Science.gov

Sample records for highly selective optical

  1. Surface plasmon optical antennae in the infrared region with high resonant efficiency and frequency selectivity.

    PubMed

    Ueno, Kosei; Sun, Quan; Mino, Masahiro; Itoh, Takumi; Oshikiri, Tomoya; Misawa, Hiroaki

    2016-08-01

    Infrared light has received attention for sensor applications, including fingerprint spectroscopy, in the bioengineering and security fields. Surface plasmon physics enables the operation of a light harvesting optical antenna. Gold nanochains exhibit localized surface plasmon resonance (LSPR) in the infrared region with high frequency selectivity. However, a feasible design for optical antennae with a higher resonant efficiency and frequency selectivity as a function of structural design and periodicity is still unknown. In the present study, we investigated the relationship between the resonant efficiency and frequency selectivity as a function of the structural design of gold nanochains and explored structural periodicity for obtaining highly frequency-selective optical antennae. An optical antenna design with higher resonant efficiency is proposed on the basis of its efficient interaction with non-polarized light. PMID:27505741

  2. A Detailed Study of Two Optically Selected, High-Redshift Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Lubin, Lori M.

    2000-01-01

    We are obtaining detailed X-ray spectral and structural data for two distant, optically-selected clusters of galaxies which are known X-ray emitters, CL1324+3011 at z = 0.76 and CL,1604+4304 at z = 0.90. These observations will allow us to place accurate constraints on the temperature, surface-brightness profile, and mass fraction of the intracluster medium in rich, optically-selected clusters at very high redshift. The two target clusters are the most well-studied systems at z greater than 0.7 in the optical and infrared regimes; therefore, with the addition of the XMM data, we plan to study the specifies of the relationship between the X-ray and optical properties and their implications for galaxy and cluster evolution.

  3. The X-ray properties of high redshift, optically selected QSOs. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Anderson, S. F.

    1985-01-01

    In order to study the X-ray properties of high redshift QSOs, grism/grens plates covering 17 deg. of sky previously imaged to very sensitive X-ray flux levels with the Einstein Observatory were taken. Following optical selection of the QSO, the archived X-ray image is examined to extract an X-ray flux detection or a sensitive upper limit.

  4. A novel diketopyrrolopyrrole (DPP)-based [2]rotaxane for highly selective optical sensing of fluoride.

    PubMed

    Raju, Mandapati V Ramakrishnam; Lin, Hong-Cheu

    2013-03-15

    A novel [2]rotaxane based on an orthogonal H-bonded motif and 3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DPP) with controlled topicity was successfully constructed, displaying excellent stimulated responses toward anion and solvent polarity. The preorganized host selectively recognized F(-) with high optical sensitivity and reversibility via enhanced positive cooperativity and noncovalent interaction by evidence of a shorter fluorescence lifetime. PMID:23461354

  5. Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol® HX photopolymer film

    NASA Astrophysics Data System (ADS)

    Bruder, Friedrich-Karl; Fäcke, Thomas; Hagen, Rainer; Hönel, Dennis; Orselli, Enrico; Rewitz, Christian; Rölle, Thomas; Walze, Günther

    2015-09-01

    For a long time volume Holographic Optical Elements (vHOE) have been discussed as an alternative, but were hampered by a lack of suitable materials. They provide several benefits over surface corrugated diffractive optical element like high diffraction efficiency due to their ability to reconstruct a single diffraction order, freedom of optical design by freely setting the replay angles and adjusting their bandwidth by a selection of the vHOE's thickness. Additional interesting features are related to their high Bragg selectivity providing transparent films for off-Bragg illumination. In this paper we report on our newly developed photopolymer film technology (Bayfol® HX) that uniquely requires no post processing after holographic exposure. We explain the governing non-local polymerization driven diffusion process leading to an active mass transport triggered by constructive interference. Key aspects of the recording process and their impact on index modulation formation is discussed. The influence on photopolymer film thickness on the bandwidth is shown. A comparison between coupled wave theory (CWT) simulation and experimental results is given. There are two basic recording geometries: reflection and transmission vHOEs. We explain consequences of how to record them properly and discuss in more detail the special challenges in transmission hologram recording. Here beam ratio and customization of photopolymer film properties can be applied most beneficially to achieve highest diffraction efficiency.

  6. VUV and XUV reflectance of optically coated mirrors for selection of high harmonics.

    PubMed

    Larsen, K A; Cryan, J P; Shivaram, N; Champenois, E G; Wright, T W; Ray, D; Kostko, O; Ahmed, M; Belkacem, A; Slaughter, D S

    2016-08-01

    We report the reflectance, ~1° from normal incidence, of six different mirrors as a function of photon energy, using monochromatic vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) radiation with energies between 7.5 eV and 24.5 eV. The mirrors examined included both single and multilayer optical coatings, as well as an uncoated substrate. We discuss the performance of each mirror, paying particular attention to the potential application of suppression and selection of high-order harmonics of a Ti:sapphire laser. PMID:27505785

  7. High power burst-mode optical parametric amplifier with arbitrary pulse selection.

    PubMed

    Pergament, M; Kellert, M; Kruse, K; Wang, J; Palmer, G; Wissmann, L; Wegner, U; Lederer, M J

    2014-09-01

    We present results from a unique burst-mode femtosecond non-collinear optical parametric amplifier (NOPA) under development for the optical - x-ray pump-probe experiments at the European X-Ray Free-Electron Laser Facility. The NOPA operates at a burst rate of 10 Hz, a duty cycle of 2.5% and an intra-burst repetition rate of up to 4.5 MHz, producing high fidelity 15 fs pulses at a center wavelength of 810 nm. Using dispersive amplification filtering of the super-continuum seed pulses allows for selectable pulse duration up to 75 fs, combined with a tuning range in excess of 100 nm whilst remaining nearly transform limited. At an intra-burst rate of 188 kHz the single pulse energy from two sequential NOPA stages reached 180 µJ, corresponding to an average power of 34W during the burst. Acousto- and electro-optic switching techniques enable the generation of transient free bursts of required length and the selection of arbitrary pulse sequences inside the burst. PMID:25321596

  8. Label-Free Biosensing with High Selectivity in Complex Media using Microtoroidal Optical Resonators.

    PubMed

    Ozgur, Erol; Toren, Pelin; Aktas, Ozan; Huseyinoglu, Ersin; Bayindir, Mehmet

    2015-01-01

    Although label-free biosensors comprised of optical microcavities inherently possess the capability of resolving molecular interactions at individual level, this extreme sensitivity restricts their convenience for large scale applications by inducing vulnerability towards non-specific interactions that readily occur within complex media. Therefore, the use of optical microresonators for biosensing is mostly limited within strictly defined laboratory conditions, instead of field applications as early detection of cancer markers in blood, or identification of contamination in food. Here, we propose a novel surface modification strategy suitable for but not limited to optical microresonator based biosensors, enabling highly selective biosensing with considerable sensitivity as well. Using a robust, silane-based surface coating which is simultaneously protein resistant and bioconjugable, we demonstrate that it becomes possible to perform biosensing within complex media, without compromising the sensitivity or reliability of the measurement. Functionalized microtoroids are successfully shown to resist nonspecific interactions, while simultaneously being used as sensitive biological sensors. This strategy could pave the way for important applications in terms of extending the use of state-of-the-art biosensors for solving problems similar to the aforementioned. PMID:26271605

  9. Label-Free Biosensing with High Selectivity in Complex Media using Microtoroidal Optical Resonators

    PubMed Central

    Ozgur, Erol; Toren, Pelin; Aktas, Ozan; Huseyinoglu, Ersin; Bayindir, Mehmet

    2015-01-01

    Although label-free biosensors comprised of optical microcavities inherently possess the capability of resolving molecular interactions at individual level, this extreme sensitivity restricts their convenience for large scale applications by inducing vulnerability towards non-specific interactions that readily occur within complex media. Therefore, the use of optical microresonators for biosensing is mostly limited within strictly defined laboratory conditions, instead of field applications as early detection of cancer markers in blood, or identification of contamination in food. Here, we propose a novel surface modification strategy suitable for but not limited to optical microresonator based biosensors, enabling highly selective biosensing with considerable sensitivity as well. Using a robust, silane-based surface coating which is simultaneously protein resistant and bioconjugable, we demonstrate that it becomes possible to perform biosensing within complex media, without compromising the sensitivity or reliability of the measurement. Functionalized microtoroids are successfully shown to resist nonspecific interactions, while simultaneously being used as sensitive biological sensors. This strategy could pave the way for important applications in terms of extending the use of state-of-the-art biosensors for solving problems similar to the aforementioned. PMID:26271605

  10. Label-Free Biosensing with High Selectivity in Complex Media using Microtoroidal Optical Resonators

    NASA Astrophysics Data System (ADS)

    Ozgur, Erol; Toren, Pelin; Aktas, Ozan; Huseyinoglu, Ersin; Bayindir, Mehmet

    2015-08-01

    Although label-free biosensors comprised of optical microcavities inherently possess the capability of resolving molecular interactions at individual level, this extreme sensitivity restricts their convenience for large scale applications by inducing vulnerability towards non-specific interactions that readily occur within complex media. Therefore, the use of optical microresonators for biosensing is mostly limited within strictly defined laboratory conditions, instead of field applications as early detection of cancer markers in blood, or identification of contamination in food. Here, we propose a novel surface modification strategy suitable for but not limited to optical microresonator based biosensors, enabling highly selective biosensing with considerable sensitivity as well. Using a robust, silane-based surface coating which is simultaneously protein resistant and bioconjugable, we demonstrate that it becomes possible to perform biosensing within complex media, without compromising the sensitivity or reliability of the measurement. Functionalized microtoroids are successfully shown to resist nonspecific interactions, while simultaneously being used as sensitive biological sensors. This strategy could pave the way for important applications in terms of extending the use of state-of-the-art biosensors for solving problems similar to the aforementioned.

  11. Highly selective acetate optical sensing of a ruthenium(II) complex carrying imidazole and indole groups.

    PubMed

    Yang, Huai-Xia; Liu, Yan-Ju; Zhao, Lin; Wang, Ke-Zhi

    2010-07-01

    The effects of addition of F(-), Cl(-), Br(-), I(-), NO(3)(-), H(2)PO(4)(-), and OAc(-) on the UV-vis and emission spectra of Ru(II) complex [Ru(bpy)(2)(H(2)iip)](ClO(4))(2) {bpy=2,2'-bipyridyl, H(2)iip=2-indole-3-yl-imidazole[4,5-f][1,10]-phenanthroline} in dimethyl sulfone were studied. The Ru(II) complex was evidenced to be a highly selective optical sensor for OAc(-). Addition of OAc(-) elicited a distinct change in color from yellow to light orange which can be detected by naked-eye, and an almost vanished emission of the Ru(II) complex at a much lower concentration of OAc(-) than those of the other anions. PMID:20378395

  12. High-Spatial-Resolution Imaging Combining High-Order Adaptive Optics, Frame Selection, and Speckle Masking Reconstruction

    NASA Astrophysics Data System (ADS)

    Denker, Carsten; Mascarinas, Dulce; Xu, Yan; Cao, Wenda; Yang, Guo; Wang, Haimin; Goode, Philip R.; Rimmele, Thomas

    2005-04-01

    We present, for the first time, high-spatial-resolution observations combining high-order adaptive optics (AO), frame selection, and post-facto image correction via speckle masking. The data analysis is based on observations of solar active region NOAA 10486 taken with the Dunn Solar Telescope (DST) at the Sacramento Peak Observatory (SPO) of the National Solar Observatory (NSO) on 29 October 2003. The high Strehl ratio encountered in AO corrected short-exposure images provides highly improved signal-to-noise ratios leading to a superior recovery of the object’s Fourier phases. This allows reliable detection of small-scale solar features near the diffraction limit of the telescope. Speckle masking imaging provides access to high-order wavefront aberrations, which predominantly originate at high atmospheric layers and are only partially corrected by the AO system. In addition, the observations provided qualitative measures of the image correction away from the lock point of the AO system. We further present a brief inspection of the underlying imaging theory discussing the limitations and prospects of this multi-faceted image reconstruction approach in terms of the recovery of spatial information, photometric accuracy, and spectroscopic applications.

  13. Optical design and co-sputtering preparation of high performance Mo-SiO2 cermet solar selective absorbing coating

    NASA Astrophysics Data System (ADS)

    Zheng, Liqing; Gao, Fangyuan; Zhao, Shuxi; Zhou, Fuyun; Nshimiyimana, Jean Pierre; Diao, Xungang

    2013-09-01

    In order to optimize and prepare high performance Mo-SiO2 cermet solar selective absorbing coating, a series of Mo-SiO2 cermet films with different metal volume fraction were deposited on optical glass using mid-frequency (MF) and radio frequency (RF) co-sputtering. The reflectance (R) and transmittance (T) in the wavelength range of 250-2500 nm have been simulated using SCOUT software with different dielectric function models. The optical constants, film thickness, metal volume fraction and other parameters have been deduced from the modeling. The fitted optical constants were then used to simulate and optimize the Mo-SiO2 solar selective coating and samples were prepared based on the optimized parameters. The Maxwell Garnett (MG) and Bruggeman (BR) effective-medium theory have been added in the dielectric function models to describe low metal volume fraction cermet layer (LMVF) and high metal volume fraction cermet layer (HMVF), separately. The optical spectra (R and T) of all single films were in a good agreement with the fitted spectra by dielectric function models. The experimental measured reflectance of the solar selective coating was also in rather good agreement with the optimized result. The solar absorptance of theoretically optimized selective coating was 0.945, while the absorptance of the experimental coating was 0.95. The thermal emittance of 0.15 (at 400 °C) was obtained.

  14. High-frame-rate intensified fast optically shuttered TV cameras with selected imaging applications

    SciTech Connect

    Yates, G.J.; King, N.S.P.

    1994-08-01

    This invited paper focuses on high speed electronic/electro-optic camera development by the Applied Physics Experiments and Imaging Measurements Group (P-15) of Los Alamos National Laboratory`s Physics Division over the last two decades. The evolution of TV and image intensifier sensors and fast readout fast shuttered cameras are discussed. Their use in nuclear, military, and medical imaging applications are presented. Several salient characteristics and anomalies associated with single-pulse and high repetition rate performance of the cameras/sensors are included from earlier studies to emphasize their effects on radiometric accuracy of electronic framing cameras. The Group`s test and evaluation capabilities for characterization of imaging type electro-optic sensors and sensor components including Focal Plane Arrays, gated Image Intensifiers, microchannel plates, and phosphors are discussed. Two new unique facilities, the High Speed Solid State Imager Test Station (HSTS) and the Electron Gun Vacuum Test Chamber (EGTC) arc described. A summary of the Group`s current and developmental camera designs and R&D initiatives are included.

  15. High speed optical networks

    NASA Astrophysics Data System (ADS)

    Frankel, Michael Y.; Livas, Jeff

    2005-02-01

    unregenerated reach. More sophisticated optical amplifiers provide lower noise for increased reach and increased spectral bandwidth for higher wavelength count lower wavelength blocking probability. Optical analog networks also require methods for mitigating optical power transients, for controlling optical spectral flatness, and for dynamically managing changes (e.g. in chromatic dispersion and polarization mode dispersion.) Since signals stay in the optical domain, optical performance monitoring techniques are required for fault isolation and correction. Efficient routing of optical signals also requires sophisticated switching nodes with an ability to selectively steer optical signals into several directions with single-channel spectral granularity. Most of these technologies are not modular and require interruption of service if not deployed at the initial system installation, thereby increasing first install costs substantially, even if initial capacity loading is small. Further, validation of systems and software targeting a specific network design is complex. Only a small fraction of the total network may be reasonably reproduced in the lab, and many field configurations are not predictable or even dynamic. Thus, extra system margin has to be allocated to handle the behavior uncertainty. To constrain the complexity of both hardware technology and software algorithms, regions of network transparency can be established with OEO forced at perimeters. Thus, "analog" regions are surrounded by "digital" interfaces. Following are some example tradeoffs that will be discussed. What is a good modulation format choice, and does increased reach and impairment resiliency justify hardware and controls that are more complicated? What are reasonable amplifier choices to make under specific network assumptions? Can high transport system capacity be leveraged to simplify optical switch node design by reducing spectral efficiency?

  16. Investigation of high-contrast velocity selective optical pumping resonance at the cycling transition of Cs using fluorescence technique

    NASA Astrophysics Data System (ADS)

    Dey, Saswati; Ray, Biswajit; Ghosh, Pradip Narayan; Cartaleva, Stefka; Slavov, Dimitar

    2015-12-01

    A high contrast (∼48%) Velocity Selective Optical Pumping (VSOP) resonance at the closed transition Fg=4→Fe=5 of Cs-D2 line is obtained in the fluorescence signal under co-propagating pump-probe configuration. We use a 5.2 μm cell operating at reduced temperature (∼55 °C) and the intensity of the pump-laser is kept lower than that of the probe-laser. The observed sharp narrow structure is suitable for side-arms frequency-locking of the cooling- (i.e. probe-) laser in a cold atom experiment, with possibility for "-Γ" to "-4Γ" red-detuning and "+Γ" to "+10Γ" blue-detuning using the standard properties of the commercially available electronics. We have developed a theoretical model corresponding to the thin cell, incorporating the atomic time-of-flight dependent optical pumping decay rate to describe the dimensional anisotropy of the thin cell. The model shows good qualitative agreement with the observation and simulates as well the cases of cells with smaller thickness. It also describes correctly the temperature dependence of the line broadening and shows the potential for further optimization and red-shift detuning above "-4Γ". It may be of interest for further development of miniaturized modules, like the recently developed portable small magneto-optical traps.

  17. Highly Sensitive and Selective Label-Free Optical Detection of Mercuric Ions Using Photon Upconverting Nanoparticles

    PubMed Central

    Kumar, Manoj; Zhang, Peng

    2010-01-01

    We demonstrate a fluorescence-based, label-free detection scheme that reports the presence of Hg(II) ion using photon upconverting nanoparticles. A single-stranded DNA containing a number of thymine bases to be used as the Hg2+-capturing element is covalently attached to the photon upconverting NaYF4:Yb3+,Tm3+ nanoparticles. Under the illumination of 980 nm laser, energy transfer takes place between the NaYF4:Yb3+,Tm3+ nanoparticles as the donor and SYBR green I, a DNA intercalating dye, as the acceptor. By monitoring the ratio of the acceptor emission to the donor emission, we can quantitatively detect the presence of the mercuric ions with a directly observed detection limit of 0.06 nM. The remarkably high signal-to-noise ratio of photon upconverting particles leads to very high sensitivity and specificity without the need of fluorophore labeling. The sensor also does not suffer from photobleaching. PMID:20456935

  18. Highly selective anti-Prelog synthesis of optically active aryl alcohols by recombinant Escherichia coli expressing stereospecific alcohol dehydrogenase.

    PubMed

    Li, Ming; Nie, Yao; Mu, Xiao Qing; Zhang, Rongzhen; Xu, Yan

    2016-07-01

    Biocatalytic asymmetric synthesis has been widely used for preparation of optically active chiral alcohols as the important intermediates and precursors of active pharmaceutical ingredients. However, the available whole-cell system involving anti-Prelog specific alcohol dehydrogenase is yet limited. A recombinant Escherichia coli system expressing anti-Prelog stereospecific alcohol dehydrogenase from Candida parapsilosis was established as a whole-cell system for catalyzing asymmetric reduction of aryl ketones to anti-Prelog configured alcohols. Using 2-hydroxyacetophenone as the substrate, reaction factors including pH, cell status, and substrate concentration had obvious impacts on the outcome of whole-cell biocatalysis, and xylose was found to be an available auxiliary substrate for intracellular cofactor regeneration, by which (S)-1-phenyl-1,2-ethanediol was achieved with an optical purity of 97%e.e. and yield of 89% under the substrate concentration of 5 g/L. Additionally, the feasibility of the recombinant cells toward different aryl ketones was investigated, and most of the corresponding chiral alcohol products were obtained with an optical purity over 95%e.e. Therefore, the whole-cell system involving recombinant stereospecific alcohol dehydrogenase was constructed as an efficient biocatalyst for highly enantioselective anti-Prelog synthesis of optically active aryl alcohols and would be promising in the pharmaceutical industry. PMID:26178068

  19. SS316 structure fabricated by selective laser melting and integrated with strain isolated optical fiber high temperature sensor

    NASA Astrophysics Data System (ADS)

    Mathew, Jinesh; Havermann, Dirk; Polyzos, Dimitrios; MacPherson, William N.; Hand, Duncan P.; Maier, Robert R. J.

    2015-09-01

    Smart metal having integrated high temperature sensing capability is reported. The SS316 structure is made by additive layer manufacturing via selective laser melting (SLM). Sensor component is embedded in to the structure during the SLM build process. The strain isolated in-fiber Fabry-Perot cavity sensor measures temperature up to 1100 °C inside the metal.

  20. A portable DNAzyme-based optical biosensor for highly sensitive and selective detection of lead (II) in water sample.

    PubMed

    Yildirim, Nimet; Long, Feng; He, Miao; Gao, Ce; Shi, Han-Chang; Gu, April Z

    2014-11-01

    A portable, rapid and cost-effective DNAzyme based sensor for lead ions detection in water samples has been developed using an optical fiber sensor platform. The presence of Pb(2+) cleaves the DNAzymes and releases the fluorescent labeled fragments, which further hybridize with the complementary strands immobilized on the optic fiber sensor surface. Subsequent fluorescent signals of the hybridized fluorescent labeled fragment provides quantitative information on the concentrations of Pb(2+) with a dynamic range from 2-75 nM with a detection limit of 1.03 nM (0.21 ng mL(-1)). The proposed sensor also shows good selectivity against other mono and divalent metal ions and thus holds great potential for the construction of general DNAzyme-based sensing platform for the monitoring of other heavy metal ions. The sensor can be regenerated with a 1% SDS solution (pH 1.9) over 100 times without significant deterioration of the sensor performance. This portable sensor system can be potentially applied for on-site real-time inexpensive and easy-to-use monitoring of Pb(2+) in environmental samples such as wastewater effluents or water bodies. PMID:25127641

  1. Highly selective and sensitive optical sensor for determination of Pb2+ and Hg2+ ions based on the covalent immobilization of dithizone on agarose membrane.

    PubMed

    Zargoosh, Kiomars; Babadi, Fatemeh Farhadian

    2015-02-25

    A highly sensitive and selective optical membrane for determination of Hg(2+) and Pb(2+) was prepared by covalent immobilization of dithizone on agarose membrane. In addition to its high stability, reproducibility and relatively long lifetime, the proposed optical sensor revealed good selectivity for target ions over a large number of alkali, alkaline earth, transition, and heavy metal ions. The proposed optical membrane displays linear responses from 1.1×10(-8) to 2.0×10(-6) mol L(-1) and 1.2×10(-8) to 2.4×10(-6) mol L(-1) for Hg(2+) and Pb(2+), respectively. The limits of detection (LOD) were 2.0×10(-9) mol L(-1) and 4.0×10(-9) mol L(-1) for Hg(2+) and Pb(2), respectively. The prepared optical membrane was successfully applied to the determination of Hg(2+) and Pb(2+) in industrial wastes, spiked tap water and natural waters without any preconcentration step. PMID:25216460

  2. Highly selective and sensitive optical sensor for determination of Pb2+and Hg2+ ions based on the covalent immobilization of dithizone on agarose membrane

    NASA Astrophysics Data System (ADS)

    Zargoosh, Kiomars; Babadi, Fatemeh Farhadian

    2015-02-01

    A highly sensitive and selective optical membrane for determination of Hg2+ and Pb2+ was prepared by covalent immobilization of dithizone on agarose membrane. In addition to its high stability, reproducibility and relatively long lifetime, the proposed optical sensor revealed good selectivity for target ions over a large number of alkali, alkaline earth, transition, and heavy metal ions. The proposed optical membrane displays linear responses from 1.1 × 10-8 to 2.0 × 10-6 mol L-1 and 1.2 × 10-8 to 2.4 × 10-6 mol L-1 for Hg2+ and Pb2+, respectively. The limits of detection (LOD) were 2.0 × 10-9 mol L-1 and 4.0 × 10-9 mol L-1 for Hg2+ and Pb2, respectively. The prepared optical membrane was successfully applied to the determination of Hg2+ and Pb2+ in industrial wastes, spiked tap water and natural waters without any preconcentration step.

  3. Frequency range selection method of trans-impedance amplifier for high sensitivity lock-in amplifier used in the optical sensors

    NASA Astrophysics Data System (ADS)

    Park, Chang-In; Jeon, Su-Jin; Hong, Nam-Pyo; Choi, Young-Wan

    2016-03-01

    Lock-in amplifier (LIA) has been proposed as a detection technique for optical sensors because it can measure low signal in high noise level. LIA uses synchronous method, so the input signal frequency is locked to a reference frequency that is used to carry out the measurements. Generally, input signal frequency of LIA used in optical sensors is determined by modulation frequency of optical signal. It is important to understand the noise characteristics of the trans-impedance amplifier (TIA) to determine the modulation frequency. The TIA has a frequency range in which noise is minimized by the capacitance of photo diode (PD) and the passive component of TIA feedback network. When the modulation frequency is determined in this range, it is possible to design a robust system to noise. In this paper, we propose a method for the determination of optical signal modulation frequency selection by using the noise characteristics of TIA. Frequency response of noise in TIA is measured by spectrum analyzer and minimum noise region is confirmed. The LIA and TIA circuit have been designed as a hybrid circuit. The optical sensor is modeled by the laser diode (LD) and photo diode (PD) and the modulation frequency was used as the input to the signal generator. The experiments were performed to compare the signal to noise ratio (SNR) of the minimum noise region and the others. The results clearly show that the SNR is enhanced in the minimum noise region of TIA.

  4. 5-Hydroxymethylfurfural modified rhodamine B dual-function derivative: Highly sensitive and selective optical detection of pH and Cu(2+).

    PubMed

    Wang, Enze; Zhou, Yanmei; Huang, Qi; Pang, Lanfang; Qiao, Han; Yu, Fang; Gao, Bin; Zhang, Junli; Min, Yinghao; Ma, Tongsen

    2016-01-01

    A dual-function optical chemosensor (RBF) was designed and easily synthesized by condensation reaction of 5-Hydroxymethylfurfural and rhodamine B hydrazide. RBF exhibited highly sensitive, highly selective and quick response to acidic pH. The fluorescence intensity of RBF exhibited a more than 41-fold increase within the pH range from 7.50 to 3.73 with a pKa value of 5.02, which could be successfully applied to monitor intracellular pH in living PC12 cells and HeLa cells. Additionally, the spectroscopy of UV-Vis and EDTA-adding experiments indicated that RBF was a highly selective and reversible colorimetric chemosensor for Cu(2+) in Tris-HCl (10mM, pH=7.2) aqueous buffer solution as well as other metal ions had no obvious interference. Moreover, RBF has been successfully applied to detect Cu(2+) in real water samples. PMID:26232576

  5. 5-Hydroxymethylfurfural modified rhodamine B dual-function derivative: Highly sensitive and selective optical detection of pH and Cu2+

    NASA Astrophysics Data System (ADS)

    Wang, Enze; Zhou, Yanmei; Huang, Qi; Pang, Lanfang; Qiao, Han; Yu, Fang; Gao, Bin; Zhang, Junli; Min, Yinghao; Ma, Tongsen

    2016-01-01

    A dual-function optical chemosensor (RBF) was designed and easily synthesized by condensation reaction of 5-Hydroxymethylfurfural and rhodamine B hydrazide. RBF exhibited highly sensitive, highly selective and quick response to acidic pH. The fluorescence intensity of RBF exhibited a more than 41-fold increase within the pH range from 7.50 to 3.73 with a pKa value of 5.02, which could be successfully applied to monitor intracellular pH in living PC12 cells and HeLa cells. Additionally, the spectroscopy of UV-Vis and EDTA-adding experiments indicated that RBF was a highly selective and reversible colorimetric chemosensor for Cu2+ in Tris-HCl (10 mM, pH = 7.2) aqueous buffer solution as well as other metal ions had no obvious interference. Moreover, RBF has been successfully applied to detect Cu2+ in real water samples.

  6. A Novel Naphthalene-Immobilized Nanoporous SBA-15 as a Highly Selective Optical Sensor for Detection of Fe(3+) in Water.

