnancy in many sub Saharan African countries. This study was undertaken to evaluate the prevalence of malaria parasitaemia and malaria related anaemia among pregnant women in Abakaliki, South East, Nigeria. This is a cross sectional, descriptive study conducted in two tertiary health institutions in Abakaliki, South East, Nigeria (Ebonyi State University Teaching Hospital And Federal Medical Centre). Using systematic sampling method, 193 pregnant women were selected from the health institutions for the study. Their blood were analysed for haemoglobin status and malaria parasite. Data were also collected using an interviewer administered questionnaire. All the data were analysed using Epi info version 6 statistical software. Response rate was 100%. Twenty nine percent prevalence of malaria parasitaemia was detected, more common among primigravidae. Women with higher parity had higher frequency of anaemia in pregnancy. More than half of the pregnant women (51%) were in their second trimester at the time of booking. There was no case of severe anaemia requiring blood transfusion. Our pregnant women register late for antenatal care. Prevalence of malaria parasitaemia is high in our environment as well as anaemia in pregnancy, using the standard WHO definition. It is suggested that effort should be intensified to make our women register early for antenatal care in order to identify complications early. Intermittent preventive treatment for malaria should be incorporated into routine drugs for antenatal women.

  11. Does malaria epidemiology project Cameroon as 'Africa in miniature'?

    PubMed

    Mbenda, Huguette Gaelle Ngassa; Awasthi, Gauri; Singh, Poonam K; Gouado, Inocent; Das, Aparup

    2014-09-01

    Cameroon, a west-central African country with a ~ 20 million population, is commonly regarded as 'Africa in miniature' due to the extensive biological and cultural diversities of whole Africa being present in a single-country setting. This country is inhabited by ancestral human lineages in unique eco-climatic conditions and diverse topography. Over 90 percent Cameroonians are at risk of malaria infection, and ~ 41 percent have at least one episode of malaria each year. Historically, the rate of malaria infection in Cameroon has fluctuated over the years; the number of cases was about 2 million in 2010 and 2011. The Cameroonian malaria control programme faces an uphill task due to high prevalence of multidrug-resistant parasites and insecticide-resistant malaria vectors. Above all, continued human migration from the rural to urban areas as well as population exchange with adjoining countries, high rate of ecological instabilities caused by deforestation, poor housing, lack of proper sanitation and drainage system might have resulted in the recent increase in incidences of malaria and other vector-borne diseases in Cameroon. The available data on eco-environmental variability and intricate malaria epidemiology in Cameroon reflect the situation in the whole of Africa, and warrant the need for in-depth study by using modern surveillance tools for meaningful basic understanding of the malaria triangle (host-parasite-vector-environment).

  12. Methods to Increase the Sensitivity of High Resolution Melting Single Nucleotide Polymorphism Genotyping in Malaria.

    PubMed

    Daniels, Rachel; Hamilton, Elizabeth J; Durfee, Katelyn; Ndiaye, Daouda; Wirth, Dyann F; Hartl, Daniel L; Volkman, Sarah K

    2015-11-10

    Despite decades of eradication efforts, malaria remains a global burden. Recent renewed interest in regional elimination and global eradication has been accompanied by increased genomic information about Plasmodium parasite species responsible for malaria, including characteristics of geographical populations as well as variations associated with reduced susceptibility to anti-malarial drugs. One common genetic variation, single-nucleotide polymorphisms (SNPs), offers attractive targets for parasite genotyping. These markers are useful not only for tracking drug resistance markers but also for tracking parasite populations using markers not under drug or other selective pressures. SNP genotyping methods offer the ability to track drug resistance as well as to fingerprint individual parasites for population surveillance, particularly in response to malaria control efforts in regions nearing elimination status. While informative SNPs have been identified that are agnostic to specific genotyping technologies, high-resolution melting (HRM) analysis is particularly suited to field-based studies. Compared to standard fluorescent-probe based methods that require individual SNPs in a single labeled probe and offer at best 10% sensitivity to detect SNPs in samples that contain multiple genomes (polygenomic), HRM offers 2-5% sensitivity. Modifications to HRM, such as blocked probes and asymmetric primer concentrations as well as optimization of amplification annealing temperatures to bias PCR towards amplification of the minor allele, further increase the sensitivity of HRM. While the sensitivity improvement depends on the specific assay, we have increased detection sensitivities to less than 1% of the minor allele. In regions approaching malaria eradication, early detection of emerging or imported drug resistance is essential for prompt response. Similarly, the ability to detect polygenomic infections and differentiate imported parasite types from cryptic local reservoirs

  13. Spatial analysis of malaria in Anhui province, China

    PubMed Central

    Zhang, Wenyi; Wang, Liping; Fang, Liqun; Ma, Jiaqi; Xu, Youfu; Jiang, Jiafu; Hui, Fengming; Wang, Jianjun; Liang, Song; Yang, Hong; Cao, Wuchun

    2008-01-01

    Background Malaria has re-emerged in Anhui Province, China, and this province was the most seriously affected by malaria during 2005–2006. It is necessary to understand the spatial distribution of malaria cases and to identify highly endemic areas for future public health planning and resource allocation in Anhui Province. Methods The annual average incidence at the county level was calculated using malaria cases reported between 2000 and 2006 in Anhui Province. GIS-based spatial analyses were conducted to detect spatial distribution and clustering of malaria incidence at the county level. Results The spatial distribution of malaria cases in Anhui Province from 2000 to 2006 was mapped at the county level to show crude incidence, excess hazard and spatial smoothed incidence. Spatial cluster analysis suggested 10 and 24 counties were at increased risk for malaria (P < 0.001) with the maximum spatial cluster sizes at < 50% and < 25% of the total population, respectively. Conclusion The application of GIS, together with spatial statistical techniques, provide a means to quantify explicit malaria risks and to further identify environmental factors responsible for the re-emerged malaria risks. Future public health planning and resource allocation in Anhui Province should be focused on the maximum spatial cluster region. PMID:18847489

  14. Agro-ecology, household economics and malaria in Uganda: empirical correlations between agricultural and health outcomes

    PubMed Central

    2014-01-01

    Background This paper establishes empirical evidence relating the agriculture and health sectors in Uganda. The analysis explores linkages between agricultural management, malaria and implications for improving community health outcomes in rural Uganda. The goal of this exploratory work is to expand the evidence-base for collaboration between the agricultural and health sectors in Uganda. Methods The paper presents an analysis of data from the 2006 Uganda National Household Survey using a parametric multivariate Two-Limit Tobit model to identify correlations between agro-ecological variables including geographically joined daily seasonal precipitation records and household level malaria risk. The analysis of agricultural and environmental factors as they affect household malaria rates, disaggregated by age-group, is inspired by a complimentary review of existing agricultural malaria literature indicating a gap in evidence with respect to agricultural management as a form of malaria vector management. Crop choices and agricultural management practices may contribute to vector control through the simultaneous effects of reducing malaria transmission, improving housing and nutrition through income gains, and reducing insecticide resistance in both malaria vectors and agricultural pests. Results The econometric results show the existence of statistically significant correlations between crops, such as sweet potatoes/yams, beans, millet and sorghum, with household malaria risk. Local environmental factors are also influential- daily maximum temperature is negatively correlated with malaria, while daily minimum temperature is positively correlated with malaria, confirming trends in the broader literature are applicable to the Ugandan context. Conclusions Although not necessarily causative, the findings provide sufficient evidence to warrant purposefully designed work to test for agriculture health causation in vector management. A key constraint to modeling the

  15. Neonatal and congenital malaria: a case series in malaria endemic eastern Uganda.

    PubMed

    Olupot-Olupot, Peter; Eregu, Emma I E; Naizuli, Ketty; Ikiror, Julie; Acom, Linda; Burgoine, Kathy

    2018-04-20

    Congenital malaria is the direct infection of an infant with malaria parasites from their mother prior to or during birth. Neonatal malaria is due to an infective mosquito bite after birth. Neonatal and congenital malaria (NCM) are potentially life-threatening conditions that are believed to occur at relatively low rates in malaria endemic regions. However, recent reports suggest that the number of NCM cases is increasing, and its epidemiology remains poorly described. NCM can mimic other neonatal conditions and because it is thought to be rare, blood film examinations for malaria are not always routinely performed. Consequently, many cases of NCM are likely to be undiagnosed. A retrospective chart review for all neonates admitted with suspected sepsis between January and July 2017 was conducted and noted four cases of NCM since routine malaria testing was introduced as part of standard of care for suspected sepsis at Mbale Regional Referral Hospital Neonatology Unit. This description highlights the need to conduct routine malaria diagnostic testing for febrile neonates in malaria endemic areas, and supports the urgent need to undertake pharmacological studies on therapeutic agents in this population. Four cases (two congenital malaria cases and two neonatal malaria cases) are described after presenting for care at the Mbale Regional Referral Hospital Neonatal Unit (Mbale RRH-NNU). The maternal age was similar across the cases, but both neonatal malaria cases were born to primigravidae. At presentation three cases had fever and history of fever, but one was hypothermic (34.8 °C) and no history of fever. One case of congenital malaria had low birth weight, while the other was born to an HIV positive mother. Both cases of congenital malaria presented with poor feeding, in addition one of them had clinical jaundice. The neonatal malaria cases presented in the third week compared to the congenital malaria cases that presented within 48 h after birth. All of the

  16. Encouraging impact following 2.5 years of reinforced malaria control interventions in a hyperendemic region of the Republic of Guinea.