    PubMed

    Karimi, Mehdi; Badiei, Alireza; Ziarani, Ghodsi Mohammadi

    2015-09-01

    A novel organic-inorganic hybrid optical sensor (SBA-NCO) was designed and synthesized through immobilization of isocyanatopropyl-triethoxysilane and 1-amino-naphthalene onto the surface of SBA-15 by post-grafting method. The characterization of materials using XRD, TEM, N2 adsorption-desorption, and FT-IR techniques confirmed the successful attachment of organic moieties and preserving original structure of SBA-15 after modification step. Fluorescence experiments demonstrated that SBA-NCO was a highly selective optical sensor for the detection of Fe(3+) directly in water over a wide range of metal cations including Na(+), Mg(2+), Al(3+), K(+), Ca(2+), Cr(3+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+), and Pb(2+) in a wide pH values. PMID:26209159

  7. High throughput optical scanner

    DOEpatents

    Basiji, David A.; van den Engh, Gerrit J.

    2001-01-01

    A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.

  8. Passive optical element with selective angular reflection

    SciTech Connect

    Tremblay, C.; Rheault, F.; Boulay, R.; Tremblay, R.

    1987-02-01

    This work is related to the development of passive selective transmission materials that will contribute to regularize the solar thermal gain. We propose an original solution to the problem of seasonal control of energetic input into buildings through windows. A passive optical element with selective angular reflection is used to solve this problem. This optical element allows sunlight to enter windows during the fall and winter, whereas, owing to the different astronomical path of the sun, it stops and rejects direct sunlight by means of the optical effect called total internal reflection (TIR) during the central spring-Summer period. The purpose of this paper is to describe the optical element in some detail, to develop the principal design equations, and give the results of the optimization of optical and geometrical parameters.

  9. Polarization-selective optical transmission through a plasmonic metasurface

    SciTech Connect

    Pelzman, Charles; Cho, Sang-Yeon

    2015-06-22

    We present the design, fabrication, and experimental characterization of a nanoslit-based metasurface that offers polarization-selective optical transmission for advanced imaging applications. The metasurface consists of an array of meta-atoms, constructed with two orthogonally coupled subwavelength apertures. Highly enhanced optical transmission was achieved by selective excitation of surface plasmon waves on the metasurface. By rotating the orientation of the linearly polarized incident beam, switching of enhanced optical transmission bands through the metasurface was experimentally demonstrated. This demonstration is a significant step towards developing advanced multispectral imaging devices.

  10. Polarization-selective optical transmission through a plasmonic metasurface

    PubMed Central

    Pelzman, Charles; Cho, Sang-Yeon

    2015-01-01

    We present the design, fabrication, and experimental characterization of a nanoslit-based metasurface that offers polarization-selective optical transmission for advanced imaging applications. The metasurface consists of an array of meta-atoms, constructed with two orthogonally coupled subwavelength apertures. Highly enhanced optical transmission was achieved by selective excitation of surface plasmon waves on the metasurface. By rotating the orientation of the linearly polarized incident beam, switching of enhanced optical transmission bands through the metasurface was experimentally demonstrated. This demonstration is a significant step towards developing advanced multispectral imaging devices. PMID:26180264

  11. Optical frequency tripling with improved suppression and sideband selection.

    PubMed

    Thakur, Manoj P; Medeiros, Maria C R; Laurêncio, Paula; Mitchell, John E

    2011-12-12

    A novel optical dispersion tolerant millimetre-wave radio-over-fibre system using optical frequency tripling technique with enhanced and selectable sideband suppression is demonstrated. The implementation utilises cascaded optical modulators to achieve either an optical single sideband (OSSB) or double sideband-suppressed carrier (DSB-SC) signal with high sideband suppression. Our analysis and simulation results indicate that the achievable suppression ratio of this configuration is only limited by other system factors such as optical noise and drifting of the operational conditions. The OSSB transmission system performance is assessed experimentally by the transport of 4 WiMax channels modulating a 10 GHz optical upconverted RF carrier as well as for optical frequency doubling and tripling. The 10 GHz and tripled carrier at 30 GHz are dispersion tolerant resulting both in an average relative constellation error (RCE) of -28.7 dB after 40 km of fibre. PMID:22274056

  12. A high-significance measurement of correlation between unresolved IRAS sources and optically-selected galaxy clusters

    SciTech Connect

    Hincks, Adam D.; Hajian, Amir; Addison, Graeme E. E-mail: ahajian@cita.utoronto.ca

    2013-05-01

    We cross-correlate the 100 μm Improved Reprocessing of the IRAS Survey (IRIS) map and galaxy clusters at 0.1 < z < 0.3 in the maxBCG catalogue taken from the Sloan Digital Sky Survey, measuring an angular cross-power spectrum over multipole moments 150 < l < 3000 at a total significance of over 40σ. The cross-spectrum, which arises from the spatial correlation between unresolved dusty galaxies that make up the cosmic infrared background (CIB) in the IRIS map and the galaxy clusters, is well-fit by a single power law with an index of −1.28±0.12, similar to the clustering of unresolved galaxies from cross-correlating far-infrared and submillimetre maps at longer wavelengths. Using a recent, phenomenological model for the spectral and clustering properties of the IRIS galaxies, we constrain the large-scale bias of the maxBCG clusters to be 2.6±1.4, consistent with existing analyses of the real-space cluster correlation function. The success of our method suggests that future CIB-optical cross-correlations using Planck and Herschel data will significantly improve our understanding of the clustering and redshift distribution of the faint CIB sources.

  13. High bandwidth optical mount

    DOEpatents

    Bender, Donald A.; Kuklo, Thomas

    1994-01-01

    An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage.

  14. High bandwidth optical mount

    DOEpatents

    Bender, D.A.; Kuklo, T.

    1994-11-08

    An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage. 5 figs.

  15. Optical selection and collection of DNA fragments

    DOEpatents

    Roslaniec, Mary C.; Martin, John C.; Jett, James H.; Cram, L. Scott

    1998-01-01

    Optical selection and collection of DNA fragments. The present invention includes the optical selection and collection of large (>.mu.g) quantities of clonable, chromosome-specific DNA from a sample of chromosomes. Chromosome selection is based on selective, irreversible photoinactivation of unwanted chromosomal DNA. Although more general procedures may be envisioned, the invention is demonstrated by processing chromosomes in a conventional flow cytometry apparatus, but where no droplets are generated. All chromosomes in the sample are first stained with at least one fluorescent analytic dye and bonded to a photochemically active species which can render chromosomal DNA unclonable if activated. After passing through analyzing light beam(s), unwanted chromosomes are irradiated using light which is absorbed by the photochemically active species, thereby causing photoinactivation. As desired chromosomes pass this photoinactivation point, the inactivating light source is deflected by an optical modulator; hence, desired chromosomes are not photoinactivated and remain clonable. The selection and photoinactivation processes take place on a microsecond timescale. By eliminating droplet formation, chromosome selection rates 50 times greater than those possible with conventional chromosome sorters may be obtained. Thus, usable quantities of clonable DNA from any source thereof may be collected.

  16. Frequency Selective Volumes for Optical Spatial Filters

    SciTech Connect

    E Topsakal; JL Volakis

    2004-04-15

    A new model is proposed for modeling metallic losses at optical frequencies and is used in the analysis of Frequency Selective Surfaces (FSSs) and Volumes (FSVs). Conventional methods for simulating metallic losses are also outlined and a comparison with those models is given for a patch FSS. Measured data for a slot-ring FSS are also given for model validation.

  17. High Selectivity Oxygen Delignification

    SciTech Connect

    Arthur J. Ragauskas Lucian A. Lucia Hasan Jameel

    2005-09-30

    yield and 4 cP in viscosity in comparison to high AA pulp for the oxygen delignification. This difference is also seen for high-kappa SW kraft pulps with an average improvement of {approx}3% in yield and 3 cP in viscosity for low AA high kappa number 50 pulp. Low AA hardwood kappa number 20 pulp had an average improvement of {approx}4% in yield and 6-12 cP in viscosity as compared to high AA pulp. Lower kraft cooking temperature (160 vs. 170 C) in combination with the medium AA provides a practical approach for integrating high kappa pulping of hardwoods (i.e., low rejects) with an advanced extended oxygen delignification stage. ECF pulp bleaching of low and high kappa kraft SW and HW pulps exhibit comparable optical and physical strength properties when bleached D(EPO)D.

  18. Holographic polarization-selective elements in optical network applications

    NASA Astrophysics Data System (ADS)

    Huang, Yang-Tung; Lin, Meng-Fu; Deng, Jiun-Shjou; Fan, Kai-Ting; Chen, Mu-Jung

    1996-09-01

    Highly polarization-selective holographic elements can be achieved with suitable designs. The presented holographic polarization-selective elements are compact and light- weight, and the feature of normally incident and output coupling provide better flexibility and easier alignment for system applications. With suitable designs and arrangements, these elements can be combined to implement star couplers to distribute equal optical power from each input channel to all output channels. In addition, based on our holographic polarization-selective elements with electro-optic halfwave plates, holographic polarization-dependent and polarization- independent optical switches are introduced. The structures to use these switches in various compact 3D multistage interconnection networks for reconfigurable interconnections and in self-healing rings for network service restoration are presented.

  19. Power selective optical filter devices and optical systems using same

    DOEpatents

    Koplow, Jeffrey P

    2014-10-07

    In an embodiment, a power selective optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes at least one substantially zero-order, zero-wave plate. The zero-order, zero-wave plate is configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. The zero-order, zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.

  20. Optical high acidity sensor

    DOEpatents

    Jorgensen, B.S.; Nekimken, H.L.; Carey, W.P.; O`Rourke, P.E.

    1997-07-22

    An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber. 10 figs.

  1. Optical high acidity sensor

    DOEpatents

    Jorgensen, Betty S.; Nekimken, Howard L.; Carey, W. Patrick; O'Rourke, Patrick E.

    1997-01-01

    An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and, a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber.

  2. High Selectivity Oxygen Delignification

    SciTech Connect

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  3. Selective optical coatings for solar collectors

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1980-01-01

    For best performance, energy-absorbing surface of solar collector should be characterized by high ratio of solar absorptance to thermal emitance. Report on optical characteristics of several chemical treatments and electrodeposited coatings for metal solar-absorbing surfaces should interest designers and users of solar-energy systems. Moisture resistance of some coatings is also reported.

  4. Fibre Optic Sensors for Selected Wastewater Characteristics

    PubMed Central

    Chong, Su Sin; Abdul Aziz, A. R.; Harun, Sulaiman W.

    2013-01-01

    Demand for online and real-time measurements techniques to meet environmental regulation and treatment compliance are increasing. However the conventional techniques, which involve scheduled sampling and chemical analysis can be expensive and time consuming. Therefore cheaper and faster alternatives to monitor wastewater characteristics are required as alternatives to conventional methods. This paper reviews existing conventional techniques and optical and fibre optic sensors to determine selected wastewater characteristics which are colour, Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). The review confirms that with appropriate configuration, calibration and fibre features the parameters can be determined with accuracy comparable to conventional method. With more research in this area, the potential for using FOS for online and real-time measurement of more wastewater parameters for various types of industrial effluent are promising. PMID:23881131

  5. High lift selected concepts

    NASA Technical Reports Server (NTRS)

    Henderson, M. L.

    1979-01-01

    The benefits to high lift system maximum life and, alternatively, to high lift system complexity, of applying analytic design and analysis techniques to the design of high lift sections for flight conditions were determined and two high lift sections were designed to flight conditions. The influence of the high lift section on the sizing and economics of a specific energy efficient transport (EET) was clarified using a computerized sizing technique and an existing advanced airplane design data base. The impact of the best design resulting from the design applications studies on EET sizing and economics were evaluated. Flap technology trade studies, climb and descent studies, and augmented stability studies are included along with a description of the baseline high lift system geometry, a calculation of lift and pitching moment when separation is present, and an inverse boundary layer technique for pressure distribution synthesis and optimization.

  6. Gated high speed optical detector

    NASA Technical Reports Server (NTRS)

    Green, S. I.; Carson, L. M.; Neal, G. W.

    1973-01-01

    The design, fabrication, and test of two gated, high speed optical detectors for use in high speed digital laser communication links are discussed. The optical detectors used a dynamic crossed field photomultiplier and electronics including dc bias and RF drive circuits, automatic remote synchronization circuits, automatic gain control circuits, and threshold detection circuits. The equipment is used to detect binary encoded signals from a mode locked neodynium laser.

  7. A few selected applications of surface nonlinear optical spectroscopy.

    PubMed Central

    Shen, Y R

    1996-01-01

    As a second-order nonlinear optical process, sum-frequency generation is highly surface-specific and accordingly has been developed into a very powerful and versatile surface spectroscopic tool. It has found many unique applications in different disciplines and thus provided many exciting new research opportunities in surface and surface-related science. Selected examples are discussed here to illustrate the power of the technique. PMID:8901540

  8. High heat load synchrotron optics

    SciTech Connect

    Mills, D.M.

    1992-08-01

    Third generation synchrotron radiation sources currently being constructed worldwide will produce x-ray beams of unparalleled power and power density these high heat fluxes coupled with the stringent dimensional requirements of the x-ray optical components pose a prodigious challenge to designers of x-ray optical elements, specifically x-ray mirrors and crystal monochromators. Although certain established techniques for the cooling of high heat flux components can be directly applied to this problem, the thermal management of high heat load x-ray optical components has several unusual aspects that may ultimately lead to unique solutions. This manuscript attempts to summarize the various approaches currently being applied to this undertaking and to point out the areas of research that require further development.

  9. Highly birefringent optical microfibers.

    PubMed

    Xuan, Haifeng; Ju, Jian; Jin, Wei

    2010-02-15

    Highly birefringent (Hi-Bi) air-clad silica microfibers (MFs) with wavelength and sub-wavelength scale transverse dimensions are studied theoretically and experimentally. Hi-Bi MFs are taper-drawn from the standard SMF-28 single mode fibers that are "pre-processed" by "cutting away" parts of the silica cladding on opposite sides of the fiber with a femtosecond infrared laser. Such Hi-Bi MFs have approximately elliptical cross-sections and are approximated by a three-layer model comprising a small central Ge-doped region surrounded by an elliptical silica region and an air-cladding. Theoretical modeling shows that phase and group birefringence of the order 10(-2) can be achieved with such air-clad Hi-Bi MFs. Experiments with an air-clad elliptical fiber with a major diameter of 0.9 microm and a minor/major diameter ratio of 0.9 demonstrated a group birefringence of approximately 0.015, agreeing well with the theoretical predictions. The Hi-Bi MFs are useful for micron/nanoscale polarization maintaining transmission and phase-sensitive interferometric sensors. PMID:20389393

  10. Analysis of optical route in a micro high-speed magneto-optic switch

    NASA Astrophysics Data System (ADS)

    Weng, Zihua; Yang, Guoguang; Huang, Yuanqing; Chen, Zhimin; Zhu, Yun; Wu, Jinming; Lin, Shufen; Mo, Weiping

    2005-02-01

    A novel micro high-speed 2x2 magneto-optic switch and its optical route, which is used in high-speed all-optical communication network, is designed and analyzed in this paper. The study of micro high-speed magneto-optic switch mainly involves the optical route and high-speed control technique design. The optical route design covers optical route design of polarization in optical switch, the performance analysis and material selection of magneto-optic crystal and magnetic path design in Faraday rotator. The research of high-speed control technique involves the study of nanosecond pulse generator, high-speed magnetic field and its control technique etc. High-speed current transients from nanosecond pulse generator are used to switch the magnetization of the magneto-optic crystal, which propagates a 1550nm optical beam. The optical route design schemes and electronic circuits of high-speed control technique are both simulated on computer and test by the experiments respectively. The experiment results state that the nanosecond pulse generator can output the pulse with rising edge time 3~35ns, voltage amplitude 10~90V and pulse width 10~100ns. Under the control of CPU singlechip, the optical beam can be stably switched and the switching time is less than 1μs currently.

  11. High Availability in Optical Networks

    NASA Astrophysics Data System (ADS)

    Grover, Wayne D.; Wosinska, Lena; Fumagalli, Andrea

    2005-09-01

    Call for Papers: High Availability in Optical Networks Submission Deadline: 1 January 2006 The Journal of Optical Networking (JON) is soliciting papers for a feature Issue pertaining to all aspects of reliable components and systems for optical networks and concepts, techniques, and experience leading to high availability of services provided by optical networks. Most nations now recognize that telecommunications in all its forms -- including voice, Internet, video, and so on -- are "critical infrastructure" for the society, commerce, government, and education. Yet all these services and applications are almost completely dependent on optical networks for their realization. "Always on" or apparently unbreakable communications connectivity is the expectation from most users and for some services is the actual requirement as well. Achieving the desired level of availability of services, and doing so with some elegance and efficiency, is a meritorious goal for current researchers. This requires development and use of high-reliability components and subsystems, but also concepts for active reconfiguration and capacity planning leading to high availability of service through unseen fast-acting survivability mechanisms. The feature issue is also intended to reflect some of the most important current directions and objectives in optical networking research, which include the aspects of integrated design and operation of multilevel survivability and realization of multiple Quality-of-Protection service classes. Dynamic survivable service provisioning, or batch re-provisioning is an important current theme, as well as methods that achieve high availability at far less investment in spare capacity than required by brute force service path duplication or 100% redundant rings, which is still the surprisingly prevalent practice. Papers of several types are envisioned in the feature issue, including outlook and forecasting types of treatments, optimization and analysis, new

  12. LIGHT MODULATION: Quasi-collinear tunable acousto-optic paratellurite crystal filters for wavelength division multiplexing and optical channel selection

    NASA Astrophysics Data System (ADS)

    Molchanov, V. Ya; Voloshinov, V. B.; Makarov, O. Yu

    2009-04-01

    Quasi-collinear acousto-optic interaction is studied in acoustically and optically anisotropic paratellurite crystals. The possible applications of this interaction in acousto-optic tunable filters with a high spectral resolution are discussed. Different modifications of devices are compared and variants of devices intended for processing light beams and selection of light signals in fibreoptic communication systems with wavelength division multiplexing (WDM) at λ simeq 1550 nm are considered.

  13. Quasi-collinear tunable acousto-optic paratellurite crystal filters for wavelength division multiplexing and optical channel selection

    SciTech Connect

    Molchanov, V Ya; Makarov, O Yu; Voloshinov, V B

    2009-04-30

    Quasi-collinear acousto-optic interaction is studied in acoustically and optically anisotropic paratellurite crystals. The possible applications of this interaction in acousto-optic tunable filters with a high spectral resolution are discussed. Different modifications of devices are compared and variants of devices intended for processing light beams and selection of light signals in fibreoptic communication systems with wavelength division multiplexing (WDM) at {lambda} {approx_equal} 1550 nm are considered. (light modulation)

  14. High-Temperature Optical Sensor

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.

    2010-01-01

    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  15. Spatially selective optical tuning of quantum dot thin film luminescence.

    PubMed

    Chen, Jixin; Chan, Yang-Hsiang; Yang, Tinglu; Wark, Stacey E; Son, Dong Hee; Batteas, James D

    2009-12-30

    Photolithographically generated patterns have been created on immobilized CdSe QD thin films by fine-tuning their optical properties (intensity and emission wavelength) postsynthetically. These optically modified QDs show enhanced selectivity for binding of different ligands, affording the ability to fabricate optically reconfigurable surfaces for display or sensing applications. The patterns may be readily generated with any typical optical lithographic approach. PMID:20028145

  16. High resolution optical DNA mapping

    NASA Astrophysics Data System (ADS)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  17. Design and fabrication of SiO2/TiO2 and MgO/TiO2 based high selective optical filters for diffuse reflectance and fluorescence signals extraction.

    PubMed

    Pimenta, S; Cardoso, S; Miranda, A; De Beule, P; Castanheira, E M S; Minas, G

    2015-08-01

    This paper presents the design, optimization and fabrication of 16 MgO/TiO2 and SiO2/TiO2 based high selective narrow bandpass optical filters. Their performance to extract diffuse reflectance and fluorescence signals from gastrointestinal tissue phantoms was successfully evaluated. The obtained results prove their feasibility to correctly extract those spectroscopic signals, through a Spearman's rank correlation test (Spearman's correlation coefficient higher than 0.981) performed between the original spectra and the ones obtained using those 16 fabricated optical filters. These results are an important step for the implementation of a miniaturized, low-cost and minimal invasive microsystem that could help in the detection of gastrointestinal dysplasia. PMID:26309769

  18. Design and fabrication of SiO2/TiO2 and MgO/TiO2 based high selective optical filters for diffuse reflectance and fluorescence signals extraction

    PubMed Central

    Pimenta, S.; Cardoso, S.; Miranda, A.; De Beule, P.; Castanheira, E.M.S.; Minas, G.

    2015-01-01

    This paper presents the design, optimization and fabrication of 16 MgO/TiO2 and SiO2/TiO2 based high selective narrow bandpass optical filters. Their performance to extract diffuse reflectance and fluorescence signals from gastrointestinal tissue phantoms was successfully evaluated. The obtained results prove their feasibility to correctly extract those spectroscopic signals, through a Spearman’s rank correlation test (Spearman’s correlation coefficient higher than 0.981) performed between the original spectra and the ones obtained using those 16 fabricated optical filters. These results are an important step for the implementation of a miniaturized, low-cost and minimal invasive microsystem that could help in the detection of gastrointestinal dysplasia. PMID:26309769

  19. Self-assembly of nitrogen-doped carbon nanoparticles: a new ratiometric UV-vis optical sensor for the highly sensitive and selective detection of Hg(2+) in aqueous solution.

    PubMed

    Ruan, Yudi; Wu, Lie; Jiang, Xiue

    2016-05-23

    Water-soluble nitrogen-doped carbon nanoparticles (N-CNPs) prepared by the one-step hydrothermal treatment of uric acid were found to show ratiometric changes in their UV-vis spectra due to Hg(2+)-mediated self-assembly. For the first time, such a property was developed into a UV-vis optical sensor for detecting Hg(2+) in aqueous solutions with high sensitively and selectively (detection limit = 1.4 nM). More importantly, this novel sensor exhibits a higher linear sensitivity over a wider concentration range compared with the fluorescence sensor based on the same N-CNPs. This work opens an exciting new avenue to explore the use of carbon nanoparticles in constructing UV-vis optical sensors for the detection of metal ions and the use of carbon nanoparticles as a new building block to self-assemble into superlattices. PMID:27109583

  20. Novel optical sensing film based on a functional nonwoven nanofibre mat for an easy, fast and highly selective and sensitive detection of tryptamine in beer.

    PubMed

    Ramon-Marquez, Teresa; Medina-Castillo, Antonio L; Fernandez-Gutierrez, Alberto; Fernandez-Sanchez, Jorge F

    2016-05-15

    In this paper, the combination of Solid Surface-Room Temperature Phosphorescence (SS-RTP) and nanotechnology has led to a new approach in the detection of biogenic amines in complex matrices. This novel approach allows, for the first time, the direct determination of the concentration of tryptamine in beers. The novelty of the proposed optical sensor resides in its simplicity, rapidity, absence of complex chromatographic separation, sample clean-up, preconcentration, and derivatization protocols. Therefore, this novel methodology simplifies and reduces considerably the time and cost of the analysis, resolving the two major problems of the determination of tryptamine in beer up to now: low sensitivity and matrix effects. The proposed sensor is based on a novel white, uncharged, and non-luminescent functional nonwoven nanofibre mat (Tiss®-Link) formed by hydrophilic nanofibres of 300 nm of diameter functionalized with a high concentration of active vinyl groups (330 µmol g(-1)). It is used to carry out a kinetically controlled covalent immobilisation of tryptamine via Michael type-reaction. The transduction of the sensor is phosphorescence; the covalently immobilized tryptamine is quantified by SS-RTP, obtaining a detection limit of 6 ng mL(-1) with short response times (15 min). The applicability of the sensor was demonstrated by analysing tryptamine in 10 different varieties of beers, obtaining recovery percentages close to 100%. PMID:26761616

  1. Valley selective optical Stark effect in monolayer WS2

    NASA Astrophysics Data System (ADS)

    Sie, Edbert J.; McIver, James W.; Lee, Yi-Hsien; Fu, Liang; Kong, Jing; Gedik, Nuh

    2015-03-01

    Monolayer semiconductors, such as WS2, have a pair of valleys that, by time-reversal symmetry, are energetically degenerate. Lifting the valley degeneracy in these materials is of great interest because it would allow for valley specific band engineering and offer additional control in valleytronic applications. Here we show that circularly polarized light, which breaks time-reversal symmetry, can be used to lift the valley degeneracy by means of the optical Stark effect. We demonstrate that this effect is capable of raising the exciton level in monolayer WS2 by as much as 18 meV in a controllable valley selective manner. The resulting energy shift is extremely large, comparable to the shift that would be obtained using a very high magnetic field (200 Tesla). These results offer a novel way to control valley degree of freedom, and may provide a means to realize new valley-selective Floquet topological state of matter.

  2. Valley-selective optical Stark effect in monolayer WS2

    NASA Astrophysics Data System (ADS)

    Gedik, Nuh

    Monolayer semiconducting transition-metal dichalcogenides (TMDs) have a pair of valleys that, by time-reversal symmetry, are energetically degenerate. Lifting the valley degeneracy in these materials is of great interest because it would allow for valley specific band engineering and offer additional control in valleytronic applications. In this talk, I will show that circularly polarized light, which breaks time-reversal symmetry, can be used to lift the valley degeneracy by means of the optical Stark effect. We demonstrate that this effect is capable of raising the exciton level in monolayer TMD WS2 by as much as 18 meV in a controllable valley-selective manner. The resulting energy shift is extremely large, comparable to the shift that would be obtained using a very high magnetic field (approximately 100 Tesla). These results offer a novel way to control valley degree of freedom, and may provide a means to realize new valley-selective Floquet topological state of matter.

  3. High speed all optical networks

    NASA Technical Reports Server (NTRS)

    Chlamtac, Imrich; Ganz, Aura

    1990-01-01

    An inherent problem of conventional point-to-point wide area network (WAN) architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. The first solution to wavelength division multiplexing (WDM) based WAN networks that overcomes this limitation is presented. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs. The principle of the Lightnet architecture is the construction and use of virtual topology networks, embedded in the original network in the wavelength domain. For this construction Lightnets utilize the new concept of lightpaths which constitute the links of the virtual topology. Lightpaths are all-optical, multihop, paths in the network that allow data to be switched through intermediate nodes using high throughput passive optical switches. The use of the virtual topologies and the associated switching design introduce a number of new ideas, which are discussed in detail.

  4. Optics assembly for high power laser tools

    DOEpatents

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  5. Advancing High Contrast Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Ammons, M.; Poyneer, L.; GPI Team

    2014-09-01

    A long-standing challenge has been to directly image faint extrasolar planets adjacent to their host suns, which may be ~1-10 million times brighter than the planet. Several extreme AO systems designed for high-contrast observations have been tested at this point, including SPHERE, Magellan AO, PALM-3000, Project 1640, NICI, and the Gemini Planet Imager (GPI, Macintosh et al. 2014). The GPI is the world's most advanced high-contrast adaptive optics system on an 8-meter telescope for detecting and characterizing planets outside of our solar system. GPI will detect a previously unstudied population of young analogs to the giant planets of our solar system and help determine how planetary systems form. GPI employs a 44x44 woofer-tweeter adaptive optics system with a Shack-Hartmann wavefront sensor operating at 1 kHz. The controller uses Fourier-based reconstruction and modal gains optimized from system telemetry (Poyneer et al. 2005, 2007). GPI has an apodized Lyot coronal graph to suppress diffraction and a near-infrared integral field spectrograph for obtaining planetary spectra. This paper discusses current performance limitations and presents the necessary instrumental modifications and sensitivity calculations for scenarios related to high-contrast observations of non-sidereal targets.

  6. Heterogeneous metasurface for high temperature selective emission

    SciTech Connect

    Woolf, D. Hensley, J.; Cederberg, J. G.; Bethke, D. T.; Grine, A. D.; Shaner, E. A.

    2014-08-25

    We demonstrate selective emission from a heterogeneous metasurface that can survive repeated temperature cycling at 1300 K. Simulations, fabrication, and characterization were performed for a cross-over-a-backplane metasurface consisting of platinum and alumina layers on a sapphire substrate. The structure was stabilized for high temperature operation by an encapsulating alumina layer. The geometry was optimized for integration into a thermophotovoltaic (TPV) system, and was designed to have its emissivity matched to the external quantum efficiency spectrum of 0.6 eV InGaAs TPV material. We present spectral measurements of the metasurface that result in a predicted 22% optical-to-electrical power conversion efficiency in a simplified model at 1300 K. Furthermore, this broadly adaptable selective emitter design can be easily integrated into full-scale TPV systems.

  7. High precision Woelter optic calibration facility

    SciTech Connect

    Morales, R.I.; Remington, B.A.; Schwinn, T.

    1994-05-02

    We have developed an off-line facility for very precise characterization of the reflectance and spatial resolution of the grazing incidence Woelter Type 1 x-ray optics used at Nova. The primary component of the facility is a high brightness, ``point`` x-ray source consisting of a focussed DC electron beam incident onto a precision manipulated target/pinhole array. The data are recorded with a selection of detectors. For imaging measurements we use direct exposure x-ray film modules or an x-ray CCD camera. For energy-resolved reflectance measurements, we use lithium drifted silicon detectors and a proportional counter. An in situ laser alignment system allows precise location and rapid periodic alignment verification of the x-ray point source, the statically mounted Woelter optic, and the chosen detector.

  8. High pressure optical combustion probe

    SciTech Connect

    Woodruff, S.D.; Richards, G.A.

    1995-06-01

    The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod in a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.

  9. Optical pulse synthesis using brillouin selective sideband amplification

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2002-01-01

    Techniques for producing optical pulses based on Brillouin selective sideband amplification by using a common modulation control signal to modulate both a signal beam to produce multiple sideband signals and a single pump beam to produce multiple pump beams.

  10. OPTICALLY-BASED ARRAY SENSORS FOR SELECTIVE IN SITU ANALYSIS OF TANK WASTE

    EPA Science Inventory

    Fundamental research will be directed toward developing an array of chemically selective sensors, based on highly selective molecular recognition agents and fluorescence techniques, coupled to fiber optics, for the safe and cost-effective in situ characterization of high level wa...

  11. FINAL REPORT. OPTICALLY-BASED ARRAY SENSORS FOR SELECTIVE IN SITU ANALYSIS OF TANK WASTE

    EPA Science Inventory

    The objective of this research program is to conduct the fundamental research necessary to develop an array of chemically-selective sensors, based on highly selective molecular recognition agents and highly sensitive fluorescence techniques, that can be coupled to fiber optics fo...

  12. Optical variability of X-ray-selected QSOs

    NASA Astrophysics Data System (ADS)

    Pica, Andrew J.; Webb, James R.; Smith, Alex G.; Leacock, Robert J.; Bitran, Mauricio

    1987-08-01

    Photometric data for ten X-ray-selected quasistellar objects have been obtained from archival records of the Rosemary Hill Observatory. Reliable magnitudes were obtained for seven of the ten sources and six displayed optical variations significant at the 95 percent confidence level or greater. One source appeared to exhibit optically violent behavior. Light curves and photographic magnitudes are presented and discussed.

  13. Optical variability of X-ray-selected QSOs

    SciTech Connect

    Pica, A.J.; Webb, J.R.; Smith, A.G.; Leacock, R.J.; Bitran, M.

    1987-08-01

    Photometric data for ten X-ray-selected quasistellar objects have been obtained from archival records of the Rosemary Hill Observatory. Reliable magnitudes were obtained for seven of the ten sources and six displayed optical variations significant at the 95 percent confidence level or greater. One source appeared to exhibit optically violent behavior. Light curves and photographic magnitudes are presented and discussed. 22 references.

  14. A novel PVC-membrane optical sensor for highly sensitive and selective determination of UO 22+ ion based on a recently synthesized benzo-substituted macrocyclic diamide and dibenzoylmethane

    NASA Astrophysics Data System (ADS)

    Shamsipur, Mojtaba; Zargoosh, Kiomars; Mizani, Farhang; Eshghi, Hossein; Rostami, Faramarz

    2010-09-01

    A highly sensitive ion-selective bulk optode membrane for sensing UO 22+ ion based on plasticized poly(vinyl chloride) containing 6,7,9,10,12,13,15,16,23,24,25,26-dodecahydrodibenzo[n,v][1,4,7,10,13,17,20]pentaoxa-diazacyclotricosine-22,27-dione as ionophore, dibenzodylmethane as chromoionophore and sodium tetraphenylborate as an ionic additive was prepared. In addition to its high stability, reproducibility and relatively long lifetime, the proposed optical sensor revealed good selectivity for uranyl ion over a large number of alkali, alkaline earth, transition, and heavy metal ions. The proposed sensor displays a calibration response for UO 22+ over a concentration range of 4.3 × 10 -6 to 2.5 × 10 -8 M with a limit of detection of 8.0 × 10 -9 M and a response time of less than 12 min. The proposed optical sensor was applied successfully to the determination of UO 22+ ion in tap water and Khoshumi mine concentrated solution samples.

  15. High temperature size selective membranes

    SciTech Connect

    Yates, S.F.; Swamikannu, A.X.

    1993-09-01

    The high temperature membrane, capable of operation above 550{degree}C, is designed to be a composite membrane composed of a thin layer of a size selective membrane supported by a microporous ceramic support. The kinetic diameters of H{sub 2} and CO{sub 2} are 2.96 {Angstrom} and 4.00 {Angstrom}. The thin layer will be made from CMS whose pore size will be controlled to be less than 4 {Angstrom}. The membrane will be truly size selective and be impermeable to carbon dioxide. The membrane will have higher selectivity than membranes which operate on Knudsen diffusion mechanism. The ceramic support will be fabricated from Allied Signal`s proprietary Blackglas{trademark} resin. The ceramic material, noted for its high thermal and oxidative resistance, has a coefficient of thermal expansion which matches closely that of CMS. The close match will insure mechanical integrity when the membrane is subjected to thermal cycles. The CMS layer will be produced by controlled pyrolysis of polymeric precursors. Pore size will be suitably modified by post-treatments to the carbon. The composite membrane will be tested for its permeation properties at 550{degree}C or higher. Thermal, mechanical and chemical stability of the membrane will be assessed. We have produced several samples of CMS from polymeric precursors. We have initiated work also on the preparation of microporous supports from Blackglas{trademark} resin. We have completed the design of the high temperature membrane pilot plant. The membrane cell was fabricated out of two kinds of stainless steel. The inner parts are made of SS 316 and the outer ring made of SS 420. The greater thermal expansion of the SS 316 will help obtain a leak free seal at the operating temperatures.

  16. Towards green high capacity optical networks

    NASA Astrophysics Data System (ADS)

    Glesk, I.; Mohd Warip, M. N.; Idris, S. K.; Osadola, T. B.; Andonovic, I.

    2012-02-01

    The demand for fast, secure, energy efficient high capacity networks is growing. It is fuelled by transmission bandwidth needs which will support among other things the rapid penetration of multimedia applications empowering smart consumer electronics and E-businesses. All the above trigger unparallel needs for networking solutions which must offer not only high-speed low-cost "on demand" mobile connectivity but should be ecologically friendly and have low carbon footprint. The first answer to address the bandwidth needs was deployment of fibre optic technologies into transport networks. After this it became quickly obvious that the inferior electronic bandwidth (if compared to optical fiber) will further keep its upper hand on maximum implementable serial data rates. A new solution was found by introducing parallelism into data transport in the form of Wavelength Division Multiplexing (WDM) which has helped dramatically to improve aggregate throughput of optical networks. However with these advancements a new bottleneck has emerged at fibre endpoints where data routers must process the incoming and outgoing traffic. Here, even with the massive and power hungry electronic parallelism routers today (still relying upon bandwidth limiting electronics) do not offer needed processing speeds networks demands. In this paper we will discuss some novel unconventional approaches to address network scalability leading to energy savings via advance optical signal processing. We will also investigate energy savings based on advanced network management through nodes hibernation proposed for Optical IP networks. The hibernation reduces the network overall power consumption by forming virtual network reconfigurations through selective nodes groupings and by links segmentations and partitionings.

  17. Towards green high capacity optical networks

    NASA Astrophysics Data System (ADS)

    Glesk, I.; Mohd Warip, M. N.; Idris, S. K.; Osadola, T. B.; Andonovic, I.

    2011-09-01

    The demand for fast, secure, energy efficient high capacity networks is growing. It is fuelled by transmission bandwidth needs which will support among other things the rapid penetration of multimedia applications empowering smart consumer electronics and E-businesses. All the above trigger unparallel needs for networking solutions which must offer not only high-speed low-cost "on demand" mobile connectivity but should be ecologically friendly and have low carbon footprint. The first answer to address the bandwidth needs was deployment of fibre optic technologies into transport networks. After this it became quickly obvious that the inferior electronic bandwidth (if compared to optical fiber) will further keep its upper hand on maximum implementable serial data rates. A new solution was found by introducing parallelism into data transport in the form of Wavelength Division Multiplexing (WDM) which has helped dramatically to improve aggregate throughput of optical networks. However with these advancements a new bottleneck has emerged at fibre endpoints where data routers must process the incoming and outgoing traffic. Here, even with the massive and power hungry electronic parallelism routers today (still relying upon bandwidth limiting electronics) do not offer needed processing speeds networks demands. In this paper we will discuss some novel unconventional approaches to address network scalability leading to energy savings via advance optical signal processing. We will also investigate energy savings based on advanced network management through nodes hibernation proposed for Optical IP networks. The hibernation reduces the network overall power consumption by forming virtual network reconfigurations through selective nodes groupings and by links segmentations and partitionings.

  18. X-ray properties of optically selected QSOs

    NASA Technical Reports Server (NTRS)

    Avni, Y.; Tananbaum, H.

    1986-01-01

    The dependence of the X-ray-to-optical luminosity ratio on optical luminosity and redshift for optically selected QSOs is studied, largely on the basis of two, complete, magnitude-limited samples (Bright Quasar Survey /1983/ and Braccesi Faint /1984/) which were observed with the Einstein Observatory. Heterogeneous samples are established as adequate for the study of that dependence. Optimal choices for increasing the size of the data set for such a study are pointed out. The previous results of Avni and Tananbaum for alpha sub 0, x(z, L sub opt) are confirmed and strengthened, and the numerical sensitivity to changes in the values of q sub 0 and of the optical spectral index is evaluated. It is shown that the large majority, probably all, of optically selected QSOs are X-ray loud; no more than a few percent can be X-ray quiet. Thus X-ray emission appears to be a universal property of QSOs. It is shown that comparisons of optically selected QSOs with X-ray selected QSOs are numerically sensitive to the details of the input ingredients. A residual discrepancy of about a factor of 2 between calculated and observed X-ray number counts is found. Directions for further research that are important for understanding the full bivariate optical-X-ray evolution and luminosity function for QSOs are discussed.

  19. Depth selective acousto-optic flow measurement

    PubMed Central

    Tsalach, Adi; Schiffer, Zeev; Ratner, Eliahu; Breskin, Ilan; Zeitak, Reuven; Shechter, Revital; Balberg, Michal

    2015-01-01

    Optical based methods for non-invasive measurement of regional blood flow tend to incorrectly assess cerebral blood flow, due to contribution of extra-cerebral tissues to the obtained signal. We demonstrate that spectral analysis of phase-coded light signals, tagged by specific ultrasound patterns, enables differentiation of flow patterns at different depths. Validation of the model is conducted by Monte Carlo simulation. In-vitro experiments demonstrate good agreement with the simulations' results and provide a solid validation to depth discrimination ability. These results suggest that signal contamination originating from extra-cerebral tissue may be eliminated using spectral analysis of ultrasonically tagged light. PMID:26713201

  20. Disposable nitrate-selective optical sensor based on fluorescent dye

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple, disposable thin-film optical nitrate sensor was developed. The sensor was fabricated by applying a nitrate-selective polymer membrane on the surface of a thin polyester film. The membrane was composed of polyvinylchloride (PVC), plasticizer, fluorescent dye, and nitrate-selective ionophore...

  1. Optically selective, acoustically resonant gas detecting transducer

    NASA Technical Reports Server (NTRS)

    Dimeff, J. (Inventor)

    1977-01-01

    A gas analyzer is disclosed which responds to the resonant absorption or emission spectrum of a specific gas by producing an acoustic resonance in a chamber containing a sample of that gas, and which measures the amount of that emission or absorption by measuring the strength of that acoustic resonance, e.g., the maximum periodic pressure, velocity or density achieved. In the preferred embodiment, a light beam is modulated periodically at the acoustical resonance frequency of a closed chamber which contains an optically dense sample of the gas of interest. Periodic heating of the absorbing gas by the light beam causes a cyclic expansion, movement, and pressure within the gas. An amplitude is reached where the increased losses were the cyclic radiation energy received. A transducing system is inclined for converting the pressure variations of the resonant gas into electronic readout signals.

  2. Optical design of nanowire absorbers for wavelength selective photodetectors

    PubMed Central

    Mokkapati, S.; Saxena, D.; Tan, H. H.; Jagadish, C.

    2015-01-01

    We propose the optical design for the absorptive element of photodetectors to achieve wavelength selective photo response based on resonant guided modes supported in semiconductor nanowires. We show that the waveguiding properties of nanowires result in very high absorption efficiency that can be exploited to reduce the volume of active semiconductor compared to planar photodetectors, without compromising the photocurrent. We present a design based on a group of nanowires with varying diameter for multi-color photodetectors with small footprint. We discuss the effect of a dielectric shell around the nanowires on the absorption efficiency and present a simple approach to optimize the nanowire diameter-dielectric shell thickness for maximizing the absorption efficiency. PMID:26469227

  3. Rest-frame Optical Emission Lines in z ˜ 3.5 Lyman-break-selected Galaxies: The Ubiquity of Unusually High [OIII]/Hβ Ratios at 2 Gyr

    NASA Astrophysics Data System (ADS)

    Holden, B. P.; Oesch, P. A.; González, V. G.; Illingworth, G. D.; Labbé, I.; Bouwens, R.; Franx, M.; van Dokkum, P.; Spitler, L.

    2016-03-01

    We present K-band spectra of rest-frame optical emission lines for 24 star-forming galaxies at z ˜ 3.2-3.7 using MOSFIRE on the Keck I telescope. Strong rest-frame optical [O iii] and Hβ emission lines were detected in 18 Lyman break galaxies (LBGs). The median flux ratio of [O iii]λ5007 to Hβ is {5.1}-0.5+0.5. This is a factor of 5-10 times higher than in local galaxies with similar stellar masses. None of our sources are detected in deep X-ray stacks, ruling out significant contamination by active galactic nuclei. Combining our sample with a variety of LBGs from the literature, including 49 galaxies selected in a very similar manner, we find a high median ratio of [O iii]/Hβ = {4.8}-1.7+0.8. This high ratio seems to be a ubiquitous feature of z ˜ 3-4 LBGs, very different from typical local star-forming galaxies at similar stellar masses. The only comparable systems at z ˜ 0 are those with similarly high specific star formation rates (SSFRs), though ˜5 times lower stellar masses. High SSFRs may result in a higher ionization parameter, higher electron density, or harder ionizing radiation, which, combined different elemental abundances, result in a much higher [O iii]/Hβ line ratio. This implies a strong relation between a global property of a galaxy, the SSFR, and the local conditions of ISM in star-forming regions. Partially based on data obtained with the Hubble Space Telescope operated by AURA, Inc. for NASA under contract NAS5-26555. Partially based on observations with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

  4. Electro-Optical High-Voltage Sensors

    NASA Technical Reports Server (NTRS)

    Gottsche, Allan; Johnston, Alan R.

    1992-01-01

    Electro-optical sensors for measuring high voltages developed for use in automatically controlled power-distribution systems. Sensors connected to optoelectronic interrogating equipment by optical fibers. Because sensitive material and optical fibers are all dielectric, no problem in electrically isolating interrogating circuitry from high voltage, and no need for voltage dividers. Sensor signals transmitted along fibers immune to electromagnetic noise at radio and lower frequencies.

  5. Highly stretchable, printable nanowire array optical polarizers.

    PubMed

    Kwon, Soonshin; Lu, Dylan; Sun, Zhelin; Xiang, Jie; Liu, Zhaowei

    2016-09-21

    Designing optical components such as polarizers on substrates with high mechanical deformability have potential to realize new device platforms in photonics, wearable electronics, and sensors. Conventional manufacturing approaches that rely highly on top-down lithography, deposition and the etching process can easily confront compatibility issues and high fabrication complexity. Therefore, an alternative integration scheme is necessary. Here, we demonstrate fabrication of highly flexible and stretchable wire grid polarizers (WGPs) by printing bottom-up grown Ge or Ge/Si core/shell nanowires (NWs) on device substrates in a highly dense and aligned fashion. The maximum contrast ratio of 104 between transverse electric (TE) and transverse magnetic (TM) fields and above 99% (maximum 99.7%) of light blocking efficiency across the visible spectrum range are achieved. Further systematic analyses are performed both in experimental and numerical models to reveal the correspondence between physical factors (coverage ratio of NW arrays and diameter) and polarization efficiency. Moreover, we demonstrate distinctive merits of our approach: (i) high flexibility in the choice of substrates such as glass, plastic, or elastomer; (ii) easy combination with additional novel functionalities, for example, air permeability, flexibility/stretchability, biocompatibility, and a skin-like low mechanical modulus; (iii) selective printing of polarizers on a designated local area. PMID:27537105

  6. Note: digital optical zoom by selection of polarization.

    PubMed

    Hebert, D; Jones, M; Greenup, L; Feldman, M

    2012-09-01

    The combination of a liquid crystal cell with a polarizing beam splitter is used to select one of the two paths through an optical imaging system. The paths both focus the same image on a CCD detector, but one has 4 times the magnification of the other. PMID:23020431

  7. Acoustic force mapping in a hybrid acoustic-optical micromanipulation device supporting high resolution optical imaging.

    PubMed

    Thalhammer, Gregor; McDougall, Craig; MacDonald, Michael Peter; Ritsch-Marte, Monika

    2016-04-12

    Many applications in the life-sciences demand non-contact manipulation tools for forceful but nevertheless delicate handling of various types of sample. Moreover, the system should support high-resolution optical imaging. Here we present a hybrid acoustic/optical manipulation system which utilizes a transparent transducer, making it compatible with high-NA imaging in a microfluidic environment. The powerful acoustic trapping within a layered resonator, which is suitable for highly parallel particle handling, is complemented by the flexibility and selectivity of holographic optical tweezers, with the specimens being under high quality optical monitoring at all times. The dual acoustic/optical nature of the system lends itself to optically measure the exact acoustic force map, by means of direct force measurements on an optically trapped particle. For applications with (ultra-)high demand on the precision of the force measurements, the position of the objective used for the high-NA imaging may have significant influence on the acoustic force map in the probe chamber. We have characterized this influence experimentally and the findings were confirmed by model simulations. We show that it is possible to design the chamber and to choose the operating point in such a way as to avoid perturbations due to the objective lens. Moreover, we found that measuring the electrical impedance of the transducer provides an easy indicator for the acoustic resonances. PMID:27025398

  8. Selective engineering of cavity resonance for frequency matching in optical parametric processes

    SciTech Connect

    Lu, Xiyuan; Rogers, Steven; Jiang, Wei C.; Lin, Qiang

    2014-10-13

    We propose to selectively engineer a single cavity resonance to achieve frequency matching for optical parametric processes in high-Q microresonators. For this purpose, we demonstrate an approach, selective mode splitting (SMS), to precisely shift a targeted cavity resonance, while leaving other cavity modes intact. We apply SMS to achieve efficient parametric generation via four-wave mixing in high-Q silicon microresonators. The proposed approach is of great potential for broad applications in integrated nonlinear photonics.

  9. Selective engineering of cavity resonance for frequency matching in optical parametric processes

    NASA Astrophysics Data System (ADS)

    Lu, Xiyuan; Rogers, Steven; Jiang, Wei C.; Lin, Qiang

    2014-10-01

    We propose to selectively engineer a single cavity resonance to achieve frequency matching for optical parametric processes in high-Q microresonators. For this purpose, we demonstrate an approach, selective mode splitting (SMS), to precisely shift a targeted cavity resonance, while leaving other cavity modes intact. We apply SMS to achieve efficient parametric generation via four-wave mixing in high-Q silicon microresonators. The proposed approach is of great potential for broad applications in integrated nonlinear photonics.

  10. EDITORIAL: Selected Papers from OMS'07, the 2nd Topical Meeting of the European Optical Society on Optical Microsystems (OMS)

    NASA Astrophysics Data System (ADS)

    Rendina, Ivo; Fazio, Eugenio; Ferraro, Pietro

    2008-06-01

    OMS'07 was the 2nd Topical Meeting of the European Optical Society (EOS) on Optical Microsystems (OMS). It was organized by the EOS in the frame of its international topical meeting activity, and after the success of the inaugural meeting was once again held in Italy, 30 September to 3 October 2007, amidst the wonderful scenery of the Island of Capri. The local organizing committee was composed of researchers from `La Sapienza' University in Rome and the National Council of Research (CNR) in Naples, Italy. A selected group of leading scientists in the field formed the international scientific committee. The conference was fully dedicated to the most recent advancements carried out in the field of optical microsystems. More then 150 scientists coming from five continents attended the conference and more than 100 papers were presented, organized into the following sessions: Photonic cystals and metamaterials Optofluidic microsystems and devices Optical microsystems and devices New characterization methods for materials and devices Application of optical systems Optical sources and photodetectors Optical resonators Nonlinear optic devices Micro-optical devices. Four keynote lecturers were invited for the Plenary sessions: Federico Capasso, Harvard University, USA; Bahram Javidi, University of Connecticut, USA (Distinguished Lecturer, Emeritus of LEOS--IEEE Society); Demetri Psaltis, EPFL, Lausanne, Switzerland; Ammon Yariv, California Institute of Technology, USA. Furthermore, 21 invited speakers opened each session of the conference with their talks. In addition a special session was organized to celebrate eighty years of the Isituto Nazionale di Ottica Applicata (INOA) of CNR. The special invited speaker for this session was Professor Theodor W Hänsch (Nobel Prize in Physics, 2005), who gave a lecture entitled `What can we do with optical frequency combs?' In this special issue of Journal of Optics A: Pure and Applied Optics, a selection of the most interesting

  11. An optical filter with angular selectivity of the light transmission

    NASA Astrophysics Data System (ADS)

    Zakirullin, Rustam S.

    2015-09-01

    Features of the application of a novel optical filter with angular selectivity of the light transmission to architectural glazing are considered. The filter consists of a sheet transparent substrate with thin-film grating layers on both surfaces. The gratings formed by directionally transmissive strips, alternating with absorptive, reflective, or scattering strips. Their relative position on the input and output surfaces provides angular selectivity of the directional light transmission - as the incidence angle changes, the proportion of radiation that passes through both gratings of the filter also changes. Chromogenic materials currently used in the laminated smart windows, providing control over the intensity and spectrum of the transmitted solar radiation, cannot achieve the selective regulation on the ranges of incidence angles. Such a regulation requires the use of additional daylight-redirecting devices, especially blinds, to dynamically adapt to the position of the sun. The grating optical filter provides angular selectivity of the light transmission of a window without such devices. The features of using this filter in the single and double glazed windows are described. A graphic analytical calculation method is proposed for estimating the effect of geometrical and optical parameters of the filter on the angular characteristics of the light transmission. An algorithm to optimize filtering solar radiation taking into account the geographical coordinates of terrain, time of day and year and the orientation of the window to the cardinal is set. An algorithm to calculating geometrical parameters of the filter with pre-specified characteristics of the light transmission is obtained.

  12. High-Temperature Optical Window Design

    NASA Technical Reports Server (NTRS)

    Roeloffs, Norman; Taranto, Nick

    1995-01-01

    A high-temperature optical window is essential to the optical diagnostics of high-temperature combustion rigs. Laser Doppler velocimetry, schlieren photography, light sheet visualization, and laser-induced fluorescence spectroscopy are a few of the tests that require optically clear access to the combustor flow stream. A design was developed for a high-temperature window that could withstand the severe environment of the NASA Lewis 3200 F Lean Premixed Prevaporized (LPP) Flame Tube Test Rig. The development of this design was both time consuming and costly. This report documents the design process and the lessons learned, in an effort to reduce the cost of developing future designs for high-temperature optical windows.

  13. Selective attention in the honeybee optic lobes precedes behavioral choices

    PubMed Central

    Paulk, Angelique C.; Stacey, Jacqueline A.; Pearson, Thomas W. J.; Taylor, Gavin J.; Moore, Richard J. D.; Srinivasan, Mandyam V.; van Swinderen, Bruno

    2014-01-01

    Attention allows animals to respond selectively to competing stimuli, enabling some stimuli to evoke a behavioral response while others are ignored. How the brain does this remains mysterious, although it is increasingly evident that even animals with the smallest brains display this capacity. For example, insects respond selectively to salient visual stimuli, but it is unknown where such selectivity occurs in the insect brain, or whether neural correlates of attention might predict the visual choices made by an insect. Here, we investigate neural correlates of visual attention in behaving honeybees (Apis mellifera). Using a closed-loop paradigm that allows tethered, walking bees to actively control visual objects in a virtual reality arena, we show that behavioral fixation increases neuronal responses to flickering, frequency-tagged stimuli. Attention-like effects were reduced in the optic lobes during replay of the same visual sequences, when bees were not able to control the visual displays. When bees were presented with competing frequency-tagged visual stimuli, selectivity in the medulla (an optic ganglion) preceded behavioral selection of a stimulus, suggesting that modulation of early visual processing centers precedes eventual behavioral choices made by these insects. PMID:24639490

  14. Optical Near Field Studies of Plasmonic and Optical Antennas For Sensitive and Selective Biosensing Applications

    NASA Astrophysics Data System (ADS)

    Gelfand, Ryan M.

    For biosensing applications a useful device needs at least two properties: high sensitivity and high selectivity. Optical spectroscopy offers unique advantages over other sensing techniques however one big challenge to overcome is the mismatch between wavelength and the size of biologically relevant molecules. In order to have high enough sensitivity to approach the single-molecule limit, the interaction between the light and the molecule should be strong. However, the diffraction limit of light is approximately half the incidence wavelength, on the order of 100 nm for the smallest nondestructive wavelengths. This presents a significant mismatch between the size of the molecule and the smallest focus spot of the light. The photo-excitation should be compressed more than 100 fold to interact strongly. We must use metallic antennas that convert the incidence radiation into plasmonic modes which can then be compressed well below the wavelength diffraction limit. Studying the near field characteristics of these metallic nanostructures will help us gain insight into this emerging field and allow us to better use them in developing next generation devices. We have developed different geometries of these antennas and simulated their performance using Finite Difference Time Domain software. We have concentrated our efforts in the mid-infrared because that is the natural molecular vibration frequency region and also the near infrared because at these frequencies there exists a mature industry for compact sources, detectors, and fiber optic components. Our simulations show a 6,000 fold mode compression for a bowtie antenna and a million fold compression for a plasmonic photonic crystal (ppc) antenna. The bull's-eye antenna does not have as a high a mode compression but it has a natural geometry for molecular sensing due to the central metallic disc. Experimentally, we have measured the near field of these antennas with a custom back reflection apertureless NSOM setup in both

  15. High accuracy optical rate sensor

    NASA Technical Reports Server (NTRS)

    Uhde-Lacovara, J.

    1990-01-01

    Optical rate sensors, in particular CCD arrays, will be used on Space Station Freedom to track stars in order to provide inertial attitude reference. An algorithm to provide attitude rate information by directly manipulating the sensor pixel intensity output is presented. The star image produced by a sensor in the laboratory is modeled. Simulated, moving star images are generated, and the algorithm is applied to this data for a star moving at a constant rate. The algorithm produces accurate derived rate of the above data. A step rate change requires two frames for the output of the algorithm to accurately reflect the new rate. When zero mean Gaussian noise with a standard deviation of 5 is added to the simulated data of a star image moving at a constant rate, the algorithm derives the rate with an error of 1.9 percent at a rate of 1.28 pixels per frame.

  16. A selective optical sensor based on [9]mercuracarborand-3, a new type of ionophore with a chloride complexing cavity

    NASA Technical Reports Server (NTRS)

    Badr, I. H.; Johnson, R. D.; Diaz, M.; Hawthorne, M. F.; Bachas, L. G.; Daunert, S. (Principal Investigator)

    2000-01-01

    A highly selective optical sensor for chloride, based on the multidentate Lewis acid ionophore [9]mercuracarborand-3, is described herein. This sensor is constructed by embedding the mercuracarborand ionophore, a suitable pH-sensitive lipophilic dye, and lipophilic cationic sites in a plasticized polymeric membrane. The multiple complementary interactions offered by the preorganized complexing cavity of [9]mercuracarborand-3 is shown to control the anion selectivity pattern of the optical film. The film exhibits a significantly enhanced selectivity for chloride over a variety of lipophilic anions such as perchlorate, nitrate, salicylate, and thiocyanate. Furthermore, the optical selectivity coefficients obtained for chloride over other biologically relevant anions are shown to meet the selectivity requirements for the determination of chloride in physiological fluids, unlike previously reported chloride optical sensors. In addition, the optical film responds to chloride reversibly over a wide dynamic range (16 microM-136 mM) with fast response and recovery times.