    PubMed

    Tiffany, Amanda; Moundekeno, Faya Pascal; Traoré, Alexis; Haile, Melat; Sterk, Esther; Guilavogui, Timothée; Genton, Blaise; Serafini, Micaela; Grais, Rebecca F

    2016-05-28

    Malaria is one of the principal causes of morbidity and mortality in the Republic of Guinea, particularly in the highly endemic regions. To assist in malaria control efforts, a multi-component malaria control intervention was implemented in the hyperendemic region of Guéckédou Prefecture. The coverage of the intervention and its impact on malaria parasite prevalence were assessed. Five cross-sectional surveys using cluster-based sampling and stratified by area were conducted from 2011 to 2013 in three sous-préfectures of Guéckédou Préfecture that received the intervention: Guéckédou City, Tékoulo and Guendembou in addition to one comparison sous-préfecture that did not receive the intervention, Koundou. Surveys were repeated every 6 months, corresponding with the dry and rainy seasons. Rapid diagnostic tests (RDT) were used to diagnose malaria infection. In each selected household, bed net use and ownership were assessed. A total of 35,123 individuals participated in the surveys. Malaria parasite prevalence declined in all intervention sous-préfectures from 2011 to 2013 (56.4-45.9 % in Guéckédou City, 64.9-54.1 % in Tékoulo and 69.4-56.9 % in Guendembou) while increasing in the comparison sous-préfecture (64.5-69 %). It was consistently higher in children 5-14 years of age followed by those 1-59 months and ≥15 years. Indicators of intervention coverage, the proportion of households reporting ownership of at least one bed net and the proportion of survey participants with fever who received treatment from a health facility or community health worker also increased significantly in the intervention areas. Implementation of the multi-component malaria control intervention significantly reduced the prevalence of malaria in the sous-préfectures of intervention while also increasing the coverage of bed nets. However, malaria prevalence remains unacceptably high and disproportionately affects children <15 years of age. In such situations

  17. Brief historical perspectives of malaria in Iran.

    PubMed

    Azizi, Mohammad Hossein; Bahadori, Moslem

    2013-02-01

    The history of malaria as a serious human disease dates back to ancient times. For centuries, malaria has been a deadly disease with high morbidity and mortality that profoundly impacted the socioeconomic status of endemic countries. However, its causative agent remained unidentified until the last decades of the nineteenth century. There were no effective synthetic anti-malarial agents until the mid-twentieth century. Currently malaria has been eliminated or pre-eliminated in numerous countries; however, this preventable and curable disease remains a significant global health problem. A major concern is drug resistance. Presented here, is a brief look at the history of malaria in Iran and the rest of the world, particularly during the nineteenth and twentieth centuries.

  18. A remote sensing and geographic information system approach to sampling malaria vector habitats in Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Beck, L.; Wood, B.; Whitney, S.; Rossi, R.; Spanner, M.; Rodriguez, M.; Rodriguez-Ramirez, A.; Salute, J.; Legters, L.; Roberts, D.; Rejmankova, E.; Washino, R.

    1993-08-01

    This paper describes a procedure whereby remote sensing and geographic information system (GIS) technologies are used in a sample design to study the habitat of Anopheles albimanus, one of the principle vectors of malaria in Central America. This procedure incorporates Landsat-derived land cover maps with digital elevation and road network data to identify a random selection of larval habitats accessible for field sampling. At the conclusion of the sampling season, the larval counts will be used to determine habitat productivity, and then integrated with information on human settlement to assess where people are at high risk of malaria. This aproach would be appropriate in areas where land cover information is lacking and problems of access constrain field sampling. The use of a GIS also permits other data (such as insecticide spraying data) to the incorporated in the sample design as they arise. This approach would also be pertinent for other tropical vector-borne diseases, particularly where human activities impact disease vector habitat.

  19. Malaria in Children.

    PubMed

    Cohee, Lauren M; Laufer, Miriam K

    2017-08-01

    Malaria is a leading cause of morbidity and mortality in endemic areas, leading to an estimated 438,000 deaths in 2015. Malaria is also an important health threat to travelers to endemic countries and should be considered in evaluation of any traveler returning from a malaria-endemic area who develops fever. Considering the diagnosis of malaria in patients with potential exposure is critical. Prompt provision of effective treatment limits the complications of malaria and can be life-saving. Understanding Plasmodium species variation, epidemiology, and drug-resistance patterns in the geographic area where infection was acquired is important for determining treatment choices. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Modeling the impact of Plasmodium falciparum sexual stage immunity on the composition and dynamics of the human infectious reservoir for malaria in natural settings.

    PubMed

    Ouédraogo, André Lin; Eckhoff, Philip A; Luty, Adrian J F; Roeffen, Will; Sauerwein, Robert W; Bousema, Teun; Wenger, Edward A

    2018-05-01

    Malaria transmission remains high in Sub-Saharan Africa despite large-scale implementation of malaria control interventions. A comprehensive understanding of the transmissibility of infections to mosquitoes may guide the design of more effective transmission reducing strategies. The impact of P. falciparum sexual stage immunity on the infectious reservoir for malaria has never been studied in natural settings. Repeated measurements were carried out at start-wet, peak-wet and dry season, and provided data on antibody responses against gametocyte/gamete antigens Pfs48/45 and Pfs230 as anti-gametocyte immunity. Data on high and low-density infections and their infectiousness to anopheline mosquitoes were obtained using quantitative molecular methods and mosquito feeding assays, respectively. An event-driven model for P. falciparum sexual stage immunity was developed and fit to data using an agent based malaria model infrastructure. We found that Pfs48/45 and Pfs230 antibody densities increased with increasing concurrent gametocyte densities; associated with 55-70% reduction in oocyst intensity and achieved up to 44% reduction in proportions of infected mosquitoes. We showed that P. falciparum sexual stage immunity significantly reduces transmission of microscopic (p < 0.001) but not submicroscopic (p = 0.937) gametocyte infections to mosquitoes and that incorporating sexual stage immunity into mathematical models had a considerable impact on the contribution of different age groups to the infectious reservoir of malaria. Human antibody responses to gametocyte antigens are likely to be dependent on recent and concurrent high-density gametocyte exposure and have a pronounced impact on the likelihood of onward transmission of microscopic gametocyte densities compared to low density infections. Our mathematical simulations indicate that anti-gametocyte immunity is an important factor for predicting and understanding the composition and dynamics of the human infectious

  1. Controlling Malaria Using Livestock-Based Interventions: A One Health Approach

    PubMed Central

    Franco, Ana O.; Gomes, M. Gabriela M.; Rowland, Mark; Coleman, Paul G.

    2014-01-01

    Where malaria is transmitted by zoophilic vectors, two types of malaria control strategies have been proposed based on animals: using livestock to divert vector biting from people (zooprophylaxis) or as baits to attract vectors to insecticide sources (insecticide-treated livestock). Opposing findings have been obtained on malaria zooprophylaxis, and despite the success of an insecticide-treated livestock trial in Pakistan, where malaria vectors are highly zoophilic, its effectiveness is yet to be formally tested in Africa where vectors are more anthropophilic. This study aims to clarify the different effects of livestock on malaria and to understand under what circumstances livestock-based interventions could play a role in malaria control programmes. This was explored by developing a mathematical model and combining it with data from Pakistan and Ethiopia. Consistent with previous work, a zooprophylactic effect of untreated livestock is predicted in two situations: if vector population density does not increase with livestock introduction, or if livestock numbers and availability to vectors are sufficiently high such that the increase in vector density is counteracted by the diversion of bites from humans to animals. Although, as expected, insecticide-treatment of livestock is predicted to be more beneficial in settings with highly zoophilic vectors, like South Asia, we find that the intervention could also considerably decrease malaria transmission in regions with more anthropophilic vectors, like Anopheles arabiensis in Africa, under specific circumstances: high treatment coverage of the livestock population, using a product with stronger or longer lasting insecticidal effect than in the Pakistan trial, and with small (ideally null) repellency effect, or if increasing the attractiveness of treated livestock to malaria vectors. The results suggest these are the most appropriate conditions for field testing insecticide-treated livestock in an Africa region with

  2. Seasonality, Blood Feeding Behavior, and Transmission of Plasmodium Falciparum by Anopheles Arabiensis after an Extended Drought In Southern Zambia

    PubMed Central

    Thuma, Philip E.; Mharakurwa, Sungano; Norris, Douglas E.

    2014-01-01

    Transmission of Plasmodium falciparum is hyperendemic in southern Zambia. However, no data on the entomologic aspects of malaria transmission have been published from Zambia in more than 25 years. We evaluated seasonal malaria transmission by Anopheles arabiensis and An. funestus s.s. and characterized the blood feeding behavior of An. arabiensis in two village areas. Transmission during the 2004–2005 rainy season was nearly zero because of widespread drought. During 2005–2006, the estimated entomologic inoculation rate values were 1.6 and 18.3 infective bites per person per transmission season in each of the two village areas, respectively. Finally, with a human blood index of 0.923, An. arabiensis was substantially more anthropophilic in our study area than comparable samples of indoor-resting An. arabiensis throughout Africa and was the primary vector responsible for transmission of P. falciparum. PMID:17297034

  3. Ecological covariates based predictive model of malaria risk in the state of Chhattisgarh, India.

    PubMed

    Kumar, Rajesh; Dash, Chinmaya; Rani, Khushbu

    2017-09-01

    Malaria being an endemic disease in the state of Chhattisgarh and ecologically dependent mosquito-borne disease, the study is intended to identify the ecological covariates of malaria risk in districts of the state and to build a suitable predictive model based on those predictors which could assist developing a weather based early warning system. This secondary data based analysis used one month lagged district level malaria positive cases as response variable and ecological covariates as independent variables which were tested with fixed effect panelled negative binomial regression models. Interactions among the covariates were explored using two way factorial interaction in the model. Although malaria risk in the state possesses perennial characteristics, higher parasitic incidence was observed during the rainy and winter seasons. The univariate analysis indicated that the malaria incidence risk was statistically significant associated with rainfall, maximum humidity, minimum temperature, wind speed, and forest cover ( p  < 0.05). The efficient predictive model include the forest cover [IRR-1.033 (1.024-1.042)], maximum humidity [IRR-1.016 (1.013-1.018)], and two-way factorial interactions between district specific averaged monthly minimum temperature and monthly minimum temperature, monthly minimum temperature was statistically significant [IRR-1.44 (1.231-1.695)] whereas the interaction term has a protective effect [IRR-0.982 (0.974-0.990)] against malaria infections. Forest cover, maximum humidity, minimum temperature and wind speed emerged as potential covariates to be used in predictive models for modelling the malaria risk in the state which could be efficiently used for early warning systems in the state.

  4. Performance of "VIKIA Malaria Ag Pf/Pan" (IMACCESS®), a new malaria rapid diagnostic test for detection of symptomatic malaria infections.

    PubMed

    Chou, Monidarin; Kim, Saorin; Khim, Nimol; Chy, Sophy; Sum, Sarorn; Dourng, Dany; Canier, Lydie; Nguon, Chea; Ménard, Didier

    2012-08-24

    Recently, IMACCESS® developed a new malaria test (VIKIA Malaria Ag Pf/Pan™), based on the detection of falciparum malaria (HRP-2) and non-falciparum malaria (aldolase). The performance of this new malaria rapid diagnostic test (RDT) was assessed using 1,000 febrile patients seeking malaria treatment in four health centres in Cambodia from August to December 2011. The results of the VIKIA Malaria Ag Pf/Pan were compared with those obtained by microscopy, the CareStart Malaria™ RDT (AccessBio®) which is currently used in Cambodia, and real-time PCR (as "gold standard"). The best performances of the VIKIA Malaria Ag Pf/Pan™ test for detection of both Plasmodium falciparum and non-P. falciparum were with 20-30 min reading times (sensitivity of 93.4% for P. falciparum and 82.8% for non-P. falciparum and specificity of 98.6% for P. falciparum and 98.9% for non-P. falciparum) and were similar to those for the CareStart Malaria™ test. This new RDT performs similarly well as other commercially available tests (especially the CareStart Malaria™ test, used as comparator), and conforms to the World Health Organization's recommendations for RDT performance. It is a good alternative tool for the diagnosis of malaria in endemic areas.

  5. Cost-effectiveness analysis of malaria chemoprophylaxis for travellers to West-Africa

    PubMed Central

    2010-01-01

    Background The importation of malaria to non-endemic countries remains a major cause of travel-related morbidity and a leading cause of travel-related hospitalizations. Currently they are three priority medications for malaria prophylaxis to West Africa: mefloquine, atovaquone/proguanil and doxycycline. We investigate the cost effectiveness of a partial reimbursement of the cheapest effective malaria chemoprophylaxis (mefloquine) for travellers to high risk areas of malaria transmission compared with the current situation of no reimbursement. Methods This study is a cost-effectiveness analysis based on malaria cases imported from West Africa to Switzerland from the perspective of the Swiss health system. We used a decision tree model and made a literature research on the components of travel related malaria. The main outcome measure was the cost effectiveness of malaria chemoprophylaxis reimbursement based on malaria and deaths averted. Results Using a program where travellers would be reimbursed for 80% of the cost of the cheapest malaria chemoprophylaxis is dominant (i.e. cost saving and more effective than the current situation) using the assumption that currently 68.7% of travellers to West Africa use malaria chemoprophylaxis. If the current usage of malaria chemoprophylaxis would be higher, 82.4%, the incremental cost per malaria case averted is € 2'302. The incremental cost of malaria death averted is € 191'833. The most important factors influencing the model were: the proportion of travellers using malaria chemoprophylaxis, the probability of contracting malaria without malaria chemoprophylaxis, the cost of the mefloquine regimen, the decrease in the number of travellers without malaria chemoprophylaxis in the reimbursement strategy. Conclusions This study suggests that a reimbursement of 80% of the cost of the cheapest effective malaria chemoprophylaxis (mefloquine) for travellers from Switzerland to West Africa is highly effective in terms of malaria

  6. Mefloquine for preventing malaria in pregnant women

    PubMed Central

    González, Raquel; Pons-Duran, Clara; Piqueras, Mireia; Aponte, John J; ter Kuile, Feiko O; Menéndez, Clara

    2018-01-01

    Background The World Health Organization recommends intermittent preventive treatment in pregnancy (IPTp) with sulfadoxine-pyrimethamine for malaria for all women who live in moderate to high malaria transmission areas in Africa. However, parasite resistance to sulfadoxine-pyrimethamine has been increasing steadily in some areas of the region. Moreover, HIV-infected women on cotrimoxazole prophylaxis cannot receive sulfadoxine-pyrimethamine because of potential drug interactions. Thus, there is an urgent need to identify alternative drugs for prevention of malaria in pregnancy. One such candidate is mefloquine. Objectives To assess the effects of mefloquine for preventing malaria in pregnant women, specifically, to evaluate: the efficacy, safety, and tolerability of mefloquine for preventing malaria in pregnant women; and the impact of HIV status, gravidity, and use of insecticide-treated nets on the effects of mefloquine. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library, MEDLINE, Embase, Latin American Caribbean Health Sciences Literature (LILACS), the Malaria in Pregnancy Library, and two trial registers up to 31 January 2018. In addition, we checked references and contacted study authors to identify additional studies, unpublished data, confidential reports, and raw data from published trials. Selection criteria Randomized and quasi-randomized controlled trials comparing mefloquine IPT or mefloquine prophylaxis against placebo, no treatment, or an alternative drug regimen. Data collection and analysis Two review authors independently screened all records identified by the search strategy, applied inclusion criteria, assessed risk of bias, and extracted data. We contacted trial authors to ask for additional information when required. Dichotomous outcomes were compared using risk ratios (RRs), count outcomes as incidence rate ratios (IRRs

  7. [Assessment of a rapid diagnostic test for malaria in rural health care facilities in Senegal].

    PubMed

    Munier, A; Diallo, A; Sokhna, C; Chippaux, J P

    2009-10-01

    The aim of the study was to determine the accuracy of a rapid diagnostic test in confirming presumptive malaria diagnosis in a rural zone of Senegal. Thick blood smear was used as the reference technique for comparison. METHOHDOLOGY: Testing was conducted on children between the ages of 1 and 14 years at three health care facilities located in the Niakhar are from August 2006 to June 2007. If malaria was suspected by the nurse based on clinical findings, two thick smears and one rapid diagnostic test (Core Malaria Pf) were performed. Blood slides were stained in Niakhar and read in Dakar. A total of 474 patients were examined. Three-fourths (75%) of these patients were seen during the rainy season. Malaria was suspected in 335 patients (71%). Rapid tests and thick smears were obtained in 330 of these patients with positive results in 194 (59%) and 180 (55%) respectively. The sensitivity, specificity, positive predictive value and negative predictive value of the rapid test were 96%, 87%, 90% and 95% respectively. Our data show that the rapid diagnostic test used in this study exhibits good sensitivity and positive predictive value. Despite its cost this test could be helpful in confirming malaria diagnosis in outlying health care facilities without the necessary resources to perform blood smears. Confirmation is necessary to avoid unwarranted prescription of malaria treatment due to inaccurate clinical diagnosis

  8. Malaria vaccine offers hope. International / Africa.

    PubMed

    1995-03-13

    Colombian professor Manuel Patarroyo developed a new malaria vaccine (SPF66). In February 1995, WHO and the Colombian government agreed to establish a manufacturing plant in Colombia for mass production of SPF66. This vaccine is likely to be available to persons in Africa, where 90% of all annual global cases live. In fact, Africa witnesses one million of 1.5 million annual malaria cases. Many children die from malaria. An extensive clinical trial of the SPF66 vaccine in Colombia achieved a 22-77% protection rate. The young and the very old had the high protection rates. A series of human clinical trials in the Gambia and Tanzania indicate that SPF66 produces a strong immune response against malaria without any harmful side effects. The results of field tests in the Gambia and Thailand and of trials in Colombia are expected in 1995. If the vaccine could reduce the incidence of malaria by just 50%, the lives of as many as 500,000 African children could be saved. SPF66 contains a combination of synthetic peptides (=or 2 amino acids). Mass production would make it affordable (estimated $5/injection). At least five other malaria vaccines hold promise and are ready for human testing in endemic countries. SPF66 is approximately three years ahead of all other promising malaria vaccines. 20 more vaccines are in the development stage. The large scale production of SPF66 in Colombia could begin within three years. Professor Patarroyo has financed his 12-year-old research himself because he wants to protect the lives of persons in developing countries. In 1992, the Congo's president petitioned the international community at the WHO summit in Amsterdam to join the fight against malaria since it is now in a position to defeat malaria since it finished the cold war.

  9. Knowledge, attitudes and practices of malaria in Colombia

    PubMed Central

    2014-01-01

    Background Although Colombia has witnessed an important decrease in malaria transmission, the disease remains a public health problem with an estimated ~10 million people currently living in areas with malaria risk and ~61,000 cases reported in 2012. This study aimed to determine and compare the level of knowledge, attitudes and practices (KAP) about malaria in three endemic communities of Colombia to provide the knowledge framework for development of new intervention strategies for malaria elimination. Methods A cross-sectional KAP survey was conducted in the municipalities of Tierralta, Buenaventura and Tumaco, categorized according to high risk (HR) and moderate risk (MR) based on the annual parasite index (API). Surveys were managed using REDCap and analysed using MATLAB and GraphPad Prism. Results A total of 267 residents, mostly women (74%) were surveyed. Although no differences were observed on the knowledge of classical malaria symptoms between HR and MR regions, significant differences were found in knowledge and attitudes about transmission mechanisms, anti-malarial use and malaria diagnosis. Most responders in both regions (93.5% in MR, and 94.3% in HR areas) indicated use of insecticide-treated nets (ITNs) to protect themselves from malaria, and 75.5% of responders in HR indicated they did nothing to prevent malaria transmission outdoors. Despite a high level of knowledge in the study regions, significant gaps persisted relating to practices. Self-medication and poor adherence to treatment, as well as lack of both indoor and outdoor vector control measures, were significantly associated with higher malaria risk. Conclusions Although significant efforts are currently being made by the Ministry of Health to use community education as one of the main components of the control strategy, these generic education programmes may not be applicable to all endemic regions of Colombia given the substantial geographic, ethnic and cultural diversity. PMID:24885909

  10. Preliminary Biological Studies on Larvae and Adult Anopheles Mosquitoes (Diptera: Culicidae) in Miraflores, a Malaria Endemic Locality in Guaviare Department, Amazonian Colombia

    PubMed Central

    JIMÉNEZ, IRENE P.; CONN, JAN E.; BROCHERO, HELENA

    2015-01-01

    In the malaria endemic municipality of Miraflores in southeastern Amazonian Colombia, several aspects of the biology of local Anopheles species were investigated to supplement the limited entomological surveillance information available and to provide baseline data for malaria prevention and vector control. Anopheles darlingi Root, 1926 was the most abundant species (95.6%), followed by Anopheles braziliensis (Chagas) (3.6%) and Anopheles oswaldoi s.l. (Peryassu) (0.7%). During the dry season, exophagic activity was prevalent only between 1800–2100 hours; after this (2100–0600 hours) only endophagy was encountered. In contrast, during the rainy season, both endophagy and exophagy occurred throughout the collection period. The human biting rate for An. darlingi was 8.6. This species was positive for Plasmodium vivax VK210 with a sporozoite rate = 0.13 (1/788). Breeding sites corresponded to stream (n = 7), flooded excavations (n = 4), flooded forest (n = 1), wetlands (n = 2), and an abandoned water reservoir (n = 1). An. darlingi predominated in these sites in both seasons. Based on these data, An. darlingi is the main local malaria vector, and we recommend that local prevention and control efforts focus on strengthening entomological surveillance to determine potential changes of species biting behavior and time to reduce human–vector interactions. PMID:25276930