  17. High temperature solar selective coatings

    DOEpatents

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  18. EDITORIAL: Selected papers from Optical MEMS and Nanophotonics 2007

    NASA Astrophysics Data System (ADS)

    Jagadish, Chennupati; Sasaki, Minoru; Yeh, J. Andrew

    2008-04-01

    This special issue on optical MEMS and nanophotonics features papers presented at the International Optical MEMS and Nanophotonics Conference held in Hualien, Taiwan, 12-16 August 2007, chaired by J Andrew Yeh. Minoru Sasaki and Chennupati Jagadish served as Program Co-Chairs of optical MEMS and nanophotonics, respectively. The conference featured a broad range of technologies in both topical areas with participation from academia, government laboratories and industry. The conference covered the latest technical developments in the fields of optical micro-electro-mechanical systems (MEMS) and integrated micro-optics. Integration and miniaturization of photonic and optical MEMS components and systems towards micro- and nanoscale for various applications were discussed. The conference also featured nanophotonics which is expected to provide high-speed, high-bandwidth and compact photonic devices. The interaction of light with nanoscale structures including generation, manipulation and detection was discussed at the conference and covered photonic crystals, quantum dots, nanowires and plasmonics. Integrated systems combining nanostructures and optical MEMS were discussed. We would like to thank Hans Zappe for suggesting the special issue and providing timely advice on various related matters and also to Julia Dickinson and Claire Bedrock for their professionalism and help. Carol Chan of the National Tsing Hua University is gratefully acknowledged for her help with the conference. Administration by staff from the Instrument Technology Research Center is highly appreciated. The assistance of the students of the National Dong Hua University and the National Tsing Hua University made the conference most enjoyable. The next conference will be held in Freiburg, Germany, 11-14 August 2008 and will be chaired by Hans Zappe.

  19. High temperature, minimally invasive optical sensing modules

    DOEpatents

    Riza, Nabeel Agha; Perez, Frank

    2008-02-05

    A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector to calculate a temperature of the device.

  20. Fiber optic distribution system for wideband, high performance video

    NASA Astrophysics Data System (ADS)

    Kline, A. R.

    A wideband fiber-optic video distribution system with a bandwidth exceeding 20 MHz has been developed for the NASA Space Station Freedom. The system uses FM modulation and light emitting diodes in combination with lightweight and rugged fiber-optic cables and digital switching elements to provide lightweight, reliable, high-performance video signal distribution over the full extent of the Space Station. The author addresses the Space Station requirements, including environmental constraints, which led to the selected system architecture and choice of components. The design of the modulators and demodulators, optical transmitters and receivers, fiber-optic cable, and the video switches is discussed. Also presented is a description of how the technology can be applied to those military needs which would benefit from the performance, reliability, and EMI/TEMPEST features of the system.

  1. High-Sensitivity Microwave Optics.

    ERIC Educational Resources Information Center

    Nunn, W. M., Jr.

    1981-01-01

    Describes a 3.33-cm wavelength (9 GHz) microwave system that achieves a high overall signal sensitivity and a well-collimated beam with moderate-size equipment. The system has been used to develop microwave versions of the Michelson interferometer, Bragg reflector, Brewster's law and total internal reflection, and Young's interference experiment.…

  2. Selectivity of optical stimulation in the auditory system

    NASA Astrophysics Data System (ADS)

    Izzo, Agnella D.; Pathria, Jyoti; Suh, Eul; Walsh, Joseph T., Jr.; Whitlon, Donna S.; Jansen, E. D.; Richter, Claus-Peter

    2006-02-01

    It is known that electrical current injected from cochlear implant contacts spreads within the cochlea, causing overlapping stimulation fields and possibly limiting the performance of cochlear implant users. We have investigated an alternative mechanism to stimulate auditory neurons in the gerbil cochlea using a laser, rather than electrical current. With the laser, it is possible to direct the light to a selected, known volume of tissue that is smaller than the electrically stimulated population of cells. In the present experiments, a transiently expressed transcription factor, c-FOS, was used to stain activated nerve cells. Immunohistochemical staining for c-FOS in the cochlea shows a small area of optical stimulation, which occurs directly opposite to the optical fiber. Additionally, masking data indicate that the laser can stimulate a small population of cells similar to an acoustic toneburst. Smaller populations of stimulated cells could reduce the amount of overlap in stimulation fields and allow more stimulation contacts in a neuroprothesis.

  3. High precision optical surface metrology using deflectometry

    NASA Astrophysics Data System (ADS)

    Huang, Run

    Software Configurable Optical Test System (SCOTS) developed at University of Arizona is a highly efficient optical metrology technique based on the principle of deflectometry, which can achieve comparable accuracy with interferometry but with low-cost hardware. In a SCOTS test, an LCD display is used to generate structured light pattern to illuminate the test optics and the reflected light is captured by a digital camera. The surface slope of test optics is determined by triangulation of the display pixels, test optics, and the camera. The surface shape is obtained by the integration of the slopes. Comparing to interferometry, which has long served as an accurate non-contact optical metrology technology, SCOTS overcomes the limitation of dynamic range and sensitivity to environment. It is able to achieve high dynamic range slope measurement without requiring null optics. In this dissertation, the sensitivity and performance of the test system have been analyzed comprehensively. Sophisticated calibrations of system components have been investigated and implemented in different metrology projects to push this technology to a higher accuracy including low-order terms. A compact on-axis SCOTS system lowered the testing geometry sensitivity in the metrology of 1-meter highly aspheric secondary mirror of Large Binocular Telescope. Sub-nm accuracy was achieved in testing a high precision elliptical X-ray mirror by using reference calibration. A well-calibrated SCOTS was successfully constructed and is, at the time of writing this dissertation, being used to provide surface metrology feedback for the fabrication of the primary mirror of Daniel K. Inouye Solar Telescope which is a 4-meter off-axis parabola with more than 8 mm aspherical departure.

  4. Technology Development for High Efficiency Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2012-01-01

    Deep space optical communications is a significantly more challenging operational domain than near Earth space optical communications, primarily due to effects resulting from the vastly increased range between transmitter and receiver. The NASA Game Changing Development Program Deep Space Optical Communications Project is developing four key technologies for the implementation of a high efficiency telecommunications system that will enable greater than 10X the data rate of a state-of-the-art deep space RF system (Ka-band) for similar transceiver mass and power burden on the spacecraft. These technologies are a low mass spacecraft disturbance isolation assembly, a flight qualified photon counting detector array, a high efficiency flight laser amplifier and a high efficiency photon counting detector array for the ground-based receiver.

  5. Method of forming silicon structures with selectable optical characteristics

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); Schowalter, Leo (Inventor)

    1993-01-01

    Silicon and metal are coevaporated onto a silicon substrate in a molecular beam epitaxy system with a larger than stoichiometric amount of silicon so as to epitaxially grow particles of metal silicide embedded in a matrix of single crystal epitaxially grown silicon. The particles interact with incident photons by resonant optical absorption at the surface plasmon resonance frequency. Controlling the substrate temperature and deposition rate and time allows the aspect ratio of the particles to be tailored to desired wavelength photons and polarizations. The plasmon energy may decay as excited charge carriers or phonons, either of which can be monitored to indicate the amount of incident radiation at the selected frequency and polarization.

  6. High-Speed Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Marsh, T. R.

    The large surveys and sensitive instruments of modern astronomy are turning ever more examples of variable objects, many of which are extending the parameter space to testing theories of stellar evolution and accretion. Future projects such as the Laser Interferometer Space Antenna (LISA) and the Large Synoptic Survey Telescope (LSST) will only add more challenging candidates to this list. Understanding such objects often requires fast spectroscopy, but the trend for ever larger detectors makes this difficult. In this contribution I outline the science made possible by high-speed spectroscopy, and consider how a combination of the well-known progress in computer technology combined with recent advances in CCD detectors may finally enable it to become a standard tool of astrophysics.

  7. Selective cloning of Gaussian states by linear optics

    SciTech Connect

    Olivares, Stefano

    2007-08-15

    We investigate the performance of a selective cloning machine based on linear optical elements and Gaussian measurements, which allows one to clone at will one of the two incoming input states. This machine is a complete generalization of a 1{yields}2 cloning scheme demonstrated by Andersen et al. [Phys. Rev. Lett. 94, 240503 (2005)]. The input-output fidelity is studied for a generic Gaussian input state, and the effect of nonunit quantum efficiency is also taken into account. We show that, if the states to be cloned are squeezed states with known squeezing parameter, then the fidelity can be enhanced using a third suitable squeezed state during the final stage of the cloning process. A binary communication protocol based on the selective cloning machine is also discussed.

  8. The Baldwin effect in complete optically selected samples of quasars

    NASA Astrophysics Data System (ADS)

    Zamorani, G.; Marano, B.; Mignoli, M.; Zitelli, V.; Boyle, B. J.

    1992-05-01

    The Baldwin relation is examined on the basis of the largest available data set of unbiased complete samples of optically selected quasars. Relations yielded by the least-squares fit of the equivalent width vs absolute magnitude are given. For both lines the slope of the correlation between the equivalent widths and the luminosities is very shallow. In particular, the slope for the C IV line is significantly different from the 'canonical' value for the slope of the Baldwin effect in quasars: EWC IV varies as L1550 exp -(0.3-0.4). The present slope for the C IV line is in agreement with that obtained by Kinney et al. (1990) in their study of the Baldwin effect which was chiefly based on IUE data. The present normalization is about a factor of 2 smaller than theirs. Possible selection effects which may have biased the normalization of the Kinney et al. result are suggested.

  9. Effects of surface diffusion on high temperature selective emitters.

    PubMed

    Peykov, Daniel; Yeng, Yi Xiang; Celanovic, Ivan; Joannopoulos, John D; Schuh, Christopher A

    2015-04-20

    Using morphological and optical simulations of 1D tantalum photonic crystals at 1200K, surface diffusion was determined to gradually reduce the efficiency of selective emitters. This was attributed to shifting resonance peaks and declining emissivity caused by changes to the cavity dimensions and the aperture width. Decreasing the structure's curvature through larger periods and smaller cavity widths, as well as generating smoother transitions in curvature through the introduction of rounded cavities, was found to alleviate this degradation. An optimized structure, that shows both high efficiency selective emissivity and resistance to surface diffusion, was presented. PMID:25969039

  10. Invariant high resolution optical skin imaging

    NASA Astrophysics Data System (ADS)

    Murali, Supraja; Rolland, Jannick

    2007-02-01

    Optical Coherence Microscopy (OCM) is a bio-medical low coherence interferometric imaging technique that has become a topic of active research because of its ability to provide accurate, non-invasive cross-sectional images of biological tissue with much greater resolution than the current common technique ultrasound. OCM is a derivative of Optical Coherence Tomography (OCT) that enables greater resolution imposed by the implementation of an optical confocal design involving high numerical aperture (NA) focusing in the sample. The primary setback of OCM, however is the depth dependence of the lateral resolution obtained that arises from the smaller depth of focus of the high NA beam. We propose to overcome this limitation using a dynamic focusing lens design that can achieve quasi-invariant lateral resolution up to 1.5mm depth of skin tissue.

  11. Optical metrology devices for high-power laser large optics

    NASA Astrophysics Data System (ADS)

    Daurios, J.; Bouillet, S.; Gaborit, G.; Poncetta, J. C.

    2007-06-01

    High power laser systems such as the LMJ laser or the LIL laser, its prototype, require large optical components with very strict and various specifications. Technologies used for the fabrication of these components are now usually compatible of such specifications, but need the implementation at the providers' sites of different kind of metrology like interferometry, photometry, surface inspection, etc., systematically performed on the components. So, during the production for the LIL and now for the LMJ, CEA has also equipped itself with a wide range of specific metrology devices used to verify the effective quality of these large optics. These various systems are now used to characterize and validate the LMJ vendors' processes or to perform specific controls dedicated to analyzes which are going further than the simple "quality control" of the component (mechanical mount effect, environment effect, ageing effect,...). After a short introduction on the LMJ laser and corresponding optical specifications for components, we will focus on different metrology devices concerning interferometry and photometry measurements or surface inspection. These systems are individually illustrated here by the mean of different results obtained during controls done in the last few years.

  12. High Density Read/Write Optical System

    NASA Astrophysics Data System (ADS)

    Chen, Philip L.

    1982-05-01

    Xerox Electro-Optical Systems is developing an information storage and retrieval system for the Library of Congress to store a data base consisting of seven million library cards. The library card image will be digitized, stored, and retrieved by a computer system and printed out on a Xerox 9700 high speed laser printer.

  13. Properties of optically selected BL Lacertae candidates from the SDSS

    NASA Astrophysics Data System (ADS)

    Kügler, S. D.; Nilsson, K.; Heidt, J.; Esser, J.; Schultz, T.

    2014-09-01

    Context. Deep optical surveys open the avenue for finding large numbers of BL Lac objects that are hard to identify because they lack the unique properties classifying them as such. While radio or X-ray surveys typically reveal dozens of sources, recent compilations based on optical criteria alone have increased the number of BL Lac candidates considerably. However, these compilations are subject to biases and may contain a substantial number of contaminating sources. Aims: In this paper we extend our analysis of 182 optically selected BL Lac object candidates from the SDSS with respect to an earlier study. The main goal is to determine the number of bona fide BL Lac objects in this sample. Methods: We examine their variability characteristics, determine their broad-band radio-UV spectral energy distributions (SEDs), and search for the presence of a host galaxy. In addition we present new optical spectra for 27 targets with improved signal-to-noise ratio with respect to the SDSS spectra. Results: At least 59% of our targets have shown variability between SDSS DR2 and our observations by more than 0.1-0.27 mag depending on the telescope used. A host galaxy was detected in 36% of our targets. The host galaxy type and luminosities are consistent with earlier studies of BL Lac host galaxies. Simple fits to broad-band SEDs for 104 targets of our sample derived synchrotron peak frequencies between 13.5 ≤ log 10(νpeak) ≤ 16 with a peak at log 10 ~ 14.5. Our new optical spectra do not reveal any new redshift for any of our objects. Thus the sample contains a large number of bona fide BL Lac objects and seems to contain a substantial fraction of intermediate-frequency peaked BL Lacs. Based on observations collected with the NTT on La Silla (Chile) operated by the European Southern Observatory under proposal 082.B-0133.Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA), operated jointly by the Max-Planck-Institut für Astronomie and the

  14. Development and Testing of High-Temperature Solar Selective Coatings

    SciTech Connect

    Kennedy, C.; Price, H.

    2005-01-01

    The Solar Energy Technologies Program is working to reduce the cost of parabolic trough solar power technology. System studies show that increasing the operating temperature of the solar field from 390 to >450 C will result in improved performance and cost reductions. This requires the development of new more-efficient selective coatings that have both high solar absorptance (>0.96) and low thermal emittance (<0.07) and are thermally stable above 450 C, ideally in air. Potential selective coatings were modeled, identified for laboratory prototyping, and manufactured at NREL. Optimization of the samples and high-temperature durability testing will be performed. Development of spectrally selective materials depends on reliable characterization of their optical properties. Protocols for testing the thermal/optical properties of selective coatings were developed and a round-robin experiment was conducted to verify and document the reflectance and high-temperature emittance measurements. The development, performance, and durability of these materials and future work will be described.

  15. High-density fiber optic biosensor arrays

    NASA Astrophysics Data System (ADS)

    Epstein, Jason R.; Walt, David R.

    2002-02-01

    Novel approaches are required to coordinate the immense amounts of information derived from diverse genomes. This concept has influenced the expanded role of high-throughput DNA detection and analysis in the biological sciences. A high-density fiber optic DNA biosensor was developed consisting of oligonucleotide-functionalized, 3.1 mm diameter microspheres deposited into the etched wells on the distal face of a 500 micrometers imaging fiber bundle. Imaging fiber bundles containing thousands of optical fibers, each associated with a unique oligonucleotide probe sequence, were the foundation for an optically connected, individually addressable DNA detection platform. Different oligonucleotide-functionalized microspheres were combined in a stock solution, and randomly dispersed into the etched wells. Microsphere positions were registered from optical dyes incorporated onto the microspheres. The distribution process provided an inherent redundancy that increases the signal-to-noise ratio as the square root of the number of sensors examined. The representative amount of each probe-type in the array was dependent on their initial stock solution concentration, and as other sequences of interest arise, new microsphere elements can be added to arrays without altering the existing detection capabilities. The oligonucleotide probe sequences hybridize to fluorescently-labeled, complementary DNA target solutions. Fiber optic DNA microarray research has included DNA-protein interaction profiles, microbial strain differentiation, non-labeled target interrogation with molecular beacons, and single cell-based assays. This biosensor array is proficient in DNA detection linked to specific disease states, single nucleotide polymorphism (SNP's) discrimination, and gene expression analysis. This array platform permits multiple detection formats, provides smaller feature sizes, and enables sensor design flexibility. High-density fiber optic microarray biosensors provide a fast

  16. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS.

    SciTech Connect

    BEN-ZVI, ILAN, DAYRAN, D.; LITVINENKO, V.

    2005-08-21

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department.

  17. Injection molded high precision freeform optics for high volume applications

    NASA Astrophysics Data System (ADS)

    Dick, Lars; Risse, Stefan; Tünnermann, Andreas

    2012-03-01

    Injection molding offers a cost-efficient method for manufacturing high precision plastic optics for high-volume applications. Optical surfaces such as flats, spheres and also aspheres are meanwhile state-of-the-art in the field of plastic optics. The demand for surfaces without symmetric properties, commonly referred to as freeform surfaces, continues to rise. Currently, new mathematical approaches are under consideration which allow for new complex optical designs. Such novel optical designs strongly encourage development of new manufacturing methods. Specifically, new surface descriptions without an axis of symmetry, new ultra precision machining methods and non-symmetrical shrinkage compensation strategies have to be developed to produce freeform optical surfaces with high precision for high-volume applications. This paper will illustrate a deterministic and efficient way for the manufacturing of ultra precision injection molding tool inserts with submicron precision and show the manufacturing of replicated freeform surfaces with micrometer range shape accuracy at diameters up to 40 mm with a surface roughness of approximately 2 nm.

  18. High Dimensional Variable Selection with Error Control.

    PubMed

    Kim, Sangjin; Halabi, Susan

    2016-01-01

    Background. The iterative sure independence screening (ISIS) is a popular method in selecting important variables while maintaining most of the informative variables relevant to the outcome in high throughput data. However, it not only is computationally intensive but also may cause high false discovery rate (FDR). We propose to use the FDR as a screening method to reduce the high dimension to a lower dimension as well as controlling the FDR with three popular variable selection methods: LASSO, SCAD, and MCP. Method. The three methods with the proposed screenings were applied to prostate cancer data with presence of metastasis as the outcome. Results. Simulations showed that the three variable selection methods with the proposed screenings controlled the predefined FDR and produced high area under the receiver operating characteristic curve (AUROC) scores. In applying these methods to the prostate cancer example, LASSO and MCP selected 12 and 8 genes and produced AUROC scores of 0.746 and 0.764, respectively. Conclusions. We demonstrated that the variable selection methods with the sequential use of FDR and ISIS not only controlled the predefined FDR in the final models but also had relatively high AUROC scores. PMID:27597974

  19. High Dimensional Variable Selection with Error Control

    PubMed Central

    2016-01-01

    Background. The iterative sure independence screening (ISIS) is a popular method in selecting important variables while maintaining most of the informative variables relevant to the outcome in high throughput data. However, it not only is computationally intensive but also may cause high false discovery rate (FDR). We propose to use the FDR as a screening method to reduce the high dimension to a lower dimension as well as controlling the FDR with three popular variable selection methods: LASSO, SCAD, and MCP. Method. The three methods with the proposed screenings were applied to prostate cancer data with presence of metastasis as the outcome. Results. Simulations showed that the three variable selection methods with the proposed screenings controlled the predefined FDR and produced high area under the receiver operating characteristic curve (AUROC) scores. In applying these methods to the prostate cancer example, LASSO and MCP selected 12 and 8 genes and produced AUROC scores of 0.746 and 0.764, respectively. Conclusions. We demonstrated that the variable selection methods with the sequential use of FDR and ISIS not only controlled the predefined FDR in the final models but also had relatively high AUROC scores. PMID:27597974

  20. Highly Selective Ruthenium Metathesis Catalysts for Ethenolysis

    PubMed Central

    Thomas, Renee M.; Keitz, Benjamin K.; Champagne, Timothy M.; Grubbs, Robert H.

    2011-01-01

    N-aryl, N-alkyl N-heterocyclic carbene (NHC) ruthenium metathesis catalysts are highly selective toward the ethenolysis of methyl oleate, giving selectivity as high as 95% for the kinetic, ethenolysis products over the thermodynamic, self-metathesis products. The examples described herein represent some of the most selective NHC-based ruthenium catalysts for ethenolysis reactions to date. Furthermore, many of these catalysts show unusual preference and stability toward propagating as a methylidene species, and provide good yields and turnover numbers (TONs) at relatively low catalyst loading (<500 ppm). A catalyst comparison showed that ruthenium complexes bearing sterically hindered NHC substituents afforded greater selectivity and stability, and exhibited longer catalyst lifetime during reactions. Comparative analysis of the catalyst preference for kinetic versus thermodynamic product formation was achieved via evaluation of their steady-state conversion in the cross-metathesis reaction of terminal olefins. These results coincided with the observed ethenolysis selectivities, in which the more selective catalysts reach a steady-state characterized by lower conversion to cross-metathesis products compared to less selective catalysts, which show higher conversion to cross-metathesis products. PMID:21510645

  1. Fabrication and comparison of selective, transparent optics for concentrating solar systems

    NASA Astrophysics Data System (ADS)

    Taylor, Robert A.; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P.

    2015-09-01

    Concentrating optics enable solar thermal energy to be harvested at high temperature (<100oC). As the temperature of the receiver increases, radiative losses can become dominant. In many concentrating systems, the receiver is coated with a selectively absorbing surface (TiNOx, Black Chrome, etc.) to obtain higher efficiency. Commercial absorber coatings are well-developed to be highly absorbing for short (solar) wavelengths, but highly reflective at long (thermal emission) wavelengths. If a solar system requires an analogous transparent, non-absorbing optic - i.e. a cover material which is highly transparent at short wavelengths, but highly reflective at long wavelengths - the technology is simply not available. Low-e glass technology represents a commercially viable option for this sector, but it has only been optimized for visible light transmission. Optically thin metal hole-arrays are another feasible solution, but are often difficult to fabricate. This study investigates combinations of thin film coatings of transparent conductive oxides and nanoparticles as a potential low cost solution for selective solar covers. This paper experimentally compares readily available materials deposited on various substrates and ranks them via an `efficiency factor for selectivity', which represents the efficiency of radiative exchange in a solar collector. Out of the materials studied, indium tin oxide and thin films of ZnS-Ag-ZnS represent the most feasible solutions for concentrated solar systems. Overall, this study provides an engineering design approach and guide for creating scalable, selective, transparent optics which could potentially be imbedded within conventional low-e glass production techniques.

  2. High Sensitivity Optically Pumped Quantum Magnetometer

    PubMed Central

    Tiporlini, Valentina; Alameh, Kamal

    2013-01-01

    Quantum magnetometers based on optical pumping can achieve sensitivity as high as what SQUID-based devices can attain. In this paper, we discuss the principle of operation and the optimal design of an optically pumped quantum magnetometer. The ultimate intrinsic sensitivity is calculated showing that optimal performance of the magnetometer is attained with an optical pump power of 20 μW and an operation temperature of 48°C. Results show that the ultimate intrinsic sensitivity of the quantum magnetometer that can be achieved is 327 fT/Hz1/2 over a bandwidth of 26 Hz and that this sensitivity drops to 130 pT/Hz1/2 in the presence of environmental noise. The quantum magnetometer is shown to be capable of detecting a sinusoidal magnetic field of amplitude as low as 15 pT oscillating at 25 Hz. PMID:23766716

  3. Highly automated optical characterization with FTIR spectrometry

    NASA Technical Reports Server (NTRS)

    Perry, G. L. E.; Szofran, F. R.

    1989-01-01

    The procedure for evaluating the characteristics of II-VI semiconducting infrared sensor materials with a Fourier Transform Infrared (FTIR) spectrometer system will be discussed. While the method of mapping optical characteristics with a spectrometer has been employed previously, this system is highly automated compared to other systems where the optical transmission data are obtained using a FTIR system with a small stationary aperture in the optical path and moving the specimen behind the aperture. The hardware and software, including an algorithm developed for extracting cut-on wavelengths of spectra, as well as several example results, are described to illustrate the advanced level of the system. Additionally, data from transverse slices and longitudinal wafers of the aforementioned semiconductors will be used to show the accuracy of the system in predicting trends in materials such as shapes of growth interfaces and compositional uniformity.

  4. FEC for high-speed optical transmission

    NASA Astrophysics Data System (ADS)

    Xie, Changsong; Zhao, Yu; Xiao, Zhiyu; Chang, Deyuan; Yu, Fan

    2011-12-01

    This paper will at first explain the requirement of high speed optical transport network on forward error correction (FEC) codes in terms of code length, code rate, coding gain, burst error correction capability, error floor, latency, coding/decoding complexity. Then, a few code schemes used in current optical transport systems such as Reed-Solomon codes recommended by ITU-T G.709 and enhanced FECs listed in ITU-T, G.975.1 are introduced. Advanced codes recently developed by vendors used for 100Gbps systems and their performances are summarized. Features and special requirements on soft decoding FEC (SDFEC) especially inter-working between SDFEC and equalizer, with and without deferential coding etc. are analyzed. Some perspectives of future FEC for optical transport are also given.

  5. Optical signal processing for enabling high-speed, highly spectrally efficient and high capacity optical systems

    NASA Astrophysics Data System (ADS)

    Fazal, Muhammad Irfan

    The unabated demand for more capacity due to the ever-increasing internet traffic dictates that the boundaries of the state of the art maybe pushed to send more data through the network. Traditionally, this need has been satisfied by multiple wavelengths (wavelength division multiplexing), higher order modulation formats and coherent communication (either individually or combined together). WDM has the ability to reduce cost by using multiple channels within the same physical fiber, and with EDFA amplifiers, the need for O-E-O regenerators is eliminated. Moreover the availability of multiple colors allows for wavelength-based routing and network planning. Higher order modulation formats increases the capacity of the link by their ability to encode data in both the phase and amplitude of light, thereby increasing the bits/sec/Hz as compared to simple on-off keyed format. Coherent communications has also emerged as a primary means of transmitting and receiving optical data due to its support of formats that utilize both phase and amplitude to further increase the spectral efficiency of the optical channel, including quadrature amplitude modulation (QAM) and quadrature phase shift keying (QPSK). Polarization multiplexing of channels can double capacity by allowing two channels to share the same wavelength by propagating on orthogonal polarization axis and is easily supported in coherent systems where the polarization tracking can be performed in the digital domain. Furthermore, the forthcoming IEEE 100 Gbit/s Ethernet Standard, 802.3ba, provides greater bandwidth, higher data rates, and supports a mixture of modulation formats. In particular, Pol-MUX QPSK is increasingly becoming the industry's format of choice as the high spectral efficiency allows for 100 Gbit/s transmission while still occupying the current 50 GHz/channel allocation of current 10 Gbit/s OOK fiber systems. In this manner, 100 Gbit/s transfer speeds using current fiber links, amplifiers, and filters

  6. Optically-Based Array Sensors for Selective In Situ Analysis of tank Waste

    SciTech Connect

    Brown, Gilbert M.; Dabestani, Reza; Bonnesen, Peter V.; Walt, David R.

    2000-06-01

    The objective of this research program is to conduct the fundamental research necessary to develop an array of chemically selective sensors, based on highly selective molecular recognition agents and highly sensitive fluorescence techniques, that can be coupled to fiber optics for remote analytical applications. These sensors will be of great value to DOE for the safe and cost-effective in situ characterization of high level waste tanks and other applications where remote sensing will prevent workers from being exposed to chemicals or radiation. The ability to detect and measure specific chemicals and radionuclides directly inside a high level waste tank using a remote sensing device could result in considerable benefits with regard to both cost savings and safety issues. In this approach to the design of sensors, agents for selective molecular recognition such as crown ethers are immobilized in an organic polymer matrix that mimics the organic medium in an aqueous nonaqueous extraction system.

  7. Highly Sensitive Electro-Optic Modulators

    SciTech Connect

    DeVore, Peter S

    2015-10-26

    There are very important diagnostic and communication applications that receive faint electrical signals to be transmitted over long distances for capture. Optical links reduce bandwidth and distance restrictions of metal transmission lines; however, such signals are only weakly imprinted onto the optical carrier, resulting in low fidelity transmission. Increasing signal fidelity often necessitates insertion of radio-frequency (RF) amplifiers before the electro-optic modulator, but (especially at high frequencies) RF amplification results in large irreversible distortions. We have investigated the feasibility of a Sensitive and Linear Modulation by Optical Nonlinearity (SALMON) modulator to supersede RF-amplified modulators. SALMON uses cross-phase modulation, a manifestation of the Kerr effect, to enhance the modulation depth of an RF-modulated optical wave. This ultrafast process has the potential to result in less irreversible distortions as compared to a RF-amplified modulator due to the broadband nature of the Kerr effect. Here, we prove that a SALMON modulator is a feasible alternative to an RFamplified modulator, by demonstrating a sensitivity enhancement factor greater than 20 and significantly reduced distortion.

  8. Method and apparatus of highly linear optical modulation

    DOEpatents

    DeRose, Christopher; Watts, Michael R.

    2016-05-03

    In a new optical intensity modulator, a nonlinear change in refractive index is used to balance the nonlinearities in the optical transfer function in a way that leads to highly linear optical intensity modulation.

  9. Wavefront metrology for high resolution optical systems

    NASA Astrophysics Data System (ADS)

    Miyakawa, Ryan H.

    Next generation extreme ultraviolet (EUV) optical systems are moving to higher resolution optics to accommodate smaller length scales targeted by the semiconductor industry. As the numerical apertures (NA) of the optics become larger, it becomes increasingly difficult to characterize aberrations due to experimental challenges associated with high-resolution spatial filters and geometrical effects caused by large incident angles of the test wavefront. This dissertation focuses on two methods of wavefront metrology for high resolution optical systems. The first method, lateral shearing interferometry (LSI), is a self-referencing interferometry where the test wavefront is incident on a low spatial frequency grating, and the resulting interference between the diffracted orders is used to reconstruct the wavefront aberrations. LSI has many advantages over other interferometric tests such as phase-shifting point diffraction interferometry (PS/PDI) due to its experimental simplicity, stability, relaxed coherence requirements, and its ability to scale to high numerical apertures. While LSI has historically been a qualitative test, this dissertation presents a novel quantitative investigation of the LSI interferogram. The analysis reveals the existence of systematic aberrations due to the nonlinear angular response from the diffraction grating that compromises the accuracy of LSI at medium to high NAs. In the medium NA regime (0.15 < NA < 0.35), a holographic model is presented that derives the systematic aberrations in closed form, which demonstrates an astigmatism term that scales as the square of the grating defocus. In the high NA regime (0.35 < NA), a geometrical model is introduced that describes the aberrations as a system of transcendental equations that can be solved numerically. The characterization and removal of these systematic errors is a necessary step that unlocks LSI as a viable candidate for high NA EUV optical testing. The second method is a novel image

  10. Hybrid optical antenna with high directivity gain.

    PubMed

    Bonakdar, Alireza; Mohseni, Hooman

    2013-08-01

    Coupling of a far-field optical mode to electronic states of a quantum absorber or emitter is a crucial process in many applications, including infrared sensors, single molecule spectroscopy, and quantum metrology. In particular, achieving high quantum efficiency for a system with a deep subwavelength quantum absorber/emitter has remained desirable. In this Letter, a hybrid optical antenna based on coupling of a photonic nanojet to a metallo-dielectric antenna is proposed, which allows such efficient coupling. A quantum efficiency of about 50% is predicted for a semiconductor with volume of ~λ³/170. Despite the weak optical absorption coefficient of 2000 cm(-1) in the long infrared wavelength of ~8 μm, very strong far-field coupling has been achieved, as evidenced by an axial directivity gain of 16 dB, which is only 3 dB below of theoretical limit. Unlike the common phased array antenna, this structure does not require coherent sources to achieve a high directivity. The quantum efficiency and directivity gain are more than an order of magnitude higher than existing metallic, dielectric, or metallo-dielectric optical antenna. PMID:23903124

  11. Design of an Optical system for the In Situ Process Monitoring of Selective Laser Melting (SLM)

    NASA Astrophysics Data System (ADS)

    Lott, Philipp; Schleifenbaum, Henrich; Meiners, Wilhelm; Wissenbach, Konrad; Hinke, Christian; Bültmann, Jan

    Selective Laser Melting (SLM) is an Additive Manufacturing technology that enables the production of complex shaped individual parts with series identical mechanical properties. Areas of improvement are up to now quality and reproducibility of parts made by SLM due to different kinds of errors. Therefore the integration of a monitoring and control module into a SLM-machine is aspired. The design of such an optical system capable of monitoring high scanning velocities and melt pool dynamics is introduced as a first step.

  12. Optically transparent frequency selective surfaces on flexible thin plastic substrates

    SciTech Connect

    Dewani, Aliya A. O’Keefe, Steven G.; Thiel, David V.; Galehdar, Amir

    2015-02-15

    A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.

  13. Optically transparent frequency selective surfaces on flexible thin plastic substrates

    NASA Astrophysics Data System (ADS)

    Dewani, Aliya A.; O'Keefe, Steven G.; Thiel, David V.; Galehdar, Amir

    2015-02-01

    A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.

  14. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    SciTech Connect

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  15. Development of optical tools for the characterization of selective solar absorber at elevated temperature

    NASA Astrophysics Data System (ADS)

    Giraud, Philemon; Braillon, Julien; Delord, Christine; Raccurt, Olivier

    2016-05-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The objective is to develop new optical equipment for characterization of this solar absorber in condition of use that is to say in air and at elevated temperature. In this paper we present two new optical test benches developed for optical characterization of solar absorbers in condition of use up to 800°C. The first equipment is an integrated sphere with heated sample holder which measures the hemispherical reflectance between 280 and 2500 nm to calculate the solar absorbance at high temperature. The second optical test bench measures the emittance of samples up to 1000°C in the range of 1.25 to 28.57 µm. Results of high temperature measurements on a series of metallic absorbers with selective coating and refractory material for high thermal receiver are presented.

  16. Small-Scale High-Performance Optics

    SciTech Connect

    WILSON, CHRISTOPHER W.; LEGER, CHRIS L.; SPLETZER, BARRY L.

    2002-06-01

    Historically, high resolution, high slew rate optics have been heavy, bulky, and expensive. Recent advances in MEMS (Micro Electro Mechanical Systems) technology and micro-machining may change this. Specifically, the advent of steerable sub-millimeter sized mirror arrays could provide the breakthrough technology for producing very small-scale high-performance optical systems. For example, an array of steerable MEMS mirrors could be the building blocks for a Fresnel mirror of controllable focal length and direction of view. When coupled with a convex parabolic mirror the steerable array could realize a micro-scale pan, tilt and zoom system that provides full CCD sensor resolution over the desired field of view with no moving parts (other than MEMS elements). This LDRD provided the first steps towards the goal of a new class of small-scale high-performance optics based on MEMS technology. A large-scale, proof of concept system was built to demonstrate the effectiveness of an optical configuration applicable to producing a small-scale (< 1cm) pan and tilt imaging system. This configuration consists of a color CCD imager with a narrow field of view lens, a steerable flat mirror, and a convex parabolic mirror. The steerable flat mirror directs the camera's narrow field of view to small areas of the convex mirror providing much higher pixel density in the region of interest than is possible with a full 360 deg. imaging system. Improved image correction (dewarping) software based on texture mapping images to geometric solids was developed. This approach takes advantage of modern graphics hardware and provides a great deal of flexibility for correcting images from various mirror shapes. An analytical evaluation of blur spot size and axi-symmetric reflector optimization were performed to address depth of focus issues that occurred in the proof of concept system. The resulting equations will provide the tools for developing future system designs.

  17. High field optical nonlinearities in gases

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Hsiang

    Optical femtosecond self-channeling in gases, also called femtosecond filamentation, has become an important area of research in high field nonlinear optics. Filamentation occurs when laser light self-focuses in a gas owing to self-induced nonlinearity, and then defocuses in the plasma generated by the self-focused beam. The result of this process repeating itself multiple times is an extended region of plasma formation. Filamentation studies have been motivated by the extremely broad range of applications, especially in air, including pulse compression, supercontinuum generation, broadband high power terahertz pulse generation, discharge triggering and guiding, and remote sensing. Despite the worldwide work in filamentation, the fundamental gas nonlinearities governing self-focusing had never been directly measured in the range of laser intensity up to and including the ionization threshold. This dissertation presents the first such measurements. We absolutely measured the temporal refractive index change of O2, N2, Ar, H2, D2 and N2O caused by highfield ultrashort optical pulses with single-shot supercontinuum spectral interferometry, cleanly separating for the first time the instantaneous electronic and delayed rotational nonlinear response in diatomic gases. We conclusively showed that a recent claim by several European groups that the optical bound electron nonlinearity saturates and goes negative is not correct. Such a phenomenon would preclude the need for plasma to provide the defocusing contribution for filamentation. Our results show that the 'standard model of filamentation', where the defocusing is provided by plasma, is correct. Finally, we demonstrated that high repetition rate femtosecond laser pulses filamenting in gases can generate long-lived gas density `holes' which persist on millisecond timescales, long after the plasma has recombined. Gas density decrements up to ~20% have been measured. The density hole refilling is dominated by thermal

  18. Senior English in Selected High Schools.

    ERIC Educational Resources Information Center

    Trammell, Robert Thomas

    In this study, 50 teachers of senior English were surveyed regarding their academic preparation and the English programs and curricular practices in their schools (18 selected high schools in Alabama). An analysis of existing professional literature was made to determine the status of current senior English programs and to ascertain what criteria…

  19. Selecting Music for High School Pop Groups.

    ERIC Educational Resources Information Center

    Santy, Jeff

    1990-01-01

    Describes the criteria a high school music teacher used to select music for a new non-traditional class titled "Pop Band." Lists criteria that each song must have: playability, special feature, popular appeal, variety, artist's qualification, and appropriateness. Students took an active role in the decision-making process. (GG)

  20. Raman selection rule for surface optical phonons in ZnS nanobelts.

    PubMed

    Ho, Chih-Hsiang; Varadhan, Purushothaman; Wang, Hsin-Hua; Chen, Cheng-Ying; Fang, Xiaosheng; He, Jr-Hau

    2016-03-21

    We report Raman scattering results for high-quality wurtzite ZnS nanobelts (NBs) grown by chemical vapor deposition. In the Raman spectrum, the ensembles of ZnS NBs exhibit first order phonon modes at 274 cm(-1) and 350 cm(-1), corresponding to A1/E1 transverse optical and A1/E1 longitudinal optical phonons, in addition to a strong surface optical (SO) phonon mode at 329 cm(-1). The existence of the SO band is confirmed by its shift with different surrounding dielectric media. Polarization dependent Raman spectra were recorded on a single ZnS NB and for the first time a SO phonon band has been detected on a single nanobelt. Different selection rules for the SO phonon mode are shown from their corresponding E1/A1 phonon modes, and were attributed to the breaking of anisotropic translational symmetry on the NB surface. PMID:26924069

  1. Transferring diffractive optics from research to commercial applications: Part II - size estimations for selected markets

    NASA Astrophysics Data System (ADS)

    Brunner, Robert

    2014-04-01

    In a series of two contributions, decisive business-related aspects of the current process status to transfer research results on diffractive optical elements (DOEs) into commercial solutions are discussed. In part I, the focus was on the patent landscape. Here, in part II, market estimations concerning DOEs for selected applications are presented, comprising classical spectroscopic gratings, security features on banknotes, DOEs for high-end applications, e.g., for the semiconductor manufacturing market and diffractive intra-ocular lenses. The derived market sizes are referred to the optical elements, itself, rather than to the enabled instruments. The estimated market volumes are mainly addressed to scientifically and technologically oriented optical engineers to serve as a rough classification of the commercial dimensions of DOEs in the different market segments and do not claim to be exhaustive.

  2. Non-reciprocity compensation correction and antenna selection for optical large MIMO system

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Chi, Xue-fen; Zhao, Lin-lin

    2015-11-01

    This paper exploits an optical large multiple input multiple output (MIMO) system. We first establish the non-reciprocity compensation correction factor to solve the channel non-reciprocity problem. Then we propose an antenna selection algorithm with the goal of realizing maximum energy efficiency ( EE) when satisfying the outage EE. The simulation results prove that this non-reciprocity compensation correction factor can compensate beam energy attenuation gap and spatial correlation gap between uplink and downlink effectively, and this antenna selection algorithm can economize the number of transmit antennas and achieve high EE performance. Finally, we apply direct current- biased optical orthogonal frequency division multiplexing (DCO-OFDM) modulation in our system and prove that it can improve the bit error rate ( BER) compared with on-off keying (OOK) modulation, so the DCO-OFDM modulation can resist atmospheric turbulence effectively.

  3. Wave-plate structures, power selective optical filter devices, and optical systems using same

    DOEpatents

    Koplow, Jeffrey P.

    2012-07-03

    In an embodiment, an optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes first and second substantially zero-order, zero-wave plates arranged in series with and oriented at an angle relative to each other. The first and second zero-wave plates are configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. Each zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.

  4. Metal-Coated Optical Fibers for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Zeakes, Jason; Murphy, Kent; Claus, Richard; Greene, Jonathan; Tran, Tuan

    1996-01-01

    This poster will highlight on-going research at the Virginia Tech Fiber & Electro-Optics Research Center (FEORC) in the area of thin films on optical fibers. Topics will include the sputter deposition of metals and metal; alloys onto optical fiber and fiber optic sensors for innovative applications. Specific information will be available on thin film fiber optic hydrogen sensors, corrosion sensors, and metal-coated optical fiber for high temperature aerospace applications.

  5. HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS

    SciTech Connect

    Baranec, Christoph; Riddle, Reed; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Dekany, Richard; Kulkarni, Shrinivas; Law, Nicholas M.; Ramaprakash, A. N.; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Punnadi, Sujit

    2014-07-20

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  6. Optically-Based Array Sensors For Selective In Situ Analysis Of Tank Waste

    SciTech Connect

    Brown, Gilbert M.; Dabestani, Reza; Connesen, Peter V.; Walt, David R.

    2001-03-31

    The objective of this research program is to conduct the fundamental research necessary to develop an array of chemically-selective sensors, based on highly selective molecular recognition agents and highly sensitive fluorescence techniques, that can be coupled to fiber optics for remote analytical applications. The ability to detect and measure specific chemicals and radionuclides directly inside a high level waste tank using a remote sensing device could result in considerable benefits with regard to both cost savings and safety issues. An array of fiber optic sensors will be of great value to DOE for the safe and cost-effective in situ characterization of high level waste tanks and other applications where remote sensing will prevent workers from being exposed to chemicals or radiation. In this approach to the design of sensors, agents for selective molecular recognition such as crown ethers are immobilized in an organic polymer matrix that mimics the organic medium in an aqueous-nonaqueous extraction system. The matrix is attached to an optical fiber for remote detection of metal complexation by photonics measurements. Selection of the complexation agent and solvent are derived from our knowledge of metal ion specificity in the analogous aqueous-non-aqueous solvent-extraction chemistry. We additionally utilize our knowledge of synergistic effects for enhancing both the selectivity and the loading in the solvent extraction of alkali metals from tank waste by proper design of the polymeric matrix and by incorporating appropriate co-extractants into the matrix. The objective is to maximize the selectivity for and the degree of binding (loading) of the desired metal ion by the sensor's solid matrix while maintaining stability in the highly alkaline environment of tank waste. This novel approach to the design of photonics-based sensors should result in increased chemical selectivity, which at present is a fundamental limitation of many chemical sensor devices. When

  7. Specialty fiber optic applications for harsh and high radiation environments

    NASA Astrophysics Data System (ADS)

    Risch, Brian G.

    2015-05-01

    Since the first commercial introduction in the 1980s, optical fiber technology has undergone an almost exponential growth. Currently over 2 billion fiber kilometers are deployed globally with 2014 global optical fiber production exceeding 300 million fiber kilometers. 1 Along with the staggering growth in optical fiber production and deployment, an increase in optical fiber technologies and applications has also followed. Although the main use of optical fibers by far has been for traditional data transmission and communications, numerous new applications are introduced each year. Initially the practical application of optical fibers was limited by cost and sensitivity of the optical fibers to stress, radiation, and other environmental factors. Tremendous advances have taken place in optical fiber design and materials allowing optical fibers to be deployed in increasingly harsh environments with exposure to increased mechanical and environmental stresses while maintaining high reliability. With the increased reliability, lower cost, and greatly expanded range of optical fiber types now available, new optical fiber deployments in harsh and high radiation environments is seeing a tremendous increase for data, communications, and sensing applications. An overview of key optical fiber applications in data, communications, and sensing for harsh environments in industrial, energy exploration, energy generation, energy transmission, and high radiation applications will be presented. Specific recent advances in new radiation resistant optical fiber types, other specialty optical fibers, optical fiber coatings, and optical fiber cable materials will be discussed to illustrate long term reliability for deployment of optical fibers in harsh and high radiation environments.

  8. High resolution underwater fiber optic threat detection system

    NASA Astrophysics Data System (ADS)

    Berger, Alexander; Hermesh, Shalmon; Durets, Eugene; Kempen, Lothar U.

    2006-10-01

    Current underwater protection systems are complex expensive devices consisting of multiple electronic sensing elements. The detection and identification of divers and small submerged watercraft requires very high image resolution. The high price of an array of conventional piezoelectric transducers and associated electronic components makes this solution feasible for localized implementations, but the protection of large stretches of coastline requires a different approach. We present a novel multichannel sonar design that augments current active sonar transducers with a passive fiber-optic multichannel acoustic emission sensing array. The system provides continuous monitoring of the acoustic wave reflections emitted by a single projector, yielding information about the size and shape of approaching objects. A novel fiber hydrophone enclosure is utilized to dramatically enhance the sensor response to the sonar frequency, while suppressing out-of-band sound sources and noise. The ability of a fiber hydrophone to respond to acoustic emissions is based on established fiber Bragg grating sensing techniques. In this approach, the energy of an acoustic wave is converted into the modulation of the in-fiber optical transducer's optical properties. The obtained results demonstrate significant response of the designed fiber optic hydrophone to the incident acoustic wave over the frequency domain from 1-80 kHz. Our approach allows selective tuning of the sensor to a particular acoustic frequency, as well as potential extension of the spectral response to 300- 400kHz.2

  9. High-order beam optics: An overview

    SciTech Connect

    Heighway, E.A.

    1988-01-01

    Beam-transport codes have been around for as long as thirty years and high-order codes, second-order at least, for close to twenty years. Before this period of design-code development, there was considerable high-order treatment, but it was almost entirely analytical. History has a way of repeating itself, and the current excitement in the field of high-order optics is based on the application of Lie algebra and the so-called differential algebra to beam-transport codes, both of which are highly analytical in foundation. Some of the main design tools available today will be described, giving a little of their history, and will conclude by trying to convey some of the excitement in the field through a brief description of Lie and differential algebra. 30 refs., 7 figs.

  10. High-speed wireless optical LANs

    NASA Astrophysics Data System (ADS)

    Oe, Kunishige; Sato, Syuichi; Okayama, Motoyuki; Kubota, Toshihiro

    2001-11-01

    Study on high speed indoor wireless optical LAN system enabling 100Mbps signal transmission with low bit error rate (10-9) is presented. To realize the optical LAN system handling 100 Mbps signal, a directed line of sight (LOS) system is adopted as the optical receiver sensitivity for a bit error rate of 10-9 for 100 Mbps signals is fairly large. In the system, new approaches are introduced: WDM technology which enables bi-directional transmission in full duplex manner is applied using a 1.3 micrometers laser diode for down-link and 0.65 micrometers red laser diode for up-link light sources. As the wavelengths of the two lasers are quite separated from each other, this WDM technology brings an advantage that two kind of semiconductor materials can be used for detectors; GaInAs is used for down-link while Si is applied for up-link. GaInAs PD cannot detect the up-link laser light of 0.65 micrometers and Si PD or APD cannot detect the down-link laser light of 1.3micrometers . Therefore full duplex transmission can be achieved in this configuration. In the indoor wireless optical LAN system, one of the critical points is the transmitter configuration for down- link which enables to deliver optical power enough for 100 Mbps transmission to user areas as wide as possible with inexpensive prices. To realize the point, a special 1.3micrometers laser diode, a spot-size converter integrated laser (SS-LD), is introduced in company with convex lens and an object lens to deliver optical power to areas as wide as possible. As the far-field patterns of the SS-LD are fairly narrow, most of the output power of the LD could be collected to and spread wide by the object lens of 40 magnifications. Using the device, 3m diameter circle area in the plane 2m apart from the 1.3micrometers SS-LD emitting 20 mW optical power, could receive optical power above the receiver sensitivity for a bit error rate of 10-9 for 100 Mbps signals. The visible red light is convenient for not only position

  11. High data rate optical transceiver terminal

    NASA Technical Reports Server (NTRS)

    Clarke, E. S.

    1973-01-01

    The objectives of this study were: (1) to design a 400 Mbps optical transceiver terminal to operate from a high-altitude balloon-borne platform in order to permit the quantitative evaluation of a space-qualifiable optical communications system design, (2) to design an atmospheric propagation experiment to operate in conjunction with the terminal to measure the degrading effects of the atmosphere on the links, and (3) to design typical optical communications experiments for space-borne laboratories in the 1980-1990 time frame. As a result of the study, a transceiver package has been configured for demonstration flights during late 1974. The transceiver contains a 400 Mbps transmitter, a 400 Mbps receiver, and acquisition and tracking receivers. The transmitter is a Nd:YAG, 200 Mhz, mode-locked, CW, diode-pumped laser operating at 1.06 um requiring 50 mW for 6 db margin. It will be designed to implement Pulse Quaternary Modulation (PQM). The 400 Mbps receiver utilizes a Dynamic Crossed-Field Photomultiplier (DCFP) detector. The acquisition receiver is a Quadrant Photomultiplier Tube (QPMT) and receives a 400 Mbps signal chopped at 0.1 Mhz.

  12. Solar Selective Coatings for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Shumway, Dean A.

    2003-01-01

    Solar selective coatings are envisioned for use on minisatellites, for applications where solar energy is to be used to power heat engines or to provide thermal energy for remote regions in the interior of the spacecraft. These coatings are designed to have the combined properties of high solar absorptance and low infrared emittance. The coatings must be durable at elevated temperatures. For thermal bus applications, the temperature during operation is likely to be near 100 C. For heat engine applications. the temperature is expected to be much greater. The objective of this work was to screen candidate solar selective coatings for their high temperature durability. Candidate solar selective coatings were composed of molecular mixtures of metal and dielectric, including: nickel and aluminum oxide, titanium and aluminum oxide, and platinum and aluminum oxide. To identify high temperature durability, the solar absorptance and infrared emittance of the candidate coatings were evaluated initially, and after heating to temperatures in the range of 400 C to 700 C. The titanium and aluminum oxide molecular mixture was found to be the most durable.

  13. Effects of ionizing radiation on selected optical materials: An overview

    SciTech Connect

    Wirtenson, G.R.; White, R.H.

    1992-07-30

    This report gives an overview of the effects of ionizing radiation on optical materials that may be used in spacecraft sensors. It introduces the relevant phenomena and indicates were more detailed information can be found. The topics covered include radiation induced absorption in ultraviolet transmitting materials, ordinary optical glasses, cerium stabilized optical glasses, and infrared transmitting materials; bleaching and annealing, and radioluminesence.

  14. Selection of Optical Glasses Using Buchdahl's Chromatic Coordinate

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon W.

    1999-01-01

    This investigation attempted to extend the method of reducing the size of glass catalogs to a global glass selection technique with the hope of guiding glass catalog offerings. Buchdahl's development of optical aberration coefficients included a transformation of the variable in the dispersion equation from wavelength to a chromatic coordinate omega defined as omega = (lambda - lambda(sub 0))/ 1 + 2.5(lambda - lambda(sub 0)) where lambda is the wavelength at which the wavelength is calculated and lambda(sub 0) is a base wavelength about which the expansion is performed. The advantage of this approach is that the dispersion equation may be written in terms of a simple power series and permits direct calculation of dispersion coefficients. While several promising examples were given, a systematic application of the technique to an entire glass catalog and analysis of the subsequent predictions was not performed. The goal of this work was to apply the technique in a systematic fashion to glasses in the Schoft catalog and assess the quality of the predictions.

  15. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    NASA Astrophysics Data System (ADS)

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01

    This paper presents the spectral complex index of refraction of biofuel producing photosynthetic microalgae between 400 and 750 nm. They were retrieved from their experimentally measured average absorption and scattering cross-sections. The microalgae were treated as homogeneous polydisperse spheres with equivalent diameter such that their surface area was identical to that of their actual spheroidal shape. An inverse method was developed combining Lorentz-Mie theory as the forward method and genetic algorithm. The unicellular green algae Chlamydomonas reinhardtii strain CC125 and its truncated chlorophyll antenna transformants tla1, tlaX, and tla1-CW+ as well as Botryococcus braunii, Chlorella sp., and Chlorococcum littorale were investigated. These species were selected for their ability to produce either hydrogen gas or lipids for liquid fuel production. Their retrieved real and imaginary parts of the complex index of refraction were continuous functions of wavelength with absorption peaks corresponding to those of in vivo Chlorophylls a and b. The T-matrix method was also found to accurately predict the experimental measurements by treating the microalgae as axisymmetric spheroids with the experimentally measured major and minor diameter distributions and the retrieved spectral complex index of refraction. Finally, pigment mass fractions were also estimated from the retrieved absorption index. The method and/or the reported optical properties can be used in various applications from ocean remote sensing, carbon cycle study, as well as photobiological carbon dioxide mitigation and biofuel production.

  16. Enhanced light trapping in thin amorphous silicon solar cells by directionally selective optical filters

    NASA Astrophysics Data System (ADS)

    Ulbrich, Carolin; Peters, Marius; Tayyib, Muhammad; Blaesi, Benedikt; Kirchartz, Thomas; Gerber, Andreas; Rau, Uwe

    2010-05-01

    Optical absorption losses limit the efficiency of thin-film solar cells. We demonstrate how to increase the absorption in hydrogenated amorphous silicon solar cells by using a directionally selective optical multilayer filter covering the front glass. The filter transmits perpendicularly incident photons in the wavelength range 350 nm - 770 nm. In the regime of low absorptance, i.e. large optical absorption lengths, however, it blocks those photons impinging under oblique angles. Thus, the incoming radiation is transmitted with almost no loss while the emitted radiation is mostly blocked due to its wider angle distribution. We determine the enhancement in the optical path length from reflectivity measurements. In the weakly absorbing high wavelength range (650 nm - 770 nm) we observe a peak optical path length enhancement of κ ~ 3.5. The effective path length enhancement κ ~ calculated from the external quantum efficiency of the solar cell with filter, however, peaks at a lower value of only κ ~ 1.5 in the same wavelength range. Parasitic absorption in the layers adjacent to the photovoltaic absorber limit the increase in the effective light path enhancement. Nonetheless we determine an increase of 0.2 mAcm-2 in the total short circuit current density.

  17. On life assessment of high reliability high power optical switch

    NASA Astrophysics Data System (ADS)

    Xu, Yuanjian; Chu, Peter

    2014-09-01

    High data rate and long range free space lasercom links require multi-watt optical transmitter power, which creates a need for high power redundancy switches to ensure high payload reliability. A high power optical switch (HPOS) with less than 0.15 dB loss and capable of switching more than 40 watts of optical power in a single mode fiber has been previously demonstrated in the Transformational Satellite Communication System program. Prototype switches, in either 1x2 or 2x2 configuration, have been subjected to pyro-shock test, vibration test, and vacuum operation. These switches showed no performance degradation as a result of these tests. Three prototypes went through 60,000 35-watt switching cycles and over 30 million low power switching cycles, and the switches showed no mechanical failure. The HPOS life is about 3.2 million switching cycles with a definition of 3-dB degradation in on/off extinction ratio, which is well suited for space applications.

  18. High-temperature, high-pressure optical cell

    NASA Technical Reports Server (NTRS)

    Harris, R. P. (Inventor); Holland, L. R. (Inventor); Smith, R. E. (Inventor)

    1986-01-01

    The invention is an optical cell for containment of chemicals under conditions of high temperature and high pressure. The cell is formed of a vitreous silica tube, two optical windows comprising a vitreous silica rod inserted into the ends of a tube, and fused into position in the tube ends. Windows are spaced apart to form a cavity enclosed by the tube and the windows. A hole is drilled radially through the tube and into the cavity. Another vitreous silica tube is fused to the silica tube around the hole to form the stem, which is perpendicular to the long axis of the tube. The open end of the stem is used to load chemicals into the cavity. Then the stem may be sealed, and if desired, it may be shortened in order to reduce the volume of the cavity, which extends into the stem.