  11. Epidemiology of Malaria in Endemic Areas

    PubMed Central

    Autino, Beatrice; Noris, Alice; Russo, Rosario; Castelli, Francesco

    2012-01-01

    Malaria infection is still to be considered a major public health problem in those 106 countries where the risk of contracting the infection with one or more of the Plasmodium species exists. According to estimates from the World Health Organization, over 200 million cases and about 655.000 deaths have occurred in 2010. Estimating the real health and social burden of the disease is a difficult task, because many of the malaria endemic countries have limited diagnostic resources, especially in rural settings where conditions with similar clinical picture may coexist in the same geographical areas. Moreover, asymptomatic parasitaemia may occur in high transmission areas after childhood, when anti-malaria semi-immunity occurs. Malaria endemicity and control activities are very complex issues, that are influenced by factors related to the host, to the parasite, to the vector, to the environment and to the health system capacity to fully implement available anti-malaria weapons such as rapid diagnostic tests, artemisinin-based combination treatment, impregnated bed-nets and insecticide residual spraying while waiting for an effective vaccine to be made available. PMID:23170189

  12. Current and cumulative malaria infections in a setting embarking on elimination: Amhara, Ethiopia.

    PubMed

    Yalew, Woyneshet G; Pal, Sampa; Bansil, Pooja; Dabbs, Rebecca; Tetteh, Kevin; Guinovart, Caterina; Kalnoky, Michael; Serda, Belendia A; Tesfay, Berhane H; Beyene, Belay B; Seneviratne, Catherine; Littrell, Megan; Yokobe, Lindsay; Noland, Gregory S; Domingo, Gonzalo J; Getachew, Asefaw; Drakeley, Chris; Steketee, Richard W

    2017-06-08

    Since 2005, Ethiopia has aggressively scaled up malaria prevention and case management. As a result, the number of malaria cases and deaths has significantly declined. In order to track progress towards the elimination of malaria in Amhara Region, coverage of malaria control tools and current malaria transmission need to be documented. A cross-sectional household survey oversampling children under 5 years of age was conducted during the dry season in 2013. A bivalent rapid diagnostic test (RDT) detecting both Plasmodium falciparum and Plasmodium vivax and serology assays using merozoite antigens from both these species were used to assess the prevalence of malaria infections and exposure to malaria parasites in 16 woredas (districts) in Amhara Region. 7878 participants were included, with a mean age of 16.8 years (range 0.5-102.8 years) and 42.0% being children under 5 years of age. The age-adjusted RDT-positivity for P. falciparum and P. vivax infection was 1.5 and 0.4%, respectively, of which 0.05% presented as co-infections. Overall age-adjusted seroprevalence was 30.0% for P. falciparum, 21.8% for P. vivax, and seroprevalence for any malaria species was 39.4%. The prevalence of RDT-positive infections varied by woreda, ranging from 0.0 to 8.3% and by altitude with rates of 3.2, 0.7, and 0.4% at under 2000, 2000-2500, and >2500 m, respectively. Serological analysis showed heterogeneity in transmission intensity by area and altitude and evidence for a change in the force of infection in the mid-2000s. Current and historic malaria transmission across Amhara Region show substantial variation by age and altitude with some settings showing very low or near-zero transmission. Plasmodium vivax infections appear to be lower but relatively more stable across geography and altitude, while P. falciparum is the dominant infection in the higher transmission, low-altitude areas. Age-dependent seroprevalence analyses indicates a drop in transmission occurred in the mid

  13. Resurgence of Malaria Following Discontinuation of Indoor Residual Spraying of Insecticide in an Area of Uganda With Previously High-Transmission Intensity.

    PubMed

    Raouf, Saned; Mpimbaza, Arthur; Kigozi, Ruth; Sserwanga, Asadu; Rubahika, Denis; Katamba, Henry; Lindsay, Steve W; Kapella, Bryan K; Belay, Kassahun A; Kamya, Moses R; Staedke, Sarah G; Dorsey, Grant

    2017-08-01

    Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) are the primary tools for malaria prevention in Africa. It is not known whether reductions in malaria can be sustained after IRS is discontinued. Our aim in this study was to assess changes in malaria morbidity in an area of Uganda with historically high transmission where IRS was discontinued after a 4-year period followed by universal LLIN distribution. Individual-level malaria surveillance data were collected from 1 outpatient department and 1 inpatient setting in Apac District, Uganda, from July 2009 through November 2015. Rounds of IRS were delivered approximately every 6 months from February 2010 through May 2014 followed by universal LLIN distribution in June 2014. Temporal changes in the malaria test positivity rate (TPR) were estimated during and after IRS using interrupted time series analyses, controlling for age, rainfall, and autocorrelation. Data include 65 421 outpatient visits and 13 955 pediatric inpatient admissions for which a diagnostic test for malaria was performed. In outpatients aged <5 years, baseline TPR was 60%-80% followed by a rapid and then sustained decrease to 15%-30%. During the 4-18 months following discontinuation of IRS, absolute TPR values increased by an average of 3.29% per month (95% confidence interval, 2.01%-4.57%), returning to baseline levels. Similar trends were seen in outpatients aged ≥5 years and pediatric admissions. Discontinuation of IRS in an area with historically high transmission intensity was associated with a rapid increase in malaria morbidity to pre-IRS levels. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com

  14. Large-scale drivers of malaria and priority areas for prevention and control in the Brazilian Amazon region using a novel multi-pathogen geospatial model.

    PubMed

    Valle, Denis; Lima, Joanna M Tucker

    2014-11-20

    Most of the malaria burden in the Americas is concentrated in the Brazilian Amazon but a detailed spatial characterization of malaria risk has yet to be undertaken. Utilizing 2004-2008 malaria incidence data collected from six Brazilian Amazon states, large-scale spatial patterns of malaria risk were characterized with a novel Bayesian multi-pathogen geospatial model. Data included 2.4 million malaria cases spread across 3.6 million sq km. Remotely sensed variables (deforestation rate, forest cover, rainfall, dry season length, and proximity to large water bodies), socio-economic variables (rural population size, income, and literacy rate, mortality rate for children age under five, and migration patterns), and GIS variables (proximity to roads, hydro-electric dams and gold mining operations) were incorporated as covariates. Borrowing information across pathogens allowed for better spatial predictions of malaria caused by Plasmodium falciparum, as evidenced by a ten-fold cross-validation. Malaria incidence for both Plasmodium vivax and P. falciparum tended to be higher in areas with greater forest cover. Proximity to gold mining operations was another important risk factor, corroborated by a positive association between migration rates and malaria incidence. Finally, areas with a longer dry season and areas with higher average rural income tended to have higher malaria risk. Risk maps reveal striking spatial heterogeneity in malaria risk across the region, yet these mean disease risk surface maps can be misleading if uncertainty is ignored. By combining mean spatial predictions with their associated uncertainty, several sites were consistently classified as hotspots, suggesting their importance as priority areas for malaria prevention and control. This article provides several contributions. From a methodological perspective, the benefits of jointly modelling multiple pathogens for spatial predictions were illustrated. In addition, maps of mean disease risk were

  15. Comparison of intermittent preventive treatment with chemoprophylaxis for the prevention of malaria during pregnancy in Mali.

    PubMed

    Kayentao, Kassoum; Kodio, Mamoudou; Newman, Robert D; Maiga, Hamma; Doumtabe, Didier; Ongoiba, Aissata; Coulibaly, Drissa; Keita, Abdoul Salam; Maiga, Bouboucar; Mungai, Mary; Parise, Monica E; Doumbo, Ogobara

    2005-01-01

    Malaria during pregnancy contributes to maternal anemia and low birth weight. In East Africa, several studies have demonstrated that intermittent preventive treatment (IPT) with sulfadoxine-pyrimethamine (SP) is more efficacious than weekly chloroquine (CQ) chemoprophylaxis in preventing these adverse consequences. To our knowledge, there are no published trials evaluating IPT in West Africa. We undertook a randomized controlled trial of weekly CQ chemoprophylaxis, 2-dose IPT with CQ, and 2-dose IPT with SP; 1163 women were enrolled. In multivariate analyses, when compared with weekly CQ, IPT/SP was associated with a reduction in third-trimester anemia (adjusted odds ratio [AOR], 0.49; P<.001), placental parasitemia (AOR, 0.69; P=.04), and low birth weight (<2500 g) (AOR, 0.69; P=.04). The prevalence of placental infection remained unexpectedly high, even in the IPT/SP group (24.5%), possibly because of the intensity of seasonal transmission. There were no significant differences in stillbirths, spontaneous abortions, or neonatal deaths among the 3 groups. In Mali, IPT with SP appears more efficacious than weekly chloroquine chemoprophylaxis in preventing malaria during pregnancy. These data support World Health Organization recommendations to administer at least 2 doses of IPT during pregnancy. In intensely seasonal transmission settings in Mali, >2 doses may be required to prevent placental reinfection prior to delivery.