  19. Highly stable piezoelectrically tunable optical cavities

    NASA Astrophysics Data System (ADS)

    Möhle, Katharina; Kovalchuk, Evgeny V.; Döringshoff, Klaus; Nagel, Moritz; Peters, Achim

    2013-05-01

    We have implemented highly stable and tunable frequency references using optical high finesse cavities which incorporate a piezo actuator. As piezo material we used ceramic PZT, crystalline quartz, or PZN-PT single crystals. Lasers locked to these cavities show a relative frequency stability better than 1× 10^{-14}, which is most likely not limited by the piezo actuators. The piezo cavities can be electrically tuned over more than one free spectral range (>1.5 GHz) with only a minor decrease in frequency stability. Furthermore, we present a novel cavity design, where the piezo actuator is prestressed between the cavity spacer components. This design features a hermetically sealable intra cavity volume suitable for, e.g., cavity enhanced spectroscopy.

  20. Selective sinoatrial node optical mapping to investigate the mechanism of sinus rate acceleration

    NASA Astrophysics Data System (ADS)

    Lin, Shien-Fong; Shinohara, Tetsuji; Joung, Boyoung; Chen, Peng-Sheng

    2011-03-01

    Studies using isolated sinoatrial node (SAN) cells indicate that rhythmic spontaneous sarcoplasmic reticulum Ca release (Ca clock) plays an important role in SAN automaticity. However, it is difficult to translate these findings into intact SAN because the SAN is embedded in the right atrium (RA). Cross contamination of the optical signals between SAN and RA prevented the definitive testing of Ca clock hypothesis in intact SAN. We use a novel approach to selectively map intact SAN to examine the Ca clock function in intact RA. We simultaneously mapped intracellular Ca (Cai) and membrane potential (Vm) in 7 isolated, Langendorff perfused normal canine RA. Electrical conduction from the SAN to RA was inhibited with high potassium (10 mmol/L) Tyrode's solution, allowing selective optical mapping of Vm and Cai of the SAN. Isoproterenol (ISO, 0.03 μmol/L) decreased cycle length of the sinus beats from 586+/-17 ms at baseline to 366+/-32 ms, and shifted the leading pacemaker site from the middle or inferior SAN to the superior SAN in all RAs. The Cai upstroke preceded the Vm in the leading pacemaker site by up to 18+/-2 ms. ISO-induced changes to SAN were inhibited by ryanodine (3 μmol/L), but not ZD7288 (3 μmol/L), a selective If blocker. We conclude that a high extracellular potassium concentration results in intermittent SAN-RA conduction block, allowing selective optical mapping of the intact SAN. Acceleration of Ca cycling in the superior SAN underlies the mechanism of sinus tachycardia during sympathetic stimulation.

  1. Optical alignment of high resolution Fourier transform spectrometers

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Ocallaghan, F. G.; Cassie, A. G.

    1980-01-01

    Remote sensing, high resolution FTS instruments often contain three primary optical subsystems: Fore-Optics, Interferometer Optics, and Post, or Detector Optics. We discuss the alignment of a double-pass FTS containing a cat's-eye retro-reflector. Also, the alignment of fore-optics containing confocal paraboloids with a reflecting field stop which relays a field image onto a camera is discussed.

  2. Large Magellanic Cloud Microlensing Optical Depth with Imperfect Event Selection

    NASA Astrophysics Data System (ADS)

    Bennett, David P.

    2005-11-01

    I present a new analysis of the MACHO Project 5.7 yr Large Magellanic Cloud (LMC) microlensing data set that incorporates the effects of contamination of the microlensing event sample by variable stars. Photometric monitoring of MACHO LMC microlensing event candidates by the EROS and OGLE groups has revealed that one of these events is likely to be a variable star, while additional data have confirmed that many of the other events are very likely to be microlensing. These additional data on the nature of the MACHO microlensing candidates are incorporated into a simple likelihood analysis to derive a probability distribution for the number of MACHO microlens candidates that are true microlensing events. This analysis shows that 10-12 of the 13 events that passed the MACHO selection criteria are likely to be microlensing events, with the other 1-3 being variable stars. This likelihood analysis is also used to show that the main conclusions of the MACHO LMC analysis are unchanged by the variable star contamination. The microlensing optical depth toward the LMC is τ=(1.0+/-0.3)×10-7. If this is due to microlensing by known stellar populations plus an additional population of lens objects in the Galactic halo, then the new halo population would account for 16% of the mass of a standard Galactic halo. The MACHO detection exceeds the expected background of two events expected from ordinary stars in standard models of the Milky Way and LMC at the 99.98% confidence level. The background prediction is increased to three events if maximal disk models are assumed for both the Milky Way and LMC, but this model fails to account for the full signal seen by MACHO at the 99.8% confidence level.

  3. Recirculating photonic filter: a wavelength-selective time delay for optically controlled phased-array antenna

    NASA Astrophysics Data System (ADS)

    Yegnanarayanan, Siva; Trinh, Paul D.; Jalali, Bahram

    1996-11-01

    A wavelength-selective photonic time delay filter is proposed and demonstrated. The device consists of an optical phased-array waveguide grating in a recirculating feedback configuration. It can function as a true-time-delay generator for squint-free beam steering in optically- controlled phased-array antennas. As the photonic filter uses the optical carrier wavelength to select the desired time delay, a one-to-one map is established between the optical carrier wavelength and the desired antenna direction, thus eliminating complex switching networks required to select the appropriate delay line. The proposed device can also function as the encoder/decoder in wavelength-CDMA. The concept uses a waveguide prism in a symmetric feedback (recirculating) configuration. The modulated optical carrier is steered by the waveguide prism to the appropriate integrated delay line depending on the carrier wavelength. The signal is delayed and is fed back into the symmetric input port. The prism then focuses the delayed beam into the common output port. Thus three sequential operations are performed: (1) wavelength demultiplexing, (2) time delay, and (3) wavelength multiplexing. It is important to note that the recirculating photonic filter has no 1/N loss; all the power at a given wavelength is diffracted into the output port. Furthermore, high resolution (6 - 8 bits) can be obtained in a compact integrated device. A prototype regular recirculating photonic filter true-time delay device was realized using a 8-channel arrayed-waveguide grating demultiplexer and external (off-chip) fiber delay lines. The grating was fabricated in the silica waveguide technology with 0.8 nm channel spacing (FSR equals 6.4 nm) and operating in the 1.5 micrometers wavelength range. Light from an external cavity tunable laser was rf modulated at 10 - 40 MHz and was coupled into the arrayed waveguide grating chip and time/phase measurements were performed sing a digital oscilloscope. Feedback delay

  4. Thermal/structural/optical integrated design for optical window of a high-speed aerial optical camera

    NASA Astrophysics Data System (ADS)

    Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Shi, Kui; Wu, Dengshan; Qiao, Mingrui

    2015-10-01

    In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 149.6 nm, which is under PV <=1 4λ .The simulation result meets the requirements of optical design very well. The above study can be used as an important reference for other optical window designs.

  5. The luminosity function of quasars and its evolution: A comparison of optically selected quasars and quasars found in radio catalogs

    NASA Technical Reports Server (NTRS)

    Petrosian, V.

    1973-01-01

    The luminosity function of quasars and its evolution are discussed, based on comparison of available data on optically selected quasars and quasars found in radio catalogs. It is assumed that the red shift of quasars is cosmological and the results are expressed in the framework of the Lambda = 0, Q sub Q = 1 cosmological model. The predictions of various density evolution laws are compared with observations of an optically selected sample of quasars and quasar samples from radio catalogs. The differences between the optical luminosity functions, the red shift distributions and the radio to optical luminosity ratios of optically selected quasars and radio quasars rule out luminosity functions where there is complete absence of correlation between radio and optical luminosities. These differences also imply that Schmidt's (1970) luminosity function, where there exists a statistical correlation between radio and optical luminosities, although may be correct for high red shift objects, disagrees with observation at low red shifts. These differences can be accounted for by postulating existence of two classes (1 and 2) of objects.

  6. High pressure fiber optic sensor system

    DOEpatents

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  7. Spectroscopy of optically selected BL Lac objects and their γ-ray emission

    SciTech Connect

    Sandrinelli, A.; Treves, A.; Farina, E. P.; Landoni, M.; Falomo, R.; Foschini, L.; Sbarufatti, B.

    2013-12-01

    We present Very Large Telescope optical spectroscopy of nine BL Lac objects of unknown redshift belonging to the list of optically selected radio-loud BL Lac candidates. We explore their spectroscopic properties and possible link with gamma-ray emission. From the new observations we determine the redshifts of four objects from faint emission lines or from absorption features of their host galaxies. In three cases we find narrow intervening absorptions from which a lower limit to the redshift is inferred. For the remaining two featureless sources, lower limits to the redshift are deduced from the absence of spectral lines. A search for γ counterpart emission shows that six out of the nine candidates are Fermi γ-ray emitters and we find two new detections. Our analysis suggests that most of the BL Lac objects still lacking redshift information are most likely located at high redshifts.

  8. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2003-09-16

    A small sized electro-optic voltage sensor capable of accurate measurement of high voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation. A polarization beam displacer separates the input beam into two beams with orthogonal linear polarizations and causes one linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels effect elliptically polarizes the beam as it travels through the crystal. A reflector redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization. The system may include a detector for converting the output beams into electrical signals and a signal processor for determining the voltage based on an analysis of the output beams.

  9. Toward high throughput optical metamaterial assemblies.

    PubMed

    Fontana, Jake; Ratna, Banahalli R

    2015-11-01

    Optical metamaterials have unique engineered optical properties. These properties arise from the careful organization of plasmonic elements. Transitioning these properties from laboratory experiments to functional materials may lead to disruptive technologies for controlling light. A significant issue impeding the realization of optical metamaterial devices is the need for robust and efficient assembly strategies to govern the order of the nanometer-sized elements while enabling macroscopic throughput. This mini-review critically highlights recent approaches and challenges in creating these artificial materials. As the ability to assemble optical metamaterials improves, new unforeseen opportunities may arise for revolutionary optical devices. PMID:26560623

  10. High Altitude Ballooning and Site Selection

    NASA Astrophysics Data System (ADS)

    Metcalf, John

    2008-10-01

    High altitude ballooning provides a near-space platform for amateur research projects in science and engineering. This venue allows new experiments, otherwise not conducted from costs or lack of transportation, from WSU and surrounding areas to be flown into the upper atmosphere. A highly skilled and motivated group of scientist and engineering students from WSU have contrived its own high altitude balloon to lift payload capsules filled with experiments and tracking equipment up to 120,000 feet where it then bursts and payload capsules are parachuted into a landing zone. Launch site selection is based upon the safety of those that come within the balloons projected flight path and terrain accessibility from the launch and landing zones. Restricted ground and airspace, mountainous regions, lakes and rivers, and densely populated or high air traffic areas were obstacles to be avoided. Computer flight simulations and region analysis show that there are several viable launch and recovery sites in Utah as well as SE Idaho, SW Wyoming, and NW Colorado.

  11. X-RAY EMISSION FROM OPTICALLY SELECTED RADIO-INTERMEDIATE AND RADIO-LOUD QUASARS

    SciTech Connect

    Miller, B. P.; Brandt, W. N.; Schneider, D. P.; Wu Jianfeng; Gibson, R. R.; Steffen, A. T. E-mail: niel@astro.psu.edu E-mail: jfwu@astro.psu.edu E-mail: rgibson@astro.washington.edu

    2011-01-01

    We present the results of an investigation into the X-ray properties of radio-intermediate and radio-loud quasars (RIQs and RLQs, respectively). We combine large, modern optical (e.g., SDSS) and radio (e.g., FIRST) surveys with archival X-ray data from Chandra, XMM-Newton, and ROSAT to generate an optically selected sample that includes 188 RIQs and 603 RLQs. This sample is constructed independently of X-ray properties but has a high X-ray detection rate (85%); it provides broad and dense coverage of the l-z plane, including at high redshifts (22% of objects have z = 2-5), and it extends to high radio-loudness values (33% of objects have R* = 3-5, using logarithmic units). We measure the 'excess' X-ray luminosity of RIQs and RLQs relative to radio-quiet quasars (RQQs) as a function of radio loudness and luminosity, and parameterize the X-ray luminosity of RIQs and RLQs both as a function of optical/UV luminosity and also as a joint function of optical/UV and radio luminosity. RIQs are only modestly X-ray bright relative to RQQs; it is only at high values of radio loudness (R* {approx}> 3.5) and radio luminosity that RLQs become strongly X-ray bright. We find no evidence for evolution in the X-ray properties of RIQs and RLQs with redshift (implying jet-linked IC/CMB emission does not contribute substantially to the nuclear X-ray continuum). Finally, we consider a model in which the nuclear X-ray emission contains both disk/corona-linked and jet-linked components and demonstrate that the X-ray jet-linked emission is likely beamed but to a lesser degree than applies to the radio jet. This model is used to investigate the increasing dominance of jet-linked X-ray emission at low inclinations.

  12. Noise tolerance in wavelength-selective switching of optical differential quadrature-phase-shift-keying pulse train by collinear acousto-optic devices.

    PubMed

    Goto, Nobuo; Miyazaki, Yasumitsu

    2014-06-01

    Optical switching of high-bit-rate quadrature-phase-shift-keying (QPSK) pulse trains using collinear acousto-optic (AO) devices is theoretically discussed. Since the collinear AO devices have wavelength selectivity, the switched optical pulse trains suffer from distortion when the bandwidth of the pulse train is comparable to the pass bandwidth of the AO device. As the AO device, a sidelobe-suppressed device with a tapered surface-acoustic-wave (SAW) waveguide and a Butterworth-type filter device with a lossy SAW directional coupler are considered. Phase distortion of optical pulse trains at 40 to 100  Gsymbols/s in QPSK format is numerically analyzed. Bit-error-rate performance with additive Gaussian noise is also evaluated by the Monte Carlo method. PMID:24922411

  13. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2002-01-01

    A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal having at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

  14. Injection molding of optics for high volume consumer products

    NASA Astrophysics Data System (ADS)

    de Schipper, Rien

    2012-03-01

    For high volume consumer products using optical technology, plastics injection molding is a very suitable technology. In optical component fabrication, astonishing results are be booked. However, to achieve success, excellent performance is needed in mastering different technologies such as polymer processing, evaporated coatings, tool making, ultra-precision turning of metals and optical metrology.

  15. Compact LCD projector with high optical performance

    NASA Astrophysics Data System (ADS)

    Zheng, Zengrong; Xu, Liu; Gu, Peifu; Li, Haifeng; Xu, Anxi; Zhang, Yanping; Tang, Jinfa

    1998-08-01

    A compact LCD projection display system and its optical performance are discussed in this paper. In order to improve optical performance, two flyingeye lens have been employed in the system. It can improve the brightness uniformity of display image. Also, a polarized light transformer, which involves two functions: polarizing light radiation and converting unpolarized light into the same polarization direction light beam for LCD panels, has been developed to increase the optical efficiency and contrast ratio. Moreover, color separation and combination system has been designed and developed. Under these construction, the system with good optical performance and outstanding picture quality has been achieved.

  16. Thermal lensing compensation optics for high power lasers

    NASA Astrophysics Data System (ADS)

    Scaggs, Michael; Haas, Gil

    2011-03-01

    Athermalization of focusing objectives is a common technique for optimizing imaging systems in the infrared where thermal effects are a major concern. The athermalization is generally done within the spectrum of interest and not generally applied to a single wavelength. The predominate glass used with high power infrared lasers in the near infrared of one micron, such as Nd:YAG and fiber lasers, is fused silica which has excellent thermal properties. All glasses, however, have a temperature coefficient of index of refraction (dn/dT) where as the glass heats up its index of refraction changes. Most glasses, fused silica included, have a positive dn/dT. A positive dn/dT will cause the focal length of the lens to decrease with a temperature rise. Many of the fluoride glasses, like CaF2, BaF2, LiF2, etc. have a negative dn/dT. By applying athermalization techniques of glass selection and optical design, the thermal lensing in a laser objective of a high power laser system can be substantially mitigated. We describe a passive method for minimizing thermal lensing of high power laser optics.

  17. Optical Monitoring of Selected X-ray AGN

    NASA Astrophysics Data System (ADS)

    Phillips, V. D.; Sadun, A.; Kelly, M.; Baca, P.; Holt, J.; Galadari, A.; Nied, P.; Howard, E.; Ghosh, K.

    2001-12-01

    We present the results of microvariability studies of X-ray loud/radio quiet AGN in optical wavelengths (R band). The optical data were taken over approximately eight months at the Sommers-Bausch Observatory (U. Colorado-Boulder), and at the SARA Observatory. In addition to engaging in routine optical analysis, we investigated the extent to which these objects exhibited intra-night variability. The presence of microvariability would indicate that in addition to an accretion disk, there would also be present relativistic components such as parsec-scale jets; quiescence would indicate that long-term variability in these objects is perhaps due to accretion disk instabilities alone. The preliminary indication from our data is that there is indeed evidence of relativistic jets in this class of objects.

  18. The design of space optical communications terminal with high efficient

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoguo; Li, Gang; Jiang, Bo; Yang, Xiaoxu; Yan, Peipei

    2015-02-01

    In order to improve high-speed laser space optical communications terminal receive energy and emission energy, meet the demand of mini-type and light-type for space-based bear platform, based on multiple-reflect coaxial optical receiving antenna structure, while considering the installation difficulty, a high-efficient optical system had been designed, which aperture is off-axial, both signal-receiving sub-optical system and emission sub-optical system share a same primary optical path. By the separating light lens behind the primary optical path, the received light with little energy will be filtered and shaped and then transmitted to each detector, at the same time, by the coupling element, the high-power laser will be coupling into optical antenna, and then emitted to outside. Applied the power-detected optical system evaluate principle, the optimized off-axial optical system's efficiency had been compared with the coaxial optical system. While, analyzed the Gauss beam energy distribution by numerical theory, discussed that whether off-axis optical system can be an emission terminal, verify the feasibility of the theory of the design of the system.

  19. Selective optical pumping process in Doppler-broadened atoms

    SciTech Connect

    Liu Shuangqiang; Zhang Yundong; Fan Daikun; Wu Hao; Yuan Ping

    2011-04-10

    By solving the optical Bloch equations with the rate-equation approximation, we calculate the time dependence of the magnetic sublevel populations of Doppler-broadened atoms. With an increase of the left-circularly polarized pump intensity, the population fraction of a certain sublevel of the excited state almost reaches 0.3, resulting in anisotropy in the excited state, which is important to the optical filter based on circular birefringence and dichroism. Furthermore, numerical results show that the real saturation pump intensity for the moving atoms is much larger than that for the resting atoms.

  20. Site selection criteria for the optical atmospheric visibility monitoring telescopes

    NASA Technical Reports Server (NTRS)

    Cowles, K.

    1989-01-01

    A description of each of the criteria used to decide where to locate the Atmospheric Visibility Monitoring (AVM) telescope systems is given, along with a weighting factor for each of them. These criteria include low probability of clouds, fog, smog, haze, low scattering, low turbulence, availability of security and maintenance, and suitability of a site for a potential optical reception station. They will be used to determine which three of several sites under consideration will be used for monitoring visibility through the atmosphere as it applies to an optical ground-based receiving network as may be used in NASA space missions in decades to come.

  1. High resolution bragg focusing optics for synchrotron monochromators and analyzers

    SciTech Connect

    Knapp, G.S.; Beno, M.A.; Gofron, K.J.

    1997-07-01

    A number of different applications for high resolution Bragg Focusing Optics are reviewed. Applications include Sagittal Focusing, Energy Dispersive optics for x-ray absorption and diffraction, a curved analyzer-multichannel detector method for efficient acquisition of powder and small angle scattering data, the use of Backscattering Analyzers for very high resolution inelastic scattering, and curved crystals for high energy applications.

  2. TOCUSO: Test of Conceptual Understanding on High School Optics Topics

    ERIC Educational Resources Information Center

    Akarsu, Bayram

    2012-01-01

    Physics educators around the world often need reliable diagnostic materials to measure students' understanding of physics concept in high school. The purpose of this study is to evaluate a new diagnostic tool on High School Optics concept. Test of Conceptual Understanding on High School Optics (TOCUSO) consists of 25 conceptual items that…

  3. Optical spectra of high temperature superconductors

    SciTech Connect

    Ruvalds, J.

    1996-12-31

    The concept of free electrons which yields the Drude description of the conductivity works surprisingly well in conventional metals. By contrast, the infrared reflectivity of the cuprate superconductors deviates dramatically from Drude behavior and thus challenges theory to explain the origin of the anomalous electron damping and the related mass divergence which has implications for the existence of a Fermi surface. The controversial key issue of the carrier concentration in cuprates needs to be resolved by a conserving analysis of the puzzling conductivity. Raman spectra of cuprates also exhibit unconventional electronic contributions over a wide frequency range up to 1 eV, and recent data provide evidence for the symmetry of the superconducting energy gap. A microscopic theory for both the optical conductivity and the Raman anomalies in cuprates derives a linear frequency variation of the damping from electron-electron collisions on a nested Fermi surface that refers to nearly parallel segments of an electron trajectory. Thus the nesting theory links the cuprate anomalies to phenomena in chromium and rare earth metals. Nesting also yields a novel mechanism for d-wave superconductivity that requires a Coulomb repulsion of intermediate strength and key nesting features that distinguish high {Tc} cuprates from other materials. 41 refs., 7 figs.

  4. A physically based model for dielectric charging in an integrated optical MEMS wavelength selective switch.

    SciTech Connect

    Nielson, Gregory N.; Barbastathis, George

    2005-07-01

    A physical parameter based model for dielectric charge accumulation is proposed and used to predict the displacement versus applied voltage and pull-in response of an electrostatic MEMS wavelength selective integrated optical switch.

  5. Analysis of the selected optical parameters of filters protecting against hazardous infrared radiation

    PubMed Central

    Gralewicz, Grzegorz; Owczarek, Grzegorz

    2016-01-01

    The paper analyses the selected optical parameters of protective optic filters used for protection of the eyes against hazardous radiation within the visible (VIS) and near infrared (NIR) spectrum range. The indexes characterizing transmission and reflection of optic radiation incident on the filter are compared. As it follows from the completed analysis, the newly developed interference filters provide more effective blocking of infrared radiation in comparison with the currently used protective filters. PMID:26327153

  6. Analysis of the selected optical parameters of filters protecting against hazardous infrared radiation.

    PubMed

    Gralewicz, Grzegorz; Owczarek, Grzegorz

    2016-09-01

    The paper analyses the selected optical parameters of protective optic filters used for protection of the eyes against hazardous radiation within the visible (VIS) and near infrared (NIR) spectrum range. The indexes characterizing transmission and reflection of optic radiation incident on the filter are compared. As it follows from the completed analysis, the newly developed interference filters provide more effective blocking of infrared radiation in comparison with the currently used protective filters. PMID:26327153

  7. Structural and optical studies on selected web spinning spider silks.

    PubMed

    Karthikeyani, R; Divya, A; Mathavan, T; Asath, R Mohamed; Benial, A Milton Franklin; Muthuchelian, K

    2017-01-01

    This study investigates the structural and optical properties in the cribellate silk of the sheet web spider Stegodyphus sarasinorum Karsch (Eresidae) and the combined dragline, viscid silk of the orb-web spiders Argiope pulchella Thorell (Araneidae) and Nephila pilipes Fabricius (Nephilidae). X-ray diffraction (XRD), Fourier transform infra-red (FTIR), Ultraviolet-visible (UV-Vis) and fluorescence spectroscopic techniques were used to study these three spider silk species. X-ray diffraction data are consistent with the amorphous polymer network which is arising from the interaction of larger side chain amino acid contributions due to the poly-glycine rich sequences known to be present in the proteins of cribellate silk. The same amorphous polymer networks have been determined from the combined dragline and viscid silk of orb-web spiders. From FTIR spectra the results demonstrate that, cribellate silk of Stegodyphus sarasinorum, combined dragline viscid silk of Argiope pulchella and Nephila pilipes spider silks are showing protein peaks in the amide I, II and III regions. Further they proved that the functional groups present in the protein moieties are attributed to α-helical and side chain amino acid contributions. The optical properties of the obtained spider silks such as extinction coefficients, refractive index, real and imaginary dielectric constants and optical conductance were studied extensively from UV-Vis analysis. The important fluorescent amino acid tyrosine is present in the protein folding was investigated by using fluorescence spectroscopy. This research would explore the protein moieties present in the spider silks which were found to be associated with α-helix and side chain amino acid contributions than with β-sheet secondary structure and also the optical relationship between the three different spider silks are investigated. Successful spectroscopic knowledge of the internal protein structure and optical properties of the spider silks could

  8. Comparison of X-ray and optically selected galaxy clusters in the XXL-N field

    NASA Astrophysics Data System (ADS)

    Alis, Sinan; Pacaud, Florian; Pierre, Marguerite; Benoist, Christophe; Maurogordato, Sophie; Clerc, Nicolas; Faccioli, Lorenzo; Sadibekova, Tatyana

    2016-07-01

    Optically selected clusters from the CFHTLS and X-ray selected clusters from the intersecting XXL Survey are compared. We first compare the properties of the ˜100 galaxy clusters common to both catalogues in the redshift range of 0.1 < z < 1.2. Then we focus on the properties of the missed clusters on both sides and stress the impact of AGN contamination in this comparison. Finally scaling relations involving optical and X-ray quantities will be presented.

  9. Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers.

    PubMed

    Emiliyanov, Grigoriy; Høiby, Poul E; Pedersen, Lars H; Bang, Ole

    2013-01-01

    We have developed a fluorescence-based fiber-optical biosensor, which can selectively detect different antibodies in serial at preselected positions inside a single piece of fiber. The fiber is a microstructured polymer optical fiber fabricated from TOPAS cyclic olefin copolymer, which allows for UV activation of localized sensor layers inside the holes of the fiber. Serial fluorescence-based selective sensing of Cy3-labelled α-streptavidin and Cy5-labelled α-CRP antibodies is demonstrated. PMID:23529122

  10. High-temperature fiber optic pressure sensor

    NASA Technical Reports Server (NTRS)

    Berthold, J. W.

    1984-01-01

    Attention is given to a program to develop fiber optic methods to measure diaphragm deflection. The end application is intended for pressure transducers capable of operating to 540 C. In this paper are reported the results of a laboratory study to characterize the performance of the fiber-optic microbend sensor. The data presented include sensitivity and spring constant. The advantages and limitations of the microbend sensor for static pressure measurement applications are described. A proposed design is presented for a 540 C pressure transducer using the fiber optic microbend sensor.

  11. Application of portable optical laboratory in high schools and colleges

    NASA Astrophysics Data System (ADS)

    Altshuler, Gregory B.; Belashenkov, Nickolai R.; Ermolaev, Vladimir S.; Inochkin, Mickle V.; Karasev, Vyatcheslav B.

    1995-10-01

    The present paper describes the experience of application of portable optical laboratory in optical practicum developed directly for training and demonstrations of basic optical laws and phenomena in high-schools, colleges and nontechnical universities all over Russia. The laboratory includes the portable optical platform with built-in laser and lamp sources, kit of optical components and software. These accessories provide the attractive and smart teaching in general optics during lectures, lessons and practice at schools and colleges. The portable optical laboratory provides 28 basic lab works and demonstrations in reflection, refraction, absorption and dispersion of light, interference, diffraction, polarization of light, image formation and waveguide propagation of light in optical fibers. Due to their interdependence one can teach and learn a whole course of general optics. The individual work of students and school children with optical kit stimulates and develops their creative abilities and experimental skills, as well increases the effectiveness of education. The kit is provided with optional elements for a number of extra experiments with holography, polarizing light propagation, simple optical devices etc. These extensions allow to modify the education process according to teacher's point of view. The conception of optical class-room based on portable optical laboratories is discussed. The effectiveness of individual and small-group training is analyzed.

  12. Selective-plane illumination microscopy for high-content volumetric biological imaging

    NASA Astrophysics Data System (ADS)

    McGorty, Ryan; Huang, Bo

    2016-03-01

    Light-sheet microscopy, also named selective-plane illumination microscopy, enables optical sectioning with minimal light delivered to the sample. Therefore, it allows one to gather volumetric datasets of developing embryos and other light-sensitive samples over extended times. We have configured a light-sheet microscope that, unlike most previous designs, can image samples in formats compatible with high-content imaging. Our microscope can be used with multi-well plates or with microfluidic devices. In designing our optical system to accommodate these types of sample holders we encounter large optical aberrations. We counter these aberrations with both static optical components in the imaging path and with adaptive optics. Potential applications of this microscope include studying the development of a large number of embryos in parallel and over long times with subcellular resolution and doing high-throughput screens on organisms or cells where volumetric data is necessary.

  13. A highly K(+)-selective phenylaza-[18]crown-6-lariat-ether-based fluoroionophore and its application in the sensing of K+ ions with an optical sensor film and in cells.