  16. Iron Status Predicts Malaria Risk in Malawian Preschool Children

    PubMed Central

    Jonker, Femkje A. M.; Calis, Job C. J.; van Hensbroek, Michael Boele; Phiri, Kamija; Geskus, Ronald B.; Brabin, Bernard J.; Leenstra, Tjalling

    2012-01-01

    Introduction Iron deficiency is highly prevalent in pre-school children in developing countries and an important health problem in sub-Saharan Africa. A debate exists on the possible protective effect of iron deficiency against malaria and other infections; yet consensus is lacking due to limited data. Recent studies have focused on the risks of iron supplementation but the effect of an individual's iron status on malaria risk remains unclear. Studies of iron status in areas with a high burden of infections often are exposed to bias. The aim of this study was to assess the predictive value of baseline iron status for malaria risk explicitly taking potential biases into account. Methods and materials We prospectively assessed the relationship between baseline iron deficiency (serum ferritin <30 µg/L) and malaria risk in a cohort of 727 Malawian preschool children during a year of follow-up. Data were analyzed using marginal structural Cox regression models and confounders were selected using causal graph theory. Sensitivity of results to bias resulting from misclassification of iron status by concurrent inflammation and to bias from unmeasured confounding were assessed using modern causal inference methods. Results and Conclusions The overall incidence of malaria parasitemia and clinical malaria was 1.9 (95% CI 1.8–2.0) and 0.7 (95% CI 0.6–0.8) events per person-year, respectively. Children with iron deficiency at baseline had a lower incidence of malaria parasitemia and clinical malaria during a year of follow-up; adjusted hazard ratio's 0.55 (95%-CI:0.41–0.74) and 0.49 (95%-CI:0.33–0.73), respectively. Our results suggest that iron deficiency protects against malaria parasitemia and clinical malaria in young children. Therefore the clinical importance of treating iron deficiency in a pre-school child should be weighed carefully against potential harms. In malaria endemic areas treatment of iron deficiency in children requires sustained prevention of

  17. Persistent Parasitism: The Adaptive Biology of Malariae and Ovale Malaria.

    PubMed

    Sutherland, Colin J

    2016-10-01

    Plasmodium malariae causes malaria in humans throughout the tropics and subtropics. Plasmodium ovale curtisi and Plasmodium ovale wallikeri are sympatric sibling species common in sub-Saharan Africa and also found in Oceania and Asia. Although rarely identified as the cause of malaria cases in endemic countries, PCR detection has confirmed all three parasite species to be more prevalent, and persistent, than previously thought. Chronic, low-density, multispecies asymptomatic infection is a successful biological adaptation by these Plasmodium spp., a pattern also observed among malaria parasites of wild primates. Current whole-genome analyses are illuminating the species barrier separating the ovale parasite species and reveal substantial expansion of subtelomeric gene families. The evidence for and against a quiescent pre-erythrocytic form of P. malariae is reviewed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. [Urban malaria in Yaounde (Cameroon). 2. Entomologic study in 2 suburban districts].

    PubMed

    Fondjo, E; Robert, V; Le Goff, G; Toto, J C; Carnevale, P

    1992-01-01

    A one year entomological survey was carried out to precise the malaria vectors and the malaria transmission in Yaounde, the Cameroon capital (800,000 inhabitants). The study was done in two districts not yet fully urbanized: Nkol Bikok and Nkol Bisson. The latter is located at the periphery and has a pool. Anopheles gambiae was the only human malaria vector. Its agressivity for man depended on the urbanization of the district. Annual man biting rate was 284 in Nkol Bikok and 1,813 in Nkol Bisson. The densities were maximum in May-June and in October-November, corresponding to the end of the short and long rainy seasons. The presence of A. gambiae was permanent except in August-September in Nkol Bikok. In Nkol Bisson the density was higher in the houses near the pool. The yearly inoculation rate (h) was 14 in Nkol Bikok and 30 in Nkol Bisson. The vectorial transmission was observed in may in Nkol Bikok and during four months (June, August, January, February) in Nkol Bisson. These entomological data showed clearly that malaria transmission actually occurred in Yaounde and that the probability to receive at least one infected anopheline bite per year was very near to 1 for inhabitants unprotected against mosquito bites.

  19. A marked decline in the incidence of malaria in a remote region of Malaita, Solomon Islands, 2008 to 2013.

    PubMed

    Oloifana-Polosovai, Hellen; Gwala, John; Harrington, Humpress; Massey, Peter D; Ribeyro, Elmer; Flores, Angelica; Speare, Christopher; McBride, Edwin; MacLaren, David; Speare, Rick

    2014-01-01

    Atoifi Adventist Hospital (AAH), Solomon Islands, the only hospital in the East Kwaio region. To use routine surveillance data to assess the trends in malaria from 2008 to 2013. Descriptive study of records from (1) AAH laboratory malaria records; (2) admissions to AAH for malaria; and (3) malaria treatments from outpatient records. AAH examined 35 608 blood films and diagnosed malaria in 4443 samples comprised of 2667 Plasmodium falciparum (Pf) and 1776 Plasmodium vivax (Pv). Between 2008 and 2013 the total number of malaria cases detected annually decreased by 86.5%, Pf by 96.7% and Pv by 65.3%. The ratio of Pf to Pv reversed in 2010 from 2.06 in 2008 to 0.19 in 2013. For 2013, Pf showed a seasonal pattern with no cases diagnosed in four months. From 2008 to 2013 admissions in AAH for malaria declined by 90.8%, and malaria mortality fell from 54 per 100 000 to zero. The annual parasite index (API) for 2008 and 2013 was 195 and 24, respectively. Village API has identified a group of villages with higher malaria incidence rates. The decline in malaria cases in the AAH catchment area has been spectacular, particularly for Pf. This was supported by three sources of hospital surveillance data (laboratory, admissions and treatment records). The decline was associated with the use of artemisinin-based combined therapy and improved vertical social capital between the AAH and the local communities. Calculating village-specific API has highlighted which villages need to be targeted by the AAH malaria control team.

  20. Potential malaria outbreak in Germany due to climate warming: risk modelling based on temperature measurements and regional climate models.

    PubMed

    Holy, Marcel; Schmidt, Gunther; Schröder, Winfried

    2011-03-01

    Climate warming can change the geographic distribution and intensity of the transmission of vector-borne diseases such as malaria. The transmitted parasites usually benefit from increased temperatures as both their reproduction and development are accelerated. Lower Saxony (northwestern Germany) has been a malaria region until the 1950s, and the vector species are still present throughout Germany. This gave reason to investigate whether a new autochthonous transmission could take place if the malaria pathogen was introduced again in Germany. The spatial distribution of potential temperature-driven malaria transmissions was investigated using the basic reproduction rate (R (0)) to model and geostatistically map areas at risk of an outbreak of tertian malaria based on measured (1961-1990, 1991-2007) and predicted (1991-2020, 2021-2050, 2051-2080) monthly mean air temperature data. From the computations, maps were derived showing that during the period 1961-1990, the seasonal transmission gate ranges from 0 to 4 months and then expands up to 5 months in the period 1991-2007. For the projection of future trends, the regional climate models REMO and WettReg were used each with two different scenarios (A1B and B1). Both modelling approaches resulted in prolonged seasonal transmission gates in the future, enabling malaria transmissions up to 6 months in the climate reference period 2051-2080 (REMO, scenario A1B). The presented risk prognosis is based on the R (0) formula for the estimation of the reproduction of the malaria pathogen Plasmodium vivax. The presented model focuses on mean air temperatures; thus, other driving factors like the distribution of water bodies (breeding habitats) or population density are not integrated. Nevertheless, the modelling presented in this study can help identify areas at risk and initiate prevention. The described findings may also help in the investigation and assessment of related diseases caused by temperature-dependent vectors

  1. Assessing the social vulnerability to malaria in Rwanda.

    PubMed

    Bizimana, Jean-Pierre; Twarabamenye, Emmanuel; Kienberger, Stefan

    2015-01-07

    Since 2004, malaria interventions in Rwanda have resulted in substantial decline of malaria incidence. However, this achievement is fragile as potentials for local malaria transmissions remain. The risk of getting malaria infection is partially explained by social conditions of vulnerable populations. Since vulnerability to malaria is both influenced by social and environmental factors, its complexity cannot be measured by a single value. The aim of this paper is, therefore, to apply a composite indicator approach for assessing social vulnerability to malaria in Rwanda. This assessment informs the decision-makers in targeting malaria interventions and allocating limited resources to reduce malaria burden in Rwanda. A literature review was used to conceptualize the social vulnerability to malaria and to select the appropriate vulnerability indicators. Indicators used in the index creation were classified into susceptibility and lack of resilience vulnerability domains. The main steps followed include selection of indicators and datasets, imputation of missing values, descriptive statistics, normalization and weighting of indicators, local sensitivity analysis and indicators aggregation. Correlation analysis helped to empirically evidence the association between the indicators and malaria incidence. The high values of social vulnerability to malaria are found in Gicumbi, Rusizi, Nyaruguru and Gisagara, and low values in Muhanga, Nyarugenge, Kicukiro and Nyanza. The most influential susceptibility indicators to increase malaria are population change (r = 0.729), average number of persons per bedroom (r = 0.531), number of households affected by droughts and famines (r = 0.591), and area used for irrigation (r = 0.611). The bed net ownership (r = -0.398) and poor housing wall materials (0.378) are the lack of resilience indicators that significantly correlate with malaria incidence. The developed composite index social vulnerability to malaria

  2. Seasonal Variation of High-latitude Geomagnetic Activity Revisited

    NASA Astrophysics Data System (ADS)

    Tanskanen, E.; Hynönen, R.; Mursula, K.

    2017-12-01

    The coupling of the solar wind and auroral region has been examined by using westward electrojet indices since 1966 - 2014. We have studied the seasonal variation of high-latitude geomagnetic activity in individual years for solar cycles 20 - 24. The classical two-equinox activity pattern in geomagnetic activity was seen in multi-year averages but it was found in less than one third of the years examined. We found that the seasonal variation of high-latitude geomagnetic activity closely follows the solar wind speed. While the mechanisms leading to the two-equinox maxima pattern are in operation, the long-term change of solar wind speed tends to mask the effect of these mechanisms for individual years. We identified the most active and the second most active season based on westward electrojet indices AL (1966 - 2014) and IL (1995 - 2014). The annual maximum is found at either equinox in 2/3 and at either solstice in 1/3 of the years examined. Large cycle-to-cycle variation is found in the seasonal pattern: equinox maxima are more common during cycles 21 and 22 than in cycles 23 or 24. An exceptionally long winter dominance in high-latitude activity and solar wind speed is seen in the declining phase of cycle 23, after the appearance of the long-lasting low-latitude coronal hole.