    PubMed

    Ast, Sandra; Schwarze, Thomas; Müller, Holger; Sukhanov, Aleksey; Michaelis, Stefanie; Wegener, Joachim; Wolfbeis, Otto S; Körzdörfer, Thomas; Dürkop, Axel; Holdt, Hans-Jürgen

    2013-10-25

    Herein, we report the synthesis of two phenylaza-[18]crown-6 lariat ethers with a coumarin fluorophore (1 and 2) and we reveal that compound 1 is an excellent probe for K(+) ions under simulated physiological conditions. The presence of a 2-methoxyethoxy lariat group at the ortho position of the anilino moiety is crucial to the substantially increased stability of compounds 1 and 2 over their lariat-free phenylaza-[18]crown-6 ether analogues. Probe 1 shows a high K(+)/Na(+) selectivity and a 2.5-fold fluorescence enhancement was observed in the presence of 100 mM K(+) ions. A fluorescent membrane sensor, which was prepared by incorporating probe 1 into a hydrogel, showed a fully reversible response, a response time of 150 s, and a signal change of 7.8% per 1 mM K(+) within the range 1-10 mM K(+). The membrane was easily fabricated (only a single sensing layer on a solid polyester support), yet no leaching was observed. Moreover, compound 1 rapidly permeated into cells, was cytocompatible, and was suitable for the fluorescent imaging of K(+) ions on both the extracellular and intracellular levels. PMID:24105686

  14. High-purity separation of cancer cells by optically induced dielectrophoresis.

    PubMed

    Chen, Hsiu-Hsiang; Lin, Mai-Wei; Tien, Wan-Ting; Lai, Chin-Pen; Weng, Kuo-Yao; Ko, Ching-Huai; Lin, Chun-Chuan; Chen, Jyh-Chern; Tiao, Kuo-Tung; Chen, Tse-Ching; Chen, Shin-Cheh; Yeh, Ta-Sen; Cheng, Chieh-Fang

    2014-04-01

    Detecting and concentrating cancer cells in peripheral blood is of great importance for cancer diagnosis and prognosis. Optically induced dielectrophoresis (ODEP) can achieve high resolution and low optical intensities, and the electrode pattern can be dynamically changed by varied light patterns. By changing the projected light pattern, it is demonstrated to separate high-purity gastric cancer cell lines. Traditionally, the purity of cancer cell isolation by negative selection is 0.9% to 10%; by positive selection it is 50% to 62%. An ODEP technology is proposed to enhance the purity of cancer cell isolation to about 77%. PMID:24723112

  15. Proof-of-concept study of a marine ion-selective optical sensing instrument

    NASA Astrophysics Data System (ADS)

    Sobron, P.; Thompson, C.; Bamsey, M.

    2013-12-01

    We have developed a proof-of-concept instrument for real-time in-situ characterization of the ion chemistry of the ocean. Our instrument uses optical sensors equipped with ion-selective membranes which exhibit a change in an optical property that can be correlated with the concentration of a specific ion. We have implemented a system for multi-ion sensing that includes the use of a single spectrometer in tandem with a fiber optic multiplexer that is capable of reading a suite of attached optrodes, each of them dedicated to a unique ion. In this abstract we report the experimental characterization of calcium and potassium optrodes as a template for ion-selective optrodes and their application to the characterization of the oceans. The tests were performed at the Controlled Environment Systems Research Facility of the University of Guelph. Guelph's optrode housing was tested by immersing it in a 1/2 strength Hoagland's hydroponic solution to test functionality of the K+ and Ca2+ optrodes in this environment. Our results demonstrate the feasibility of recording spectral information in sub-minute times from more than one optrode simultaneously in a given aqueous system. This proof-of-concept study has allowed us to measure parameters of interest and comparison to analytical predictions for critical subsystems of a deployable system, and demonstrates maturity of the multi-ion sensing optrode technology. Critical advantages of our optrode system are that it: (1) enables concurrent measurements of multiple ionic species relevant in ocean sciences; (2) has high time and spatial resolution; (3) has low limits of detection; (4) uses low-cost, low-mass, energy efficient optoelectronics. Our system has the potential for facilitating new observational, experimental, and analytic capabilities in ocean sciences, including: (a) health and environment monitoring; (b) aquaculture; (c) global change, e.g. ocean acidification; and (d) origin of life research. Proof-of-concept setup at

  16. The Effects of High Temperature and Nuclear Radiation on the Optical Transmission of Silica Optical Fibers

    NASA Astrophysics Data System (ADS)

    Hawn, David P.

    Distributed measurements made with fiber optic instrumentation have the potential to revolutionize data collection for facility monitoring and process control in industrial environments. Dozens of sensors etched into a single optical fiber can be used to instrument equipment and structures so that dozens of spatially distributed temperature measurements, for example, can be made quickly using one optical fiber. Optically based sensors are commercially available to measure temperature, strain, and other physical quantities that can be related to strain, such as pressure and acceleration. Other commercially available technology eliminates the need to etch discrete sensors into an optical fiber and allows temperature measurements to be made along the length of an ordinary silica fiber. Distributed sensing with optical instrumentation is commonly used in the petroleum industry to measure the temperature and pressure profiles in down hole applications. The U.S. Department of Energy is interested in extending the distributed sensing capabilities of optical instrumentation to high temperature reactor radiation environments. For this technology extension to be possible, the survivability of silica optical fibers needed to be determined in this environment. In this work the optical attenuation added to silica optical fiber exposed simultaneously to reactor radiation and temperatures to 1000°C was experimentally determined. Optical transmission measurements were made in-situ from 400nm-2300nm. For easy visualization, all of the results generated in this work were processed into movies that are available publicly [1]. In this investigation, silica optical fibers were shown to survive optically and mechanically in a reactor radiation environment to 1000°C. For the combined high temperature reactor irradiation experiments completed in this investigation, the maximum attenuation increase in the low-OH optical fibers was around 0.5db/m at 1550nm and 0.6dB/m at 1300nm. The

  17. Optical properties of water at high temperature

    SciTech Connect

    French, Martin; Redmer, Ronald

    2011-04-15

    We calculate optical properties of water along the principal Hugoniot curve from ambient conditions up to temperatures of 130 000 K with density functional theory (DFT) and the Kubo-Greenwood formula. The effect of the exchange correlation functional is examined by comparing the generalized gradient approximation with a hybrid functional that contains Fock exchange. We find noticeable but moderate differences between the respective results which decrease rapidly above 80 000 K. The reflectivity along the principal Hugoniot is calculated and a good qualitative but fair quantitative agreement with available experimental data is found. Our results are of general relevance for calculations of optical properties with DFT at zero and elevated temperature.

  18. Properties of optically selected supernova remnant candidates in M33

    SciTech Connect

    Lee, Jong Hwan; Lee, Myung Gyoon E-mail: mglee@astro.snu.ac.kr

    2014-10-01

    Narrowband images covering strong emission lines are efficient for surveying supernova remnants (SNRs) in nearby galaxies. Using the narrowband images provided by the Local Group Galaxy Survey, we searched for SNRs in M33. Culling the objects with enhanced [S II]/Hα and round morphology in the continuum-subtracted Hα and [S II] images, we produced a list of 199 sources. Among them, 79 are previously unknown. Their progenitor and morphology types were classified. A majority of the sample (170 objects) are likely remnants of core-collapse supernovae (SNe), and 29 are remnants of Type Ia SNe. The cumulative size distribution of these objects is found to be similar to that of the M31 remnants derived in a similar way. We obtain a power-law slope, α = 2.38 ± 0.05. Thus, a majority of the sources are considered to be in the Sedov-Taylor phase, consistent with previous findings. The histogram of the emission-line ratio ([S II]/Hα) of the remnants has two concentrations at [S II]/Hα ∼ 0.55 and ∼0.8, as in M31. Interestingly, L {sub X} (and L {sub 20cm}) of the compact center-bright objects are correlated with their optical luminosity. The remnants with X-ray emission have brighter optical surface brightnesses and smaller diameters than those without X-ray emission.

  19. Properties of Optically Selected Supernova Remnant Candidates in M33

    NASA Astrophysics Data System (ADS)

    Lee, Jong Hwan; Lee, Myung Gyoon

    2014-10-01

    Narrowband images covering strong emission lines are efficient for surveying supernova remnants (SNRs) in nearby galaxies. Using the narrowband images provided by the Local Group Galaxy Survey, we searched for SNRs in M33. Culling the objects with enhanced [S II]/Hα and round morphology in the continuum-subtracted Hα and [S II] images, we produced a list of 199 sources. Among them, 79 are previously unknown. Their progenitor and morphology types were classified. A majority of the sample (170 objects) are likely remnants of core-collapse supernovae (SNe), and 29 are remnants of Type Ia SNe. The cumulative size distribution of these objects is found to be similar to that of the M31 remnants derived in a similar way. We obtain a power-law slope, α = 2.38 ± 0.05. Thus, a majority of the sources are considered to be in the Sedov-Taylor phase, consistent with previous findings. The histogram of the emission-line ratio ([S II]/Hα) of the remnants has two concentrations at [S II]/Hα ~ 0.55 and ~0.8, as in M31. Interestingly, L X (and L 20 cm) of the compact center-bright objects are correlated with their optical luminosity. The remnants with X-ray emission have brighter optical surface brightnesses and smaller diameters than those without X-ray emission.

  20. Nonlinear optical signal processing for high-speed, spectrally efficient fiber optic systems and networks

    NASA Astrophysics Data System (ADS)

    Zhang, Bo

    The past decade has witnessed astounding boom in telecommunication network traffic. With the emergence of multimedia over Internet, the high-capacity optical transport systems have started to shift focus from the core network towards the end users. This trend leads to diverse optical networks with transparency and reconfigurability requirement. As single channel data rate continues to increase and channel spacing continues to shrink for high capacity, high spectral efficiency, the workload on conventional electronic signal processing elements in the router nodes continues to build up. Performing signal processing functions in the optical domain can potentially alleviate the speed bottleneck if the unique optical properties are efficiently leveraged to assist electronic processing methodologies. Ultra-high bandwidth capability along with the promise for multi-channel and format-transparent operation make optical signal processing an attractive technology which is expected to have great impact on future optical networks. For optical signal processing applications in fiber-optic network and systems, a laudable goal would be to explore the unique nonlinear optical processes in novel photonic devices. This dissertation investigates novel optical signal processing techniques through simulations and experimental demonstrations, analyzes limitations of these nonlinear processing elements and proposes techniques to enhance the system performance or designs for functional photonic modules. Two key signal-processing building blocks for future optical networks, namely slow-light-based tunable optical delay lines and SOA-based high-speed wavelength converters, are presented in the first part of the dissertation. Phase preserving and spectrally efficient slow light are experimentally demonstrated using advanced modulation formats. Functional and novel photonic modules, such as multi-channel synchronizer and variable-bit-rate optical time division multiplexer are designed and

  1. Bufferless Ultra-High Speed All-Optical Packet Routing

    NASA Astrophysics Data System (ADS)

    Muttagi, Shrihari; Prince, Shanthi

    2011-10-01

    All-Optical network is still in adolescence to cope up with steep rise in data traffic at the backbone network. Routing of packets in optical network depends on the processing speed of the All-Optical routers, thus there is a need to enhance optical processing to curb the delay in packet forwarding unit. In the proposed scheme, the header processing takes place on fly, therefore processing delay is at its lower limit. The objective is to propose a framework which establishes high data rate transmission with least latency in data routing from source to destination. The Routing table and optical header pulses are converted into Pulse Position (PP) format, thus reducing the complexity and in turn the processing delay. Optical pulse matching is exercised which results in multi-output transmission. This results in ultra-high speed packet forwarding unit. In addition, this proposed scheme includes dispersion compensation unit, which makes the data reliable.

  2. Optical interconnect technologies for high-bandwidth ICT systems

    NASA Astrophysics Data System (ADS)

    Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki

    2016-03-01

    The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.

  3. BLOX: the Bonn lensing, optical, and X-ray selected galaxy clusters. I. Cluster catalog construction

    NASA Astrophysics Data System (ADS)

    Dietrich, J. P.; Erben, T.; Lamer, G.; Schneider, P.; Schwope, A.; Hartlap, J.; Maturi, M.

    2007-08-01

    The mass function of galaxy clusters is an important cosmological probe. Differences in the selection method could potentially lead to biases when determining the mass function. From the optical and X-ray data of the XMM-Newton Follow-Up Survey, we obtained a sample of galaxy cluster candidates using weak gravitational lensing, the optical Postman matched filter method, and a search for extended X-ray sources. We developed our weak-lensing search criteria by testing the performance of the aperture mass statistic on realistic ray-tracing simulations matching our survey parameters and by comparing two filter functions. We find that the dominant noise source for our survey is shape noise at almost all significance levels and that spurious cluster detections due to projections of large-scale structures are negligible, except possibly for highly significantly detected peaks. Our full cluster catalog has 155 cluster candidates, 116 found with the Postman matched filter, 59 extended X-ray sources, and 31 shear selected potential clusters. Most of these cluster candidates were not previously known. The present catalog will be a solid foundation for studying possible selection effects in either method. Based on observations carried out at the European Southern Observatory, La Silla, Chile under program Nos. 170.A-0789, 70.A-0529, 71.A-0110, 072.A-0061, 073.A-0050. The cluster catalogs are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg/cgi-bin/qcat?J/A+A/470/821

  4. Parameters of Selected Central Stars of Planetary Nebulae from Consistent Optical and UV Spectral Analysis

    NASA Astrophysics Data System (ADS)

    Kaschinski, Cornelius Bernhard

    Low mass stars have zero age main sequence masses of roughly 0.8-8.0 solar masses. Once their H and He source is depleted, low mass stars reaching the tip of the asymptotic giant branch (AGB) eject their envelopes becoming Central Stars of Planetary Nebulae (CSPNs). In the main part of this thesis we investigate the stellar parameters of a selected samples of CSPNS in order to further examine the validity of the commonly accepted core mass-luminosity relation of CSPNs. The necessity of such a critical examination was highlighted by a mismatch between the derived stellar parameters from hydrodynamical self-consistent UV analysis and those from a plane-parallel model fit to photospheric H and He absorption lines. The consistently derived masses from the UV analysis showed a wider spread than the masses derived from the optical analysis, which were obtained using theoretical post-AGB evolutionary tracks. This investigation was carried out using the non-local thermodynamic equilibrium atmosphere code "WM-basic", which has been previously used as the basis for the earlier consistent UV analysis performed on the sample of selected CSPNs. First, we improved the code by implementing the Stark broadening effect, so as to model optical H and He lines simultaneously along with the UV spectrum. This allowed a self-consistent re-analysis of the most and least massive of the CSPNs sampled. Using the UV parameter set we then reproduced not only the observed UV spectra but also produced optical line profiles which are nearly identical to those from optical stellar parameter models. The consistent models using the optical parameter set reproduce neither spectrum accurately. The lack of consistency between stellar and wind parameters of the optical parameter set is also evident from a different approach based on an investigation of the dynamical wind parameters. In a subsequent study, we further improved the WM-basic code by implementing the treatment of clumping. The strength of

  5. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    DOEpatents

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  6. Design guidelines for high dimensional stability of CFRP optical bench

    NASA Astrophysics Data System (ADS)

    Desnoyers, Nichola; Boucher, Marc-André; Goyette, Philippe

    2013-09-01

    In carbon fiber reinforced plastic (CFRP) optomechanical structures, particularly when embodying reflective optics, angular stability is critical. Angular stability or warping stability is greatly affected by moisture absorption and thermal gradients. Unfortunately, it is impossible to achieve the perfect laminate and there will always be manufacturing errors in trying to reach a quasi-iso laminate. Some errors, such as those related to the angular position of each ply and the facesheet parallelism (for a bench) can be easily monitored in order to control the stability more adequately. This paper presents warping experiments and finite-element analyses (FEA) obtained from typical optomechanical sandwich structures. Experiments were done using a thermal vacuum chamber to cycle the structures from -40°C to 50°C. Moisture desorption tests were also performed for a number of specific configurations. The selected composite material for the study is the unidirectional prepreg from Tencate M55J/TC410. M55J is a high modulus fiber and TC410 is a new-generation cyanate ester designed for dimensionally stable optical benches. In the studied cases, the main contributors were found to be: the ply angular errors, laminate in-plane parallelism (between 0° ply direction of both facesheets), fiber volume fraction tolerance and joints. Final results show that some tested configurations demonstrated good warping stability. FEA and measurements are in good agreement despite the fact that some defects or fabrication errors remain unpredictable. Design guidelines to maximize the warping stability by taking into account the main dimensional stability contributors, the bench geometry and the optical mount interface are then proposed.

  7. Optical Sensor Of High Gas Temperatures

    NASA Technical Reports Server (NTRS)

    Hill, Arthur J.

    1988-01-01

    Contact pyrometer resists effects of heat, vibration, and moisture. New sensor consists of shielded sapphire rod with sputtered layer of precious metal on end. Metal layer acts as blackbody. Emits radiation having known dependence of spectral distribution with temperature of metal and temperature of hot gas flowing over metal. Fiber-optic cable carries radiation from sapphire rod to remote photodetector.

  8. Diffraction-limited high-finesse optical cavities

    SciTech Connect

    Kleckner, Dustin; Irvine, William T. M.; Oemrawsingh, Sumant S. R.; Bouwmeester, Dirk

    2010-04-15

    High-quality optical cavities with wavelength-sized end mirrors are important to the growing field of micro-optomechanical systems. We present a versatile method for calculating the modes of diffraction limited optical cavities and show that it can be used to determine the effect of a wide variety of cavity geometries and imperfections. Additionally, we show these calculations agree remarkably well with FDTD simulations for wavelength-sized optical modes, even though our method is based on the paraxial approximation.

  9. High energy laser optics manufacturing: a preliminary study

    SciTech Connect

    Baird, E.D.

    1980-07-01

    This report presents concepts and methods, major conclusions, and major recommendations concerning the fabrication of high energy laser optics (HELO) that are to be machined by the Large Optics Diamond Turning Machine (LODTM) at the Lawrence Livermore National Laboratory (LLNL). Detailed discussions of concepts and methods proposed for metrological operations, polishing of reflective surfaces, mounting of optical components, construction of mirror substrates, and applications of coatings are included.

  10. The high education of optical engineering in East China

    NASA Astrophysics Data System (ADS)

    Liu, Xu; Liu, Xiangdong; Wang, Xiaoping; Bai, Jian; Liu, Yuling

    2014-07-01

    The history and the development of the high education in the field of optical engineering in the area of East China will be presented in the paper. The overall situation of research and human resource training in optics and photonics will also be reviewed, it shows that China needs lots of talents and experts in this field to support the world optical industry in East China.

  11. Selective optical generation of a coherent acoustic nanocavity mode

    NASA Astrophysics Data System (ADS)

    Pascual Winter, M. F.; Rozas, G.; Jusserand, B.; Perrin, B.; Fainstein, A.; Vaccaro, P. O.; Saravanan, S.

    2007-04-01

    We report the first experimental evidence of selective generation of a confined acoustic mode in a Ga0.85In0.15As nanocavity enclosed by two Ga0.85In0.15As/AlAs phonon Bragg mirrors. Femtosecond pump-probe experiments reveal the generation of a cavity mode within the acoustic mini-gap of the mirrors, in addition to their folded acoustic modes. Selective generation of the confined mode alone is achievable for certain energies below the absorption of the quantum wells in the phonon mirrors. These energies are experimentally identified with the cavity spacer electronic transitions. The amplitude of the acoustic nanocavity mode can be controlled by detuning the excitation from the spacer transitions. The present work finds a direct interest in the seek of monochromatic MHz-THz acoustic sources.

  12. Magneto-optic imaging inspection of selected corrosion specimens

    NASA Astrophysics Data System (ADS)

    Bobo, Stephen N.

    1992-07-01

    A feasibility demonstration was conducted at the facilities of Physical Research Instrumentation Company (PRI) in Redmond, Washington. The purpose of the demonstration was to compare the effectiveness of the PRI Model 301-1 magneto-optic imaging (MOI) system with conventional eddy current methods of detecting corrosion in aircraft test panels, previously identified by eddy current scanning. The study indicated that MOI may not be able to detect gradual differences in thinning that are less than 10 percent of base metal thickness. Also, with MOI, it appears to be more difficult to provide quantitative estimates of residual thickness than is the case with eddy current scanning. On the other hand, MOI visualization of the extent of corrosion is simple and free of the labor intensive point-by-point mapping, which is required by eddy current scanning.

  13. Large motion high cycle high speed optical fibers for space based applications.

    SciTech Connect

    Stromberg, Peter G.; Tandon, Rajan; Gibson, Cory S; Reedlunn, Benjamin; Rasberry, Roger David; Rohr, Garth David

    2014-10-01

    Future remote sensing applications will require higher resolution and therefore higher data rates (up to perhaps 100 gigabits per second) while achieving lower mass and cost. A current limitation to the design space is high speed high bandwidth data does not cross movable gimbals because of cabling issues. This requires the detectors to be off gimbal. The ability to get data across the gimbal would open up efficiencies in designs where the detectors and the electronics can be placed anywhere on the system. Fiber optic cables provide light weight high speed high bandwidth connections. Current options are limited to 20,000 cycles as opposed to the 1,000,000 cycles needed for future space based applications. To extend this to the million+ regime, requires a thorough understanding of the failure mechanisms and the materials, proper selection of materials (e.g., glass and jacket material) allowable geometry changes to the cable, radiation hardness, etc.

  14. Fragmentation of HCN in optically selected mass spectrometry: Nonthermal ion cooling in helium nanodroplets

    SciTech Connect

    Lewis, William K.; Bemish, Raymond J.; Miller, Roger E.

    2005-10-08

    A technique that combines infrared laser spectroscopy and helium nanodroplet mass spectrometry, which we refer to as optically selected mass spectrometry, is used to study the efficiency of ion cooling in helium. Electron-impact ionization is used to form He{sup +} ions within the droplets, which go on to transfer their charge to the HCN dopant molecules. Depending upon the droplet size, the newly formed ion either fragments or is cooled by the helium before fragmentation can occur. Comparisons with gas-phase fragmentation data suggest that the cooling provided by the helium is highly nonthermal. An 'explosive' model is proposed for the cooling process, given that the initially hot ion is embedded in such a cold solvent.

  15. Q selection for an electro-optical earth imaging system: theoretical and experimental results.

    PubMed

    Cochrane, Andy; Schulz, Kevin; Kendrick, Rick; Bell, Ray

    2013-09-23

    This paper explores practical design considerations for selecting Q for an electro-optical earth imaging system, where Q is defined as (λ FN) / pixel pitch. Analytical methods are used to show that, under imaging conditions with high SNR, increasing Q with fixed aperture cannot lead to degradation of image quality regardless of the angular smear rate of the system. The potential for degradation of image quality under low SNR is bounded by an increase of the detector noise scaling as Q. An imaging test bed is used to collect representative imagery for various Q configurations. The test bed includes real world errors such as image smear and haze. The value of Q is varied by changing the focal length of the imaging system. Imagery is presented over a broad range of parameters. PMID:24104104

  16. High speed all-optical encryption and decryption using quantum dot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Li, Wenbo; Hu, Hongyu; Dutta, Niloy K.

    2013-11-01

    A scheme to realize high speed all-optical encryption and decryption using key-stream generators and an XOR gate based on quantum dot semiconductor optical amplifiers (QD-SOAs) was studied. The key used for encryption and decryption is a high speed all-optical pseudorandom bit sequence (PRBS) which is generated by a linear feedback shift register (LFSR) composed of QD-SOA-based logic XOR and AND gates. Two other kinds of more secure key-stream generators, i.e. cascaded design and parallel design, were also designed and investigated. Nonlinear dynamics including carrier heating and spectral hole-burning in the QD-SOA are taken into account together with the rate equations in order to realize all-optical logic operations. Results show that this scheme can realize all-optical encryption and decryption by using key-stream generators at high speed (~250 Gb/s).

  17. A Large Aperture, High Energy Laser System for Optics and Optical Component Testing

    SciTech Connect

    Nostrand, M C; Weiland, T L; Luthi, R L; Vickers, J L; Sell, W D; Stanley, J A; Honig, J; Auerbach, J; Hackel, R P; Wegner, P J

    2003-11-01

    A large aperture, kJ-class, multi-wavelength Nd-glass laser system has been constructed at Lawrence Livermore National Lab which has unique capabilities for studying a wide variety of optical phenomena. The master-oscillator, power-amplifier (MOPA) configuration of this ''Optical Sciences Laser'' (OSL) produces 1053 nm radiation with shaped pulse lengths which are variable from 0.1-100 ns. The output can be frequency doubled or tripled with high conversion efficiency with a resultant 100 cm{sup 2} high quality output beam. This facility can accommodate prototype hardware for large-scale inertial confinement fusion lasers allowing for investigation of integrated system issues such as optical lifetime at high fluence, optics contamination, compatibility of non-optical materials, and laser diagnostics.

  18. Integrated compact optical current sensors with high sensitivity

    NASA Astrophysics Data System (ADS)

    Huang, Duanni; Pintus, Paolo; Srinivasan, Sudharsanan; Bowers, John E.

    2016-02-01

    We demonstrate a Sagnac based fiber optic current sensor using only 10cm of terbium doped fiber with a high Verdet constant of 15.5 rad/Tm at a wavelength of 1300nm. Measurements of the fiber inside a solenoid show over 40dB of open loop dynamic range as well as a minimum detectable current of 0.1mA. In order to decrease size while increasing sensitivity even further, we consider integrated magneto-optic waveguides as the sensing element. Using silicon waveguides alongside magneto-optic material such as cerium doped yttrium iron garnet (Ce:YiG), we model the Verdet constant to be as high as 10,000 rad/Tm. This improvement by three orders of magnitude shows potential for magnetooptic waveguides to be used in ultra-high sensitivity optical magnetometers and current sensors. Finally, we propose a fully integrated optical current sensor using heterogeneous integration for silicon photonics.

  19. Optical waveguides having flattened high order modes

    DOEpatents

    Messerly, Michael Joseph; Beach, Raymond John; Heebner, John Edward; Dawson, Jay Walter; Pax, Paul Henry

    2014-08-05

    A deterministic methodology is provided for designing optical fibers that support field-flattened, ring-like higher order modes. The effective and group indices of its modes can be tuned by adjusting the widths of the guide's field-flattened layers or the average index of certain groups of layers. The approach outlined here provides a path to designing fibers that simultaneously have large mode areas and large separations between the propagation constants of its modes.

  20. Optical fibers with dual coatings for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Stolov, Andrei A.; Simoff, Debra A.; Lindholm, Eric A.; Ciardiello, Catherine R.

    2010-10-01

    We describe a new optical fiber coating, comprising layers of UV-curable silicone and high-temperature acrylate, with and without hermetic carbon. Optical and mechanical properties of graded index 50/125 μm multimode fibers drawn with the new coating are examined. The new coatings display superior thermal stability in comparison with conventional dual acrylate coatings.

  1. High precision optical fiber bundle displacement sensor

    NASA Astrophysics Data System (ADS)

    Cao, Hui-min; Chen, You-ping; Zhang, Gang; Zhou, Zu-de

    2006-02-01

    A noncontact optical fiber bundle displacement sensor with nanometer resolution and low drift is proposed. The principle of the sensor is based on reflective intensity modulation technique. The optical fiber bundle probe contains one transmitting bundle and two receiving bundles. There are 727 identical glass optical fibers with a diameter of 50μm arranged in a concentric random pattern at the probe end. The diameter of the probe coated with a thin stainless ferrule is as small as 2.5mm. A carrier amplifier system is adopted to reduce dc drift and the interference of ambient stray light. The disturbance caused by fluctuation of light source and variation of target surface reflectivity is eliminated by taking a ratio of two receiving signals. The thermal drifts from two photoelectric signal processing circuits cancel out each other by using elements with identical specifications for both photodetector-amplifier chains. The sensitivity of the sensor is 5.9mV/nm over a linear range of 700-2300μm with a nonlinearity of 1%. The achieved resolution is 1nm/square root Hz; over a dynamic bandwidth of 10KHz and the dynamic range is 286dB. It has been proved that the sensor run sufficiently well when used with nano-technological instruments.

  2. Free-space optics for high-speed reconfigurable card-to-card optical interconnects

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Nirmalathas, Ampalavanpillai; Lim, Christina; Skafidas, Efstratios; Alameh, Kamal

    2013-09-01

    High-speed card-to-card optical interconnects are highly demanded in high-performance computing and data centers. Compared with other solutions, free-space optical interconnects have the capability of providing both reconfigurability and flexibility. In this paper we propose and experimentally demonstrate a free-space based reconfigurable optical interconnect architecture and it is capable of connecting cards located both inside the same rack as well as in different racks. Results show that 3×10 Gb/s data transmission is achieved with a worst-case receiver sensitivity better than -9.38 dBm.