  3. Malaria Surveillance - United States, 2015.

    PubMed

    Mace, Kimberly E; Arguin, Paul M; Tan, Kathrine R

    2018-05-04

    polymorphisms associated with resistance to pyrimethamine were identified in 132 (86.3%), to sulfadoxine in 112 (73.7%), to chloroquine in 48 (31.4%), to mefloquine in six (4.3%), and to artemisinin in one (<1%), and no sample had resistance to atovaquone. Completion of data elements on the malaria case report form decreased from 2014 to 2015 and remains low, with 24.2% of case report forms missing at least one key element (species, travel history, and resident status). The decrease in malaria cases from 2014 to 2015 is associated with a decrease in imported cases from West Africa. This finding might be related to altered or curtailed travel to Ebola-affected countries in in this region. Despite progress in reducing malaria worldwide, the disease remains endemic in many regions, and the use of appropriate prevention measures by travelers is still inadequate. The best way to prevent malaria is to take chemoprophylaxis medication during travel to a country where malaria is endemic. As demonstrated by the U.S. military during the Ebola response, use of chemoprophylaxis and other protection measures is possible in stressful environments, and this can prevent malaria, especially P. falciparum, even in high transmission areas. Detailed recommendations for preventing malaria are available to the general public at the CDC website (https://www.cdc.gov/malaria/travelers/drugs.html). Malaria infections can be fatal if not diagnosed and treated promptly with antimalarial medications appropriate for the patient's age and medical history, the likely country of malaria acquisition, and previous use of antimalarial chemoprophylaxis. Health care providers should consult the CDC Guidelines for Treatment of Malaria in the United States and contact the CDC's Malaria Hotline for case management advice when needed. Malaria treatment recommendations are available online (https://www.cdc.gov/malaria/diagnosis_treatment) and from the Malaria Hotline (770-488-7788 or toll-free at 855-856-4713). Persons

  4. Effect of Early Detection and Treatment on Malaria Related Maternal Mortality on the North-Western Border of Thailand 1986–2010

    PubMed Central

    McGready, Rose; Boel, Machteld; Rijken, Marcus J.; Ashley, Elizabeth A.; Cho, Thein; Moo, Oh; Paw, Moo Koh; Pimanpanarak, Mupawjay; Hkirijareon, Lily; Carrara, Verena I.; Lwin, Khin Maung; Phyo, Aung Pyae; Turner, Claudia; Chu, Cindy S.; van Vugt, Michele; Price, Richard N.; Luxemburger, Christine; ter Kuile, Feiko O.; Tan, Saw Oo; Proux, Stephane; Singhasivanon, Pratap; White, Nicholas J.; Nosten, François H.

    2012-01-01

    Introduction Maternal mortality is high in developing countries, but there are few data in high-risk groups such as migrants and refugees in malaria-endemic areas. Trends in maternal mortality were followed over 25 years in antenatal clinics prospectively established in an area with low seasonal transmission on the north-western border of Thailand. Methods and Findings All medical records from women who attended the Shoklo Malaria Research Unit antenatal clinics from 12th May 1986 to 31st December 2010 were reviewed, and maternal death records were analyzed for causality. There were 71 pregnancy-related deaths recorded amongst 50,981 women who attended antenatal care at least once. Three were suicide and excluded from the analysis as incidental deaths. The estimated maternal mortality ratio (MMR) overall was 184 (95%CI 150–230) per 100,000 live births. In camps for displaced persons there has been a six-fold decline in the MMR from 499 (95%CI 200–780) in 1986–90 to 79 (40–170) in 2006–10, p<0.05. In migrants from adjacent Myanmar the decline in MMR was less significant: 588 (100–3260) to 252 (150–430) from 1996–2000 to 2006–2010. Mortality from P.falciparum malaria in pregnancy dropped sharply with the introduction of systematic screening and treatment and continued to decline with the reduction in the incidence of malaria in the communities. P.vivax was not a cause of maternal death in this population. Infection (non-puerperal sepsis and P.falciparum malaria) accounted for 39.7 (27/68) % of all deaths. Conclusions Frequent antenatal clinic screening allows early detection and treatment of falciparum malaria and substantially reduces maternal mortality from P.falciparum malaria. No significant decline has been observed in deaths from sepsis or other causes in refugee and migrant women on the Thai–Myanmar border. PMID:22815732

  5. Long-term impact of childhood malaria infection on school performance among school children in a malaria endemic area along the Thai-Myanmar border.

    PubMed

    Vorasan, Nutchavadee; Pan-Ngum, Wirichada; Jittamala, Podjanee; Maneeboonyang, Wanchai; Rukmanee, Prasert; Lawpoolsri, Saranath

    2015-10-09

    Children represent a high-risk group for malaria worldwide. Among people in Thailand who have malaria during childhood, some may have multiple malaria attacks during their lifetime. Malaria may affect neurological cognition in children, resulting in short-term impairment of memory and language functions. However, little is known regarding the long-term effects of malaria infection on cognitive function. This study examines the long-term impact of malaria infection on school performance among school children living in a malaria-endemic area along the Thai-Myanmar border. A retrospective cohort study was conducted among school children aged 6-17 years in a primary-secondary school of a sub-district of Ratchaburi Province, Thailand. History of childhood malaria infection was obtained from the medical records of the sole malaria clinic in the area. School performance was assessed by using scores for the subjects Thai Language and Mathematics in 2014. Other variables, such as demographic characteristics, perinatal history, nutritional status, and emotional intelligence, were also documented. A total of 457 students were included, 135 (30 %) of whom had a history of uncomplicated malaria infection. About half of the malaria-infected children had suffered infection before the age of four years. The mean scores for both Mathematics and Thai Language decreased in relation to the increasing number of malaria attacks. Most students had their last malaria episode more than two years previously. The mean scores were not associated with duration since the last malaria attack. The association between malaria infection and school performance was not significant after adjusting for potential confounders, including gender, school absenteeism over a semester term, and emotional intelligence. This study characterizes the long-term consequences of uncomplicated malaria disease during childhood. School performance was not associated with a history of malaria infection, considering that

  6. Clinical Malaria Transmission Trends and Its Association with Climatic Variables in Tubu Village, Botswana: A Retrospective Analysis.

    PubMed

    Chirebvu, Elijah; Chimbari, Moses John; Ngwenya, Barbara Ntombi; Sartorius, Benn

    2016-01-01

    Good knowledge on the interactions between climatic variables and malaria can be very useful for predicting outbreaks and preparedness interventions. We investigated clinical malaria transmission patterns and its temporal relationship with climatic variables in Tubu village, Botswana. A 5-year retrospective time series data analysis was conducted to determine the transmission patterns of clinical malaria cases at Tubu Health Post and its relationship with rainfall, flood discharge, flood extent, mean minimum, maximum and average temperatures. Data was obtained from clinical records and respective institutions for the period July 2005 to June 2010, presented graphically and analysed using the Univariate ANOVA and Pearson cross-correlation coefficient tests. Peak malaria season occurred between October and May with the highest cumulative incidence of clinical malaria cases being recorded in February. Most of the cases were individuals aged >5 years. Associations between the incidence of clinical malaria cases and several factors were strong at lag periods of 1 month; rainfall (r = 0.417), mean minimum temperature (r = 0.537), mean average temperature (r = 0.493); and at lag period of 6 months for flood extent (r = 0.467) and zero month for flood discharge (r = 0.497). The effect of mean maximum temperature was strongest at 2-month lag period (r = 0.328). Although malaria transmission patterns varied from year to year the trends were similar to those observed in sub-Saharan Africa. Age group >5 years experienced the greatest burden of clinical malaria probably due to the effects of the national malaria elimination programme. Rainfall, flood discharge and extent, mean minimum and mean average temperatures showed some correlation with the incidence of clinical malaria cases.

  7. Modelling the Incidence of Plasmodium vivax and Plasmodium falciparum Malaria in Afghanistan 2006–2009

    PubMed Central

    Alegana, Victor A.; Wright, Jim A.; Nahzat, Sami M.; Butt, Waqar; Sediqi, Amad W.; Habib, Naeem; Snow, Robert W.; Atkinson, Peter M.; Noor, Abdisalan M.

    2014-01-01

    Background Identifying areas that support high malaria risks and where populations lack access to health care is central to reducing the burden in Afghanistan. This study investigated the incidence of Plasmodium vivax and Plasmodium falciparum using routine data to help focus malaria interventions. Methods To estimate incidence, the study modelled utilisation of the public health sector using fever treatment data from the 2012 national Malaria Indicator Survey. A probabilistic measure of attendance was applied to population density metrics to define the proportion of the population within catchment of a public health facility. Malaria data were used in a Bayesian spatio-temporal conditional-autoregressive model with ecological or environmental covariates, to examine the spatial and temporal variation of incidence. Findings From the analysis of healthcare utilisation, over 80% of the population was within 2 hours’ travel of the nearest public health facility, while 64.4% were within 30 minutes’ travel. The mean incidence of P. vivax in 2009 was 5.4 (95% Crl 3.2–9.2) cases per 1000 population compared to 1.2 (95% Crl 0.4–2.9) cases per 1000 population for P. falciparum. P. vivax peaked in August while P. falciparum peaked in November. 32% of the estimated 30.5 million people lived in regions where annual incidence was at least 1 case per 1,000 population of P. vivax; 23.7% of the population lived in areas where annual P. falciparum case incidence was at least 1 per 1000. Conclusion This study showed how routine data can be combined with household survey data to model malaria incidence. The incidence of both P. vivax and P. falciparum in Afghanistan remain low but the co-distribution of both parasites and the lag in their peak season provides challenges to malaria control in Afghanistan. Future improved case definition to determine levels of imported risks may be useful for the elimination ambitions in Afghanistan. PMID:25033452

  8. Forecasting Non-Stationary Diarrhea, Acute Respiratory Infection, and Malaria Time-Series in Niono, Mali

    PubMed Central

    Medina, Daniel C.; Findley, Sally E.; Guindo, Boubacar; Doumbia, Seydou

    2007-01-01

    Background Much of the developing world, particularly sub-Saharan Africa, exhibits high levels of morbidity and mortality associated with diarrhea, acute respiratory infection, and malaria. With the increasing awareness that the aforementioned infectious diseases impose an enormous burden on developing countries, public health programs therein could benefit from parsimonious general-purpose forecasting methods to enhance infectious disease intervention. Unfortunately, these disease time-series often i) suffer from non-stationarity; ii) exhibit large inter-annual plus seasonal fluctuations; and, iii) require disease-specific tailoring of forecasting methods. Methodology/Principal Findings In this longitudinal retrospective (01/1996–06/2004) investigation, diarrhea, acute respiratory infection of the lower tract, and malaria consultation time-series are fitted with a general-purpose econometric method, namely the multiplicative Holt-Winters, to produce contemporaneous on-line forecasts for the district of Niono, Mali. This method accommodates seasonal, as well as inter-annual, fluctuations and produces reasonably accurate median 2- and 3-month horizon forecasts for these non-stationary time-series, i.e., 92% of the 24 time-series forecasts generated (2 forecast horizons, 3 diseases, and 4 age categories = 24 time-series forecasts) have mean absolute percentage errors circa 25%. Conclusions/Significance The multiplicative Holt-Winters forecasting method: i) performs well across diseases with dramatically distinct transmission modes and hence it is a strong general-purpose forecasting method candidate for non-stationary epidemiological time-series; ii) obliquely captures prior non-linear interactions between climate and the aforementioned disease dynamics thus, obviating the need for more complex disease-specific climate-based parametric forecasting methods in the district of Niono; furthermore, iii) readily decomposes time-series into seasonal components thereby

  9. Forecasting non-stationary diarrhea, acute respiratory infection, and malaria time-series in Niono, Mali.

    PubMed

    Medina, Daniel C; Findley, Sally E; Guindo, Boubacar; Doumbia, Seydou

    2007-11-21

    Much of the developing world, particularly sub-Saharan Africa, exhibits high levels of morbidity and mortality associated with diarrhea, acute respiratory infection, and malaria. With the increasing awareness that the aforementioned infectious diseases impose an enormous burden on developing countries, public health programs therein could benefit from parsimonious general-purpose forecasting methods to enhance infectious disease intervention. Unfortunately, these disease time-series often i) suffer from non-stationarity; ii) exhibit large inter-annual plus seasonal fluctuations; and, iii) require disease-specific tailoring of forecasting methods. In this longitudinal retrospective (01/1996-06/2004) investigation, diarrhea, acute respiratory infection of the lower tract, and malaria consultation time-series are fitted with a general-purpose econometric method, namely the multiplicative Holt-Winters, to produce contemporaneous on-line forecasts for the district of Niono, Mali. This method accommodates seasonal, as well as inter-annual, fluctuations and produces reasonably accurate median 2- and 3-month horizon forecasts for these non-stationary time-series, i.e., 92% of the 24 time-series forecasts generated (2 forecast horizons, 3 diseases, and 4 age categories = 24 time-series forecasts) have mean absolute percentage errors circa 25%. The multiplicative Holt-Winters forecasting method: i) performs well across diseases with dramatically distinct transmission modes and hence it is a strong general-purpose forecasting method candidate for non-stationary epidemiological time-series; ii) obliquely captures prior non-linear interactions between climate and the aforementioned disease dynamics thus, obviating the need for more complex disease-specific climate-based parametric forecasting methods in the district of Niono; furthermore, iii) readily decomposes time-series into seasonal components thereby potentially assisting with programming of public health interventions

  10. Spatial trend, environmental and socioeconomic factors associated with malaria prevalence in Chennai.

    PubMed

    Kumar, Divya Subash; Andimuthu, Ramachandran; Rajan, Rupa; Venkatesan, Mada Suresh

    2014-01-08

    Urban malaria is considered to be one of the most significant infectious diseases due to varied socioeconomic problems especially in tropical countries like India. Among the south Indian cities, Chennai is endemic for malaria. The present study aimed to identify the hot spots of malaria prevalence and the relationship with other factors in Chennai during 2005-2011. Data on zone-wise and ward-wise monthly malaria positive cases were collected from the Vector Control Office, Chennai Corporation, for the year 2005 to 2011 and verified using field data. This data was used to calculate the prevalence among thousand people. Hotspot analysis for all the years in the study period was done to observe the spatial trend. Association of environmental factors like altitude, population density and climatic variables was assessed using ArcGIS 9.3 version and SPSS 11.5. Pearson's correlation of climate parameters at 95% and 99% was considered to be the most significant. Social parameters of the highly malaria prone region were evaluated through a structured random questionnaire field survey. Among the ten zones of Chennai Corporation, Basin Bridge zone showed high malaria prevalence during the study period. The 'hotspot' analysis of malaria prevalence showed the emergence of newer hotspots in the Adyar zone. These hotspots of high prevalence are places of moderately populated and moderately elevated areas. The prevalence of malaria in Chennai could be due to rainfall and temperature, as there is a significant correlation with monthly rainfall and one month lag of monthly mean temperature. Further it has been observed that the socioeconomic status of people in the malaria hotspot regions and unhygienic living conditions were likely to aggravate the malaria problem. Malaria hotspots will be the best method to use for targeting malaria control activities. Proper awareness and periodical monitoring of malaria is one of the quintessential steps to control this infectious disease. It

  11. Malaria ecotypes and stratification.

    PubMed

    Schapira, Allan; Boutsika, Konstantina

    2012-01-01

    To deal with the variability of malaria, control programmes need to stratify their malaria problem into a number of smaller units. Such stratification may be based on the epidemiology of malaria or on its determinants such as ecology. An ecotype classification was developed by the World Health Organization (WHO) around 1990, and it is time to assess its usefulness for current malaria control as well as for malaria modelling on the basis of published research. Journal and grey literature was searched for articles on malaria or Anopheles combined with ecology or stratification. It was found that all malaria in the world today could be assigned to one or more of the following ecotypes: savanna, plains and valleys; forest and forest fringe; foothill; mountain fringe and northern and southern fringes; desert fringe; coastal and urban. However, some areas are in transitional or mixed zones; furthermore, the implications of any ecotype depend on the biogeographical region, sometimes subregion, and finally, the knowledge on physiography needs to be supplemented by local information on natural, anthropic and health system processes including malaria control. Ecotyping can therefore not be seen as a shortcut to determine control interventions, but rather as a framework to supplement available epidemiological and entomological data so as to assess malaria situations at the local level, think through the particular risks and opportunities and reinforce intersectoral action. With these caveats, it does however emerge that several ecotypic distinctions are well defined and have relatively constant implications for control within certain biogeographic regions. Forest environments in the Indo-malay and the Neotropics are, with a few exceptions, associated with much higher malaria risk than in adjacent areas; the vectors are difficult to control, and the anthropic factors also often converge to impose constraints. Urban malaria in Africa is associated with lower risk than savanna

  12. Malaria epidemiology in the Pakaanóva (Wari') Indians, Brazilian Amazon.

    PubMed

    Sá, D Ribeiro; Souza-Santos, R; Escobar, A L; Coimbra, C E A

    2005-04-01

    This paper reports the results of a longitudinal study of malaria incidence (1998-2002) among the Pakaanóva (Wari') Indians, Brazilian southwest Amazon region, based on data routinely gathered by Brazilian National Health Foundation outposts network in conjunction with the Indian health service. Malaria is present yearlong in the Pakaanóva. Statistically significant differences between seasons or months were not noticed. A total of 1933 cases of malaria were diagnosed in the Pakaanóva during this period. The P. vivax / P. falciparum ratio was 3.4. P. vivax accounted for 76.5% of the cases. Infections with P. malariae were not recorded. Incidence rates did not differ by sex. Most malaria cases were reported in children < 10 years old (45%). About one fourth of all cases were diagnosed on women 10-40 years old. An entomological survey carried out at two Pakaanóva villages yielded a total of 3.232 specimens of anophelines. Anopheles darlingi predominated (94.4%). Most specimens were captured outdoors and peak activity hours were noted at early evening and just before sunrise. It was observed that Pakaanóva cultural practices may facilitate outdoor exposure of individuals of both sexes and all age groups during peak hours of mosquito activities (e.g., coming to the river early in the morning for bathing or to draw water, fishing, engaging in hunting camps, etc). In a context in which anophelines are ubiquitous and predominantly exophilic, and humans of both sexes and all ages are prone to outdoor activities during peak mosquito activity hours, malaria is likely to remain endemic in the Pakaanóva, thus requiring the development of alternative control strategies that are culturally and ecologically sensitive.

  13. A realistic host-vector transmission model for describing malaria prevalence pattern.

    PubMed

    Mandal, Sandip; Sinha, Somdatta; Sarkar, Ram Rup

    2013-12-01

    Malaria continues to be a major public health concern all over the world even after effective control policies have been employed, and considerable understanding of the disease biology have been attained, from both the experimental and modelling perspective. Interactions between different general and local processes, such as dependence on age and immunity of the human host, variations of temperature and rainfall in tropical and sub-tropical areas, and continued presence of asymptomatic infections, regulate the host-vector interactions, and are responsible for the continuing disease prevalence pattern.In this paper, a general mathematical model of malaria transmission is developed considering short and long-term age-dependent immunity of human host and its interaction with pathogen-infected mosquito vector. The model is studied analytically and numerically to understand the role of different parameters related to mosquitoes and humans. To validate the model with a disease prevalence pattern in a particular region, real epidemiological data from the north-eastern part of India was used, and the effect of seasonal variation in mosquito density was modelled based on local climactic data. The model developed based on general features of host-vector interactions, and modified simply incorporating local environmental factors with minimal changes, can successfully explain the disease transmission process in the region. This provides a general approach toward modelling malaria that can be adapted to control future outbreaks of malaria.

  14. High Mobility and Low Use of Malaria Preventive Measures among the Jarai Male Youth along the Cambodia–Vietnam Border

    PubMed Central

    Gryseels, Charlotte; Peeters Grietens, Koen; Dierickx, Susan; Xuan, Xa Nguyen; Uk, Sambunny; Bannister-Tyrrell, Melanie; Trienekens, Suzan; Ribera, Joan Muela; Hausmann-Muela, Susanna; Gerrets, René; D'Alessandro, Umberto; Sochantha, Tho; Coosemans, Marc; Erhart, Annette

    2015-01-01

    Malaria control along the Vietnam–Cambodia border presents a challenge for both countries' malaria elimination targets as the region is forested, inhabited by ethnic minority populations, and potentially characterized by early and outdoor malaria transmission. A mixed methods study assessed the vulnerability to malaria among the Jarai population living on both sides of the border in the provinces of Ratanakiri (Cambodia) and Gia Lai (Vietnam). A qualitative study generated preliminary hypotheses that were quantified in two surveys, one targeting youth (N = 498) and the other household leaders (N = 449). Jarai male youth, especially in Cambodia, had lower uptake of preventive measures (57.4%) and more often stayed overnight in the deep forest (35.8%) compared with the female youth and the adult population. Among male youth, a high-risk subgroup was identified that regularly slept at friends' homes or outdoors, who had fewer bed nets (32.5%) that were torn more often (77.8%). The vulnerability of Jarai youth to malaria could be attributed to the transitional character of youth itself, implying less fixed sleeping arrangements in nonpermanent spaces or non-bed sites. Additional tools such as long-lasting hammock nets could be suitable as they are in line with current practices. PMID:26283747

  15. Investigation of malaria prevalence at National Thermal Power Corporation, Shaktinagar, Sonbhadra District (Uttar Pradesh), India.