  3. Selected studies of magnetism at high pressure

    SciTech Connect

    Hearne, G.R.; Pasternak, M.P.; Taylor, R.D.

    1995-09-01

    Most previous studies of magnetism in various compounds under extreme conditions have been conducted over a wide pressure range at room temperature or over a wide range of cryogenic temperatures at pressures below 20 GPa (200 kbar). We present some of the most recent studies of magnetism over an extended range of temperatures and pressures far beyond 20 GPa, i.e., in regions of pressure-temperature (P-T) where magnetism has been largely unexplored. Recent techniques have permitted investigations of magnetism in selected 3d transition metal compounds in regions of P-T where physical properties may be drastically modified; related effects have often been seen in selected doping studies at ambient pressures.

  4. High-Speed Characterizatin of Optical Telecommunication Signals

    SciTech Connect

    Dorrer, C.

    2007-05-17

    Optical telecommunication systems constantly evolve toward higher bit rates, requiring the modulation and detection of higher-bandwidth optical waves. Commercial systems operating at 40 Gb/s are now available and research and development efforts are targeting higher bit rates for which optical pulses with picosecond-range duration are used. Chromatic dispersion, nonlinearities and amplified spontaneous emission from optical amplifiers are sources of transmission impairments that must be characterized and mitigated. Advanced modulation formats rely on the modulation of not only the amplitude of an optical wave (e.g., on/off keying), but also its phase (e.g., phase-shift keying) in order to optimize the transmission capabilities. The importance of the characterization of the properties of optical sources and components and the specificities of the optical telecommunication environment with respect to ultrafast optics are emphasized. Various diagnostics measuring the electric field of optical sources in the telecommunication environment are described. Sampling diagnostics capable of measuring eye diagrams and constellation diagrams of high-bit-rate, data-encoded sources are presented. Various optical pulse characterization techniques that meet the sensitivity requirements imposed by the telecommunication environment are also described.

  5. High-density optical interconnects by using silicon photonics

    NASA Astrophysics Data System (ADS)

    Urino, Yutaka; Usuki, Tatsuya; Fujikata, Junichi; Ishizaka, Masashige; Yamada, Koji; Horikawa, Tsuyoshi; Nakamura, Takahiro; Arakawa, Yasuhiko

    2014-02-01

    One of the most serious challenges facing the exponential performance growth in the information industry is a bandwidth bottleneck in inter-chip interconnects. Optical interconnects with silicon photonics have been expected to solve the problem because of the intrinsic properties of optical signals and the industrial advantages of silicon for use in the electronics industry. We therefore propose an optical interconnect system by using silicon photonics to solve the problem. We examined integration between photonics and electronics and integration between light sources and silicon substrates, and we propose a photonics-electronics convergence system based on these examinations. We also investigated the configurations and characteristics of optical components for the system, including silicon spot-size converters, silicon optical waveguides, silicon optical splitters, silicon optical modulators, germanium photodetectors, and arrayed laser diodes. We then demonstrated the feasibility of the system by fabricating a high-density silicon optical interposer by using silicon photonics hybridly integrated with arrayed laser diodes and monolithically integrated with the other optical components on a single silicon substrate. The pad pitches of optical modulators and photodetectors were designed to be 100 μm so that LSI bare chips were able to contact to them electrically by flip-chip bonding. Since this system was optically complete and closed and no temperature sensitive component was used, we did not need to align the fibers, control the polarization, or control the temperature throughout the experiments. As a result, we achieved errorfree data links at 20 Gbps and high bandwidth density of 30 Tbps/cm2 with the silicon optical interposer.

  6. Optically Selected BL Lacertae Candidates from the Sloan Digital Sky Survey Data Release Seven

    NASA Astrophysics Data System (ADS)

    Plotkin, Richard M.; Anderson, Scott F.; Brandt, W. N.; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Hall, Patrick B.; Kimball, Amy E.; Richmond, Michael W.; Schneider, Donald P.; Shemmer, Ohad; Voges, Wolfgang; York, Donald G.; Bahcall, Neta A.; Snedden, Stephanie; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Viktor; Malanushenko, Elena; Oravetz, Dan; Pan, Kaike; Simmons, Audrey

    2010-02-01

    We present a sample of 723 optically selected BL Lac candidates from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) spectroscopic database encompassing 8250 deg2 of sky; our sample constitutes one of the largest uniform BL Lac samples yet derived. Each BL Lac candidate has a high-quality SDSS spectrum from which we determine spectroscopic redshifts for ~60% of the objects. Redshift lower limits are estimated for the remaining objects utilizing the lack of host galaxy flux contamination in their optical spectra; we find that objects lacking spectroscopic redshifts are likely at systematically higher redshifts. Approximately 80% of our BL Lac candidates match to a radio source in FIRST/NVSS, and ~40% match to a ROSAT X-ray source. The homogeneous multiwavelength coverage allows subdivision of the sample into 637 radio-loud BL Lac candidates and 86 weak-featured radio-quiet objects. The radio-loud objects broadly support the standard paradigm unifying BL Lac objects with beamed radio galaxies. We propose that the majority of the radio-quiet objects may be lower-redshift (z < 2.2) analogs to high-redshift weak line quasars (i.e., active galactic nucleus with unusually anemic broad emission line regions). These would constitute the largest sample of such objects, being of similar size and complementary in redshift to the samples of high-redshift weak line quasars previously discovered by the SDSS. However, some fraction of the weak-featured radio-quiet objects may instead populate a rare and extreme radio-weak tail of the much larger radio-loud BL Lac population. Serendipitous discoveries of unusual white dwarfs, high-redshift weak line quasars, and broad absorption line quasars with extreme continuum dropoffs blueward of rest-frame 2800 Å are also briefly described.

  7. Enhanced Ultraviolet Fluorescence due to Selective Optical Pumping with Extreme Ultraviolet Line Radiation

    NASA Astrophysics Data System (ADS)

    Trebes, James Edward

    In recent efforts to develop XUV and X-ray lasers resonant photo-excitation has been proposed as a possible pumping mechanism for producing population inversions. In this scheme intense line radiation from one ion species is used to pump selectively a nearly coincident absorption transition in a different ion species. Electrons are pumped from the ground state to a highly excited state producing a population inversion between excited states within the pumped ion. This thesis presents a series of experiments in which AIIII 3s-5p 56 nm XUV line radiation from a laser produced Al plasma is used to pump the CII 3p-5d 56 nm absorption transition in a C vacuum arc. The pumping results in UV enhanced fluorescence on the CII 3p-5d 213.8 nm transition and on transitions collisionally coupled to the 5d state. Time resolved measurements of these fluorescence channels are presented. These results are found to be in qualitative agreement with a collisional-radiative model of the pumping process. The limitations of the AIIII-CII optical pumping system for producing an UV laser are discussed. A new class of optically pumped lasers is proposed which avoids these limitations. The new class, based on Be-like ions, offers potential lasing lines from 200 nm to 20 nm. Parameter regimes for lasing are calculated.

  8. On the selective photoexcitation of molecules within the homogeneous width of optical lines

    NASA Astrophysics Data System (ADS)

    Izmailov, Azad Ch.; Mahmoudi, Mohammad; Tajalli, Habib

    2000-03-01

    We investigate the photoexcitation of molecules of a gas, caused by the change of the state of the coherent population trapping of the open Λ-system of quantum levels at the sharp change of phase and amplitude parameters of the two-frequency laser pumping. Analysis is carried out both on the basis of the Schrödinger equation and in the formalism of the density matrix of molecules in the case of homogeneously broadened spectral lines. The maximum photoexcitation takes place at the two-quantum resonance between lower long-lived states of the Λ-system. It is shown, that the narrow, high-contrast peak of the photoexcitation appears on the comparatively low and wide background, caused by collisions of molecules. Conditions are determined, when the influence of this background is minimum and the spectral width of the photoexcitation peak is much less than the homogeneous widths of the optical lines of resonance transitions in the Λ-system. Such photoexcitation may be used in the technology of isotope (isomer) separation, selective photochemistry and photobiology even at essential overlap of optical spectra of different molecules.

  9. Novel space-time trellis codes for free-space optical communications using transmit laser selection.

    PubMed

    García-Zambrana, Antonio; Boluda-Ruiz, Rubén; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz

    2015-09-21

    In this paper, the deployment of novel space-time trellis codes (STTCs) with transmit laser selection (TLS) for free-space optical (FSO) communication systems using intensity modulation and direct detection (IM/DD) over atmospheric turbulence and misalignment fading channels is presented. Combining TLS and STTC with rate 1 bit/(s · Hz), a new code design criterion based on the use of the largest order statistics is here proposed for multiple-input/single-output (MISO) FSO systems in order to improve the diversity order gain by properly chosing the transmit lasers out of the available L lasers. Based on a pairwise error probability (PEP) analysis, closed-form asymptotic bit error-rate (BER) expressions in the range from low to high signal-to-noise ratio (SNR) are derived when the irradiance of the transmitted optical beam is susceptible to moderate-to-strong turbulence conditions, following a gamma-gamma (GG) distribution, and pointing error effects, following a misalignment fading model where the effect of beam width, detector size and jitter variance is considered. Obtained results show diversity orders of 2L and 3L when simple two-state and four-state STTCs are considered, respectively. Simulation results are further demonstrated to confirm the analytical results. PMID:26406626

  10. Mode-selective optical packet switching in mode-division multiplexing networks.

    PubMed

    Diamantopoulos, N P; Hayashi, M; Yoshida, Y; Maruta, A; Maruyama, R; Kuwaki, N; Takenaga, K; Uemura, H; Matsuo, S; Kitayama, K

    2015-09-01

    A novel mode-selective optical packet switching, based on mode-multiplexers/demultiplexers and multi-port optical micro-electro-mechanical systems (MEMS) switches, has been proposed and experimentally demonstrated. The experimental demonstration was performed using the LP(01), LP(11a) and LP(11b) modes of a 30-km long mode-division multiplexed few-mode fiber link, utilizing 40 Gb/s, 16-QAM signals. PMID:26368463

  11. Black tungsten selective optical coatings for photothermal solar energy conversion

    NASA Astrophysics Data System (ADS)

    Gesheva, K. A.; Gogova, D. S.; Stoyanov, G.

    1992-08-01

    By pyrolytic decomposition of W(CO)6 in the presence of an oxygen bleed black tungsten solar selective coatings have been deposited on different substrates - quartz, silicon and stainless steel. Quartz substrates were used to check the opacity of the films deposited; the silicon substrates were used to study the possibility of obtaining low-resistance material when fully annealed and the steel substrates to study the properties of the films on substrates suitable for a large scale application. The films were obtained at a temperature of 400°C and further partially annealed in a reducing atmosphere. The dependence of the structure and chemical composition on the annealing temperature was studied, as well as reflectance measurements in the visible and in the infrared region.

  12. Far-infrared properties of optically-selected quasars and Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Edelson, R. A.; Malkan, M. A.

    1987-01-01

    Pointed IRAS observations and ground based observations are used to determine the infrared properties of optically selected galaxies and quasars. The use of complete, unbiased, optically selected samples means that statistical tests can be applied to probe the underlying properties of active galactic nuclei (AGNs). The near infrared to millimeter spectral energy distributions (SEDs) were studied of the CfA Seyfert galaxies, a well defined, unbiased sample of 25 Type 1 and 23 Type 2 Seyfert galaxies selected by optical spectroscopy. Data given show strong trends in the infrared SEDs. Strong evidence is also given that the infrared spectra of Seyfert 2 galaxies are dominated by thermal emission from warm dust, while nonthermal emission is more important in the spectra of quasars and luminous Seyfert 1 nuclei.

  13. Renovating the chromoionophores and detection modes in carrier-based ion-selective optical sensors.

    PubMed

    Xie, Xiaojiang

    2016-04-01

    Ion-selective optical sensing is an important branch of analytical and bioanalytical chemistry. Conventional ion-selective optodes are based on H(+) chromoionophores. These sensors are known to be pH dependent and usually operated in a passive mode. In view of the applications in complex real samples, the sensors must exhibit not only excellent chemical selectivity but also the ability to eliminate the optical background interference such as autofluorescence and light scattering. In this article, recent advances to renovate the chromoionophores and detection modes to overcome the pH cross-response and to eliminate the background optical interference are summarized. Topics include sensors based on solvatochromic dyes, alternative chromoionophores, photoswitchable sensors, upconverting nanoparticles, luminescence decay time, and others. PMID:26922342

  14. Maintaining high-Q in an optical microresonator coated with high-aspect-ratio gold nanorods

    NASA Astrophysics Data System (ADS)

    Ganta, D.; Dale, E. B.; Rosenberger, A. T.

    2013-10-01

    We report methods to coat fused-silica microresonators with solution-grown high-aspect-ratio (AR) gold nanorods (NRs). Microresonators coated using our method maintain an optical quality factor (Q) greater than 107 after coating. The more successful method involves silanization of the surface of the microresonator with 3-mercaptopropylmethyldimethoxysilane (MPMDMS), to enable the adhesion of gold NRs. The high-AR NR-coated microresonator combines the field enhancement of localized surface plasmon resonances with the cavity-enhanced evanescent components of high-Q whispering-gallery modes, making it useful for plasmonic sensing applications in the infrared. By coating with NRs having a different aspect ratio, the enhancement regime can be selected within a wide range of wavelengths.

  15. Design and performance of ultra-high-density optical fiber cable with rollable optical fiber ribbons

    NASA Astrophysics Data System (ADS)

    Hogari, Kazuo; Yamada, Yusuke; Toge, Kunihiro

    2010-08-01

    This paper proposes a novel ultra-high-density optical fiber cable that employs rollable optical fiber ribbons. The cable has great advantages in terms of cable weight and diameter, and fiber splicing workability. Moreover, it will be easy to install in a small space in underground ducts and on residential and business premises. The structural design of the rollable optical fiber ribbon is evaluated theoretically and experimentally, and an optimum adhesion pitch P in the longitudinal direction is obtained. In addition, we examined the performance of ultra-high-density cables with a small diameter that employ rollable optical fiber ribbons and bending-loss insensitive optical fibers. The transmission, mechanical and mid-span access performance of these cables was confirmed to be excellent.

  16. A high speed optical multichannel analyzer.

    PubMed

    Cole, J W; Hendler, R W; Smith, P D; Fredrickson, H A; Pohida, T J; Friauf, W S

    1997-12-01

    An optical multichannel analyzer capable of recording spectra at sampling rates up to 100 kHz is described. The instrument, designed to gather data on the kinetic reaction mechanisms of biological preparations such as cytochrome oxidase and bacteriorhodopsin, features a massively parallel approach in which each photosensing element of the detector array has a dedicated amplifier, integrator, analog to digital converter, and sample buffer. The design has 92 such elements divided in two separate arrays, each of which sits at the focal plane of a 1/4 m Ebert spectrometer. The spectrometers may be tuned to cover independent, 130 nm wide, regions of the spectrum from 350 nm to 900 nm with a dispersion of 2.8 nm per element. Each detection channel has 12-bit resolution with an electronic dark count of 1 count and may be sampled 1024 times during a single experiment with dynamically variable sampling intervals from 10 microseconds to several seconds. Time averaging of up to thousands of consecutive laser-initiated kinetic cycles allows analyses of spectral changes < 0.001 optical density units. A personal computer with custom software provides a number of features: entry of experiment parameters; transfer of data from temporary buffers to permanent files; real time display; multiple spectrum averaging; and control and synchronization of associated system hardware. Optical fibers or lenses provide coupling from a parabolic reflector Xenon arc monitoring light source, through the sample chamber, to the entry slit of the monochromator. The instrument has been used for extensive studies on the rapid kinetics and definition of reaction sequences of the energy-transducing enzymes cytochrome oxidase and bacteriorhodopsin. Some results from these studies are discussed. PMID:9470095

  17. Collision kernels from velocity-selective optical pumping with magnetic depolarization

    NASA Astrophysics Data System (ADS)

    Bhamre, T.; Marsland, R., III; Kominis, I. K.; McGuyer, B. H.; Happer, W.

    2013-04-01

    We experimentally demonstrate how magnetic depolarization of velocity-selective optical pumping can be used to single out the collisional cusp kernel best describing spin- and velocity-relaxing collisions between potassium atoms and low-pressure helium. The range of pressures and transverse fields used simulate the optical pumping regime pertinent to sodium guidestars employed in adaptive optics. We measure the precession of spin-velocity modes under the application of transverse magnetic fields, simulating the natural configuration of mesospheric sodium optical pumping in the geomagnetic field. We also provide a full theoretical account of the experimental data using the recently developed cusp kernels, which realistically quantify velocity damping collisions in this optical pumping regime. A single cusp kernel with a sharpness s=13±2 provides a global fit to the K-He data.

  18. Optically modulated fluorescence bioimaging: visualizing obscured fluorophores in high background.

    PubMed

    Hsiang, Jung-Cheng; Jablonski, Amy E; Dickson, Robert M

    2014-05-20

    Fluorescence microscopy and detection have become indispensible for understanding organization and dynamics in biological systems. Novel fluorophores with improved brightness, photostability, and biocompatibility continue to fuel further advances but often rely on having minimal background. The visualization of interactions in very high biological background, especially for proteins or bound complexes at very low copy numbers, remains a primary challenge. Instead of focusing on molecular brightness of fluorophores, we have adapted the principles of high-sensitivity absorption spectroscopy to improve the sensitivity and signal discrimination in fluorescence bioimaging. Utilizing very long wavelength transient absorptions of kinetically trapped dark states, we employ molecular modulation schemes that do not simultaneously modulate the background fluorescence. This improves the sensitivity and ease of implementation over high-energy photoswitch-based recovery schemes, as no internal dye reference or nanoparticle-based fluorophores are needed to separate the desired signals from background. In this Account, we describe the selection process for and identification of fluorophores that enable optically modulated fluorescence to decrease obscuring background. Differing from thermally stable photoswitches using higher-energy secondary lasers, coillumination at very low energies depopulates transient dark states, dynamically altering the fluorescence and giving characteristic modulation time scales for each modulatable emitter. This process is termed synchronously amplified fluorescence image recovery (SAFIRe) microscopy. By understanding and optically controlling the dye photophysics, we selectively modulate desired fluorophore signals independent of all autofluorescent background. This shifts the fluorescence of interest to unique detection frequencies with nearly shot-noise-limited detection, as no background signals are collected. Although the fluorescence brightness is

  19. Development of optical tool for the characterization of selective solar absorber tubes

    NASA Astrophysics Data System (ADS)

    Braillon, Julien; Stollo, Alessio; Delord, Christine; Raccurt, Olivier

    2016-05-01

    In the Concentrated Solar Power (CSP) technologies, selective solar absorbers, which have a cylindrical geometry, are submitted to strong environmental constraints. The degradation of their optical properties (total solar absorbance and total emittance) has a direct impact on the performances. In order to know optical properties of absorber tubes, we present in this article a new optical tool developed by our laboratory which fit onto commercial spectrometers. Total solar absorbance and total emittance are calculated from total reflectance spectra measured by UV-Vis and IR spectrophotometry. To verify and validate the measurement method, we performed a comparative study between flat and cylindrical samples with same surface properties.

  20. A generic mode selection strategy for high-order mode gyrotrons operating at multiple frequencies

    NASA Astrophysics Data System (ADS)

    Franck, Joachim; Avramidis, Konstantinos; Gantenbein, Gerd; Illy, Stefan; Jin, Jianbo; Thumm, Manfred; Jelonnek, John

    2015-01-01

    High-power, high-frequency gyrotrons for electron cyclotron resonance heating and current drive, such as proposed for the demonstration thermonuclear fusion reactor DEMO, require operating modes of very high order. As it is shown, the selection of the operating modes for such gyrotrons can be based on multi-frequency operability. A general selection strategy is derived, suitable for multi-purpose multi-frequency gyrotrons with quasi-optical mode converter and single-disc output window. Two examples, one of them relevant for future DEMO gyrotron designs, are discussed.

  1. X-ray reflection and scatter measurements on selected optical samples

    NASA Technical Reports Server (NTRS)

    Fields, S. A.; Reynolds, J. M.; Holland, R. L.

    1975-01-01

    The results from an experimental program to determine the reflection efficiency and scatter parameters of selected optical samples are presented. The measurements were made using 8.34A X-rays at various angles of incidence. Selected samples were contaminated after being measured and then remeasured to determine the effects of contamination. The instrumentation involved in taking the data, including the X-ray reflectometer and data processing equipment, is discussed in detail. The condition of the optical surfaces, the total reflection measurements, the scatter measurements, and the analysis are discussed.

  2. Voltage-controllable wavelength-selective optical switching based on multiply cascaded long-period fiber gratings

    NASA Astrophysics Data System (ADS)

    Han, Young-Geun; Choi, Sun-Min; Kim, Sang Hyuck; Lee, Sang Bae

    2003-11-01

    A novel wavelength-selective optical switching device based on multiply cascaded long-period fiber gratings is proposed and experimentally demonstrated. The on and off states of each channel in the optical switching device can be effectively switched by voltage-controllable coil heaters. The device has advantages of multichannel operation, multiwavelength selectivity, and bandwidth controllability. It can be useful for applications in multiwavelength operational signal gating, optical switching devices, routers, and multiplexers in optical communication systems.

  3. Imprinting high-gradient topographical structures onto optical surfaces using magnetorheological finishing: manufacturing corrective optical elements for high-power laser applications.

    PubMed

    Menapace, Joseph A; Ehrmann, Paul E; Bayramian, Andrew J; Bullington, Amber; Di Nicola, Jean-Michel G; Haefner, Constantin; Jarboe, Jeffrey; Marshall, Christopher; Schaffers, Kathleen I; Smith, Cal

    2016-07-01

    Corrective optical elements form an important part of high-precision optical systems. We have developed a method to manufacture high-gradient corrective optical elements for high-power laser systems using deterministic magnetorheological finishing (MRF) imprinting technology. Several process factors need to be considered for polishing ultraprecise topographical structures onto optical surfaces using MRF. They include proper selection of MRF removal function and wheel sizes, detailed MRF tool and interferometry alignment, and optimized MRF polishing schedules. Dependable interferometry also is a key factor in high-gradient component manufacture. A wavefront attenuating cell, which enables reliable measurement of gradients beyond what is attainable using conventional interferometry, is discussed. The results of MRF imprinting a 23 μm deep structure containing gradients over 1.6 μm / mm onto a fused-silica window are presented as an example of the technique's capabilities. This high-gradient element serves as a thermal correction plate in the high-repetition-rate advanced petawatt laser system currently being built at Lawrence Livermore National Laboratory. PMID:27409216

  4. Imprinting high-gradient topographical structures onto optical surfaces using magnetorheological finishing: Manufacturing corrective optical elements for high-power laser applications

    DOE PAGESBeta

    Menapace, Joseph A.; Ehrmann, Paul E.; Bayramian, Andrew J.; Bullington, Amber; Di Nicola, Jean -Michel G.; Haefner, Constantin; Jarboe, Jeffrey; Marshall, Christopher; Schaffers, Kathleen I.; Smith, Cal

    2016-03-15

    Corrective optical elements form an important part of high-precision optical systems. We have developed a method to manufacture high-gradient corrective optical elements for high-power laser systems using deterministic magnetorheological finishing (MRF) imprinting technology. Several process factors need to be considered for polishing ultraprecise topographical structures onto optical surfaces using MRF. They include proper selection of MRF removal function and wheel sizes, detailed MRF tool and interferometry alignment, and optimized MRF polishing schedules. Dependable interferometry also is a key factor in high-gradient component manufacture. A wavefront attenuating cell, which enables reliable measurement of gradients beyond what is attainable using conventional interferometry,more » is discussed. The results of MRF imprinting a 23 μm deep structure containing gradients over 1.6 μm / mm onto a fused-silica window are presented as an example of the technique’s capabilities. As a result, this high-gradient element serves as a thermal correction plate in the high-repetition-rate advanced petawatt laser system currently being built at Lawrence Livermore National Laboratory.« less

  5. Selective aggregation of single-walled carbon nanotubes using the large optical field gradient of a focused laser beam.

    PubMed

    Rodgers, Thomas; Shoji, Satoru; Sekkat, Zouheir; Kawata, Satoshi

    2008-09-19

    We demonstrate the selective aggregation of single-walled carbon nanotubes by photon forces, using the large optical field gradient of a laser focused through a high numerical aperture objective lens. The nanotubes, dispersed in an aqueous solution with a surfactant, are detected via Raman scattering from the confocal volume of the optical trap. By using a visible-light laser for both trapping and detection, the dynamics of the radial breathing mode signal taken at short intervals shows an increase of a single breathing mode over time, indicating the increase in the density of only one species of tube in the focal volume. This result represents a significant step toward the development of techniques for the arbitrary manipulation and sorting of nanotubes by optical fields. PMID:18851409

  6. Magneto-optical system for high speed real time imaging

    NASA Astrophysics Data System (ADS)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  7. Magneto-optical system for high speed real time imaging.

    PubMed

    Baziljevich, M; Barness, D; Sinvani, M; Perel, E; Shaulov, A; Yeshurun, Y

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated. PMID:22938303

  8. H I-SELECTED GALAXIES IN THE SLOAN DIGITAL SKY SURVEY. I. OPTICAL DATA

    SciTech Connect

    West, Andrew A.; Garcia-Appadoo, Diego A.; Dalcanton, Julianne J.; Ivezic, Zeljko; Bentz, Misty C.; Disney, Mike J.; Rockosi, Constance M.

    2010-02-15

    We present the optical data for 195 H I-selected galaxies that fall within both the Sloan Digital Sky Survey (SDSS) and the Parkes Equatorial Survey (ES). The photometric quantities have been independently recomputed for our sample using a new photometric pipeline optimized for large galaxies, thus correcting for SDSS's limited reliability for automatic photometry of angularly large or low surface brightness (LSB) galaxies. We outline the magnitude of the uncertainty in the SDSS catalog-level photometry and derive a quantitative method for correcting the over-sky subtraction in the SDSS photometric pipeline. The main thrust of this paper is to present the ES/SDSS sample and discuss the methods behind the improved photometry, which will be used in future scientific analysis. We present the overall optical properties of the sample and briefly compare to a volume-limited, optically selected sample. Compared to the optically selected SDSS sample (in the similar volume), H I-selected galaxies are bluer and more luminous (fewer dwarf ellipticals and more star formation). However, compared to typical SDSS galaxy studies, which have their own selection effect, our sample is bluer, fainter, and less massive.

  9. H I-Selected Galaxies in the Sloan Digital Sky Survey. I. Optical Data

    NASA Astrophysics Data System (ADS)

    West, Andrew A.; Garcia-Appadoo, Diego A.; Dalcanton, Julianne J.; Disney, Mike J.; Rockosi, Constance M.; Ivezić, Željko; Bentz, Misty C.; Brinkmann, J.

    2010-02-01

    We present the optical data for 195 H I-selected galaxies that fall within both the Sloan Digital Sky Survey (SDSS) and the Parkes Equatorial Survey (ES). The photometric quantities have been independently recomputed for our sample using a new photometric pipeline optimized for large galaxies, thus correcting for SDSS's limited reliability for automatic photometry of angularly large or low surface brightness (LSB) galaxies. We outline the magnitude of the uncertainty in the SDSS catalog-level photometry and derive a quantitative method for correcting the over-sky subtraction in the SDSS photometric pipeline. The main thrust of this paper is to present the ES/SDSS sample and discuss the methods behind the improved photometry, which will be used in future scientific analysis. We present the overall optical properties of the sample and briefly compare to a volume-limited, optically selected sample. Compared to the optically selected SDSS sample (in the similar volume), H I-selected galaxies are bluer and more luminous (fewer dwarf ellipticals and more star formation). However, compared to typical SDSS galaxy studies, which have their own selection effect, our sample is bluer, fainter, and less massive.

  10. High energy, high resolution X-ray optics

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Joy, Marshall; Kahn, Steven

    1990-01-01

    The scientific goals of X-ray astronomy are considered to evaluate the relative advantages of using classical Wolter-1 optics or using a different approach. The portion of the X-ray band over 10 keV is unexploited in the present X-ray optics technology, and focussing in this portion of the band is crucial because nonfocussed experiments are background limited. The basic design of 'hard' X-ray optics is described theoretically emphasizing the very small angles of incidence in the grazing-incidence optics. Optimization of the signal-to-noise ratio is found to occur at a finite angular resolution. In real applications, the effective area reduced by the efficiency of the two reflections is 80 percent at energies up to 40 keV, and the quality of the reflecting surface can be monitored to minimize scattering. Focussing optics are found to offer improvements in signal-to-noise as well as more effective scientific return because microelectronic focal-plane technology is employed.