    PubMed

    Dua, V K; Nanda, N; Gupta, N C; Kar, P K; Subbarao, S K; Sharma, V P

    2000-12-01

    Malaria in industrial complexes is promoted by extensive mosquitogenic potential generated by excavations and importation of parasite through migratory labor. The National Thermal Power Corporation (NTPC), Shaktinagar, Sonbhadra district was surveyed for malariogenic conditions from 1994 to 1996. The major mosquito breeding sites were drains, storm-water drains, lakes, outside tanks, overhead tanks, sluice-valve chambers, ornamental tanks, wells, pit wells and water reservoirs, etc. Anopheles culicifacies was the major vector of malaria in this area. Sibling species identification of An. culicifacies revealed that species C predominated during the transmission season and responsible to transmit malaria. Insecticide susceptibility tests against An. culicifacies sl showed that An.culicifacies population was 100% susceptible to malathion, fenitrothorn and deltamethrin while it was found 44% resistant to DDT. The malaria cases recorded in 1994, 1995 and 1996 were 847, 590 and 409 respectively. In vitro study on P. falciparum cases showed that 41, 70, 50% of the isolates tested were resistant to chloroquine in 1994, 1995 and 1996 respectively while an in vivo follow-up study showed 20-30% P. falciparum cases resistant to chloroquine. An integrated approach involving alternate vector control measures along with judicious use of insecticides has been suggested to bring down malaria in industrial complexes.

  16. A comprehensive assessment of the malaria microscopy system of Aceh, Indonesia, in preparation for malaria elimination.

    PubMed

    Ekawati, Lenny L; Herdiana, Herdiana; Sumiwi, Maria E; Barussanah, Cut; Ainun, Cut; Sabri, Sabri; Maulana, Teuku; Rahmadyani, Rahmadyani; Maneh, Cut; Yani, Muhammad; Valenti, Paola; Elyazar, Iqbal R F; Hawley, William A

    2015-06-11

    The Health Office of Aceh aims to eliminate malaria from Aceh Province, Indonesia by 2015. Malaria was formerly common in Aceh (population 4.5 million), but has declined dramatically in recent years consequent to post-tsunami control efforts. Successful elimination will depend upon rapid and accurate diagnosis and case follow-up at community level. A prerequisite to this is widespread coverage of high quality malaria diagnosis. This study describes the results of a comprehensive assessment of the malaria diagnostic capacity in Aceh as the province moves towards malaria elimination. The study was conducted in 23 districts in Aceh from October 2010 to July 2011. Six types of questionnaires were used to collect data on competency of microscopists and laboratory capacity. Standardized slides were used to evaluate the proficiency of all microscopists. In addition, site visits to 17 primary health centres (PHC) assessed diagnostic practice and logistics capacity. Five hundred and seventy four malaria microscopists have been officially registered and assigned to duty in the 23 districts in Aceh Province. They work in 345 laboratories, predominantly in PHCs (69 %) and hospitals (25 %). Three laboratories were evaluated as adequate for all 30 elements, while 29 laboratories were adequate for less than five of 30 elements. Standardized proficiency tests showed that 413 microscopists were at basic (in training) level, with 10 advanced and 9 reference level. No microscopist achieved expert level. Neither the province nor any of Aceh's districts has a standardized inventory and logistics database for malaria diagnostics, nor did any of the surveyed laboratories operate a quality assurance programme for either microscopy or rapid diagnostic tests. The study highlights the importance of careful assessment of diagnostic capacity when embarking upon a large-scale malaria elimination programme. Aceh's laboratories have minimal infrastructure with nearly all microscopists still in

  17. Pattern and predictors of neurological morbidities among childhood cerebral malaria survivors in central Sudan.

    PubMed

    Mergani, Adil; Khamis, Ammar H; Fatih Hashim, E L; Gumma, Mohamed; Awadelseed, Bella; Elwali, Nasr Eldin M A; Haboor, Ali Babikir

    2015-09-01

    Cerebral malaria is considered a leading cause of neuro-disability in sub-Saharan Africa among children and about 25% of survivors have long-term neurological and cognitive deficits or epilepsy. Their development was reported to be associated with protracted seizures, deep and prolonged coma. The study was aimed to determine the discharge pattern and to identify potential and informative predictors of neurological sequelae at discharge, complicating childhood cerebral malaria in central Sudan. A cross-sectional prospective study was carried out during malaria transmission seasons from 2000 to 2004 in Wad Medani, Sinnar and Singa hospitals, central Sudan. Children suspected of having cerebral malaria were examined and diagnosed by a Pediatrician for clinical, laboratory findings and any neurological complications. Univariate and multiple regression model analysis were performed to evaluate the association of clinical and laboratory findings with occurrence of neurological complications using the SPSS. Out of 940 examined children, only 409 were diagnosed with cerebral malaria with a mean age of 6.1 ± 3.3 yr. The mortality rate associated with the study was 14.2% (58) and 18.2% (64) of survivors (351) had neurological sequelae. Abnormal posture, either decerebration or decortication, focal convulsion and coma duration of >48 h were significant predictors for surviving from cerebral malaria with a neurological sequelae in children from central Sudan by Univariate analysis. Multiple logistic regression model fitting these variables, revealed 39.6% sensitivity for prediction of childhood cerebral malaria survivors with neurological sequelae (R² = 0.396; p=0.001). Neurological sequelae are common due to childhood cerebral malaria in central Sudan. Their prediction at admission, clinical presentation and laboratory findings may guide clinical intervention and proper management that may decrease morbidity and improve CM consequences.

  18. Water resources implications of integrating malaria control into the operation of an Ethiopian dam

    NASA Astrophysics Data System (ADS)

    Reis, Julia; Culver, Teresa B.; McCartney, Matthew; Lautze, Jonathan; Kibret, Solomon

    2011-09-01

    This paper investigates the water resources implications of using a method of hydrological control to reduce malaria around the Koka reservoir in central Ethiopia. This method is based on recent findings that malaria is transmitted from the shoreline of the Koka reservoir, and on a similar method that was used to control malaria some 80 yr ago in the United States. To assess the feasibility of implementing hydrological control at Koka, we considered the potential impact of the modified management regime on the benefits derived from current uses of the reservoir water (i.e., hydropower, irrigation, flood control, water supply, and downstream environmental flows). We used the HEC-ResSim model to simulate lowering the reservoir by a rate designed to disrupt larval development, which is expected to reduce the abundance of adult mosquito vectors and therefore reduce malaria transmission during the season in which transmission of the disease peaks. A comparison was made of major reservoir uses with and without the malaria control measure. In the 26-yr simulation, application of the malaria control measure increased total average annual electricity generation from 87.6 GWh × y-1 to 92.2 GWh × y-1 (i.e., a 5.3% increase) but resulted in a small decline in firm power generation (i.e., guaranteed at 99.5% reliability) from 4.16 MW to 4.15 MW (i.e., a 0.2% decrease). Application of the malaria control measure did not impact the ability of the reservoir to meet downstream irrigation demand and reduced the number of days of downstream flooding from 28 to 24 d. These results indicate that targeted use of hydrological control for malaria vector management could be undertaken without sacrificing the key benefits of reservoir operation.

  19. Re-imagining malaria--a platform for reflections to widen horizons in malaria control.

    PubMed

    Hausmann-Muela, Susanna; Eckl, Julian

    2015-04-24

    Ongoing political-economic discussions that take stock of social and societal determinants of health present an opportunity for productive dialogue on why current approaches to malaria control and elimination need to be broadened, and how this may be accomplished. They invite us, for example, to look beyond malaria as a disease, to appreciate the experiences of malaria-afflicted populations, to transcend techno-centric approaches, to investigate social conflicts around malaria, to give voice to the communities engaged in bottom-up approaches, and to revisit lessons learned in the past. While contributions from all disciplines are invited to this discussion, social scientists are particularly encouraged to participate. They have struggled in the past to find an appropriate platform within the malaria community that provides them the opportunity to address researchers from other disciplines, malaria practitioners, and policy makers. The Malaria Journal's new thematic series on 're-imagining malaria' offers them this opportunity. The goal of the series is to encourage transdisciplinary thinking, to stimulate discussion, to promote constructive criticism, and to gather overlooked experiences that help to reflect on implicit assumptions. Overall it aims at widening horizons in malaria control.

  20. Progress towards malaria control targets in relation to national malaria programme funding

    PubMed Central

    2013-01-01

    Background Malaria control has been dramatically scaled up the past decade, mainly thanks to increasing international donor financing since 2003. This study assessed progress up to 2010 towards global malaria impact targets, in relation to Global Fund, other donor and domestic malaria programme financing over 2003 to 2009. Methods Assessments used domestic malaria financing reported by national programmes, and Global Fund/OECD data on donor financing for 90 endemic low- and middle-income countries, WHO estimates of households owning one or more insecticide-treated mosquito net (ITN) for countries in sub-Saharan Africa, and WHO-estimated malaria case incidence and deaths in countries outside sub-Saharan Africa. Results Global Fund and other donor funding is concentrated in a subset of the highest endemic African countries. Outside Africa, donor funding is concentrated in those countries with highest malaria mortality and case incidence rates over the years 2000 to 2003. ITN coverage in 2010 in Africa, and declines in case and death rates per person at risk over 2004 to 2010 outside Africa, were greatest in countries with highest donor funding per person at risk, and smallest in countries with lowest donor malaria funding per person at risk. Outside Africa, all-source malaria programme funding over 2003 to 2009 per case averted ($56-5,749) or per death averted ($58,000-3,900,000) over 2004 to 2010 tended to be lower (more favourable) in countries with higher donor malaria funding per person at risk. Conclusions Increases in malaria programme funding are associated with accelerated progress towards malaria control targets. Associations between programme funding per person at risk and ITN coverage increases and declines in case and death rates suggest opportunities to maximize the impact of donor funding, by strategic re-allocation to countries with highest continued need. PMID:23317000